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INT RODUCTION

This presentation offers a mathematical framework for a series of problems

normally encountered under the heading “sound rangi ng ,” and developments

are directed toward this end . However , the techniques may be subje ct to

a broader range of interpretation. The language is intended to be strongly

suggestive of actual application and will be kept of such a nature as to

agree with intuitive “feel .” As considered here, the fundamental problem

of “sound ranging” will be the location of a “sound source ” when the ap-

proximate position of an expandi nq wave front is known at a number of times ;

or more appropriately, if the approximate time of arri val of such a wave

front is known at a series of prescribed locations in space .

The approach taken Is nonlinear and consists of two distinct steps: a

prelimi nary estimation of sound source and i nfl uencing parameters, and

an i terative technique for refinement of such estimates.

Of particular te~e.s.t.. is the interpl ay which arises between points cho-
- ~~~.. ~~~~ ,:-

Sen as ~recei.vitlq’stat1ons ,~’Jound source position , accura cy of arri val

time s, and integrl ty~~~~~~ j rological information.
- 

.

The guide l ivies hos~n
’
~for 1~e mathematical framework were sufficiently

general ~~~~~~~~~~~~~~~~~~~~~~~ of many differing sound wave

fronts without destroyln~~an undue amount of intuitive flavor. Several

1ntke~t.tog~~nd occasion/lly surprising relationships emerge which are

__
_  
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not generally evi dent, especially with regard to the role of microphone

placement.

The main flow proceeds from the general to the specific , wi th an ultimate

goal the Improvement of overall “sound ranging capability .” This goal

should be approached by the augmentation of current or proposed techniques

with a class of “ve rn ier ” methods. The authors believe that these techniques

may be initiated at a modest computational level and will be consistent

with modern concepts of automation.

In this initial presentation , a general mathematical skeleton is devel-

oped and then applied in a simple problem . The example presented will

consider a spheri cal sound wave propagating in a medium of uniform

temperature and in the presence of a wind of fixed magnitude and direc-

tion. This model will be sufficient to demonstrate several pertinent

features, yet the lack of compl ication provides ease of presentation

and Interpretation. As more complex models are examined , they may be

contrasted in light of their di fferences from the basic model and per-

haps In this manner be more easily interpreted themselves .

To this point, random variations within the structure have not

been considered . However, the authors have explored this area to the

extent that a probabilistic approach is expected to be highly rewardi ng ,

both from the point of view of sensitivity analysis and from the stand-

point of Information recovery versus receiver accuracy. The authors

bel ieve stochastic modeling will provide a fruitful avenue of approach ,

and prel iminary results are encouraging.

3
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THE SOUND RANGING PROBLEM, A GENERAL MATHEMATICAL APP ROACH

Fundamental In the structure to be developed is the notion of an extended

wave generating function. For the highly specialized appl i cation encoun-

tered here, the following definitions will be employed.

Definition 1

Let w be a real-valued function whose domain is a compact connected re-

gion of Euclidean 4-space (E u) and whose range contains the real number

zero . Assume, moreover , that w is of class C2 , that is , possesses con-

t inuous partial deri vati ves of the second order. Then w will be called

an extended wave generating function.

Let V denote the domain of definition of an extended wave qenerating

function w. A typical point in V will be wri tten as (x ,y,z ,t); wi th 0 =

((x,y,z) I (x ,y ,z,t) c V} carryinq a connotation of “points in space ,”

while I = Ct I (x,y,z,t) c V} has a context of “time.” The notation for

V and the projections 0 and I will be consistently utilized throughout

the discussions to follow.

Observe that the continuity of projection maps assures that both I and 0

are compact and connected ; hence 0 may be visual ized as a bounded volume

in Euclidean 3—space (E3), and I as a real interval .

Attention will now be focused on sets of the form

W
~ 

= {(x,y,z) (x,y,z,t ) € V; w (x ,y,z,t) = 0). Sone descriptive termi-

nology concerning these sets is gi ven in the following definition.4



Definition 2

Let w be an extended wave generating function defined on the region V of

E~. For each t c I, the set of points in E3 defined by W~ =

{(x,y,z)  I (x ,y,z,t) c V; w(x,y,z,t) = 0) will be called the wave_front

at t generated by w. A point (x,y,z)  in W~ will be said to lie on the

appropriate wave front.

Suppose that {w~ j c J} is an i ndexed fami ly of extended wave generatinq

functions; and let {V~ I i ~ j}, (D~ I j c J}, and {IJ j ~ J} have their

obvious interpretations. Let (x,y,z) be a point in D~1 wh ich will

be assumed to be nonempty. If there exists (t~ I t~ c I~; ~ € J} such —

that (x,y,z) c (~~~
(Wj)t~ where for each .1 e J, (W

~
)
~ 

denotes the

wave front at tj generated by Wj. the point (x,y,z) will be called a

poi nt of contingency for the family {w~ j € J}. A special point of

this nature will be of interest in the solution of the sound ranging

problem as presented in the current context.

At this point, it will be expedient to define a special point which will

emerge as a point of contingency for certain families of extended wave

generating func tions . These wi l l  ar ise in a log ical manner from a s i ngle
wave generating function , and a known family of discrete points in the

domain of this latter function 4 This point will be called a source

point , and its description Is the content of the following definition .

5 _ 
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Def in i t i on  3

Let w be an extended wave generating function defined on V. For any

(x,y,z)  c D , let r(x ,y,z) designate the set of all linear graphs in E3

wi th origin (x,y,z) .

Now suppose that (x0, y0, z0, t) is a point in V with the following

properties

a. For any y ~ r, t ~ I, yfl\W~ ~
b. For any y E r, and sequence Ctn I t~1 c T;n l,2,...} such that

l~m ~ = t0; if (p~,q~,r~) is in yfl\W~ 
, it fol lows that

l~m (p~,q~,r~) - (x 0,y0,z0) H = 0.

Then (x0,y0,z0,t ) will be called a source point of w.

Theorem 1. The source point as designated by Definition 3 is unique ;

that is, an extended wave generating function can have at most one source

pci nt.

Proof. Suppose there exist two distinct source points (x 1 ,y1 ,z1 ,t1),
(x 2,y2,z2,t2). For times sufficiently near t1 and t2, all wave fronts

belonging to these times may be separated by open spheres . By choosing

a point outside either of these spheres so that a line connecting this

point to the center of one of the spheres is not tangent to the other,

part a of Definition 3 is violated. This proves the theorem and demon-

strates uniqueness of the source point.

6
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A fundamental property of extended wave generating functions with source

points which  w i l l  be of considerable importance in the development to

follow , and which will offer one approach to the problem of numerical

determination of source points , can now be demonstrated.

Theorem 2. Let w be a wave generating function with source point

(x0,y0,z0,t0). Let J be a finite index set, and for j c J , let

~~~~~~~~~ lie in V. Assume that ~~~~~~~~~~~ I i c 3) forms a

distinct set of points . It is now possible to defi ne a family of trans-

formations from EL
~ onto E~ by letting for each j c J be

r 
x ’ = x - (x

1 
- x0)

I ~~ ‘ = - -
.tJ .’c

I z ’ = z — (z .  - z0 )

~~ = - (t~ -

For each j c J, possesses a differential equal to the appropriate

Identity matrix; therefore, the Jacobian is of constant val ue 1 through

E~. In particular , r 4 is a pure translation in E~, and hence carriesJ

compact, connected sets Into sets of similar nature. Now , for each

j ~ 3, let wj be defined for each p ’ c by w~(~ ’) = w (t 1(p ’ ) ) .

Clearly w
1 

is wel l -defined for each j ~ J. It follows that {w~ I I J}

is a family of extended wave generating functions , and (x0,y0,z0) is a

poi nt of contingency for this family.

7



Proof. As has been seen, the nature of the family of translations

{ T
1 

j c 3) assures that each member of Cw~ I j c 3) is a real-valued

function defined on a compact connected region of E4. It also follows

that each is of class C2, since w possesses this nature .

Observe now that for any i c 3, ~~~~~~~~~ p~ is mapped by onto

(x0,y0,z0,t0) p0; hence, p0 is in the domain of w~ for each j c J. In

addition, w1(p0 ) = w(r 1(p
0
)) = w(~~) = 0; therefore, zero is in the

range of W
j 

for each J ~ 0 and each w~ is an extended wave generating

function . Examination also yields that (x0,y0,z0) lies in (W.)
~ 
; that

is, the wave front at t~ generated by w1; and this for each ,
~ c 3. It

there fore follows that (x0 ,y0,z0) is a point of contingency for
{w~ j c 3). This proves the theorem.

In reality, an Important corollary has essential ly been proved .

Corol l ary 2.1. If w, and {w~ j j c 0) are as gi ven in Theorem 1 ,

the source point of w lies among the conrion zeroes of the family

{wj I j c J } .

Corollary 2.1 links the problem of determining a source point of an S
ex-

tended wave generating function to the problem of determining the proper

zero of (w~ I j E J}. As will be seen later, a series of computational

devices for determining source points may arise from this fact.

At this point, a precise defInition of the sound ranging problem may be

phrased In current context.

8



Definition 4

Let w be an extended wave generating function and {p1 I j c 3) be a

finite family of points in V with f ( x 1.Y1~z~) i c 3) distinct in E 3.

The problem of determining the source point of w , if such exists , will

be called a sound ranging problem.

In the study of general sound ranging problems , an especially revealing

form of the extended wave generating function is described in the fol l owing

definition.

Definition 5

Let w be an extended wave generating function having the followi ng

properties

a. For any t,t’ in I, W~ ~ 
W~.

b. There exists (x,y,z) £ 0 havIng the property that if 
~
‘ c r (x ,y,z),

and t, t’ are in I with t < t ’ ; and if in addition, (p,q,r) ~ y

and (p’,q’,r’) c y r ’\W~, then
II (x,v,z) — (p,q,r) H ~~. H (x ,y,z) — (p’,q’,r’) II .

Then w is said to be an extended wave generating_function wi th wave fronts

expanding about (x,y,z). if strict inequalities hold in b the wave fronts

in question will be said to be strictly expanding.

The following theorem exhibits some of the more salient features of ex-

tended wave generating functions with wave fronts expandi ng about a source

point.

9 
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Theorem 3. Let w be an extended wave generating function wi th source

point p0. and which generates wave fronts expanding about (x0 ,y0 ,z0).

Then the following conditions hold

a. The set W~ must contain only the point (x0 ,y0,z0).
0

b. The point to is the greatest lower bound of T.

In this case, to is called the blast time; and (x0 ,y0 ,z0) the point of

origin of the expanding family of wave fronts .

Proof: Let t’ be given such that t’ < t0. As w generates wave

fronts expanding about (x0,y0,z0), it must follow tnat H (x0,y0,z0) -
(p,q,r) I t  = 0 for any (p,q,r) £ We,, hence W~. {(x0,y0,z0)). By con-

dition a of Definition 4, it must follow that t’ = t0. Conditions a and

b follow at once .

It might be recalled from Corollary 2.1 that a source point of an extende d

wave generating function lies among the comon zeroes of a family of func-

tions of class C2 , each defined on a compact, connected region of E~. If

the entire set of zeroes of this family may be determined , there still

remains the problem of isolating the source point from the remaining

zeroes. If a set of restraints i s known wh ich assures thi s separation,

the resulting system w i l l  produce what wi l l  be cal led a completely

determinate sound ranging problem. As will be seen , however, the prob-

lem of selecting a proper zero may be approached from another avenue.

H
10
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The problem of solving a set of simu l taneous , nonlinear equations of the

form {w1(x,y,z,t) 
= 0 I j c J) is wel l known in the literature of numerical

analysis , and an introductory presentation Is given for example in [2].

The particular approach which will be exami ned in context wi th the pre-

viously stated problems will be the familiar Newton-Raphson iterative

technique , or a slight variant thereof, utilizing the concept of the

Moore-Penrose Pseudoinverse [3].

The notation to be followed hereafter is largely that of [1], and has the

advantage of smoothness in manipulation and interpretation . In this nota-

tion , if {w~ I = 1 ,2 n) is a fami ly of real-valued functions defined

on a region of E4 , and of class C~’ or greater , this defines a transforma-

t ion , call it T , from E~ into E’~. For each p in the coni~on domain of the

family {w
~ I I = 1,2 n}, an n x 4 matrix , called the differential of

the transformation (in s~.mbols dr(p)), is defined by letting row k be

3w 3w 3w 3w
given by .~ !S. p 

~~~ 
p~ ~~~~ I p, 

~~ I p, for each k among 1 ,2 n.

In other words, dT(p) is the matrix whose k
th row is the gradient of W

k

at p.

If T is as previously defined , but with n = 4, and p’ is any zero of -r;

that is, T(p’) is the zero vector In Ek , there is a neighborhood of p’

such that for any p in this neighborhood , the sequence 
~~ 

I k = 1, 2 , . . . . .)

defined for k = 1,2,..., by

I
11
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= 

~‘k 
- [dT(pk)]’ T(pk) (1)

p
wi ll converge to p ’ if the determinant of dT(p’) (in symbols I d ’r(p ’)  I )
is nonzero .

A more general scheme, and one which will prove of wider application than

the above, may be defined by utilizing the concept of the Moore-Penrose

Pseudoinverse. This al lows n to be any finite number at least four.

Advantages of such a scheme are obvious , but caution must be exercised in

the numerical i nversion of the involved matrix; as a worsening of the

condition of the linear system may occur as n becomes large. Such a

situation may be accompanied by computational difficulties. This scheme

will be discussed more fully as matters progress.

WAVE GENERATING FUNCTIONS WITH ONE OR MORE PARAMETERS

Let Q (V) be the set of all wave generating functions on Ek having a com-

mon domain V. Let A be a region of Eucl idean rn-space which is compact

and connected. Interest will be with a function f whose domain is A and

{ whose range is c2 (V). The set f{A) = (f(a) I ~ c A); that is, the range

j  of f will be called the family of wave generating functions with param-

eters In A. If a is In A and p c V , the value of f(a) at p will be de-

noted by [f(a)](p).

The set f[A) will be said to define a family of wave generating functions

with continuous parameters if for any a, b in A and any real e > 0, there

exists 6 > 0 such that I Ef(b)) (p) — [f(a)] (p) I c when II b - a H < o

12
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and thi s condition holds for any p £ D. In a similar fashion, one may de-

fine wave generating functions with absolutely continuous parameters, of

class C’, C2, etc., the interpretation being straightforward.

A source point of f(a) may not be a source point of f(b) if a $ h. More

attention will be gi ven this Important concept l ater in this discussion

j where the applications to the sound ranging problem will be clarified.

AN APPLICATION OF THE MOORE-PENROSE PSEUDOINVERSE

Let A be a region of Em and let f:A -
~ o(V) define a family of wave gen-

erating functions with parameters a = (a ,a ,...a ) £ A. It will be

assumed that the family f{A} is of class C1 or greater. As has been

discussed previously, any menter of f{A} Is a wa ve generating function,

and for a, b in A with a ~ 6, the source point of f(a) will not in

general be equal to that of f (b), and it is possible that such a point

fails to exist for either. However, the assumption will now be made for

each a £ A , f(a) has a source point.

Now suppose for some a e A , a fami ly of n points { (x 1,y1,z1,t 1) I
I = 1,2 n} exists with n > 4 .  Suppose it is further known that if

is the wave front at t1 of f(a) , (x1,y1,z 1) l ies in W1, and that each

(x 1,y1,z 1,t1) Is distinct . One may then define a transformation of E~
I nto E~ exact ly as done previously, obtai ni ng:

f La) (x ’ ,y ’ ,z ’ ,t’)

f ( a ) (x ’ ,y’ ,z ’ ,t )

f~(a) (x ’~y ’~z ’ .t’)

13
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1~

Note that the set of points p such that 1(p) = 0 contains the source

point of f(a) which will be called p0(a) .

It is not overl y diffi cult to show that if p is chosen within a suf-

ficiently small neighborhood of p0(a) , the Iterative scheme defi ned by

~k+l = - { [dT(pk ))t [dT(pk)J} ’ [dT(p k)]
~ 

T(pk ) (2)

will converge to p0(a) if dT(pk) is always of rank at least 4. This

fact will be of interest in several practical appl i cations and will be

of particular interest when a random model Is to be considered.

At this time, suppose that n > m  + 4 , and that f{A} is of class C’ wi th

respect to the parameters (a,,a2 
a~) c A. Consider the transforma-

: tion from (n + 4)-space to n-space defi ned by

(a) Cx ,y,z,t)

I~ 
(a)(x,y ,z,t)

1:1 2 (3)

The Iterative procedure defined by choosing p1 = (x~,y’ ,z ’ ,t’ ,a ’ ,

a ’ a,,) and for k > I ,p~ by

p
~41 p~ - {(dT 1(p~)) t (dT ’(p~))} ’ [dT ’(p~)]~ T ’(p~) ( 4 )

‘ 3
14



will converge to p’ = (x ,y ,z ,t ,a ,a ,....am) if 1’~
’
~ 

- 7~’~ H m+40 0 0 0 0 1 2

Is sufficiently small and dl’ is of rank m + 4 at the source point of

f(a). Note what this states. If f{A) Is a family of extended wave

generating functions with parameters (a ,a ,....an) c A , one may deter—
1 2

mine the source point of f(a) and the parameters (a ,a a~) from1 2

knowledge of points and the wave fronts of adjoining or nearby wave

generating functions. In a physical situation , it means that if suf-

ficient devices are placed in the field to determine necessary arri val

times, these times may contain i nformatIon about parameter sets describ-

irig the family of extended wave generating functions , as wel l as informa-

tion concerning the source point.

Applications of the Moore-Penrose Pseudoinverse will prove to be of

special interest when one considers various random models for field

application , and vulnerability is a factor to be considered. It might

be noted that in the case that n = 4, expressions (1) and (2) coincide ,
and if n = (m + 4), expressions (1) and (4) coincIde. More specifi c
information can be derived if a particular example Is considered for
f{A}, which leads into the following section.

I SOUND RANGING: A SIMPLE MODEL AND SOME RAMIFICATIONS

ConsIder the following highly ideal ized situation. A Sound source is

located at some point In a region of space over which is specified a

that a steady wind of velocity (u,v,q) Is blowing throughout the regionj rectangular Cartesian coordinate system (X,Y,Z). It will be assumed

15 
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of interest, and that the temperature is a constant k degrees Kelvin.

A candidate function for describing the evolution of sound wave fronts

has been suggested by some authors , for example [4] , as

t(x - x
~
) - u(t - t0)]2 + Ely - y0) - v(t -
+ [(z - z0) - q(t  — t0))2 — c2k(t — t0

)2 2 w(x,y,z,t) (5)

where c is of constant value.

If the region concerned is a compact (cl osed and bounded) connected

region of E~; w, as defi ned by (5), is an extended wave generating func-

tion. In fact the following theorem may be proved.

Theorem 3. Let w be as given by condition (5) and be defined on

a compact connected region of E~ containing the point (x 0 ,y0,z0,t0).

Then w is an extended wave generating function with source point

(x01y0,z01t0). If /ij~ + v2 + q2 < c ~~; that is, if the wtndspeed is

less than Mach 1; and in addi tion, to is the greatest lower bound of T,

then w generates a family of wave fronts expanding about (x 0 ,y01z0). If

windspeed Is less than Mach 1, the family of wave fronts is strictly

expanding.

Proof. Since by hypothesis, w Is defined on a compact connected

region of E4, the fact that w Is an extended wave generatIng function

Is a matter of routine. It Is clear from the geometry that any linear

trace whose origin is at (x01y0,z0) must Intersect the spherical surface

for any t c T such that t > t0 and that any sequence of times in I

16 
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have property b of DefinItion 3. Hence (x0,y0,z0,t0) is the source

point of w. The remaining verifi cations are equally straightforward and

are left to the reader.

This extended wave generating function may be visualized as giving rise

to a family of undeformed, concentric spherical wa ve fronts propagating

outward at a rate of c v’~ , and being translated along (u,v,q) with a

speed of ~?~i v2 + q2.

As has been mentioned, this is not a complex , or even a particul arly

real is t ic  “real worl d,” model ; and many physical phenomena which are nor-

mally encountered are not Incl uded. However, there remains an adequate

amount of information to warrant Its careful examination. In addition ,

in  such an uncompl i cated model , one Is not overly hampered by problems

of notation; and some degree of intuItive flavor Is retained which could

become lost if a more compl icated model were chosen.

For the purposes of this presentation, all quantities will be assumed

deterministic, that is, not random In nature. The ramifications of prob-

abilistic models of varying complexity are of consIderable interest, and

sufficient progress has already been made to assure that this Is a highly

productive area, with certain elegant relationships emerging. However,

sufficient results are available from the deterministic model to bring a

ntriber of significant facts to the surface.

Wi th w as given by relation (5), it can be seen that for

{(x~,y~,z~,t~) I j = l,2,....n}, a set of points in V with

17



I = 1,2 n} distinct , one may define a family

{W
j I i 1 ,2 n) as in Theorem 2 by utilizing the transformations

= x - (x~ — x0)

y’ = y -  (y - y )
‘~ 

0 i = 1 ,2 n

z’ = z — (z 3 
— z0)

S — —

Substitution in expression (5) yields , for j = 1,2 n

wj (x ’~Y ’~z ’~t ’ )  = w [r31(x’ ,y’,z’,t,)]

= Ex ’ + x3 
- 2x0 

— u(t’ + t~ - 2t0)]2

+[y’ +Yj - 2y0 - u(t ’ + t ~ - 2t0)J2

+ [z’ + Z
j 

- 2z0 — f(t’ + t~ - 2t0
)]2

- c2ktt ’ + tj — 2t0]2

Observe that for any j among 1 ,2 n,

w~(x0,y0,z01t0) = [(xj - x0) — U(t
j 

— t0
)]2

+ [(Y j  - - v(t~ - t0)]2

+ [(Z
j 

- z0) - q(t~ - t0
)]2

- c2k[t~ -

0 = 0

ThIs may be derived through algebraic manipulation bearing in mind the

fact that (x j ,yj ,zj) lies on the t~ wave front of w for each j  among

1,2 n. 

18



Now suppose that n > 4 , and that the parame ters u , v , q, k are known .

Consider the transformation T from E~ into E~ defined by

w (x,y,z ,t)

1:1 (6)

L w~ (x ,y , z

The diffe rential of I at the point p0 = (x0,y01z0,t0) is an ii x 4 matri x

whose ~th row is given by

= 2E(xj - x0) 
— u(t~ - t0)]

= 2t(Y~ 
- y0) 

- v(t~ - t
0

)]

= 2[(z~ - z0 ) - q(t~ - t
0

))

(dT(P0))4,~ 
= —2[u(dT(P0)) 1,~ + v(dT( P0))2,j (t~ - t0)

+ q(dT(p0))3~ 
— c2k(t~ — t0)]

Recall that the sequence ~~ I n = 1,2,.. ..} as defi ned by (2) will con-

verge to p0 if the matrix dT(p0) is of rank 4, and if p 
is chosen

within a sufficiently small neighborhood of p0. Consider the following

chain of reasoning. The matrix dT(p0) is known to be of 
unaltered rank

If (dT(P0))4,~ is replaced by

(dr(P0))4,~ = (dr(P0))4,~ + u(d’r(P0))1 ,~ +

+ q(dT(p0))3~ 
= -2c2k(t~ — t0)

for each S among 1 ,2 n. Through a similar reasoning process, one makes

the following substitutions

19



= (dr(P0
) ) 1 ,5 

-

(dr(p0
) )
25 (dT(p0

))
2 5 

-

(dT(p0
))
35 

= (dT(p0
)) 3,5 -

Note that the matrices dT(p0) and d’r ’(p0) have identical rank.

Finally, the observation can be made that if dT”(p0 ) is defined as

dT”(p0) = _2~c2k(dT5(p0)), the rank of dT(p0)) and dT
”(p0

) are also

identical , and dT”(p0) may be written as

(dr (p0 ) ) 1,3 (xj - x0)

‘ (dT ”(p 0 ) ) 2 ,5 = (‘~ 
— .v0)

j = 1 ,2 n
= (Z

j 
— z0)

(dT”(p0fl 4 5  = (t
5 

- t
0

)

Now suppose that the points {(x5,y~,z5,t~) I 5 = 1,2 n} are of such

a nature that constants a,b,c,d may be found wh ich are not all zero , an d

for which

a(x 5 
— x0) + b(y

5 
- y0) + C(Z

J 
- z0) + d(t

5 
— t0) 

= 0. (7)

It follows that the matr ix d’~(p0) must be of column rank 3 or less , hence

no iterative scheme similar to the one given by (2) can converge to p0.

A special case of the above whi ch appeals to geometric intui tion occurs

when d of condition (7) Is known to be zero. For this case, condition (7)

is equivalent to the statement that all points 1(x51y5,z5
) I 5 = 1,2 n}

l ie on a single straight line through the point (x01y0,z0). This condi-

tion will be quickly recognized by those wi th sound ranginq experience .
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Consideri ng alternately the conditions a = 0, b = 0, c = 0, together with

d = 0, it can be shown that dT”(p0) and therefore dT(p0) will be of rank

less than 4, if a straight line connecting the proper points can be

constructed in the appropriate projection. For example, if a line con-

necting {(x5,y5
) I S = 1 ,2 n) and (x0,y0

) can be cons truc ted i n the

(X,Y) pl ane, and so forth.

It woul d appear that among all of the various possible configurations for

{(x5,y5,z5) I 5 = 1 ,2 n}, that one which permits the above set of

points, or projections thereof, to lie on a straight line , is intrinsi-

cally of more than usual risk from a standpoint of source point determi na-

tions and Information recovery through a scheme such as given by iterative

scheme 2.

RECOVERY OF PARAMETERS ASSOCIATED WITH
A GIVEN WAVE GENERATIN G FUNCTION

Consider now the following situation. Let A be a gi ven compact connected

region of E’. Let a = (a,a , a ,a) be a point in A , and define f(a):

A -
~ 
E1 by choosing p = (x ,y,z,t) c 1), and let

tf (a)](p) = [Cx — x
~

) — a ( t  -

(8)
+ [(z — z0) — a ( t  — t0)]2

-c 2a [t- t0
]2

21
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Let V be the domain of the wave generating function given by (5). Then

for each a £ A , f(a) c i~ (V) , so that f is well defined on the set of
wave generating functions with domain V. The family f {A } ,  then, is a

set of wave generating functions in V wi th parameters in A. In fact ,
(5) is a special case of (8) wi th A = {u,v ,q,kJ. It is seen from (8)

that f fA } is also a family of wav e generating functions with parameters
of class C2 over A.

Now let a ’ € A be given , and {P5 I j = 1,2 n} be a set of points in
V. One may define a transformation

[[f(a1)] (p l)

‘F:

[f(a’ )]
~

(
~~

‘)

by allowing [f(a’)]
5 

= [f(a ’)][t3 1 (p’)] for j = 1,2 n.

Suppose that n >8. If (a ,p) is In a sufficiently small neighborhood

of (a0,p0), the iterative scheme specified by (4) will converge to

(a0,p0) if the rank of d v(p0) is 8 or greater. To determine con-

ditions which may present problems with regards to convergence of the

Iterat ive scheme mentioned earl ier , procedure will be as follows. ~‘

may clearly be considered a transformation of E8 Into En of class

The differential of this transformation at (a0,p 0) may be calculated

from (8) as in the previous section, obtaining col umnwise
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Ed ~(a’ ‘p0)]
1 ~ = 2 [(x 5 

- x0) - a1(t5 
- t0)1

(d ‘v(cz’,p0)]
25 2[(y

5 
- y0) 

- a~(t5 - t
0

)]

[ci ‘v(a ’ ,p0)]
3 5  2[(z

5 
- z0) 

- a~(t5 - t
0

)3

Ed ~(a ’ ,p0
))
45 

= — (2 a~Ed v(a ’ ,p 0)11 ,~ 

+ a~{d v~~~ i’0fl2 ,5

+ a [ d  ~(a ’ 1~0 ) J 3 ,~ + c2a~Ct5 
-

Ed ‘P(a ’ ,p0)]
5 5 

— (t
5 

— t0)Ld ‘V(a ’ ,p0 )] 1 5

Ed v ‘~
‘o~~6,j 

— (t
5 

- t0)[d v(a
’,p0

)]
25

[d ‘v(a’ ,p0)]
75 

— (t
5 

— t
0

)[d ‘V (ci ’ ,p0
)]

3,5

Ed ‘v(a ’ ,p0)]
81 

= - c2(t5 
- t0)

for j = 1 ,2 n.

Observe that by reasons similar to those employed iI~ the pre-

ceding section, the matrix ci v(a ’ ,p0) w i l l have ran k the same as a

matrix in which the substitution

[d v(a’ ,p0)]
45 

= [d v(a’ ,p 0)]4,5 + a~[d v(a ’ ,p0)]
1 5

+ a~[d ‘v(a ’ ,p0)]2 ~ 
+ a~[d ~v(&,p0)]

35

— 2 ‘(t — t )-- 4 5  0

has occurred.
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One may, after a series of substi tutions like those of

the preceding section, arrive at a matri x d ‘Y ”(a ’ ,p0) having a rank

identical to d v(a ’ ,p0) but wi th components given coluninwise by

[d v”(a ’ ,p0)]1 j  = (x 5 
— x0)

[d v ”(a’,p
0

)]2 5 = (yj  -

Ed v”(a ’,p0)]35 = (z 5 
— z0)

Ed r”(a ’ ,p0))
45 (t j  — t0)

[d i”(a’,p0)]
55 

= (t5 
— t0) (x 5 

— x0)

Ed v ”(a- 
~~~~~ 

(t~ 
- t0)(y

5 
— y0)

[d v”(a ’ ,p0)]
75 (t5 

— t0)(z5 
— z0)

[d V”(a ’,p0)]
85 

= (t 5 
- t0

)2

Observe that all remarks of the preceding section concerning dT(p0) may

also apply to ~(a ’ ,p0), a situation of more ramifications than are at

first apparent. In addition , it might be observed that for any choice

of {p
5 I 5 = 1,2 n} such that t5 

— t
0 

is constant for all  5 among

l,2 ,....n, the matrix d v(a’,p0) becomes of rank less than 8, and in

particular , less than 4, hence neither of the iterative schemes given

by (2) or (4) will converge. Such a situation may occur in any of

several low probability situations , depending on the geometry as specified

by t (x5,y5,z5 ) I 5 1,2,....n), and on the nature of (x0,y0,z0). If , for

example, (a ’ ,a’,a ’) (0,0,0) and (x3,y5,z5 ) are points on the circ~an-
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ference of a circle at whose focal point the point (x0,y0,z0) is

located, then d ‘v (a ’ ,p0) is of rank 3. In this case, however, there

is but a single point of discontinuity near (x0,y0,z0) . It is of

interest to note that in this case the condition would hold wherein the

failure of a scheme to converge could specify the source point.

It may be observed that if an extended wave generating function is of

the type specified by (5) or (8), and a suitably restricted estimate of

the parameters in question is available, the solution of the sound

ranging problem is equivalent to the transformation d ‘v(a’ ,p 0) being

of rank 8.

In practice , restraints on the physical system may come from a primary

estimation scheme , or may be speci fied by the user in the form of a
,. 1query “Is there, based on knowledge of j = J ,2,....n) and

a sound source near p ’2?” If so , the i tera tive scheme wi l l conve rge to
the proper value ; If not , the scheme will diverge, or converge to the

sound source itsel f.

CURRENT INTERPRETIVE TENDEN CIES
*

In the examination of behavior characteristics exhibited by the proposed
.

theory in a real nume rical setting, the authors decided to conform with
established practice and consider a six sensor system. This would give

rise to at most a system of six nonlinear equations. The reduced system

was derived from a more general presentation (“Sound Ranging: A Simple
Model and Some Rami f i cations ”) by ignoring vertIcal variations in both

25 
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microphones, sound source, and wind velocity. The vari ables exami ned

were at a mi nimum, the x and y components of s ound source positi on and

blast time, and, at a maximum, these vari ables , together with wind com-

ponent veloci ties , and temperature.

The variety of possible behavior patterns is large , even in such an

uncomplicated sample as the one pres ented. Di fferi ng microphone con-

figurations , sound source locations , meteorologi cal condi tions , and

departures in prelimi nary estimates each gi ve rise to differi ng but

overlapping behavior patterns. More than a thousand rj~ ierical examples

have been examined for the purpose of clari fying such patterns, and

various consistencies have begun to emerge . Some are recognizable at

once from prelimi nary analysis; others are not so apparent. These

latter results are useful in developi ng a more realisti c slant toward

further analysis, while the former serve to veri fy the model ’s validity.

In the particular system of numerical examples, arri val times based on

sound source position, mi crophone positions , and wind and temperature

InformatIon were calculated to the limi ts of accuracy of the Hewlett-

Packard 9830A. Pauong the information sought were possible degree of

information recovery, nuniber of Iterations in order to accomplish re-

covery, and system reactIon to a progressive degree of divergence

between “guess” vectors of source points and related atmospheri c param-

eters. Three wi nd velocity situations were considered: no wind

condi tIons , wi nds directed toward the centroid of the microphone con-
figuration, and a limi ted nunter of arbitrary windspeeds and directi ons.

Results tend to agree with behavior patterns which might be suspected,
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but some interesti ng phenomena have occurred - the action of whi ch is

more obscure , and which wi l l  be of cons iderabl e interest to furt her

exploratory analysis. A detailed descri ption of these and more results

will be presented in a more visual mode in a subsequent report. For

the present situations described (i.e., high level timing accuracy),

I f no w i nd was encountered, informa tion recovery was In a lmos t all  cas es

complete , even when extreme departures in estimated temperature, wind

velocity , and source point estimates were permi tted. In general, the

nunter of Iterations to recover this information was four. Recovery

was considered complete when estimated and known quantities differed in

the hundredths of meters . I? arbitrary winds were introduced, a mixi ng

seemed to occur between temperature behavior and wind velocity which

i ndicated that error behavior and stability for the wind and no-wind

si tuations differ considerably. This shoul d not be too difficul t to

veri fy from a purely analytic viewpoi nt, an d may possibl y requ i re an

increase in accuracy for arri val time accuracies when wind is considered.

The greatest problen~ i n total recovery occurred in a purely l inear

array as predicted. The various other arrays whi ch were exami ned did

not appear to offer any really signifi cant differences in behavior in

the lim i ted cases considered.

The docun~entation of the above-mentioned material will probably be fol-

lowed by at least two reports : a sens itivi ty analysis on timi ng and

/ meteorological errors, and an exami nation of the differing behavior

of contemporary sound ranging techniques employing data deri ved through

27 -:
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simulati on. In this manner, sufficient statisti cal control is available

for proper data interpretation.

Note that each sensor confi guration requires a certain leve~ in accuracy

of arri val times to accomplish recovery either of a complete parameter

set or of a source point. For a given configuration, then, knowledge of
- sys tem behavior may be speci fi ed by a set of “level curves ” of error

values . This will be the approach taken In later s tudies when the effect

of configuration on error behavior is exami ned. In addi tion, more gen-

eral extended wave generating functi ons will be exami ned, i n  both a

determinati ve and random setting. When all ground work has been accom-

plished, techniques will be compared by use of a simulation model and

then with actual data. This should place the techniques as described

- 
in the proper functional position In the class of sound rangi ng schemes.
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