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ABSTRACT
Dynamic stress intensity factors of Homalite-100 determined by T.
Kobayashi and Dally are compared with those previously obtained by the
authors where similarities in the two results for single-edged notch specimens
of various configurations are noted. Dynamic stress intensity factors of Aral-
9 s

;Z!Eﬁz B 052a1t?d by Kalthoff, Beinert and Winkler and those of Homalite-100

hors are then compared and again similarities in the two

qlts and in icular the scatters in experimental data for wedge-loaded
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used static near-field solution to compute the dynamic stress intensity factors

different sizes are noted. All three teams of investigators

from recorded dynamic isochromatics or dynamic caustics. Errors generated through
this use of static near-field solutions as well as through the use of larger

isochromatic lobes are thus discussed.

INTRODUCTION
. For the past several years the writers and their colleagues have been using

dynamic photoelasticity to determine the dynamic stress intensity factors*, KD,
and crack velocities of propagating cracks in unstiffened and stiffened S1ngle-

‘v .

edged notch tension plates under fixed grip loading with and without 1lpact con-

ditions [1,2], dynamic tear test (DTT) specimens [3], and wedge-lohded double ~at ‘”-

i
cantilever beam (DCB) specimens [4]. In all these studies, a static near fxeld

solution was used to compute the dynamic stress intensity factor.fron the fot %
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dynamic isochromatic patterns surrounding the running crack following Irwin's
procedure of 1958 [5]. More recently T. Kobayashi and Dally have used dynamic
photoeiasticity to determine dynamic stress intensity factors of propagating
cracks in various birefringent polymers [6,7]. Also Kalthoff et al. have, through
the use of caustics, determined the dynamic stress intensity factors of Araldite B
using wedge-loaded DCB specimens [8]. The results obtained by these three inde-
pendent teams of researchers, at first, appeared to be mutually contradictory to
the extent that some results are quoted out of context to support a particular
fracture dynamic and crack arrest criteria against others [9]. The purpose of
this paper is to identify some of the common results obtained among these three
teams of investigators and to analyze the possible causes which led to these

apnarent discrepancies.
| 2

DYNAMIC STRESS INTENSITY FACTOR

In the three investigations quoted above, a static near-field state of stress
was fitted to either the dynamic isochromatics or the dynamic caustics surroundiné
a2 running crack and the static stress intensity factor thus obtained was considered
to be the dynamic stress intensity factor, KD. Ignoring for the time being the
inherent as well as additional possible sources of errors involved in this data re-
duction scheme, the dynamic stress intensity factor, as defined by the static near-
field solution, versus crack velocity relation can be plotted in a nondimensional

format in order to reduce as much as possible the effects of material variabilities

between the three investigators. Figure 1 shows the nondimensionalized crack velocity

versus nondimensionalized dynnaic stress intensity factor relation obtained from the
dynamic photoelastic data in Homalite-100 plate, 9.5mm (3/8 in.) in thickness, by
Bradley who used 254mmx254mm (10in.x10in.) single-edged notch plates loaded under
fixed grip condition. Most of the data scatter in Figure 1 is mainly due to

inaccurate crack velocity measurements which were calculated directly from the




crack tip position versus time data and is also due in part to the stress wave
effects. T. Kobayashi and Dally [7], on the other hand, used smoothed crack
tip position versus time curves for crack velocity calculations and observed no
stress wave effects. The uniform crack velocity thus obtained from the smoothed
crack length versus time curve is consistent with the uniform crack velocities
observed in fracturing glass using ultrasonic-ripple marking technique [11] and
in polymethylmethacrylate using streak photography [12]. By compressing our
scatters in crack velocities, we too can obtain a better correlation between

dynamic stress intensity factor and crack velocity as shown in Figure 2.

The dynamic stress intensity factor versus crack velocity relation by T. Koba-
yashi and Dally [7] for 19.05mm thick Homalite-100 plates was converted to nondimen-
sionalized dynamic stress intensity factor versus nondimensionalized crack velocity
relation and is also plotted in Figure 2. Despite the scatter in our data, the two
nondimensionalized stress intensity factors at the lower crack velocities agree well,

particularly when one considers the differences in the material properties of the

Homalite-100 plates of different thicknesses and of different fabrication periods.

The static fracture toughnesses of the two different Homalite-100 plates differed
by approximately 30 percent and the estimated differences between the nondimension-
alized averaged dynamic stress intensity factor at crack arrest was about 12 percent.
Although one can construct an averaged dynamic stress intensiiy factor versus
crack velocity relation, which assumes the familiar I'-shaped curve [13], through the
scattered experimental data in Figure 2, we are reluctant to establish such defi-
nitive dynamic fracture characterization in view of our recent experiences with
dynamic finite element analysis of a fracturing tapered DCB specimen [14] and
dynamic finite difference analyses of fracturing pipes [15]. The results of these

numerical analyses indicate that an elastic crack must run at intermittent crack



velocities in order for a smoothly varying dynamic stress intensity factor
versus crack velocity relation to exist as a material property. Alternatively,
the dynamic stress intensity factor must vary intermittently in order to maintain
smoothly varying crack velocities and thus precludes a unique I'-shaped crack
velocity versus dynamic stress intensity factor relation. At the present stage
of development, in the writers' opinion, neither dynamic photoelasticity nor
dynamic caustics can provide accurate dynamic stress intensity factor nor crack
velocity to resolve this controversy. In fact, the available little data on
relatively accurate crack velocity measurements indicate that the crack velocity
does vary uniformly at least in glass [11] and in polymethylmethacrylate [12]
thus leaving us with the only alternatives of nonunique relation between dynamic
stress intensity factor and crack velocity if the above mentioned numerical
analyses had correctly modeled dynamic fracture.

Figure 2 also shows another point of departure between our results and those
of T. Kobayashi et al. who observed complete crack branching at KD/KIC = 3.7 (7],
where we could not relate crack branching with any instantaneous dynamic stress
intensity factor. Perhaps this difference in crack-branching dynamic stress
intensity factor also involves the definition of crack branching. Our fractured
Homalite-100 specimens showed many minute crack branches prior to the onset of
major crack branching.* OCbviously considerable unaccountable fracture energy was
dissipated through these minor crack branches which could have resulted in our
indecisive crack-branching dynamic stress intensity factors. In addition, the
close proximity of the two running cracks, which just branched, accentuates the
interchange between the dynamic energy released and the kinetic energy surrounding
the crack tip [17] and thus the static near-field solution can no longer be used
for calculating the dynamic stress intensity factor of a bifurcated or trifurcated

crack surrounded by a single dynamic isochromatic lobe. Lacking a proper data

* See for example Figures 2 and 3 in Reference [16].




reduction procedure, a gross energetic approach was used to arrive at an
empirical crack branching criterion. An average dynamic energy release rate,
which is defined as the total dynamic energy released divided by the total crack
surface, was computed by using the single-crack tip near field solution but by
incorporating all measurable major and minor crack surfaces. This average
dynamic energy release rate,4éblave, which incorporates the gross effect of
kinetic energy feedback in driving the crack, was found to be of 2.1 - 2.7 times
the static critical strain energy release rate,xéic [16]. This crudely estimated
crack branchingxéb]ave indicates that branching will occur when sufficient

energy is available to propagate two separate cracks. Obviously, further refine-
ments of such data reduction procedure are necessary before a crack branching
criterion can be established.

Our preference for plotting the dynamic energy release rate instead of the
more directly calculable dynamic stress intensity factor from the dynamic iso-
chromatics and dynamic caustic as per T. Kobayashi et al. [7], and Kalthoff et al.
[8], respectively, can also be attributed to the fact that the total sum of dynamic
energy release rate during crack propagation can be related to the total kinetic
energy and potential energy in the test specimen at each instant of time thus
providing one with an accuracy assessment based on first principles. Computation
of this dynamic energy released, D’ from dynamic stress intensity factor, KD’
was accomplished by Freund's formula [23] using the measured crack velocity. The
generality of this part of Freund's solution was discussed by Nilsson [25].

Figure 3 shows a comparison between the dynamic stress intensity factor versus
smoothed crack velocities in wedge-loaded DCB specimens of AralditeB [8] and
Homalite-100 [4]. Here again, the smoothed crack length-versus-time curves was
used to eliminate the many oscillations in crack velocities thus making it similar

in shape to Kalthoff's curve. Although no direct correlation between the two "I
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curves are possible due to differences in material properties between Araldite

B and Homalite-100, it is interestingi&o note that scatters, which were appre-
ciably larger than those of T. Kobayashi et al., in data points of these two
materials are very similar in these nondimensionalized plots. This scatter could
be due to the larger interaction between kinetic energy and dynamic energy

released in our smaller DCB specimens in contrast to the large monolithic single-
edged notch specimens used by T. Kobayashi and Dally. An up-to-date detailed
discussion on the high dynamic amplification factor due to this intense inter-
change between kinetic energy and dynamic energy released through crack propagation
in wedge-loaded DCB specimen can be found in Reference [18].

It is interesting to note that in Kalthoff's experiment, the dynamic stress
intensity factor oscillated after crack arrest, eventually converging to the static
stress intensity factor at crack arrest, Kla' which gradually decreased with
increasing arrest crack length. This gradual decrease in KIa with higher driving

force of KI is in accord with the belief that the static stress intensity factor

Q
at crack arrest is not a material property [10,17].

The above comparison of experimental results shows that although the results
obtained by the three teams are in qualitative agreement with each other, data
scatter in Kalthoff's and our experiments were consistently larger than those of
T. Kobayashi and Dally. It thus appeared appropriate to reassess our data reduc-
tion scheme at this time in search of the cause or causes of the data scatter
in Kalthoff and our r;sults. As mentioned previously, the static near field
solution was used by all to reduce their dynamic optical data. Kalthoff et al.
and we used the optical data within a radial distance of r = 2,5 ~ 5mm (0.1 ~ 0.2
inch) region surrounding the moving crack tip while T. Kobayashi et al. in some of
their data reduction schemes considered regions as large as r & 25.4mm (1 inch)[19].

The possible numerical errors involved in using larger crack tip region in a uniform



dynamic stress field surrounding a Yoffe crack [20] was discussed previously
[10]. Since this error analysis did not incorporate the effect of nonuniform

dynamic stress field, such error analysis is considered in the following section.

NEAR-FIELD ELASTO-DYNAMIC STATE
The near-field elasto-dynamic state of stresses for a crack propagating

at a constant velocity, c, is [21]

] 4s.s L)
ghiiis > S -1/2 fre St v MR 2
Ox = 31 3 {(2 $1 s, ¢ 1) T cos 3 e Py cos 2——}
(1+s,7)
+a 8(52-52)+a§{(252 52+1)r1/2 -e-l-
Mg o 2 32 3. .2 b s
4s.s )
-___1_.27_1-21/2 cos -z-g} * oas (1a)
(1+s,7)
) 4s.s 6
e - M T i i w NS R T2 N |
cyy a, 3 {- (1+s,) 1, cos z~ + i 2) T, cos > }
2
(*) 4s.s 6
15 & 1/2 B 5 12 1/2 2
+aST{- (1+ s,7) 1, cos 3 +;s—7r2 cos T} ¥ 5k (1b)
2
(°] 0 0
. s Vi el R (- B | 7 &
Txy alssl(rl sin 5= - 1, sin 5 } o+ 331551{- T sin 5=
)
+ 1'21/2 sin -23} e
where
2 L5 e i o
s -l-c/c1 and s, -l-c/c2 (2a)
2 2 2.2 2 2 2.2
o vkl + 8%y and r, =X +s,y (2b)
Sy S5y

tan °1 e and t.anez = -?2(— (2c)




R

¢ ¢ and c, are the crack velocity, dilatational wave velocity and
distortional wave velocity, respectively.
x and y are moving rectangular coordinates with origins at the propagating
crack tip.
The above near-field state represents the first three terms in Reference [21] and
was selected for comparison with the three parameter representations in Reference
(19]. It can be easily shown that for zero crack velocity or ¢ + 0, Equations (1]
reduce to those in Reference [22]. The arbitrary constant coefficient, a,, can

also be represented in terms of the more familiar dynamic stress intensity factor

as

Ky 4(1+322)

a. =
L 272w 3pass, - (145,97

(3)
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where KD is the dynamic stress intensity factor after Freund [23] and reduces

to the static stress intensity factor, K, when ¢ + 0. It can also be shown that
2 2

a, *- aox/[s(s1 - s, )] when ¢ + 0 where oox is the often-quoted remote stress

component [5,7].

The dynamic isochromatic fringe loop can be represented by the well-known

formula of
- 2 2,1/2
e [(axx - oyy) /4 + txy ] (4)
The diameter of caustics, w, on the other hand (24], is
w=-ztfgrad(o , + qyy) (5)

where z, t and f are the distance between the midplane of the specimen and
screen, thickness of the specimen and the optic constant of the specimen, re-
spectively. In the following, Equations (1), (4) or (5) will be used to establish
the theoretical dynamic isochromatics or dynamic caustics for a known dynamic
stress intensity factor which will be compared with the stress intensity factor

computed by using the static near-field solutions.




Dynamic Isochromatics

Unlike the Yoffe crack [20], the near-field solution of Equations (1) and
(2) show that the dynamic stress intensity factor will not approach that of
the static stress intensity factor, K, as r = sz + y2 + 0. The exact deviation
between dynamic and static stress intensity factors, K and KD’ for a given crack
velocity, c, varies with the procedure in which static near field state of stress
is fitted to the dynamic near field state of stress. For example, if a two-
parameter static isochromatic lobe is matched with a one-parameter dynamic iso-
chromatic lobe at the maximum radial distance, T oax’ in Fig. 2 of Reference [1],
then K/KD = 1.02 and 1.07 for c/c1 = 0.106 and 0.159, respectively. Such inherent

error in K estimation is thus negligible at lower crack velocities of c/cl <01

D
where much of the crack arrest stress intensity factor, Ka’ is inferred, but
otherwise is unavoidable regardless of the smallness of the near field region
concerned.

Having established the inherent error in the use of the static state of stress

for K, estimation, we then posed the question of what additional errors if any are

D
involved by evaluating the dynamic optical data in a larger region. For this
purpose, the three-parameter representation of the dynamic near field solution
as shown by Equation (1) was used to model a crack propagating at constant velo-
cities of c/c1 = 0.00001, 0.05 and 0.15. The dynamic state corresponding to
c/c1 = 0.00001 was used as the corresponding static solution after verifying the
negligible discrepancy between the static and dynamic state of this extremely low
crack velocity. Dynamic modulus E = 4,65 GPa (675 ksi) and Poisson's ratio

v = 0,345 for Homalite-100 were used to simulate the actual test conditions
in dynamic photoelasticity.

Typical dynamic states surrounding the crack tip propagating at the constant

velocity, where KD/KIC- 2, and 0.8 for c/c1 = 0.15 and 0.05, respectively, were then
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considered. Isochromatic fringes which pass through references points were

then plotted for KD/KIC= 2.2, 2.0 and 1.8 at c/c1 = 0.15 and 0.00001 as shown

in Figures 4 and 5. The smaller static isochromatic lobe of clcl = 0.00001

in these figures indicates that an inherent overestimation of 24% in KD is involved
if the static isochromatic lobe is only stretched to match of the dynamic
isochromatic lobe in Figure 4. Likewise KD will be overestimated by 12 percent if
the smaller dynamic isochromatics in Figure 5 are considered. This increased error
due to increased size in isochromatics indicates the importance of a dynamic
analysis when larger isochromatic lobes are considered and is in qualitative
agreement with the error analysis in Reference [10] where the artificial Yoffee
crack [20] was used to estimate the size effect in the backward tilting isochro-
matic lobes. Within a sufficiently close region surrounding the running crack tip
and in the absence of any parasitic stress waves, the magnitude of this overestima-
tion will be reduced but the statistically computed stress intensity factor will
always be larger than the actual dynamic value.

Figure 4 also indicates the relative insensitivity of the size of larger
isochromatic lobe to a + 10 percent change in dynamic and static stress intensity
factors. Dimensional changes with small changes in stress intensity factors are
accomplished mainly by the small changes in the tilting of the isochromatic
lobe, enax’ verifying the original conclusion by Bradley [1]. Such insensitivity
to KD raises the possibility that the small oscillations in dynamic stress
intensity factor could be masked by the average dynamic stress intensity factor
of larger isochromatic lobes unless the data reduction procedure is sensitive
to enlx change.

The above numerical examples reconfirmed our suspicion that considerable error

may be induced when the static near-field solution is used to compute the dynamic
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stress intensity factor using relatively large isochromatics. The use of higher
order terms in the static eigen-function expansion formula may not improve the
accuracy in the data reduction procedure but could increase the error involved.
Figure 6 shows the larger dynamic isochromatic lobes at crack velocities of
c/c1 = 0.05. Static isochromatic lobes were not included in Figure 6 since these
static isochromatics were at the most only 2-3 percent smaller in radial distances
than the corresponding dynamic isochromatics. Likewise coincidence existed in the
smaller isochromatics. Error analysis of our data reduction procedure at this crack
velocity is of particular interest since small differences in the dynamic stress in-

tensity factors, KD' at this portion of the I-curve could result in different crack

arrest stress intensity factor, Ka’ which is often estimated by extrapolating the

lower end of the TI'-curve at c/c1= 0. Figure 6 shows that for slower crack veloci-
ties of c/c1 = 0.05, the static near-field isochromatics is a reasonable representa-

tion of the dynamic state. Data scatter in the lower end of the I'-curve could be due

to either experimental errors or the actual fluctutations in KD.

As another assessment of possible error involved in using larger isochromatic
lobes, a constant velocity crack of c/c1 = 0.15 running into a constant and linearly
varying static stress fields of oyy = 0.689 MPa (100 psi) at y # 0 and 0.689:y MPa
(100-y psi), respectively, were considered. Such stress fields simulate two types
of reflected tension waves impacting the constant velocity crack and represent
the dynamic near-field solution immediately prior to the elevation in dynamic stress
intensity factor due to the impinging tensile waves. The magnitude as well as the
gradient of these impinging tensile wave fronts were taken from the experimental
values of transient waves in Reference 26. Figures 7 and 8 show the two levels of
near-field isochromatics with the superimposed oyy = 0.689 MPa (100 psi) and 0.689-y
MPa (100-y psi), respectively. Also shown in Figures 7 and 8 are the dynamic near-
field isochromatics without the superimposed static states of stress. It is

immediately obvious that the larger dynamic isochromatics are significantly altered



12

vbﬁ by the superimposed moderate tensile field. In terms of the data reduction
procedure, the larger isochromatics will predict a significantly higher apparent
dynamic stress intensity factor while the smaller isochromatic lobes which are
dominated by the dynamic singular stress field will predict more accurately the

instantaneous dynamic stress intensity factor.

Dynamic Caustics

The dynamic near-field region considered by Equation 5 relates to a region
of T 2 0.1 inch [8]. Thus the inherent error as well as the possible error
involved in predicting dynamic stress intensity factors in the presence of an
impinging stress wave follow those involved in the smaller isochromatic lobes
discussed previously. The qualitative agreement in data scatter in Figure 3 and
the observed oscillation in dynamic stress intensity factors could be explained

by the similarity in Kalthoff's and our data reduction procedures which are con-

fined to the smaller near field surrounding the running crack.

CONCLUSIONS

1. Qualitative agreements between the dynamic stress intensity factors of
Homalite-100 plates obtained by T. Kobayashi et al. and the wedge-loaded
DCB results forAraldite B by Kalthoff et al. and the authors'old results
are observed.

2. Differences in the various results obtained by the three teams of invest-
igators could be attributed in part to the accuracy and interpretation

of crack velocity data.

i
|
|
|

3. The use of static near-field stresses in place of the dynamic near-field
stresses in computing the dynamic stress intensity factors could result

in overestimation of these values at the higher crack velocity of c/c1 = 0.15.
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4. An impinging stress wave on a moving crack could significantly change the
shape of the isochromatics and thus introduce substantial error in the
computed stress intensity factor.

S. If the static stress field must be used in evaluating the dynamic photo-
elasticity results at higher crack velocities or in the presence of para-
sitic stress waves, the dynamic stress intensity factors should be computed
by using the smallest isochromatics, preferably within 2.5mm (0.1 inch)

distance of the crack tip at higher crack velocities.
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