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Abstract

The relative significance of thermal stresses as a las-

er heating damage mechanism is assessed by comparison with

the damage mechanisms of melting and thermal degradation of

structural strength propertles. The limiting cases of one-

dimensional axial and one-dimensioral radial heat flux in

a thin target plate whose plane is normal to the axis of a

stationary, axially symmetric heat source, are investigated.

A on(-dimensional radial heat conduction numerical model of

the linear thermoelastic stress field including the effects

of melting and structural failure is developed. Residual

Ctensile strength and damage size are presented as functions
of the laser beam and target plate parameters.

Xi



THERMAL STRESSES AS A

LASER BEATING DAMAGE MECHANISM
I

I. Introduction

The advent of the laser with its inherent potential

capability of depositing very high intensity energy on a

target has generated interest in possible applications of

laser energy to cause structural damage to a target. This

thesis presents the results of a study to assess the signif-

icance of I ser induced thermal stresses as a damage mech-

anism in a metal target by comparison with the damage mech-

4) anisms of melting and thermal degradation of structural

properties.

Statement of the Problem

The objective of this study is to determine whether

'thermal stresses, are an efficient mechanism for causing

structuraldamage to metal targets relative to the other

laser'heating induced damaesources of melting and thermal

degradation of structural propetties. The study is analyt

ical and based primarily oit the appitc~tion of theoretical

heat conduct pn and linear elasticity. A major ,goal is to

develop analysis ptoosdufts Which ire telatively simple to

apply (i.e., wvioh doiot.: requrq± te use of large, expen-



sive to apply, computer programs) so that the procedurer may

be used to obtain rapid estimates of laser heating induced

thermal stress fields under varying conditions.

Significance of the Problem

Most of the studies of laser heating damage conducted

thus far have been experimental and concerned with target

melting and/or material property degradation (Ref 12-18, 25,

30, 31). No known unclassified studies have been made to

determine quantitatively the relative importance of thermal

stresses as a source of damaging target materials. Thermal

stresses are of interest because of the possibility that

significant structural damage can be induced for lower laser

beam power or peak intensities than for the other two damage

sources under consideration. A need exists for an analyt-

ical procedure to rapidly assess the relative severity of

damage to be induced by thermal stresses, melting, and

thermal degradation in metal targets as functions of laser

and target parameters. Experiments to obtain similar data,

particularly concerning thermal stresses, can be expected

to provide only minimal data in the near future because of

the cost and time required to conduct sufficient tests over

the wide range of perameters of interest4 and due to the

drfficulty in adequiately in strumentlJg numerous target, spec-

4iens to obtain accurate thermal stress data. An analytical
model thu's could serve to provide such information in lieu

of expesiments ahd as a guide t6 planning efficient experi-

ments in the futute. ,,I

2



Physics of Heating Metals
by Laser Radiation

The following description of the physical process by

which laser light radiation is converted to heat energy in

a metal target is adapted from Ref 1:2-7. When a laser

beam is directed at a metal target, only a fraction of the

initial beam energy is absorbed by the metal. A portion of

the initial energy which is in the form of photons may be

attenuated by the intervening medium, usually air. A large

fraction of the phetons incident on the metal target may be

reflected. For the problem of Interest, the assumptions are

made that the photons absorbed by the metal are converted to

heat essentially instantaneously and within a very thin layer

(relative to the target thickness) at the surface of the

( ) metal. These assumptions have been shown to be valid for

aircraft structural metals (aluminum, steel, titanium, mag-

nesium) irradiated by continuous wave lasers (Ref 1:3-5).

Following the conversion of the light energy to thermal

energy, heat is transferred from the metal surface by four

mechanisms. The ouly one of these mechanisms to be cons.der-

ed-in the present study is that of heat conduction within

the metal. The three mechanisms being neglected here are

radiation from the metal surface, convection in the adjacentI

medium, and removal by gravity or airflow of any melted

(liquid) portion of the metal. Only the latter mechanism

(melt removal) affects a comparison of the relative signif-

icance of the damage modes of interest. The efficiency of

C the melting mechanism obviously is d~pondent on the behavior



of the melt at the metal surface. For this study, the

( ) assumption is made that any melt formed is removed instan-

taneously by an unspecified mechanism so that the most ef-

ficient mode of the melting mechanism is considered. Studies

of melt removal are contained in References 1, 22, 23, 25, 31.

Scope of Study

Limiting cases of laser heating induced damage were

studied by considering the limiting heat conduction cases

of one-dimensional axial (through-the-thickness) and one-

dimensional radial conduction. The study is theoretical,

based on the quasi-static, uncoupled thermoelasticity theory.

The problem is that of a finite, stationary heat source nor-

mally incident at the center of a large, thin plate. The

plate material is assumed to be a homogeneous, isotropic,

linearly elastic material. The plate material properties

are assumed to be temperature independent with the excep-

tion of the strength properties. Heat losses to all sources

are neglected.

For the 3xial heat conduction problem, analytical solu-

tions are applied to obtain temperature dictributions for

input to the thermal stress problem. Numerical integration

of the thermoelasticity equations is used to obta"n tho ther-

mal stress-distributions. For the radial heat conduction

case, a numerical model of the heat flux based on the

Fourier heat conduction equation is applied.

Melting end thermal degradation of the plate material

4



structural properties are modeled for comparison with ther-

mal stresses as damage mechanisms. Damage due to the com-

bined effects of these mechanigms is also considered.

Measures of plate damage used are residual tensile strength

and material failure.

I
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P O ie.of StudX

The primary objective of this effort was to dettrmine

the relative efficiency of tie al stresses ea a damage mech-

anism due to heating a target material with a stationary con-

tinuotis wave (CW) laser beam. The problem basicall , ccnsists

of applying the concepts of both heat transfer and thermo- I
elasticity. In the basic theory for describing, mathemati-

cally, the behavior of elastic, isotropic solid media under

the combined action of heating and external loading, the j
problem ii one of a coupled thermal/mechanical boundary

value problem (Ref 5:3). For most applications, useful

() solutions to the problem require that certain simplifica-

tions be made to the coupled theory. The usual sLmplifi-

cations result in eliminating the thermal/mechanical cou-

pling and inertia terms. Elimination of the coupling be-

tween mechanical and thermal effects enables the therno-

dynamic and mechanical parts of the problem to be analyzed.

separately. If the inertia effects are negligible, the

mechanical part of the problem reduces to one of static

thermoelastici ty.

The subject study began with an investigation to deter-

tine a suitablp form of the thermal/mechanical theory for

the present application, as discussed in Section III. Solu-

tions to the thermal and mechanical equations were then

investigated to describe the hebt transfer and thermal

~6
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I
stress fields for the specific problem at hand, laser beam

( heating of thin plates. The models thus developed are dia-

cussed in Sections IV and V. Section VI describes the models

used to characterize the melting and thermal deCradation

mechanisms for comparisons with the thermal stress damage

source. Section VII contains the analysis of the damage

mechanisms, input parameter sensitivity and relative effi-

ciencies based on the one-dimensional axial and radial heat

conduction models. Study results and conclus;7.s are pre-

vented in Section VIII.

Appendix A is a listing of the one-dimensional radial

flux numerical model developed as part of the :tudy. A

sample output listing is given follcwing the program list-

ing. Appendix B describes the algorithms useC in the radial

flux numerical code. Apperdix C presents the inalysis con-

ducted to validate the radial flbx code.

The damage effect3 of laser heating were d. ermined for

the ranges of laser beam and target parameters lisced below.

1. Absorbed laser beap powers up to aj'-.t 30,000
joules/sec

2. Laser beam diameters between 5 and 15 cm.

3. Target plate thicknesses of 0.1 to 0.65 cm.

4. Large plate diameters relative to beam diameter

A single target material was considered,, 2024-T3 aluminum,

with a constant absorptivity of 0.5. The target plate was

assumed to be heated in the absence of external mechanical

0loading.

7



", ( ' Ill. Theory DevelopMnt

t This background discussion of the fundamental mathr, ati-

:ical theory for the behavi.or of a homogeneous, isotropic,

~elastic solid under the combined action of heat and external

L loading is adapted from Ref 5. This behavior is uniquely

describel by the following four equations together with

proper Lnitial and boundary conditions:

kTrij =pcET+(3X+2WQaTo~kk()

eGi, a pai  (2)

()i W !(uip i+uit i ) M

Oii = X ijckk+2Veij-(3X+2p)a6ijj(T-T o  (4)
0

where

k a thermal conductivity

T = temperature (absolute)

To = reference temperature (absolute) at which
material is stress free

p a material density

cg w specific heat at constant deformation

VE
a Lame constant a (I-+)1-72V)

P a Lame constant a G

v n Poisson's ratio

E a Young Os modulus

a a. shear modulus

1 4



c a linear strain

a = stress

U a displacement

a = coefficient of thermal expansion

6ij a Kronecker delta I : 0 if i

Indicial notation (Ref 7:24-27) is used here for brevity,,

however familiarity with this notation is not necessary for

understanding the muiterial which follows. A brief outline

of the notation is given here to clarify the subsequent

discussion.

Subscript indices are used to refer to the three rec-

tangular cartesian coordinate axes. The range of each index

is therefore three. For example, the three coordinate axes

xl, x2 , x3 can be expressed as xi where i tahes on the values
1,2,3. An indicial equation with a single index on each

term then represents three equations. A summation convention

Is employed where repeated indices in a term imply summation

over the range of the repeated index. A comma between in-

dices denotes partial differentiation with respect to one

of the coordinates, i.e.

)fi

Returning to the subject equations, the first equation

is the energy equation for the linear thermoelastic theory.

Equation (2) represents the equations of motion which reduce

O) to the static equilibrium equations of elasticity theory

9



when the inertia term, Ai, is zero. Equation (3) is the

(1 strain-displacement relationship and equation (4) is the

stress-strain or constitutive equation for an isotropic

solid.

The boundary value problem governed by these equations

ia very difficult to solve in general (Ref 5:41). For most

engineering applications, two simplifying assumptions are

made which reduce the problem to one in which the heat con-

duction and thermoelasticity equations are not coupled.

This allows the two separate problents to be solved indepen-

dently. The two simplifications are that the thermal/me-

chanical coupling defined by equation (1) and the inertia

term (pui) in equation (2) may be neglected. Using the

terminology in Ref 5, the basic theory represented by equa-

tions () through (4) is called the coupled theory; neglec-

ting the strain rate term (tkk) in equation (1) results in

the uncoupled theory; and neglecting both the strain rate

and inertia terlds produces the uncoupled quasi-static theory.

-Whether either or both of these simplifications are appro-

priate to the present study is the subject of the remaining

discussion in this section.

A review of the mathematical problem quickly led to

the conclusion that only the uncoupled quasi-static theory

presented reasonable expectation for a successful applica-

tion to the subject problem within the temporal constraints

existing. Hence, the studies described herein are based on

( that theory. However, the implLcations on the results of

10



neglecting the inertia effects may be significant. It is

( 5shown in (Ref 5:43) that for most metals (and particularly

for aluminum which is of prime interest for this study) th~e

mechanical coupling term (strain rate term, tkk) in equation

(1) is negligible if

ikk
<< <60 (6)

An intuitive argument is used to indicate that the stcain4

rate should be of the same order of magnitude as the time

rate of change of the temperature if there are no sharp varin-

ations in the temperature tie his 4-Ories. Since the strain

rates are related directly to displacement time histories,

the question of whether mechanical coupling is negligible

is related to the magnitude of the inertia effects.

(It-is further concluded (Ref 5:50) that the mechanical

coupling and inertia terms are negligible if the rate of

heat application is not too great. Quantitative 1. its on

the application of the uncoupled, quasi-static tl'-:y must

be determined for each problem of interest. Based on a

review of exam~ple analyses (Ref 5:339, 406) it was decided

that such an analysis vss beyond the scope of the prezsent

study. However, it iL- ,probable that 2-or at least the higher

heating rates aid short~ times of interts i, th(- present

study# tite use of the udcoupled ~~i

questionabl.e and nhot"A1 1-- tlr mubjrcit of A suiL,;.paent

study of laser.,bo.xi x -riia.. seses.



IV. Thermal mlodels

The basic situation to be modeled is that of a statior-

ary laser beam normally incident on a flat plate. The

incident beam is considered to be axially symmetric so that

only heat flux in the axial and radial directions occurs.

That is, the heat 'lux is assumed to be two-dimensional in

cylindrical coordinates with no heat transfer in the circum-

ferential direction. The effects of the medium between the

lao':r beam source and the plate are not included as these

effPcts do not contribute to the physical processes of

interest for this study. The concern of this study beoins

(with the incidence of the beam energy on the plate ,irface.

Attempts were made to obtain a closed form solution to

the problem without success. Various approximate solutions

are given in Ref 4, some of which are discussed and applied

in this study. Other approximate solutions and methods

(Ref 26-29) were reviewed but all involve computational

difficulties or complexities which are contrary to the

objective of obtaining solutions that are relatively simple

to apply.

To present readily tractable problems for the subsequent

stress analyses, thv heat transfer problem was restricted to

modeling the two limiting cases of axial and radial flux

separately. A one-dimensional axial flux model was developed

for applicition to cases of relatively short heating times

12



and/or thick plates. The other limiting case associated

( with long heating times and thin plates is thermally modeled

by a one-dimensional numerical radial heat flux model. As

discussed in Section VII, quantitative definitions of these

bounding conditions were to be obtained from NASTRAN (NASA

Structural Analysis), (Ref 2) a large finite element program

developed by the National Aeronautics and Space Administra-

tion (NASA). This goal eas not achieved completely because

of the fairly excessive amc-t of time required to run allj

of the cases necessary to determine the combinations of

heating rates, heating times and plate thicknesses which

could be modeled accurately by either an axial o:r radial

flux model.

The effects of heat losses from the heated plate, re-

gardless of the mechanism, also have been neglected in the

present study in thba they are not expected to have suffi-

cient impact on the results to justify the additional com-

plexity of including xealistic radiation and convection loss

conditions.

Incident Flux Models

In general, the spatial distribution of the incident

beam is represented as a Gaussian '4stribution which is gen-

erally accepted is being representative in analytical studies

of laser heatij effects (Ref 3:13, 75). A uniformly dis-

tributed beam was considered in the axial flux cases to

o simplhfy the st5:esb analysis. For the Gaussian beam the

13



beat flux density absorbed at the plate surface is given by

-r2/2o2
I(r) - Ipae (7)

where Ipa is the peak absorbed flux density at the beam axis,

r' iu the radial distance from the beam axis and o is the

standard deviation. 1t- is convenient to define the beam

radius as

a - 2o (8)

Therefore, the flux density becomes

-2r2 /a2 I
1I(r) Ipae (9)

where for aGaussian distribution 86.5% of the beam energy

is contained within the beam diameter(2a). The total absor-

bed power under a Gaussia, beam is given by

S-0/2o 2

2wI J re dr (10)

a 2Wpa.2  (11)

2P4
pa. (12)

The porhion of the inoident beam power (Pt) whiot is absor-

bed at the plate surface is given by the absorptivity
C)°

1l"111
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2dj~i 2r2/aI

Beat Conduction Models

The purpose of the heat conduction models is to deter-

mine temperature distiibutions to which thermal stress, mel-

ting, and thermal degradation models may be applied. Analyt-

-ical models for various classes of axial heat Ylux conditions

were investigated and a numerica!. finite thermal element

model was applied for the radial flux case.

(Axial Heat Flux Models. Analytical temperature dis-

tribution models are presented as solutions to the differ-

ential equation of heat conduction in an isotropic solid

(Ref 4:10):

OT a - 3 + + 016i- .Q ! rx T +4. ('1)P (16)

where

p wmuaterial density

0 w specific heat

T f tApefature '.

t time

k a thrmal conductivity

q a rate of heat g4tin per unit Volu

4



For homogeneous solids such that thermal conductivity does

not vary with position, the heat conduction equation re-

duces to

0V2T + q[ O T (17)

where

- 0k/Pc - thermal diffusivity

V - Laplacian operator

PT ax 2 T D2
%l ~V2T =. z-- + 2 + T18

Isotr6pic, homogeneous solids wore the. only type considered

- in this study.. An additional restriction applied throughout

the heat transfer mnAlyses is that the material heat trans-

fer proe~rties are not fpnctions of tefnperature. The Jus-

tifcation for this restriction is that the complexities

introduced into the analyses by including variable thermal

properties were not believed to. be necessary for this

initial study,

Cloqd form analytical solutions for several one-dimen-

sional axial heat flux cases were reviewed for possible ap-

plicatin. For th# case of a semi-infinite solid with uni-

form flux into one surface and insulated on the opposite

surface, as shown in the following sketch, the temperature

( distribution in qiveh by (f 4,)2)

16



T(z,t) To + +~ #s(3z' 2 )

2##L -a -- t~

W -L (-1) s Inffz\ tcnw (19)
n1n

where

C - absorbed heat flux density

To initial uniform temperature throughout slab

For thermally thin plate& or long enough heating times such

that et/Z2 > 1, the series term becomes negligibly smnall

and the thermal model reduces to

T(z~t) To * (6Kt + 3z 2 -1) (20)

Applications~ of these models to the general problem of laser'

heating of solid plate* is discussed in Section VII.

&& =al eatoflux h!etl. for relatively low heating

rates and thin target plates th beat flu might be expected

to become essentially radial e scib initial priod in

which the flux is priari yaxial and thplate volume under
So.esnilyraila1e 0 nta eidi



the beam Lecomes heated to an essentially uniform tempera-

( ) ture through-the-thickness. One-dimensional radial flux

develops a plane stress state which is particularly amenable

to analysis, as discussed in Section V. For this case, a

numerical finite thermal element model was developed. The

numerical model also allows the Gaussian beam profile to be

considered. Figure 1 is a schematic illustration of the

numerical model which is obtained by dividing the plate into

concentric cylindrical elements.

The numerical model is used to solve the Fourier heat

conduction equation for each element:

qc(21)"I

where

qc rate of heat flux per unit area

Heat is transferred between any two points in a sulid body

only by conduction and equation (21) is the law of heat con-

duction for isotropic bodies (Ref 5:137). A finite differ-

once version of equation (21) is applied to the heat flow

between &djacent concentric elements as indicated in the

following sketch:

F1)

18
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where 0- qA - total flux into element (I + 1)

None, applying equation (21) at the interface between two

elements

Q14+ 1)m 1 ( + 1) + W()] [(I) -T(I + 1))

/l2 J (22) 

where

A'(I + 1) - 2wRZ

R - inner radius of element (I + 1)

I - plate thickness

The conductivity and incremental radius terms in brackets

represent averages of the respective quantities taken be-

tween the two elements.

For the present study, the concentric cylinders all

have the same width (Ar - constant) and the thermal con-

ductivity is asslimed to be independent of position and

temperature. Thus equation (22) reduces to

Ql( + 1) - k(T(I) - T(I + I)-]2wRg/Ar (23)

or, in FORTRAN code

01(1 + 1) -COD*(TM4P(l)

- 3(X + 1))*2*PI*A3r/DELR (24)

The temperature of each eloent is determined by itera-



I
I

tio over small time increments of an energy balance eqna-

tion for each element, as indicated in the following sketch.

QIN ( (I)

where

QRDS(M) = heat energy absorbed into element (I)
per unit time

QoUT(I) -OIN (I + 1)

/ enee, the net increase in heat energy per unit time is

O~AS(1) + -O () - Q(I + )

This increase in heat.,energy revults in a cocresponding

increase in tho internal heat erergy of the element. As-

z.ira, coutant density and specific hedt, the incremental

in*rease in Lternal heat energy per unit volume is given

by pef. mhenoe, the energy balance gives
At

OhnS(X) + QIN(M) -Qf. (I 1)

sRHO*C*VOtd*DgtX9NP(1) /D4? (5
Iv

Whorem

C4.



DBL?34?(1) w AT a change of temperature in time
increment At

DEL? - At - time increment

VOL - volume of element (I) - PI*EL*
(2*1 - l)*DELM*i2

DELTDP is the incremental temperature change in element (I).

This may be expressed as

DELT]DIP() a T WI(), - (r1P(I) (26)

where

TBP(I)4 w current temperature of element 1)

TEWP(I), - previous temperature of element (I)

Hence, equation (25) may be solved for the current tempera-

~turd:

T (), - TWP(I) + DELT*(QIN(I)I+ QABS(I)

-QIN (I + l))/(CP*RHOPI*El*(2*I -1)*

DELR**2) (27)

Equations (24) and (27) are solved for each therhal element

at each time increment 'to give thp radial flux temperature

distribution.' This model is Subroutine TZ4PWRAD in the

TSTIM.SS program istped in Appendix A.

ft maintain heat flow stability in such numerical,

Incremental tim moel, the time increment must be kept be-

U1 -a certain lnit. If the 44 inbren becomes l4rge

enough, "sufficient heat ,would flow betweei adjacent elements

( " to cause the temperature of the ini41lly ,ooler eleAent to



become larger than the initially hotter element causing the

( ) beat flow to become reversed. To maintain beat flow stabil-

ity the cmutational time incrment for the one-dimensional

radial flux model must be restricted to (Ref 6:12)

At < Ars (28)

As a check and to be slightly conservative, the TSTRESS

code limits the time increment to ninety percent of the

value defined in eqn (28).

(23
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I
V. Thermal Stress Models

In the uncoupled quasi-static theory the thermal stress

problem is solved in sequence after the heat conduction j
problem is solved for the temperat.re distributions. The

thermal stress problem is uniquely defined by the static

thermoelasticity equations

-0 (29)

cij - 1/2(uij + ujvi ) (30)

Oij - A6ijckk + 2pcij - (3A + 24)c6ij(T - TO ) (31)

along with proper boundary~conditioni. For the case when

the heat flow in the plate is primarily axial (i.e. through-

tho-thickness), the only portion of the plate being heated

significantly is that directly under the beam. For a uni-

formly distributed beam the temperature variation will be

through-the-thickness only. Near the beam axis the thermal

stress field cab be approximated by that for a semi-infinite

plate of thickness 2hs'

2h

J F



Since- t -rre no surface tractions on the edges of the

plate and Lbe tomeratur:4, is a fnmction of z only, and due

to axial .rr-trv., it is expected that

OXX- - fs) (32)

at any time. Since the tempsrture is uniform in the x - y

plane, no shear streises are generated:

axz ,, x  -Ozy 0 (33)

Also since no constraints on expansion in the z - direction

exist,

OZs  0 (34)

All of the boz.ndary conditions are seen to be in terms ofI

stresses only. For thermoelasticity problems of this type,

the solution is facilitated by reformulating the thermo-

elasticity equations in terms of streses alone. That is,

the displacements and strains are eliminated. This, is done

through the use of the strain oomatib.ity equations (Ref 7:

124) which are mathematical constraints that insure the in-

tegrability of equations (30) to obtain the displacements.

In -he stries formuleaton of the problem, the equilib-

rium equations (29) are unohanged, but stress-strain equa-

tions (31) and f strain-*o*upat~bility equations are re-



placed by ths so-called stress compatibility equations (Ref

( 5;89):

(1 + ,)Oij kk + Ckkij + [E is j - V

+ Tij =0 (35)

for the present problem, the equilibrium equations (29) are

identically satisfied, and equations (35) are satisfied if I

Integration of (36) yields

m -- ) T + cl + c2z (37)

where it is recalled that T - T(z,t) - To. To obtain a min- I
trivial solution, Saint Venant's principle (Ref 5:270) may

be applied. That is, the requirennt for zero surface trac-

tions at the.edges of the plate is replaced by the statically

equivalent requirement that the net force and moment pro-

duced by some- o distribution on the edge be zero. These

boundary conditions expressed for net force and moment per

unit length cf the plate edge become, respectively

ands - 0., (38)

o and /I
p. AC



h
_hohtxidz w 0 (39)

Substituting (37) into (38) and (39) gives

and . 3 _ h Tzdz (40)2h' (I- /-h

and

Hence, from equation (37)

+ fTzd (42)

The appli4ation of equation (42) to the present study along

vith suitable thermal models is discussed in Section VII.

This result is given in (Ref 5:278).

The other thermal stress models of interest are as-

socintecl ,Tth conditions when the temperature dist;ibutionE

in the heated plate are primaril!, radial only, i.e. constant

throUgh-the-thickness. For s thin cylindrical plate with

with diameter >> thickness and no surface tractions, the

problem is one of plane streas such that the only non-zero

strassiex oe

Orr a fi(r) (43)

se a fa(r) (44)



using cylindrical coordinates.

(j ! The only equilibrium equation (Ref 5248) which is not

identically zero is

S~rr rr - o00-a- + r g -o 0 (45)

From the stress-strain-equations (Ref 5:245)

Err 0rr - vou0 + EaT (46)

senermts 00 - rx + EaT (47)

and from the stxain-displacement equations

() £ -~(48)rr

co0 o (49)r

Eliminating ao0 between (46) and (47) and substituting (48)
#I

and (49) gives

0rr4 + .Ex (50)

Similarly, eliminating orr in (46) and (471) gives

001
Substituting (50) and (51t into (45) results in

28
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d 1__

U (52)

Integrating and solving for the radial displaceament

(1 -+vl rTrdr+cr + (53)
r a r

Substituting back into (50) gives

°r" -- v [ 1-V2 r ca
Orr V ri Trdi + (1 +v) 2

- (1 - V ( 54)

rA
By substituiing the boundary conditions of zero ,,trac-

tions (Orr - 0) on. the inner (r - a) and outer (r = b) radii

of the 'cylinder,, the constants, cl, and c2 are determined.

Hence, (Ref 5t2901,

CE (r2 - a2 ) Ib 1 (55)
rr rT L(b2 - a2) a Tr

OLE ir + a) b 1

l eo) Trdr Trdr -Tr£0 C Lb :a2 )a a 16

'For the particular case of a Aolid plate, a - 0 and

a , 1 b Trdr - ,j." Trdr ]57)

b + i Trdr - 7los - aJ T (58)

0 p
Another particular case of intexest is a 'solid cylin-

f€



drical plate of which only a finite.inner cylindrical por-

Otion 11s heated appreciably. If it is assumed that this

heated core (r - a) is at a uni.ftrm temperature (T.= TI)

with T n 0 for r > ate ti"afrom (57) and (58) respectively,

for r < ale

UST1 I a 1  (59)
rr,)

and for r > a,

-_ 1_ (60)• rrl 2 b2 rt

2)
00+ - (61)

(iii) 2  b / I
The stresses in the heated core are seen to be compressive.

The peak tensile stress occ uis j9St 6utside the h4 Gad cre

and is 0

. .ET Iato "1 , r a 62)00) 2 (b

The maximum shear stress (TmaX ) in the case of a ),i-

axcikl stress fie24 occurs on planes at t45 degrees to the

principal stress axes and-is

1 * (63)

in the heated or~e. Outside the hooted core the maximum

* 30



shear stress is given by

C) rr2
0

2 -0-' *ET, /a, N2
Tra( 2 2 r al (64)

Applications of these thermal stress models to the

laser heating problem are' discussed in Section VII.

".8.

V\
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VI. H61tin and Thermal era-dation Models

To assess the relative effects of thermal stresses as

dandage mechanisms from laser heating of metal targets, the

melting and therwl degradation damage mechanisms were 3e-

lected for purposes of comparison. Other damage modes such

as explosive boiling, explosive vaporization, and thermo-

elastic shock'waves (Ref 12) occur at generally higher

heating rates than the mechanisms of interest in this study.

Since the concern is with determining efficiencies of the

damage mechanisms, only thosG believed to occur at the

relatively lower beam powers were considered.

( Melting. The analytical model used to predict melting

effects follows that of (Ref 8:18), Melting is assumed to

occur over a range of temperatures, Ti to Tu, where Ti is

the temperature below which the material behaves as a solid

and Tu is the temporature above which the material behaves

as a liquid. For the present study, the melted material is

assumed to be removed immediately upon reaching Tu so that

the effects of melt retention are not considered.

During the phase change from solid to liquid an ef-

fective specific heat, cpe is assumed such that the heat of

fusion over the melting range is

epe -ap+ /(u - ?I) for T, < T 'CTu (65)

Swhere



op = specific heat of solid pLase (T < TI)

(._9 =' - heat of fusion

Once any portion of the heated target reaches the upper

"Itii,g point, that portion of the target is assumed to he

instantaneously removed and is no longer considered in sub-

sequent computationt. Damage due to melting is then defined

by the reduction in target strength due to the redaced load

carrying area.

Thermal De radation. The definition of thermal degrada-

tion as applied in this study is the reduction in structural

strength properties with increasing temperature of thin
plates as described in Ref 9. Although, as discussed in
Section VI, the primary measure of damage being used for

( ) this study is the residual tensile strength in a uniaxial

loaded panel, the effects of thermal degradation on tensile,

compressive and shear strength properties are considered.

The only material considered is 2024-T3 aluminum. Ref

9 contains data for the effects of temperature on material

strength as a Nuntion of time at temperature. The parti-

oular data used here is contained in Figures 3.2.3.1.1(a)..,

3.2.3.1.2(a)., and 3.2.3.1.2(b). of Ref 9 for ultimate ten-

sile strength, compressive yield strength, and ultimate

shear strength, respectively. These figures are reproduced

here as Figures 2, 3# and 4.

it was decided to use the half-hour exposure data in

ef 9 after reviqming available data on the more rapid heat-

0 ing effects associated with high power laser heating. Such

3)I



ISO strength of emprotwre L

Exposure up to I0X000hr ~~

140.. 741-. --

j so lo

.. .. ..........

a-400 -200) 0 0 ""1O 00 600 800 1000

Temperature, F

?~ig. 2 Thermlal Degradation o.f, U1timate Tensile
Strength for 2024-T3 Aluminulw



100 ~ ~ ~ -~ -- '- - - ------------------

. 1~:; . ... Exposure up to 1000 hr

hr

20 4 ---- - ----

Temperture, F
Pigs 3 Thermal Degradation of Compressive Yield Strength

IMI
tjtrength at temperature

* -.................... ;:'Exposure LIP to 1000 hr

U'e ~Z.....y hr

60 * ~ ' . . . . . . . . . . . . 10 hr

................................... ...

,~. ...........

fo20*~T3Alsx

itFitI



data are contained in Ref 13 through 18. Due to data scat-

( J ter, variatons in tet methods, inconsistent test parr-

meters, etc., these data do not present a clearly defint4

relationship between strength and exposure time. Additional-

ly the data for the material of interest, 2024-T3 aluminua,

are concerned only with tensilq propecties. For the present

study, degv'adation of compression and shear strengths were

also of interest. The thermal data of Ref 9 provides the

necessary tensile, compressive and shear degradation rela-

tionships for consistent conditions. Although the data for

the much shorter heating times presented in Ref 13 through

18 indicate that strsngtk properties for the short heating

times associated with laser heating can vary appreciably

from the half-hour exposure data, it whs djcided to use the

latter data for the present study based on 'the presumption

that these data are suitable first approximations and they

are of standardized validity, complete, and consistent

which at least partially compensates for possible detailed

discrepencies with the shorter heating time effects.

Based on the half-hour exposure curve of Fig. 2, for

computational convenience it was decided to approximate

the ultimate tensile strength by two straight lines such

that

?tu " to - SST 0 < T <-2006C (66)

(-) 0u.7Sto - 200(T-200) aOOC < T < 3700C (67) A

36



I.tu T 370C (68)

tu = ultimte tpuslie stren.gth at temperature

Pro a 0ltimate tons tie strength at room temperature
a 44p120 n/cm2 for 2024-T3

T a tenperatutoi, 00 above room temperature

Siailarly, the hlf-bour exposure compressive yield strength

was modeled as

a cy=Fco - 25 o < T <:'2324C ,69)

"cy = O.75P&o'- 140(T-;232) 2324C < T < 3700C (70)

j0 T. Fcy> T 3706C (71)

where

L 4.

Pcy compressivis -yield st'engtb at temperature

I; W room tomorature ompvossive yield etrength.
W" 2),440 n/cm' f£r 2024-T3

The ultimate shear strenth was m deled analyticaily as

lu tsc"29T 0 T < 26 (72)

.su 0.7s& - 1320-0"6) 216*C < T < 3700C (73)

37 .



Pau 0 T > 3700C (74)
' 0

whre

psu ultimate shear strength at temperature
T (n/onm)

?go - ultimate shear strength at room temperature
- 25,510 n/cm* for 2024-T3

4 3

4 4 4 4*'4

4 -
!4

4 *
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VII. Laoir Heatinq ffeets

One-Dimensional Heat Flux Model Limits

Since the ptesent , tudy was concerned with the limiting

cases of axial and radial heat flux conditions, an initial

question to be answered was under what conditions were the

assumptions of one-dimensional axial or radial flux valid.

It was originally planned that the ranges of input para-

meters for which the heat flow could be considered to be

essentially one-dimensional (either axial or radial) were

to be determined by comparing temperature and stress dis-

tributions from the one-dimensional models those obtained

() from a large two or three-.rnraional analysis finite

element computer program.

Initially,, the MARC (Ref 10) three-dimonsional trans-

ient thermal stre a code was to be used but was abandoned

when access to the program was terminated by non-renewal of

a lease contract between the Air Force Flight Dynamics

Laboratory and Control Data Corporation. Efforts were then

made to apply the NASTRAN (Ref 2) program using the Navy

thermostructural analysis additions and modifications (Ref

11). Considerable time was expended in getting this program

to function properly due to lack of familiarity with NASTRAN

ad due to insufficient docuUtation in Ref 11. As a con-

sence of these end other difficulties with the program,

it was decided to elmnate this approach to definiiag the



vne-dimensionality limits. as discussed later in thir, sec-

tics, WASTRA was used to validate the numerical one-

dimensional radial flux computations-for temperatu'es and

thermal stresses.

An alternate approach was used to define the limits of

the one-dimensional axial and radial flux thezal stres.I

models based on the results of the studies Tresented in

Ref 8 and 19. There is reported the development of a

single parameter which is shown to determine the limits on

the one-dimensionality of heat flux for the stationary beam

melting problem. The parameter is a dimensionless absorbed
j power per unit thicklness defined b7

Pra (75)

where

L -.plate thickness

melting temperature

Lm  heat of fusion

In Ref 19 it is shown t1hat qelt-through times based on the

assumption ef onedimen~aional axial conduction cl'sely pre-

dict those krom a two-4mensional numerical analysis for

values of Pta Oreater than about 70. Values of Pta les

than about 5 are s ow tO indicat. that the flux is primari-

ly radial. 0n (Rof 20) an Reffeotive" dimensionless power

O per unit thicknes it Aevelopd for correlation with melt-

140 II



I
.* through times which iqaludes an approximate allowance for

() the tserature dependence of C .p
Although these one-d:imusionality limits are based on

the melting problem, it-is reasod here that the assumption

that these limits would also apply for the thermal stress

problem, at ijost for heatinq times up to melting, is con-

sistent with the earlier assumption (Section III) that the

strain rate is' of the same order of magnitude as the ti%;*

rate of change of teaperature. That is, it seems reasonable

to assume that the one-dimensionality limits for the heat

,.,onduction problem (based on meltipg times) should be about

the same as for the thermal stress problem if the strain

rates closely follow ,the temperature time rates. Conse-

iruently, the above noted limits oA one-dimensioial axial

and radial fluc are applied in the present study.

For the material considered in this study, M024-T3

aluminum, the one-dimensionality limits based On Pta can je
reduced to-limits on laser beam pc*er and target thickness.

For 2024-T3 alumint m,

p. 2.78 Im/ca l

c- 1.05 joulp/gn-*C

1% u.375 joule/ga

(76)]11.



sence, for one-dimensional axial conduction Pta > 70 and0
Pa > 8.55 x 106 (axial flux) (77)

Similarly, for one-dimensional radial conduction,

Pla 1_ 5 and

Pa < 6.11 x 10' (radial flux) (78)

Axial Flux Analyses

For relatively high heating rates, the initial heating

of a plate with the beam incidence normal to the plate mid-
plane would be expected to be primarily axial through-the-

thickness of the plate. Since the only area being heated

significantly is that directly under the beam, the thermal

model of equation (19) gives the temperature distribution

through-the-thickness. To obtain a closed form analytical

solution to the thermal stress problem, the approximation

for thermally thin plates (Kt/t2 >l) is applied so that the

temperature distribution is given .,'. equation (20). If this

thermal model is applied to the thermal stress model of

equation (42), the in-plane normal stresses near the beam

axis are given by

xx a -yy .- (h -30) (79)
12(1-v)kh

O where the coordinate system of Section V is used. This sol-

42



ution is seen to be independent of time once the initial re-

O striction that et/LZ > 1 is met. The maximum tensile stress

occurs at z n 0. The stress distribution through the plate

is shown in Fig. L

An intermediaLe thermal situation can be hypothesized 4

which might approximate the peak stresses during transition

from a predominantly axial flux case to onte in which the

flux becomes essentially radial. After the core area under

the beam is heated for sot time by axial flux, this heated

core will becmoe heated to an essentially uniform tempera-

ture. At this time and pixor to the development of signi-

ficant radial flux, the thermal stress problem can be con-

sidered as one pf a heated center disk surrounded by an un-

heated elastic cylinder. Equations (59) through (64) thus

(I provide the thermal stress model for this problem. An ini-

tial assessment of the etresses generated for this case is

obtained from equation (62) for the peak tensile stress

use, *ea j = ( i+,) , r a (80)

T, is the uniform temperature of the heated core as develop-

ed from equation (20),

T(z,t) "To L-I-6-jKt+3Z3..2], Kt/L2 > 1 (81)

Arbitrarily, to detine the heating time when the flux vec-

tor would be expected to be primarily radial let it be

4
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I

required that the front-to-back surface temperature varia-

0-) tion be restricted to 100 or less of the front surface (a

) temperature. From equation (81) above

T(L,t) - T0  3 t ) (82)3kI

The back surface (&oO) temperature Is

T(Ot) T wo-*(6Kt-Ji) (3
f(0t) T0  6kL 83

Subtracting (63) from (82) gives the front-to-back tempera-

ture variation, AT. B

AT.,B (014)

Requiring that

results in

y . -(3Kt+l) (86)
- 30kt

which reduces to

S(87)

04



This result is seen to be an increase in the thermal model

(9 restriction of ict/i' > 1.

The solutions for axial flux problems given thus far

apply to long heating times and/or thin plates (Kt/t' > 1).

For earlier heating times (or thicker plates) the thermal

model of eqn (19) gives the temperature distribution through-

the-thickness of the plate. The thermal stresses can then

be deteained by nu-marical integration of the stress model

given as eqn (42). Fig. 6 sumiarixes the results of such

an analysis. It was initially found empirically that the

in-plane stress is given uniquely by the value of ct/t 2

at any depth (s/t) in the plate as shown in Fig. 6. This

was subsequently confirmed analytically by factoring (#It)

out of the thermal model equation giving

T(x:t) - To - L Kiti
kc 2

1 -n2

The combined factor 4t I has the dimensions of temperature
k

and the 'terms inside the brackets are dimensionless. Exam-

ination of the thermal stress equation (42)

a r h 3z h
Oxx am '__ 1-"i f.h + Td7r xdx] (89)

shows that j also factors out of each of these terms.

Hoence the ther~al stresses are seen to be directly propor-

4
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tional to the flux density, *, and the plate tbickness, 1.

Wmn expresses in a consistent set of uwits, the prameter

has the inverse dimensions of thermal diffusivity.

Hence, multiplying both sides of eqn (89) by C results

in a non-dimensionalised stress parameter

PEP(lV) -h 2h' h(

where

2 -(nwz) Itn'/' (91)
-" nal n2

It should be noted that eqn(90) and eqn (91) are expressed

in terms of the thermal stress and heat conduction coordi-

nate systems, respectively. Eqn (90) is plotted in Fig. 6

for 2024-T3 aluminum. If the material property parameters

outside the brackets in eqn (90) were transposed to the

other side of the equation, another dimensionless streas

parameter would be defined, which is independent cf material

within the general class (homogeneods, isotropic) of interest.

In Fig. 6 the curve for bt/92 u 1.142 represents the

steady state stress distr~bution which remains constant for

all Ct/t, > 1. This curve is the same as that shown in Fig.

5 which Is based on the analytical approximation given by

mqn (79). For earlier times, the development of the thermal



I
stresses in shown by the other curves in Fig. 6. initially,

as show by the curve for ct/L2 a .00571, only the plate

volume near the heated surface in heated appreciably and re-

latively large compressive stresses are quickly generated

at this surface. As the temperature drops to near zero be-

yond this heated layer, the expansion of the heated layer

creates tensile stresses in the unheated area which reach

a peak near the front of the relatively unheated zone, then

gradually decay becoming compressive again at the unheated

surface,

Both the compressive and tensile maximu stresses in-

crease with time, attaining peak values prior to reaching

the steady state values. The peak tensile stress is only

j) slightly larger than the steady value, which occurs at

z/i = 0.5. However, the peak compressive stress (at the

heated surface) is approximately 20 percent larger than the

steady state value. Fig. 6 also shows that the peak com-

pressive stress occurs at an earlier time than the peak

tensile stress.

The temporal development of the peak tensile and com-

pressive stresses is shown in Figure 7. The vertical

dashed line at Kt/1t - 4.67 represents the time at which the

temperature variation through-the-thickness of the plate be-

comes loss than 1/10 that of the heated surface temperature.

This 16 arbitrarily taken as an appriximation of the time

when the flux vector is no longer primarily axial since the

0 radial thermal gradients at the outer diameter of the beam
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would be expected to be large relative to the axial grad-

C) ients under the beam.

The slight y.eak in the tensile stress near Kt/t 2 =

0.1 is apparent. The peaking of the compressive stress is

seen to be much more significant and extending over a larger

period of time. It is concluded that the maximum thermal

stresses produce6 by one-dimensional axial heating occur

just prior to attaining steady state heat conduction, and

that these stresses are defined by the following equations

as derived from'Fig. 7.

/)Max - 3.30 x 10l-'it/ 2 - o.r (92)

tensile

(VXX ' --. 7.94 xl0-'Kt/1'- 0.06 (93J
( *.-s max

compressive

To assess the relative importance of the melting and

therval degradation damage mechanisms for comparison with

thermal stresses for the axial flux case, the times required

for complete melt-throzgh and for cqmplete therm&l degrada-

tion aee useful. The time required for coplete melt-

,through, assuming one-dimer ional aial flux, temperature

independent proparties, and immediate melt removal, is

given bY (Ref 19M21

tm £LC(p0I-TO)+Lmj (94)

pt,
As defined in ,=octign VZ, thermal degradation is a



function of temperature only# with essentially zero strength

( remainisg if local temperatures exceed 3700C. Analogous to

the on-dimsnsional axial flux melt-through time, ti, a

beating time for complete thermal degradation can be defined

by

tD - .Lrp(TD-To) (95)
pa

where

tD a heating time for complete thermal degradation
of structural strength (sc)

TD a temperatare above which material has essen-
tially zero strength

a 3709C

C) Dividing by t I givea

tD TO-To

E7 (T*3?)+LyC (96)

It is seen that tD is always less than tj for structural

Metals since T. is generally greater that To. For 2024-T3

aluminum, assuming T. a O,

tD 0.43 ti (97)

Hece, complete thermal degradation of the structural

strength properties of the plate would be expected to occur

prior to complete melt-Uhrough.

Although not directly partainent to the present study,

0s



I
the beating time to complete thermal degradation for other

(I) strueftural materials was investigated briefly. Based on

extrapolation of the thermal degradation data in Ref 9, the

following table presents tD/t as calculated from eqn (96).

Thermal properties are taken from Ref 32.

Material Tm(C (*(OC ) N( &E DdLq!!* tn/t1

AS-31B 605 425 338 1.21 0.48
Nagnesium

301
Stainles 1400 870 290 0.42 0.42
Steel

6AI-4V 1600 870 390 0.77 0.41
Titanium

C) Hence, it appears that complete thermal degradation precedes

melting for most structural metals.

A qualitative comparison of the thermal degradation and

thermal stress damage mechanisms for the axial flux case can

be obtained by examining the ratio of heating time to com-

plete thermal degradation tim and comparing it to the ratio

of maximum compressive thermal stress to room temperature

compressive yield strength. This comparison is made in Fig.

8 for a particular value of absorbed heat flux density.

Since both of these dimensionless ratios are linear func-

tions of the absorbed heat flux density (see oqns (90)

and (95))t changes in this paramete; do, not affect the re-

lative positions of the two curves.

C The solid curves apply when it/' - '006 which corres-

53
II



* I 1500 w/pz-

-.-Oct/is a 0.06
* .m..t/zx a 0 .01

1.0 
1. 1Am-

- .-iI- ~ - - - -b-I-

I L

to
'4' U.0-25

-- -- -I

va% - - - - - - -

We - ---

0. 0425 0.50 0.5 1.0

VIfATE THIOCNSS, (CM)

Fig* 8 Comparisons ofPeak Thermal Stresses
* Ad ThermalX Dengr~ation Heating Ti'me

tor Owit.iiensriwa Axial Heat Flux

(0>24 A*mjam



ponds to the maximum value of the peak compressive stress

0 (see Fig. 7). The stress ratio is cqmputed from eqn (93)

by substituting the material property values for 2024-T3

aluminum and I 1500 w/cm' which is approximately t"-pa
maximm value of interest for this study. The fo l6ing

relationship is obtained. - -

(~) -0.989(1/CM) W#.t/t 2 -0.06 (98)
ax

Similarly, eqn ives

t 1.39(cm/sec)- (99)
tD

--- rom it/12 0.06,

t - 0.117 L2(sec) (100)

Substituting (100) into (99) results in

t. 0.162 (1/cm) L (101)
tD

Eqns (99) az:! (101) are plotted as solid curves in Fig. 8.

The initial conclusion drawn from this comparison is that

the damage from these two sources is of the same order of

magnitude at times defined by Kt/12 - 0.06. This is a quali-

tative conclusion in that peak thermal stresses represent

0 the onset of material failure rather than through-the-thick-
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ness failure represented by the thermal degraiation ratio.

() Even though the stress ratio exceeds the tbI mal degrada-

tion ratio by about a factor of six, consideration of the

additional time required to completely fail the plate I
through-the-thickness by botl compressive and tensile ther-

malPstresses would likely compensate for this difference4

and might reverse the relationships.

For comparison to the maximum compressive stress, the

corresponding stress ratio for maximum tensile thermal

stresses is shown on Fig. 8 as derived from eqn (92). Ten-

,ile stresses are concluded to be a relatively insignificant

contributor to damage for axial flux heating.

Also shownin Fig. 8 are the corresponding relation-

ships for an earlier time, Kt/L 2 = 0.01. In this case the

stress ratio is determined from Fig. 7. Since t/tD is

linear in time and the peak compressive stress is a loga-

rithmic function of time, the stress ratio exceeds the ther-

mal degradation ratio by an even larger factor. Consequen-

tly the relative significance of thermal degradation in-

creases with time. Since the heating conditions for the

solid curves in Fig. 8 generate the maximum thermal stresses

for the range of beam/target parameters considered, it is

seen that the maximum value for the compressive stress ratio

is about 0.65 (at the maximum plate thickness of interest,

L w 0.65 cm).

Hence, for the &xial flux conditions considered, peak

O) thermal stresses do not reach material failure values.
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CoApletc thermal degradation occurs at t/L - 0.719 sec/cm

9 _as determined from eqn (99). This corresponds to

Kt 0.370 (102)

which varies between 0.57 and 3.70 for the range of plate

thicknesses considered (0.1>t>0.65cm). That is, complete

thermal degradation does occur for the axial heat flux case

within the range of beam/target parameters of interest.

Since the range of Kt/1 2 in which complete degradation can

occur exceeds the it/t2 values for maximum thermal stresses,

the actual failure mechanism is expected to be the combined j
actions of thermal stresses and thermal degradation. How-

( ever, since the majority of the plate thickness under the

beam is subjected to tensile stresses (Fig. 5), and these

tensile stresses do not become significant relative to room

temperature ultimate tensile strength for the range of heat-

ing parametcrs considered, thermal degradation will contri-

bute much more to cot.iplete through-the-thickness failure

than thermal stresses. It is concluded that the heating

time to complete thermal degradation, tD , provides a rea-

sonable approximation to the time required for through-the-

thickness material failure under the combined actions of

thermal 3tresses and degradation for the case of axial flux

heating.

Comparisons of thermal stresses generated during

0
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one-dimensional axial heat conduction to those associated

with one-dimensional radial conduction are discussed in

later paragraphs of this section.

Radial Flux Analyses

The numerical radial flux computer program is based on

the numerical thermal model described in Section IV. The

total program is named TSTRESS and is listed in Appendix A

along with sample program outputs. The radial thermal model

described in Section IV is subroutine TEMPRAD in Appendix A.

Based on the radial temperature distributions output from

TEMPRAD, numerical integration of thermal stress equations

(55) & (56) is accomplished by subroutine STRESSR to deter-

mine the radial flux sttess components. A separate algo-

rithm (see Appendix B) was developed to compute stresses

near r - 0 as equations (55) & (56) are indeterminate there.

The one-dimensional radial heat conduction model im-

plies that the plate io circular in planform. However, for

those cases where the plate diameter is large enough that

the plate size no longer significantly affects the heat

conduction or thermal stresses, the plate can be considered

to be rectangular with width equal to the circular plate

diameter. The length of the rectangular plate can be con-

sidered to be any length equal to or qreater than the cir-

cular plate diameter. The residual tensile strength of the

rectangular plate in the lengthwise direction can thea be

0 used as a measure of the damage inflicted by the mechanisms
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of thermal degradation of structural properties, thermal

(9 stresses, and melting.

Subroutine STRONG computes the radially averaged re-

sidual tensile strength of the plate (RESDEG) due tc ther-

mal degradation, based on the radial temperature distribu-

tion and the half-hour exposure, thermal degradation of ul-

timate tensile strength data for 2024-T3 aluminum given in

Ref 9. These data are approximated by the analytical func-

tions given in Section VI. This subroutine provides a mea-

sure of the damage caused by thermal degradation of tensile

strength.

Other damage measures are computed in subroutine

RESTRNG. Residual tensile strength due to thermal stresses

((RESTRSS) is computed based on thermal tensile stress dis-

tribution by assuming ultimate tensile stress remains at

the room temperature value. Residual strength due to the

combined action of thermal stresses and thermal degradation

is computed as RESTRS2. Structurally failed areas due to

thermal stresses alone (PRS), thermal degradation alone

(RFD), and in combination (RFDS) are calculated in subrou-

tine RADFAIL. Failed radius due to melting a hole (RMELT)

is computed in the main program (beginning at line 153).

A parallel calculation of the effect of stress concen-

tration is made in subroutine RADSC. This calculation is

based on holes caused by thermal stresses and degradation

in combination (RFDS) as it is assumed that hole stress

0 concentrations associated with melted holes are negligible
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due to relief provided by plastic flow associated with

I ( high temperatures.

Structural failure may be caused by thermal stresses

or degradation, or their combined actions. Two alternative

treatments of structurally failed areas were used. In one

case, the failed area is assumed to be immediately removed

from the plate, thus forming a hole. In the other case,

the failed area is assumed to remain in the plate and con-

tinue to absorb and conduct heat.

In the case where the failed area is retained in the

plate, melting is the only mechanism which can generate a

hole. At each time increment, thermal stresses, residual

strengths and failed areas are all computed based on the

assumption that the current failed area has zero strength,

that is only the temperature distribution outside the failed

area is considered. The temperature distribution is based

on the heat flux into the plate outside the melted hole.

The failed area will either be equal to or greater than the

melted hole.

In the case where the failed area is assumed to be im-

mediately re.e.d (by an unspecified source such as aero-

dynamic pressure), the actual hole size at any time is the

larger of the melted hole and the failed area. Temperatures,

thermal stresses, residual strengths and failed areas are

computed based on this actual hole size.

Fig. 9 (solid curves) shows a typical comparison of

() the respective hole sizes for the above described ilterna-

60



.4 
6

1~AU I4
C4Z~

244:41:E 

0

C') 

.4 

8 5 0

d 00

.04

61-'



Ii
tive failure modes. The plots are based on data output

from the TSTRESS program at one second time intervals.

The data are connected by straight lines which results in

the incremental characteristic of the plots. The bottom

solid curve is for the case in which only melting is consid-

ered to form a hole in the plate. For these conditions a

failed area is generated by the combined actions of thermal

stresses and thermal degradation and the radius of this

failed area is given by the dashed curve. The failed area

is assumed to remain in position in the plate. For the al-

ternative situation in which the failed area is assumed to

be immediately removed from the plate, the resulting hole

radius is given by the upper solid curve in Fig. 9. These

results are typical for the range of parameters studied in

that the structurally failed area due to the combined action

of thermal stresses and degradation is always larger than

holes formed by melting, and that the failed area is gener-

ated prior to melting a hole.

It should be noted that although the one-dimensional

radial flux code is strictly applicable only when the dimen-

sionless power per unit thickness, Pl., is less than 5, much

of the data presented is based on heating conditions for

which Pla > S. This is done to facilitate data presentation

as the trends shown are the same for both conditions, but

much longer computer run times are required to obtain struc-

tural fdilure and melting effects whenP la< 5.

Fig. 10 is a typical plot of principal thermal stress
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distributions for a solid diRk at some time prior to melting

C ) or structural failure. An understanding of thermal stress

distributions prior and subsequent to hole formation is

necessary to explain the relative damage modes. Fig. 10

shows that the radial (or) and tangential (ae) stresses are J
compressive near the plate and beam center. The radial

stress beccmes less compressive with increasing radius,

becoming zero at the plate edge. The tangential stress be-

comes tensile just outside the heated cylinder, rapidly

reaching a peak value before gradually decreasing to zero

at the plate edge. I

The maximum shear stress is equal to the one-half the

maximum difference between any two of the three principal

orthogonal stresses. In the case of plane stress, the

stress component normal to the plane of the plate is zero.

Inside the heated cylinder the maximum difference in stress

components is between the radial and normal components.

Outside the heated core, the maximum shear stress is deter-

mirned by the difference between the radial and tangential

components. This change in the maximum shear stress deter-

mination accounts for the inflection in the maximum shear

stress distribution shown in the figure.

A typical temperature distribution at some time prior

to formation of a hole is illustrated in Fig 11. Boih melt-

ing and thermal degradation are direct functions of tempera-

ture (see Section VI), and knowledge of the general form of

0the temperature distribution aids in understanding the rela-
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tive influence of these damage mechanisms. The figure show.s

the typically rapid decrease in temperature within the beam

radius for a Gaussian distribution heat flux density. )

Fig. 12 presents the residual tensile strength, nor-

malized by the unheated ultimate tensile strength, as a

function of heating time for each of the damage mechanisms.

In this case, the failed area is assumed to be immediately
removed, thus forming a hole. Since the failed area radius

is always equal to or greater than any melted hole radius,
no damage due to melting occurs.

The effect of assuming that the failed area remains in

the plate but does not transmit stresses and that only melt-

ing generates a hole is shown in Fig. 13. Comparison with

Fig. 12 shows that the assumption that the failed area re-

mains in place results in slightly greater strength reduc-

tion, again due to the larger heat absorbing surface for

this situation. Both figures show that the largest contri-

butor to tensile strength reduction is the structurally

failed area anC that theriial stresses contribute more than

thermal degradation. The respective radii of the melted

hole and failed area for the heating conditions of Fig. 13

are given by the solid curves in Fig. 14. The dashed curve

is for the alternative assumption that the failed area forms

a hole.

The effect of varying laser beam diameter on residual

tensile strength is shown in Fig. 15 for the situation of

retained failed ireas. For smaller beam diameters the peak
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heat flux density is larger resulting in earlier str'ictural

0 failure. As the failed area diameter approaches the beam

diameter, the rate of strength reduction becomes increasing-

ly slower because the failed area is the primary factor in

determining residual tensile strength. Residual strength

continues to decrease until the melted hole approaches the

beam size after which heat absorption by the plate ceases..

The larger beam diameter effectively postpones struc-

tural failure an ' melting until a larger area of the plate

is heated significantly resulting in strength reduction over

a larger portion of the plate. As shown in Fig. 16, the

failed area grows more rapidly for the larger beam diameters

eventually becoming larger than for the smaller beam dia-

meters.

The effect of beam power on residual strength is shown

in Pig. 17. The beam powers selected for this comparison

give peak absorbed flux densities corresponding to those

for the comparison of beam diameter effects in Fig. 15.

The cuzresponding failed area radii are compared in Fig. 18.

Increasing beam power is seen to decrease the time rcquired

to achieve structural failure and melting, and to generate

larger failed areas (and melted holes) and reduce residual

tensile strength at any given time.

Fig. 19 shows the effect of plate thickness on residual

strength. The effects are similar to those for beam power

with more rapid strength reduction consistently occuring

(for *-inner plates.
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One objective of the present study was to determine the

( relative importance of the thermal stress damage mechanista

relative to melting and thermal degradation. From the data

presented thus far for the case of one-dimensional radial

flux, one major conclusion is that the primary mode of dam-

age (measured in terms of r.isiai-al strength) is the genera-

tion of a structurally failed area by the combined action

of thermal stresses and degradation. The relative contribu-

tions of each of these mechanisms to structural failure is

thus of interest. A qualitative assessment of the relative

contributions can be obtained by looking at the peak stress-

es and temperatures (outside the failed area) as shown in

Fig. 20. This plot is typical for all the cases investigat-

ed in that once a structur ily failed area is initiated, the

tangential compres;ive stresses remain at relatively high

levels whilr- the other stress components are reduced signifi-

cantly. Fig. 21 and Fig. 22 show that peak tensile stresses

remain very small for a wide range of beamn powers and dia-

meters. Since both peak tangential compressive stress and

maximum temperature (outside failed a:ea) occur at the radius

of the failed area, it is concluded that these are the mech-

anisms which continue to expand the failed area with increas-

ing time. That is, the failed area expands due to compres-

sive yield failure.

Although thermal degradation is not generally a linear

function of temperature, for the analytical approximations

used in this study (Section VI) and the range of temperatures
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I

outside the failed area shown in Fig. 20, the relationship

P is essentially linear. Consequently, the temperature

curve in Fig. 20 is a fairly good approximation of the com-

pressive strength reduction due to thermal degradation.

The general conclusion is then made that the compressive

tangential thermal stresses contribute significantly more

to structural failure than does thermal degradation.

A quantitative assessment of the relative contributions

to structural failure does not seem feasible. The essential

conclusion is that qualitatively, compressive tangential

thermal stress at the edge of a failed area is the primary

contributor, along with thermal degradation, to the expan-

sion of tLe damaged or failed area. A

From the analysis of the thermal stresses for the one-(i
dimensional radial flux code (reference sample output in

Appendix A), it was found that prior to structural failure

or melting, thermal stress is a linear funct.on of the beam

power and consequently linear in absorbed power, peak ab-

sorbed flux density, and peak absorbed fluence throuigh the

following relationships.

PA = u Q (103)

Pa = ! D lipa (104)

Fpa - Ipat (105)

43 where
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a, - absorptivity

Q a Pi a incident beam power

D = beam diameter

t - heating time

Fpa - peak absorbed fluence

Ipa = peak absorbed heat flux density

Thermal stresses also were found to be inversely proportion-
al to the target plate thickness. These empirical findings

were verified by examination of the algorithms used for

temperature, eqn (27), and thermal stresses, eqns (55) and

(56). These relationships suggested two dimensionless

stress parameters which were studied to see whether they had

any particular invariant qualities which might serve to

( ) characterize the thermal stress problem.
The parameter where a represents any thermal

Pa

stress component, expresred in consistent units, has the

units of sec/cm2 which are the Inverse units of thermal

diffusivity, K. Hence, the parameter £ is dimension-
f a

less. The parameter has the units of seconds.

Dividing by the heating time is equivalent to replacing the

peak absorbed flux density in the denominator by the peak

absorbed fluenne, giving another dimensionless parameter

at .Fig. 23 compares this parameter, using peak ten-

sile stress, for three beam diameters, as a function of

heating time.

The peak absorbed fluence used in Fig. 23 is that for

a continuously solid plate without regard to the effect of
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the expanding hole in the plate. When this effect is ac-

(9 counted for by uLing the actual peak absorbed fluence, the

results are less orderly than in Fig. 23 due to the step

function effect of the hole growth in the numerical model.

Fig. 24 shows the other dimensionless parameter des-

cribed above for the same conditions of Fig. 23. Compari-

son of the two plots shows that there is less spread in the

data based on a1K and that the relative positions of

the curves based on Tat is more indicative of the reia-

tive peak tensile stresses, being a linear function of the

peak tensile stress (see Fig. 21).

Figure 25 shows the development of peak thermal stresses

for a typical case in which the heat conduction is initially

axial. The figure shows the theoretical stresses for both

one-dimensional axial and radial conductivity models for

identical conditions. Radial flux stresses are given for

a uniform beam flux d:trihbution. The uniforim beam is con-

siE:tent witli the constant flux distribution assumed in the

axial conduction model. Fig. 25 shows that the initial

transient and subsequent steady state peak stresses for

one-dimensional axial flux remain fairly small relative

ro compressive yield ox ultimate tensile strengths (23, )

n/cm 2 and 44,820 n/cm 2, respectively).

For the flux density and thickness listed on Fig. 25,

the initial conduction is primarily axial through-the-

thickness if the beam diameter is at least 5.87 cm. In

0 this case, Pta > 70.0 as determined from eqn (75). Hence,
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heat flux for this case would remain axial until a hole is

melted through the plate. No appreciable radial flux would

develop in this time. Consequently, the radial flux results

given in Fig. 25 are strictly academic and serve here to

indicate the trends in thermal stress development for those

cases where the flux vector becomes predominatly radial be-

fore melting occurs.

These results illustrate a bound on the radial flux

model. If Pta > 70 at the onset of heating, the target

plate will melt through without any transition to a radial

flux case. Hence, the radial flux model is not generally

applicable if, initially, Pla > 70. As noted earlier in

this section, if Pla < 5 at the onset of heating, the heat

flux vector is primarily radial and remains so as long as

heating continues. In intermediate cases (5<Pka70), the

flux vector would be expected to become increasingly radial

at long enough heating times. From eqn (87), the flux vector

would be expected to be primarily radial at leazt by the

time Kt/Z2 is about 5. The flux vector becomes primarily

radial at %9yer shorter heating times for decreasing Pta.

The initial flux vector would be expected to be predominant-

ly radial for values of Pta near 5 and to be mostly axial

for values of Pta approaching 70. The axial flux thermal

stress model is applicable for all heating times through

melting if Pta > 70.

Correlation of dimensionless power per unit thickness,

0 eta, witn the time to initial structural failure as predict-
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ed by the one-dimensional radial flux model was investigated

( , briefly. Fig. 26 presents the results of this correlation,

using data, denoted by the circluar data points, that had

been developed previously as part of the other analyses con-

ducted.

A definite correlation is apparent which also appears

to be a function of the laser beam diameter. The data

presented include all of the pre-existing data available

which was applicable. That is, no sorting of the data was

done to bias the results. As noted previously, most of the

data from the radial flux code are for heating conditions

with Pta > 5 which violates the assumed bound on the appli-

cability of the -nodel. Consequently, additional analyses

are required to extend the correlations to values of Pta <

( ) 5. The validity of the radial code correlations for Pta >

5 were qualitatively assessed by plotting corresponding

failure times for one-dimensional axial flux (Pea > 70) on

Fig. 26.

For one-dimensional axial flux, the heating time to

complete thermal degradation can be expressed as follows by

combining eqns (75) and (95) and substituting the 2024-T3

material values.

tD - 0.658 RL (D in cm) (106)
Pla

This equation is plettod in Fig. 26 for three diameters cor-

responding to thb radial flux data. The ridial and axial
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flux data are not directly Comparable because the radial

data are based on a Gaussian heat flux density distribution

and the axial model assumes a uniform distribution. To

make a more consistent comparison, four radial flux code

cases with a beam diameter of 10 cm were analysed for a uni-

form flux distribution. These results are denoted in Fig.

26 by the x-symbol. The results of this limited comparison

indicate that a possibly consistent relationship between

failure time and Pla may exist over a wide range of Pta

values. Further study of this relationship is necessary to

obtain more definite conclusions.

Correlations of Pa wfth the size of structurally fail-

ed damage areas as a function of the laser beam diameter are

shown in Fig. 27 for the cases listed in the previous fig-

( ure. The dava plotted are the radii of the structurally

failed area at a heating time of 15 seconds. Smooth curves

were drawn through the data points.

It was concluded that Pta does provide a consistent

correlation with the structural damage size. Quantitative

definition of this correlation was not established and is a

topic requiring additional study. The correlation examined

here is actually with the "dimensional" power per unit thick-

ness, Pa/t, since the additional quantities in Pta are mat-

erial properties and only a single material was considered.

0
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VIII. Conclusions and Recommendations

Conclusions

For both limiting cases of one-dimensional axial and

radial flux, the primary mode of damage is by generating

a failed area uader the laser beam. For axial flux condi-

tions, the primary damage mechanism is thermal degradation

of structural strength, based on the half-hour heating ex-

Kposure data of (Ref 9). For the range of beam/target para-

meters considered here (see Section II), thermal stresses

are relatively small. For the case of one-aimensional

radial flux, the primary damage mode is structural failure

() due to the combined actions of thermal stresses and thermal

degradation. If the qtructurally failed area is retained

in the plate,.melting may occur, but never precedes struc-

tural failure. Detailed conclusions are given in te fol-

lowing paragraphs.

Axial Flux. ror this study, axial flux was defined to

exist if the dimensionless power per unit thickness, Pia,

is greater than about 70. The flux was defined to become

primarily radial for dimensionless thermal times, Kt/t 2,

greater than about 5 since at this time the through-the-

thickness temperature variation becomes less than ten per-

cent. Two time iegimes were identified as significant in

characterizing the theormal stresses for axial flux. The

0 maximum thermal stresse* for the beam/target parameters of

Si



interest occur during a transient stage when Kt/t 2 < 1.

Q) These maximum stresses become constants when expressed in

the following dimensionless form

(cXXc ).01 xea 102K 0.1 (107)
i- -46 peak

tensile

.eak - 7.94'x 10 2 @t/ 2  0.06 (108)
' compressive

The peak through-the-thickness stresses decrease with in-

creasing time until they reach a steady state value for all

Kt/t2 > 1. For these steady state conditions, the peak

thermal stresses are slightly less than the maximum values

given in eqns (107) and (108). For the range of beam/tar-

get parameters considered in this study, the thermal stress-

es remain very small relative to target material strength.

Since both melting and thermal degradation aze direct

functions of temperature, thermal degradation is the ini-

tial damage mechanism because the temperature necessary to

reduce the material strength to zero is lower than the

temperature required for melting. If it is assumed that

any material failed by thermal degradation remains in place

in the plate, melting will subsequently occur with contin-

ued heating. Any material melted was assumed throughout

this study to be immediately removed.

Fot axial flux conditions the damage is essentially

restricted to the area under'the incident beam spot. Con-

0 sequently, the damage size would correspond dlosely to tne

?I
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. beam diameter, for a spatially uniform flux density distri-

i I } bution. For a Gaussian beam, the damage area would be re-

stricted to an area near the beam axis because of the much

lower flux density near the beam edges which would tend to

develop radial flux. The time required to fail an area

equal to the beam spot size is much less than for one-dimen-

sional radial flux.

Radial Flux. The heat conduction in the heated target

plate was defined to be essentially one-dimensional radial

if Pta < S. For cases where 5 < Pta < 70, the flux would

be expected to become increasingly radial with increasing

heating time. The numerical radial flux code developed as

part of this..study would be expected to give approximate

results for heating condiions with these intermediate

value- of Pta at long enough heating times (Kt/L2>5) and

accurate results- for Pta < 5. Temperatures and thermal

stresses for the radial code are compared to those from a

two-dimensional NASTRA14 finite element analysis in Appen-

dix C.

Based on the data frcm the one-dimensional radial. anal-

ysis, it was concluded that the primary damage mechanism

for radial flux heating conditions is structural failure by

thermal stzisses and strength degradation in combination.

The prim'ary cbntributor to residual tehsile strength reduc-

tioh is from the reduction in net section load cirrying
ability resulting frqm ktrutu'ral fiure of a circular

portion of the plate.' $tuctural failure is due primarily

934



to compressive tangential thermal stresses, in combination

with thermal degradation. Reductions in residual strength

due tG thermal degradation and thermal stresses outside the

failed area are much less than that due to the failed area.

Thermal degradation contributes less to residual

strength reduction outside the failed area than do thermal

stresses because significant temperatures are restricted to

the immediate vicinity of the failed area while tensile

thermal stresses are distributed ozer most of the unfailed

plate area.

Slightly less residual strength reduction occurs if

the structurally failed area is assumed to be immediately

removed, forming a hole, than for the assumption that the

failed area is retained and continues to absorb and conduct

heat. If the structurally failed area is retained, subse-

quent melting produces a hole. Melting does not signifi-

cantly affect residual tensile strength except for large

hoat flux densities which produce melting at short heating

times. In this case the rapid hole formation retards re-

sidual strength reduction because most of the subsequent

incident flux passes through the melted hole.

The effect of increasing beam 'diameter is to retard

structural failure and melting, and to increase residual

strength reduction at the longer heating times. Increasing

beam power and~dcereasing target plate thickness'have the

1 i&rect effects of promoting earlier structural failure and

C) iVing, and increasing residual strength reduction.
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The most significant difference in the damage associat-

() ed with the limiting one-dimensional heat flux cases is in

the size of the damage area. Radial flux heating has the

potential for producing failed areas larger than the inci-

dent beam spot size while axial flux damage is essentially

restricted to the area under the beam. Additional damage

due to thermal stresses outside any failed area is produced

by radial flux in contrast to axial flux heating.

Recommendations

Based on the results of this study, the following

recommendations are made.

1. Ad~itional NASTRAN analyses should be conducted to

verify the one-dimensional heat conduction limits based on
(

dimensionless power per unit thickness, P9a"

2. -The apparent correlation of damage parameters with

Pla should be more firmly established by additional studies

using the analytical teonniques and numerical radial code

developed in this study.

3. The realism and accuracy of the TSTRESS radial

ilux code should be improved by the following improvements.

a. Include temperature dependent material proper-

ties.

b. More realistic modeling of the thermal degrada-

tion of structural strength properties based on laser

heating exposure data.

C. Include heat losses due to surface radiation
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arA& conV*Ctitrn.

0 4. Thclude welt dynaai and interaction with the

incident flux.

4., AdditlonalmAteriais should be studied.

5 . Linear elastic frActure mechanics should be applied

to iprove the realism of the damage tolerance analyses.'

6. The effect of target'plate size should be analyzed.

.7. tlasticity and target pre-loading effects should be

studied,.'

I8. The effects of assuminj, ftcoupled quasi-static

heat conductioni/thermoelasticity theory should be inves-

tigated. ''
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Numerical Integration Algorithm

Numerical integration is applied in subroutines

STRESSR, STRONG, and RESTRNG to compute thermal stresses

and various residual strengths. In all cases, the trape-

zoidal rule is used (Ref 24:229), which gives

a [Ya+2Ya+l+2Ya+2,°+2Yan..l+Ya+n] (109)

where

a,b integration limits

y - f (x)

h = segment length used to divide the interval,
a<x<b

n = (b-a)/h = number of segments into which inter-
val is divided

In FORTRAN code, a typical integration routine would be as

follows.

SUM= 0.

DO 50 I J,M

50 SUM a SUM + 2.*Y(I)

SUMN " SUM + Y(J-l) + Y(M+l)

AS * SUMM * H/2.

Numerical Computation of Thermal Stresses near r - 0.

For a solid plate, the the.wal stresses are given by

eqns (57) and (58). At the plate center where r a 0, these

O eqns become, indeterminant. Hence, seperate algorithms are



necessary to compute thermal stresses near r - 0. Assuming

O finite temperatures, and applying 1'Hopital's rule to eqns

(57) and (58) gives the following.

Orr(0) - 00(0) = aE L f Trdr-1 T(] (110)

This equation is numerically integrated in subroutine

STRESSR to obtain stresses at r - 0.

It was also found that a special algorithm was required

for computing stresses at the first radial increment away

from r = 0 because eqns (57) and (58) are still erroneous

for small values of r. The following term in these equa-

tions becomes erroneously large for very small values of r.

r

f $Trdrro

To evalu.ee this integral at the first radial increment,

rep-. .e the upper limit with r = AR, where AR = radial ele-

mc'.at width. Assuming a linear temperature distribution be-

tween r = 0 and r = AR,

T(r) - T(0) El-Pr] (111)

where

T(0) - temperature at r - 0

P - constant (slope of temperature distribution)

116



Define

AR AR
ARR- r dr = T(0) f r(1-Pr)dr (112)

00

The value of P is foune as follows.

T l) = T(0) [1-P(AR) (113)

where

T(1) temperature at r AR

[,_T (1) (11L4)

() Substituting into eqn (112) and integrating gives

ARR = (AR 2 [T (0) /6+T (1) /31 (115)

This algorithm is used in computing thermal stresses at the

outer radius of the first radial element for a solid disk.

Radius of Melted Hole (RMELTY

An element is considered to be melted (transformed

frolm the solid to the .iquid phase) when the temperature of

that'element reaches the upper meltipg temperature (TUMELT)

which is 6380C for 2024-T3 aluminum. The phase change is

accounted for as, described in Section VI. The assumption

0 is made that the melt is remOved in stantaneously upon reach-

11?



ing the upper melting temperature. Since the axially sym-

m&tric beam is considered to be located over the center of

a flat plate, melting produces a circular hole in the plate

which progressively grows radially with continued applica-

tion of heat flux. The hole growth ceases when the hole be-

cores so large that any remaining irradiated plate area ab-

sorbs insufficient heat flux to produce fdrther melting.

The radius of the melted hole is given by

RNELT I*DELR (116)

where

I - element number of outermost element which has
been heated to upper melting temperature (638*C)

()] DELR - element radial width

Radius of Failed Area due to Thermal Degradation (RFD)

This quantity is computed in Subroutine RADFAIL (lines

18 to 21). tis postulated that a failed area, centered

at the coincident beam and plate cefiters, is generated or

expan4ed whenever any of the three structural strength pro-

perties is reduced to zero, as defined by Figures 2 through

4. As noted in Section VI, all three strength properties

of an element are taken to be zero if the temperature of

that element is greated than.3700C (for 2024-T3 aluminum).

Hende, the radius of a failed area due to thermal degrada-

t.on is considered to be dependent on temperature only and

118 ' I



is developed in a manner analagous to that of a hole due to

melting (RZELT). That is, the area radius i6 given by

RFD = I*DELR (117)

where

I -element number of outermost element which has
been heated to zero structural strength temp-
erature (3700C)

Radius of Failed Area due to Thermal 9tresses (RFS)

This quantity is computed in Subroutine RADFAIL (lines

22 to 34) and, is based on the postulate that a beam axis

centered failed area is generated in the heated plate if

any of'the three thermal stregs components exceeds its re-

spective room temperature strength criterion. 'This para-

meter is used as a measure of the failed area that would be

produced by thermal stresses independer ot the action of'

structural strength thermift detjadaton. The th4rmal stres-

ses of each element are compared to room temperature ulti-

mate tensile strengthW compressive yield strength, and ulti-

mate shear strength. If any of these criteria are exceeded

at any element, the plate material is considered to have

zero strength at the element, A failed area radius -is then

defined by the outermost radial element which hAb reacheA a

failure strength level.

11.9



Radius of Failed Area due to Combined Action of Thermal
Stresses and Degradation (RFDS)

( This quantity is computed in Subroutine RADFAIL (lines

35 to 70) and is based on the postulate that a radial ele-

ment is reduced to zero strength if any of the three stress

components exceeds its respective elevated temperature

structural strength as defined in Section VI. The radius

of a failed area due to the combined action of thermal

stresses and thermal degradat.on of structural strength is

determined by the outer radius of the outermost element

which-has one or more stress components greated than its

failure strength.

Actual Radius of Failed Area (RFAIL)

( ) . Two options" cotacernivg plate failure zones are provided

invProgram TSTRESS. Although structurally failed areas are

defined by RFS, RFD, andRFDS, itis c~ohceivable that these

failed circular areas might either remain in place in the

plate or be immediately reroved by some source such as aero-

dynamic pressure. In either case it ii postulated that any
melted zon (RHELT)i immediately removed. Hence, one

option considered (defined by IR - lt line 108 of TSTRESS)

is that Df allowing a' hole to be formed by either of the

mechanisms .efined Ay RMELT and RFDS. That'is, thq actual

hole radius (RFAIL) would be the larger of the above radii,

in which case i mediate removai of this zone is assumed re-

gardless of the failure rochonism; The second option (de-

C) fined by IR = 2) removes the failed area only if the failure

1 120



mechanism is melting. That is the actual hole radius is al-

() ways equal to RMMEL, in which case laser beam heat flux con-

tinues to be absorbed by the plate area within a structural-

ly failed circle and outside the melted hole. As shown in

the sample output of TSTRESS, Appendix A, for either of the

above options, all of the ,oove failed redii are listed.

Following the failed radii listing are listings of the

stress components which caused failure due to thermal stres-

ses alone, and due to combined thermal stresses/degradation.

Failed Hole due to Stress Concentration (RFSC)

Following the above listings in the sample output, Ap-

pendix A, is a-table of failed hole radius due to stress

concentration (RFSC) as a function of the remotely applied

tensile stress (SIGAPP) in the plane of the plate. The

Jaitial hole radius is taken as that due to structural fail-

ure. It is assumed that failure due to melting is associat-

ed with high temperatures at the edge of the hole which tend

to soft.X the material to the extant that stress concentra-I[
tions are negligible. For a plate in uniaxial tension, the

ratio of local terailo stress to the remotely applied ten-

sile stress is (Ref 21,399)

04i

0m a

where

0 U
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a = hole radius RFSC

) o- remotely applied tensile stress - SIGAPP

e = local tensile stress @r

If ae exceeds room temperature ultimate tensile strength,

the failed radius (RFSC) is computed. Computations are

made foz several, values of remotely applied stress (SIGAPP).

These calculations are made in Subroutine RADSC and in

TSTRESS .at lines 238 to 240.

Residual Tensile Strength Due to Thermal Degradation (RESDEG)

The uniformly distributed, remotely applied tensile

force required to fail a solid plate in tension, consider-

ing only the effects of thermal degradation of ultimate

tensile strength is given by (Ref 31)

- -b f I {0+M[T(x,t)-To ldzdx (119)
-b 00

where I
0(t) - STRNGTH RESDEG = residual tensile strength

due to thermal degradation

0O - Fto a original unheated tensile strength

M vlope of thermal degradation plot of ulti-
matf tenstle strength vs. temperature

T(x,t)- local temperature of. plte at distance x from
plate center

To  teMperature COrrespondinr9 too O
2b ; B -'Plate width

I plate tbiC] lOSS '

122
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Performing the indicated integrations on the left side and

integrating with respect to z on the right side gives

(t) fo+M[T(x,t)-To] dx (120)2b -b

Due to axial symmetry, this is equivalent to

Ow- ao+M[T(x,t)-T]J} dx (121)

As discussed in Section VI, the thermal degradation curve

was approximated by two straight lines. Eqn (121) then be-

comes

I b*

a(t) = I G{2 +M2 IT(x,I-To2J1 dxS() o" ,
I b 0

b
+ 1 {d 1+Mj[ T ( x,t l - To j ] ) dx (122),b*

where = value of x where: T(b,t) = TO2

To07= temperature at inte)--ection of the two straight
line approximations

M2 slope' of degradation curve for 3706C > T(x,t) >
T0 2

M, - slope of degradation curve for Tol< T(x*t) <
~TQa

,.To, a To

001 W 0 Fto

aOo.w ultimate tensile strength at To2

Allowanqc fri a , failed area at -cia w!-te canter is accounted

123



for by beginning the integration at the edge of this area.

o(t) - 1 *[oo 2+M2T(x,c_)-M 2To 2 ]dx

b
+ [I o+MNTlx,t)-MiTo) dx (123)

.I
where bf B B7 - ra3ius of failed area

The following approximations also are made:

o0 2 v 0.75 ao,
Tol 0OC

This results in the form of the algorithm used in subroutine

olt) - l{(b-0.25b*-0.75bf)o.,

bf

Sb

+MI / T(xt)dx (124)b*

w1eze Mt,= -200 for 2024-T3 aluminum

tMa - -55

vOO Fto a 44,820 n/cm2

TO0  2006C

oThe proportign of the original unheated ultimate tensile
124,



strength ir then computed as

PDEG - P = STRNGTH/co, (125)

Residual Tensile Strength Due to Meltinq (RESMELT)

This quantity is a direct function of the reduction in

plate cross-sectional area due to melting of a hole, and is

computed in the main program (lines 245-246) as follows

PHELT - (I-RMELT/B) (126)

RESMELT PMELT*ULTENS (127)

where

PMELT - proportion of original unheated ultimate
tensile strength remaining

RUELT = radius of melted hole

B - plate radius

ULTENS - Fto = original unheated ultimate tensile
strength

RESMELT - re3idual tensile strength due to effect
of melted hole only

Rsidual-Strength Due to Thermal Stresses (RESTRSS)

The tensile load carrying capacity of the rectangular

platp at any time t, considering only the effects of thermal

stresses and a tailed area at the plate contert is

P Ptu - aa'12X(b-b6)) b4(18
bF (b28)

12



where

Ptu = room temperature ultimate tensile load strength

Oa = thermal tensile stress averaged over area of
applied load

I = plate thickness

b a plate radius or width/2

b4 n radius of failed area

bs = radius at which tensile stress (09) becomesgreater than zero

b& = the greater of b4 or b$

Dividing by the original plate cross-sectional area, 2bt,

gives the residual tensile strength due to thermal stresses

only..

where

Yto - ULTENS = room temperature ultimate tensile
strength

a- RESTRSS residual tensile strength due to

thermal stresses only

Dividing by Fto gives the proportion of the orig.!.al tensile

strength remaining.

PSTRSS - RESTRSS/ULTENS

The average tensile stress is computed~by numerical inte-

gration of

126



I)
O's Fed (130)

Residual Tensile Strength Due to the Combined Actions of
Melting, Thermal Stresses, and Thermal Degradation (RESTRS2)

This algorithm is similar to that for thermal stresses

except that the elevated temperature ultimate tensile

strength, averaged over the net section area, replaces the

room temperature ultimate strength.

l0b Oa. - Ga b (131)

where

a - RESTRS2 - residual tensile strength due to
melting, thermal stresses and thermal degrada-
tion

Ftu - ULTEMP a elevated temperature ultimate tensile
strength averaged over net section area

b7 = bh - B7 - radius of failed area

ULTEMP is computed by numaerical integration of the thermal

degradation equations from Section VI for ultimate tensile

st .ngth.

ULTEMP - tudr (132)

t~

where

tu ULT(1) P qlevOted temperature ultimate
tensile,.strength

S '0 The proportion of room tmeperature Ultimate .strength is

127



PSTR32 * RESTRS2/ULTENS (133)

Residurl Tensile Strength Due to Failed Area (RESFAIL)

The above measures of residual strengths contain the

effects of a reduction in net section load-carrying area

due to melting or structural failure. The effect of the

structura1 failed area on residual tensile strength is

computed ta the main program (lines 249-250) as follows.

PO - (1-RFAIL/R) (134)

RESFAIL n kO*ULTENS (135)

where

PO - proportion of room temperature ultimate tensile
strength remaining

128
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(*) WASTRAN Valldation of Pro rama TSTRESS
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WASTRAN Validation of Program TSTRESS

() To validate the one-dimensional radial heat conduction

program, temperature and thermal stress distributions were

compared with those from a two-dimensional finite element

analysis using NASTRAN (Ref 2). The NASTRAN finite element

model consisted of a segment of a solid cylinder as shown

in Fig. 28. The wedge shaped segment was divided into 15.

radial elements and 5 depth elements. The radial width of

the elements varied from a fine mesh under the laser beam

to a relatively broad mesh at the outer radii. The element

thicknesses were constant, each being 1/5 of'the plate

thickness.

The wedge segment is sufficient to model the problem

of interest because of the axial symmetry of the heat flux

input which implies that the problem is independent of the

radial coordinate. The wedge angle was chosen to he 15

degrees to provide reasonable aspect ratios (width/length)

for the finite elements. The radius of the ,.wecge was taken

as 15 cm to be consistent with the one-dimensional numeri-

nal radial flux model. In general, this study was restrict-

ed to large plate diameter/beam diameter ratios to minimize

the effect of this parameter on the results. Also, as in

the numerical radial model, no heat losses were considered

in the WASTRAN analysis.

The heat flux input to the surfac, elements under the

beam radius was approximated by using the flux density value

0 at the radial midpoint of each surface element. For a

130
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Gaussian beam, the heat flux density distribution is given

(j by eqn (9) as

-2r2/a2

I(r) - Ipae

where

a = 2a - beam radius

This is the same approximation used for the heat flux input

to the one-dimensional model. However, the one-dimensional

model has constant width (radial) elements sized to achieve

a compromise between accuracy and computational efficiency.

This was initially accomplished by analyzing the effect of

reducing element width on computer time, and on temperature

( .' and thermal stress values. An element width of 0.3 cm was

selected as a reasonable compromise based on the judgment

that larger widths gave significantly different temperatures

and thermal stresses while smaller widths produced very

small differences in temperatures and thc-mal stresses but

rapidly increased computational cost.

Figures 29 and 30 show comparisons of thermal stresses

between the one-dimensional radial model and the NASTRAN

two-dimensional finite element results. Such comparisons

were made for four different input conditioni involving two

different heat flux densities and two plate thicknesses.

Only one beam diameter was considered, 3 cm. The results

presented in Figures 29 and 30 are typical. The NASTRAN
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stresses are at the heated, or front, surface. For the con-

C) ditions listed in the figures* the heat conduction is pri-

marily radial as determined by comparing front and back sur-

face temperatures and stresses as partially listed in Table

I. The relatively small front-to-back differences in the

temperatures indicate that the axial heat flux vector com-

portent is small since the heat conduction is directly pro-

portional to the spatial thermal gradient (reference eqn (21)).

Two conclusions drawn from Fig. 29 are that the one-

dimensional radial flux model does not give zero slopes in

the stress distributions at r = 0, and that the radial flux

model stresses appear to increase (become more negative)

relative to the NASTRAN stresses with increasing time.

These trends also are exhibited in Fig. 30. Zero slope at

(1) r = 0 is required by the axial symmetry of the problem.

In order to evpluate the significance of these trends,

the temperature diatributions were compared in greater de-

tail as shown in Fig 31. Solid curves were fitted through

the NASTRAN data and the one-dimensional radial flux model

data for the same conditions ara represented by the triangle

symbol. The same trends exist in the temperature compari-

sons as noted for the previous stres3 comparisonn.

The expanded radius scale allows all of the NASTRAN

grid point values to be plotted. In Figures 29 and 30

several of the grid point values near r a 0 were not plotted

in order to clarify the plot. Since the temperature compar-

O isons showed similar results to the stress comparisons, the
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possibility that the differences noted are due to the dif-

ferences in element size was investigated. As shown by the

data in Fig. 31, the resolution of the NASTRAN finite ele-

ment model was much finer near the beam axis (r=0) than that

of the constant width elei..ent racial flux model. For the

data presented thus far, the computational time increment

was 0.05 sec. in both he NASTRAN analysis and the one-

dimensional radial flux results. In order to reduce the

element size in the one-dimensional radial model to that of

the NASTRAN model under the beam, the heat conduction stabil-

ity criterion of eqn (28) requires a consequent reduction in

computational time increment. These combined, reductions re-

sult in a very large increase in computer time cost (on the

order of a factor of 20).

The element size for the one-dimensional radial model

was reduced to 0.05 cm, requiring that the time increment be

rc-duced to 0.002 sec, and the results are represented in

Fig. 31 by the square symbols. Comparison with the previous

radial model data in the same figure shows that the smaller

element size does develop a flatter slope near r = 0. Hence,

it is concluded that thG apparent lack of zero slopes in the

one-dimensional radial model data is due to the relatively

coarse spatial resolution used to achieve a compromise with

computer run time.

The trend for the one-dimensional radial model value3

to increase with time relative to the NASTRAN values is

O still evident. The one-dimensional radial model with in-
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creased resolution is seen to give slightly reduced values

ar r - 0 while those at the larger radii are increased es-

specially for the longer heating time. This result is be-

lieved to be least partially attributable to plate dia-

meter effect he one-dimensional radial model code was

developed with a one-dimensional array storage limit of 100

spaces which was judged to be a reasonable upper limit on

the number of radial elements to be applied. For the anal-

ysis plotted in Fig. 31 with element widths of 0.05 cm, this

limited the plate radius to 5 cm. Recalling that the

NASTRAN data are for a plate radius of 15 cm, it is reasoned

that the effect of.the insulated (no heat losses) p'ate edge

is being felt and causing temperatures to increase at the

larger radii. If this is the case it would be expected that

this effect would cause the outer radii temperatures rela-

tive to those from NASTIr.N to increase with time. It would
be expected that this ceffct would propagate to smaller

radii with increasing timre.

The data in Fig. 31 are consistent with the expected

effects of reducing the plate/beam diameter ratio, although

it is not certain whether this effect is significant enough

to be causing the one-dimensional radial 5 second heating

time values to exceed the NASTRAN values near r = 0.

4Fig. 32 presents additional comparisons bf temperature

distributions for a plate thickness of 0.3 cm. In this case

the heat flux vector contains a slightly larger axial compo-

nent than for the 0.2 cm thick plate at corresponding heat-
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ing times. This is indicated by the comparison of the front

C and back surface temperatures from the NASTRAN analysis as

shown in Fig. 32.

Comparison of the NASTRAN front surface and radial flux

temperatures shows the same trends as noted in Fig. 31 for

the thinner plate. The effect of reducing the radial model

element width from 0.3 cm to 0.05 cm also was evaluated for

the thicker plate as shown in Fig. 33. Again the results

are similar to those of Fig. 31 and no additional insight

is provided on the possible cause of the increase with time

of the radial model temperatures near r - 0 relative to

those from the NASTRAN analysis.

Based on the preceding comparisons, it is concluded

that the one-dimensional radial flux numerical model pro-

0 duces temperature distributions which are generally within

10 perccnt oi those from thc two-dimensional NASTRAN analy-

sis. Peak compressive stresses also are in close agreement

between the two analyses. Tensile stress distributions are

in reasonable agreement although conclusions regarding peak

tensile stresses are not definite due to inadequate resolu-

tion in the NASTRAN finite element model at the larger radii

(see Fig. 30). Improved evaluation of the radial flux model

could be obtained by modifying the radial flux code to in-

crease the maximum number of elements from 100 to 300 which

would eliminate the plate size effect introduced by decreas-

ing the element width to 0.05 cm. Also the NASTRAN finite

element model (Fig. 28) should have additional radial ele-
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ments added to improve the resolution in the areas where

peak tensile stresses occur; and NASTRAN data should be

generated for longer heating times than 5 seconds to better

evaluate the possible trend for the radial model tempera-

tures to increase with time relative to the NASTRAN tempera-

tures.

0
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