DESIGN TOOLS FOR EVALUATING
MULTIPROCESSOR PROGRAMS

CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA

JuLy 1976

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD-A03Y4 856

\

= s it -

mOT L AN ATION OF THIS Pase When ‘dlﬂ‘f‘nh'.'g'

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT NUMBER 2, GOVT ACCESSION NO.

AFOSR - TR- 77= 0015

3. RECIPIENT » CATALOG NUMBER

TITLE (and Subrittie)

DESIGN TOOLS FOR EVALUATING
MULTIPROCESSOR PROGRAMS

5. TYPE OF REPORT &4 PERIOD COVEREO

Interim

6. PERFORMING ORG. REPORT NUMBER

. AUTHOR(s)

Philip Howard Mason

8. CONTRACT OR GRANT NUMBER(a)

F44620-73-C-0074

PERFORMING ORGANIZATION NAME AND ADORESS
Carnegie-Mellon Uniersity

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Rolling AFB, DC 20332

Computer Science Dept. 61101D
pittsburgh, PA 15213 AO 2466

11. CONTROLLING OFFICE NA%E ANO ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency Inlv 1976
1400 Wilson Blvd Ty YR
Arlington, VA 22209 203

T WONTTORING AGENCY NAME 8 ADDRESS(I7 different from Controlling Office) | 15. SECURITY CLASS. (of this report)
Air Force Office of Scientific Research (NM)| UNCLASSIFIED

155, DECLASSIFICATION/ DOWNGRADING
SCHEOQULE

DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited

DISTRIBUTION STATEMENT (of the abatract entered In Block 20, If dilferent from Report)

. SUPPLEMENTARY NOTES

KEY WORDS (Continue on reverse side if necessary and identily by biock number)

20

ABSTRACT (Continue on reverse aide If necessary and identily by biock number)

An approach to designing programs for implementation in a multiple instruction stream-
multiple data stream processing environment is presented. A program is modeled as a
directed graph consisting of two types of nodes: processing nodes and linking nodes.
Communication among nodes in the model is represented by massage tokens. Eaclk
processing node is similar in form to a semi-Markov process. A simulation of the
operation of the model is nondeterministic, but is based on prescribed probabilisti

FORM
DD 1 JAN 73

EDITION OF 1 NOV 6315 OBSOLETE

1473

UNMCLASSIEIED

y SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

—————

i kb

e, YL ¥

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

v K e 2

choice functions. A system, called STEPPS, has been buill in wiite & THEEEE =2 ==
described and evalustion tools can be used to manipulate and act upon a model to
predict performance of a program decomposition.

_ The design approach is to describe a multiprocessing program in terms of the modeling

system. The model is examined to determine some analytic attributes of the model.
The analysis available determines (a) whether the mode! is well formed, (b) whether
the model contains deadlocks, (c) predictions of steady state properties of each
process. In addition, without much difficulty, analysis functions external to STEPPS
may be included as needed by a program designer.

Some analyses, that may be interesting, may be difticult to determine without resorting
to simulstion. Therefore the STEPPS system includes a mode! simulator with data
collection facilities. The STEPPS data collection facilities include such measures as wait
times and queue lengths. As in the case of analysis functions, STEPPS allows the
inclusion of data collection facilities not originatly provided by STEPPS.

As a system is designed, alternate models can be examined; and based on an individual
designer’s choice of performance sttributes, a model can be chosen on which to base
the construction of a multiprocessor program. As more is learned about t.e real
system parameters, the mode! can be tuned to more closely predict ultimate system

performance.

Geveral examples of communicating processes are modeled using STEPPS including
pipeline processes, probabilistic processes, P/V synchronization, and reader /writer
synchronization. Two experiments are presented as validation of the usefulness of the
STEPPS tools. In the Bliss/11 experiment, thu implications of restricting the numbers
of available processors and using different scheduling slgorithms were examined, and
the effect of using alternate program structures was explored. In the Hearsay Il
experiment it was shown that, wiien a multiprocess program under development is
sufficiently instrumented, the STEPPS madel and system can be used to help tune the

program's structure.

The use of the tools for predicting the performance of a multiprocessing program falls
between purely analytic models, sv:h &s queueing theory or Petri-nets, and system
simulations built in a general purpose simulation language. The STEPPS system is
presented as & new spproach to designing multiprocessing programs,

—

(@) UNCLASSTFIED

SEC L HITY CLASSIFICATION OF Yi'c PAGE(Whe n Frtered)

e o

DT e,

M T R S —— ru——

Design Tools for Evaluating

Multiorocessor Programs

8 Philip Howard Mason

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pa. 15213
July, 1976

Submitted to Carregie-Mellon University in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

g
|

L]

This research was supported by the Defense Advanced Research Projects Agency of
the Office of the Secretary of Defense (F44620-73-C0074) and is monitored by the Air

Force Office of Scientific Research. ' ce)
|

{
it

B
a

g3 | =9

MCES!

|

!

\

i

:

Abstract ‘
|

An approach to designing programs for implemantation In a multiple instruction stream-
multiple data stream processing envirsnment is presented. A program is modeled as a
directed griph corsicting of two types of nodes: processing nodes and linking nodes.
Communication among nodes in the mode! is represented by messags tokens. Each
processing node is similar in form to a semi-Markov process. A simulation of the
operation of the model is nondeterministic, but is based on prescribed probabllistic
choice furictions. A system, called STEPPS, has been built in which a model can be
described and evaluaticn tools can be used to manipulate and act upon a model to
predict performance of a program decomposition.

. The design approach is to describe a multiprocessing program in terms of the modeling
system. The model is examined to determine some analytic attributes of the model.
The analysis available determines (a) whether the model is well formed, (b) whather
the model contains deadlocks, (c) predictions of steady state prcperties of each
process. In addition, without much difficulty, analysis functions external to STEPFC
may be included as needed by a program designer.

Some analyses, that may be interesting, may be difficult to determine without resorting
to simulation. Therefore the STEPPS system includss a model simulator with data
cdllection facilities. The STEPPS data collection facilities include such measures as wait
times and queue lengths. As in the case of analysis functions, STEPPS allows the
Inclusion of data collection facilities not originally provided by STEPPS.

As 2 system is designed, alternate models can be examined; and based on an individual
designer’s choice of performance attributes, a model can be chosen on which to base
the construction of a multiprocessor program. As more is learned about the resl
system parameters, the model can be tuned to more closely predict ultimate system
performance.

Several examples of communicating processes are modeled using STEPPS including
pipeiine processes, probabilistic processes, P/V synchrorization, and reader/writer
synchronization. Two experiments are presented as validation of the usefulness of the
STEPPS tools. In the Bliss/11 experiment, the implications of restricting the numbers
of availabie processors and using different scheduling algorithms were examined, and
the effect of using alternate program structures was explored. In the Hearsay Il
experiment it was shown that, when a multiprocess program under development Is
sufficiently Instrumented, the STEPPS model and system can be used to help tune the
program’s structure.

The use of the tools for predicting the performance of a multiprocessing program falls
between purely analytic models, such as queueing theory or Petri-nets, and system
simulations built in a general purpose simulation language. The STEPPS system is
presented as a new approach to designing multiprocessing programs,

ACKNOWLEDGEMENT

I sincerely thank my thesis committee who with their advice, guidance, and criticism of
this thesis helped me tu maintain their high star dards: Bill Wulf (chairman), Sam Fuller,
Charles Kriebel, Victor Lesser, and Mary Shaw. 1 am grateful for having been
associated with the Carnegie-Mellon Computer Science Department end | must
acknowledge the initial, and continuing, inspiration gleaned from Alan J. Perlis, my first
computer science teacher, former Carnegie-Mellon department head and supervisor. In
addition, | am grateful for the interest, support, and assistance from my friends,
colleagues, family, and especially my parents.

Most of all, | thank my wife, Lee, for suffering through all the lonely nights (and days),
for helping me to rewrite many pages, for learning to use the computer to type this
thesis, for keeping me going, and for her understanding.

TABLE OF CONTENTS iv

TABLE OF CONTENTS

CHAPTER PAGE
| Problem Statement, History and Goals
LA Introductiono e I-1
1.8 Diractionof thiswork I-5
1C Other work bearing on the problem 1-8
1D The STEPPS System I-15
LE The STEPPS system and simulator 1-24
LF Thesis contributions and oulline of remainder
ofthesis 1-29
11 The STEPPS Model
ILA Modeling the behavior of a process I1-1
1.8 Data flow and links 11-3
I.C Notation and definitions 11-6
I.D STEPPS system capabilities I1-11
11 The Use of the STEPPS Approach to Program Design
LA Use of the STEPPSmodel 11-1
111.8 Using STEPPS during system design: A
Bliss/11 compiler 11-12
£ l.C Using STEPPS during system construction and
tuning: Hearsay I1.. 111-28
b Iv Analysis of a STEPPS Model
IV.A Markcv and semi-Markov processes V-1
IV.B Well-formed STEPPS models Iv-6
$ IvC Deadlock structures and situations Iv-8

Iv.D Reducing a STEPPSmodel Iv-13

TABLE OF CONTENTS v

IV.E The recognition of deadlocks Iv-29
v The STEPPS Simutator and STEPPS Interactive System

V.A Simulation objectiveso oo e e V-1

v.B Simulation operation and data collected V-3

v.C The implementatiion of the STEPPS system v-10
12 Summary

VLA Designing programs for multiprocessor

computers o . e e e e e Vi-2

viB Experiments and results VI-5

VviC Future research and refinements to STEPPS VI-9

ViD Corclusions . « v v v v v v e e e e e e e e e vi-12
A STEPPS System Manual

Al Introduction o e e e e e e e A-1

A2 Model creation oo e e e e e e e A-3

A3 Model analysis and system commands A-8

A4 Simulationcommands e o e e e A-8

A5 Keyword commands - ..o e e e A-9
B Using the STEPPS System

B.1 Bliss/11 example protocolo B-1

B.2 The STEPPS Hearsay limodel B-3
o Velidation of Simulation Results
Biblography . . « o o v e e e e e e e e i
INDBX . o o v e vii

-
T W T P

"P'

N T e

Figure [-1

Figure [-2
Figure [-3

Figure I-4

Figure -5
Figure [-6
Figure [-7
Figure [-8
Figure [-9
Figure 1-10
Figure I-11
Figure I-12
Figure II-1
Figure IlI-1
Figure III-2
Figure III-3
Figure I1I-4
Figure 111-5
Figure III-6
Figure III-7
Figure I1I-8

Figure 1I1-9

FIGURES

FICURE PAGCE

Possibie reiationships between two proceses, A
andB. I-5
Amarkedgraph. [-10
A finite state atomaton I-10

A Petri net that is neither a marked graph nor a
finite state atomaton. I-11
UCLAmodeinodes. I-13
Pipeline. v i . 1-17
Registrar’s data retrievai system. [-20
Process ALPHA I-21
Mapping between Petri nets and STEPPS modei 1-23
Mapping of UCLA modei to STEPPS. I-24
Incompatibleioop. 1-27
Incompatible non-locp 1-27
Process and iink graphicai notation. [1-8
Fork and joinprocesses -2
Subroutine process. -4
Concurrent processing subroutine cali I11-5
Poisson arrival process Il11-6
General service time process .- -7
Pipeline of processes -8
Lock/Uniock synchronization. I11-10
Reader /Writer synchronization. -11
Biiss/11 phase structure 1-13

FIGURES

Figure 1II-10
Figure I1I-11
Figure III-12
Figure I11-13
Figure I11-14
Figure III-15
Figure III-16
Figure 111-17
Figure 11I-18
Figure I11-19
Figure 111-20

Figure [1I-21

Figure [11-22

Figure 11I-23

Figure 111-24
Figure 111-25
Figure 111-26
Figure 111-27
Figure 11]-28
Figure 111-29
Figure I11-30
Figure 111-31
Figure 111-32

Figure I111-33

Bliss/11 measured data.
STEPPS Bliss/11 model commands
Bliss/11 graph model

Bliss/11 simulation FIFQ table.

Bliss/11 simulation LINK table

Bliss/11 simulation RANDOM table
Bliss/11 percentage maximum throughput

Graph of measured throughput

Bliss/11 simulation FIFQ queue lengths . .

Bliss/11 simulation LINK queue lengths . .

.......

Bliss/11 simulation RANDOM queue lengths

Table of results of multi-copy Bliss/11 phase

models

Multi-copy Bliss/11 phase modal Thru Rate grapk . . .

Multi-copy Bliss/11 phase model percentage Max

Thru Rate graph

LEX decompositionresults

Simplified HSII system organization . . .
Description of precondition process . . .

STEPPS precondition model

Knowledge Source process description . .

STEZPPS Knowledge Source model
PCSELECTOR process

Set of identical Knowledge Sources . . .

Hearsay Il locking structure matrix

Hearsay Il representative results

vli

1-17
1-17
11-18
I11-18
111-19
111-19
111-20
I1-21
111-22
111-23

111-23

111-24

111-25

111-26
111-27
111-32
111-33
I11-33
111-34
111-35
111-35
111-36
111-40

I11-42

Figure IV-1
Figure IV-2
Figure IV-3

Figure IV-4

-t

Figure IV-5
Figure IV-6
Figure IV-7
Figure IV-8
' Figure IV-9
Figure IV-10
Figure IV-11
Figure V-1

Fipure C-1

Markov processes v 0 o0 .. Iv-3

Improper initial condition. Iv-10
Loop with immediate-recurient states , . Iv-11
Incompatible sequence Iv-12
Linksplitpaths Iv-13
Process splitpaths Iv-13
Process combinations, Iv-18
Adjacent ports of aprocess. Iv-21
Ports attached to SOURCE/SINKS Iv-23
Combining processes that are in-parallel Iv-25
Anirreduciblegraph. Iv-29
Aringofprocesses. v v\ 0. v-2
Bliss/11 FIFO 6 processors evaluation data. c-2

I-1

Chapter [

Problem Statement, Hisiory and Goals

LA, Introduction

This research develops bothr a methodology for enhancing the design of
. programs to be composed of concurrently executable subparts and a set of tools to
support that methodology. The execution environment which we shall be concerned
with consists of several processing units operating under the control of separate
instruction streams. Intuitively, when parts of a program are processed in such an

i required to execule the program should decrease‘. For

environment, the real time
this reason, as \sell as others, much current research effort addresses program
structure for jus. such a multiprocessing environment. This thesis addresses the
problem of decomposing programs for concurrent execution in such a way that the
decompositions are efficient with respect to certain specifiable criteria. The approach
is to provide a set of tools with which a system designer can manipulate and analyze a
program mode! created to predict the performance of a system designed for a multiple
asynchronous instruction stream environment. The tools are applicable to both the
early design of a program and later tuning of a program under construction.

t"Real time" is the time elapsed between tha start of computation and the time the
final result is available. It is different from the total processing time since operations
may be performed concurreritly.

*This does not always occur. Graham [Graham 72] has shown that adding more
processors can increase real time due to scheduling anomalies.

LA Introduction 1-2

There are several reasons why many researchers are consldering
multiprocessing and problem restructuring In favor of mereiy building faster computer
hardware without explicit concurrency. First, certain probiems overwheim current and
projected technology when programmed for single Instruction stream computers. An
example is the problem of weather forecasting for any single place on the eerth. At
present, this problem can not be solved with enough lead time to make the forecsst
useful. Another large problem is fast-response scheduling, cost accounting, and
resource management for large corporatlons. In this problem the mathematical
computations are not necessarily as complex as those for weather forecasting, but the
amnunt of data processing required can be exiremely large end, as for weather
prediction, there is a time constraint on the answers. For each of these problems, a
solution might be attalnablz In a reasonable perlod oi time If some of the computations
could be distributed and executed in parallel. Among the unknown factors are how the
problems should be decomposed for distributed processing and what communication
constraints and processing attributes eliclt favorable computational attributes (such l;
real time speed and low cost).

There may also be economic incentlves to implement a program in a
multiprocessing environment. For example, it may be less expensive to implement a
speech understanding system on a set of minicomputers than on one fast and relatively
complex uniprocessing computer. The price benefits may occur because of

1. the use of so called off-the-chelf equipment making total processing
power cheaper than large uniprocessing machines, and

2. economies of scale in manufacturing.
Perhaps the most compelling reason (possibly a consequence of the flrst two)

for wanting to decompose programs for multiprocessing environments Is that such

LA Introduction 1-3

environments are now available and It is important to use then properly. C.mmp [Wulf
72b), BBN Pluribus IMP [Heart 73], tha Burroughs D825 [Anderson 62), UC Berkeley’s
Prime [Quatse 72), and UC Irvine’s DCS [Farber 75] all have some multiprocessing
capabilities. Additionally Clark’s macromddules [Clark 72], Bell’s reglister transfer
modules (DEC PDP-16) [Bell 72] and the similarly oriented projects of Fuller and
Slewlorek [Fuller 73], and others offer multiprocessing on a very low level.

There are, at present, no guidelines for decomposing a problem for
multiprocessing execution [Newell 75) A number of questions related tv the discovery
of such guidelines have been investigated. Thase include.

1. Can a problem be decomposed for solution in a multiprocessing

environment? [Karp 66, Gosden 66, Miranker 71, Dennis 71, Anderson 65,
Ros~nfeld 69]

2. How can the algorithmic structure of a multiprocessing task be
represented? [Adams 70, Baer 70, Bredt 70, Dennis 71, Dennis 73a, 73b,
Karp 69, Lesser 72, Miller 73, Noe 73]

3. Will the same results always occur, namely will a multiprocessing system
be deterministic? Can a multiprocessing system be proven correct? Are
there potential deadlocks and unattainable states? This Is somewhat
analogous to discovering infinite loops and impossible conditions In a
sequential program. [Karp 69, Keller 73a, 73b, Riddle 72)

4. When are two computations the same? [Karp 69, Keller 73a, 73b]

5. What measures are interesting about the ccmputation? Some may be:
speed, redundancy, (in)efficlency, resource utilization, and economles of

the components. [Browne 73, Lehman 66]

6. How can the system be scheduled when there are scarce resources?
[Adam 72, Graham 72]

7. How can bottlenecks be identified and their effects lessened or ciiminated?
[Courtois 72, Dijkstra 74, Rice 73]

8. What are the effects of restructuring the communicatlons among the
cooperating processes? [Balzer 71, Horning 73]

9. What style of decomposition and machine structure would « st suit &
particular programming system (eg. Illiac IV, STARAN, STAR-100, ASC,
C.mmp, etc.)? [Flynn 66]

LA Introduction I-3

environments are now availabie and it is important to usa them properly. C.mmp [Wulf
72b], BBN Plurlbus IMP [Heart 73], the Burroughs D825 [Anderson 62], UC Berkeley’s
Prime [Quatse 72], and UC Irvine’'s DCS [Farber 75] all have some multiprocessing
capabllities. Additionally Clark’s macromodules [Clark 72]), Bell's register transfer
modules (DEC PDP-16) [Bell 72] and the similarly oriented projects of Fuller and
Slewiorek [Fuller 73], and others offer multiprocessing on a very low level.

There are, at present, no guidelinss for decomposing a problem for
multiprocessing execution [Neweil 751 A number of questions reiated to the discovery
of such guidelines have been investigated. These include:

1. Can a problem be decomposed for solution in a multiprocessiry

environment? [Karn 66, Gosden 66, Miranker 71, Dennls 71, Anderson 65,
Rosenfeid 69]

2. How can the aigorithmic structure of & multiprocessing task be
represented? [Adams 70, Baer 70, Bredt 70, Dennis 71, Dennis 73as, 73b,
Karp 69, Lesser 72, Miller 73, Noe 73]

3. Wil :he same results always occur, namely will a multiprocessing system
be deterministic? Can a multiprocessing system be proven correct? Are
there potential deadlocks and unattasinable states? This Is somewhat
analogous to discovering infinite loops and impossible conditions In @
sequential program. [Karp 69, Keller 738, 73b, Riddle 72]

4. When are two computations the same? [Karp 69, Keller 73a, 73b]

5. What messures are interesting about the computation? Somo may be:
speed, redundancy, (in)efficiency, resource utilization, and ecoromles of

the components. [Browne 73, Lehman 66]

6. How can the system be scheduled when there ere scarce resources?
[Adam 72, Graham 72] '

7. How can bottlenecks be identified and their effects lessened or eliminated?
[Courtois 72, Diikstra 74, Rice 73]

8. What are the effects of restructuring the communications among the
cooperating proce;ses? [Baizer 71, Horning 73]

9. What style of decomposition and machine structure would best suit a
particular programming system (eg. Illiac IV, STARAN, STAR-100, ASC,
C.mmp, etc.)? [Flynn 66]

B b e i cnne BECAR ey o ot e

LA Introduction I-4

The last question points out that there are several styles of multiprocessing.
Flynn [Flynn 66] described processing organization in four ways:

single instruction stream - single data stream(SISD),

single instruction stream - multiple data streams (SIMD),

multiple instruction streams - single data stream (MISD), and

multiple instruction streams - multiple data streams (MIMD).

These computing styles may he used to describe an entire computing
environment and a‘fect a problem’s decomposition and algorithms. However those
systems that do not allow a programmer to program explicitly for multiple streams of
data or instructions will be considered as singie stream machines. For example, any
multiprogramming machine performs some operations concurrently (e.g. 1/0), but a
programmer is usually unable to control this concurrency. In an array or associative
processor a control unit specifies which operation is performed simultaneously on
many data items simultaneously -- these are SIMD machines. The current pipeline
machines (CDC STAR-100, TI ASC) perform parts of single operations on several pieces
of data. The programmer has no control over which operations are performed
concurrently, so these are also single instruction stream machines®. Even in muitiple
instruction stream processing there can still be a spectrum of communication schemes.
Networks of computers and multiprocessirg computers with common memory are are
defined to be multiple instruction siream machines only when a programmer can
specify concurrent operations and these operations can be performed concurrently.

A multiple Instruction stream program Is defined to be a program In which two
subparts of the program can be specified to execute concurrently. Since these are

ta pipeline machine has multiple data streams as far as a programmer |s concerned,
but actually the stream of data comes into the pipe sequentially.

(B T N .

1.A Introduction 1-6

subparts of a totai there is some reiationship between them. The reiationship must be
in the form of some common date communication and/or shering. If the subparts are
named A and B then at ieast one of the following must occur: data progress from A to
B, from B to A, from some C to A and B, or from A and B to some C. (Figure 1-1 shows
the possible reiationships between two processes in a directed graph notation) When
dsts progress from one program to another it means that the second program uses
some resuits of the first in its computations. Of course, other processing may
manipuiste the deta between the processing of two subprograms and sdditional date
may be provided to the second prcgram from sources other than the first program

(and the first prcgram can provide dats to other programs).

A o c
® © O

Figure I-1. Possibie relationships between two processes, Aasnd B

If A and B are reiated, one of these relationships must hoid; otherwise Asnd B

wouid be unreiated and thus not subparts of the ssme program. In the first and
second cases one subprogram sends dats to the other and continues to process after
sending data to the second subprogram. In the third case, data can progress to both A
and B from a common source and aii three can be processed at the same time. In the
last case, A and B can be processed simultaneousiy and esch [s abie to send data to

the same third process, C.

e R b, L

1.B Direction of this work I-6
1.B. Direction of this work

At present there are no proven guidelines on how to structure a problem for
irnplementation in a multiple-instruction-stream multiprocessing environment. Rather
than address the guidelines problem di.rectly, this work presents a design environment,
a sel of evaluation tools, and a design approach whereby a system designer can
explore attritutes of alternative program decompositions. A major premise for this
research ‘s that the communication pattern among, concurrent procssses is critical to a
system’s performance. The goal is to identify issues end (D make predictions which
will provide some practical information to the system designer at an early stage and
also during later program tuning. This research has been directed towards solving a
more specific set of problems than those presented in the previous list, namely:

1. How can interactions among the concurrent computations be modeled?

2. Are the interactions safe, i.e. deadlock free? For example, can one show

that a program never arrives at a state in which one process is trying to
communicate with a second process while the second is waiting to send a

communication to the first process?

3. When the structure is not deaclock free, whet is the probability of a
deadlock?

4. Where will most of the process and communication activity occur?

5. Where ttlenecks occur, and how may they be relieved? For
examp introduction of buffers or additional processes help?

6. Are there working sets of processes? If certain subsets of processes
tend to be active at different times then fewer processors will be
required for a program (and consequently less parallelism can be
attained).

7. What are the effects of restricting the number of processors? What are
the effects of alternative scheduling algorithms?

These questions were chosen because they may present hidden problems to

1.B Directlon of this work 1-7

the system designer. Inexpensive and fast approximate answers to these questlons
should be useful when a program is being designed and also when it Is belng tuned to
Improve a program's periormance.

Currently there are no generally accepted languages or graphical techniques
for representing or modeling a multiprocessing computation and the communication
interactions among processes. Thus problems that might be prevented by a clear
algorithmic description technique may still occur. However a system designer has some
understanding of the relationships among the parts of his system. He can implement
the subparts in many different languages, but it is the interfaces between the subparts
that are usually not we!l described. Parnas [Parnas 71] has suggested communication

schema to be used while creating communicating modules, but has not described how

to represent the communications in an entire system. This lack of global view may

prevent the recognition of potential problems. This, then, illustrates the importance of
discovering a method for the automatic detection of deadlocked structures and
potential deadlocked structures. If the system designer can easily identify in advance
where he may have made such an error, then he is spared the task of finding the
problem later. It would be preferable to prevent such probiems, since many of the
criteria for preventing deadlocks are known; however, in complex systems it is
increasingly difficult to be aware of all potential deadlock conditions.

If the system designer is able to estimate which particular subparts of his
system wlil contain the largest amount of activity, then these subparts will be the most
appropriate places to expend effort to Improve performance.

The ability to compare the potential performance of alternate systems easily is

extremely important. Almost all disciplines concerned with the creatlon of large

s s AP £ AT M Mt e | e Sl & e gl e e e s vt

1.C Other work bearing on the problem -5

interacting subsystems use the technique of rmocaling the behsvior of the whole
system and extrapolating the performance of this model to deduce properties of the
large system. Examples of this technique range from the use of wind tunnels and
analcg simulation of fluid flow to discrete computer simulations of supermarket check-
out counters. A tnol for the prediction of computer system decomposition performance
should be just as useful. An important aspect of a design system is how easily the
designer can alter the attributes of his system and determine the effects of those
changes.

We feel that important assets of design tools are that they:

1. be easy to use,

2. provide results quickly,

3. be interactive (when using a computer system), and

4. make it easy to perform design Iterations.

1.C. Other work bearing on the problem

Several kinds of tools are available to a system designer. These tools include
graph models, queueing theory models, simulation languages, programming languages
and theories of design of complex systems. Each of these tools can be useful at some
time during the design and construction of & multiprocessing program. Graph models
are usually used to represent multiprocessing computations and for analysis of control
flow within a program. Queueing theory is used to predict and study performance of
simplified models of complex processes. Simulation is an approach to modeling more

complex systems to obtain similar performance predictions. Programming languages

I.C Other work bearing on the problem I-9

ere tools for explicitly representing multiprocess algorithms. They also may contain
orimitive operators that can facilitete proofs of properties of programs. Design
theorles, such as that of Parnas, provide techniques that facilitate construction of
complex systems and their understanding. No one tool is comprehensive enough to use
es a quickly obtained predictor of the performance of a multiprocess program.

With sufficient instrumentation the behavior of a multiprocess program can be
measured. These data can be used in several ways to predict behavior changes when
some system parameters and structures are modified. Again queueing theory and
simulation techniques are useful tools for these predictions. As before neither method
necessarily provides fast predictions of the sensitlvity of performance to changes in
program parameter and structure.

The following are brief presentations of some tools that bear a relationship to
those that will be presented later. It will be seen that the purely analytic techniques
are often too restrictive on assumptions, not useful for overall program design, and of
limited applicability dus to computational complexity. The simulation techniques require
too much effort both to construct a simulation and to modify It to achieve results

concerning alternate program decompositions.

1.C.1. Petri neta

After the original formulation of Petri nets [Petri 62] several MIT researchers
[Dennis 70, qut 70, Paterson 70, Rodriguez 67] refined forms of the original model as
useful tools for studying concurrent processes. A Petri net looks like a directed graph
in which marks or tokens are placed on some of the arcs. (Only connected graphs are

of interest.) These tokens move about the graph to represent flow of control. When

S/ WITIWY W W1 Ty W W T ' W' Vet e et

tokens are present on all of the Input arcs to a node, that ncde Is able to "fire." After
a node fires, one token is removed from each input & and a token is placed on each
output arc of that node. In fact, a Petri net Is not a directed graph [Berge 62]

because it Is possible for one arc to poir! to or come from more than one node. A

restricted Petrl net called a marked graph [Holt 70] permits arc Initlation and

termination only at single nodes (not necessarily the same). Multiple arcs can stlll be
connected to each rode. In contrast, a restricted Petri net becomes a finite state
automaton (state transition diagram [Holt 70]) by only permiting one arc to enter each
node and one arc to leava each node. (Arcs can have multiple starting points and
terminal points.) In Figures 1-2, I-3, and I-4 the nodes are represented by straight

lines and the arcs are arrows with a circle that can contaln the tokens (represented by

dots).

Figure 1-2. A Marked graph

1,001

Figure 1-3. A finite state atomaton.

1.C Other work bearing on the problem I-11

O

Figure I-4. A Petri net that is neither a marked graph nor a finite state
atomaton.

Marked graphs are the oniy form of Petri nets that have been used tn study
concurrent processes. The general Petri net can be too compiex and the state
transition diagram can not be used to model concurrent processing. Marked graphs
are used by modeling the potential flow of control in a system and then analyzing
possibie markings in order to make predictions about future markings. Issues
investigated, for a particular initai marking, inciude:

1. Determine whether nodes will eventualiy activate (fire). In Petrl net

terminology the question is whether a node is "safe” [Holt 70]) If ail

nodes are safe the net is "safe,” i.e. all nodes can be activated.

2. Count the number of activations of a node. The important counts are O, n,
and infinity.

3. Determine whether the initial marking can iead to another particuiar
marking.

4. ldentify nodes that can fire concurrentiy.

There are severai difficuities in using Petri nets. One is that interesting
examples require a iarge number of nodes [Dennis 70, Meriin 75]). There are so many
nodes that it is difficuit to do any analysis. In addition, none of the enaiysis is
mechanical. Another difficuity is that controi fiow in the graphs is compistely

determined with no accounting for rates of processing at each node.

R LTSS TTRN 7 TNy re—" v

1.C.2. The UCLA model

The original goal of the UCLA model was to "represent programs to be run on
variable structure computers” [Baer 73, Estrin 63] Thus its purpose was to help
describe concurrent compulalions rather than to study the performance of algorithms.
However some extensions of, and associated restrictions on, the original modei allow
for performance predictions in some restricted cases to determine the termination of
loops, the determinacy of representations [Regis 72], and the reduction of graphical
forms [Bovet 65] In addition the UCLA model has been used to study the automatic
conversion of FORTRAN-like programs to a parallei computation form.

The basic form of the model is a directed binary graph. Most studies using this
model use an acyclic structure. The graph shows processing dependencies and, as
iong as an acyciic modei is used, potentiaily concurrent operations can b easily
identified. Each node may have at most two entry arcs and also at most two exit ai.r.
The ruies for firlng a node are defined as part of the node. The node's flring ruie
depends on the enabling of the input arcs and the node’s resuit rule cause some of its
output arcs to be enabled. A node wili not fire if any of its output arcs are aiready
enabled. Once a node fires the input arcs causing that node to flre are disabled. (See
Figure I1-5)

In the UCLA mode!, branching and merging control ficw are modeied with EOR
type nodes. Concurrency is modeled by the use of AND type nodes.

Further restrictions are placed on the form of the UCLA graph model. There
must be a unique initial vertex (only output arcs) and a unique terminal vertex (only
input arcs). Another restriction is th;fat ali subgraphs must be AND type. This means

that if a choice is rnade at an EOR output node then it must stiil be possibie for the

e

i, B ®

L L R e

Gt oy A ek W l-mza”—-p---._. -

P S TP I T

’
i Sl e v il s disde e

Srwf WRITWT V9V Wl I8 WMWY T T ¢

o AND input node

AND input type fires only If both input arcs have been enabled.

*
° EOR Input node

EOR input type fires only if exactiy one of the input arcs has been enabled.

e AND output node

L]

AND output type enables both of the node’s output arcs after the node has fired.

a

}op EOR output node

EOR output type enables exactly one of the node’s output arcs aiter a node has flred
(which one is undetermined).

Figure 1-5. UCLA Model Nodes.

termina! node to fire. In addition It should not be possible for both arcs of an EOR
Input node to be enabled at once. The gquestion of determinacy of a graph is
subsumed by the question of legal graphs. Legal graphs are those that start at the

Initial node and are guaranteed to terminate at the terminal node. When loops are

L e a0 i B A s A e o

I.C Other work bearing on the problem . 1-14

allowed, any loop must be able to terminate. Most who have used the model have
assumed acyclic structures in order fo guarartee loop termination (naturally, no loops).
The analytic technique used to ignore loops is to expend all loops by some finite
repetition. The repetition factor is determined by a probabilistic argument [Martin 67].
The question of mean path length in a directed acyclic binary graph has been
studied at UCLA. Probabilities are assigned to each arc and computation times are
assigned to each node. These are used to determine the probability of traversing
paths through a legal graph and to estimate ‘the mean path time of a graph [Martin 69]
One may also determine the maximum number of procsssors riquired by the graph
[Baer 69) under the same restrictions.
The ditficulties with using the UCLA model also involve the need for a large
" number of nodes to represent interesting structures. This is particularly true since
aach node has at most two input arcs and at most two output arcs. Another problem is
that most results have been dependent =n acyclic models. Thus the mechanical
techniques for proving legal graphs, etc. are only applicable to a restricted set of
programs representable by the model.

]

1.C.3. An algebraic model of interprocess communication

In his dissertation [Riddle 72}, Riddle presented a methodology for modeling
and analyzing supervisory systems, but the work can be applied to the problem of
analyzing any complex asynchronous system. He found the same difficulties with Petri
nets and other models as those reported in earlier sections of this chapter.

Riddle presented an explicit program-like description of the operation of a

process. This description was only concerned with the interprocess communlcation

1.C Other work bearing on the problem I-15

relationships of each process. However the description was close enough to being a
program that each process required information concerning the type of intarprocess
messages. Therefore the descriptions of processes were themselves fairly complex.

The model was also based ¢n a directed graph structure representing
interprocess communication. A graph consisted of two types of nodes, process nodes
and link nodes. The link nodes had properties that could require a certain amount of
computation associated with them, e.g. queueing disciplines.

One of the goals of Riddle’s research was the dévelopment of an algebra to
describe interprocess communication. Algebraic expressions could be used to describe
pCssible communication paths in a modal. By using the graphical structure, the
program-like descriptions, and the algebraic expressions, theorems were developed to
analyze the behavior of a modeled system. The creation of all algebraic expressions is
pertormed by the inspection of a graph. The proof of theorems concerning the
behavior of a system, as described by the algebra, is not a mechanical process. Riddle
did provide a set of theorems that can be used in a proof.

The examples that Riddle studied were based on communication paths of a
given system. He determined what termination and deadlock meant for that system and
was able to derive proofs showing that the system terminated and contained no
deadlocks. The questions he posed were specific to the system being modeled and
required the creation of algebraic expressions ior each question concerning system
behavior. These algebraic expressions were not necessarily easy to create and the
proofs of theorenis were not very easy to construct.

The tools that Riddle’s research provides may be used for the design of

multiprocessing programs. The drawbacks to his approach are the difficulty and effort

1.D The STEPPS System I-16

required to create the algebraic expressions needed to represent a model, and the
expressions representing communication within a model. The expression proof process

is also fairly tedious.

I.D. The STEPPS System

All of the models discussed in the previous section are tools for the analysis of
multiprocass programs. A common drawback of each model is that results must be
obtained through detailed, non-mechanical analysis. A second drawback is that none
contains the processing rates of the various processes of a multiprocess program as
part of the model. The speed and ease of obtaining results and the ability to include
expected timing of attributes of a program can be especially useful when making early
dosign decisions concerning the structure oflal p;ogram.

The design methodology presented in this thesis is based on an interactive
system utilizing a particular model of muitiple instruction stream problem
decomposition. The system and the model are called STEPPS (Some Tools for
Evaluating Parallel Processing Systems). The methodology of designing a programming
system has become an interesting and important question in the last few years [Brinch
Hansen 74, Dahl 72, Mills 71, Parnas 72, Parnas 75, Weinberg 71} The author
subscribes to the "top down" apprcach to system design [Simon 62] Thus a "natural”
approach to building a system that will contain potentially concurrently executing
subparts is to decompose a system into functionally independent subparts and
describe the communication structure among the subparts before explicitly defining the

operation of the subparts. For example, when designing a compiler one might say that

o

1.D The STEPPS System 1-17

the LEXICAL-ANALYSER and the SYNTAX-ANALYSER could process in a plpeline manner

with the LEXICAL-ANALYSER sending resuits to the SYNTAX-ANALYSER. A convenlant

_notation is a directed graph notation with the restriction that the connections between

two processes must go through an explicitly designated (and named) connecting LINK
(see Figure 1-6). At this stage of decomposition only potentlal communication is
important and data dependent communication (i.e. decisions based upon data) is not

consldered at all.

LEXICAL-ANALYSER \I 3| SYNTAX ANALYSER

Figure 1-6. Pipeline.

Each of the previously discussed models considers interprocess communication
patterns to be impcrtant for understanding the performance of multiprocess programs.
Both the Petri-net and the L:La model represent interprocess commurlication by
means of the movement of untyr»d tokens. Queueing models of multiple processes
9’ '0 use typeless tokens to represent flow of control. Riddle was able to simplify
some interprocess connectlcns in his model schema and to enhance analysls by
Introducing type identification for iokens.

The STEPPS model uses typeless tokens to represent flow among processes.
The study of interprocess communication sugges!s seversl measures of multiprocess
performance such as queue Iengths, deadiocking, and potential concurrency. A
difference between this model and the earlier modeis Is that a STEPPS process must

be ready for a message before "firlng" (due to the arrival of a message) instead of Its

S S o cane e

-

1.D The STEPPS System 1-18

firing being dependent on logical relations of the messages available on paths to It.*

1.D.1. The STEPPS model: an informal description

The STEPPS model includes both probabilistic and timing expectations for
describing individual process activity. Whereas a standard probabilistic model, i.e.
Poisson, treats processes as operating on messages, the STEPPS model process
includes a natural relationship between a process’ input/output activities. In addition,
the introduction of time parameters allows for better estimation of a program’s
operational concurrency instead of potential concurrency. The model represents
multiprocessing at the message conmunication level and is not intended to represent
other multiprocessing problems such as memory interference and specific programming
techniques.

Concurrency can be modeled by having a single process send data to more

than one other process. Data streams are explicitly merged when a process receives

data from more than one other process. In the descriptions of processes, more than

one arrow may leave a process node or enter a process node. If a process node is
able to receive data from any of several processes, but the receiving process does not
care which process sent the data, several arrows enter a linknode and only one leaves
it. 1f one of several processes may operate on data produced by another process this
is represented by more than one arrow emanating from a linknode aind going to the

separate process nodes.

*In Riddle’s model a process must be explicitly programmed to accept a message.

1.0 The STEPPS System

Example 1.D-1

Consider the problem of building an oniine university registration
system. This system wouid handie ail of the scheduiing and student
record keeping for a university. One might decompose the problem into
the graph of Figure I-7. Students’ requests are handied either by a
Schedule Requester or Schedule Updater, each of which processes the
request and sends data to a Scheduier. The Scheduier sends data to
the Data Base 3nd then sends results to a Scheduie Output process.
Requests to the system may aiso come from the Registrar. These
requests may also go to the Data Base and on return data is sent to the
Registrar Output by the Transcript request process. There also may be
requosts for grades. The date base may access data in either the
Current Semester or its Archives.

I-19

All data traveis through paths between nodes (the LINKS end the

PROCESSES) in units caiied messages and all queusing of messages occurs at each

LINK. Requests for data from o LINK are handied in a FIFO (First In, First Out) manner

by the LINK. The next step is to describe the action of a PROCESS node. Since only

the communication paths are important at this point of design, only the message

handiing properties of a procass are described. The source of data is not identifiabie,

80 & proceas neither knows which process sent the data to the LINK attached to any of

ita “input ports” nor does it know which processes are attached to the LINK that is

ettached to any of its "output ports.” The reason for this restriction is that messages

contain no information such as sender or receiver identity. This will be shown not to

cause difficulty in using the model.

The execution sequence of a process is:

1. perform an input or output operation,

2. choose which input or output port wiil be active next,
3. compute for some time, and

4. repeat 1 to 4.

o Tt - g-.} rub
teAagna B T qntue WA o~ - .

1.0 The STEPPS System

Student
Requests

v

——

Data
Base

Y
Schedule Schedule
Request Update
Scheduler
—
v
N i
\
Schedule
Output Current
Semester

1-20
Registrar
Requests
—Y_
- Grade
1 Request
Transcript
Request [
Registrar
Qutput

\

Archives

Figure I-7. Registrar’s Data Retrieval System

Each process is a uniprocess and can only perform one input or output

operation at a time.

The method of describing how each process operates in the STEPPS model

requires that each port be named. For convenience, the notation used is to assign a

e i R i e R L Lin o bt

M e ol e R
Fo I TR TR gl © p— o — e
ik L e ,ﬂ“q.}

NP NS T

1.0 The STEPPS System I-21

type of either "I" for input or "0" for output and a number. A transition matrix for
each process defines the probability of succeeding the activation of one port with the
activation of another port. The informal definition state of @ process refers to the most
recent port activation (in this thesis, states correspond to pert activations). The
process remalns In the same state while it is computing and enters a new stete at the

next activation of a port. In most contexts the terms "ciate” and “port” are used

interchangeably.

Example 1.D-2

ALPHA is a process with two input ports, 10 and 12, and two output
ports, O1 and 02. 10 may transfer to state O1 or 02. 12 may transfer
to state O1 or 02. Ol may oniy transfer to state 10. 02 may transfer
oniy to state 12. The graph and transition matrix for this process Is
shown in Figure 1-8.

Graph notation

« |0l 12 =
ALPHA
- 10 ozl

Transition matrix (without timing)

ALPHA 0o 12 01 02
10 0 0 o Il-o
12 0 0 b 1I-b
0l 1 0 0 O
02 o 1 0 O

Figure 1-8. Process ALPHA

The transition matrix makes it possible to describe the splitting of processing,
the merging of processing, and the choice of alternate computation paths. In Example

1.D0-2, after an input from port 10, process ALPHA can enter either state 01 or 02 (with

i

5

1.D The STEPPS System 1-22

probability of "s" to Ol and "] - a" to 02). State Ol always enters state 10 as the
next state.

Other features of a STEPPS model that can be specified are:

1. the initial state of each process,

2. the number of messages that a port may receive oOr send before the
process changes state,

3. the amount of computation time, defined for each transition, that a process
computes before a transition takes place (this is fixed, but random
variable computation times can be approximated),

4. the amount of computation time taken by a LINK to accept or send a
message, or to restart when it is not already handling communication of
messages, and

5. the queue size limits for each link and the initial number of messages in
each link,

The model that has just been described subsumes both the Petri net and the
UCLA model. The links and nodes of Petri net and STEPPS models are very similar;
each is equivalent to the corresponding STEPPS model shown in Figure 1-9. Figure I-
10 also shows the reiationships between the UCLA model and the STEPPS modei.

The STEPPS model allows for a more general specification of data flow then the
earlier models since it is possible to describe the probabilities that particular data
paths may be taken. When a message is accepted by a process it is easy to specify
which data paths are more likely. As further information about the system being
designed is learned or when the effects of alternate data path specification are taken

into account, probabilitizs are altered by the system designers to fit the new

_ structure.

1.D The STEPPS System 1-23

Petri STEPPS

The input port accepts N messages before chaiging state to an output port; the

transition between the output ports occurs in a sequence; and the last output state
transfers to the input port.

Petri STEPPS

The input state accepts only 1 message and the transition to each output state is

equally likely. Each output state transfers to the input state. The link may be able to
hold more than one message.

Figure 1-9. Mapping Between Petri nets and STEPPS model.

1.D The STEPPS System 1-24

UCLA STEPPS

oA

The input state accepts 2 messages before transferring to an output state.

UCLA STEPPS

| 5
The link has a limit of one message, so only one message can get to the process. The

process input port accepts 1 message before transferring to an output state.

UCLA STEPPS

oS!

The transition matrix sequences through the two output ports.

UCLA STEPPS

IO O

The transition matrix shows an equal likelihood of transferring to each output port
from the input ports. After an output the process will perform an input.

Figure 1-10. Mapping of UCLA model to STEPPS.

L.E The STEPPS system and simulator 1-25

L.E. The STEPPS system and simulator

Once a propnsed multiprocessing program has been modeled, the model can be
implemented in the STEPPS interactive system in order to evaluate the particular
decomposition. The data entry language for STEPPS has been designed for
conciseness. A linear description of a directed graph and the associated transition
matrices may require the entry of a fairly large amount of data. To facilitate the entry
of these uata, it is possible to recall previously stored data. The system designer can
manipulate his model in any way he chooses, e. g. remove nodes, change parameter
specifications, or display parts or all of his model. It is always possible to save the
desctiption of the model or parts of it externally in a form that may be recalled by the
STEPPS system or examined on hardcopy.

Several useful tools are available to help the system designer evaluate the
structure of his decomposition. As a basic step, a STEPPS model can be certified as
being a well-formed model. A STEPPS model is well-formed when:

I. For each process, every state is attainable from any other state (If a
process has N states, and X and Y are any two of them (possibly the
same), the probability of starting in state X and entering state Y in N or
fewer transitions is greater than zero. This restriction Is discussed In
later chapters.); and

2. All ports of each process are attached to links;

3. All links are attached to both input and output ports;

4. The graph is connected. (When the directions of paths are ignored then
there exists a path between every pair of nodes.)

At some point it should be possible to simulate the execution of the modeled
program; thus the STEPPS system contains a model simulator. However, there remain

problems which can prevent a successful simulation of a program structure. One

T Iy TR T Tp N TTY L Cppa . R— - S —— TR e - .t il
X b’ be. iy e £ B R T, 7 T T N T W N GNP I — PR R e - U e e . ¥ Sl

1L.E The STEPPS system and simulator 1-26

problem is that the initial state of the processes and the initial message capaclties of
the links might be incompatibie. This would cause a simulation to halt almost

immediately. Another problem is one of possible communication deadlocks. These

problems are discussed in Chapter Iv.

1E.1. Deadlocks

A process may deadiock in either of two situations:

1. no messages wiii ever be availabie at the link attached to an active input
port, or

2. the capacity of the iink attached to an active output port has been
reached, and no messages wii! =var be able to ieave the link.

Deadlocks may occur when a process can depend on itself improperly. They

may also occur when a set of processes are incompatible for reasons other than data

loops.

Example 1.E-1

Figure 1-11 shows process A waiting for data from B while B is waiting
for data from A. If the initial state of A is changed to be Ol then the
process has no deadiocks. If an additional change is made to A so that
state O1 or 11 is activated more than once and B 's not changed, then
this is again unsafe because a link will eventually overflow or never

have enough data.

Example 1.E-2

Figure 1-12 shows a non-ioop siructure where there wiii be a deadlock
as soon as the L1 queue limit is raached.

None of the structures presented in Examples L.E-1 and L.E-2 showed problems

that can occur when a process has a choice of successive states. There are other

R R R T IR R Tl I T

i.E The STEPPS system and simulator 1-27

L1
N 1
01 >
2
A I le le. 01 8
I
L2
A 11 Ol
1% c 1
01 1 0
B 11 01
I1% c 1
01 1 0
Figure I-11. Incompatible Ioop.?
L1
s
A o1 >1 > 11 B
02 >i 12
L2
A 01 02
01[2])s 0 1
02 1 0
B Il 12
I1s o1
12[2] 1 0

Figure I-12. Incompatible n0n-loop.¢

deadlock producing structures. For example a process may be set up to produce

either N or M messages and the safety of this structure must be recognizable.

TThe asterisk in the example means that this is the initial state.

4:01[2] means two occurrences of Ol before changing state.

T o e Uy g e

IR ~ VR I 7 N R R AT U S N NER ()/ | S Y S g— e RN e e mmmw”j
A "

1.E The STEPPS system and simulator 1-28

The deadlock problem may be dealt with in two ways. One alternative Is to
require any program decompos.tion tu be deadiock-frae.

A second alternative is to determine where deadlocks may occur and the
probability of a deadlock. The existence .°' deadlocks in real systems is not always
bad as long as a suitable response can be made. Fur example, the ARPA network Is
not deadlock free [Kleinrock 7561 However, when a deadlock Is suspected the system
"times out" and requires reinitialization of a data message. This is a reasonable
solution under some circumstances, but only when a system can lose information.
STEPPS provides tools to recognize the possible occurrence of deadlocks.

The algorithms used to identify deadlocks are basically specialized graph
reduction techniques. A model is viewed as a graph whose nodes are the processes
and links. Under application of these reductions, a safe model will collapse to a graph
contalning no nodes. If the graph does not collapse then a deadlock is possible.?

As already noted, a STEPPS model of a program can be quite general. If a
model is acyclic and meets other criteria set by Martin [Martin 69] it is possible to
estimate mean path time; however, these criteria are quite restrictive. In genera. It is
not possible to estimate mean path time through a STEPPS mode! without simulation.
Ordinary systems analvsis techniques such as queueing theory and dynamic
programming models are intractabie in all but the simplest cases [Fishman 73, Gordon
69). 1t is for this reason that a simulator is 2 basic part of the STEPPS system.

The simulator is easy to use since it is a specialized system and requires no
programming. Naturally, any STEPPS model can be simulated using GPSS, SIMSCRIPT,

SIMULA, or any other simulation language. However the effort required to reprogram

*Chapter IV discusses the deadlock problem and past work In the area.

LE The STEPPS system and simulator 1-29

a general model Is not well spent at the design stage of building & multlproceszing
program. It is at this early stage of program development that the designer needs
Information about possible program decompositions, and the flexibility to be able to
alter his design easily and make new evaluations. If variations in the decomposition
needed to be reprogrammed, the understanding of alternative systems would be a
more dif* cult process than comparing alternative models using the STEPPS system.

A variety of simulation parameters can be easily altered for comparing their
effects on simulation results. These parameters include: restricting the number of
available processors, identifying processor competing and'nOnCOmpeting processes, and
varying process scheduling algorithms.

The STEPPS simulator has a set of data gathering functions which help the
designer evaluate a particular decomposition. Some of the estimations that are made
based on the data are:

1. The expected time that each process is in each state. This can be
determined without simulation if only the processing time Is of Interest,
but when process wait time is :ncluded it is too difficult to estimate the
time spent in each state.

2. The expected number of messages | each queue.

The expected number of processes waiting to send a message to each link.

The expected number of processes waiting for a message from each link.

m s W

The expected number of processes that will be executing simultaneously.
This can be used to estimate the number of processors needed.

This list is not complete for all uses of the simulator. The system has been
designed so that it is not difficult to include additional measurement functions.
The simulation times required to obtain these estimates vary with the

complexity of a model. Usually, useful estimates can be obtained with a few minutes of

e

1-30

DEC PDP-10 compute time. The complexity of a graph is dependent on such aftributes

as the number of connections, choice of process states, and link delays.

1 F. Thesis contributions and outline of remainder of thesis

The contributions of this thesis are tools that a system designer can use to
enhance the overall design of a multiprocess program. These tools, presented as the
STEPPS system, are based on a model that is described precisely in Chapter IL
Chapter I also discusses the STEPPS system’s capabilities (Appendix A is a manual for
the STEPPS system). Examples of how the STEPPS model can be used to model a
variety of multiprocess structures are presented in Chapter III. In addition, Chapter 11
presents two larger examples: one of the use of the STEPPS system in a user’s early
design stage and the other of the use of the STEPPS system in system tuning. The
deadlock reduction algorithm is presented as a set of theorems with proofs in Chapter
IV. Other model analysis capabilities are also discussed. The STEPPS simulator and
data gathering facilities are discussed in Chapter V. Chapter VI contains a review of
the thesis results, the limitations of this research, conclusions and directions for

furthsr research.

1I-1

Chapter II
The STEPPS Model

This chapter provides some formalisms for later use and a precise definition of
the STEPPS model. Chanter | presented an informal description of the model and the

interactive design environment based on the model.

I1.A. Modeling the behavior of a process

The term process describes the utilization of the processing unit of a single
instruction stream-single data stream computer (SISD). A "process” has sometimes
been defined as the execution of a program. For the purposes of this research, that
definition is too limited, since it does not take into account data transfers and accesses.
A process, as defined for the STEPPS model, exists in one of the followIng conditions:

1. processing (computing) before performing an input or output operation,

2. waiting to access an external resource that must be accessed exclusively
(simultaneous accesses are modeled by allowing zero time between
accesses), and

3. waiting to complete an input or output operation.

A process is modeled as a processing unit which can perform operations
internally, and which then must communicate with other units through one of several
ports. The communication occurs when a process zither requests or provides a unit of
information. Each port belonging to 8 process has only one function: Input to the

process or output from the process.

The internal operations of a process are unknown to an observer of a process.

11.A Modeling the behavior of a process 11-2

Al that can be determined is the relationships among the activities of the process’s
ports. Externally these relationships appear as probabilistic transfers of activity from
one port to another, plus a computation time between port activities. In general, the
computation time between any two successive por! activations is dependent on the
particular ports. Such process activities as accessing resources and sharing resources
are modeled in terms of interprocess connections and message flow.

As defined in Chapter I, the state of a process refers to the most recent
activation of or attempt to activate a port. This was an informal use of the term
"state” since, more precisely, a process can be In the state of waiting to activate a
port, activating a port (doing the port’s activation), computing before the next port
activation, etc. The imprecise definition of "state" will be used in most contexts, and it
will be made clear when the more precise meaning is used.

This definition of the state of a process is an abstraction based on potential
communications between a process and other processes. In addition, the concept of
time is included in the model to allow a designer to include processing time for
. computation during simulations. An important abstraction is that STEPPS processes are
not deterministic since port activations are based on probabilities and not on a data
directed control structure. The disadvantage in this is the inability to represent
programs on an instruction level. The advantage is that all potential communication
alternatives are emphasized.

The complete operation of a process is described by the following loop
(assuming the process starts in some initial state):

1. Perform the input or output operation associated with the present state.

This may involve waiting to access an external resource and waiting for
the input/output operation to complete. Both waiting times are
considered as time spent in a state while not processing. This step can be

repeated a specified number of times before the next step.

2. Choose a new state. By a probabilistic method, described below, a
successor state is chosen, but not yet entered.

i

11.B Data flow and links 11-3

3. Process (compute) for a length of time as determined by the transition
from the present state to the next.

4. Enter the new state and repeat 1 through 4.

Given the knowledge of the present state, probabilities for entering any of the
process’s states are defined. Since the state of a process is related to the activity of a
port, probabliities are defined for potential successive port activations from every port
activation. Note that the choice of a successor state is dependent on the present
state. In addition, step 3 above implies that a processing time parameter is associated
with each transition and step 1 suggests that possible communication time is associated
with a port activation.

Two.restrlctive assumptions are basic to this model. They are that (1) a
process can not be interrupted (ie. the transition mgtrix completely describes a
process’ activity) and (2) processes are neither created nor destroyed dynamically.
These restrictions are used to keep the model relatively simple; they also make it
possible to perform the deadlock test by graph reduction (Chapter lV).f The lack of
dynamic process creation and destruction can be approximated by including multiple
copies of processes, but there is no way to use the STEPPS system to model process

Interrupts and preemption.

ILE. Data flow and links

The previous section refers to units of information that are elther requested or

produced by a process. A unit of information is called a message. The number of

tThese resirictions are examples of a tradeoff between analysis and representations.
Some system structures might have been easier to represent if there were, for
example, typed messages or dynamic process creation. However, automated system
structural analysis was not found to be feasible when these richer representations
were considered.

e g

11.B Data flow and links 11-4

messages in @ STEPPS model need not be conserved. Thus a process may successively
request messages from each of two input ports, yield a single message on an output
port, and then request more messages from an input port. A property of a message i
that it is only a token of information. It does not actually contain any informatlon used
within the model. A process can not use the contents or type of a message to decide
on future activity. Only the existence of a message is meaningful to @ STEPPS process.
This restriction wlll be shown not to affect substantially the class of program
structures that can be modeled with the STEPPS model. The major restriction 1s that
processes are completely defined by their transition matrices and can not be
preempted. Thus systems that contain parent/sibling process dependencies where the
parent process can stop, restart, or terminate a sibling process can not be modeled.

Processes are connected via links. Each port of every process is connected to
exact! one link, but a link may be attached to several ports of both input and output
variety. Messages enter a link from output ports and leave a link going to input ports.
Requests for messages from input ports are handled on 8 first in - first out basis.

The link is the resource that can only be accessed by one process at @ time.
This access may take zero time, but the restriction is used to prevent race conditions.
For this reason the STEPPS model includes a method that guarantees mutual, exclusive
access to a link. Since a process may only perform one input or output operation at a
time, it can only access one link at a time, so there is no opportunity for a “deadly
embrace"! due to the accessing of links.

The STEPPS mode! can be used to model the situation where there Is a non-
2ero overhead for message transmission. The properties of a link aro:

A deadly embrace, as defined by Dijkstra, Habermann and others, occurs when two
processing objects are able to reserve more than one resource at a time without all
resources being reserved initially. For example; process A reserves resource X;
process B reserves resource y; process A needs resource y and can not continue until
B relinquishes it; process B needs resource x and can not continue until A relinquishes
it. Neither process A nor B will be able to continue.

I1.B Data flow and links 11-5
1. It can store a limited number of messages.
2. It may take a certain amount of delay iime to either accept or transmit a
message (same delay time for accepting or transmitting).
3. Time may be required to start up a link when it is not aiready active T
4. It may initially contain a specifiable number of message tokens.
5. It can receive requests for messages and transmit a message to a

requestor if a message is availabie or force the requestor to wait in a
queue {whose size is dependent on the number of processes attached to
the link) untii # message becomes available.

A link is not a process but its operation can cause timing delays. When a link

has a start-up time parameter set to be greater than zero then the link's start-up time

" is significant. The other reasons that a link can force a process to wait in a state are:

1.

2.

The link that is attached to the current state’s port is already in use.

The link has reached its limit of messages and the current state’s port is
an output port.

The link has no messages and the current state’s port is an input port.

The iink’'s defined delay time is taken to perform an input/output
operation.

The complete operation of a link in the STEPPS model is described by the

following loop:

1.

4.

Do nothing untii a process requests the use of the link. Wait for a specific
start-up time (if any).

If the request is for the link to accept a message and if the link’s specified
message limit has not been reached, then accept the message. Otherwise
do nothing, forcing the process trying to send 8 message to wait until a
message is removed from the queue.

If the request is for the link to provide a message and if there are any
messages avallable, then send a message to the process requesting a
message. Otherwise do nothing, forcing the process requesting a message
to wait until a message is sent to the link.

Wait a specified amount of time (if any) for data to transfer.

*A similar situation occurs in a virtual memory system when extra time is necessary to
bring a page that is not currently in use into main memory.

1.C Notation and definitions -6

5. Aiiow the process that is currently accessing the link to continue.

6. If & process is waiting for a message or waiting to send a message then
repeat 2 to 6 (the queue discipiine is FIFO). Otherwise repeat 1 to 6.

11.C. Notation and definitions

The notation that wiii be used in the remainder of this thesis is described here.
Wherever possible the iinear notation wiil be the same as that used as the command
language and display language for the STEPPS system. (See Appendix A for complete
definltions and explanations.)

The attributes associated with a process are: its ports, the links attached to
the ports, its transition matrix, its initiai state, and the number of repetitions of each
state that occurs before the process chooses a new state. The attributes of a link are:
the ports attached to it, its queue size iimit, initiai number of messages in its queuse,
time' tc accept or send a message (delay time), and the time to rastart a link that has

been waiting for activity.

11.C.1. Notation

The foiiowing informai and incompiete "WNF defines ;_t:_rrg_e_* of the syntax of the
STEPPS system used to describe the attri.utes of the process and iink nodes. The
usuai definitions for ietter, number, digit, and other non-terminals with common
descriptive names are assumed.

Generaiiy used terms:

<name> um <lotter> | <name> <digit> | <name> <leiter>
<process name> = <name>

TSome examples wiil use syntax not shown, such as: everything to the right of ""is
ignored and the words Aftribute, Queue, Volume, etc. can be abbreviated. The
compiete syntax is defined in Appendix A,

11.C Notation and definitions 11-7

<link name> <name>
<port name> <process name>.<port type><up to 3 digits>
<port type> 1|0

<process name>.I<up to 3 digits>
<process name>.0<up to 3 digits>

<input port>
<output port>

%R R % E

Connectlons between ports (simple connectlons):

<connection> uw <Input port>e<link name> | <link name>«<output port>

Transition matrices:

<transitlon definition> == <port name><repetition factor> = <initlal
state><transition probabilities and times>

<repetition factor>z= <null> | [<positiva integer less than 262144>]

<initial state> um <null> | ¢

<transitlon probabilities and times> ::= <port id, prob., compute
time> | <port |d, prob., compute time>;<transition
probabilities end times>

<port id, prob., compute time> ::= <port type> <up to 3 digits>: <prob comp>

<prob comp> - <probabllity>|<probability>,<c0mpute time>

<probability> u= <real number between 0 and 1>

<compute time> = <a non-negative real number>|<nuli>

Link sttributes:

<link attributes> u= Attributes <link name> <list of attribute definitions>
<list of attribute definitions> := <attribute definition> |

<attribute definition>, <list of attribute definitlons>
<attribute definitlon> == <attribute name> : <number>
<attribute name> = Queue | Volume | Delay | Startup

Example 11.C-1

ALPHA, L3, L7, and GAMMA are legal process and/or link names.
Consider the following STEPPS commands:

ALPHAIl « L3

L7 « ALPHA.02

Attributes L3 Queue:7, Volume:3, Delay:0.5, Startup:2.5
GAMMALI2[3]= 11: .4, 35; 12: 0; 04: .6, 1.5
GAMMA.04 =2 12: 5; 04: 0.5, 7.5

The first two lines ars examples of the notation for connectlons. The
third line displays the attributes of a link. The last two lines show how
transition probabilitles are represented. Thus the probability of
entering GAMMA.O4 from GAMMA.I2 is 0.6 and will take 1.5 units of
time. All STEPPS displays wlll order the ports of a process in numerlcal
order with input ports before output ports. - In addltion, missing
parameters are defaulted (e.g., GAMMA.I1 probabllities).

11.C Notatlon and definitions iI-8

12[3)
1 ALPHA 02 —> — > 11 GAMMA
0a*
L3 L7 J{
Q7 V3 Q1 vo
D05 S:25 D00 S:00
GAMMA 11 12 04
11 033300 023300 0.334,00
12(3] 0.40035 000000 0.600,15
04 000000 050000 050075

Figure II-1. Process and link graphical notationf

Only one port of a process will have a ¢ when a process’s entire transition
matrix is displayed.

A graphic notation used in later sections and chapters is shown in Figure II-1
of the last example. A process is a convex figure and will be represented by either
boxes or circles. Links will always be represented by straight lines. Connections will
be represented by lines with arrow heads denoting the direction that a message would
flow.

Chapter III contains an example set of simple and complex STEPPS models of
program communication structures. These examples demonstrate that the STEPPS
model is expressive enough to represent both toy and non-toy structures while
eliminating the details required by programming languages and the details required by

a Petri-net like model.

- — - - —— - - -

TNot all of the attributes of a process or a link will be displayed in later
examples.

ILC Notation and definitions 11-9

11.C.2. Summary of parameters to the STEPPS model

The foliowing is a compiete iist of the parameters that must be supplied for a

STEPPS modet:t

1.

A connecticn betwaer each process port and a link. Default port
connections are to link "DANGLING".

A transition matrix for each process showing the probabiiity of entering a
new state from each state and the amount of processing time taken before
the transition. Defauit probability values are determined by assigning

equal parts of any unassigned probability to each defaulted transition.
Default compute times are zero.

The initial state of each process (04s). The first port deflned is the
defaulted initial state.

The number of times a port activation can repeat before a new state Is
entered (12[3]). Default is 1.

The maximum queue length ailowed for each link (Q:7). Default is 1.
The initial number of messages in each queue (V:3). Defauit is 0.
The delay time caused by the operation of each link (D:2.5). Default is 0.0.

The start-up time to wait when using a link not slready in use (S:0.5).
Defauit is 0.0.

11.C.3. Graph definitions

The STEPPS modei is a graphical model and thus some abstractions have

proven useful in discussing the modei. When a graphicai structure is simiiar to that of

classicai graph theoretical abstractions, the ciassical structure name has been used®.

Some usefui definitions are:

Node -- A node is either a process node or a link node.

refer to Figure II-1.

*Many of the abstractions are based on the text by Berge [Berge 62]

Nt ok e BB e e g

11.C Notation and definitlons II-10

Path -- A path between two nodes is a sequence of nodes with each node connected
to the next one in such a way that a process is connected by an output port to
a link that is connected to an input port of the next process in the path. There
may be many paths between any pair of nodes. A path may include alternate
branches as long as each branch leads to the final node of the path.

Ad jacent -- An input port and an output port are adjacent if they are both connected
to the same link and no other ports are connected to that link.

Attached 1o -- A port is said to be attached to a link if it is connected directly tc tls
link. An input or output port is attached to a (possibly different) process node
if the port is attached to a link that is attached to the process by a link of the
ooposite type. In particular, there must be a path between the port and the
process through only one link.

11.C.4. State definitions

The structure of a process is described by potential transitions among the
states. The following abstractions are used when discussing the properties of states

of a process:

In-sequence -- A subset of the states of a process is said to be in-sequence if the
transition matrix of the process shows that once the process enters one state
of the set then, with probability 1, the process will enter the other states of
the set in a particular sequential order. In addition, no other state of the
process may transfer to any of the elements in the sequence other than the
first state.

Onto -- State x is onto state y if for any sequence of transitions starting at x and
terminating at the first occurrence of y, state x is not reentered.

One-to-2ne -- is a relationship between two states of a process occuring when the
only way for a state to recur Is to enter the other state exactly once and vice
versa. State x is one-to-one with state y if x is onto y and y is onto x.

Immediate-recurrent -- A state is immediate-recurrent if it can return to itself In one
transition. The process may return to the immediate-recurrent state without
entering any other state.

ILD. STEPPS system capabiiities

The STEPPS system Is designed for Interactive use. It -ontains facilities to
enter, manipuiate, dispiay, save and retrievs the description of a model. There are
facilltles to test the legality and consistancy of a description. There Is a faclilty for
the automatic recognition of possible deadiocks. In addition, the STEPPS system
contains a parameterizable modei simulator and facilities to display or copy the data
gethered during a simulation,

The notation defined earlier in this chapter is used both tc enter a model
description and to c splay the model. The displays available include prucesses and link
connections, and trensition values for a port and for a process. All possible paths
between any two processes can be displayed, but this is a very expensive operation
and not recommended because of large memory requirements.

Another ¢=ature of the J7EPPS system i: that it has been designed to facilitate
application of analysis programs that might be defined externally to the STEPPS
system.* Such analysis programs coule written ir Sail [VanLehn 71), Bliss/10 [Wulf
71], or FORTRAN. Thess program. be abls io operate on process transition
matrices, on process c> - tion matriccs, end on the graph connection matrix. The
incorporation of externasity defined functions necessitates a reconfiguration (a new

LOAD) of the STEPPS system, but no program modifications are requirad.

lii-1

Chapter 111

The Use of the STEPPS Approach to Program Design

This chapter presents examples using the STEPPS model and the STEPPS
system. These examples demonstrate that the model is rich enough to represent
several standard program communication structures. One example demonstrates how
the STEPPS system can pe used in the In'ltla! design of a program and another example
Gamonstrates how STEPPS can be used to analyze and help tune a multiprocessor
program that is under construction and was designed without using the STEPPS

system.

[11.A. Use cf *he STEPPS model

The STEPPS modeling schema can be used to represent a variety of program

con.tructs. The program designer controls the amount of detail he wishes to include in

_a model. Since the STEPPS model has been shown to be able to represent the detail

of both the UCLA and Petri net models, It can be used to represent programs at the
same operation level as those models. However, STEPPS is intended to be used to
depict a decompositlon at a mor» moduiar level which more closely represents a
functional system decomposition.

As a consequence of the STEPPS model belng a communications structure
mode!, programming details such as specific data dependent branching, indefinite (but
finite) looping, case statements, and assignment statements are not Intended to be -

modeled. Thus the followlng examples will demonstrate that the STEPPS mode!

R W

S e nion S T Y T R N ST TRy g eI R T T | R R —" W T R T R et e TV ISNTTROE, | pnater—

IILLA Use of the STEPPS model 111-2

abstrection, which is very much less expressive (or powerful) than a programming
language and more - =ressive than the simpler Petri-net or UCLA model, has the

expressive richnes: Jdel some real program structures.

I11.A.1. Fork and join

Informally, the ability for the STEPPS model to represent multiple data paths
has already been demonstrated. The situation is that one process can cause more than
one other process to commence processing (Conway’s "fork” [Conway 66]). After
some concurrent processing, the data paths may unite and processing again Gccurs in
only one processing unit (Conway’s "join"). There are several ways to model fork and
join. Figure 1lI-1 shows one method. Process FORK sends a message to both process
UP and process DOWN. In turn, they send messages to process JOIN1. JOIN1 must

receive a message from UP before it requests a message from DOWN.

N
e

S I FORK JOIN1

02

11 DOWN o 12

FORK.I1= + 01:1.0,¢ JOINLI]= % 12:1.0,t
FORK.Ol= 02:1.0 JOINL.I2= 01:1.0,t
FORK.02= 11:1.0 JOIN1.O1= 11:1.0
UP.I1= x 01:1.0,t DOWN.I1 = 2 01:1.0,
UP.Ol = 11:1.0 DOWN.Ol = 11:1.0

Figure IlI-1, Fork and join processes

01 |—p

Bt i sanii N e R b o

1
B Rl o R o

" 111.A Use of the STEPPS model 11-3

1ILLA.2. Subroutline processes

A subroutine process Is a program that can be shared among several different
processes. In terms of a STEPPS model a subroutine is a process that accepts
messages from another process; performs some computation and then sends a message
back to the calling process. Since messages do not contain any identificatlon nor any
other information, the subroutine can not direct a resulting message back to the caller
process. Instead a technique is used whereby the caller waits for a response from the
subroutine before it proceeds. Figure IlI-2 shows a graphical representation of the
subroutine SUBR and the process, CALLER, that calls the subroutine. CALLER calls
SUBR by sending a message to link SUBIN. As soon as the message is accepted
CALLER waits for a reply from link SUBOUT. Within this model each process that wants
to use the subroutine waits its turn to send a message to SUBR. Once the process
sends its request to the subroutine it waits for a reply from the link SUBOUT. The
timing parameters of the subroutine and the caller represent the action of a caller that
does no processing concurrently with a subroutine process.*

A subroutine process can also be called while the caller process continues
processing concurrently. This situation is modeled slightly differently than the one
above. The difference is due to the requirement that the caller process receives the
reply corresponding to its original request. Otherwise a second process could receive
a reply before the subroutine computes long enough to request its processing, i.e. the
second process receives the reply corresponding to the first process initialization.

This problem exlsts because messages (as defined in the STEPPS model) do not contain

tan implication of this method is that there is no guarantee that the calling process
receives the result of its call to the subroutine. However if, by conventlon, all calling
processes take no time before requesting their respective results, no problem ensues
because requests to and from the subroutine will occur in'the same order.

Lh R LR i L i L e U e

R —— B i i L i e RN LA R e - e VT T

JILA Use of the STEPPS model 111-4

\|/ \l/ SUBIN

Queve 2 }

(% | “

CALLER SUBR
Iy 01

: SUBOUT
l l/ Queve = |

CALLER.O, = Ix:l.0,0,0 ! wait for response, no concurrent computation

SUBR.I1 = 01:1.0,t | tis subroutine compute time
SUBR.OL = 11:1.0,00 ! Wait to be called again

Figure 111-2. Subroutine process

information and processes do not direct messages to other processes, only to
connected links. A solution is to introduce an intermediate process whose only
function is to call the subroutine and wait for a response. This is shown in Figure lll-
3. CONCALLER continues to process before eventually requesting a reply from port 1.
It is necessary that O, be onto I,, i.e, once a message is sent from port O, eventually
a message will be requested at 1,. The process INTER will actually perform the

subroutine call in the same manner as shown in Figure 111-2.

II1.A.3. Poisson processes and general service time processes

Typically, queueing theory models contain assumptions concerning the flow of

messages within a system of message processors. These assumptions concern

l

11LA Use of the STEPPS model 111-5

——1 =2 SUBIN
Queue 2 1
l T e 8 e T
I [+]] 11
' CONCALLER X b INTER SUBR
Iy 4—|<’—“‘ 12 01
SuUBOUT

o

CONCALLERO, = Lipt ! ps 1
INTER.I1 =# 01:1.0
i INTEROL = 12:1.0

INTER.I2 = 02:1.0
INTERO2 = 11:1.0

Figure 111-3. Concurrent processing subroutine call

processing rates and take the form of assigning processing time as a random variable.
The STEPPS system models a single processing time related t. a given state, but it is
possible to approximate a processing rate taken from some probability distribution.

The method used to approximate the production of messages with an

g Interarrival rate taken from a known probability distribution is as follows:
H 1. Let f be the probability density function of the given distribution. Choose
n to be the granularity of the approximation.
2. Divide the range of f into n distinct intervals Iy, .. ., Ine
3 p- S" f(t)dt This Is the probability of t being In the Interval.
4.ty = (§ HOA/p)
L—“_l—l—_-‘.u—h_

T e e

IILA Use of the STEPPS model

TS ARSIV O N S e T | e

This is the expected value of t in the interval.

5. Let the process POISSON send messages to link LINK and form the
connections LINK<POISSON.O1, .., LINKPOISSON.Op,. See Figure (I11-4).

6. The transition matrix for process A is defined by:

POISSON.O, = O;: P t; for x, im 1,

POISSON
o1 02 On

»L i J(LINK

Figure 111-4. Poisson arrival process

An example of this technique can be used to approximate a Poisson arrival rate

In the following manner. The density function for an expcnential rate between sending

messages with mean \ is (llh)e"/"

Choose a value, s, for tha probability of the start of the distribution. Thus
o0
o = { (1ne A at
t
which implies that the maximum value for tis tyay = -Nn(s). The interval [tmx,oo) Is
one interval and that the remaining interval, [Otppayh is divided into n-1 other
intervals. For convenience, the division will be into uniform Intervals of size w =
(tm,x)/(n-l).* Thus thz values for the probabilities for intervals Iy through Iy ore:
oy = S“"({ym-t/x dt = @-li=DPW/N _ gritw/\

isw
The values for the times for intervals Iy through 1,y are:

t = S(ii':?t‘fin"/* dt = (1-Dswsn) o~/ Giawan) e WA

When A = 260, ¢ = 0.001, and n = 10, the values for p; and t ure:”

*an example of 2 non-uniform interval will be shown in a later section of this chapter.

$The STEPPS system has a feature to automatically determine the probabliity values
and time given these parameters.

R RIS N

P SN e W

b ittt e

IILA Use of the STEPPS model -7

A.0, = 01: 535, 87.138; 02: .249, 286.696; 03: .115, 486.253; 04: .054, 685.81;
05: .025, 885.368

AO, = 06: .016, 1084.925; 07: .005, 1284.482; 08: .00'2, 1424.041; 09: .001,
1683.604; 010: .001, 2056.011

In a similar manner, any srrival rate at a link (e.g. to link ALPHA above) can be
approximated using the STEPPS model.

A general service time process can also be n’pproximated using the STEPPS
model (Figure III-5). The transition matrix for the general service time process,
GENERAL, is defined by:

GENERAL.I1 = O;: p;, t; and GENCRAL.O; = 11: 1.0, 0.0

|

I
GENERAL
o1 02 ,,, Op

R

Figure III-5. General service time process

1IL.A.4. Pipeline of processes

One convenient structure for asynchronous multiprocessing is a pipelins
consisting of a set of processes organized so that the results of one process form the
data for the next process. Multiprocessing occurs when there are data in each of
several processes in the pipeline. Figure IlI-6 shows the general structure of a
pipeline of processes. At one end is a source of data units (process A) and at the

other end is a sink for processed data units (process F). Connected in between the

P e W R B S
: sde o o ao o e e e e e e

!11.A Use of the STEPPS model 111-8

two are processes each of which has input ports all attached to one link and outpu!
ports all attached to another link. Since the results of one process are the data for
the next, each link between processes is connected to input ports of one process and
output ports of a second process. Historically, structures similar to a pipeline have
been successfully studied using queueing models [Kleinrock 75} A STEPPS model

obtains results pertaining to this struclure by means of simulation.

—>
A L C F

Figure 111-6. Pipeline of processes

I11.A.5. Synchronization

A multiprocessing program may contain process configurations that require
synchronization. One of the better-known synchronization primitive sets is Dijkstra’s P
and V operations on a semaphore. It is possible to model this behavior with the

* STEPPS model. A process implements a P operation by sending a message to a
LOCKSEM link and then waiting for a responding message before continuing (i.e. walt
for a response from LOCKEDSEM link). Likewise a V operation corresponds to sending

a message to an UNLOCK link. The STEPPS mode! would be:

LOCKSEM«PROCESS.0100 1 Attach to the lock semaphore
PROCESS.1100+LOCKEDSEM
PROCES$S.0100= 1100:1.0 | After performing a lock,

! wait for a response before continuing.

PROCESS.1100= other ports
UNLOCKSEM«PROCESS.0101 ! Attach to unlock semaphore

The notational definition of the synchronization processes is ac follows:

R T TV Sy S NN ST Y

B o

' IILA Use of the STEPPS modei _ -9

LOCKPROCESS.11+<LOCKSEM

LOCKPROCESS.12+SEMAPHORE

LOCKEDSEM«LOCKPROCESS.O1

LOCKPROCESS.I1 = 212:1.0 ! Obtain message from semaphore
LOCKPROCESS.I12 = 01:1.0 ! Let process performing iock continue
LOCKPROCESS.O1 = 11:1.0 ! Wait for next Jock request
UNLOCKPROCESS.11+UNLOCKSEM

SEMAPHORE«UNLOCKPROCESS.O!

UNLOCKPROCESS.I1 =2 01:1.0 ! Add one {0 semaphore
UNLOCKPROCESS.O1 = 11:1.0 ! Wait v sr more uniocks

Attributas SEMAPHORE Queue:n, Voiume:1
! n is maximum vaiue for semaphore
! Initial voiume of 1 ailows first lock to get through.

This technique is aimost an exact analogy to Dijkstra’s semaphores in that the
number of messages residing in the SEMAPHORE iink determines the number of LOCK
operations that can be performed. The difference is that there is a limit, n, of possible
locks. The use of UNLOCKPROCESS and UNLOCKSEM iink is redundant. The process
could be attached to SEMAPHORE instead of UNLOCKSEM: |
SEMAPHORE«PROCESS.0101 ! Attach to uniock lﬁ .somaphoro.

The graphic structure of the iock/unlock processes is shown in Figure I11-7.

A second exampie of a synchronization probiem is the Reader/Writer problem.
The problem is to aliow muitipie reader processes to be able to pass through a lock,
but to exciude aii writers so iong as any reader is not compiete. Once a writer
process tries to perform a lock other rnders'and writers are not permitted untii after
the writer has performed an unlock. Naturaily, the writer process does not proceed
_until all readers have compieted their read uniocks. The soiution to this problem
requires three processes: READLOCK, WRITELOCK, and WRITEUNLOCK (Figure I1I-8). A
reader process wiil send a messege to the PEADLOCK process and wait for e reply
from the READLOCKED iink before continuing. Likewise, a writer process wiii snond a
message to the WRITELOCK process and wait for a reply from the WRITELOCKED link

before continuing. The iink RWLINK initially contains N messages. Each reader wili

liLA Use of the STEPPS model I11-10

<] <
< F——
PROCESS
0101
100 k<
0100
I i At |
| |
LOCKSEM 1 : LOCKEDSEM
|
d LOCKPROCESS :
/l] 1§ (4] '
1 I2]
| |
Unlock the Semaphm:e \I :
| I Q:n v:l :
| SEMAPHORE |
|

Figure I1I-7. Lock/Unlock synchronization

cause one message to be removed from RWLINK. Thus there can be a maximum of N
simultaneous rezders before any reader is blocked.' The WRITELOCK process requests
all N messages from RWLINK before it allows 2 writer process to continue. When there
are already reader processes that have requested messages from the RWLINK,
WRITELOCK will wait until all current readers have performed a read unlock by sending
a message to RWLINK (each such message will be requested by WRITELOCK). After
WRITELOCK has all of the messages that were at RWLINK it allows a writer process to
proceed. No reeders can proceed sina there will be no messages at RWLINK until o
write unlock is performed by causing WRITEUNLOCK to send N messages to RWLINK

tAs with the PV model, there is only a finite number of possible readers. This Is not a
problem because the STEPPS model does not include dynamic creation of processes.

b b skt icki

e o

T W T W T —— T TR . A e

IIL.A Use of the STEPPS model

s e L Lo d i L

-11

and service to processes awalting at a link s FIFO. Only one writer process can pass

the lock since each would cause N messages to be requested from RWLINK and there

can never be more than N messagea thara.

Fomus=oa= == F —/cw - = i
| |
) [}
Readlock " ;l >l 11 READLOCK 4)|r I 3 Readlocked
| l 12 [}
|) \
I
Readunlock ' RWLINK E
I N X
Writeuniock Hf OI[N) |—> v‘_ . '
: WRITEUNLOCK ' :
| :
| |
! | :
Writelock !]| Sl 11 5 Writelocked
: 1 WRITELOCK o i =
| l
e e R e - :
READLOCK.I2<RWLINK
WRITELOCK.12¢~RWLINK+«WRITEUNLOCK.O1
READLOCK.I1= s [2:1.0 { Request a message from RWLINK
READLOCK.[2= 01:1.0 { Allow a reader to proceed
READLOCK.02= 11:1.0 ! Walt for another read iock
WRITELOCK.I1= s 12:1.0 ! Reguest message from RWLINK
WRITELOCK.I2[N]= 01:1.0 { After requesting N messages
! from RWLINK, allow a reader to proceed
WRITELOCK.Ol = 11:1.0 { Wait for another write lock

WRITEUNLOCK.11= s 01:1.0
WRITEUNLOCK.O1{N}= 11:1.0

1 Send messages to RWLINK
{ After sending N messages to
1 RWLINK, wait for next writer unfock

Attribute RWLINK Queue:N, Volume:N

Figure 111-8. Reader /Writer Synchronization

T o T R TR ey SR

i

T

L e o JRa g o i i e T R SRRty ST UV W M S iy CUROR L Epnam— [y Py AR N rosage - ' ® ol e

1I1.B Using STEPPS during system design: A Bllss/11 compiler I-12

111.B. Using STEPPS during system design: A Bliss/11 compiler

Bliss/11 [Wulf 72a] Is a system implementation language designed for the DEC
PDP-11 computer. Its only compiler is an optimizing cross compiler Implemented on
the DEC PDP-10. The language has been used as the implementation language for the
Hydra operating system [Levin 75, Wulf 75b] for the C.mmp computer, as well as for
other PDP-11 systems programs.

There are several reasons why a Bliss/11 compiler Is an appropriate program
to Implement on a multiprocessor (C.mmp). First, since Bliss/11 is the system language
for Hydra and C.mmp, it should be available on the Hydra system to make C.mmp self-
sufficient. In addition, the mechanism for moving programs between the two computers
is a time consuming and, presently, awkward arrangement. A second reason is that the
Bliss/!1 compiler is very large and slow. The compiler requires a large amount of
PDP-10 memory to do even small compilations. A third reason is that the internal
structure of the Bliss/11 compiler [Wulf 75a] consists of separate phases that could.
possibly be dlvided into separate processesf. Thus a Bliss/11 compiler is a program
that can be considered for implementation on a multiprocessor.

The STEPPS system will be used to predict how a Bllss/11 Implementation
might perform as a multiprocess program. Possible structures for the compiler and

structural refinements will be discussed.

111.B.1. An overview of the structure of Bliss/11

The Bliss/11 compiler is divided into seven relatively independent phases
(Figure 11I-9). The L;’s in the figure refer to intermediate representations of date
passed between the phases.

YThis conjecture has been discussed with the authors of Bliss/11 [Wult 75a]).

l11.B Using STEPPS during system design: A Bliss/11 compiler Il-13
TLA
DELAY
™
0PND [csx EVO LIFE
LEXSYNFLO PREF A
S RANK
Ly L ROX L] L
——| LEx | sYN | FLO - ! —— | RANK |
OPTR SEL G USEX
i N
i GPOL
LABEL
ASSIGNMENT
l'l
! FINAL
{
or |opTR
' coms| s LsT
1
ST | M| ume
REV | P
PACK CODE L
L L INACC| | BR L
PACK | —* ol cODE |t | cooe| F -
!
Mmp | ¢ REL
MP | A COOE
T
crs | 1
e | o
N

o s e it e

Figure 1li-9. Bliss/11 phase structure

e T—————n

e e U

11L.B Using STEPPS during system design: A Bliss/11 compller .

The following is a description of the compiler [Wult 75.]‘:

. . . the subroutine is the program unit to which each
physical phase is applied. Thus the source text for &n entire
subroutine is read and the phase LEXSYNFLO epplied 1o it,
producing Intermediate form Ly. In turn DELAY, TLA, .., and
FINAL are applied to the intermediate representations L Loy e
Le for the same subroutine, producing, respectively, Lo, Ly, ..,
Ly. The next subroutine is processed only after all phases have
been applied to its predecessor. A consequence of choosing the
subroutine as the unit to which successive phases are applied Is
that optimizations are applied to this unit; i.e., no optimizations
are applied which involve detailed structural knowledge of more
than one subroutine simultaneously.

The general attributes of the major phases are

summarized below . ..

LEXSYNFLO This phase performs lexical enalysis, declaration
processing, syntax analysls, and flow analysis.
The Input is the source program unit in character
string form. The output consists of: (1) a set of
symbol table entries, (2) a tree representation of
the parsed program unit, and (3) a set of lists
(generally threads running through the tree)
which define feasible global optimizations
(constant expressions which may be moved out of
loops and the like).

DELAY Delay has three primary functions: (1) to
determine the "general shape" of the object code
to be generated, (2) to estimate the “cost” of each
(linear) program segment, and (3) to determine the
evaluation order for expressions. By the "general
shape” of the object code, we mean those
properties of the operators (e.g., commutativity)
or properties of the target machine (e.g., indexing)
which may be used to simplify the computation of
a value. Decisions are also made at this point as
to whether any (or all) of the "feasible” global
optimizations arm, in fact, desirable. Actual
machine code Is not generated; rather various
flags and fields are set to guide local code
generation in a later phase. The cost metric is
used to guide selection of evaluation order and in
register allocation. The output of thls phase Is
identical to that of LEXSYNFLO (i.e., symbol table,
tree, etc.) except that certain information has

*Reproduced with permission.

ni-14

I1L.B Using STEPPS during system design: A Bliss/11 compiler

been added to the tree to signal the subsequent
phases of the compiler concerning the shape, cost,
and execution order of the code to be generated.

TLA, RANK, PACK

CODE

FINAL

The function of these phases is what in ot.er
compilers is frequently called “register allocation”;
the difference being that not only registers are
allocated, but memory locaticns as well. The
ontities which are assigned to i :ions (registers
or memory) include both ctupiler-generated
temporaries and user-defined "local” variables.
The output of this phase includes that of DELAY
plus the bindings.

The functicn of the CODE phase is to produce
locally optimal code for each tree node; hence its
output is a representation of the izrget machine
language (the tree is discarded at tl.is point). In
some cases the locally optimal code is completely
determined in DELAY; in these cases the action of
CODE is trivial. In many cases, however, further
analysis is required. For example, it is CODE’s
responsibility to determine the optimal sequence
of shift and mask instructions to move an
arbitrary subfield of one word into an arbitrary
position of another.

FINAL has two responsibilities. The simpler of
these is to prepare the final listing and object
code files. The more interesting responsibility is
a collection of relatively ad hoc “peephole”
optimizations. Thess optimizations are performed
by examining the actual code produced by CODE
and eliminating inefficiencies which CODE was
unable to detect. For example, FINAL will replace
a jump instruction which transfers to another
jump by one which transfers directly to the
ultimate destination. It will also remove
unreachable code, reverse the sense of certaln
tests, combine some instructions, etc.

111-15

As can be seen from the above, the phases operate indeperdently of each

other with respect to each subroutine. Thus while one phase is working with one

subroutine another phase can be compiling a different subroutine. The compiler looks

very much like a pipeline.

PG L R L VR SRR S RN SRS ULINS - TL . L
dheis i bl S

. 11L.B Using STEPPS during system design: A Bliss/11 compiler 1-16
111.B.2. Application of the STEPPS system to Bliss/11

A multiprocess model of the Bliss/11 compiier was examined using the STEPPS
system. A protocol of the use of the system for this application is presented in
Appendix B. The issues that were explored concerning the multiprocess decomposition
are:

1. How do specific alternate multiprocess decompositions of the compiler

affect throughput? Throughput was measured in terms of the number of
routires’ processed per unit time.

2. Does the performance of the model suggest other decompositions?

3. When the number of processors is restricted, what are the effects of
different scheduling algorithms?

4. What are the relationships among the number of processors available, the
average number of active processes, and throughput?

The mode!l of a multiprocess Bliss/11 compiler follows the ssme general
pipeline structure as the phases of the original compiler [Wulf 75a) Esch phase is
modeled as a server with an exponentially distributed processing rate.

Measurements of the operation of the real Bliss/11 compiler were taken; nine
programs of differing complexity were comgiled by an instrumented version of the
actual compiler. The total time spent in each phase was determined and the
corresponding percentage of total processing time was computed. These data are
shown in Figure 1lI-10. The phases are grouped slightly differently than those
discussed earlier, due to actual Bliss/11 structural properties; LEX is separated from
SYNFLO, and TNBIND combines TLA, RANK and PACK.

The processing rates of the STEPPS-modeled processes were chosen based on
the percentage of total processing from the Bliss/11 measurements. For example, the
processing rates for CCOE and SYNFLO were chosen to be .084 units and .216 units

*The unit of compilation in the Bliss/11 compiler.

I1L.B Using STEPPS during system design: A Bliss/11 compiler

Phase Time Percent of

(seconds) Total
LEX 67.92943 26.0 7
SYNFLO 56.38539 216 7
DELAY 9.64012 371%
TNBIND 2.78647 10.7 7
CODE 22.08524 8.4 17
FINAL 77.17126 29.6 7
Total 261.07621 1000 7

Figure I1I-10. Bliss/1! measured data

-17

respectively. The LEX process was considered to be the generating process which

provided elements to be processed at an exponential rate with mean .260 units.

Figure IlI-11 shows the set of commands to the STEPPS system used to create the

model (Appendix A contains a complete description of the STEPPS commands).

Model BL11

Density expon port lex.00 link Is mean .26

Density expon port synflo.o0 link sd mean .216
Density expon port delay.o0 link dt mean .037
Density expon port tnbind.o0 link te mean .122
Density expon port code.¢0 link cf mean .084
Density expon port final.o0 link fr mean .296
synflo.]20«|s

delay.]20+sd

tnbind.120+dt

code.l20«tc

final.120cf

synflo.o0 = 10:0; 120:1/10:1

copy delay.120, tnbind.120, code.120, final.120.synflo.120
copy delay.00, tnbind.00, code.o0, final.00:synflo.00
result.iO«fr

schedule noncompete result

attribute tc,cf,dt,fr,ls,sd Queue:100

Figure I1I-11. STEPPS Bliss/11 model commands

A graph representation of this model is shown in Figure 11I-12.

The first set of experiments consisted of simulating the model with one to six

111.B Using STEPPS during system design: A Bliss/11 compiler 111-18

r LEX J%—;[SYNFLO }.;{.;rocuwj_)l_){ memﬂ.)l-ar CODE ﬁH FlNAﬂ-)l—)‘—RESULLl
LS S0 o1 c CF FR

Figure 11I-12. Bliss/11 graph model

processors using one process per phase. For each number of processors, the effects
of three scheduling algorithms were also measured. These algorithms were: First-In-
First-Out (FIFO), Random, and Link (select the process with the ;argest number of
waiting messages). These algorithms are discussed in Chapter V.

The results of these experiments are shown in Figures 111-13, 111-14, 111-15, 1lI-
16, and 1lI-17. The measurements were performed on 700-900 messages
(representing routines) passing from the LEX p:ocess through the FINAL process. The
maximum possible throughput rate per experiment (i.e., simulation execution) is the rate
at which routines are produced by the LEX process. Thus the maximum expected
throughput rate is the reciprocal of the processing rate of LEX for each simulation,
4.00 routines per unit time when the expected time between routines is .250 (1
processor, FIFO). The observed throughput rate was found by dividing the number of
routines entering RESULT by the total processing time.

Prcrs. LEX Rate Thru Rate 7% Thru Rate Avg. Active Avg. Waiting

1 .254 0.96 240 1.00 4.98
2 272 1.78 484 2.00 3.28
3 279 2.74 76.4 296 1.61
4 252 3.40 85.6 3.38 0.44
5 272 3.37 91.7 3.66 0.04
6 .259 3.28 88.3 357 0.00

Figure 111-13. Bliss/11 Simulation FIFO Table

The measure that was used as the basis for comparing performance was the

R, e W

M"H

I11.B Using STEPPS during system design: A Bliss/11 compiier 1-19

Prcrs. LEX Rate Thru Rate 7 Thru Rate Avg. Active Avg.Waiting

1 .248 0.99 24.6 1.00 4.98
2 241 1.84 443 2.00 3.39
3 271 2.65 71.8 2.65 1.85
4 259 3.45 89.4 354 0.49
5 255 3.58 91.3 357 0.00
6 .270 3.26 89.7 3.47 0.00

Figure 111-14. Biiss/11 Simuiation LINK Tabie

Prcrs. LEX Rate Thru Rate % Thru Rate Avg. Active Avg.Waiting

| 242 0.91 220 1.00 4.64
2 241 1.96 47.2 2.00 3.37
3 273 2.78 75.9 2.94 1.53
4 .263 3.36 88.4 3.50 0.48
5 257 3.56 915 3.62 0.06
6 259 3.50 90.6 3.64 0.00

Figure 111-15. Biiss/11 Simuiation RANDOM Table

percent of maximum throughput rate. This measure was chosen because the measured
throughput rates varied due to the approximation to exponentiai processing rates. For
example, four processors using FIFO scheduiing showed a throughput rate of 3.40 out
of max rate of 1/.252 = 3.97 for 85.6 percent.

Several implications concerning this multiprocess model were apparent from
these results. First, the addition of more processors has a major, approximateiy linear,
effect on throughput until four processors are used. Addition of a fifth processor does
not cause a very large improvement (sbout 867% to 917). Adding & sixth processor
does not indicate any significant difference. Another factor is that the different
scheduling aigorithms do not seem to significantiy affect the modal’s performance. The
average number of active processes (and processors) lﬁd average number of ready

processes measures also indicate that after four processors are available most of the

[11.B Using STEPPS during system design: A Bliss/11 compiler 111-20

90
% MAX
THRU
RATE 80

70

60

50

Lo

30

20

Figure lI-16.

1 2 3 4 5 6
BLISS/11 PROCESSORS SCHEDULED

Bliss/11 Percentage Maximum Throughput

, 1IL.B Using STEPPS during system design: A Bliss/11 compiler

THRU
RATE

3.8
3.6
3.4
3.2
3.0
2.8
2,6
2.4
2,2
2.0
1.8
1.6
1.4
112
1.0
0.8
0.6
0.4
0.2

1 2 3 4 5 6
BLISS/11 PROCESSORS SCHEDULED

Figure lil-17. Graph of Measured Throughput

in-21

111.B Using STEPPS during system design: A Bliss/11 compiler 111-22

required processing power is available. This helps confirm the observation that the
addition of more processors beyond four doss not lead to as major a performance
improvement as adding one processor to fewer than four processors.

The next set of experiments included multiple copies of some of the slower
processss as part of the mode! as an alternative to the simple pipeline structure. The
only process that could not be duplicated was the LEX process since part of its
function Is recognizing the sequences of characters as delimiting a routine definition.*
An examination of the data indicated that there were three major bottlenecks. The
bottlenecks were identified by locating links between 1vocesses where the expected
queue length was large. Figures 11I-18, 11I-19, and 111-20 show the expected queus
lengths at the links between the processes. Naturally, these weru the same processes
that had relatively slow processing rates¥. Three alternate structures were examined:

A. 2 FINALs and 2 SYNFLOs;

B. 3 FINALs and 2 SYNFLOs;

C. 3 FINALs, 2 SYNFLOs and 2 TNBINDs.

Precrs. LS SO DT TC CF

9.194 0000 0000 0000 ©.000
8.403 5.148 7.172 8107 9.354
2.108 0010 0263 1505 6.40!
5.682 6.648 8817 9048 9.643
2765 1,770 2556 3303 6.674
3596 2.100 3.432 5350 8732

DD WN ~—

Figure 111-18. Bliss/11 Simulation FIFO Queue Lengths

These structures were run with 1, 5, 8 and all possible processors. Although

*This can be done by Begin-End counts.

*The large queue that formed before the Code phase was due to Code being unable to
send results to Final and thus had to wait before processing new rautines.

111.B Using STEPPS during system design: A Bliss/11 compi'er 111-23

Prcrs. LS SD o7 TC CF

0.410 0615 0.000 0.219 0.001
7.923 0.087 0987 5364 9.1l
4.139 0078 0.713 4533 8892
3459 1.136 4.623 6972 9.248
4266 3.268 5.757 7.018 8945
5903 6.204 8.404 8999 9.836

OO WN —

Figure I1I-19. Bliss/11 Simulation LINK Quaue Lengths

Prcrs. LS sD ot TC CF

8.461 4329 1796 0623 0.717
7.928 0404 0864 1362 7.925
4561 0.047 0975 65494 §&! 3
3355 2727 5326 7.749 9.593
3.419 1488 3306 5738 9.176
2976 3.762 7.766 8661 9.472

OO WN —

Figure 111-20. Bliss/11 Simulation RANDOM Queue Lengths

the simulations were run using all three scheduling algorithms, there was not much
difference in performance due to the scheduling algorithm (less than one per cent).
Thus Figures 11I-21, 11I-22 and IlI-23 show the results using either FIFO or LINK
scheduling. Figures 111-22 and 111-23 also show graphs of the FIFO results without
using multiple copies of phases. As the graphs show, each of the multiple process per
phase models performs better than the single process per phase model, given enough
processors. Structure C, above, performed the best among them.

The difference among the structures was not very large, viz. sbout 57 of the
maximum rate. Although there is improvement using the multi-copy structures, the
improvement over the single process per phase does nut appear to warrant such
structure. Instead, the bottleneck appears to be the LEX process which is inherently

sequential. This observation suggested another experiment to determine the effects of

111.B Using STEPPS during system design: A Bliss/11 compiler I1l-24

Decom- Prcrs. LEX Avg. Avg. Thru 7 Max

position Rate Active Ready Rate Thru Rate
Bl1 (A) 1 253 1.00 478 098 24.8
3 .251 2.88 223 2.87 720
5 272 3.68 2.28 359 96.8
8 267 3.79 0.00 3.70 98.8
Bl1 (B) 1 276 1.00 479 098 27.0
3 276 2.82 204 277 76.4
5 261 3.71 0.38 3.65 95.3
6 255 3.99 0.00 3.89 99.2
8 253 3.94 0.00 3.93 99.4
9 278 3.64 0,00 358 995
B11 (C) 1 .288 1.00 543 0.92 265
3 .263 2.81 225 276 726
5 274 3.55 0.41 3.46 94.8
8 .259 3.86 0.01 385 99.7
11 244 4.03 0.00 4.07 98.3

Figure 111-21. Table of Results of Multi-copy Bliss/11 Phase Models

further decomposing LEX into a pipeline of phases: FILE, ATOM, and NT|SEARCH. The
goal was to increase the rate at which messages reached the SYNFLO phase. The
* results of this set of experiments are shown in the table of Figure 111-24. It can be
seen that the rate at which messages queued up to the SYNFLO phase decreased from
26 10 .18 for an increase of 447 due to the further decomposition of the LEX phase.

Other process structures may also be studied using the STEPPS system.
Current research into the phases of Bliss/11 indicates that two of the phases could be
restructured. The DELAY phase [Johnsson 76] could perform more complex operastions
(and would be slower). The FINAL phase* could also be altered or decomposed even
further into smaller independent processes.

Since the d;ta presented represent about fifty separate model simulations, the
Bliss/11 experiments ware executed over several weeks, Each simulation required

*S. Hobbs, currant research.

111.B Using STEPPS during system design: A Bliss/11 compiler 111-25

b,2
4,0
Bl &
3.6
3.0
3.2
3.0
2.8
246
2.4
2.2
2.0
1.8
1.6
1.4
1,2
130

THRU
RATE

1 3 5 6 8 9 11
PROCESSCRS 8CHEDULED

Figure 111-22. Multi-copy Bliss/11 Phase Model Thru Rate Graph

111.B Using STEPPS during system design: A Bliss/11 compiler

% COF
MAX THRU
RATE

Figure 11I-23. Multi-copy Bliss/11 Phase Model Percentage Max Thru Rate

Greph

100

90
85
80
75
70
65
60
55
50
b5
40
35
30
25

1 3 5 € 8 9 13
PROCESSORS SCHEDULED

I11-26

111.B Using STEPPS during system design: A Bliss/11 compiler 11-27

FILE NS Send Avg. Avg. Thru 7 Max 7 Max

Prcrs Rate Rate Active Ready Rate of FILE "LEX"
3 119 .29 2.96 2.97 238 27.13 69.02
5 120 .20 4.41 0.79 320 38.40 64.00
7 126 .18 4.92 0.02 352 4435 63.36
8 d21 .18 4.85 0.00 329 3938l 59,22

Figure 111-24. LEX Decomposition Results

from four to thirty minutes of execution time for a total of about six hours of
execution time. This amount of time was not particularly large since It is about the
_same amourit of time that was required to obtain the Bliss/11 data originally.

As detailed in Appendix C, these simulation experiments were statistically
validated. Based on trial runs, message traffic flows and simulation run times were
determined for eliminating initial condition bias in the subsequent experiments. Since
there were many different simulation experiments, one was chosen for developing
stutistical confidence intervals. Thus, for the experiment using six processors anc FIFO
scheduling, the 907 confidence intervals computed were: LEX Computing Time,
[.245,264); Percent Thru, (84.6,885]; and Thru Rate, [3.28,357]. Comparing these
intervals with the results shown in Figure 111-13, it can be seen that each of the values
falls withir these respective confidence intervals (i.e, 259, 88.3, 3.28).

These Sliss/11 experimental results should have several implications to system
designers of a multiprocess Bliss/11 compiler. Foremost is the conclusion that there
should be an increase in processing throughput of about four times over a sequentlal
compiler. This estimated increase is significant in that it demonstrates both potential
benefits and potential limitations in developing a (possibly) complex multiprocess
Bliss/11 compiler. Given that the designer chooses to develop the multiprocess

compiler, it can be observed that the compiler should not necessarily be designed to

1IL.C Using STEPPS during system construction and tuning: Hearsay Il 111-28

dedicate a processor to each prucess. The simulated result shows that there ls an
approximate linear increase in throughput when using @ small number ci processors,
but after about two thirds of the number of potential processors are used the
maximur throughput rate is almost achieved. The bottleneck was shown to be the
lexical analysis phase of the compilation process. Finally, it was shown that simple
scheduling disciplines (FIFO and most messages waiting) did not affect potential
throughput .-ate more than a random procass scheduling technique. Thus these simple
experiments using the STEPPS model and STEPPS system should provide information

that would affect the design of a multiprocess Bliss/11 compiler.

111.C. Using STEPPS during system construction and tuning: Hearsay Il

The Hearsay Il speech understanding system (HSID) [Fennell 75a, 75b, Lesser
74] has been designed to utilize a variety of analysis sources to solve the problem of
understanding human speech for performance of a iask [Newell 71) The problem has
been functionally decomposed so that individual subparts of the problem solution can
be performed concurrently, with each contributing to the speech understanding task.

The Hearsay Il system is being implemented on both a uniprocessor, a DEC
PDP-10, and in a similar form on a multiprocessor, the CMU C.mmp. The uniprocessor
implementation is structured as if it were being implemented on a multiprocessor, with
a scheduler deciding on the actual order of processing. The C.mmp implementation
. contains some design alternatives chosen to reflect restrictions due to the Hydra
operating system [Levin 75, Wulf 74]. Some implementation Issues are common for

both machines since the systems are based on the same design.

R e el M e o i L e D

—— o il

111.C Using STEPPS during system construction and tuning: Hearsay Il 111-29
111.C.1. Overview of Hearsay 11 system organization

The following is a description of the organization of the HSII system [Fennell

. and Lesser 75]?

.. The Hearsay 1l speech-understanding system
(HSII) (Lesser, et al. 1974; Fennell, 1975; and Erman and
Lesser, 1975) currently under development 8t Carnegie-
Me'lon University represents a problem-solving organization
that can effectively exploit a multiprocessor system. HSII has
been designed as an Al system organization suitable for
expressing knowledge-based problem-solving strategies in
which appropriately organized subject-matter knowledge may
be represented as knowledge sources capable of contributing
their knowledge in a parallel data-directed fashlon. A
knowledge source may be described as an sgent that
embodies the knowledge of a particular aspect of a problem
domain and is useful in solving a problem from that domain by
performing actions based upon its knowledge so as to further
the progress of the overall solution. It is felt that the
knowledge source is an appropriate unit for use in the
decomposition of a knowledge-intensive task domain.
Knowledge sources, being suitably organized capsules of
subject-matter knowledge, may be irdependently formulated
as various pieces of the knowledge relevant to a task domaln
become crystallized. The HSII system organization allows
these various Independent and diverse sources of knowledge
to be specified and their interactions coordinated so they
might cooperate with one another (perhaps asynchronously
and in parallel) to effect a problem solution. As an example
of the decomposition of a tesk domain there might be distinct
knowledge sources to deal with acoustic, phonetic, lexical,
syntactic, and semantic information.

% % %

.. . A productioa system is a scheme for specifying an
information processing csystem in which the control structure
of the system is defined by operations on a set of
productions of the form *P* 4 A, which operate from and on a
collection of data structures. 7' represents a loglcal
antecedent, called a precondition, which may or may not be
satisfied by the information encoded within the dynamicaily
current sst of data structures. 1f *P*is found to be satisfied
by some cata structure, then the associated action ‘A’ may be
executed, which presumably will have some altering effect
upon the data base such that some other (or the same)

- - - 5 0 O

*Used with permission.

R R T A

1ILC Using STEPPS during system construction and tuning: Hearsay II

precondition becomes satisfied. This paradigm for sequencing
of the actions can be thought of as a data-directed control
structure, since the satisfaction of the precondition is
dependent upon the dynamic state of the data structure.
Productions are executed as long as their antecedent
preconditions are satisfied, and the process halts either when
no precondition is found to be satisfied or when an action
executes a stop operation (thereby signalling problem
solution or failure, in the cace of problem-solving systems).

* % %

. The HSII system organization, which can be
characterized as a "parallel” production system, has =
centralized data base which represents the dynamic probiem
solution state. This data base, which is known as the
blackboard, is a multidimensional data structure which is
readable and writable by any precondition or knowledge-
source process (where a knowledge-source process is the
embodiment of a production action). Preconditions are
procedurally oriented and may specify arbitrarily complex
tests to be performed on the data structure in order to
decide precondition satisfaction. Preconditions are
themselves data-directed in that they are tested for
satisfaction whenever relevant changes occur in the data
base, and simultaneous precondition satisfaction is permitted.
Testing for precondition satisfaction is not presumed to be an
instantaneous or even an indivisible operation, and several
such precondition tests may proceed concurrently.

£ % s

. . . The basic structure and components of the HSII
organization may be depicted as shown in the message
transaction diagram of Figure 11I-2%. The diagram indicates
the paths of active information fiow between the various
components of the problem-solving system as solid arrows;
paths indicating control activity are shown as broken arrows.
The major components of the diagram include a passive global
data structure (the blackboard) which contains the current
state of the problem solution. Access to the blackboard is
conceptually centralized in the blackboard handler module,T
whose primary function is to accept and honor requests from

The blackboard handler module could be implemented either as a
procedure which is called as a subroutine from precondition and
knowlecze source processes, or as a process which contains a queue 0}
requests for blackboard access and modification sent by precondition and
knowledge source processes. In the implementation discussed in the
paper (i.e, Fennell and Lesser 75), the blackboard handler module is
implemented as a subroutine.

D e w1 -y

111-30

I11.C Using STEPPS during system construction and tuning: Hearsay Il 1-31

the active processing elements to read and write parts of the
blackboard. The active processing elements which pose these
data access requests consist of knowledge-source processes
and their associated preconditions. Preconditions are
activated by a blackbcard monitoring mechanism which
monitors the various write-actions of the blackboard handler;
whenever an event occurs which is of interest to 2 particular
precondition process, that precondition is aclivated. If upon
further examination of the blackboard, the precondition finds
itself "satistied,” the precondition may tren request a process
instantiation of its associated knowledge source to be
established, passing the details of how the precondition was
satisfied as parameters to this instantiation of the knowledge
source. Once instantiated, the knowledge-source process cen
respond to the blackboard data condition which was detected
by its precondition, possibly requesting further modifications
to be made to the blackboard, perhaps thereby triggering
further preconditions to respond to the latest modifications.
This partizular characterizatio., of the HSII organization, while
certainly overly simplified, shows the data-driven nature of
the knowledge source activations and interactions.

111.C.2. STEPPS model of Haarsay Il organization

The STEPPS mndel was used to represent the operation of the individual
processing components of the HSIl system, the precondition (PC) processes and the
knowledge source (KS) processes. In addition the data base (DB) blackboard was
modeled as a set of synchrr.nization locks similar to those presented in Section IILA.5.
In some cases locks cascaded, i.e * lock operation caused performance of {wo or
more other locks. The details of the STEFPS HSII models are shown in Appendix B.

Figure 111-26 shows a detailed description of the PC process actions and Figure
I11-27 shows the corresponding STEPPS graphic and system transition matrix notations.
The essantial common actions of a PC are modeled: wait for condition, examine DB,
compute, possibly initiate a KS, and repeat.

Similarly, Figure I1I-28 shows a detailed description of the KS process actions

and Figure III-29 shows the corresponding STEPPS graphic snd transition matrix

s

11i-32

111.C Using STEPPS during system construction and tuning: Hearsay Il

siajewesed pue

ssadjo.d
Sy @B

oweu SH

-

paisnes

e

« Bjep/fisanbal ¥

ejep/isanbas p -

« ejepfisanbai y

>

wsiueydraw

<y

Bulsojiuow

J@jpuey

gjep/isenbai p =

FRLELPIES
apou
‘88

Figure 111-25. Simplitied HSII System Organ ration

111.C Using STEPPS during system construction and tuning: Hearsay Il 111-33

Precondition

I1: Wait for condition occurrence
With probability p, wait for more condition occurrences (go to I1)
02: Perform DB read lock
[2: Wait for lock completion
03: Perform read
2: Wait for read completion
Compute
With probability p, perform more reads (go to 03)
04: Perform DB unlock(s)
05: Start up a S (or set of KS's or no KS's)
' terminate processing (go to I1)

Figure 111-26. Description of Precondition Process

1 1 ! 1 ! 1 1
I 02 12 03 I3 04 05

Precondition

PC.Il=s 11:pt, ;02:1-puty.. ! Either wait for more messages
c"Pe e l-pe
1 or DB read lock

PC.02= 12:10 | Wait for lock complete
PC.l2= 03:1.0 ! Perform read
PC.O3= 13:10 ! Wait for read complete

PC.I3= 03:p,t ;04:1-pr,tl_p ! Either read more or unlock

PCO4= 05:1.00" r 1 Start up KS(s); the time is processing time
! before restart

PC.OS= 11:1.0 ! Wait for restart

Figure 111-27. STEPPS Precondition Model

notations. The essential common KS process actions are modeled: wait to start,
examine data base, process, and possibly aiter the data base.

It can be seen from these descriptions that there are relationships between
the Precondition processes and the Knowledge Source processes. These sare
relationships whereby PC's send messages to KS’s. In STEPPS, this is represented by:

KS.11<KSLINK+PC.05 1 Connect PC to KS through KSLINK

111.C Using STEPPS during system construction and tuning: Hearsay I 11-34

Knowledge Source

11 Wait for wake up
02: Perform DB read lock(s)
12: Wait for lock completion(s)
03: Perform read
13: Wait for read completion
Compute
With probability p, perform more reads (go ‘o 03)
04: Perform DB read unlock(s)
Compute
With probability py terminate processing (go to I1)
05: Perform DB write lock(s)
I5: Wait for lock cempiaiion
06: Perform write
16: Wait for write completion
Compute
With probability p,,, perform more writes (go to 06)
07: Perform DB write Unlocki(s)
Terminate processing (gu to 11)

Figure 111-28. Knowledge Source Process Description

The model has been designed so that there is some decision process which
chooses which PC will next receive notice to start processing. This decision process,
called PCSELECTOR, is attached to the port Il of each precondition. Figure 111-30
shows the graphical relation between PCSELECTOR and the set of preconditions. A
possible transition matrix for PCSELECTOR when there are n preconditions is:

PCSELECTOR.O,=01:py; O2:pgi . . . Onpp for x=i,.. 40

The PC processes and KS processes interact with each other by reading and
writing the data base. The data base accessing is an example of the Reader /Writer
problem that was discussed in an earlier section.

The Hearsay 1l system has been designed to allow the dynamic creation of KS
processes. These processes perform their respective operations and then disappear.

Since the STEPPS model was not designed to aliow for this facility, it must be

e g N g | e, e A e e g vy R TRRSRRTTE

B e o i D o Ll

[I1.C Using STEPPS during system construction and tuning: Hearsay [l [11-35
l 1 1 ! 1 T 1 1
11 02 12 03 13 03 0 B 06 16 07

Knowledge Source

! Transition matrix

KS.l1=2

KS.02=
KS.I12=
KS.03=
KS.13=

KS.04=
KS.05=
KS.I5=
KS.06=
KS.16=

KS.07=

02:1,'1

12:1.0
03:1.0
13:1.0

Next step

'ty represents computation time before
! doing read lock

! Wait for read lock completion

! Perform read

! Wait for read lock

03:p,, ty, 5 04:1-ppty. ! Either do more reads or perform unlock
r Py rrl-py

ll:p'.lp'; 05:1-pp(| -py

15:1.0
06:1.0
16:1.0

! The. times can be different

! Either terminate or perform write uniock
! Wait for write lock

! Perform write

! Wait for write complation

06:pw,tpw; 07:l-pw,tl_pw! Either write more or unlock

I1:1

! Wait to restart

Figure [11-29. STEPPS Knowledge Source Model

PCSELECTOR
01 02 e On
XY Y.
M 2] Pen
-> =
Vi
—> —> T~ KS d
. KS [‘ ! | E s

Figure 111-30. PCSELECTOR process

111.C Using STEPPS during system construction and tuning: Hearsay Il [11-36

approximated. The method is to allow a fixed number of instantiations of a single KS
to act as a pool of KS's. These KS’s compute in-parallel since different copies of the
KS can accept messages from their entry link (Figure 111-31). The model performs as if
" there were some maximum number of KS's of each type allowed. When a suitsble

number of copies of a KS are available the limit will not atfect pertormance.

KS, ks. | .. . |Ks

Figure 11I-31. Set of identical Knowledge Sources

111.C.3. Performance questions pertaining to the HSII model

The model of HSIl emphasizes implicit interprocess communication via data
directed processing. This communication is the basis for interprocess interference
which occurs either when processes are blocked when attempting to perform a data
lock or when a process waits for the occurrences of actions of another process
(modeled as waiting for a message).

The following are pertinent questions for structuring of the Hearsay Il system:

1. How much of the data base is locked and when?

2. What is the expected interference due to the locking?

3. How do various locking strategies compare?

4. Should a PC start up a set of KS instantiations sequentially, in parallel or
in groups?

5. How many processors are needed?

6. What are the effects of alterrate scheduling algorithms?

111.C Using STEPPS during system construction and tuning: Hearsay I 111-37
7. How caa the processing load be balanced among available processors and
with respect to the data base?

8. Is there a particular number of processes that should be dedicated to KS’s
and anothsr number that should be dedicated to PC’s?

The ultimate goal is to be able to solve the speech prob'sm In the least amount
of real time. The questions relate to the goal in that they provide an understanding of
those places where Hearsay Il is performing well and poorly with respect to

interprocess activity.

111.C.4. Application of the STEPPS systemn to Hearsay Il

The STEPPS system was used to analyze a Hearsay Il phenomenon discovered
by Fennell [Fennell 75a, 75b} He appended a multiprocess simulator to a version of
the developing HSIl system and measured the processing performance under several
multiprocessor configurations. One of the parameters of interest to him was the effect
of locking on the the throughput of the multiprocessing system. Throughput is
important to the speed with which the HSIl system would perform the speech
* understanding task. Measures of throughput that he used were:

1. The average number of active processors, and

2. The average number of inactive processors.

One of Fennell’s results was that when locking was used, to insure data
integrity and to prevent deadlocks, he obtained a measure of throughput averaging
4.16 processors with 16 processors available. Howaver when the locking structure of
the simulation was turned off.‘r the average number of active processors was found to
be 11.84. Fennell did not explain this phenomenon, but noted that the locking
interference had a significant effect on effective parallelism [Fennell 75a, 75b}

- o o s v -

*The removal of the locking, as reported by V. Lesser of the HSII researchers, does
not affect data integrity since the locking used in Fennell’s simulations concerned
independent fields of nodes.

J11.C Using STEPPS during system construction and tuning: Hearsay 11 111-38

The STEPPS system was proposed as a tool to analyze this phenomenon. The
motivation was twofold. First, the locking/no locking problem indication of close to
threefold processing utilization deterioration was important enough to analyze.
Second, this problem appeared to be a practical application of some of the STEPPS
facilities.* A factor that added to the appropristeness of the STEPPS model was that it
is easy ‘o model a data driven organizational structure, like HSIl. One issue for
investigation was whether the probabilistic approach to modelling interprocess
communications was sufficiently powerful to reproduce the phenomenon found using
Fennell's simulation. It successful, the STEPPS model could be modified for
representing costly HSII system modificatiuns, and predictions could be made of their
effects on HSII performance.

A brief discussion of a pertinent part of the locking algorithm follows (See
[Fennell 75a] for complete details). The data bass consists of a set of nodes arranged
in a two-dimensional structure. Along one dimension are 9 categories called lexical
levols. The second dimension represents utterance time and is divided into 30 distinct
units. Thus a node exists in a lexical level at a given utterance time. Nodes can be
grouped into time ragions covering all nodes on a single lexicon level occurring
between time a ard time b (a s b). Locks can be performed on individual nodes or on
regions--locking all nodes within the regions.

In order to prevent deadlocks, locking is performed in a hierarchical manner
using specified convertions. The hierarchy is that locks occur in the order: by lexical
leve! and ‘hen by increasing time. Each process performs all of its locks, performs
some processing, and then releases ali of its locks. There can be no deadlocks since
all required data nodes must be available before any processing occurs and sll nodes

t1t was not originally recognized that some limitations of the STEPPS system would
also be Identitied. This will be discussed later.

i e, o T T T B T R g M e N —m—pm——— g SR . —

I11.C Using STEPPS during system construction and tuning: Hearcay Il 111-39

are released before any new locks are performud. In addition, when two processes
attempt to lock the same pair of nodes (possibly among other nodes as well), they can
not mutually block each other since they both must perform thelr locks in the same
order.

An additional attribute of the HSII locking convention is that a process
maintains a lock on a node until it releases all of its nodes. This means that if a
process locks node A but is blocked from locking node B, it waits for the release of
node B before continuing and maintains Its lock on node A while being blocked. This
method guarantees that each process will eventually complete its required processing,
but the method can cause a third process to be blocked unnecessarily If It only tries to

lock node A.

II1.C.5. The STEPPS simulation of the locking problem

An analysis of the Hearsay II knowledge sources and preconditions was
performed to determine the parts of the blackboard examined by each process type.
By executing the HSII prototype system in a sequential mode with data collection
features turned on, members of the HSIl development team' generated data that was
analyzed to detsrmine proper probabilities and computat'>n tines uscd in the STEPPS
model of HSIL

Due to the STIPFS svsi~.: overhead, ine complete set ¢f pos<ibia iucking
structures could ro: be mode'su. Thus the % TEPPS modal of HSII sop.uxime'ad the
locking structure. Foi (ne straulation ¢f HSII it was dotermnw < tha locking neeurred in
only 23 ways witn respsct to iexicon le._.s. Figurs ill-32 shaws the matrix
representing these lecks and which processes performed the locks. Each process

'Special appreciation is ackncwl.1 jgad to V. Lzsser, R. Fennell, and G. Gi'!.

111.C Using STEPPS during system construction and tuning: Hearsay I 111-40

could choose from among its possihle locks (as shown in the table) uniformly as the

current locking set for the process.

Lock Lexicon Lock Lexicon

No. Levels Locked No. Levels Locked
1. WORD + WRDSURN 13. PHON + PSEG
2. WORD + WRDSURN + SURN 14, PSEG + SEG
3. WORD + SURN + PHON + MXN 15, SHDSENT

4. WRDSURN + SURN + PHON 16. SHDWORD

5. WRDSURN + SURN 17. WORD

6. SURN + PHON + MXN + PSEG 18. WRDSURN

7. SURN + PHON + MXN 19. SURN

8. SURN + PHON 20. PHON

9. PHON + MXN + PSEG 21, MXN

10. PHON + MXN 22. PSEG

11. MXN + PSEG + SEG 23. SEG

12. MXN + PSEG

Process\Lock 1 2 3 4567 8 9 1011121314151617181920212223

PRE|RPOL XX X X X XX X X
KSjuv XX XX X XXXXX X

PRE|PSYN X
KS|PSYN XX XX X X
KS|CSEG X X XX X X
PRE|PSC X
KS|SEARCH X
KS|TIME X X X
PRE|UTTB

KS|UTTB X X
PRE|SEG X X
KSISEG X
PRE|ALO X X

KSJALO X X X X X

»

X X x x

M X X x
XX x x

>

b3

Figure 111-32. Hearsay Il Locking Structure Matrix

The thrust of the simulation experiment was to reproduce Fennell’s results
using a probabilistic model. Appendix B contsins definitions of the probabilities used
for the simulation. The first question of interest was how the simulation performed

with locking vs. without locking.

LI IrRSENEN——.

111.C Using STEPPS during system construction and tuning: Hearsay Il 111-41

The Indlvidual time divislons for locks also contribute to locking Interference. A
second Interesting question was how the region sizes affected simulated interference.
The STEPPS system possd an overhead limitation on what could be modeled and so
hindered answering this question. Specifically, it was not possible to represent locking
In all of the 30 possible divislons (4680 possible regions). Instead each lexicon level
was considered as a single region and decomposed Into subregions in successive
experiments until the overhead of running the STEPPS system overwheimed the
computer.*

The parameters that could easily be altered for the system simulations were:

the existence of locking,

the number of subregions for each region,

the number of processors available, and

the probabilities that the processes performed their locks.

The region locks for each process were formed by examining the program
structures for each of the modeled processes. The probabilities used by a process to
choose locking structures were assigned uniformly over the possible locks. The times
between locks and the time for a lock to take place were taken from the HSII system
data.

Several models of the system were simulated and representative results are
shown in Figure IlI-33. The results demonstrate that with no process interference
there can be 12.26 processors active on the average. This corresponds to the results
found by Fennell's simulation of the entire HSII system. The second set of results
(with locking) shows that when the region locking interference is introduced there is a

dramatic decrease in parallel processing. As the regions were further decomposed,

parallel processing did not substanlially change.

111.C Using STEPPS during system construction and tuning: Hearsay Il 111-42

Locking Strategy Avg. Active Subregions Total Locks
No locking interference 12.26 9 23
With locking 311 9 23
Subregions MXN(2), PSEG(2) 3.06 i1 53
Subregions MXN(2), PSEG(2), PHON(2) 3.27 11 75
Subregions MXN(2), PSEG(3), PHON(2) 3 11 13 85

Figure 111-33. Hearsay Il Representative Results

As diccussed in Appendix C, the statistical validation of these results, based on
the elimination of initial condition bias, was accomplished by performirg trial runs of
the Hearsay 11 model to deterime subsequent simulation experiment run times.
Confidence intervals were not determined for the statistics preserted sinve
accumulated statistics (i.e., average active processors) requires multiple simulations
[Gordon 69] which were felt to be too expensive. Moreover, the STEPPS Hearsay Il
simulation results were correspondences to Fennzll’s simulation experiments, which
were also not validated [Fennell 75a}

The STEPPS simulation results demonstrate that the probabilistic approach can
be used to model the Hearsay Il multiprocess communication structure. Both the
Fennell and the STEPPS simulations indicated about a threefold decrease in a measure
of processing throughput due to locking. In addition, the relatively simple STEPPS
model indicated that the granular locking structure used by Hearsay Il may not be

necessary.

111.C.6. Reflections on the STEPPS Hearsay 11 simulation

The STEPPS system's use as a tool for examining the Hearsay 11 process

structure was successful in that STEPPS adequaicly represented major interprocess

communication dependencies and produced results reflecting on the Hearsay 11 system

I11.C Using STEPPS during system construction and tuning: Hearsay Il 111-43

structure. The probabillstic approach applied within the STEPPS structure and the
approximations to the actual impiementation were sufficiently powerful to reproduce
Fenneli’s result and indicate an area for HSII system modification. Another significant
observation was that the dcta used to reproduce the Fennell result came from a
sequentlal operation of HSIl and yet yielded appropriate predictions concerning the
multiprocess HSII system. This observation implies that the HSII multiprocess structure
does not produce a large amount of interprocess assistance (or interference) over the
STEPPS multlprocess model that contalns no direct interprocess assistance.

Some further simulation experiments might have been useful for studying
Hearsay II. However, during the STEPPS simulations the Hearsay Il system process
structure was altered. These modifications inciuded the replacement of several
Precondition and Knowledge Source processes with new versions which resulted in an
increase in the total number of procisses. To incorporate the Hearsay modifications
would have required the coliection and analysis of data from Hearsay and the creation
_of a new STEPPS model. The cost in computer time and analysis effort was too large
during the period that the simulations were performed. Experiments that might have
been useful are:

Restrict the number of availabie processors instead of using the maximum
possible.

Modify the process structure to use many simple Precondition and
Knowledge Sources.

Increase the number of subregion locking beyond that used.
An additional limitation to performing these simulation experiments was the
STEPPS system itself, since prototype limits of the STEPPS system were reached when
the Hearsay Il simulation mode' exceeded available PDP-10 memory.

Even considering the previously discussed limitations, the STEPPS system

111-44

application to Hearsay Il was significant. First, the STEPPS model could easily
represent the non-trivial HSIl communications structure. Part of this ease was due to
the HSII data directed process organization of interest in the experiment being well
suited to the probabilistic nature of STEPPS processes. The spplication demonstrated
that the data coliected during a STEPPS simulation’ was sufficient to provide the
required results.® Finally, the STEPFS system could really aid the HSII systems
developers in tuning their system by providing a relatively simple framework to
examine the consequences of paramster changes (eg. probabliities and timing) in

addition to structural changes.

tSee Chapter V for details on simulation data collection and parameters.

$This can also be stated for the Bliss/11 application.

RNe———e

Iv-1

Chapter IV
Anslysis of a STEPPS Model

A STEFPS model of a program can be analyzed to predict some of the
program’s performance properties. Unless a modei is analyzed and certifled as sa‘~, a
program that is constructed, bzsed on the model, may be useiess. It Is sometimes
vaiuable to expioit the simiiarity of the STCPPS mode! to known models for appiication
of known analysis techniques; thus we begin with u review of these models and

techniques.

IV.A. Markov and semi-Markov processes

The model of a process described in Chapters 1 and Il Is essentialiy a
description of a semi-Markov process [Howard 71 vol. 1 & 2] A discrete-time Markov
process is a probabilistic system composed of a set of states, a designated current
state, and a probabiiistic ruie for changing between states. The basic ruie for a
Markov process is that the probabiiity of a transition between the current state and
any successor state is independent of any past history. Let {Ei)ni-l be the set of
successive events and let the finite set {X,-}"‘j_l be the possibie state values®. Then
the Markov assumption Is formally:

P(Ensp = Xy | Et = th,t =L..an) =PE,,q =X | Ep= xjn)'
The probabiiity that the next event, En+l' is a particuiar state, Xk Is only dependent
on the last event xjn' When finite state processes are studiad, the probabillties are

*In general the state vaiuves couid be an Infinite set, but this research Is only
concerned with finite state processes.

IV.A Markov and semi-Markov processes Iv-2

sometimes chosen to approximate known distributions to facllitate analysis. In all
cases, the sum of the probabilities of transferring from a particular state to the set of
next possibilities mus’ be 1.

A Markov process may be composed of chains of states. A chain is a set of
states such that once the process enters one of the states of the set the only other
states that the process can enter are in that set. In general, a process may have more
than one chain and whichever chain is entered first determines how the process will
eventually perform. The analysis and operation of a process with more than one chain
is dependent on the process’s initial state. A process with only one chain is called a

monodesmic process.
For a monodesmic Markov process It Is still possible that some states do not

recur. This happens If the process can ever reach a state such that the probability of

?

ever reaching some states is zero. States that can not recur in steady state’ are

called transient states. Informally, a transient state is a state of a process that can

only be entered between an initial state and a chain,

Example IV.A-]

Figure IV-1 (a) shows the transition matrix of a Markov process with
two chains. The states of the process are w, x, y, and z. If the process
is initially in either state w or x then the only states that it can ever
enter are w and x. However if the process is Initially in either state y
or z then it can only enter states y or 2. Thus the process has two
chains. No states are considered to be transient since all of the states
are in some chain.

Figure IV-1 (b) shows the transition matrix of a monodesmic process

having two transient states. The states of the process are a, b, ¢, and

d. The chain is composed of states ¢ and d since once they are entered

no state other than either of them may be entered. In addition states a

and b do not form a chain since the process may eventually enter the ¢

- d chain from a and b. If either a or b is an initial state they may

recur many times, but eventually the chaln will be entered and then it

will be impossible to enter either of them again.
1'Swady state is defined to be the operation of the process after some suitably large
number of transitions.

IV.A Markov and semi-Markov processes Iv-3

w x Yy z
w p 1-p 0 O
X q 1.9 0 O
y 0 0 r 1-r
z o 0o 1 O
(a) Two chains: (w,x) (y,2)
a b ¢ d
a 0 p lp O
b q 0 0 I-q
c o 0 0 1
d o 0 1

(b) Transient States: a and b

Figure IV-1. Markov Processes

Markov processes have been studied in order to solve problems such as:
What is the expected number of transitions before entering state S?

What is the probability of entering state S from state T: (1) in m
transitions? (2) in m or fewer transitions? (3) ever?

In steady state, what is the probabillty of entering state S on the next
transition?

The last question points out one example where steady state actlvity is considered
important. For monodesmic processes the initial state Is unimportant, but the activity
of processes with multiple chains is strongly dependent on the initiel state since as
showr. In Example IV.A-1 a process can behave quite differently In steady state
depending on how it was initialized. For this reason most models using Markov
processes are monodesmic.

This research is also concerned with the stead, state properties of e
multiprocessing program. Translent states create difficulties In analyzing data flow in

the steady state of @ multiprogramming model because It Is possible that a process will

IV.A Markov and semi-Markov processes Iv-4

never reenter a transient state. The STEPPS model is restricted to disallow processes
with multiple chains and transient statas because they do not contribute to the steady
state of a process. The STEFPS sysism is able to analyze a process and determine
whether these restrictions have been met. The algorithms for parforming this analysis
are discussed later in this chapter.

A semi-Markov process is a generalization of the Markov process model. In a
Markov model, one unit of time elapses between successiQe transitions in all cases. In
the semi-Markov mode!, the time taken between successive transitions depends on the
particular transition. In the model’s most general form, the time taken between any
two successive states can be a random variable; in the STEPPS model this serves no
useful purpose, so the time taken between any two particular transitions is a constant
depending only on the two states. In fact, the real time between transitions in a
STEPPS model is usually not completety predictable since a process may be forced to
wait as discussed in Chapters [and Il

Some problems that have been studied using the seml-Markov process models
ara:

What is the expected process time between entering state S and entering state

T?

What is the expected process time between recurrences of state S?

In steady state, what is the expected percent of time spent in state S?

Again, the last question is the most interesting one for the STEPPS model.
There is not always an accurate result for a STEPPS model because processes in the

f

STEPPS model are not semi-Markov due to the essentially uipredictable’ wait time.

However an estimate of the type of activity that e process will be performing when it

is executing is «till a usefu! resuit.

- - = - - - - - - -

YThe wait time is unpredictable for a given process when considering the process
independently of the entire model.

IV.A Markov and semi-Markov processes V-6

The theory teiis us that It is possibie to predict the steady state probabilities
of which state wili be entered next, not knowing the present state. This means that it
is possible to create a representative transition matrix such that each row is the same,
le. the choice functions are ail the same when the most recent state Is unknown.
These probabilities also refiect the probabiiity of being in each of the states after a
large number of transitions.

The steady state probabiiities can be determined analytically by soiving a set
of n+l linear equations in n unknowns. Let ST;, iml, ..., n be the steady state
probabiilties of the process and let Pi,j be the probabiiity of entering state j from
state | In one transition. The aquations to be soived are:

STi'Pl,i‘STl*-”*Pn,i‘STn fori=1,...,n
1 =STy +STp+...+5T,

The first n equations are redundant, so the soiution requires replacing one of
the first n equations with the iast equation. The system of equations will be solvable
since the matrix describes a monodesmic process with no transient states'[Howard 71
vol. 1} Otherwise the equations do not have a unique soiution.

The analysis that has just been described is one of the Markov theoretical
analytic techniques that can be applied to the processes of a STEPPS model. The fact
that the STEPPS model processes are similar to semi-Markov processes is only useful
if a system designer wants to anaiyze components of a STEPPS model In this way. In
most cases, Markov and semi-Markov snaiysis of STEPPS processes Is of limited
usefuiness since the STEPPS processes are oniy components of a iarger model and the
transition matrices do not entirely reflect the operation of a process.

In order to represent analyticaily an entire STEPPS model, aii possible states

- P P P 4P S s s P S = 4 9 - - -

trhis is guaranteed by the STEPPS system.

IV.B Well-formed STEPPS models Iv-6

(In the Markov process sense, rather than STEPPS) must be included in the analytic
description. Not only must every STEPPS state be included as analytic states, but also
analytic states must be introduced to represent lhe operations of the STEPPS links.
The effect is the creation of a matrix representing at least N squared states (where N
| is the sum of the number of STEPPS states in each STEPPS process). Not only is this
mode! compiex, it requires the introduction of probabilities (and associated times) for

some new, potential Markov state changes.

IV.B. Well-formed STEPPS models

As noted in Chapter I, in order for a STEPPS model to be useful it must meet
certain restrictions and be designated as a well-formed model. Earlier in this chapter
it has been pointed out that each process in a STEPPS model must be monodesmic and
have no transient states (termed well-formed process). An additional restriction
guarantees that a model represents a data flow which can be simulated and which can
reach steady state if simulated for a sufficient period of time. Hence other restrictions
to the mode! (termed well-formed graph) ere that all links must be attached to both
input and output ports, that all ports be attached to links, and that the graph be
connecied. If these restrictions were not imposed then some process would eventually
request messages from an empty link or try to send messages to a link whose message

limit has been reached.

IV.B.1. Monodasmic and transient state well-formed criteria

Let the N states of & prouase be identified by the integers 1 to N. Let the
probability of state j succeeding state i be Pi, the entry in an N by N transition matrix

P.

" IV.B Well-formed STEPPS models Iv-7

In order to test whether a process is monodesmic and has no transient states it
is sufficient to determine whether the probability of each state transferring to each
other state in N or fewer transitions is greater than zero. The first step is to form a
transition rolation matrixz, C, representing a relation between states, defined by Ci,j v
o if Pi,j = 0; and | otherwise. The next step is to form the transitive closure of the C
matrix, which describes whether there exists some succession of connections between
any two states. If the closure of C is all ones then every state is able to transfer to
every other state and so the corresponding process is monodesmic and has no
transient states.

There are several algorithms for forming the transitive closure of a relation.
One method to form the closure, as shown by Prosser [Prosser 59], starts by forming
Boolean powers of the matrix to show whether a transition can occur in two or more
transitions. The i,j term of the Boolean square of a matrix is the Booiean expression

(logical sum):

(€2);; = PNemy CixCij

The i,j term is equal to 1 if and only if there is some k such that ci,k = ck,j =],
Similarly if the N-th power of the matrix is formed, a 1 in the resulting matrix
represents that a transition can be made in N steps. If a Boolean sum is taken of the
first N powers of C, then the resulting matrix represents whether a transition can be
made in N or fewer steps. This matrix is the closure. (Other, more efficiant, methods

for forming the closure of a matrix are known [Warshall 62])

1V.B.2. Well-formed graph structure criteria

Three basic structural properties are necessary for a well-formed STEPPS

graph model. They are:

IV.C Deadlc ‘uctures and situations Iv-8

1. Each port is attached to a link.
2. Each link is attached to at least one input port and one output port.

3. Al nodes are connected to each other via some set of patis, i.e. the graph
is not disjoint.

The last property means that for any partition of the nodes of the graph into
non-empty subsets of nodes, there will exist at least one connection from some node
in each subset to a node outside of that subset.

The first two properties are verified by examining each node of the graph and
checking the connections to the node. The third property is determined by first
forming a node connection matrix NC where nei; = 1 if node i is connected to node j or
if node j is connected to node i; O otherwise (ignoring that the graph is diracted). As
before, the closure of the NC matrix is formed. If the closure contains all ones, then

there exist connections between every pair of nodes.

IV.C. Deadlock structures and situations

The nature of communication dependencies can create problems for a system of
interacting communicators. The basic problem in a STEPPS model is that processes can
achieve states such that at least one process will never be able to change state
because it is waiting to activate its associated port; this is called the deadlock
problem. In some STEPPS structures a deadlock problem may be so severe that no
process can ever change state and no further processing of any kind is possible. On
other structures some subparts may still be able to continue processing (possibly
incorrectly). A structure that is completely deadlock free is defined to be safe.

Either of two views may be taken when examining a structure for deadlocks.

The first view is that a structure must not con.ain any chance of an occurrence of a

IV.C Deadlock structures and situations Iv-9

deadlock. The second is that a process may have deadlocks as long as It Is possible to
identify how the deadlocks occur and the probabliity of thelr occurrence. The term
deadlock” In the STEPPS model refers only to communication structures which can not
be removed other than by restructuring a model. In practice other methods, e.g. as
restarting a process after an unusually long delay, are sometimes used In systems
where deadlocks can occur.

The deadlock problem has been studied extensively along several dimenslons.
The survey by R. C. Holt [Holt 72) examines many of the deadlock problems. Most of
the deadlock algorithms are oriented toward solving problems concerned with resource
requests from a pool of resources. Holt presents a graph model of the resource
problem and a set of graph reductions to determine whether a modeled system
contains deadlocks. The difference between the STEPPS solution and his Is that Holt
limits his analysis to necessary conditions (cycles) and sufficlent conditicns (a knoth)
for the existence of a deadlock. He does not report on the solution of the general
problem. Several problems that have been solved have been concerned with reusable
resources. The STEPPS model does not consist of reusable resources since messages,
which are the resources In STEPPS, need not be preserved. The STEPPS model is
somewhat different from the models that have been examined In past research, so tha
deadlock problem has been examined and solved (with a few restrictions) for the
STEPPS model.

The following sections present some tructures and situations that can cause a
STEPPS model to deadlock. These examples are not necessarily independent nor

complete, but they demonstrate some types of deadlock structures.

*A knot is a subset of nodes of a directed graph such that each node Is attached to
the other.

IY.C Deadlock structures and situations Iv-10

IV.C.1. Initial condition Incompatibllity

It is easy to create a structure that is safe for some initial states of the
components of the structure, but not for others. The possible problems are that data
are not available where required or that the system contalns too much data. For
example, all output ports that are initial states might be attached to links that are
Initially at capacity and all initial input ports might be attached to empty links. It is not
necessary for such a condition to occur before execution begins; the condition may
also occur after only a few state transitions. An example of initial condition deadlock
is shown in Figure IV-2. In this example process C is waiting for a messsge from B
and process B is waiting for a message from C. Process A will always be waiting to

send a message.

| B
Q1 V:0
Vi ® le
V0

Figure IV-2. Improper initial condition

1V.C.2. Loops

A loop is defined to be a path from an output port, O,, of a process to an input
port, ly, of that process with no connections along the path between them going to the
original process. When each node in a loop is connected only to other nodes in the

loop, the loop is called & closed loop.

IV.; Deadlock structures and situations v-11

1f any port of any process node is immediate-recurrent (including the nodes at
either end), then it is possible that the port could send (or request) extra messages. A
solution to this desdiock problem is that both s SINK® and 2 SOURCE® must be attached
to nodes in the loop. Thus the loop cannot be closad when there is an immediste-
recurrent state within it (Figure IV-3).

A loop that is not closed and does not have both a SINK and a SOURCE
attached to nodes in the loop may contain desdiocks because it may be possible for a
message to be shunted to the SINK or any other process not in the loop. Similarly,
extra messages entering a loop from a node not in the locg ce~ cause a link to become

til'ed with extra messages.

Ol > n
A “ B
[} <_.{(_—-‘Ol-
A I1 Ol
I1s 0 |
(o)1 1 O
8 11 o) |
Il p l-p
Ols 1 O

Figure IV-3. Loop with immediate-recurrent states

tA SINK is process whose only port is an input port.

#a SOURCE is a process whose only port is an output port.

IV.C Deadlock structures and situations Iv-12
1V.C.3. Incompatible sequences

When s data path can be recognized as a closed path.' It is possible to
determine the number, N, of messages required to entsr this path in order for any
messages to be available at the link attached to ths end of the path. It is also possible
to datermine the number, M, of messages that will be available at the end of the path.
The link attached to the end of the path may require a certair number of messages, L
before the input to the next path attached to It can yield any mescages. If M does not
at lsast equal L and it N, M, and L are finite then the system can deadlock. It aiso must
be true that fewer than 2N messages enter the path before a response s required

from the path. Figura IV-4 shows an example of this.

—>|IN] AM] >{ w B8 |—

Figure 1V-4. Incompatible Sequence

IV.C.4. Split paths that do not join properly

A data path may split in two ways. I’ a link is attached to more than one input
port, messages that reach the link may go down either path. If the paths join again at
two different ports of the same process then It may be possible for an insufficient
number of messages to enter one of the paths and thus force the merging process to
wait for data that will never come. Figure V-5 shows this situation, where processes
A and B send messages to C and C must receive a message from one before recelving

a message from the other.

YA closed path Is a path between two nodes such that all nodes In the path are
attached only to other nodes in the path.

IV.D Reducing a STEPPS model Iv-13

——>-—>E *

¥
N

N
A\
<
N
N

Figure IV-5. Link split paths

The second way in which data may go down alternate paths occurs when @
process sends data along two different paths that eventually merge. 1f mora data can
go down one path than can be received by the port at the end ot the path then this
path will eventually fill up with messages. The two processes must be exactly
synchronized as to their data dependencles. Figure IV-6 shows this situation. Every
message sent by A from port A0l must be accepted by B.I1 and the same s true for

A.02 and B.I2.

—_— (0} S—3> 11 S

|O
N
A 4
N
X

Figure IV-6. Process spiit paths.

IV.D. Reducing a STEPPS model

Under certain conditions it is possibie to catermine whether & STEPPS graph

- IV.D Reducing a STEPPS model Iv-14

model is deadlock-free. The conditions are that the graph be well-formed, initial
process states be ignored, and the initial number of messages and queue size limits be
ignored. The method used to determine whether a graph is safe is to apply a set of
graph reductions. These reductions will be shown to reduce all safe graphs to other
safe graphs and to reduce all unsafe graphs to other unsafe graphs. In addition, it will
bea shown that one of the reductions is always applicable to a safe graph. Thus, the
reduction process may be repeatedly applied until either an empty graph or an
irreducible graph is reached. When an empty graph is produced the original graph is
safe. When an irreducible graph results, then the original graph can generate a
deadlock.

There are four graph reductions that can be applicable when certain conditions
are met:

R1: Combine two adjacent processes.

R2: Eliminate states of a single process.

R2a: Combine two ports of the same type, attached to the same link, to
become one port.

R2b: Eliminate ports of opposite type connected to the same link.
R2c: Eliminate ports attached to SOURCE/SINKS.

R3: Combine two processes that are l'n-parallel*.

R4: Eliminate all SOURCES, SINKS, and unattached links.

Graph Reduction Process: The first three reductions are applied iteratively

until none is applicable and then the last, R4, is applied. If the result is an empty
graph then the model is safe; otherwise the model is unsafe. The reduction process
sometimes converts the graph into disjoint parts, and this is necessary to the reduction

process.

T1wo processes are in-parallel when each process has exactly one input port and one
output port and the input ports of the respective processes are connected to the same
link and the output ports are connected to the same link.

R MR 0 B R P Dot

IV.D Reducing a STEPPS model Iv-15

The reductlions are based on potentlal interprocess communications. Since a
process transition relation matrix represents the presence or absence of possible
interprocess port activations, it will be the vehicle used to demonstrate that the
reductions maintain process legalitv. Thus by proving that the transitive closure of a
resultant transition relation matrix is entirely i's, each reduction is demonstrated as

oroducing resultant processes that are monodesmic and have ro transient shtes.’

IV.D.1. Rl: Combine adjacent processes

Two adjacent procamu¢ are combined when it is determined that their data
manipulation functions can be replaced by a single process. It will be demonstrated

that the combination of two adjacent processes in an unsafe graph wlll not convert the

' graph into a safe one.

R1 Is applicable in two situations:

Rla: neither of the adjacent ports is immediate-recurrent and they repeat
the same number of times.

Rib: one of the processes is a DELAY”.
For Rla, the two processes are combined and the link between them is eliminated. For

R1b, the DELAY and the link between the processes are eliminated. R1b is a trivial

case where the DELAY is functioning ss a link. The rernainder of this subsection is

concerned with Rla.

Rla relies on the assumption that each of the two adjscent processes will

- - - - - -

*Some representative probabilities can be assigned to the resultant processes, but
these will not be presented since they detract from the clarity of the explanation of
the reductions.

$Two processes are ad jacent when they contain adjacent ports.

ttA DELAY is a process with only two ports, an input port and an output port,
provided neither port is immediate-recurrent.

IV.D Reducing a STEPPS model Iv-16

eventually enter the states of their adjacent ports. The situation can be modeled as
one where the process containing the output port sends a message to the other
process (and waits), and this second process computes until it requires another
message from the first process. Then the first process computes until it reenters the
original state. In this way, both processes are able to chango state if one can (when
the graph is safe). The transition relation matrix of the combined process is formed by

,

a construction that (i) eliminates the adjacent ports and (ii) unites the successors’ of

states that immediately preceded an eliminated state of one process with the
successors of the state of the second process. In this way the new ccmbined process
is still monodesmic and without transient states since each state is still able to enter
each other state, but now may go through states of what was formerly part of a
ditferent process.

The new transition relation matrix is formed in the following manner. Let the
ports A.e and B.f be adjacent and let neither state be immediate-recurrent. Let A.x,
Az, B.y and B.w be other ports of the two processes. If the new combined process is
called AB, then ¢(ABx,AB.z) = c(AxA.z2), c(AB.y,ABw) = c(By,Bw), ¢'(ABx,AB.y) =
c(Ax,A.8) A c(B.f,By) and cXAB.y,ABx) 1 c(By,B.) A c(AeAx).

Lemma E_?_l_l_ If Ae succeeds Ax and By succeeds B.f, then ABy succeeds
AB.x, i.e. ¢’(AB.x,ABy) = 1.

. Proof: A.e succeeds Ax means c(Ax,Ae) = 1 and By succeeds B.f means

c(B.f,B.y) = 1. Therefore c'(AB.x,AB.y) = c(A.x,Ae) Ac(BfBy) =1 A1l =].

Lemma Rj.2: If B.f succeeds By and Ax succeeds A.e, then AB.x succeeds

. Y The successor states of a state are those that can be entered in one transition.

‘c(s,t), a transition relation matrix entry, is defined to be the presence (1) or absence
(0) of probability of entering state t from state s. c’(w,u) is a transition relation matrix
efter the application of a reduction. All operators (A and v) are logical operators.

IV.D Reducing & STEPPS model Iv-17

Proof: As in Lemma R1.1.

Lemma R}.3: There exists a sequence of transitions from AB.x to AB.y.

Proof: Since A and B are assumed to be legal STEPPS processes, their
respective transitive closure transition relation matrices are all 1's. As a property of
transitive closure, this means that there exists a sequence of transitions from A.x to
each predecessor of Ae and their re:ective similar states in AB. Similarly there
exists a sequence of transitions from. successors of Bf to By and their respective
similar states in process AB. By Lemma R1.1 and the above, there exists a sequence of
transitions from AB.x to each corresponding successor of B.f and thus to AB.y.

Lemma R1.4: There exists a sequence of transitions from AB.y to AB.x.

Proof: As in Lemma R1.3.

Lemma R15: Process AB is a legal STEPPS process, i.e. the transitive closure
of the corresponding transition relation matrix is all 1's.

Proof: By Lemmas R1.3 and R1.4, there are sequences of transitions betwéen
each siate that was originally in A to each state originally in B and visa-versa.
Therriore by juxtaposing sequences of transitions there exist sequences of transitions
between any two chosen states of AB. By the definition of trancitive closure this

corresponds to ail 1's in the transitive closure transition relation matrix for AB.

Exampla 1V.D-1

The processes in Figure V-7 are by forming a process with
two states fewer than the total nuiber of states of the original two
processes. As shown by the transition relation matrices, all of the
predecessor states of the output process now transfer to the successor
states of the input process. All of the predecessor states of the input
process now transfer to the successor states of the output processes.

Theorem Rl: RI (combine adjacent processes) preserves the message flow
structure of & model with respect to graph elements not involved in the reduction

(whether or not the original graph was safe).

IV.D Reducing a STEPPS model Iv-18

! ! | |

11« 01 13 l4. Ite 13

L

——

B Becomes —>il2 AB
04| 04—
oz 03 02 03

—>llz A

I
12
01
02

— O = O+
--O-—O-o-
OO"""S

03 0"

@

I3
14
03
04

—_—— 0 O|lW
— O QO -
—) =

—_0 = O —Olb

AB
Il
I2
14
02
03
04

OO+ O r— O

— e O O OIN
--O.-—--o—o‘b

OOOO'-'O—S
~O~00—08

Figure IV-7. Process combinations

Proof: Let A and B be the original processes and let AB be the result of
combining them. It will be shown that any message that could be requested by AorB
can be requested by AB and that any message that would be seni by A or B to a link
will be sent by AB.

By Lemma R15, the new process Is monodesmic and has no translent states.
Coupled with the reduction definition, this means that all states of AB can be entered
exactly as often as in the original processes, A and B. Thus all input ports of AB are

guaranteed to be able to receive messages if they originally could, so the state

IV.D Reducing a STEPPS model Iv-19

associated with a given input port will always be able to change. Likewlse each state
associated with an output port of AB can change to another state if It could originally.
For these two reasons all messages that would be requested by A or B will be

requested by AB and all messages that would be sent by A or B will be sent by AB.

IV.D.2. R2: Eliminate stales of a process

There are three circumstances In which a state of a process may be removed
by applying reduction R2. There are two distinct methods of removing a state:
combine two states to beco:ne one; and eliminate a state. As with Rl, the removal of a
state does not affect data flow patterns. (An exception is that the combination of two
states into one sometimes modifies the riumber of times a state repeats.)

The method used to combine two states into one state is defined as follows.
Let Ax and Ay be the names of the states of process A being combined. For
convenience, the resultant combined state will be called Ax: The rule for combining
the states, in terms of the transition relation matrix for process A is:

Let A.z be a state of process A that is neither Ax nor Ay, i.e. it will remaln
after the reduction.

c’(A.x,A.2) = c(Ax,A2) Vv c(AyA2)
c(A.z,A.x) ¥ c(A.2,A.x) v c(Az,Ay)
¢(Ax,Ax) 5 c(Ax,Ax) Vv c(Ay,Ax) v c(AyAy) v c(AxAy)

The above means that any successor of Ay becomes a successor of Ax, and
any predecessor of Ay becomes a predecessor of A.x.

Lemma R2.1: The reduction to combine states yields a legal process.

Proof: It must be shown that the resultant process has no translent states and

Is monodesmic. The orlginal process, A, was legal and thus there existed finite

sequences of transitions from each state to each other state. The construction of the

IV.D Reducing a STEPPS model! v-20

new process by combine states guarantees a legal process since (a) if there existed a
sequence of transitions between two states without going through A.y, the reduction
does not alter the sequence and (b) any sequence of transitions that went through Ay
will now go through A.x instead.

The method used to eliminate a state of a process is defined as follows. Let
A.x be the state being elirinated and let Ay and Az be other states. The rule for
eliminating a state, in terms of the transition relation matrix for process A, is:

c(Ay,A.2) ® c(Ay,Az) v (c(Ay,Ax) A claxA.z))

The above means that Ay preceeds A.z either if it did before the reduction or
It A.y preceeded A.x and Ax preceeded A.z.

Lemma R2.2: The reduction to eliminate a state yields a legal process.

Proof: A sequence of transitions between two states not going through A.x

still exists after the reduction. A sequence of transitions that went through A.x, simply
skips A.x after the reduction. Thus the reduction yields a process that is monodesmic
and has no transient states.

R2a: When two ports of the same type are connected to the same link one port is
removed, depending on one of the following conditions.

(i) Each of the two states can succeed the other in one transition. This
means that the states are equivalent to one immediate-recurrent state.
The two states are combined to become one state.

(i) The successor states of the two states are the same (not counting each
other). This means that the states act as one state with possibly different
transition probabilities from the original states. The two states are
combined to become one state.

(i) The two states are in-sequence, i.e. one state will enter the other with
certainty. Alternatively, they may be one-to-one. This means that the

two states are really one with finite repetition. One of the states Is
eliminated.

Note that a link is also eliminated by reduction R2 when ali ports that had been

attached to the link are deleted.

IV.D Reducing a STEPPS model Iv-21

R2b: When a link is oniy attached to both Input and output ports of proce:ues, then
palrs of these Input/output ports of the same process that are one-to-one and repeat
the same number of times can be eiiminated. When this st ucture occurs, every
message sent to the link is guaranteed to be raquested by one of the other ports of
the process. If the ports are the last two connected to the link then the link is also

removed.

Example 1V.D-2

In Figure IV-8, ports 11 and O3 are adjacent and are one-to-one. They
are eiiminated as shown.

—_— 12 04—
ALPHA Becomes __,IZ ALPHA 04 >
r [} 03 —\
ALPHA 11 12 03 04
Il o 1 0 1
12 o o0 1 1
03 1 0 O O
04 o 1 1 1
Becomes

ALPHA 12 04
I2 1
04 1 1

Figure IV-8. Adjacent ports of a process

R2¢c: A state that is attached to a SOURCE/SINK* is eliminated, since once it is

entered, the process can always be assured of being able to enter a new state. If the

*A SOURCE./SINK is either a SOURCE or a SINK depending on the context. A SOURCE
wouid be attached to an input port, whereas a SINK wouid be attached to an output
port.

SV My Egwllig T W RS W TV e sV W

state |s the last state of a process then the entire process Is eliminated. If the port

was the last port attached to a link then the link is also eliminated.

Example 1V.D-3

In Figure 1V-9, both ports 14 and 06 are attached to SOURCE/SINKS.

They are both eliminated.

Theorem R2: R2 (eliminate states of a process) preserves the message flow
structure of a model with respect to graph elements not involved In the reduction
except for links attached to SOURCE/SINKS

Proof: Let A be a process that is reduced to A’. By Lemmas R2.1 and R2.2
each state of A’ can always be entered. The cases to be considered are enumerated
by looking at how a link was attached to A and then to A"

A link that was attached to A and not to a port of A that was eliminated by the
reduction will still have the same interaction with A’ as with A since, by construction,
any states that would have entered an eliminated state will transfer to a successor of
the eliminated state. Thus the state that Is attached to the link will occur just as often
in A’ as In A.

A link that was atlached to A and is attached to A’, but by one fewer port, will
still have the same Interactions with A’ as with A since the remaining connections te A’
are constructed to guarantee this. Two states of the same type that are attached to
the same link and succeed each other act like an Immediate-recurrent state since any
number of link interactions can occur before a different state Is entered. Two states
of the same type have the same successor states and are acting in tha same manner as
one state except for different probabilities to the successor states. Two states of the
same type that are in-sequence and are attached to the same link act like one state

that repeats before entering another state.

IV.D Reducing a STEPPS model Iv-23

3| 14 06 06
o A Becomes A >
A 11 14 01l 06
13 0 1 i 0
14 1 1 0 1
0} 1 o 0o 1
06 1 o 0 1
Becomes
A 3 01 06
I1 | 1 1
ol 1 0 1
06 1 0 1
A 06 I
1" B > Becomes —3{ 1 A ol|l—>
Becomes
A 11 01

11
01 1 0

Figure 1V-9. Ports attached to SOURCE/SINKS

A link that was attached to A and is attached to A’ by two fewer ports occurs
when pairs of input/output ports are removed. The message flow is preserved since
the ports were only removed if they were one-to-one. This means that whenever a
message Is sent to (requested from) the link, it Is guaranteed that @ message will later
be requested from (sent to) the link. A link that was only attached to those two ports

is removed as part of the reduction. Since the message flows to and from the link

IV.D Reducing a STEPPS model Iv-24

were eliminated with the link, the remainder of the graph is the same. This completes
the proof.

By assumption, Theorem R2 is not concerned with links that had been sttached
to SOURCE/SINKS and are no ionger attached to a port of a process. This situation is
represented by reduction R2c. Messages fiow between a SOURCE/SINK and the
reduced process. The reduction occurs by considering the SOURCE/SINKS as message
suppliers and terminators. Reduction R4 eliminates these processes and so riessage

flow involving them is eliminated.

IV.D.3. R3: Combine prozesses that are in-parallel

When two processes are in-parailei, each process has only one input and one
output port and both processes’ input ports are ¢'*»~=5d to the same link and both
output poris are attached to the same link. When a message is in the queue of the
common link attached to the processes’ input ports, it can be requested by either of
. the processes. Whenever the choice will not affect message flow the two processes
are combined. In particular, an immediate-recurrent state subsumes the function of the
state of the process that is attached to the same iink. Thus a DELAY that is in-parallel
with other processes containing two states is eliminated.

A 5.ACK BOX is a process having just two ports, one output port and one
input port. Both associated states are immediate-recurrent. Any process that is in-
parallel with a BLACK BOX can be removed since the BLACK BOX subsumes the
operation of the othur process.

Let the two processes be ALPHA and BETA with ports ALPHA.I1, ALPHA.OI,
BETA.I1 and BETA.O1 (Figure IV-10). The second process, BETA, will be the combined
process. The new transition relation matrix is defined by:

¢’(BETA.I1,BETA.I1) = c(BETA.I1,BETA.I1) v c(ALPHA.I1,ALPHA.I1)

IV.D Reducing a STEPPS model

c'(BETA.I1,BETA.O1) = ¢(BETA.I1,BETA.01) v c(ALPHA.I1,ALPHA.O1)
c(BETA.01,BETA.I1) s c(BETA.01,BETA.I1) v c(ALPHA.O1,ALPHA.I1)
¢’(BETA.01,BETA.O1) = c(BETA.O1,BETA.01) v c(AL 'HA.01,ALPHA.O1)

ey w -

Iv-25

It is obvious from these simple equations that the new transition matrix is legal.

|11 ALPHA o1 |5
—> FIE
. Becomes
[] []
L[6ETA o >

=

—>
. __>E BETA o1

Figure 1V-10. Combining processes that arg in-paraliel.

L[]
RN

Theorem R3: R3 (eliminate processes that are in-parallel) preserves the

message flow of a model with respect to graph elements not involved in the reduction.

Proof: If one of the input ports that is attaciied to the link attached to the

input ports of the two processes is immediate-recurrent, inen it is possible that an

undeterminable number of messages can be requested by the processes before a

message is sent to the link attached to the processes’ output ports. Thus, if one input

s state is immediate-recurrent ihen the elimination of the other does not affect the

number of messages that can be accepted by the reduction of the pair of procese~s

into one process. Likewise if one of the output ports is immediate-recurrent, any

number of messages can be available at the link attached to the output ports and so

the other output port is eliminated.

If neither input port is immediate-recurrent then the combination of two input

ports is the same as one of them requesting a message twice, so the other can be

eliminated. Likewise if nelther output port is immediate-recurrent then the combination

is the same as one sending two messages to he link and so the other output port can

be eliminated.

4 o

e

e TIL T

ek . U LTy e Sk i R S R N1 P A W TR - O, il R Bt D o U L Lt e an LU s b L

IV.D Reducing a STEPPS model Iv-26
IV.D.4. R4: Remove SOURCES ard SINKS

Since the original graph was well-formed, all links were originally connected to
both input and output ports. However, reduction R2c removes all connections of one
type to a link. When R2c is no longer applicable, no process is attached to a
SOURCE/SINK. Thus SOURCES and SINKS can be attached to links, but serve no other
purpose than to have allowed R2c to occur. They are eliminated. If the SOURCE/SINK
is the last connection to a link then the link is eliminated too.

Theorem R4: The elimination of SOURCES and SINKS preserves message flow
of those elements not attached to the SOURCE/SINKS.

Proof: This is true since reduction R4 occurs after R1, R2, and R3 are no
longer applicable and since R2 eliminates all connections to SOURCE/SINKS other than
the connections between a link and a SOURCE/SINK. Any other elements in a graph

are left unaffected since they are not connected to any SOURCE/SINKS.

IV.0.5. Graph reducibility

The remaining requirements to show the validity of the reductions are that a
cafe graph is always reducible and that an always reducible graph is safe.

Reducibility Theorem: A non-empty, well-formed, but not necessarily
connected, safe graph is always reducible. (Equivalently, an Irreducible graph Is not
safe.)

Proof: Assume the existence of an irreducible graph and consider all possible
connections to a link in the graph. The implications of the inapplicabllity of any of the
reductions are as follows. There e four cases:

Casel: A link is connected to only input and output ports of one process.

IV.D Reducing a STEPPS model Iv-27

Since reduction R2 Is not applicable, then no pairs of these poris are one-to-one and
0 at least one of the ports can dominate the activity at the link. This wlill cause the
state assoclated with the other ports to walt Indefinitely since eventually either no
messages will be available at the link or the link's finite queue size limit wili be
reached. This Is a deadlock situation.

Case2: A link is connected to only two ports, of the same type, of different
processes, i.e. adjacent processes. Since reduction Rl is not applicable, one of the
adjacent ports is immediate-recurrent. It is possible for one of the processes to
dominate the activity at the link. This will cause the other port to wait indefinitely
since eventually either no messages will be available at the link or the link’s finite
queue size limit will be reached. This is a deadlock situation.

Cas§3: A link is connected only to ports of the same type of one process
connected to the link. Since reduction R2 is not applicable, no pairs of_correspondlng
states (i) succeed each other, (i) have the same successor states, and (iii) are In-
sequence. Whonla message is requested from (or available to) the link, there is no
guarantee which port will request (send) a message first. This makes a difference
since the successor states of the two ports are different. There are no SOURCE/SINKS
in an irreducible graph so It is impossible to guarantee that another link access will
occur due to access from other 'processes. In addition, thers are no DELAYS nor
adjacent one-to- one ports of a process and so there are no additional guaranteed link
accesses due to the process itself. Therefore a process can deadlock because the
wrong port can access the link first.

Cased: At least two ports, of the same type, of different processes are
connected to a link. Since reduction R3 is not applicable, none of the corresponding

processes are in-parallel. Thus the operation of the model can be affected by

IV.D Reducing a STEPPS model Iv-28

whichever of the processes performs the first link access. It is also possible for one
process to dominate the activity at a link. There are no SOURCE/SINKS and so no
guarantees of an eventual link access. The situation can cause a deadlock when the
wrong process accesses the link first.

It has been shown that all possible connections to the link yield a deadlock.
Therefore an irreducible graph is not safe. The contrapositive of this is that a safe
graph is reducible.

The arguments of this section have demonstrated that an irreducible graph is
unsafe and have proved the Reducibility Theorem.

Irreducibility Theorem: An unsafe graph is not always reducible. (Equivalertly,

a graph that is slways reducible is safe.)

Proof: Let X be a graph that is always reducible. Assume that X is not safe.
It will be shown that this is impossible.

By Theorems RI, R2, R3 and R4, the reductions Rl, R|2, R3 and R4 each
preserve potential message flow in the graph with respect to those graph elements
not involved in the reduction. Thus no reduction can cause @ deadlock due to
interprocess communication no* in ‘olved with the reduclicn. Further, by the definition
of each reduction and by Lemmas R15, R2.1, R2.2 and Theorem R3, a reduction is only
applicable to a safe element struc‘ure and produces a legal and a safe element

structure. Thus a reducible graph is safe.

Example 1V.D-4

Figure IV-11 shows an example of an irreducible graph since the
following set of state transitions couid occur in sequence:

AOl
Cll
A.02
B.I1
B.O!l
A0l

oOU b WN

e e

IV.E The recognition of deadlocks Iv-29

7. Repeat 3 to 6 until the link L2 becomes full,
8. C tries to perform C.I2, but can not since L1 is empty. B can not
change state since L1 Is empty. A can not change state since L2 Is full.

L2
01
A ”
02 |
__)ln B ol St—>i 11
C
12
L1
A 01 02
Ols 0 1
02 1 0
B8 I1 Ol
112 0 1
0l 1 O
C 11 12
Ils o 1
12 1

Figure IV-11, Ar irreducible graph

IV.E. The recognition of deadlocks

Graph Reduction Theorem: Assuming that a STEPPS model is well-formed, that
initial conditions are igi.ored and that queue size limits are ignored, the Graph
Reduction Process will yield an empty graph if and only if the original graph is safe.

Proot: By the Reducibility Theorem a safe graph is always further reducible.
By the Irreducibility Theorem an always reducible graph is safe. Thus after the Graph
Reduction Process is completed, if the result is an empty graph then the original graph

was safe; otherwise the original graph was unsafe. This completes the proof.

Iv-30

The graph reductions do not solve the problem of initial state incompatibility.
This situation can be recognized by examining each process’s initial state and the
attached links. If all initial output ports are attached to links that are full and 1f all
initial input ports are attached to links that are empty then the model is initially
deadlocked.

It is still possible for a model to enter a deadlock before the model reaches
steady state due to link queue length limits and initial queue volumes. A solution to
this problem is a requirement that no link attached to an initial output port be full
initially. Also these links can not be attached to input ports that are the initial states
of another process. In addition, not all of the processes can be in initial states that
are connected to links containing no messages. This is nct an ontimal solution since a
system may still be safe if some output ports are initially full. However the
requirement is a reasonable one to model and can be altered easily when steady state

properties are known,

Chapter V
The STEPPS Simulator and STEPPS Interactive System

Since many performance properties of realistic programs are difflcult to treat
analytically, a STEFPS mociel is simulated to collect data which, In turn, Is analyzed to
predict performance properties of a program. The STEPPS simulator and the

implementation of the STEPPS system are presented in this chapter.

V.A. Simulation objectives

An issue concerning the structure of a multiprocess program is whether a
particular program decomposition can be improved, i.e. Is it a good decomposition. As
noted in Chapter I, this research does not address the issue of whethar the designed
program solves the problem under consideration. The STEPPS simulation facilities
serve to enhance predictive performance understanding in the situation where a model
is so complex that it is essentially analytically intractable Another situatlon occurs
when a model may be analytically tractable, but very time consuming to solve,
especially when some modifications are made to it. |

Specific performance issues concerning a STEPPS model are the following:

1. How much time will be spent computing for each state of a process?

2. In which states will a process be waiting and for how much time?

3. Are the queue sizes too small or too large?

4. What are the expected rates of data flow to a link and of requests from a
link?

5. What is the overhead due to interprocess communication?

V.A Simulation objectives V-2
6. Which sets of processes tend to be active at the same time and which
processes are usually active at different times?
7. How many processes are active on the average?

8 What are the effects of limiting the number of aveilable processes and
using a varlety of scheduling algorithms?

The first question can be answered by performing the seml-Markov analysls
described In Chapter IV. However, all of the other questions are more difflcult to
answer because they deal with interprocess activity.

Consider the question of how long a process will wait in each state. This value
may depend upon all of the possitle interactions in a model. For example, consider tle
ring of processes shown in Figure V-1. If all of the processes are DELAYS and there
ls only one message In the loop, then the wait time at each input port is the time
required for the message to traverse the loop when there is initially only one message.
The problem Is more difficult when there are initially several messages in the loop and

when the processes are more complex. Simulation Is used to answer such questions.

oH PH -
el ke e F

—>

N
e

Figure V-1. A ring of processes

Queueing theory can be used to solve the same question and, in fact, to
produce a more exact result, given assumptions based on known or estimated

probability distributions [Kleinrock 75]) However, there are seemingly simple program

V.B Simulation operation and data collect. i V-3

structures modeled by STEPPS that are difficult to solve‘using queueing theory. Each
queueing model must be solved individually and the applicable techniques do not
always transfer when systems with as many parameters as a STEPPS model has are
involved; these limitations of queueing theory are well known [Fishman 73, McMillan
68). STEPPS has been designed to be applicable to a variety of system structures and
to make analysis easy for a system designer. In particular, simulation allows rapid

interactive experimentation with a number of alternative problem decompositions.

V.B. Simulation operation and data collected

In order to discover the answers to the questions discussed in the last section,
it is necessary to collect a sufficient amount of data by simulating a modeled program.
The approach taken in this research is to make it possible to collect as much data
describing the operation of processes and links as might be expected to be useful.
The implementation of the data collection facilities has been carefully designed to
facilitate the incorporation of additional facilities so that other than built-in analysis
can be used.

The operation of a STEPPS model was described in Chapter II. At every
possible change of simulated state’ of a STEPPS model it is possible to collect data.
Thus the specific operation of a process, a link, and the process scheduler will be

described below and the data collected at ¢ ach operation change will be noted.

YState in this instance refers to the condition of the entire model, namely all
processes, all links and the process scheduler.

V.B Simulation operation and data collected V-4

V.B.1. Process activity and the data collected

A simulated process goes through a sequence of actions that represent its

activity. At each action the simulation system records the most recent action and

collects appropriate data concerning the action. The specific data collection points and

data collected at these points are:

IL

10.

11.

Activating. When a process is initialized all data collection facilities are
also Initialized.

Nccesslink. A process enters a new state when it accesses a link. The
data collected are (a) a count of the number of entries to this state, and
(b) the time that the link access begins. The process then tries to access
the link by performing a synchronization check to exclusively access the
link (a "P" operation on a semaphore).

Mutex. The time that is spent waiting on the link’s exclusive access
semaphore is accumulated. Next the process must guarantee that the link
will be able to recognize the access. This is accomplished by means of a
mutual exclusion between the link and the process.

Startio. The t.me waiting for the link to allow access is accumulated and
the rrocess performs its link access. The process then waits for the link
to respond. The time for initializing this wait is recorded.

Ioready. The time spent waiting before the 1/O operation can occur is
accumulated.

Jocomplete. The time spent performing the 1/0 operation is accumulated.

Endio. The time when the 1/0 operation is completed Is recorded. When
a process state is repeated, steps 2 through 7 are repeated until all
activity relating to the current state is complete.

Choose. The process then chooses which will be the next state. No data
are collected at this point since this operation takes no time. When the
operation of the model is traced this change of state is noted.

Computing. The start of a process compute time Is recorded.

Endcompute. The time spent computing in the current state is
accumulated.

Restarting. The process is ready to be restarted and must be scheduled.
The time is recordsd.

tsee Appendix A for description of using the simulator and tracing @ simulation.

V.B Simulation operation and data collected V-5

12. Readied. When the scheduler allows the process to proceed the time
spent waiting while ready to run is collected.

Activities 2 through 10 represent a more detailed description of the operation
of a process than is described in Chapter II. Steps 11 and 12 accumulate data
concerning the time a process spends waiting to be scheduled. Analysis of the data is

discussed below.

V.B.2. Link sctivity snd data collected

The sequence of actions that a link goes through represents changes in the:
link’s queue size, number of message requests, and time used by the link (if any). At
each change, th» simulation notes the new activity and collects appropriate date
concerning the change. The activities of a link are:

1. Inactive. A link will be inactive until it is accessed. The time when the
link becomes inactive is recorded.

2. Inaccess. A link has been accessed by an input port. Accumulate the
amount of time between input request accesses and count the number of

accesses.

3. Qutaccess. A link has been accessed by an output port. Accumulate the
amount of time between message available accesses and count the number
of accesses.

4. Exclude. The link has been accessed and the time it was inactive is
accumulated. The link now prevents any other access to itself by means
of mutual exclusion synchronization.

5. /ccessed. The time the link waited to exclude other accesses is
accumulated.

6. Starting. If the link had to be restarted, the number of restarts is
accumulated.

7. Started. The time after restarting is recorded.

8. Qlimit. If the link has no more room for messages (its queue size limit has
already been reached), then the number of overflow messages is
accumulated over time. This is the average number of processes that hed
to wait. '

. N P T W N Ty v —— e A e e o a am bl . il s b b ke et i A i
. —_ R e

V.B Simulation operation and data collected V-6

9. Accept. If the link can accept a message then the queue length is
accumulated over time.

10. Endaccept. The time after accepting a message is recorded.

11. Arequest. The number of current requests is accumulated over time.

12. Xmit. If a message can be transmitted to a process requesting a message
then the number of messages in the queue and the number of current
requests are each accumulated over time.

13. Endxmit. After a message has been transmitted the time is recorded.

14. Rereceive. If a process had been waiting to send a message to the link,
bu! could not, due to the link’s queue size limit, then it is allowed to
continue. The number of processes waiting to send a message is
accumulated over time.

The activities listed cover all of the activity of a link. Data are collected

_concerning each property of the link that changes.

V.B.3. The scheduler and sets of concurrent processes

The function of this set of data collection facilities is to provide information
that can be used to infer how the processes interact with each other over time. One
measure is the average number of active processes. Another measure is concerned
with which processes are active at the same time as other processes. Before a
process becomes active it is scheduled to run by a process scheduler. Likewise,
whenever a process becomes inactive, i.e. is waiting for some reason, the scheduler is
notified.

The simulator i> used to estimate the effects of restricting the number of
processors. This restriction brings about the problem of the schedulir.g of processes
when more processes are ready to run than there are processors able to run them.
The STEPPS system provides the following scheduling algorithms:

1. First-in-first-out priority (FIFO). This algorithm schedules the process
that has been ready for the longest time. When several processes have

—_"t

. S B i | R i

e T s, Ty T an e | e ailt e

V.B Simulatlon operation and data collected V-7

6.

been ready for the same length of time, an arbitrary cholce s used to
determine which one will be scheduled first.

PROCESS priority. Each process can be assigned a non-negative priority.
When a choice must be made among ready processes, then the process
with the highest priority number is scheduled first. When several
processes have the same priority, FIFO is used to resolve the cholce.

LINK priority. Those processes that are ready to rin and are in an input
state are examined first. These processes are req iesting a message from
a link. The process that is requesting a message from the link containing
the most messages will be scheduled first. FIFO is used to resolve any
additional choices.

PRLK priority. This is a combination of 2 and 3. After thcse processes
with the highest priority are selected, then the process requesting a
message from the link containing the largest number of messages is
scheduled. FIFO is used to resolve anv additions! choices.

LKPR priority. This is another combination of 3 and 2. First the
processes requesting messages from the links containing the greatest
number of messages are chosen. Then the process with the highest
priority is chosen among them. FIFO is used to resolve any additional
choices,

RANDOM. A random choice is made among the ready processes.

These algorithms were chosen for inclusion in the STEPPS simulator because

they are simple and have counterparts in real systems. The last-in-first-out algorithm

was rejected because it does not adequately represent continued processing.

Modiflcations to the STEPPS system that could include different scheduling algorithrs

are discussed in a later section of this chapter.

The data collected by the scheduler are listed belcw:

L.

Start. A process is ready to run. Accumulate, over time, the number of
active processes and the number of ready processors.

Runaprocess. A process is activated. Accumulate, over time, the number
of active processes and the number of ready processes.

Allactive. A process is ready to run, but all of the processors are active.
Accumulate, over !ime, the number of active processes and the number of
processes ready to run.

Startprocess. A procass is sbout to become uctive. For each process that
is running collect the !ime. This represent:, processes starting to execute
concurrently.

V.B Simulation operation and data collected v-8

5. Stopprocess. A process becomes inactive. For each process that is still
running accumulate the time that the two processes were running
together.

6. Deachedule. A process has become inactive. Accumulate, over time, the
number of active processes and the number of ready processes.

The data concerning the number of active processes are always collected, but
the data concerning which processes are active concurrently are only collected when

optionally requested.

V.B.4. Analysis of the data

For each process the total time for each activity and wait is accumulated.
Performance expectations are computed for each of the following:
Percentage of time spent computing in each process state.

Percentage of time spent waiting to exclusively access a link for each
state.

Percentage of time spent waiting until the link was ready to acknowledge
access for each port.

Percentage of time each state waited until the link could complete the
required 1/0 operation.

Percentage of time spent performing the 1/0 operation for each state.

Percentage of time the process was ready to run but had to wait to be
scheduled.

For each link the following performance expectations are computed:
The percentage of time ihe link was active, inactive, and restarting.
The percentage of accesses required for the link to restart.

The expected time between link accesses, between Input port uccesses,
and between output port accesses.

The expected queue length.

The expected number of processes waiting to send a message to the link.

L M R SR REE

B i R T I N, T PTG iy T8 B Sy RN g vy nilbed - o dle

V.B Simulatlon operation and data collected V-9
The expected number of processes walting to recelve msssages from the
iInk,

The analysis of the schedule data is used to compute:
The expected number of active processors.
The expected number of processes that must wait to be scheduled to run.

The fraction of time each process computes concurrently with each other
process.

Answers to the questions pi :sented in the first section of this chapter are all
available from this analysis. Estimates are available concerning all of the activities of a
process and a link. Bottlenecks in the system occur at those links where queue

lengths are large and where processes are forced to wait for reasons other than the

- completion of an input or output operation. By examining the number of active

processors, decisions can be made concerning numbers of processors needed for the
program. Data concerning the working sei of processes can be used to facilitate
prescheduling of sets of processes. Likewise when processes are known not to run
concurrently It is possible to manage data resources to take advantage of this
occurrence.

For the simulations presented in Chapter 11I, a variety of the STEPPS simulator
variables, data collection, and data analysis facilities proved useful. The Bliss/11
experiment emphasized varying the number of processors available and using the
alternate scheduler algorithms: FIFO, LINK, and RANDOM. The specific data collection
and analysis facilities that were the most useful included:

number of messages into and out of each link,
expected queue lengths at each link,
expected process wait time at each link and process ports, and

average number of active processors.

R T R ey v o, G - haan e ne e b e anne ooy o
. s T P WP S PR

V.C The implementation of the STEPPS system v-10

The Hearsay Il experiment was more complex, and used additional STEPPS
simulator facilities. The "working set of processes” analysis was used to determine the
proper number of Knowledge Sources to reproduce. Since the overhead associated
with this facility was large, it was not used beyond the system tuning simulations. The
other facilities that were utilized during the simulations were:

link queue engths used to show where interference,

percent of time spent in process states used to observe which processes
contributed to the link queue lengths, and

average number of active processors.

V.C. The implementation of the STEPPS system

The STEPPS interactive system has been implemented on the Digital Equipment
Corporation PDP-10 computer. It is constructed using the Sail [VanLehn 73] and
Bliss/10 [Wulf 71] programming languages. These languages were chosen since each
contains features that are most appropriate for its use. The discrete time simulator
uses a modification of a package of Bliss/10 (hereafter referred to as Bliss) programs
called POOMAS (Poor Man's Simula) originally written by A. Lunde [Lunde 71). The
STEPPS system consists of about 45,000 words of PDP-10 36-bit word memory.?

The STEPPS system command language was designed with user convenience in
mind. The command syntax consists of three types: node connection, transition matrix
manipulation and keyword commands. Wherever possible, unique abbreviations are
acceptable. For example, ALPHA.1«BETA.l means to connect port ALPHA.I001 to a
.uniquely named new link (say Link003) and then connect this new link to port
BETA.0001. Another example, DIS CON ALPHA, LINKOO3, BETA.Ol is the same as

YThis includes about 10,000 words for a debugging package and library.

AN TR

Dl L AT e T i R

V.C The Imnlementation of the STEPPS system v-11

DISPLAY CONNECTIONS ALPHA, LINKOO3, BETA.0001 which displays the connections to
the objects requested. Every parameter to a STEPPS model can be displayed and
modified by one or more commands. An annotated protocol of examples using the
STEPPS system is presented in Appendix B.

The interactive portion of STEPPS was written in Sail and takes advantage of
Sail’s powerful string manipulation and input/output facilities. The lexical and syntactic
analyzers for the STEPPS commands are written in Sail. The data structures
representing a model are maintained by a set of Eliss programs. The Sail program that
performs the interpretation of the STEPPS commands is recursive, so that when a
command to LOAD from a PDP-10 file is given, the systera simply calls the main
interpret program recursively. This means that commands in files can cause other fiies
to be loaded. The displays of the STEPPS model components are in the same form as
the command language. Thus the display of the STEPPS components can be sent to a
file and later read in as a set of commands. The Sail portion of the system acts as a
front end to the Bliss partion of the system.

The Bliss portion of STEPPS contains programs which create and manipulate a
representation of a STEPPS model. The representation consists of a complex data
structure where each link node and process node contains pointers to other nodes, as
in the directed graph representation of a program model. The use of pointers and
complex data structures is one of two reasons for choosing Bliss to implement the
representation of a STEPPS model. The other reason is the availabllity of the POOMAS
simulation package for Bliss programs.

The internal data structures are complex since the STEPPS system allows a
wide variety of manipulations of a model. A process is created when it is first used,

nither to define a connection between a port of the process and a link or to create a

V.C The Implementation of the STEPPS system V-12

transition matrix for a port of the process. Subsequently, additional ports can be
added to the process, new connections made, and changes made to the transition
matrix. Whenever a modification that affects the transition matrix occurs, a validity
test is performed to insure that the matrix contains proper probabiiities (i.e., with rows

'summing to one). This prevents improper aiteration of the transition matrix and
sometimes prevents the removai of a port of a process. A link is created In the same
manner as @ process, viz. when it is first used for a connection or when it is assigned
attributes.

The model simulator is constructed from three types of POOMAS simulator
processes: STEPPS processes, STEPPS links, and the STEPPS schedules. The
operation of these simulated processes has been described earlier (section V.B). There
are pointers in the STEPPS data structures that go from the simulation representations
to the STEPPS renresentation and vice-versa. This facility makes It possible to
examine the progress of a simuiation and later continue the simulation. The data
collection facilities are iocalized and this enables ease in adding to or modifying any of
these facilities. 1. data analyzer functions are also localized which also makes it easy
to add to or include other analysis facilities.

The speed of the simulator is measured by the number of events per second.
The events are: link access, link startup, link delay, process perform 1/0, process start
computing, and process stop computing. Other states of a process and a link do not
cause the simulator to schedule an event. The time consumed by the scheduler is not
measured in terms of events, but is inciuded as the overhead for process scheduling.
The resulting measured speed is approximately eighty events per second. An
estimation of the length of time required to obtain resuits concerning a model depends

on the compiexity of ihe model. The STEPPS system maintains counts of the

V.C The Implementation of the STEPPS system v-13

occurrence of various events and so it Is possible to examine whether enough events
have occurred to continue or discontinue a simulation.

The remaining major component of the STEPPS system Is the deadlock
recognition algorithm, which is also written in Bliss. The general algorithm has been
described in Chapter 1IV. The technique used is to iterate through the set of links and
apply reductions Rl, R2 and R3 to each process attached to the link. The links and
processes attached to them are examined repsatedly until none of the reductions is
applicable. Finally reduction R4 is applied to remove the remaining SOURCE/SINKS.
Actually, whenever a SOURCE/SINK is identified and all adjacent ports to it have been
removed, the SOURCE/SINK is removed as well so that it need not be examined on each
cycle through the graph.f In addition, once the last connection to a link Is removed, the
link is also removed. Although the order of application of the reductions is
unimportant, as far as the ultimate result is concerned, the fcllowing is the order
chosen for implementation, and reasons for choosing this order:

1. R2c (remove ports attached to SOURCE/SINKS). This reduction is expected
to cause the largest number of reductions to occur. It s also an easy
condition to determine.

2. R2a (remove ports of the same type and processes from the same link).
The conditions for this reduction are easy to determine and reduce the
number of ports attached to the link.

3. R2b (remove ports of ditferent type and same process from same link).

4, R1 (combine adjacent processes).

5. R3 (combine parallel processes attached to the link). This reduction Is the
one most likely to benefit from application of the other reductlons.

Since each reduction removes one or more connections, the total number of

reductions is at most the same as the number of ports, which equals the number of

YThe algorithm description (Chapter 1V) was simplified by not Including this
Implementation alternative.

b b B ML

V.C Tha implementation of the STEPPS system v-14

connections. A more interesting measure of the cost of the reduction algorithm is the
number of ports that must be examined. The worst case would be one successful
removal of one port per examination of the ports. If there are N ports in a graph,
then the algoritr'\m would require at worst N! port examinations. A more realistic
estimate should be based on the successful application of more than one reduction per
pass over of the ports. If one fourth of the ports are removed per loop through the
ports* then the total number of examinations required is approximately 4sN. The
reason that this estimate is more realistic is that successtul application of a reduction
at the beginning of a loop through the ports can cause the application of a reduction
that might not have occurred before.

The STEPPS system was designed so that it would be possible to include
analysis programs that are not original components of the STEPPS system. An example
might be to use an analysis of semi-Markov processes. The STEPPS system will allow
such a program to be written in FORTRAN, Sail or Bliss and later included with the
STEPPS system. The method is to link the new program with the STEPPS system and
then apply the new program to a STEPPS process. The STEPPS system will convert
the internal representation of a STEPPS transition matrix to the torm expected by a
FORTRAN or Sail program (i.e., a matrix) and then perform a call of the FORTRAN, Sail
or Bliss program. The structure of the transition matrix is defined to be the same as
displayed by the STEPPS "DISPLAY" command. Another type of analysis that might be
written externally to the STEPPS system is the analysis of a connection matrix
representing the entire STEPPS model. For this situation, a matrix will be formed to
represent the connections among the processes and the application of the external

analysis program would be performed on the representative connection matrix.

YAl tested cases resulied in even greater reductions than this.

e i e o o i

V.C The implementation of the STEPPS system V-15

Even though the STEPPS system was designed to accommodate externally
deflned analyses, the easiest way to include new features Into the STEPPS systein
would be to add them to the system itself. This task should not be difficuit for a Bliss
programmer, since the system Is well organized into many small subroutines, and is
Internally well-documented. Very few of the routines in either the Seil portion of
STEPPS or the Bliss portlon are more than fifteen lines long, so their compiexity Is
kept to a minimum. In addition, the system Inciudes s isrge number of Jebugging
facllities. The removai of the debugging facilities wouid probabiy decrease the size of
the STEPPS system by about tweive thousand words (this inciudes eight thousand
words of non-STEPPS debugging tools).

The STEPPS system, as constructed, is reaiiy a prototype for toois that shouid
be avallabie to a systems designer. As such, a number of lessons were iearned
concerning the systems impiementation. One criterion adhered to was the emphasis on
man-machine interaction convenience. Many times the ease of using simple, yet
descriptive commands made the STEPPS system appear elegant even when features
were being debuggec In a successor system, even greater emphasis shouid be placed
on the man-machine interaction than in the prototype system. The amount of extra
code and nominai extra processing time are weli worth the user convenience. The
STEPPS structure was noted above as being well organized, which also must be
emphasized as a vaiuabie iesson. It was often found that disciplined programming
style used and appropriate testing and debugging sids constructed greatly assisted In
the overall system deveiopment.

There were implementation drawbacks in addition fo the constructive lessons.
The STEPPS system uses a set of fairly complex data structures. It was not estimated

during the system design that these structures could grow rapidly (eg. whenever a

V-16

new port was added). Thus during the application of the STEPPS system to the
examples of Chapter III, the data structure had to be redesigned and rebuilt.
Fortunately the previously mentioned programming discipline used made thic somewhat
painless in terms of propagating errors (some “information hiding" had been used). It
must still be observed that the data structure problem is not solved, but could be if
the 'next version of STEPPS handled simulations and model structures in a fashion
different from the current system.

A similar improvement can be made to the STEPPS system by constructing a
discrete event simulator tailored to the STEPPS model. The POOMAS simulator was
used for convenience, but it contains unneeded features that add to the STEPPS
_ system size and add to the time required for a STEPPS simulation. Thus the simulator

should be optimized for STEPPS simulations.

vI-1

Chapter VI

Summary

In this thesis, the problem of designing programs for asynchronous
multiprocessor computers has been addressed. A particular design philosophy has
been emphasized consisting of predicting the implications of design decisions at early
stages during multiprocess program desigr, and develolpment. The thesis presents
design tcols consisting of a model for describing the decomposition of a program into
asynchronous, concurrently executable subparts; an analysis algorithm to determine
whether a model contains a deadlock; an interactive system for manipulating a model
representation; and a simulation system for predicting the performance of program
structure under a variety of scheduling algorithms.

These tools (called STEPPS) have been used to model possible program
structures with fine granularity (as with Petri nets) and at a functional level. Potential
structural problems may be identified and a program restructured before an
investment is made in a poorly structured program. Two - neriments have been
performed to predict performance implications of multiprocess structures. In one
experiment, using 2 STEPPS model and the STEPPS system, the implications of
restricting the numbers of available processors and using different scheduling
algorithms were examined, and the effect of using alternate program structures was
explored. In the other experiment it was shown that, when a multiprocess program
under development is sufficiently instrumented, the STEPPS model and system can be
used to help tune the program’s structure.

Thus it has been demonstrated that the STEPPS model and the STEPPS system

do help to accomplish a well structured design.

VLA Deslgning Programs for Multiprocessor Computers Vi-2
VI.A. Designing Programs for Multiprocessor Computers

The past few years have seen the advent of multiprocessor computers (See
Chapter), and more are being developed as hardware costs decrease through
technological advancement. In addition, since microprocessors and minl-computers are
being connected to comprise new multiprocessor networks, the need has arisen to
design programs to utilize these multiprocessor computers. It is now recognlzed that
the total cost of a computer system has become based more on software costs than on
hardware costs [Boehm 73] Through proper software design the costs for testing,
coding, debugging, redesigning, maintaining, and extending software can be better
controlled, thereby decreasing the total cost of the computer system. The software
design tools discussed within this thesis are particularly valuable due to the current
interest in multiprocessor programs.

The approach taken for understanding how multiprocess program components
interact is based on the interprocess communication structure. It is at this level that
an abstraction can often be made for a system. Central to the abstraction is the
decomposition of the total system into a suitable set of functional components.
Consequently, understanding how a multiprocessing system works can be aided by
understanding how the components of the system communicate.

Several tools have already been developed as aids to the design and analysis
of multiprocessor systems. Of these tools, modeling techniques used include Petri-nets
[Petri 62), the UCLA model [Estrin 63}, and queuelng theory models [Kleinrock 75]
They have been used to represent interprocess control and data flow, program
validity, bottleneck identification, and orogram determinism. However, these models

suffer from baing so complex or abstract as to not really represent the functional

V1A Designing Programs for Muitiprocessor Computers VI-3

aspects of the total system. In addition, these models often have been difficuit to
analyze. Another approach was taken by Riddie [Riddie 72}, who combined a functional
structure with program-like descriptions of indlviduai processes. This modei was an
improvement in understanding overaii system structure, but it stiii suffered from
requiring programming detaii to describe a process’s interactions. Similariy due to its
program-iike ature and to its complex algebralc form, Riddle’s models are difficuit to
' anaiyze. Another type of tool, simulation, has proven to be a valuabie approach to
anaiyzing system design. However, simuiations must be individualiy programmed in a
suitabie programming language (e.g. GPSS or SIMULA). Simuiation models provide much
usefui information, but like most programs they are difficuit to constrqct and (often) to
modify,

STEPPS consists of a set of design tools that combire several of the
advantages of the abovementioned tools with a new Idea felt to be natural for system
design. The major new concept is that processes comprising a muitiprocess program
are abstracted as operating in a probabiiistic manner with respact to their
interprocess communication activities. The STEPPS system was designed to avoid the
duai probiems of very fine required detail and reprogramming for examining
impiications of aiternate multlprocess program structuring. The other features of the
STEPPS tools comprise an interactive system used to simulate, manipulate, and anaiyze

STEPPS program modeis.

VIA.l. The STEPPS system

A STEPPS program modei is a directed graph conslisting of two types of nodes:
process nodes and link nodes. Communication among nodes In the model is

represented by the movement of message tokens. The operation of the entire modei is

VI.A Designing Programs for Multiprocessor Computers vi-4

defined in terms of the individual operation process nodes. A process can request
messages from and send messages to link nodes. The sequence of operations of each
process is defined similarly to the operation of a semi-Markov process. That is, both a
probability and a computation time are associated with each possible successlve
process operation (request a message from a link or send a message to a link).

The STEPPS model is more expressive in terms of modularity and potentlal
activity than Petri-net like models. Yet the STEPPS model abstracts many of the
expressive details provided in programming languages and programming-like models.
The model is at an abstraction level that emphasizes both interprocess communications
and internal process complexity based on probabilities and timing. In Chapter | it was
demonstrated that the STEPPS model could incorporate both the Petri-net model and
the UCLA model. In Chapter lll, more natural examples were also demonstrated using
STEPPS: fork/join, subroutines, probabilistic server processes, P/V, and reader /writer.
More importantly, two non-toy, more complete examples were modeled and simulated:
Bliss/11 and Hearsay Il

The STEPPS simulator, which is invoked from the STEPPS system, can be
configured to represent a variety of execution environments. These environments are
defined in terms of the number of processors available and scheduling algorithms used
when a scheduling choice is required. Data are collected and analyzed to predict such
aspects of a modeled program’s performance as queue lengths, rates of data flow at
links, process activity and parallelism. Some measures of parallelism of interest to
STEPPS are those concerning the average number of active processors and the
working sets of processes.

The STEPPS interactive system was designed to facilitate man-machine

interaction. Some features of the sysiem are: commands for creating and manipulating

VLB Experiments and Results VI-5

STEPPS model representations; commands for saving a modpl or parts of a model for
later retrieval; commands for displaylng ali parameters of a model and simulation;
abbreviations for most commands; and automatic assignment oi defsult values to
unspecified model and simulation parameters.

The STEPPS model can be automatically analyzed to determine tiie existence of
a deadlock possibility. This analysis (detailed in Chapter V) is parformed by
iteratively applying a sequence of graph reductions to a STEPPS program mode! until
no further reduction is applicable. The reductions, which are applied when certain
constraints are satisfied, are: combine two adjacent processes intc one; eliminate
states or combine two states to be one state of a process; combine two processes that
are in-parallel; and eliminate processes that can perform only one operation.

It has been demonstrated that each reduction preserves the possible
interprocess communication among those processes not involved in the reduction. If as
the result of the completion of all possible applications of the reductions there are no
nodes remaining then the original representation was that of a structure with no
deadlocks. Otherwise the original structure contained a non-zero probability of a
deadlock. The complete reduction algorithm has been Implemented as part of the

STEPPS system.

VI.B. Experiments and Results

Twd non-trivial experimental applications were conducted to validate the
usefuiness and significance of the STEPPS tools. The Bliss/11 compller structure [Wulf
75a) was studled, modeled, and analyzed for reconstruction on a multiprocessor based

upon a design similar to its sequential structure. The Hearsay Il muitiprocess speech

V1.B Experiments and Results VI-6

understanding system [ngsser 74, Fennell 75b) was analyzed using STEPPS to help

explain a phenomenon of interprocess interterence [Fenne!l 75a, 75b).

V1.B.1. The STEPPS Bliss/11 application

‘The STEPPS Bliss/11 application, presented in Chapter 111, was performed to
predict potential throughput increases it the compiler structure were moved to a
multiprocess organizational environment. Using a multiprocess structure, hased upon
the compiler’s pipeline organization [Wulf 75a), it was found that throughput covid
increase approximately 3.5 times over throughput achieved with a single process
structure. In addition, by using the STEPPS simulator features to restrict the number
of available processors and schedule ready processes on them, it wus found that most
of the throughput increase could be attained by using two thirds of the potential
number of processors. Furthermore, it was found that varvir. schaduling 'gorithms
available to the STEPPS system (i.e. FIFO, most waiting requests, and random) did not
appreciably affect the tliroughput rate.

The Bliss/11 structure was augmented to examine _.asequences of
providing duplicate processes for some of the Bliss .ompiler cormponents. The
results of the simulations demonstrated that there would be an increase in throughput,
but that potentially it was not large (about 4 times sequential). These results also
indicated that the necessarily sequential lexical analysis stage of the compiler is a
significant bottleneck preventing compilation speedups. Again it was observed that
most possible throughput was reached by using about two thirds of the potential
‘ number of processors.

A systems designer embarking on designing a multip: .. 2ssor Bliss/11

implementation can use these results to aid in determining where to concentrate

V1.B Experiments and Results Vi-7

efforts. It was predicied that the crucial part of the compiler process structure was
the purely sequantial lexical/syntactic analysis component. Hance this component
should receive attention to optimize its processing. Alternatively, it could be
concluded that there is processing time available to perform more sophisticated and
time consuming semantic optimizations since the lexical/syntactic analysls uses the bulk
of the compiling process. Another conclusion for the systems designer is that there
does not appear to be a large gain in processing achieved by designing a compiler to
dedicate a processor to each process. Instead it appears that a design based upon
fewer processors than the potential number of processes can achieve almost as good a

throughput rate.

V1.B.2. The STEPPS Hearsay 1l application

The STEPPS Hearsay 1l application, presented in Chapter 11I, demounstrated that
STEPPS can be used to model abs!ractly a real multiprocess program structure; to
reproduce an interesting phenomenon of that program structure; and consequently to
indicate whether the cause of the phenomenon is at the structural leel abstracted by
the STEPPS model. The Hearsay Il Speech Understanding System (HSII) [Lesser 74,
Fennell 75b] has been designed to utilize a variety of analysis sources to solve the
problem of understanding human speech for the performance of a task. The task has
been functionally decomposed In a data driven structure so that individual components
ot the understanding process can be performed concurrently in a closely-coupled
multiprocessor environment.

The STEPPS model was used to represent the operation of the Individual
processing components of the HSII system: the precondition (PC) processes and the

knowledge source (KS) processes. In ad&ition, the d:'a base (DB) blackboard was

V1.B Experiments and Results VI-8

modeled as a set of synchronization locks. This model is an abstraction based upon an
analysis of the HSII structure and upor ‘ata provided as a result of instrumentation
incorporated into the HSII system - » HSII designers and implementers. The
-'speclfic data provided were obtained from executing HSII in a sequential (single
processor) manner.

The STEPPS HSII model is probabilistic in nature and is based on potential
communication activities. The three types of communication activities emphasized are:
initiate a precondition process, access the data base, and initiate a knowledge source
process. The data provided from the implemented prototype HSII system were
analyzed to provide estimates for choices of precondition processing activity. The
data were also used to determine STEPPS HSII process computation times and
probabilities for accessing portions of the data base. Probabilities (based on the
provided data) also are used to indicate a precondition’s potential initiation of a
knowledge source process.

The accessing of the HSII data base blackboard is organized as a hierarchical
(lock/unlock) synchronization structure to maintain data integrity and to prevent
processing deadlocks. Fennell [Fennell 75a, 75b) performed simulations of a
multiprocessor HSIl system and discovered that locking interference placed a
substantial overhead on the HSII throughput rate as measured by the average number
of active processors. Specifically, he found that the interference decreased processing
by about two thirds, but he did not explain the reason for this phenomenon.

The STEPPS system was proposed as a tool to determine whether the locking
Interference phenomenon occurred due to locking of a small number of data base
segments or whether the problem was more complex. An implication might be that the

locking hierarchy mechanism might be made simpler, i.e. less finely grained.

Sapw

VIC Future research and refinements to STEPPS VvI-9

Simulations were performed, based on the STEPPS HSII model, varying the number of
possible data base regions that could be locked. In addition, the mode! was simulated
with locking turned off (as in Fennell’s simulations). The result was that the average
active number of processors with and without locking, using the STEPPS simulations,
corresponded to Fennell's results.

This result is significant In that the locking phenomenon was reproduced while
based on a simple probabilistic communications model. Since the probabilities used
were tsken from a sequential execution of the HSI system, the Interprocess
cooperation did not seem to affect greatly the locking interference problem. The
hypothesis that the interference was due to locking of a small number of reglons was
supported by the simulation statistical results.

The STEPPS system was demonstrated as providing the HSII system designers
with a tool for modeling communications structures. It has provided the HSII designers
some interesting information, and through modification of the computation times,
probabilities, and model structure it should be able to provide more Information. Thus
the STEPPS HSII model shouid be a useful framework for exploring the effects of

- possible design changes suitable to the model’s structure.

VIL.C. Future research and refinements to STEPPS

The STEPPS model and simulator aie based on a flxed Interprocess
communication pattern and a fixed number of processes. These rastrictions were
judged to be necessary when the deadlock detection algorithm was designed. It is
unknown whether dynamic creation and dsletion of processes will stlll allow the
application of a deadlock detectlon algorithm. It may be necessary to restrict the

types of operations and connections that dynamically created processes can have.

VIC Future research and refinements to STEPPS vI-10

Several other generalizations of interprocess communication may be considered
as modifications to the model. Hierarchical and interrupt relations are multiprocess
relations that it is not now possible to model using STEPPS; however, It may be
possible to modify the model to include such structures.

A limitation of the STEPPS model discovered during applications of the model!
was the introduction of extra modeling complexity required to model some possibly
interesting program communication structures. For example, the STEPPS reader /writer
model demonstrated that the STEPPS model only worked with a finite number of
readers/writers. This is a symptom of processes’ actions not being determined by
information carried by the message tokens (e.g. tagging, sender, return-request, etc.).
The inclusion of actions (other than timing) based on message contents would add
program-like complexity to a process mode! and would also discount the present
formulation of the deadlock detection algorithm. Any exfension to the STEPPS model
based on including message information may not prove fruitful due to its own form of
added complexity.

Areas of deadlock analysis beyond the detection algorithm would be the
identification of cause(s) and the prediction of the probability of a deadlock over time,
events, or some other measure. The STEPPS system can be used to trace the
application of the deadlock detection algorithm and to display a resulting irreducible
graph. Studying this trace and the resulting graph has proven usetul in discovering
the cause of deadlocks while testing the STEPPS system, and It may be possible to
create an algorithm for this process.

The STEPFS interactive system uses simple linear displays of a STEPPS model.
It may be possible to create more natural displays of the directed graph
representation of a model. This problem may be difficult because a model has no

defined root, terminal or topology.

Vi.C Future research and refinements to STEPPS vi-11

As the STEPPS system was applied to the exampies presented in Appendix B,
features were added to enhance the convenient use uf the system. It is possible that
future experience using STEPPS will indicate other Improvements. Some extensions
that might be useful are:

1. Compute time between port activations need not be fixed; Instead it can
come from a definable density function. This Is cioser to the actual
definition of compute times for a semi-Markov process.

2. The abiiity to identify a group of nodes and copy them in one operation
may be used to organize similar subparts of a large structure. It is
already possible to copy single nodes and transitions trom a process
state.

3. The state of a simuiation couid be saved for future continuation.

The STEPPS system has been shown to be useful in the design and analysls of
two muitiprocess programs, viz. Bliss/11 and Hearsay Il Now that the author has
tested and debugg + *hese examples on the STEPPS system, others shouid use STEPPS
or a system very muca like it in the compiete design and construction of multiprocess
programs. STEPPS Is intended as a useful group of design toois and should be used
for that purpose.

As experlence Is gained in using the STEPPS model, more techniques such as
those prosented In the beginning of Chapter 11l can be cre-tad. For example, other
synchronization techniques may be designed, in addition to the PV and reader /writer
examples shown.

Some problems which might be constructed for a multiprocessor and which
could use STEPPS are: a multiprocess compiler Implementation, sort and search

programs, theorem provers, data pipelines (with and without feedback), and data base

management programs,

i it AR L o o v R Sl L b T T M TR SRR g p—" e oy a L

| VLD Conclusions Vi-12
VI.D. Conclusions

As noted in Chapter 1, several multiprocessor computers are avallable and/or
belng developed. In particular, Cmmp [Wylt 75b] has reached a stage of maturity
where several multiprocess programs are being designed and developed for
Implementation on it. The tools preserted in this thesis research should be useful to
those designing programs for C.mmp or for any communicating multiprocess program
environment.

By using an interactive system, a program designer can create a model of his
program and discover a variety of Implications of his design decisions. The STEPPS

* system is most appropriate for this type of exploration of a program structure space.
STEPPS provides analysis tools and simulation tools in one Interactive system. Neither
unique model analysis nor unique simulation models need to be developed when the
STEPPS system is used.

A second advantage of using the STEPPS system concerns the ability to predict
performance changes in a running system before making modifications to the system.
This type of design decision is imporiant for determining where to direct efforts to
improve a system’s performance. The overall structure of a program Is no longer the
only issue; instead considerations inclu.e the sensitivity of a program’s performance to
modifications of the orogram structure and changes In modeled probabllity and time
parameters.

The major advantage of the STEPPS system over other systems anaiysls tools
and tachniques Is that the STEPPS system automates the production of results.
Furthermore, if methods of analysis that are not already available within STEPPS are of

interest, it may be a simple task to Include these other methods with the STEPPS

e i B

g .

ST TEL 0 W N I S S et S ST L N WA W

VI-13

system. Finally, the Bliss/11 example demonstrated that STEPPS can be used to
provide performance predictions quickly for a multiprocess program design, and the
Hearsay Il example demonstrated that decisions may be made concerning modification
to an ongoing system, based upon a simulation of a STEPPS model of that system.
Thus we conclude that the STEPPS interactive system is a useful tool for the design

and analysis of mulliprocess program structure.

R o

A-1

APPENDIX A
STEPPS System Manual

This appendix contains a complete description of the STEPPS system facilities
and their use. For clarity, more than precision, BNF notation Is used to describe the

cormmand syntax.

A.1. Introduction

The STEPPS system is an interactive system for use in modeling and simulating
multiprocess programs. The following services and facilities are provided:

Creation and manipulation of models

Displays of all model constituents

Analysis for well-formed and deadiock-free medel

Simulation and data collection

Display of simulation parameters, state, collected data, and statistics

Mode! description saving and retrieving

The three distinctive types of commands are: set model connections, define
transition matrices, and keyword. These distinctions exist for user syntactic
convenience.

The model connection command is recognized by its inclusion of at least one
*«" and is used to connect mode! nodes. The transitics matrix command is recognized
by its inclusion of one "a*t The keyword commands begin with » command keyword

and never contain "«" or "=",

"The one exception to this will be explained.

A.1 Introduction A-2

Names of objects, processes or links are defined as in most languages with the
restriction that a maximum of 10 characters can be uniquely distinguished.
<name> :u= <letter> | <name><letter> | <name><digit>
<letter> = AIBICIDIEIFIGIHII|J|K|L|M|NIO|P|Q|R|S|T|UlV|W|X|Y|Z|u|8I"I"
<digit> 1= 0]1)2|3141516]718|9
<process name> = <name>
<link name>::= <namg>

While all input to the STEPPS system may be either upy:r or lower case
letters, lower case is automatically converted to upper cise. Thus lower case names
can be used for convenience, but they are indistinguishable from upper case names
with the same characters (and order).

Process ports are identified by the process name, the port type, and the port
number. The usual definition is:
<port name>::= <process name>.<port type><port number>
<port type>u=1|0
<port number> ::= positive integer less than 1000
<untyped port name> = <process name>.<port number>
<port id> u= <port type><port number>

Some connection commands allow abbreviations for <port names> using
<untyped port name> and context for definition.

Keyword commands begin with a keyword and parameters follow on the same
line. The actual syntax of the keyword parameters is dependent on the particular
keyword. However, consistency among some keyword parameters is that keyword
subparameters are usually order independent. Also, keyword abbreviations and
parameter-subkeyword-abbreviations can be used by entering unique initial characte:
strings. Thus E may be used for EXIT, but DI must be used for DISPLAY since DENSITY
is also a command.

Spaces (at least one) are used as separators between keywords and

parameters. In some situations a comma may be used instead of a space, but a space

e,

| T N pp———

A.2 Model Creation A-3

can not be used in place of a comma. Spaces may be fresly inserted around saparator
characters ";;+=[]". Comments can appear on any line by placing an "!" which causes
everything to its right to be ignored. Line continuation is used by placing a "-" as the
last non-comment character on a line. Thus,
DIS-! “irst line <cr>
PLAY-<cr>
GRAPH ! 3rd line<cr>
is a legal command?.
Each parameter that can be set by commands has a defined default value.
These default values will be presented in the command descriptions.
For the BNF syntax descriptions, two notational assumptions will be used. A

syntax root, a list definition, and a command will all be assumed. Thus the following

describes the missing syntax:

<STEPPS commands> = <connect nodes> | <define matrix>
| <keyword command>

<keyword command> u= <"1st" keyword command> | <"2nd" keyword command>
| <"3rd" keyword command> . ..

<y-list> = <y> | <y-list>, <y>

<x params>:= <x param> | <x params> <x param>

A.2. Model Creation

A model is created by defining the connections among its nodes, its transition
matrix values, and its link attributes, A model can be given a name by using the
command MODEL. This name is used when displaying the model components, and when

saving and retrieving the model description.

Y<cr> means carriage ieturn.

A.2 Model Creation A-4
A.2.i. Connecting nodes

The following is the syntax for connecting nodes:
<connect nodes> := <port connection> | <link connection>
<port connection>:: <typeless port list> « <connect nodes>
<link connection> ::= <link name> « <port connection>
<typeless port> := <process name>.<port number>
<port number> := non-negative integer less thsn 1000
A connection between an input port and a link is represented by: the input
port name, then a left arrow, and then the link name. In place of a single input port, 8
list of ports can be used to denote that each port in the list is connected to the link.
Contrary to ths above BNF definition, the type of port can be Included (i.e. input port).
Also, when several ports of the same process are to be connected, the process name
may be left out after appearing once. The following are legal connections:
a.l « alpha
b.il, c.i2 « beta
d.l, 2.2,.3,i4, b.i7 « alpha
The results of these lines would be to connect input port A.Il to link ALPHA,
input ports B.I1 and C.I2 to link BETA and to also connect input ports D.I1, A.I2, A.I3,
A.14, and B.I7 to link ALPHA. A.I1 will remain connected to link ALPHA.
A connection between a lint and an output port is represented by: the name
of the link, then a left arrow, and then the name of the output ports. In place of a
single output port, a list of ports can be used for connecting each to the named link.
As above, the type of port may be Included and process names need not be repealed.

The following are legal connections:

gammae«d.2
delta«e.1,f.03,4,g.7

The two types of node connections can be combined. When a link appear:

between sets of ports the meaning is that the input ports (to the left of the first left

A.2 Model Creation A-5

arrow) are connected to the link and also that the output ports (to the right of the
sacond left arrow) are also connected to the link. The following is used to connect the
ports X.I1, Y.12, Z.11, S.03, R.0O2, T.03 to the link GORP:
x.1,y.2,2.l 1«gorper.02,t.3,5.3
Another method for combining connections is used to denote the connection of
links to ports having the same number but different types. For example,
eta~p.3,q.7¢nu
means the same as

eta«p.3,q.7
p.3,q.7¢nu

Note that the ports must be typeless when using this notation since it
represents connections to both input and output ports.
A generalization of the atiove is also allowed:
a,19«epsilone1.3, |.7¢kappa¢c.3-omega
An additional notational convenience is available to automatically generate a
unique link name. It is accomplished by using port names on either side of a left
arrow. Thus,
b.3,c.2+a.421
means to generate a new link name (e.g. LINKO17) and connect it to the ports used

(B.3, C.2<LINKO17¢A.421).

A.2.i. Setling transition values

The following is ‘he syntax for setting transition values:

<set probabilities>::= <port name><repeat factor> = <initial flag><prob vector>
<repeat factor> :u= [<repeat number>] | null

<repeat number> ::= a positive integer less than 262144

<initial flag>:= = | null

<prob vector> = <prob seq> | <prob seq>; <prob vector> | <prob vector>;
<prob seq>:= <port prob comp>/<prob seq>

A.2 Model Creation A-6
<port prob comp>::= <] or O><port number> : <prob comp>
<prob comp> i <prob>, <comp> | <prob> |, <comp> | <prob>,

A <prob> is a real number. If it is in the range [0.0,1.0] then it Is the assigned
probability. If in the range [2.0,3.0]) it is a defaulted amount and is ignored. If it is
negative then the value becomes defaulted. If it is larger than 3.0, then this Is an
error. <comp> is any non-negative real number.

To set transition probabilities the source port is written to the left of an "=".
It the port activity is to repeat before a transition is made, then the repeat factor is
placed within square brackets, between the port name and the "=". To the right of the
"=" appears the destination probability; identified by the destination port type and
port number followed by a colon and then followed by the transition probability, a
comma, and the associated compute time. If @ "+" occurs to the right of the "=", then
the named port is deslgnated as the Initlal port. The following are examples:
a.i2=03:5,1.6
b.03{6]= 04:1.0,.1
cll = %12:.6,0.0
These lines mean that p(A.12,A.03)=5 and the related compute time is 1.6. Port B.03
repeats six times before entering state 04 (each time computing for .1). C.I1 is an
Inltial port snd p(C.11,C.12)=0.6.

Several abbnwlafions can be used:

1. Either the probability or the compute time can be le:* cul.

| 2. The following is a sequence of state changes:
a.i3=01:1.0,5
2.01=i2:5,1.0
a.i2=i4:1.0
2.i4=02:.2
- . This can be abbreviated as:
2.i3=01:1.0,5/ i2:5,1.0/ i4:1.0/ 02:.1

3. More than one sequence or single change can be shown on one line:

Cad bl

A.2 Mudel Creatlon A-7

b.016=i5:3
b.016=i2:1/03:5
b.016=04:5
b.016=i3:.1
becomes

b.016=i5:3; i2:.1/ 03:5; 04:5; i3:.1

A.2.11l. Model manipulation commands

Several keyword commands are used to manipulate a model representation.
Their functions include creating link attributes, copying nodes, removing nodes or
ports, and creating special types of process structures. The following is a brief
description of these commands.

ATTRIBUTES is used to assign the link attributes to links. The specific
attributes are maximum queue length, initial queue volume, start-up time, and delay
time.

COPY is used to copy nodes based on an existing node. It can also be used to
copy ports.

CLEAR is used to remove all processes and/or links.

DENSITY is used to connect a process to a link as If the process sent or
received messages with a rate based on a given probability density function. The
density functions availabie are exponentiai and normal.

DISPLAY is used to display model attributes at the terminal.

REMOVE is used to remove individual processes, ports, and links.

A special link called DANGLING is the default connection to any unconnected
port. Explicit connections can be made to DANGLING, but a model will not be well-

formed If any connections remaln to it. DANGLING cen not be removed.

A.3 Model Analysis and System Commands A-8

A.3. Model Analysis and System Commands

Keyword commands are used to analyze and test a model. In addit. 1, there
are STEPPS system commands used to interact with the underlying PDP-10 operating
system.

APPLY is used to apply a function that is defined external to the STEPPS
system to either individual processes or to an entire connection matrix.

TEST is used to test for a well-formed model. It is also used to test whether a
model is deadlock-free.

EXIT is used to exit from the STEPPS system and reenter the i°DP-10 operating
system.

LOAD is used to retrieve STEPPS commands from a POP-10 file.

SAVE iz uced to save the reprecentation of a model onto a PDP-10 file. The

representation is in the form of commands to recreate the items saved.

A.4. Simulation commands

The simulation features of the STEPPS system allow for the assignment of
several parameters. Most of the simulation parameters can be displayed and altered
independently of the invocation of the simulation. The parameters are concerned with
scheduling, data coliection, and tracing. A model can be simu|atéd for a period of time
and then a snapshot can be taken of its current state. Statistics can be displayed and
the simulation may be continued. No alterations can be made to the model while a
simulation is in progress and the STEPPS system prevents this from happening by
asking whether the modification should really be made. If so, the simulation is

terminated.

T T

A5 Keyword commands A-9

COLLECT is used to mark the processes that will and will not have data
collectlon.

CONTINUE is used to continue a stopped simulation. It also can be used to turn
on simulation tracings.

DISPLAY is used to display the simulation parameters.

SCHEDULE is used to assign the simulation scheduling algorithm, to mark
process priorities, and to mark which processes are and are not competing for
processors.

SIMULATE is used to invoke the simulator. Some parameters can be assigned
using this command. In addition, tracing can be turned on by the command.

SNAPSHOTS is used to display the status of process nodes, link nodes, and/or
the scheduler when a simulation is stopped.

STATISTICS is used to display collected data with analysis for process nodes,
link nodes, and/or the scheduler when a simulation is stopped.

UNSIMULATE is used to terminate a simulation that has stopped. Once this

command is used, the simulation can not be continued.

A.5. Keyword commands

The following is a detailed description of each of the STEPPS keyword

commands. The commands are given in alphabetical order. Parameters are described

-

with each of the commands.

APPLY

<APPLY cmd> z= APPLY <external function name><APPLY param>
<external function name>::= <six character name>
<APPLY param> := GRAPH | PROCESS <list of process names>

A5 Keyword commands A-10

The named function is applied to either the entire GRAPH or to the transition
matrix of #ach named process.

The method for incorporating an external function with STEPPS depends upon
the language used for the function: BLISS, SAIL, or FORTRAN. SAIL and BLISS are the
most appropriate languages to use since the use of FORTRAN requires some
restrictions (I/O can only be performed by using SAIL procedures). The following are
the required procedures to use a function GORP defined in different languages.

BLISS:

1. Define GORP as GLOBAL.
2. Link the STEPPS system and include module with GORP.
SAIL:
1. Define SGORP as INTERNAL and add 7 dummy parameters.
2. Add CALLSAIL (SGORP, GORP, 1); to file SETUP.BLI and recompile it.
3. Link the STEPPS system and include module with SGORP.
FORTRAN:
1. Define FGORP as the FORTRAN function.
2. Compile the following SAIL module:
ENTRY;
EXTERNAL FORTRAN PROCEDURE FGORP (ARRAY M);
INTERNAL PROCEDURE SGORP (ARRAY M; INTEGER D1,D2,03,04,05,D6,D07);
FGORP (M);

3. Do steps 2 and 3 for SAIL.

ATTRIBUTE

<ATTRIBUTE cmd>::= ATTRIBUTE <link name list> <link attributes>
<link attributes> ::= <attribute assignment> | <attribute assignment> <link attributes>
<attribute assignment> := QUEUE:<integer> | VOLUME:<integer> |

DELAY:<real> | STARTUP:<real>

Each link named in the <link name list> is assigned the attributes named. For

A5 Keyword commands A-11

example, to assign the attributes to link ALPHA of maximum queue length of 3 and
delay time of 2.0, the following would work:
ATTRIBUTE ALPHA QUEUE:3 DELAY:2.0
An abbreviation allows several links to obtain the same attributes. Thus,
ATTRIBUTE ALPHA, BETA, GAMMA QUEUE:17, DELAY:4.0

assigns the same attributes to links ALPHA, BETA, and GAMMA.

CLEAR

<CLEAR c¢md> u= CLEAR <clear parametar>
<clear parameter>::= ALL | null | PROCESSES | LINKS

The result of this command is to clear the model of all PROCESSes, LINKs, or
both. null Is the same as ALL. For CLEAR ALL the model name is also reset to the

default model name: MODEL.

COLLECT

<COLLECT e¢md> = COLLECT <col key> <process name list>
<col key> = STATISTICS | NOSTATISTICS

The result of this command is to mark or unmark each process named for
simulation statistics data collection. Each process in the <process name list> must
aiready have been defined before issuing the command. The default is to COLLECT

STATISTICS for each process.

CONTINUE
' <CONTINUE cmd> ::= CONTINUE <time> <cont. param>
<cont. param> ;= TRACE | MODELTRACE |
FILETRACE <file> | <nuli>
This command is used to restart (or continue) a simulation where it halted (see

SIMULATE). The <time> parameter is a real number representing the length of time the

simulation should continue. TRACE means to display a simulation trace on the terminal

A5 Keyword commands A-12

device. FILETRACE <file> extends the named PDP-10 file with the simulation trace.
The extension TRA will always be used. MODELTRACE extends the file named
<modelname>.TRA with the simulation trace. <modelname> is the current model name

as set by the MODEL command.

Copy

The COPY command syntax has been changed since the examples in Chapter I
were created. Both the old and new follow, although the new syntax is the actual
syntax.

Old syntax
<COPY cmd>::= COPY <copy params> : <master item>

New syntax
<COPY cmd>::= COP(<master item> TO <copy params>

Common syntax
<copy params> = <link list> | <process list> | <port item list>
<port item>::= <port name> | <type-less port name> |

<l or O><port number> | .<port number>

The purpose of the COPY command is to duplicate items to the left of the colon
to have the same "attributes” as the item on the right of the colon. The actual
semantics is tased on the type of <master iter> as follows:

LINKS For each named link, the attributes of the "master item” link-are copied.
Only the attributes are copied, but not any connections since ports can only be
coninected to one link.

Example

A.3«FO0

ATTRIBUTE FOO QUEUE:3 VOLUME:7

COPY FOO TO BAZ, GORP

Now BAZ and GORP are linked with identical attributes as FOO (Queue:3,

Volume:7, Delay:0, and startup:0). However, neither is connected to any port even
though FOO is connected to port Al3.

A5 Keyword commands A-13

PRQCESSES For each named process, all of the attributes of the <master item>
_process are duplicated. The attributes include connection to links, transiticn matrix,
and simulation parameters. Only an unused name can be the result of COPY. Thus a
process must be removed before its name can be used as a COPY of another process.

Example

A.3<F0O0

A.01=213:1.0/01:1

COPY A TO BC

Assuming that B and C are previously unused names, they will now be identical
to process A. Thus the above COPY command is a short cut for the following
commands (assuming process A was previously undefined):

B.3«F00

B.01=£]3:1.0/01:1

C.3«F00

C.01=%13:1.0/01:1

PQRTS Named ports are copied based upon the <master item> port. The
corresponding connections and transition matrix vector may be copied. If the master
port does not exist, it will be created and similarly a new process may also be created.
The ports named in the <port item list> may already exist. When a new process is
created or the <port item> process has the same number of ports as the <master item>
process, all probabilities and computation times associated with the <master item> port
are set for the <port item port> When the above does not hold, a port only is created
and given default properties.

The transition matrix values are set in the same order as the <master item>
port; no examination is made for concurring port number. The repeating factor of the
<port item> is also set to be the same as the <master item> port. When the ports;
<port item> and <master item> are of the same type, of the same process, and not
already connected to a link, then the <port item> port is connected to the same link as

the <master item> port. COPY makes no change in a process’s initial state cince that is

a process property, not a port property.

A5 Keyword commands A-14

As a notational extension, the process name and/or port type may be left out
of the <pert itens>. When this occurs, the previously named process or/and port type
(to the left in the <port item list> is used. The initial default process name or/and port
type is the <master item> port process name.

Example

FOO«A.2¢«BAZ

A.12=02:1/12:1

D.I1l = 05:1/02:1

COPY A.12 TO A.14, D.O2

The above copy command replaces the following commands (assuming process
D did not exist previously):

A.l14«BAZ
A.ld = 02:1
D.02 = 05:1 ! since 05 is the third port of D.
DENSITY
<DENSITY cmd> = DENSITY <den. function type><den. params>
<den. function type> = NORMAL | EXPONENTIAL
<den. param> ::m PORT <port name> | LINK <link name>
FOR <positive integer> | GRAIN <positive integer>
MEAN <positive real> | VARIANCE <non-neg. real>
EPSILON <positive real>
Given a port name and a link name, :onnections and port transition values are
generated to represent the named probability density function se-vice rate as seen by
the link to (or from) the port. The mean (default:10.0), variance (default:1.0), and
appropriate grain (same as FOR; default:10) can be speciiied. EPSILON represents the
density mass of the distribution tail(s) and is defaulted to 0.001.
An exact description of the result of the DENSITY command is as follows where
the process name is PROCESS, given port type is TYPE and the given port number is
n.

1. Perform PROCESS.In-PROCESS.On, i.e. create a link and two ports.

2. Create ports PROCESS.TYPEn+l1, . . ., PROCESS.TY PEn+(grain size) and
connect them all tc the named link.

A5 Keyword commands A-15

3. Do PROCESS.On = In:l
4. Do PROCESS.TYPEn+1 = PROCESS.On:!

5. COPY PROCESS.TY PEn+1 TO PROCESS.TYPEn+2, . . 3
PPOCESS.TY PEn+(grain size)

6. Set PROCESS.In transition matrix probabilities and time values dependent
on the named density function. The successor ports are TYPEn+), . . .,
TYPEn+(grain size).

DISPLAY

<DISPLAY cmd> := DISPLAY <display arguments>
<display arguments> .= ATTRIBUTES <link list> | COLLECT | COMFETE |
CONNECTIONS <port, process, link list> | DANGLING |
GRAPH <DISPLAY GRAPH parameters> | LINKS | LOOPS |
MODELNAME | PATHS <obj 1> TO <obj 2> | PORTS <process list> |
PRIORITY null | PRIORITY <process list> |
PROCESSES | SCHEDULER | TRANSITIONS <process, port list>
<DISPLAY GRAPH parameters>::= ALL | ATTRIBUTES | JATTRIBUTES |
JCONNECTIONS | JTRANSITIONS | null
The DISPLAY command is used to display items in the STEPPS model and states
of the STEPPS system (though not of a STEPPS simulation) on a terminal. Each
argument is a command to display different objects and will be described below.
ATTRIBUTES Display the attribut=s of each link named.
COLLECT Display which processes will and will not collect statistics during a
simulation.
COMPETE Display which processes will and will not compete for available processors
during a simulation.
CONNECTIONS Display the connections to each port, process, and link named.
DANGLING Display which ports are not connected to any created link. These ports
are connected to the special, non-createable link named DANGLING.
GRAPH ALL or GRAPH Display all link attributes and connections, all process

transitions, all competing and non-competing processes, and all collecting

and non-collecting processes.

A5 Keyword commands A-16

GRAPH ATTRIBUTES Same as JATTRIBUTES and JCONNECTIONS.
GRAPH JATTRIBUTES Display just attributes cf 2ach link.

GRAPH JCONNECTIONS Display just the connections for the entire graph.
GRAPH JTRANSITIONS Display just the transitions of each process.
GRAPH TRANSITIONS Same as JTRANSITIONS and JCONNECTIONS.
LINKS Display the name of each link.

LOOPS Display each cycle in the graph.

MODELNAME Display the model name, the date, and the current time.
PATHS Display all paths between the named nodes.

PORTS Display the port names for each process named.

PRIORITY Display the priority number of each process named (or all).
PROCESSES Display the name of each process and its priority.
SCHEDULER Display the simulation scheduling discipline.

TRANSITIONS Display transitions for each port or entire process named.

EXIT
<gXIT cmd>u:= EXIT
Exit from the STEPPS system. If the EXIT command is issued in a file that is

LOADed, the result is to return to the STEPPS LOAD command (See LOAD).

LOAD

<LOAD cmd>::= LOAD <file name> <ioad param>
<load param> s:m ECHO | null

LOAD is used to retrieve STEPPS commands from a stored PDP-10 file. <file
name> is the standard POP-10 file name, viz. device:name.ext (only device DSKs are

allowed). If no extension is used the extension TEP is assumed.

MODEL

A5 Keyword commands A-17

<MODEL e¢md> = MODEL <file name>

For convenience, each model can be named; default model name is MODEL.
When a LOAD is performed, without any parameters, the model name becomes the
LOAD file name. The MODEL command can be usad at any time to change the current

model name.

REMOVE
<REMOVE c¢cmd> := REMOVE <port, process, link list>

Each item {(port, process or link) in the parameter list is removed from the
graph. When a link is removed, any port that had been connected to it becomes
connected to the special link DANGLING. When a process has only one port, that port

can not be removed; instead the process should be removed.

SAVE
<SAVE cmd>::= SAVE <save params>
<save param> = ALL | COMPETE | EXTEND | FILE <file name> |
GRAPH | LINKS | NODES | <list of nodes> |
PRIORITY | PROCESSES | SCHEDULER | null
The SAVE command is used to save a model description, components of a model
description, and simulation parameters onto a PDP-10 file. Its common use is saving
the entire description and parameters onto the file named by the MODEL command.
This is accomplished by simply using SAVE with no parameters. Tha use of the
parameter ALL is the same as null except that a file name is required. The format of
the data written is the same as that used by the DISPLAY command, as follows:
ALL -- same as DISPLAY GRAPH ALL
COMPETE -- same as DISPLAY COMPETE
GRAPH -- same as DISPLAY GRAPH ATTRIBUTES and DISPLAY GRAPH JTRANSITIONS
LINKS -- same as DISPLAY GRAPH ATTRIBUTES

PRIORITY -- same as DISPLAY PRIORITY

A5 Keyword commands A-18

PROCESSES -- same as DISPLAY GRAPH TRANSITIONS
SCHEDULER -- same as DISPLAY SCHEDULER

The FILE parameter is used to name the flle to receive the data. No device can
be specified.

The EXTEND parameter signifies that the named file is extended Instead of
replaced.

The NODES parameter signifies that the connections and atiributes or

transitions of ine named nodes are to be saved.

SCHEDULE
<SCHEDULE ¢md> ::= SCHEDULE <schedule parameter>
<schedule parameter> ::= BY <scheduling style> |
COMPETE <processlist> | NONCOMPETE <process list> |
PRIORITY <process-priority list>
<process-priority>:= <procass name>:<non-negative Integer>
<scheduling style>:= LINK | LKPR | PROCESS | PRLK | FIFO | RANDOM
The SCHEDULE command is used to set attributes for the simulation scheduler.
The BY parameter is used to set the scheduling style. The PRIORITY parameter is used
to set priorities for processes. The COMPETE and NONCOMPETE parameters are used

1s ant which processes will and will not compete for available processors.

SIMULATE
<SIMULATE c¢md> ::= SIMULATE <time> <sim params>
<time> ::m <a non-negative real number>
<sim param>::= FILETRACE <file name> |
MODELTRACE | PROCESSORS <positive integer> |
SCHEDULE <scheduling style> | SEED <positive Integer> |
TRACE | WORKINGSET
The SIMULATE command is used to initiate a STEPPS model simulation for the
length of time specified. The other parametars set simulation details as explained

below. No more than one of the parameters TRACE, FILETRACE, and MODELTRACE can

be used.

A5 Keyword commands A-19

PROCESSORS sets the number of processors available for the simulation.
SCHEDULE resets the simulation scheduling style: LINK, PROCESY, FIFO, RANDOM, LKPR,
or PRLK. SEED sets the simulation random number generator seed for this simulatior.
Each simulation starts with the same internally defined seed unless specifically set by
the SEED parameter.

The TRACE parameter causes messages to be displayed on the terminal
describing each simulated event. FILETRACE extends the named file with the trace
information. MODELTRACE extends the file <model name>TRA with the trace
information.

The WORKINGSET parameter causms those processes for which statistics are
being collected to additionaly collect statistics showing related working sets of

processes.

SNAPSHOTS
<SNAPSHOTS cmd>::= SNAPSHOTS <snap params>
<snap param> = FILE <optional file name> | LINKS |

PROCESSES | NODES <pracess, link list> | SCHEDULER | null

The SNAPSHOTS command is used to display current status of @ simulation that
has stopped, but not been terminated (UNSIMULATE).

The FILE parameter designates that the snapshot is to extend the file named
(colon precedes the file name) or the <model name>.TRA file. The other parameters

neme the items to be examined; namely the SCHEDULER, all LINKS, all PROCESSES, or

indlvidually named rodes. A null parameter means oll items.

STATISTICS

<STATISTICS cmd>::= STATISTICS <stat params>
<stat peram> ::= FILE <optional file name> | LINKS |
PROCESSES | NODES <process, link list> | SCHEDULER | null

A5 Keyword commands A-20

The STATISTICS command is used to display the current accumulated statistics
of a simulation that has been stopped, but not terminated (UNSIMULATEG).

The meanings of the parameters are the same as for the SNAPSHOT command.

TEST
<TEST cmd>:= TEST <test param>
<test param> = GRAPH | DEADLOCK <test dead param> |

NODES <process list>
<test dead param>:= TRACE | VERBOSE | NSAVE |
NSTRACE | NSVERBOSE

The TRACE command is used to analyze the structure of a STEFPS model. The
GRAPH parameter means to determine whether the entire graph is well-formed
(including each process). The NGDES parameter is used to determine whethel:
individual processes are well-formed.

The DEADLOCK parameter means to determine whether any deadlocks exist in a
STEPPS model. The process destroys the model, so an automatic SAVE is normally
performed to a unique file before the deadlock test procedure begins and the model is
normally restored afterwards. Two types of traces can be performed showing how the
deadlock aigorithm works. The DEADLOCK subparameters are used to determine how
the saves and tracer are performed.

TRACE -- Trace the application of each reduction.

VERBOSE -- Same as TRACE plus display all transition matrix cthanges.

NSAVE -- Allow the model to be destroyed without being saved first nor restored
afterwards.

NSTRACE -- NSAVE + TRACE.

NSVERBOSE -- NSAVE + VERBOSE.

UNSIMULATE

<UNSIMULATE cmd> = UNSIMULATE
The UNSIMULATE command is used to terminate a simulation that has stopped

so that it can not be restarted (CONTINUEd).

APPENDIX B
Using the STEPPS System

This appendix presents a protocol of the use of the STEPPS system for the
Chapter 111 Bliss/11 example. A discussion of the Chapter 11l Hearsay 1l example input

problem and Its solution Is also presented.

B.1.Bliss/11 example protocol

An annotated protocol of the use of the STEPPS system for the Bliss/11 model
shown in Figure Ili-11 is presented below. Following the protocol, the simulation
commands used for the experiments will be presented. A sample of the statistics

produced upon request after a simulation will also be presented.

! PROTOCOL FOR BLISS/!1
#NOOEL B11

«DENSITY EXPON PORT LEX.00 LINK LS MEAN .26
Port LEX.0808 Link LS Mean .26080 Ensiion .§0)00 For (Grain) 810
Link name "LINKOB1" ulll be ueed.

»DENSITY EXPON PORT SYNFLO.O® LINK SO MEAN .16
Port SYNFLO.0888 Link SO Mean .21600 Epsilon .80100 For (Grain) 018
Link name "LINK682" uill be ueed.

#SYNFLO. 128+LS ! INPUT FROM "LEX"
#SYNFLO.00s 18:0; 120:1 | AFTER OUTPUT, INPUT FROM "LEX"
#SYNFLO. [20= [8:) | REQUEST MORE INPUT

#O0ENSITY EXPON PORT OELAY.0Q LINK OT MERAN 0.837

Port OELAY.0888 Lirk OT Mean .03780 Epelion .00188 For (Grain) 010
Link name "LINKS83" will be used.

*0ELAY. 128+50 | INPUT FROM “SYNFLO"

«DENSITY EXPON PORT TNBINO.O® LINK TC MEAN .122

Port TNBIND.OB83 Link TC Mean .12200 Epellon .00100 For (Grain) 018
Link name "LINKSB4" ulll be ueed.

¢TNBINO. 120+0T | INPUT FRON "OELAY"

#OENSITY EXPON PORT COOE.08 LINK CF MERN .084
Port COOE.0888 Link CF Mean .08400 Epeilon .00100 For (Grain) 010

B.1 Bliss/11 example protocol

Link name "LINKGOS" mil® be used.
+CODE. 128.TC ! INPUT FROM "TNBIND"

sDENSITY EXPDN PDRT FINAL.0® LINK FP MERAN .296

Port FINRL.DBBO Link FR Mean ,29600 Epsilon .8818C For (Grain) 010
Link name "LINK8O6" ulll be used.

oF INAL. 1208+CF { INPUT FROM "CODE"

+COPY DELRY.120, TNBIND.128, CODE.I28, FINAL.1208 : SYNFLO.I20
#COPY DELAY.DC, TNBIND.D®, CDDE.DS, FINAL.D® : SYNFLO.D®

sRESULT. 18+FR | DEPDSITORY FOR RESULTS
#SCHEDULE NONCOMPETE RESULT

#ATTRIBUTE TC,CF,DT,FR,LS,SD QUEUE: 18

8-2

The simulations were initiated by using the SIMULATE commind. The following

command was used to simulate the model using 6 processors and the FIFO scheduling

algorithm for 100 time units:

Simulate 182 processors 6 schedule flfo

The other Bliss/11 experiments were cimulated by modifying the SIMULATE

command paramaters for timing, number of processors, and scheduling algorithms as

described in Appendix A.

In order to eliminate the requirement for recreating the

mode! for each simulation, the model was first written on a file (using the SAVE

command) and for each simulation it was restored (using the LOAD command). A sample

of the statistics displayed for links is shown below:

sstatistica | at Limag » {00
Model 811 ! 19-Mer-76 03146

SO PSP OCCURR RN POV IV SIS VSRRV SISV ORI RN RSSO O SR IIRIISOPID
Statistics st (ime 100.009 6 processorg.

Lok

LiN DA
L INKw2
LINran3
LINFE04
LINKOOS
L 1Ny 208
LS
S0
1c

Time No. No. No. Ev. €x. Ex. X Time ¥ No. X Tims X Tima Access Request Sends
Insctive Start Sends Paats Qlan Weit Ovilo Insctve Sterlups Startup Rctive Rate Rete Rete
100,00 1 337 338 9.1 . 007 574 100.00% 15t a0t .e0% .15 .39 .30
109.99 1 369 349 4.529 .207 278 100.00% At .ot .00t .14 .29 .28
199.09 328 3RT N6 00 1.809 .89 199.00% 50.08% .00% .eny .15 .30 .31
180 90 3’28 3272 I . @00 099 L8008 199.60% SO. I Nl .ot .13 .26 .26
190.90 3¢+ 31 I .18 Nl L0N0 109.69% 43.67% 00t .80% .13 .27 .27
1990.00 120 360 369 .578 . 800 .00 100.00% 17.78% .eY .ot 14 .28 .28
100,00 237 349 349 i .00 L0000 100.00% 33.95% .00% .BO% A4 .29 .29
100.00 v 338 338 139 . 000 .000 100.00% 40.96% Nt . 80% 15 .30 .30
180.00 320 3328 38 80?7 . 000 .000 100.00% S4.00% . 00* . 00% .15 .30 .30
160,00 2 36 371 3.91% .128 .036 109.00% a4 o .o 13 .27 .26
1060. 00 2 371 3%8 1.862 578 027 180.00% an .00% .0t 4 .28 .2?
100. 60 2 3¢ 338 6.226 .139 L2909 100.00% 2N . 00% . 00% A5 .33 .29

B.2 The STEPPS Hearsay Il mode! B-3

B.2. The STEPPS Hearsay 11 model

The STEPPS model of the Hearsay Il system was discussed In Chapter IIL
However, unlike the Bliss/11 model, the exact Hearsay Il model was not shown since it
is too large to place into the text of Chapter Ill. It was found that many of the
structures used for the Hearsay 1l model were similar, but not close enough to utilize
the STEPPS command COPY to facilitate input of the model. A STEPPS feature
discussed in Chapter VI as a future system tool for reproducing groups of processes
and lmks might have been uceful. Instead of implementing that feature, the action
pursued was to create a simple preprocessor program {in SAIL) to convert a
description of a Hearsay 1l model into a form appropriate to the STEPPS system. The
following is an example of the inout to the praprocessor. The actual probabilities used

in the STEPPS Hearsay Il model are shown.

process bslelo locks cl.c2.cS.word.phen
compute 1100 done

process prelelo locks cll.cl'emclib.clie.clif.clln.cllh.cl4.cl4a.cl4b
compute 0.79 invobe belelo

process prelpsyn Inchs cpsen.pseg |.pres 2
compuie 59

invoke bs|cseg: .02 650

invole ksipsyni.951 654

done

process ks(psyn
locks c9.c9.c97.c%.cOh,c10.c18e.c18: .12,
c12b,c12e.c12f c12a:c12hic13.c13e.c12b.cmun.mnn |.uxn 2.cpseg.psey 1.psey 2
compute 25.850
done

process balcseg

focks ¢9.¢9.c3.c99.cO.c10.c10e.c10b.c12.
c12c.c12e.ci2f.c129.c1Zh.c13.c13m.c13b.caun.mvn |,mxn 2.cpsey.pses |.psey 2

compute 25.445

done

process prelrpol

lorks shdsent.shduord.uard.urdsurn ~orn,phon.cavn.exn |, 2,cpsey.pses |.pses 2.9ey
compuie 31

invobe ksjuvi.376

done

process Vs|uv

locks cl.c2.c4:c5,c?.c?a.c?.cB.c9.c.c9¥.cTa.cH.cl10,
clfe.cl®b.cll.clle.clibiclle.clificllg.cllh.clZ.
cl2cicl2e.c12f.cl29.c12h.cld.clde.cléb

compute 134

done

W R SR g

ae o Ml

ikt o L bR e W R N R T S . g A amm—— L —————— e W

B.2 The STEPPS Hearsay il model

procets prejven

lecks cpeea.psen).pseg 2,2e9
compute 35.100

thvobe krlseq

done

proress bsjses
lect s res
compute 400
conpyte 409
compule 400
compule 400
done

eroress prajuth
focks c4,cS

compute 54
invole ksluth: 057 60
dore

process tsluth

forbks ¢2.23.c3e.¢3b,c4.¢5.c6.cbe.c6f.chg.cbh.cl1I.c1Ie.clB
compute 39

compute 30,159

compute 39,150

dune

process prefpsc
Jorks c3.cIe.cIb.c?.c?0:c?®

compute 59
invole ks|search:. 13 135, ksitime:. 13 135
dnne

process bajsearch

locks ¢2.¢3.¢3e.cIbic4.cS.c6.cbe.c6f cba.cBh.c?7.c?0.¢?b.cB.c13.c13m.clb
compute 50,1100

compute 200.1108

done

process Lsitime

locke ¢2.r3.¢3e.¢3b.c4.¢5.¢6.c60.¢6f.c69.c6h.c?.¢c70.c7b.cB.c13.c13e.c1 D

compute 50.225

compute 75.2¢05

done

levienn seg.rseg 1.psea 2.mvn §.mxn 2.phon.surn,wrdsurn,word,
shduor 4, shdsent

crjocks

creea preq 2 pseq |
cmyn men ¢ mwn |
c2 ¢l surn

¢d uord ¢?

c4 wrdsurn cB
€S wrdsurn surn
cb ¢B 1?2

c¢? gurn 1@

¢@ surn phon

¢9 phon c12

c1f phon cmvn
ci) cmvn cl4
€12 cmvn cpseg
c13 chon cpses
cl4 cosea sea
clde psez | sey
cl4b preg 2 seq
t13a chon peeg |
c13b phon pseq 2

clle mun | pseg |
c12f msn | paeg 2
c129 myn 2 preg |
c1Zh mvn 2 preg 2

cllea mvn | cl4
cllb mvn 2 ci4

B-4

.

i R L e L kol Ll & e i L il e e e ke

B.2 The STEPPS Hearsay Il model B-5

cile men | clde
ciif men | cldb
cllg mvn 2 clds
cllh mvn 2 cltb

c10a phon mun |
c10b chon mxn 2

¢9e chon cile
¢9f phon 12
¢9s phon clla
c9h phon ciZh

cve surn cide
z?b surn cl®

cbe cB clle
c6f cB cl2f
cbg cB cl29
cbh cB ciZh

c3e word c7e
¢ word c?b

done

fint

The result of the Hearsay Il model generation is the STEPPS model which

follows:

B.2 The STEPPS Hearsay Il mode!

model nwilk] ! Jocking by the ? Issicon levels
'

Toprel.-pol Toprelpsc
pcselector . if= ol1.25/n0: 1 0219.121/08:
i Toere|ses Topre|Utth
Pcselector. e o4, .009/0M:] 0518.066/00
peselector.of:e,0)],] ' Hesseaes come every

rcselectnr Qe vpcselepcselector.@
prelrpol.letoprelrpolspeselector. |
prelesc.lstoprelpscopcselector.2
prelpsyn.letopre|psynepcselector.3
pre|sey.l-torrelseasrcselector.4
prefutb. Jetopreltutbepcselector.§
prelelo.lstoprelelospcselector.6
sched noncompete pcrelector

* bstelo Locks ¢1.c2.¢5.word.phon
bslelo.l=v 019, .200

kstelo. s 0102 .200

kslelo.11= 0103 .200

ksleln.ile 0104: .209

Wslelo.:1x o105 .209

tullclebsielo. 101efulic]
twuiclelselo. 391
kslelo.019'=118111/0301 1, 1100.000/02:)
tullc2+ks|elo. 185wl |c2
tulc2bs|elo. N2
kslelo.ol02=1102:1/0372/ 1. 1100.000/02:1
tullcSebslelo. 103-fullcS
tuulcSebe|elo.30)
kslelo.0103+1193:1/0303) 1, 1100.000/02:1
tiblunrdebslelo. 194+ 7)b juard
ulkiwordeksielo. 304
bslelo.c104s,10411/03041 1. 1100.000/0211
t1biphonebs | elo. 1051k | phon

ullb fphonsbkslaln. 305
ks|elo.0)@5=11€511/0395: 1. 1108.000/02:1)
Wslelo.12¢ks|@ln.02

ksleln.oln 121

kslelo. 12% 111}

' prelelo Locks cll.clle.clib.clie.ctif.clly
U «cllhicl4.cl4e.cl4b
,prelelo. few ol0]: . 109
prelelo. 11e 0102 .100
pretelo. 1= ol@3: .109
prelelo.1ls ol@41 100
erelelo.1ls 0105 .l0Q
¢ pretelo.ile 01061 .100
prelelo. 1= ol@7: .10V
pretalo.ile o108 .100
pereialo. l= 0199: .100
preleln. 1a o110 .109
tullcllecpreleln. 10)efulic])
tcli~preleln. 30|
prelalo.olf1ei191:1/0301: §. 70.000/02:1
tulicliesprelelo. 182 fullc)le
tuyjclle-preisin. 302
prelelo.oldl=i102:1/5302: |, 70.000/02:)
tuljciibepreteln. 103-fullclib
twlciibepreisio. 393
prelslo.ol93=1103:11/0303: 1, 70.0M/02:1
tullcllesprelelo. 104 fullcile
twulcllesprelels. 304
prelelo.ol@4e104:1/0304: 1. 70.008/0211
tullcitfoprolelo. 105+ 1c))f
tiwlclifeprelelo. NS
prelelo.o)05:1105:1/0305:). 20.000/02:)
tulictigeprefelo. 106sfulic)ly
teglcilaeprs|elo. 306
prelelo.olB6:1106:1/0306: 1. 70.000/02:]
tulicliheprofelo- 107 fullc)ih
twicliheprelelo.39?
pretelo. 0l@Tei1R2:1/03071 1. 70.000/021)
tulicldspre|eln. 108l |c14
twicl4sprelelo. 300
prelelo.ol®8=:10811/0308: 1. ?0.000/02:1
tulicldesprelelo. 199:ful|c) e
twuicldesprefelo. 309
prelelo.0109::189:1/036Z1 1. 70.000/021]

¢ 2 sublevels
Toprelpsyn

1t 03: 0.052/00:1¢
Toere|Alo

111 o061 8.002/00:)1
Tunit of time

8-6

lulltlﬂ:-r\rclclo.llG"ulltHb
twuirl4bepre|elo. 310

erelelo.ol1Be 1110:1/0310: |, 78.000/02:)
rrelelo. 17-prelelo. 02

prelalo.o2:1211
kslelo.1eviiks|eloepre|elo.90)
prelelo.12¢0991:1/031)
prelaln.13.prelelo.ol

prelelo.o3ei3:

prelelo. 3 414}

' prelpsyn Locks creeg.osep |.psey 2
pPretesyn. il=® o101, .333

Prelrs;n.tle 0102 .333

Pielpsyn.ile 0103, .33¢
(ulItpns-prvlr\syn.mldulI:m.g
twulcprearprelrsyn. 301

erelpsyn olfle 101,1/0301, 1§, 50.000/02: 1
tll Ipsea l»prclpnn.l‘)?-‘l&lpu,]
ulk[prea lepre|peyn. 302

rrelpsyn 01022110211/0302) 1, 50.000/02: 1
tlh|peeg Z-prolp:yn.l@}”hlpus 2
vlb|pceg 2¢prelpsyn. 303
preleeyn.ol@3=,11031)/0303: 1, 60.900/02:)
Prelpsyn.12¢prelpsyn. o2

erelpsyn.o2e12:1
chsoa~l~vlvIhl:ngmrolvnn-wl
Prelrsyn. 12:0991 1 .902.6508/031)
prelrsyn. 2:33) .098.650

frelpsyn. 13eprelpsyn.od

prelpsyn.ode 3:]
hlr\lyn-l»vlvIlllnlvn-wclptyn-wz
Prelpsyn. 130902 .951,650/04)
prelpsyn. 13=04) .949.650

Prelpsyn. 14epre|psyn. o4

Preipsyn.odeid,)

prelpsyn. 14s),

! Wslpeyn Locks €9.¢9¢.c9,c%.cOh.c10.¢c10e.
g d(‘b-cl?:tIZb.:l?c-ch‘.ng-chh-dJ-
! clIe.ciIb.cmrn.men), men 2.cpsey,

¢ reeq | .psegq 2

belpern.ilen 010)) .n43. 25.009

kelpeyn.1ls 01021 .043, 25.000

belesyn.i1s 01031 .043. 25.000

kslpsyn.ile 01041 043, 25.000

kslpeyn.ile 0105 @43, 25.000

bstesyn.ile 01061 .043, 25.000

betpsvn.ile 01020 .543. 25.000

ketpevn.ife n10B: .P43. 25 00a

bslpsrn.ile 0109: . @43, 75.000

betpsyn. 11 0110 .043, 25.000

bstpeyn.ils oll11 .Q43, 25.000

kslesyn.ile 01121 . @43, 25.p00

ksipsvn. 1= 0l13: . 044, 25. 000

Welpevn.ile 0]14: .044, 25.000

ketpeyn.ile 0116 044, 25.000

ketpeyn.ile 01161 . @44, 25.000

kslpayn.ils 01121 .Q44, 25. 000

bslpsin.il= 0118: 044, 25.000

betpeyn.il= 0119 044, 25.890

bsleeyn.i1e 01200 .44, 25.000

belesvn. i1s 01211 044, 2
brlesyn.ile 01221 .044, 25.
bzlpsyn. 11= 01231 .44, 2
lulI:S-H!nnn.lN"ulIc9
tiuleS balpeyn. 30y
kslpsyn.olflei10111/030)) |, 859.000/02:)
twlicOeckslpsyn. 182+ fu]|c9e
tuulrCaslkg|payn. IN2
belpsyn.ol02«1102:1/0302) 1. 850.000/02:)
ls:ll:ﬁ‘-hlpsynwlﬂ»‘ullt97

L tcIf-bsipayn.303
kslpeyn.o103¢1183:1/0302 1, 850.000/02/ 1
!ulIrB'_»Inllpyyn.lM-(ulIch

tuulc9aske |peyn. 304
belpeyn.ol@4e 119411 /0304, 1, 850.000/0211
tullcOhabsipsyn. 105 Fu) | Oh

L lcOhebalpayn. 305

ks lpPsyn.o1@51105:1,0305: |, 859.000/02: 1
tullc1Pebslpsyn. 106+ fu]|c1@

B.2 The STEPPS Hearsay 1l model

G lct@bsipsyn. 306
Lelpsrn.ol0B21106:1/03761 1. 850.008/0211
tullciNeckslpsyn. 107:fulicle
tuuln10askes, cvn. 307

Velpsrn. 01A?=(107:1/0307: |, B850 BdA/0211
tollc1Mbebelpsyn. 198-fulicl®b
tinlc10b-ks |psyn. 308

Lslesyn 0108-1198:1/0378: 1, 859.808/02:1
tullci2ebalpsvn. 109 fulicl2
tuuic12+ksipsyn. 309
keles)n.olR9e1109:1/0309: |, B50.800/02:1]
tullc1Zbenslpern. 110-fulicl2b
tuulci2bebslesrn. 310
helpern.ol10e i 11011/0310: 1. 850.000/02:1
tllci2eckelpsyn. 111-fullc]Ze
tuulcl2e-baipsyn.31]
Velpern.olll=il1l:1/03111 1. 6S@.000/02:1
Gillct2febripeyn. 112-fuljct2f

i e 126 ek Ineyn. 312
belpevn.oll¥a1]12:1/03121 1. B5@.0RA/02:1
tullc1loekelpsvn. 113+fulici2q
tusici2eebslrsyn. 313
Velpsyn.ol13=1113:1/0313: 1. 850.800/02:1
tullr1Zhebgipsvn. 114 fulicilh
tuylellh=kslpsyn. 314

Lslpayn. ofl4s114:1/0314: 1. BSH PA0/0211
tullcl3-bslpsyn.115-fullclld
twlclIevs|psrn. 315

Velpssn. ol1521115:1/0315 1. 850.908/02:1
tullelInebsipsyn. 116-FuliclIa
tuulcide-kelpsvn. 316
kslps-n.al16e1116:1/03,6: 1, 850.000/0211
tullci3bekefpsyn. 117+ fullcl3b
tuulc13bebepayn. 317
krlesyn.ol1721117:1/03171 1. B850.0800/02:1
tullemenchbsipeyn. 118+ Fuljemen
Grslemonekelpsyn. 318
belpsyn.c11B82:11811/0318: 1. 850.008/02:11
tikimen 1ebsipsyn. 119+ Imen |

uibimrn lebslpsyn.319
kslpsyn.01197:113:1/03181 1. 850.888/02:1
tibimwn 2oksipsyn. 120 flbimvn 2

ulb Iman 2+vgipsyn. 379
Lelpsyn.0l20e1170:1/6320: 1. 8508.009/02:1
tul lcpseackslpsyn. 121+ ful Icpses
tuulcrseasve|psyn. 371 |

ksles n.ol21e1121:1/03211 1, 850.000/0211
t1blprea 1ebslpeyn.1.2-¢1k Ipges 1
ulbiraea 1ebslrsyn. 322

ke rmpn.0l2271122:1/0322) 1. 850.808/02:1
tivicseq 2okslpsyn, 1231k lpsea 2
uivleceg 2ovsloern. 323
Velpapn.01232112311/0323: 1. 850 &0@/02:1
kelpsyn. 12+¥sipeyn. 02

bsipsyn.el=12:1

Vslpsyn.12= 1401

* Lelcseg Locks ¢9.c9e.c9.c99.c.c10.
U ¢10e.c1Ab.c12.2120.c12e.c127.cl29,
Y c12h.e13.c13a.c13b.cmvn.mvn | .mn 2+
4 crseq.pseq 1.prea &
kslceea. it¥ 01311 .H43. 25 A9
Lslesea. 1% 01A2: .0A43. 25.0409
Lojceea. v 01031 (043, 25.000
Vsicsea. t1n 0l34: 043, 25.008
kslcseg. 117 0105 .43, 25.000
Vslceaa. 1 1® 01061 843, 25.00Q
Vejcepa. 1l 0107 043, 25.009
Lsicseq.t1x 0108: .043, 25 @0e
Velceeg. 1 lv 0l09: 043, 25.000
kelcreq.i1lr ol10: .043, 25.0M0
kslceea. ls o111 043, 25.000
Velcnea. 11 01121 943, I5.000
Velceea. 1 lx 01131 @44, 25.000
bslcsrg.ils ol14: .44, J5 00Q
belcseg.ils 01151 @44, 25.009
Velcseg. 11s nl1G: 044, 25.7M0
Lelcsea. 1l= n117: 044, 25 000
velcena. il 01181 044, 25.9009
vulceng. 117 0119: 844, 25.009
ks|cseg i17 0120: 944, 25.9009
kslcseq. 1ls 01211 .044. 25 009

B-7

belcsrg. (17 01221 044, 25.999
Ls|csea 11= 0123 044, 25.000
tul1r9belceea. 10leful |c9
tiralc9-balcseg. 301

ksicsea 0101=:1101:1/03011 1, 445,000/0211
tulfcTecbalcrey. 102-FulicOe
tuulcOerbelcnea. IR

kslcgey 0102=110211/6302: 1. 445.000/02:1
Gl lc9febelcseg. 103 Ful |cOf
tuulc9febslceea. 303
Lelcseq. olN3s 1103:1/0303: 1. 445.800/02:1
tullcQasbglceea. 104sfullc99
tunlcVasbelcena. 304
Lgleseg.01fds1104:1/030 1. 445,800/0211
tul|eOhebslcseg 105+ fullcOh
tuulcGhebelrses. 305

ve|cse. olAS 1105:1/0305: 1. 445.900/07: 1
tullc1Acbglcena. 106-(al(c1B
Yanlcl®balcsea. ING

Velcsea. ol0F-1106:1/03061 1. 445.8M9/02:1
(i lel@aclksicrea 107wl lc]lde
tuulc1fa-bslcseq 30T
Lslcseg.ol07=110,:1/0307: 1. 445.000/0211
tul o 10beks|csea. 108-fulicidb
twulci0bete|cxen. 308
Lelcreq.ol0Bx1108:1/0308) 1. 445.000/02:1
tullc12eke|cgeg. 109-fultz12
tuulc12+bslcseq. INT

Velcsen. 0109=1109:1/0309 1. 445.800/02:)
tullcilcokslcseg. 110-fuilcilc
tuylc12ceksirses.310
Lelrses.ol1P=1110:1/03181 1. 445.800/0211
tullclZeskslcseq. 111+fu’ |clZe
tuulcl2esbslcses. 311
ksicsea.0lll=i11111/0311: 1. 445.000/0211
tullct2febalcren.112-Fullcl2f
twulr12febsicsea 312
Vslcsea.ol12=:112:1/03121 1. 445.000/02:1
tullc1lg-bslcenq. 113-fullclZy
tuylc1lg-hslcesg. 313
kslcsea.oli3=111311/0313: 1. 445.000/0211
tullc1Shsbslcrea. 114=fullclZh
tuulclZhebelceeq. 314
Valceeg.01l14=:11411/0314) 1, 445.000/0211
tulle13bslcreq. 115+fulicld
tuulc13+bslcres.315
Vslceea.ol151115:11/0315: 1. 445.008/02:1
tulicldecbelcses 116+fullcl3e
tuylc13esbsiceeq. 316
Vslcssa.ol1h=1116:1/0316: 1. 445.000/0211
tullel3oskslcena 117« fullcldb
tugiridt-bslncsea. 317
kslcxeg.oll7=111711/0317: 1 445.000/021 1
til lemen-bajceea 110+ ful jcmen
tuylemensbs|csea. 310
Lslcsea.ol10=:1118:1/0318: 1. 445.000/0211
t1b Imen lebslcaea. 119<F1b Imwn |

vlkimvn lebs|csen.319
befceea.01197:119:1/0318: 1. 445.008/0211
Ub |mxn 2obricseq. 120 F1kimen 2

ulkimer 2+ke|czey.320
kslceeq.01202:120:1/03201 1. 445.990/0¢: 1
tullcpseashelcseg. 121-ful [cpreq
twulcpsegrbsicses. 301
belcseg.ol21=1171:1/03210 1. 445.000/0211
1V ipseq 1ebelcreg. 122+ flkipses |

ulb Irseq 1ebslceeg.322
Lelrses.nl1227(122:1/03221 1. 445.000/02:1
tikIpscg 2+kslcseg.123+f1b1pses 2

ulb lrseg 2-ksicseq. 323

Lelcsea 0123=123:1/0323: 1. 445.809/02:1
Lelcsea. 12+bslcsea.0l

kslceea ol=10:1

bslceea 127 :1:1

t prafrpol Locks shdsent.shdword.word.

[wr dsur A surn.phon.cmen mxn §omen 2
4 .crteg.rreq 1.pyeg 2,809
prefreol. i1z 01811 876

peelrrol.1ie 01021 827

prelrpol.11= 0l03: .877

prelrpol.ile o104 8727

e

B.2 The STEPPS Hearsay 1l model

prelrpol . tle olfG 027

prelrpol. 110 olP6 027

prelrpel 110 01070 072

prelrpol 1le 0108 . A27

prelrpol.ile 0109 077

prelrpol.ile ol 072

prefrpal.ile olll 077

prelrenl. 1o ol1l: @27

prelrpnl 1e 0lld b

tib jshdsentspreirpol 101-71k|shdsent

ulk Ishdsenteprelrpel 391

pralrenl. ol@lec10111/03010 1. 31.800/0211
ik lthduordeprelrpol 10211V) shdwor d

ulb | shdwordeprelrpol. 302
rrelepnl . 0107 10711/0302: 1. 31.000/02:1
tlkluordeprelrpol 103-f1k |word

ulk liordeprairpel 303
trelreol.0l@dri103:1/03030 1. 31.000/02°1
LIV 1y ~deurneprelrpol 104+ 11k [urdeyrn

ulb lurdsurnegrelreel. 304
prefrpol.ol@4s 104: /0304 1. 31 008/0211
b lsurneprelrpn] 105 1k Igurn
ulblgurnepreirpol . 305
prelreol. olRCe ING:1/0305: 1, 31.089/02:1
tikphoneprelrpol . 10611k |phon
ulbirhoneprelrpol 306

prelrynl o161 106:1/0396: 1. 31.80M/02:1
tullrmvnepreirpal 18710l lcmen
twulemenepreirpol. 30?
prelrpol. olf7e i 187:1/0307 1. 31.000/02- 1
tikImen Jeprefrpol 10801k 1men

ulv{m-n lepreirpol. N8

tielepnl. 0108=1108:1/0308: 1. 31 .000/02:1
ik imen 2opralrpol. 109+11k jaxn 2

ulkimen 2eprelrpel 309

prelrpol. 01@9e1109:1/0309: 1, 31.000/0211
tullcoseacpreirpol 110-fullcores
tuwuicpsegeprelrpnl 310

prelrpol 0110:=:118:1/0310: 1. 31.600/02:
tivipseg leprelrpol {1171k |psee
ulbipseg leprelrpel. 31}
prelrpel.ollle11111/0311 1. 31.800/02:1
tivipseg 2-prelvpnl 112+71k |pses

ull lpeeg 2eprelrpnl 212
prelrpol.ol12s1113:1/03121 1. 31.8%W)/02:
tlk|seasprelepnl 113tk leee

ull |seqeprelrpol. 313
prelepol.0113=0113:1/0313: 1. 31.000/02°1
prelrpo) 1 2-prefrpol.ol

prelreel 0204211

ksluv levhlkgluveprelrpol. 98]

prelreol. 12009001 .376/0311

pretrpol. 12003: B4

prefrpol. 1 3eprelrpol.o3

prelrpol 030131l

prefrpol 132 1)

' heluv Locke c1.c2.c4.c5.¢7.c?8.c?b.cB.

U €9.c9%.c9 .c93.¢Th.c10.c100.c1fb.
! ril.clle.clib.cile,cilf.clla.clih.
0 cl2.c12r.212¢.c12f.c129.c12h.cl4.
' clde.clib

bsluv.i1s® o191 .93
keluv.1ls 0192: .93
ks|uv.1le 0193 .03]
bsluv.ile 0lN4: .0
ksluv.ils 0l085: A3
keluv.i1s 0106: .03
ksluv.ile 01071 .03
keluv.1le 0108 .03
Leluv.ile 0109 .03
kgluv.ile o110 .03
beluv. sl odlts 031
ksluv.1le 0112: .03
beluv.1l» 01131 .03}
ksluv.11v o114 03]
kgluv.ile 01150 .0
keluv. 115 01161 AN
keluv.i1e 01171 .A3]
ksluv.ile 0118 93
ksluv. 11v 0119: .931
Lefuv 11e 0120, .09

R T p— e s

ksluv.il= 0121 03
ksluv.1le 01221 .03
kstuv.ile 0123 .09}
ksluv.1le ol .0
ksluv.ile 01251 .0
ksluv.ile 01261 032
¥sluv.ile 0127 0327
keluv.ile 01728: .03
keluv.ile 0129 .03
keluv.11s 0130 .032
keluv.1le 0131: .032
keluv 11s 01300 032
tullelsbsluv.1@lefulic!
tuglelebsiyv IM

keluv o1f)e 10111 /030
tullelebsluv 107 ful 2
tuufelebslye. IV

bsluv o2 107:1/0302¢
tullctebsluv 103 ulicd
tuulcdebsjuv M
Lsluv.0lfI=103:1/5303
tullcS-bsluv 104-fulleS
twulcSebsjuy 304
ksluv.ol1f4s 104:1 /0304,
tul e 7«bsluy 1058+ Fulle?
tuwleTebyluv. ING

L —— Gp————

134 000/0211

134.609/02:1

134 808/0211

134.000/02:1

ke luv. c106:110611/03051 1. 134.800/0211

tuliclackeiyy 106+fulc?e
Cu|r Pacbgluy. 306

Veluv.ol0B= 1 106:1/0306: 1, 139 A00/02:1

tullcbebeluv. 107 fulle?b
tuulePtebalyy. 307

Vsluv niNTe 107:1/0307: 1. 134.000/0211

tul jcBebeluv 108-fulicB
tuuirBebsluv N8

keluv.o1f8-1198:1/0308: 1. 134.888/0211

Ll lc9=bsluv 109 fu1|c9
tule9ebsiuv. 3N

Valuv.010921109:1/0309: 1. 134.008/0211

twlic9esbsluy. 110+l |c9%e
tunlc9e-bsluv. 310

Leluv 0110+ 110:1/03100 1. 134.800/02:11

tolle9febgluv. 11100119
tuulc9febguv. I

brluv.ollleil11:1/03110 1. 134.9%0/02t1

tulle9qeksiuv. 11+ fullc99
twulc9g9ebaluv. 312

bsluv.ollle112:1/03121 1. 134.000/02:1

tulicOhetsiuv 113-fulicOh
CnsleOhebsiyv. 313

beluv.oll13°0113:1/0313: 1, 134.000/02:1

tullcifiebs|uv. 114-fulic1®
tuy|c1Pebgiyy. 314

bsluv.ol14=114:1/n314: 1. 139.909/02:1

Lillcifasbsluyv. 115+7ullc)fe
tuuiclfgelelyv. IS

krlyv.0l15=:115:1/0315r 1. 131.800/0211

tullcifDbebeluv. 116141]ciBb
tuulclObekalyuv. 316

hafuv.ol11621116:1/0316: 1., 134.808/02:1

il el lekeluv 117=Fulleld
tuulelleksiuv. 317

ke luv.ol120:11711/03171 1, 134.000/0211

tul| 1lacbeluv. 118+ fullclle
tuulc)lesbsluv.318

Valuv.ol182:11811/0318: 1. 134.008/02)

tullclibeveluv . 119-fullcllb
twylc)lbeksluv. 319

keluv.01190:119:11/03191 1, 134.000/021)

tullcllestsluv. 1208+ fulclle
twulcllesvsinv.379

beluv.017A=1120:1/63201 1. 134.009/02:1

tulleltfebsluv 121« fullc))f
tilclifebniuv. 321

beluv.0121e:12111/03211 1. 134.000/0211

tulicilacksluv.12+fullcllg
twulcllasbalyv. 322

keluv.012201122:1/03221 14 12%.000/0211

tul lclthebeluv. 123« fullc) th
twulclthekeluv. 323

keluv.012301123:1/0323: 1., 134.000/0211

tullcl2ebely 124l et

g

Nl

b oo o ke Lo ab iihEanih

B.2 The STEPPS Hearsay Il mode!

tuulcdlebetuy. 324
beluv.c12401124:1/0304: 1. 134.0800/02/)
Gl el dcsbeluv. 1251l |c)2c
twicileebsuv.325
beluv.0l25%1125:1/0325: 1. 134.000/02:]
tuljc)2ecboluv. 126+ ful|r]2e
telcllesbsluv. 326
b3luv.oll670126:1/03761 1. 134.000/02:)
tulln12febsluv 127 ful)c12f
Cuglc)2€ebnuv. 327

bsjuv 012741271 1/03271 1. 134 900/0211
tullc)29sbsluv 128-ful|cl2a
twulc129-ksluv. 300
bslyv.012020120:1/03281 1. 134 809/0211
tullc1Zhebsuv. 129+ ful |c12h
twulcidheksluv. 329
bsiuv.012924109:1/0329: 1. 134.6p0/0211
tulicld-bsluv. 130:ful|cld
tuuiclesbsiyv. 330

bsfuv 0130%113011/0330) 1. 134.000/021
tullcldesbsluv. 13)eful|clde
tewlcldesbsluv. 331
bsluv.el310013111/03310 |, 134.00@/021)
tulictebebaiuv. 132-fulcldb
twgleldbebsluv. 332

bsluv 013201132:1/03321 1. 139 @99/0211
ksluv. 12sks|yv.02

ksluv.02#12:

bsluv. 125 (1)

' prelves Locls crses.csea |.coen 2.see
erelseq. ilee o181, 260, 35.0W)

crelsea. 1l= 0l102: .250. 35 o0
preisea 11s 04031 .250., 35 NNY
prelvey. 1]e o4, 260, 35,000

tulicersgeprBlres. 101wl |crsea

G lcpreaspre|rey. IN)

preleeg. 0l@)e:181:1/0300:], 100, 000/02:]
tiklprsg leprelsea 10271l iprey |
ulblpseg leprelses. 302

prelses. cl@’=1102:1/0392: 1. 100.000/02:)
tibipsey 2+nrelses 103-F]iipseg 2
ull|oses 2+prelses. 303
prelsea.olfI«i NI 1/0303: §, 100.0800/02:)
tibismaeprelsea. 104.11) | seq

ull |segspreises. 304
prelsea.olf4e1194:1/0394: 1. 100.000/02:1
prelrea. 12+pre;zen. 0l

preisea 020121
ksisea.l-vk|ts|seq-prelsey. 99)

prelres. i2#099):1/0311

prelsea 13-crelveg.03

prilseg.03s130)

prejves. 13s 1)1}

' kelseq Locks seq

ksigeg. 1 1s® ol81:1 1|

tibisserbsises. 101+71k|sey

ull Iseqsbe|neg. 30)
kelemg.c10]=110111/03011 |. 400 PPA/02: 1
bslseq. 12+islse9.0?

bslseg.020121)

kslsea. 120 01821 |
tiblswasis|sea. 182+1 10 |sen

ull |searis|sea. 302

bslseg 01029010211/03921 |, 400.009/03:)
belseq 13+bs|se9.03

ks|seq o03Iri3i]

kelsea. 3= 0103: |
tibiseabslsey. 10371l |gen

ulbk lsro-belveq. 303
kefsra.c1@3=1103:1/03031 1. 400 000/041)
kelera. 14+bs]seg.04

ksiseg 04214,

ksisea 142 njas;: |
tiblrrgebsiceq. 104-7 1k |s29
ulb|scn-balseq. 304

bslseg. 01G%=,104:1/0304:). 409 00D/05:]
tsiseg 15-Lsisey oS

kslsey . 052(5:)

kslsig. 150 1]}

s e R i B bl 2t i
IR G R W R p—_—

B-9

! preluth Locks c4.cS

erejutt. ilee o18)) .50

preluth. 1je 0§82: .589
tidlcdepre|uth. 1@1efu) |
tuulctepreuth. 301
prelutb.ol@1 =1 10111/03810 |, 50.000/02:}
tullcSeprelutb. 102-ful|cS
thuicSeereluth. 302
prefuth.o1022110211/0302: 1, 56)M/02:)
erefuth. 12opreluth.ol

erelutb.o2e:2¢1

kelutb. Jovk ke lutbrpre luth. 90)

preiuth. 1200901 .057.60/031)

preiutk. 125030 .943.62
prefutb. i Jepreluth. 03

preluth.nd= 3}

prefutb. 1 3s 11

" ksluth Lorks ¢Z.c3.c3e.c3b.c4.¢5.¢6.
Y cbe o6l .cha.cBh.c13.c13n.¢ 13
kslutb.1]ee o101 @7}

ksluth. i le oIBZ) .07)

bsilutb.11e 0103, .87)

Eslutb.ile gl@e, .07

bslutb. i1e ¢105: 07

beluth.ils olg .07

beluth. i1e 0107: .07)
kelutb.ile o1PB: .07
krlutb. 1= 0109, 672
bsiutb.1ls ot1er @22
bsiutb.ite 01111 @72
kslutt.ils 01921 @72
bsiutb.11= 0113: 072
bslutk. 1= of14: 872

tullelebsiuth. 101 fule?
tuglr2steluth, I
bslutb.n1B1=4181:1/0301) 1,
tullcdebsiutb. 102-ful |3
twuledebsfuth. 302
beluth.nl@221102:1/0302; |,
tullc3ecbaluth. 103:fuljc3e
tuuleIsebsiutu. 303

brlutb 01@37:10311/0303) 1.
tallcIbeks|uth. 104 fulic3b
trulc 3k uth, 304

ksluth. ol04s110411/0304, |,
tullcd4ebslutb. 105-fu]|ce
tuulcdebe|uth. 305

bsluth. 01852110511 /0305, |,
ol leSebsiuth. 106wl |5
tensicSebslutt. 306

bslutt. 0186211961 1/0306 1.
tulirbe-te|utt. 1071l |6
tunlebsbaluth, 7
bsluthk.ol®?=,107:1/03C7: .
tullcba-bs|utb. |P@+fu]icbe
| rbeclg|uth. 308
beluth . 01082:108:1/0308: 1,
tullcbfebsiutb. 109 M) Je6f
teulebfebslutb. 309

bsluth. c1€9e1109:9/0309, 1,
tullcBgeb s Juth. 110 f14) ¢ 6g
tiw |ebasbgluth. 310
kslutb.cl10=g1011/0310: 1,
tedlcBhebalutb. J11sfullcbh
tuuebhebeutk. 31)
belutb ol t=alila) /03000 f,
tullet3ebslutb. 112+ful)cl3
tuslelIsbslute. 312
bolutb.o11201112:1/03120 1. 30.000/021
tulle)Isebelutb. 113+ fu) |30
towfel3sebs|utt. 313
kslutb.ol13v011311/0313: 1. 39.000/02:1
tellcldbskslutb. 114 Tl je) P
tunlciIbeks|uth. 314
kslutb.oll4«111411/0314) 1, 30.000/0211
ks|utb. 12¢ks|utb, 02

kelutb.0leil]

kglutb.12= 01151 ,071, 39.000
kslutb. 120 0116: .@71, 39.000

ksluth. i20 0117/ .07, 39.000
kslutb. 12 0118: .071, 39.000

39.999/n2:

39.000/02:)

90.000/02:1

30.000/02:

30.900/0211

39.009/02:)

39.000/021)

39.000/021 1

30.00@/021)

30.000/0211

30.0¢Q/0211

, TP VPR X - - e (ULIY - THCR T g

8.2 The STEPPS Hearsay [l model

ksfuth. 120 0119t .071, 30,
ksluth.12s ol 0?71, 30.
ksfuth.12s 01211 .071, 30.
kslutb.:2% 01221 .871, 39.9
kzfuth.12e 01231 .072, 30.
ksluth. 12 o124 .Q70. 30.
ksjutb.12s 0125: .0A72, 30.
kefulb. 12 0126: .072. 39.
kslutb.12% 0127: .0872. 39.
ksjutb.s12¢ 0120: .A7C. 39,
tul|eleksfutb. 115+ Fullc2
tiwlcleksluth. 315
kslutb.o115¢.115:1/0315: 1. 150.000/03:1
tulfc3-ks|utb.116+F:011c3
twulc3-ks utb. 316
ksluth.ol1891116:1/0316: 1, 159.800/03:1
tullcIscksluth. 112+Fullc e
twulcIockslutb. 317
kslutb.ol12¢1117:1/03170 1. 150.800/03:1
tulleFeebaluth. 118+Ful1c D
teslcIbeksiuth. 318
kslutb.ol1071118:1/0310: 1. 159.800/03:1
tullcdeksiuth. 119-ful|ct

L ictsbsiuth. 319
kelutk.0119¢:1119:1/0319 1. 150.000/03:1
tullchebslutb. 17AsFul (e

Loy 1eSelg|utb. 329
ksjutb.0128¢:128:1/0339: 1. 150.809/03:1
tullebeks|uth. 121« ful|ch
twulcBebsluth. 301
bslutb.oll1e:121:1/0321s 1. 150.000/0311
tullcBeskalytb. 102+1ul|cbe

tow lcBacks |uth. 22
kelutb.01227:12211/0322: 1. 150.000/03:1
tallcBfebygluth. 123+ Ful|cbl
toulcbfekaluth. 323
ksluth.012371123:1/03231 1. 158.800/03: 1
tullcborkelutbh. 14+ Fullchy
tuslcBgeksluth. 324
kslutht. 01240 117411/0304: 1. 198.6M/03: 1
ted lcBheksluth. 125« Ful lcBh
toylcBhekslytt. 325
ksluth.0125¢1125:1/0305: 1. 150.P00/03: 1
tullcldeksluth. 176+ Ful1cld
tualciIeksluth. 36
ksjutb.ollbe1126:1/0326: 1. 159.808/03:1
tulfclIschsiuth. 127+Ful|cle
toulclIocks|utb. 327
ks|utb.0127¢1127:1/0327: 1, 150.000/03:1
tullciIbebs|utb. 128+ fullcib
tuulci3beks|utb. 320
kslutb.0120=1128:1/0320: 1. 150.800/03:1
ksiutb.13:kglutb. 03

kglutb.o3v il

§835328z2

ks lutb. 13 0129: 071, 30.000
kslutb.13s 0130: .071, 39.000
kslutb.13s 0131: .071. 3.9
ksluth.13s 01321 .071. 30.800
kslutb.13s 0133: .A71. 30 &&0
ksfuth.13= 0134: .071, 30.0800
bslutb.13% 0135 .871. 39.A09
kslutb.13= 0135: .A71. 39.600
kglutb.13= 01371 .872., 39.999
kslutb.13e 0130: .972, 39.999
kslutb.t3e 0139, .072. 30.000
ksfutb.13= pl40: .072. 390.000
kslutb. 137 ol4]: .072. 39.000
ks|utb.i13= o142: .072., 30.000
tullc2eksluth. 129 fulle2

twulc2-kslutb. 329
kslutb.0129¢112911/0329: 1. 150.000/04:1
telfcIebsiuth. 130 fulc3
tawulcdeks|uth. 330
kslutb.ol30*1130:1/0339: 1, 150.000/04:1
tullcIpebslutlt. 131+ Fulice
tasfcocks|uth. 331
ksluth.0o131s113141/0331: 1. 159.000/04:1
tullcbekslutb. 132+fullc
twslcIbsvelutb. 32
ks|utb.n132=1132:1/0332: 1. 159.000/04:1
tulfcdobs|utb. 133+ Fullct
twulcteks|utb. 333

B-10

kslutb.01337i13311/03331 1, 159.823/04 |
tulfeS alutb.134+Fulich
tuu|eSeks|uth. 334

ks luth.0134ei13411/033¢:
tul|cBebs|utb. 136+ Ful|ch
twulcbeke|uth. 339
kefutb.o135¢i13611/0335: 1. 150.600/04:"
Wil lcBesksfuth. 136+) |cbe
tilcBasks luth. 336
bsluth.013671136:1/03360 1, 150 (00/04:1
il lebleleluth. 137+ ful|cBl
taulcBfeke|utb. 337
kslutb.0137=:132:11/0337: 1, 150.000/04:1
tulleGasksluth. 138-Ful|cba
twulcbgeksluth. 330
ksluth.e13871138:1/0338: 1. i50.900/04:1
tul jcEheks|utb. 139« ful|cbh

Lo |cBhebs |uth. 339

ks luth.0139¢:13%3:1/0339: |, 150.000/04:1
tullci3ebsluth. 149-fullclld
tuulel3rks|uth, 340
ksluth.014051148:1/0340: 1. 150.000/04:1
tullcidecks|utb. 141-ful|rlds
tuulclJecksiutb. 341
kslutb.old41vi14111/03411 1, 150.600/04:1
tullcidbsks|uth. 142-Tullci3b
tuulciIbeks |uth. 342
ksluth.0142¢1142:1/03421 1, 150.000/04:1
beluth. t9+kslutb.o¢

ksluth.od4s14:11

kelutb.:4e 111

150.000/0411

' pre|pse Locks c3.¢35.cdb.c?.c?0.¢7o
prelpsc. 11se 91011 . 166

prelese.1ls 01921 . 166

prelpsc.ile 0103 .167

pralpsc. il o1d4: . 167

prelpsc.ile 0105: .167

prelpsc. 11e 0106: . 167

tullcdprelpsc. 18lefullcld
twlcIprelpsc. 301
prelrsc.ol@l=1101:1/0301: 1. 59.000/02:1
tullc3nepre(psc. 102-fullc3e
tiwwlcIecgrelesc. 302
prelpec.01B2e110211/03021 1. 50.008/0211
tulleIbeprelpsc. 103-fullc
terlc3beprelcsc. 393
prelpec.0103+1103:1/0303 1. 59.000/02:1
tulle?eprelpsc. 104+ fullc?
tCwlc?eprelpsc. J04
prelpsc.ol@4e,104:1/0304: 1, 50.990/0211
tullc?e-prelpsc. 195« fullc?e
tuyleTseprelpse. 38§
prelpec.nlfS=1105:1/0395: 1. 59.008/0211
tul e Tbeprelpsc. 1MB«ful|c?d
tiwlcTomprelpsc. 396

prelrsc.010€ . 110€.1/0306: 1. 50.000/02:11
prelpsc. 1Jeprelprc.02

preipsc.olei2: |
ks|senrch. lsvh |ks|seerch-pre|psc. 98!
prelesc. 1270901 .139.135/03:1
ksltime.levk ks |t imecprelpsc. 902
prelpxc. 1270902: .130.135/03:1
prelpsc. 1 2=03: ,740.135

prelesc. 13sprelpsc.o0d

prelesc.odvid:l

prelpsc.13¢ 111l

! kslsesrch Locks c2.¢3.c3e.c3b.c4.c5.
! c6.cbe.c6f.cba.cBh.c?.c?0.c?,
! cB.c13.c130.ci3b
ksisesrch.1ise o18]: .AS5., 54.990
ks|seerch.il= 0102: .055. SA.009
ks|sesrch.ils 01083: .055. S3.6000
ks|search. 1l o104: .055, 50.89
ks|seorch. 1= ol05: .065, 50.008
ks|seerch.ils olN6: .055. 50.009
ksiseerch.il= 01871 .@S5. 50.000

ks |sesrch.ile 01081 .055. 50.000
ksisearch.ils 0109: .056. 60.600
ksiseerch.ils 01101 .066, 50.000

B.2 The STEPPS Hearsay Il model

ksiseerch.il® o)1) 056, S@.00Q
ks|seerch. ile 01121 066, SO.00Q
ks|saarcn.ile 01131 .OS6. $9.000
ksiseerch.1le ofl4: 056, S0.000
ksissarch.1le 0115 .056. SA.00Q
ks|vseerch.ile 0118 .056. 50.800
kslseerch.ile 0l171 .@56. 50000

kslvesccn 1o 01181 .@56. SA.000

tul cZebsisenrch. 181eful|e2
twulr2sbs|senrch. 30)
ksiseerch.o1Ple116111/03011 1. 1100.080/0211
twlicI-bslsserch. 182+fullcs

tuulnIeks|see ch.3N2
kslsearch.ol@2=1187:1/03001 1, 1100.000/0211
tuliclesbsiseerch. |03-fu]|c3e
tiwulcde-bsiseerch.303
ksleenrch. 0103+, 10311/0303: 1. 1100.00@/0211
tulicdbebe|search 104:FullcIb
twuic3tebalgeerch. 304
Lbrlecerch.ol04e:104:1/03041 |, 1100.000/0211
tullc4elslsearch. 105Fu)lce
twulcdobkglreerch. 305
Lelseerch.ol05e 1051 1/0305 1. 1100.0608/0211
tnlleSebkejsearch. 106 il fcS

Vv lcSebslpeerch. 36

bglseerch n1Pte 106/ 1/0396 1. 119R.098/0211
tul rBobslseerch. 10T fu]|ch
twulchebsiscarch. 307

bslseech.ol®7e 187:1/0307 1. 1109.080/02:1
twllcGecks|search 108-Fuliche
twwulcBesvsises ch 39
Lalsearch.ol1f8s:108:1/0308: 1. 1180.9800/0211
tullcBfsksiseerch. 189« fullcbf
toulcbfehslseerch. 309
kelsnerch.01092110(9:1/0309: 1. 1100.000/02:1
1l 1chaekg|saorch. 118-fullcby
tey|cBaskslsenrch. 310
welsearch.0119:11@:11/03181 1, 1100.000/02!1
tullcBhebsigeerch. 111efullcbh
twulcBhebgisearch.311
kalsesrch.otlleil1li1/0311t 1, 1100.008/02:1
tullc?+eksiserrch. 112efullc?
Gilc?sbsisenrch. 312
Velseerch.o112=1112:1/03121 1, 1100.008/02:1
tulicTeskslseerch. 113 fullc?e
tuwule?esbs|sser ch 313
ks|seerch.ol13=1113:1/0313: 1. 1199.000/0211
el e Pbeks|seerch 114-fullc?d

e ic?bsbs|seerch. 314
ks|searzh.ol1401 11411 /03141 1, 1100.080/0211
tuticBevsisearch. 1165 ful|c8
twulcBeks|search. 315
kglsearch.ol15¢1115:11/03151 1, 1100.00@/0211
twllcl3ebs|genrch. 116+7ul1cld
GwiclIcksireach 316

kalseaerch.ol16 1161170316 *. 1100.000/0211
tullc)decksisaarch 117 tullcile
twulclIecbsliseach 317
Lsiseerch.ol1?s:117:11/0317¢ 1. 1100.800,02 |
tillci3bevalseerch. 118-ful e 13
tiwwiclIbebsisearch. 318
ksiseerch.ol10:11811/03'81 1. 1100.908/6211
ksisearch. i2+ks|search. 52
ks|seerch.o2e12:1

kslseerch. 129 0119: .055. 2R 400
ksjsearch. 2% 01281 .055. 2. 000
ks|search. 20 0l211 .0S5, 2t 0RO
ks|search. i2e 01221 .055. 200. 00
ksisearch. 120 01231 . 055, 200.300
kalseerch.12% o0l241 .055. ¢0N. 000

ks lsearch. 12% 01251 .085, 204.800
belaserch 120 01261 .055, 200.009
ksisearch. 120 oI P56, 200.000
Volseerch. 127 01081 .P%6. 209 4N
bsiseerch.12s 01291 .Q56. 0N AOQ
Lsisaerch 120 01301 .0S6. 260.000
kilisenrch.12% 01311 .ASB. 200 0A
ks|seerch.12% 01321 .056. 230.00¢Q
kslsearch. 129 01331 .056. 2P).AP0
Lsisesrch. 129 0134: .056, 200.008
ks|senrch. 129 0135: .956. 209 #0Q
kslesorch.12% 0136: .0G6. 200 00®

B-11

tul|c2sbks|seerch.119-ful|c2
twulcdeks|senrch. 319
ks|search.ol19111911/0319 1. 1100.000/0311
tul |ed-bnineerch. 1281w} lcd
tuulcI+ks|seerch. 328
bs|seerch.012@21129:11/0320: 1. 1100.898/0211
tulledesksiseerch.121+ful|c3e
tuuic3desksissarch. 32!
ks|reerch.0121%112111/0321: 1, 1100.000/0%1|
tul lc3beks|senrcn. 122«fullcIb
Giulc3beks|search. 372
kslsnerch.olf29112211/03221 1. 1100.00@/0311
tullcdeksisaorch. 123+1ul|c4
tuylcdebs|search. 303
Vslsearch.01230110311/0323 1, 1100.000/03:1
tul cSevs|saerch. 1747l cS
tiwlcSebslseerch. 324
bsiseerch.ol24=112411/9320 1, 1199.00/03: |
tul|rBeba)senrch. 125-1ul|cb
tiylchbevslseerch. 325
bs|senrch.012504175:1/0325 1. 1100.900/0311
tui|rGecks|gnorch.126+Ful|cBe
twulcBe-bs|seerch. 376
kslsmarch.o126°112611/03261 1, 1i00.0008/03:1
tul [cbfebgtsemrch. 127« ful|cbf
Gwlcbisksisenrch, 327
kslseerch.o12?7#112711/0327t 1, 1100.0600/0311
tullchasksisearch. 12B+ful | cby
tuulcbg-bslsrerch. 578
Velgeerch.ollB8e112811/03781 1. 1100.000/03:1
tullcbheksg|soerzh.129+ful|26h
tuylcBhebstseerch. 379
kslsenrch.0129110911/03291 1. 1100.000/03: |
tullc?svslsanrch. 130:ful|c?
tuwylc?+vsleenrch.330
kelsmarch.013951130:1/0330: |, 1100.099/03:1
tullcPesbs|senrch. 131+ ful fc?e
tuwuic?esbstseerch.33]
ks|seerch.013101131:11/0331 1, 1100.000/0311
tuwidcTheboisearch. 132+ fulic?e
tuulcTbebks|seorch. 332

kelsearch.c13291132 1/0332) 1, 1100.000/0311
tul |cBohslveerch. 133¢fu]|cB
twlcBoke|senrch.333
kelrearch.0133°113311/0333: 1. 1100.000/03:!1
tullc13eksiseerch. 134+ ful|cld
twulc13=tsisenrch. 339
Vsisearch.o134%113411/0334: 1. 1100.000/0311
tullclIacbs|senrch. 135 fullc)3e
twulclIesks|senrch.335
ksiveerch.0135%1135:1/0335 1. 1100.000/03:1
tullciIbekalonerch. 136-Fulicid
tiulci3tebslseerch. 336
bsiseerch.0136%113611/0336: 1. 1100.000/03:1
ksisearch.13-ks|smerch.nl
Vsisesrch.03e:3i

ks|seerch.13s 1141}

' kslt me Locks ¢2.¢3.cle.cIb.c4,cS.
) c6.cbu.cBf.c6g.cBh.c?.c?e,
! c?b,cB.¢13.c13eci
keltime. 1 Jee 01811 055, SR, 000
ke|time. 1l 01821 0S5, §9.000
keftime. 115 01631 . ASS, SO.OMA
keltime. 1o o124, .055, 50.000
ksitime. 110 01051 .055. 50.600
bsltime. 11 0)@61 .065. G@.008
ksitimpg. i]e 01871 .Q55. SN P0G
ksftime. (1o 0108, .055. 50.009
bs|time. 1]s 0109, 066, 50.009
ksltime. 110 o]10: .0S6. S0.00N
keltima. (1= 01111 .056. 50.000
ksltime.ile 01121 .@S6, GA.000
ksltime.1l% 01131 .056. 50.000
ksltime. 11 ol14: 056, SG.vM0
bs|time. 110 0115 . (56, 50.000
bsltime 110 0116: .@56. S50.000
ksltime. 11 01171 .056. 50.000
ks|time.i1% 01101 .0656. 50.000
tullc2ebksitime. 1016 ful|c2
twulc2ebs|tine. 301

kit ime.01012110111/0301: |, 225.008/02:11

8.2 The STEPPS Hearsay Il model

twlle3ebaltine. 1020fullcd

tiylcdeks | Lime. 300

Laltime.0102¢10211/03021 10 225.600/0211

tullcIncks|time. 103 ful|cIe

twulcIusbs|timg. 303
Laltime.01@3e1103:1/0303 1, 225.000/02:1

el lc3bsbaltime. 104-1ulcIb

sz 3bebs|tims. 304
baltims.01047110411/0304: 1, 225.000/021 1
twllctebsltime. 105 Tullct

twulctsbalting. 395

kst ime.01052110511/0305: 1. 225.804/0211
Wil |cSebksltimg. 1PBeTulcS

twylcBebs|tine. 306

kol ime.01069 1061 1/0306: 1, 225.€00/02:1
tulcBoksltine. 1071wl lch

tsni|cBoksltime. 307

ksltime. 0l@7e110711/2307: 1. 225.00/0211

twl |cBosks|t,me. 108+ il IcBo

tslcBocksltime. 308
ksltime. 0108 1108:1/70308: 1. 225.000/021!

tullchfebn|time. 1091l |cB!

Lens | cBToboltime. 309
beltime.0l@92,109:1/0309: 1. 225.7@/02:1
A\l lcBgsba|tims. 11A=Fulichy

twulchbasralting. 319
beltims.nllResl1R11/0318, 1, 225.000/02:1
Wl lcBhebs|tima. 111+ fullcbh

Ay lcBbhebsit ime. 311
beltims.ofiletilel/odlr 1, 225.000/02¢1
Gl leobg|tima 112 0l |€?

twlcTebaltime. 312

baltime.01120111211703121 1. 235.000/0211
\ulIc-’n-hl!nn.ll!-h-ll:?o

s |c70ekn|time. 313
keltime.01130¢113:11/03131 1. 275.9800/0211
Gl leTbebsltima. 114efullc?b

twylcTbebs |t ime 3¢
ksltime.oll4erl1411/03140 1, 225.008/02:1
el lcBebsltime 115e 1wl icB

Gy lcBebalting. IS

balt ime.01160111511/03151 1. 225.09@/02:1
twllc1Isba|time 1160 fllctd
Gmrlc13ebeltine. 316
baltime.0116e1116:170316¢ 1. 225.098/02:1
tulicidecksitima. 117 fullclde
twlcidecks|time. 317
beltime.0l17e:11711/03170 1, 225.000/02:1
twllcl3bebs|tme. 118 fullciIb

s lci3bebaltime. 316
usltime.011@e1118:1/03181 1. 225.800/02+1
baltima.12¢ksitime. 02
beltime. 0201211

ksltime. 12"
kslting.2¢
baltime. 1 2¢
keltime. 1 2v
bsllimg. 120
baltime. 1 2¢
bsjlimg. 12"
bsltimg. 1 2v
baltimg. 12
bs|timg. 12
kg ltime. 1 2
baltime. 12e
ksitims, 120
keltimg.12¢
bsitime. 120
ksltime. 120
ksltime. 120
beltimg.12¢

twlle2ebeiting. 119 Tulic
iy lcdeksltime. 319

o119
ol2M
ol2l
01221
0123
0124
0125+
o126
0127
016
0129:
ol30

ol .

0132:
0133
old%
01351
0136

. 085,
-055.
.055.
. 055,
065,
055,
. 855,
055,
.N56.
.55,

NRAZARRSA

23RERRR2

s

.

AP ARAR

2233333333333333333

bolt ime.0l19%:11911/03190 1, 225.800/03:1
tullc3byltime. 120+fullc)

Lentledebs |t ime 320

beltime.0l2Me1120:1/0320: 1. 225.680/03:1
tullcIsebnltimg.1210fullc3e
tsulcdecksiting. 321
Wsltime 012191121:5/03211 1. 225.00% 0311
el lcbebs|time 122+ TullcTo
L lcTosks |t ime. 322

B-12

B.2 The STEPPS Hearsay 1l mode!

Veltime n1222112211/03228 10 225.999/0311
tullcdekgitime 12300l
tuulcdeks|time. 323
Veltime.012391123:1/0323 1. 225.908/0311
!ulIcS-HIh“.lf‘-'ullts
tiuteSebeltime. 324

belt ime.0124w112411/0304c 1. 225.000 /0311
il leBebg|time. 125+ Tullch

timlcBebgltime TS
Veltime. 01350 (12511703251 1. 225.000/031 1
TullcBsebsltime. 156 fullcbe
o lcbrsbsltime. A6
Veltime. 01Z6es 176170306 1. 2
tulleBfobsltime. 107sful 1eBf
ey lcbfebgltime. 307
Veltime .02 e 112713/0327: 1. 225.004/031)
tullcBbgebsltime 178:7ulicbe

tens [cGaebsltime. 308

Veltime.0l28::128° 1/0308: 1. 225.7000/03: 1
tullcbhebsltime 129=fullcBh
s [cBhokslt ime. 309
Vvaltime.0129:129:1/0309: 1.
tiljctebsltime 130 futlc?
tuuletehg |t ime. 330
Valtime.0l30s 130:1 /0330 1. 2295.000/03:)
tallcTeshsltime 13fsfulic?e
tuylcleshs|time 31

beltime.0131v1131: 1703301 1. 228 80R/odi 1
til e Mhsbsltime 132+Fullc™s
tuuleThebsltime. 330

beltime 0132:1132:1/03320 1. 228 800/0311
twllcBebaltime. 133 Ful|cB

Loy |rBebu|time. 333
Veltime.n133e:1331/0333 1. 22
tuwllc1dbaltime. 134 Fullcld
tuoletdsbsltime 330
Veltime. 01349 1134:1/03300 |, 225.800/0311
(ullcl'h-‘-nlimu-l!S-luHr.l!u
toule | Jesvsltime 338

beltime 013521135 1/0335 1. 225.000/0211
tullctThebaltime. 136 Fullcld
twulclbeksltime 336

Veltime nf36e:136:1/03361 1. 225.004/03:)
bgltime. 1ebsltime .03

bgltime 03e:1d:]

beltime. 3= 110}

3
w

.Aa@/0311

~
~
w

.00R/03: 1

~
w

.00a/0311

! Levicon lock 1vises
fikigeaslbisea {+tikiseg
{k|sea 2eulblsen

{hlseq. 11se 1 2t1 /ol / !
Aty ulb lsea auane: 1988, volid
Srhed noncom 1t [sey

Collect nostet lbises

! Levican lock lk|rsea]

f1b irres 1elb1pseg | Iotikipses |
1 iprsey }.2-ulkirseg |

1% |prea 1. 11e® A A I
att ulkipseg | aueve: 100, volil
Sched noncom Lk ipeed |

Collect nostet (birseg |

' Lericon lock 1birsea 2
f1vioreqg 2+1%loseg 2. 1+tikipsey 2
Ik ipacy 2.2sulbipses O

th|pseg 2. 0dew 1201/ o1l 7 10t
A1y ylk|pses 2 aueue! 1P8. volrl
Grhed noncom b |pses O

Collert nostet 1V|psea 2

" Lewicon lark Qb imen]

C1bimen 1elk(men] fotikimen |
Ihimen 1. 2sulbimen]

b men 1. 1100 201 Zotrd /b
ATy ulbimen | auaue: 109, vol'l
S had noncom lkjmen 1

Collect nostet ik|men]

' Lenicon lock fhimwn 2

fib men 2efblmvn 2. 1etikiman 2
thImen 2.20ulb|men 2

Ivlmvn 2. 110 0211 £ oted /alid
Aty ulb|men 2 quever 189, volil
Sched nencom b imen 2

Cotlect nostet thimvn 2

! Levicon lock lk|phon
fl\vlphon.l\vlphon.l"l"l!"\oﬂ

¥ |phon. Zsuwlk | phon

thiphen 11e8 1211 7 olid / i1t
Att ulk lphon aqueue: 100, volil
Sched noncom 1V [phon

Cotlect nostet 1k |rchon

t Levicon loek klsurn

fik lsurnelblgurn. letiblsurn
tvigurn. 2eulb [surn
thipurn.atse 1201 / olid / Ml
At uib lsurn auever 180, voltl
Sched noncom lblsurn

Cnltect nostet l¥lsurn

! Lesicon tock 1 lurdsurn
(lb|urd|urnal\v|urd|uvu.l-llllwd;uvn
1% [dsurn. 2oulb furdeurn

{4 jurdsurn.of=e 121 A KR B AR AR
ALt ulk lurdsurn queye: 189, val:}
Sched noncem b |urdvurn

Collect nostat Ik|urdsurn

" Levicon Jock 1¥luord

f1h lword= 1k [word. 1ot ik lword

14 lword. Jeulk Iword

{4 |word. tiew 1200 7 obid / 1l
Att ult lword aueue: 184, volil
Sched noncom 1k lword

Cotlect nostat 1bluord

" Leviran lnck 1k|shdunrd
'l\vlthduﬂrd-lﬁhhdumd-l-!l\'llhduord
14 | ehduer d. 2+ ulb | shduer d

16 [ghdwnrd. 1128 1211 7/ olel 7 110d
ALY ulkighdunrd aueue: 18, volil
Srhed nonrom 1k |ehduncd

Collect noetet 1k|shduerd

! Levicon lock 1k ishdeent

ik |shdsent s 1k |shdeent Jetikishdsent
i+ Ishdsent Z-ulk |shdsent

I Ishdsent. 11 o 12:1 / olil / it
att ulk lshdssnt queve: 109, vol:l
Sched noncom (b 1rhdsent

Collect nostat 1kishdsent

! €1 wordew deurn

fullztentel. totulict

woel. Jetuulcd

L1k Jor dauraswlc) 2o 716 Jrdsurn

uik [wrdsurnesuct 2

Ui lunedesde] 3o F b luned

ulb [renrdewyrl 3

wicl 1lewe2 1/ 1211/ 0317 2 ih/ SERYARARR}
wocl. 19902:17 0311/ 111

Attr ibute vhIbslelo Queve: 7SR, Voluse: @. Delert

Attr 1butle vb|bslcsee Queue: 260, Volume: O. Deler: 808, Stertue!
Attr tbute vb [ksipsrn Queve 59, Voluee: 8. Deler:

Attr ibute vb 1be]SEAPC OQueve ISA. Volume: ©. Delev: 000, Stertur
Attr ibute vk ibslsea Queve: J50. Volume: 8. Deler

Attr ibute vhIbeltime Queus: 259, Volume: @, Delev:

attr ihute vbIbslutt Queuel 250. Volume: @. Deler:

Attr ibute vbIVsIUV Quene: 250, Volume! 0. Deley: .ODD. Startue:
Attr ibute TOPPE IO Gueve: 050, Volume: 0. Deler:

Attr ibute TOPPLIPSC Queue: 258. Volume: 9. Deler:

Attr ibute TOPPLIPSYN Queue: 258. Volume: 0. Deler:

000, Startup:

000. Startup!

000. Stertup:
00, Stertup:
o, Stertup:

000, Stertue:
900. Stertup!
o0d. Stertue!

~ne
600
(1]
ooe
000
000
000
(]
00
000
000

B.2 The STEPPS Hearsay 1l model

Attribute TOPPE [PPOL Queuet 5P, Uolume: A, Deley: .000. Stertup: .008
Atiribute TOPPLISEG Queue: 259. Valume: 8. Deley: .008. Stertup: .000
Airibute TOPPLITUTE Queuer (SA. VUnlumes @, Deley: o). Stertup: .000
copy wlepeeg.ulemin.ulc? uled uled . uleS . wlcb.ule? nlcB.wlc9.ulcl® + wlcl
copy wucPseg.sucmrn e mucd et oS b owuc 7 el aned el 1 suc)
copy wlclliwlclZ.wlcl3.ulcl4 uiclde.ulcldb.ulclIe el ulcl2e 1 wlc)

copy swclliwel2 el dimucld wuclde wucl9b. el de el Fe e 2e 1 wuct

copy Mlc1ZfilciZawmdciZhulelle.nlct b nlctle.wlclif.ulclly 1 mic)

copy wucllf wclleameilhancl lencl b sclle mmclifoectly + wicl

cory wlcllh.lc1@e.mlc10b . icBu . ulc9f wlcBy.ulcOhulc?e.ule? 1 wlcl

copy wucllh wuc 1fe w1 wuc e wuc 9 . wuc B9 . wucTh.muc?e e 1+ wicl

eney HicBe . ulcBf . wlcBg.ulrbh.ulc3e.ulc3b « wicl

cory wucBe wucBl . wucBy webh mcIe e Id 1 wic]

sched noncompele wicl . wucl

call noetet wlcl.wucl

' creeg prea 2 ¢ pesg)
fullcrsegenlcpseg. 15 tul |cpeng
wucpees. l-twlcosen

tlh ipeeg leulcpseg.2+01b [pase |
ulV Ipeea 1ruscpres.?

tik Ipeea 2enlcpreey.3-1 1k |peey 2
ullk lpeeg 2-wicpseg. 3

sched nnncompete wlcpssy.wucresy
collect nostet wulcorey.wucrees

' emen myn 2 men]
fullemensulemen. lotul femen
wucmun. Loty lemvn

tlbimen lewlemen. 2+010 |men |
ulbimva lewmiemen.2

b imen 2emnlemvn. Ief b [mun 2
vlvimen 2omcmen.3

sched noncompete wicmen.wycmrn
collect nostet wlcmrn.imcesn

''elcl ¢ eurn
fullelsulc2 1 tullc?
wuel. l-timfce
tiklsurneuled 2«01k purr
ulblsurnesmye?. 2
tuliclenled. 3+ fullcl
tuulctemel. 3

sched noncompete wlcl el
collect nostet wic2 wel

'€3 word ¢ ¢?
follcIemlcd 1+tullc)d
sucd. letwuled
tullc?eulcd.2efulic?

Gl 7emmcd. 2

b (wnrdewled 3ef1b|uord
ulb luwordewncd. 3

srhed noncompete v 3.wucld
collert nostst wlcs.wuc)d

' c4 wrdeurn ¢ cB
fulfirdeuwlcd 1etulice
wc‘!.l-lwlc‘

tul cBrulce.2:fullcB®
toslcBeruct 2

Vb lur dsurneutcd 3ol 1b fir dewrn
ulb lur dsurnenuct 3

sched noncompate wicd . wuct
collect noetet wicd. wct

' £S5 sedsurn & gurn
fulicSesuleS 1+tullcS

s05. 1oty

Ut lgurneulcS 2-F1% fyurn
ulbisurnewyes. 2

UIb lor duyrnew]cS. 3o €14 |ur deurn
ullk | deurnewucS 3

sched noncompete wich.wuch
collect nostet wlcS.wuch

L gt el A i it it W A . s e

B-14

' ¢6cB ¢ cl2
fal1¢6+1lcB.)+tnllch
wuch. 1+t {6

Gl le12e01cB. 2+) lc 12
twlel2eweb.2
tulleBemlch.30fulicB
tuufcBewuch. 3

sched noncompete wlch uich
enllerct nostet wirb.weh

‘¢? qurn ¢ c1@
fulleTeuwle?. letulic?

wuc?. 1etuuje?
thllc10eulc?. 2+ful|c10
twule!Drwmic?. 2
tivisarnenle?. 3«01k [surn
ul' lee newic?.3

rcried ancompete wlc?.me?
collect nostet wic?omce?

' ¢8 rurn ¢ phon
ful1eB+nlcB. 1etullcB
wucB. 1+t) cB

ik Iphonew]c@. 2-F 1k I uhon
vlb fphonewyc8.2
tlklsurnewlc@. 3+ f1k Isurn
ulv|surnewur.d

erhed noncompete wlcB.mecld
collect noste’ wlrB wicB

' ¢9 phon ¢ 12
ful)r9-u1cT. 15tu]|c9
wued. 1+ tiu ' c9

tullcl? uwle9.2-ful|cl?
twule12emucd.2
tiklphanswle9. 31k Iphon
ulkichonewe9.3

sched noncompete wlc9. wmicd
collect nostet wlc9. mcd

' ¢1@ ohon 4 cmen
fullc19suic]@. 1otulfcl@
wuclf. letwlcel9
tullcmrnenle]@. 2+fu |cann
trulemvnewc]f. 2

tib lphanewle18. 3+ 1 1k | phon
ulb Iphonewucd. 3

eched noncompete wic1f.wcl®
collect nnetet wicl®.wucle

1) eman 4 1Y
fullellenlell. Jotullct]
wucll. letmulc]l
tulleldenicl). 20l lc]d
toulc 4 wuct). 2
tellemwnewlel]. 3o ful (cmvn
o femvnewycl]. 3

tched noncompele wicll wict!
collest nostet wlcll.wucell

''r1Z cmen ¢ cpysy
fuliclZ=wlcl2 1+10llc]2

suc 12 1o tem |12
tul‘cpanaculc]l. 2+ful lcosey
Goslerseqewcl? 2
tulicmenewlc1? I-ful|cmen
Gaslemencinel? 3

sched noncomeate wlclZ.wucl
cnllert noetet wicld wucl?

‘€13 phon * cpees
fullel3-mlc1d 1etulictd
wucl3 1-tilcl)d
tellcrregewlcld 2+fultcovey
G lcpreeswuc]d 2

1t Iphonsulc13. 3+ 15 Iphon
ult Iphenewucld I

sched noncompete wicld.wucld

T

B.2 The STEPPS Hearsay II model

collect nnstet wlc1domcid

! ¢cl4 cpsea ¢ sen
fullcldeulcld totullcld

wuc i 1 tuwslcld

tik |seasuicl4.2:f1b |sea

ulb isegenucid. 2
tullcpreasnicl4e. 3-fullcpseg
twulcpreg-sucld.3

sched noncompete wlcle,mclé
collect nostel wlclé.mucld

! ¢lie preg | ¢ req
fullci4ssnlcide 1-tuliclde
wuc 14 Ietuuiclide
tiblsegenlcide. 2-F1b 19

ulb lsegerucite.2

tib |psey lewlcidn Jefjkipses |
ulb lpseg Jewmuclde. 3

sched noncompete wicids. nurclte
collect nostet uiclés.clde

! cl4b pseg 2 ¢ sey
fullcldbeulcidb. 1etulicldb
wucldb. letwulcldb
Viklgearnlcl4b. 2+ (b sea
ulklgeariucidb. 2

t1b pseg 2enlcldb. 3 Fiblpseq 2
ulblpesg onucldh.d

gcted noncompele witldb.wucldb
coliect nostet wiclébawcldb

! t13s phon ¢ pseg |
fullcllecwlcids Jetulici3e
wuclde. letimslclde

t1v Ipsea 1-ulcl3e 2:11v lpseg |
ulb lpseg lewclde &

tii lphoneulclde. 371k iphon
ulb lphonswci3e 3

sched noncompete wlcl3e.wiclde
collect nostet wici3maclde

' t13b phon ¢ rree 2
fullclFbenlc b detulici
wut 136 1etuuicidb

Vivipseg 2oulci3b. 2-¢1bipses 2
ulblpeeq Jowucide 2

1k lphensulci 3 361V jphon
viblptonsucidt 3

srhed nancompete ulcl Pt iId
celiect rostat witlFmcl

Vclle men | ¢ preg]
fulietlecsnlcile 1otullclle
wiclla Jstemlcile

Uk {pseg 1onleile Zefivirsey !
ulb lrses 1owmcile

it jevn 1eulci2e 311k joen 1
wiklaen Jewucile 3

sched noncosrete wlcileacile
cellect nostet wiciZewcide

126 men 1 ¢ rres 2
Calie1Tbenlc 1T Tetulict2f

it 10F Lot 124

Ulb lpeeq Jonlc 100 Jelibipres
wiv lpera Jeeme 1l &

tibimer Joulg1lf 300k lmar |
pibimen lewejlf 3

orhed nonrnopete wlol eI
callert nosr et wicl2f w20

cila men 0 ¢ reey |
fullellarulel?s 1otuliclly
welle 1etwic!le
tibirsey 1-wlcile 241t ipsme |
uibireea 1-wclle 2

Lib tmen 2enic129 =61k mun 2
ulbimsn Qewncile. 3
grhed noncompele nici1lg.mclle

collect nostet wlcl29.wuclls

! ¢1Th mvn 2 ¢ prea 2
fulle12bsnlc12h 1o tuljcl2h
wug12h. 1+ tuulc12h

tibipreg Jrulci2h. 20010 Ipses 2
ulb lpseg Ceanrilh. 2

b imen 2enlellh. 3o F1bImen 2
ulkimva 2emucilh. 3

sched noncompete wlciZh.wcilh
collect nnstet wlciZh.wuci?h

P cllemen 1 ¢ cl4
fulictise wictin 1otullictle
woclle. detuulcile
tullet4endctle 2o fullcld
tayleldemctiio 2

tibimen Joulcile 3eflbimen 1
ulbimen Jesuctile 3

sched noncompete ulcllsiwclle
crllect nostet wicllesuclle

Celib men 2 0 14
fultrllbenlrilb 1otullcllb
woe l1b. e tin el b
tullctdeslel it 2o fulicid

tuu lc1 4o tib 2

b fmen Jenlcltb. 3-Flkimen 2
ulbImva 2euurlilb 3

sched noncompete wicllboacllb
collect noetat wicllbacllh

" clle men § ¢ clde
fultcilesulc e 1etullclle
wurdle letuulclle
tullcl4peulclile Jofuliclde
taslcl4p-muctile O

tibimen Tewlctle 3ef1bimen]
ulbimen lesycile 3

g-hed nonrampete wlcile.smclle
cellert nngtet wiclle.wclle

Pl men 10 b
Cadleitfenln 1l 1etultcllf
war 110 1etumte 1S

ol lclabewle 110 2ofulicldb
tuulclsbrwuc 16 2

Lt imen lenlc It 3-6jbjmen 1
ulbimen lewcild 3

srred noncompetls wiclt welld
colloct nostat wleltf sl

P rilg men ceclte
fulictlacwlicila 1-tuliclly

wur 1@ 1eteairlle

tujle lteenlclia Jefullctde

IS LTI R E Iy

$1b tmen Jenlella 3eflbimen
uit tmen Zerasrlla 3

g-hed noncompete wirllg wiclly
rallast nogtat uirllg.wirlly

11k men 2 o cloe
Fa et hewle b 1otullelln
wue 118 1t
vl lclebentlclin Jebulicds
Gatc lbermc 110
b lmer Denlclih 3ofbleen 2
ulb (men Jowmc 11 3
sched nancempete wlclin wcllh
collect neosrat wiclin wcllh

cifp phen » men |
fulic1Peewlc i 1-1ulicle

B.2 The STEPPS Hearsay Il mode!

wuiBe. et |clfe

tivimen JeulciBe. 241k (mun |
ulb|mvn fewurlBe.2

t1t Iphoneulc1fe. 3= 14 | phon
ulklphonemuctfe. 3

sched nancospete ulcife.wucl@a
collect nostet wlci@e.wuclBe

! ¢10b phon ¢ wwn 2
fullclobeulciob.lotu) jclob
wuc)Ob. letuulc M

tibimen 26ulc1®b. 2401k jmen 2
ulbimen 2eamclfb. 2

tlk Iphoneulc10b. 3+)k | phon
ulkiphonswucton. 3

sched noncompete wlc)Ob.wuclob
collect nostet wlc)Bb,uucldb

' ¢9e¢ phon ¢ cl2e
fullcOesulcOe. 1o tu) | c 9%
wueOe. letuyic9e

tul [c12e+mlcOe. 2+) Ic12e
twulclle-nuc9e 2
tlk|phoneulc9e. 3+ 1k |phon
ult Iphoneuuc9e.3

sched noncompete wlc9e.wuce
collect nostet wlc9e .wuc%e

' ¢9f phon ¢ cl2f
ful1c9femlcdf . Jetul lc9f
wucSf . letimcof
tullc12feuledf. 24 fulicl2f
tuwulcl2fenuc9f. 2

L1k Iphonen)c9f. 3+ 1V | phon
uib lphonewyc9r. 3

sched noncompete wlc9f ,wycOf
collect nostet wlc9f.wnycof

! c9e phon ¢ c)lg
fullc9a-ule99. 1+tul ¢y
wac9a. et lcOy
tullcl2g-wule9a.2¢ful Ic12a
twlcilaswuc9y.2

t1b lphonen)c93. 3=k | phon
ulk Iphoneiuc9y.3

rched noncompete wlc99.mucY9
colloct nostet wic99.umcy

' ¢9h phon ¢ c)2h
fulleShewleOh. 1o tul 1cOh
wucOh Jetuulc9h
tulletZhenlcOh. 2-ful |e12h
tuslcl2hemycdh. 2
t1viphoneu)cOh. 3+ 1k | phon
ull [phaneciycoh. 3

sched noncompete nlc9h.wucOh
collect nostet wleOh.mucOh

! ¢?¢ surn ¢ clfe
fulletesnlc?a. 1etu) fete
wue?e. letuyulc?e
tuliclBe-ulc?e.2¢+ful |c10e
twy|cl@esmuc?e. 2°
tiklsurneulc?e. 311k |surn
ullb |surnewuce. 3

sched noncompete wlc?e.muc?e
collect nostet Wic?e.muc?e

1 ¢?b surn ¢ clob
fulle?benle?b. fotul jc?b
wueTh. letmle?d
t)lc1fben)c?b. 2¢fu) Ic10b
tuw lc19besse ™. 2
tlbisurneulc?b. 3+)k surn
ulblsurnewuc™. 3

eched noncompete wlc?b.wuc?d
collect noetet wle?b.wuc?d

W T e T S R . bRl L T e

' cbe cB ¢ cile
ful|cBesnlcbe.1+tul |cbe
wucbe. l-tuulchbe
tullc12e-ulchbe.2+ful |cl2e
twuiciZeswucbe. 2

tul |c@-ulcbe. Do fuul |8
tews|cBeimcbe.3

sched noncompete wichbe.wucbe
collect nostet wlcbe.muche

' ¢6f B ¢ c)2f

ful lcBfenlcBf. 1etul 1cbf
wuchf . 1oty 1261
tu)1c)Zf-ulebf . 2+fu) |cl2f
tus|n]ldfenunhf. 2
Lu]l[eBeulcbf. 3] |cO
tuulcBouuchf. 3

sched noncompete wlchf.wuchf
collect noetet wlchf.uuchf

! ¢ba cB ¢ clla

ful |cBasulcba. 1-tul |chg
wueba. l-tuulchbe
tulicl2asulcba.2+fu) |cl2g
twulcl2qwucbq. 2
til1c@s1lebg. 3-ful 1cB
twu|cBewuche. 3

sched roncompete wlcbg.muche
collect nogtat wlcbg.wuche

! ¢6h ¢B ¢ clZh

fu) {cBhenlcBh. 1o tu) |cbh
wucBbh. 1oty lrbh
tullciZhenleBh. 2o i) [c12h
twulelZhewscbh. 2

tul [cBenlcbh. 3-fu)1cO
tiu|cBemuchbh. 3

eched nencompete wlcbh,wucbh
collect nostat wlcBh.ucBh

! ¢3¢ word ¢ c?e
fullc3ernlc3de. 1o tul |c3e
wuc3e. letuwuicde

tul lcPe-ulc3e. 2e1ul) 2e
trulcPocwucde.

t1k luword-ulc3e. 3+ f)b jword
ulb lunrdewuc3e. 3

sched noncompete wlc3e.wucle
cnllect nostat wlc3e.wuc3e

' ¢3b word ¢ ¢Tb
fulic3benlc3db. letul e
wedb. letuuledb
tultePbeulc3db. 240l 1e?b
tulcTbowuc3b. 2

tlh jwordenlc3b. 3+ 1V lword
vibluordeuucds. 3

eched noncompete wledb,mucdb
collect noetet wlc3b.awcdb
copy kylalolibe|elo

cony Veicesglibeicseg

cooy bslpsyni.bslesyndibs|psyn
copy ksiseerchlibsisesrch
copy bsixeal bs|seq2ibg|scy
copy bsltimelibsgltime

copy kslutblibsluth

copy bsluvl.bsluvZ.be|uvd:ibgluv

APPENDIX C

Validation of Simulation Results

Both the Bliss/11 and Hearsay Il examples of Chapter 11l relied on the -esults
of statistics obtained through simulations. When using statistics, one must be prepared
for the possibility of error. For simulation experi:ients, two validation factors are
required to verify the significance of the results [Gordon 69]. These are:

1. Elimination of initial bias.

2. Development of a confidence interval.

The method chosen for the elimination of initial bias was the use of trial runs
. to det:rmine simulation run times. Since many simulations were required for the
Bliss/11 experiments, a small number of trial runs were used to estimate the simulation
run times for all other runs. It was observed that the initial bias was eliminated after
about fifty messages entered the RESULT process of the Bliss/11 model. The number
of messages used in the experiments ranged fron: 475 to 850. In contrast with the
Bliss/11 message number measure, the Hearsay Il simulations were based on simulated
time. It was observed that the Hearsay Il results stabilized after about 5000 time
units. Consequently, the amounts of time used for the s.mulation experiments ranged
from 10,000 to 100,000 time units. Thus, following one of Gordon’s recommendations
[Gordon 69), the initial bias was eliminated from the experiments.

The determination of confidence intervals for all the simulations would have
required a relatively high overhead in the simulations. The standard techniques
require either repetitions of a particular simulation using different random number

generator seeds or, alternatively, one very long simulation run that is divided into a

R eI T Mt - T

Validation of Simulation Results C-2

set of batches. Considering the large number of Biiss/11 simulations that were
performed, It was felt that the develoument of a confidence interval for one simulation
would be used to represent the entire set of Bliss/11 simulations. Figure C-1 shows
the data taken from one icrig simulation run from the Bliss/11 sImulation using six

processors and FIFO scheduling.

Stop No. FR No. LS LEX Time Percent Thru
Time Sends Sends Computing Thru Rate
40 75 76 .238 89.3 3.75
60 65 78 .239 77.7 3.25
80 69 83 241 83.1 3.45
100 53 56 355 94.1 2.65
120 66 69 .226 745 3.30
140 58 50 248 71.9 2.90
160 58 62 249 84.7 3.40
180 79 74 270 106.6 3.95
200 82 79 .253 103.7 4.10
220 68 85 226 76.8 3.490
240 64 67 .280 89.6 3.20
260 74 80 .234 86.6 3.70

Figure C-1. Bliss/11 FIFO 6 Processors Evaluation Data

From these data, 907 confidence intervals were computed for the LEX
Computing Time, [.245, .264); Percent Thry, [84.6, 885); and Thru Rate, [3.28, 3571
From the data shown in Chapter Il it can be seen that each of the values falls within
these respective confidence intervals (i.e,, .259, 88.3, and 3.28).

Based on the validation of the numeric significance of this selected simulation,
the other Biiss/11 simulaticns are felt also to be valid. This saems reasonable since
the various si'nulation rasults did not have any unusual patterns.

The same general techniques were used to run the Hearsay Il simulations as
were used for the Bliss/11 simulations. As discussed earlier, the initisl condition bias

was eliminated by runni-. the Hearsay II simulation for a long tiine. Confidence

intervals were not established for the Hearsay Il experiment, because the Hearsay 1]
result was based on an accumulated statistic (ie., average active processors) and the
method used for validating this type of statistic required muitiple runs (Gordon 62].
Since each Hears- ' I experimental run was relatively expensive (from 20 minutes to |
hour computer run time), this validation was not felt to be worth spending the required
resources. Moreover, the Hearsay Il simulation resuits were correspondences to

Fennell’s simulation experiments, which were also not validated [Fennell 75a].

Bibliography 3~

Bibliography

Adam, T.J. and Chandy, KM.,, "Scheduling Processors in Systems with Multiprocessing
Architectures,” Tech. Report, Computer Science Dept., University of Texas
(1972).

Adams, DA, "A Mode' for Parallel Computations,” in Parallel Processor Systems,
Technologies and Applications, L. C. Hobbs, Ed. (1970), 31 1-333.

Anderson, J.P. et al, "D825 - A Multiple Compute: System for Command end Control,”
Proc. FJCC Vol. 22 (1962), 86-96. '

Anderson, J.P., "Program Structures for Parallel Processing,” CACM Vol. 8 No. 12
(1965), 736-789.

Baer, JL. and Estrin, G, "Bounds for Maximum Parallelism in a Bilogic Graph Mods! of
Computations,” IEEE Trans. Comput. C-18 (1969), 1012-1014.

Baer, J.L. and Russel, EC, "Preparation and Evaluation of Computer Programming for
Parallel Processing Systems,” in Parallel Processor Systems, Technologies
and Applications, L. C. Hobbs, Ed. (1970), 375-415.

Baer, J.L., "A Survey of Some Theoretical Aspects of Multiprocessing," Computing
Surveys Vol. 5 No.l (March 1973), 31-80.

Balzer, RM, "Ports -- A Method for Dynamic Interprogram Communication and Job
Control," ARPA Report No. 189-1 (1971).

Beil, C.G., Grason, J. and Newell, A, Dosigning Computers and Digital Systems, Digital
Press, Maynard, Mass. (1972).

Berge, C., Theory of Craphs and its Applications, John Wiley and Sons, Inc. (1962).

Boehm, BW., "The High Cost of Software,” in Procecdings of @ Symposium on the High
Cost of Software, J. Goldbarg, Ed, Stanford Research Institute, Menlo Park ,
CA, (Sept. 1973), 27-40.

Bovet, D.P., "Legality of Multilogic Graphs,” Institute di Automatica, University di Roma
(1969).

Bredt, T.H. and McCluskey, EM, “Analysis and Synthesis of Control Mechanisms for
Parallel Processes,” in Parallel Processor Sysiems, Technologic: and
Applications, L. C. Hobbs, Ed. (1970), 287-295.

Bibliography 3 -ii

Brinch Hansen, P, "A Programming Methodology for Operating System Design,” Proe.
IFIP 74 Congres: (1974), 394-397.

Browne, JC., Chandy, K.M.,, Hogarth, J. and Lee, C. C-A, "The Effect of Throughput of
Multiprocessing in a Multiprogramming. Environnent,” !EEF, Trans. Comput.
Vol C-22 No. 8 (Aug. 1973), 728-735.

Clark, W.A. and Molnar, C.E,, "The Promise of Macromodular Systems,” IEEE CompCon
72 (Sept. 1972), 309-312.

Conway, ME., "A Multiprocessor System Design," AFIPS Proc. F]CC Vol. 24 (1966),
139-163.

Courtois, P.J, “Instabilities and Saturation in Multiprocessing Computer Systems,” Notes
for Advanced Course on Computer Systems held in Alpe d’Huiz (Grenoble),
Dec. 1972.

Dahl, 0.J, Dijkstre, EW. and Hoare, C.AR., Structured Programming, Academic Press,
New York (1972).

Dennis, J.B, "Modular, Asynchronous Control Structures for a High Performance
Processor,” in Concurrent Systems and Parallel Com.putation Conference,
ACM (1970), 55-80.

D. nris, J.B., "Coroutines and Parallel Computations,” Fifth Annual Princeton Conf. on Inf.
Sciences and Systems, 1971.

Dennis, J.B,, "First Version of Data Flow Procedure Language,” Project MAC computation
structures memo No. 93 (Nov. 1973) (a).

Dennis, JB. and Fosseen, JB.,, "Introduction to Data Flow Schema,” Project MAC
computation structures memc No. 81-1 (Sept. 1973) (b).

Dijkstra, E.W., "Self-stabilizing Systems in Spite of Distributed Control,” CACM Vol. 17
No. 11 (Nov. 1974), 643-644.

Erman, L.D, Fennell, R.D, Lessor, V.R. and Reddy, D.R, "System Qrganizations for Speech
Understanding: Implicatio;is of Network and Multiprocessor Computer
Architeciures for AlL," Proc. 3rd 1JCAI, Stanford, Call!. (1973), 194-199,

Erman, L.D. and Lessor, V.R, "A Multi-level Organization for Problem Solving Using
Many, Diverse, Cooperating Sources of Knowledge," Tech. Report, Computer
Science Dept., Carnegie-Mellon University (1975).

Estrin, G. and Turn, R,, "Automatic Assignment of Computations in a Variable Structure
Computer System,” IEEE Trans. on Electronic Computers EC-12 (Dec. 1963),
756-773.

Firber, 0.J.. “A Ring Network,” DATAMATION Vol. 21 No. 2 (Feb. 1975), 44-46.

Bibllography B -

Fennell, R.D., "Multiprocess Software Architecture for Al Problem Solving,” Ph. D.
Thesis, Computer Sciency Dept., Carnegle-Meilon University (1975) (a).

Fennell, R.D. and Lesser, V.R, "Parallelism in Al Problem Solving: A Case Study of
Hearsay 1II," Tech. Report, Computer Science Dept., Carnegie-Mellon Uniersity
(1975) (b).

Fishman, G.S., Concepts and Methods in Discrete Event Digital Simulation, J. Wiley &
Sons (1973).

Flynn, M.J,, "Very High-Speed Computing Systems,” Proc. IEEE Vol. 54 No. 12 (1966),
1901-1909.

Fuller, S., Siewiorek, D. and Swan, R, "Computer Modules: An Architecture for Large
Digital Modules,” ACM/IEEE First Annual Symposium on Computer
Architecture, Gainesville, Fla. (Dec. 1973), 231-239.

Gordon, G, System Simulation, Prentice-Hall, Englewood Cliffs, N.J. (1969).

Gosden, J.A, “Explicit Parallel Processing Description and Control in Programs for
Multi- and Uni-processor Computing,” FJCC (1966), 651-660.

Graham, RL., "Bounds on Multiprocessing Anomalies and Related Packing Algorithms,"
SJCC (1972), 205-217.

Heart, F.E., Ornstein, S.M, Crowther, WR. and Barker, W.B, "A New
Minicomputer /multiprocessor for the ARPA Network,” Proc. NCC (1973), 529-
537.

. Holt, A, and Commoner, F., “Events and Conditions,” in Concurrent Systems and Parallel
Compuiation Conference, ACM (1970), , 1-52.

Holt, R.C., "Scme Deadlock Properties of Computer Systems,” Computing Surveys Vol. 4
No. 3 (Sept. 1972), 179-196.

Horning, J.J. and Randell, B.,, "Process Structuring,” Computing Surveys Vol. 5 No. 1
{Mar. 1973), 5-30.

Howard, R.L.,, Dynamic Probabilistic Systems, Vol. I: Markov Models and Vol. 1I: Semi-
Markov and Decision Processes, John Wiley & Sons, Inc., New York (1971).

Johnsson, RK., "An Approach to Global Register Allocation,” Ph. D. Thesis, Computer
Science Dept., Carnegie-Mellon University (1975).

Karp, R.M. and Miller, RE, "Propertles of a Model for Parallel Computations,
Determinancy, Termination, Queueing,” SIAM J. Appl. Math. Vol. 14 No. 6
(Nov. 1966), 1390-1411.

Karp, RM. and Miiler, R.E., "Parallel Program Schemata," Journal of Computer and
System Sciences Vol. 3 (1969), 147-195.

—

Bibliography B-lv

Keller, R.M., "Parallel Program Schemata and Maximal Parallelism I: Fundaments!
Results," JACM Vol 20 No. 3 (1973) (a), 514-537.

Keller, RM, "Parallel Program Schemata and Maximal Parallelism II: Construction of
Closure,” JACM Vol 20 No. 4 (1973) (b), 696-710.

Kleinrock, L., Queucing Systems Volume 1: Theory, John Wiley & Sons (1975).

Lehman, M, "A Survey of Problems and Preliminary Results Concerning Parallel
Processirg and Parallel Frocessors,” Proc. IEEE Vol 54 No. 12 (Dec. 1966),
1889-1901.

Lesser, V.R, "The Design of an Emulator for a Parallel Machine Language,” PhD Thesis,
Elect. Eng. Dept., Stanford University (1972).

Lesser, V.R., Fennell, RD, Erman, L.D. and Reddy, D.R, “Organization of the Hearsay Il
Speech Understanding System,” IEEE Symposium on Speech Recognition
(Apr. 1974), 11-22.

Levin, R, Cohen, E., Jefferson, D, Pollack, F. and Wult, W, HY DRA User's Manual,
Carnegie-Melion U. Report (prelim), 1975.

Lunde, A., "POOMAS, Poor Man’s Simula," unpublished report, Computer Science Dept.,
Carnegie-Mellon University (1971).

Martin, D.F. and Es!rin, G, "Models of Computational Systems -- Cyclic to Acyclic Graph
Transformations,” IEEE Trans. Comput. EC-10 No. 1 (1967), 70-79.

Martin, DF. and Estrin, G, "Path Length Computations on Graph Models of
Computation,” IEEE Trans. Comput. C-18 (1969), 530-536.

McMillan, C. and Gonzalez, R, Systems Analysis: a Computer Approach to Decision
Modals, Richard D. Irwin, Inc. (1968).

Merlin, P.M, "A Note on Recoverability of Modular Systems,” Dept. of Information and
Computer Science, University of California, Irvine (1975).

Miller, REE., "A Comparison of Some Theoretical Models of Parallel Computation,” IEEE
Trans. Comput. C-22 No. 8 (Aug. 1973), 710-717.

Mills, H.D., "Top-down Programming in Large Systems,” in Debugging Techniques in
Large Systems, R. Rustin, Ed., Prentice-Hall, Englewood Cliffs, N.J. (1971), 41-
55.

Miranker, W.L., "A Survey of Parallelism in Numerical Analysls,” SIAM Review Vol 13
No. 4 (Oct. 1971), 524-547.

Newell, A. et al., Speech-Understanding Systems: Final Report of a Study Group,
Computer Science Departmental [spnrt, Carnegie-Mellon University (May
1971).

Bibliography B-V

Newell, A. and Robertson, G, "Some Issues in Programming Multi-minl-processors,”
Computer Science Departmental Report, Carnegie-Mellon Unlversity (Jen.
1975).

Noe, J. and Nutt, G, "Macro E-n#!; for Representation of Parallel Systems," IEEE
Trans. Comput. C-22 No. 8 (Aug 1973), 718-727.

Parnas, D, "On the Criteria to be used In Decomposing Systems Into Modules,”
Computer Science Departmental Report, Carnegie-Mellon Unlversity (Aug.
1971).

Parnas, D, "A Technique for Software Module Specification with Examples,” CACM Vol.
15 No. 5 (May 1972), 330-336.

Parnas, D, "The Influence of Software Structure on Reliability,” Proc. Inter. Conf. on
Roliahle Software, IEEE (1975), 358-362.

Paterson, M.S. and Hevitt, C.E,, "Comparative Schematology,” In Concurrent Systems and
Parallel Computation Conference, ACM (1970), 119-127.

Petri, C.A.,, "Kommunication mit automaten,” Translated in Project MAC-M-212 Report,
Originally published In 1962,

Prosser, R.T., "Applications of Boolean Matrices to the Analysis of Flow Dlagrams,”
Proc. of the Eastern Joint Computer Conference (1959), 133-138.

Quatse, J.T., Gaulene, P. and Doge, D., "The External Access Network of a Modular
Computer System,” Proc. SJCC (1972), 783-790.

Regis, R.C., "Systems of Concurrent Processes: Structural Properties and Stochastic
Analysis,” Computer Science Dept., Johns Hopkins Unlversity (1972).

Rice, D.R, "An Analytical Model for Computer System Performance Evaluation,” SIGME
Vol. 2 Ne. 2 (June 1973), 14-30.

Riddle, W., "The Modeling and Analysis of Supervisory Systems,” Ph.D. Thesis, Elect.
Eng. Dept., Stanford University (1972).

Rodriguez, J.E., "A Graph Model for Parallel Computation,” Ph.D. thesis, Elect. Eng. Dept.,
Massachusetts Institute of Technology (1967).

Rosenfeld, J, "A Case Study in Programming for Parallel-Processors,” CACM Vol. 12
No. 12 (Dec. 1969), 645-655,

Simon, H, "The Architecture of Complexity,” Proc. of the Amer. Phil. Soc. Vol. 106 No.
6 (Dec. 1962), 467-482.

VanLehn, K.A,, Ed., Sail User Manual, Stanford Artiticial Intelligence Laboratory, Memo
AIM-204, 1973.

Bibliography g- vl

Warshall, S, "A T ym on Boolean Matrices," JACM Vol 9 No. 1 (1962), 11-12.

Weinberg, GM., The Psychoiogy of Computer Programming, Van Nostrand Reinhold
Co., New York (1971),

Wulf, W,, Russell, D. and Habermann, A, "Bliss: A Languase for Systems Programming,”
CACM 14 (December 1971), 780-790.

Wulf, W. et al., Bliss-11 Programmers Manual, Digltal Equipment Corporation, Maynard,
Mass. (1972) (a).

Wulf, W. and Bell, CG, "Cmmp -- a Multi-mini-processor,” Proc. AFIPS 1972 FJCC
Vol. 41, AFIPS Press, Montvale, N.J(1972) (b), 765 - 777.

Wulf, W,, Cohen, E., Corwin, W., Jones, A., Levin, R, Pierson, C. and Pollack, F., "HYDRA:
The Kernel of a Multiprocessor Operating System," CACM Vol. 17 No. 6
(1974), 337-345.

Wulf, W. et al., The Design of an Optimizing Compiler, American Elsevier (1975) (a).
Wulf, W, Levin, R. Pierson, C., "Overview of the HYDRA Operating System Development,”

Proceedings of S5th Symposium on Operating Systems Principles, ACM
SIGOPS, Austin, Texas, (Nov. 1975) (b), 122-131.

INDEX

adjacent processes, IV-15
adjacent, 11-10

APPLY, A-9

attached to, 11-10
ATTRIBUTE, A-1i0

BLACK BOX, Iv-24

chains, IV-2

CLEAR, A-11

closed loop, IV-10

closed path, IV-12
COLLECT, A-11

* combine two states, IV-19
Comments, A-3
connecting nodes, A-4
CONTINUE, A-11

COPY, A-12

deadlock problem, IV-8
deadlock-free, IV-14
delay time, 11-5
DELAY, IV-15
DENSITY, A-14
DISPLAY, A-15

eliminate a state, IV-20
EXIT, A-16

Graph Reduction Process, IV-14
Graph Reduction Theorem, IV-29
graph reductions, IV-14

immediate-recurrent, I1-10
in-parallel, IV-14
in-sequence, I1-10
Irreducibility Theorem, Iv-28

keyword abbreviations, A-2

Lemma R1.1, IV-16
Lemma R1.2, IV-16
Lemma R1.3, IV-17
Lemma R1.4, IV-17

INDEX

Lemma R1.5, Iv-17
Lemma R2.1, IV-19
Lemma R2.2, IV-20
line continuation, A-3
LINK, I-17,1-19
links, 11-14

LOAD, A-16

loop, IV-10

Markov assumption, IV-1
Markov process, V-1
message, 11-3

MODEL, A-16

monodesmic process, V-2

node, 11-9

one-to-ong, 11-10
onto, 11-10

path, 11-10
ports, I11-1
PROCESS, 1-19
process, 11-1

R1, IV-13,Iv-15
Rla, IV-15

R1b, Iv-15

R2, IV-14

R2a, IV-14

R2b, Iv-14

R2c, IV-14

R3, IV-14, Iv-24
R4, IV-14, IV-26
Reducibility Theorem, IV-26
REMOV:., A-17

safe, IV-8

SAVE, A-17

SCHEDULE, A-18

semi-Markov process, 1V-1, IV-4
SIMULATE, A-18

SINK, Iv-11

SNAPSHOTS, A-19

R - vii

INDEX

SOURCE, IV-11
SOURCE/SINK, 1v-21
spaces, A-2

split paths, I¥-12
start-up time, 11-5
STATISTICS, A-19
steady state, IV-2
successor states, IV-16

TEST, A-20

Theorem R1, IV-17

Theorem R2, 1v-22

Theorem R3, IV-25

Theorem R4, IV-26

transient states, IV-2
transition matrix, [-21
transition relation matrix, Iv-7

UNSIMULATE, A-20

well-formed criteria, IV-6
well-formed graph, V-6, IV-7
well-formed model, 1-25,IV-6
well-formed process, IV-6

B - viii

