
|iJi(|lip,!li)«l,lUH,l!l||l|l.iWI.I*"pj» ' ■ IJIWIP'IPI ". _ — _ -

/"

DESIGN TOOLS FOR EVALUATING

MULTIPROCESSOR PROGRAMS

CARNEGIE-MELLON UNIVERSITY

PITTSBURGH^ PENNSYLVANIA

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD-A03i| 856

JULY 1975

^M,UM«, ii^,,—»™— ,1iiilii,|i.iH|UiHl|J,,Wl||.J win i

■, t i v.,,: i , . i *-NI t u * TiON Of THIS P*«E UTiwi Pati^ttiifffJ

REPORT DOCUMENTATION PAGE
1 REPORT NUMBER

AFOSR -TR- 7 7*; 00 15
2. GOVT ACCESSION NO

4 Tl TL f (and SubtllU)

OF,SIGN TOOLS FOR EVALUATING
Ml'LTIPROCESSOR PROGRAMS

T. AUTMOR(si)

Philip Howard Mason

9 PERFORMING ORGANIZATION NAME AND ADDRESS

Carnegie-Mellon Uniersity
Computer Science Dept.
Pittsburgh, PA 15213

It CONTROLLING OFFICE NAViE AND ADDRESS
Defense Advanced Research Proiects Agency
1400 Wilson Blvd
Arlington, VA 22209

Ti MONITORING AGENCY NAME a AODRESSflf ditUrant Irmn Conlrolllnl Olllcm)

Air Force Office of Scientific Research (NM)
Rolling AFB, DC 20332

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3 RECIPIENT j CATALOG NUMBER

5. TYPE OF REPORT A PERIOD COVERED

Interim

6 PERFORMING O^G. REPORT NUMBER

8. CONTRACT OR GRANT NUM8ERf»J

F44620-73-C-0074

10. PROGRAM ELEMENT PROJECT, TASK
AREA « WORK UNIT NUMBERS

61101D
A0 2466

12. REPORT DATE

Jnlv 1976
13. NUMBER OF PAGES

IS. SECURITY CLASS, (ol Ihli rtporlj

UNCLASSIFIED

15*. DECLASSIFI CATION/DOWN GRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (ol Sli Rmport)

Approved for public release; distribution unlimited

17 DISTRIBUTION STATEMENT (ol lh» mbMtrmcl onftod In Block 10, II dlilmnl from Ropoil)

I« SUPPLEMENTARY NOTES

19 KEY *OROS (Co<i</nu« on ravorao «Id» II nocotatr and Idtnllly by block nimbor)

20 ABSTRACT f i onflnu» on rorormm tldo II necftmry and Idtnllly by block numbmr)

An approach to designing programs for implementation in a multiple Instruction stream-
multiple data stream processing environment is presented. A program is modeled as a
directed f.raph consisting of two types of nodes; processing nodes and linKing nodes.
Communication among nodes in the model is represented by message tokens. Each
processing node is similar in form to a semi-MarKov process. A simulation of the
operation of the model is nondeterministic, but is based on prescribed probabilisli-

DO ,:°NRM73 1473 EDITION OF I NOV «S IS OBSOLETE

SECURITY CLASSI

. .„ ,

UMCLASSTFTFD
FICATION OF THIS PAGE (Whon Dmlm Enlorod)

'I i

y

r
(

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST

QUALITY AVAILABLE.

COPY FURNISHED CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

■v ■
<£> 1

'*£&'■ w
00 1

R r:"%
1 ^ i

CO
o
<

o
-SC

PWHp Howtrd Mwor

AMpr>«v*d for imMic rtl«af«t

DEPARTMENT
of

COMPUTER SCIENCE

F '::'::-'■

n D C
JÜX4i

u w

Carnegie-McHon University
REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U. S. DEPARTMENT OF COMMERCE
SPRINGFIELD. VA. 22161

choice function«. A lytttm, called STEPPS, ha« be.n bum m wnicr. n mnm «n uo
described and evaluation tool» can b« u$ed to manipulata and act upon a model to
predict performance of a program decomposition.

The design approach is to describe a multiprocessing program in terms of the modeling
system. The model is examined to determine some analytic attributes of the model.
The analysis available determines (a) whether the model is well formed, (b) whether
the model contains deadlocks, (c) predictions of steady state properties of each
process. In addition, without much difficulty, Analysis functions external to STEPPS
rr^y be included as needed by a program designer.

Some analyses, that may be interesting, may be difficult to determine without resorting
to simulation. Therefor« the STEPPS system includes a model s.mulator with data
collection facilities. The STEPPS data collection facilities include «^h measures «s wail
times and queue lengths. As in the case of analysis functions. STEPPS allows the
inclusion of data collection facilities not originally provided by STEPPS.

As a system is designed, alternate models can be examineds and based on an individual
designerVchoice of performance attributes, a model can be chosen on which to base
the construction of a multiprocessor program. As more is learned about I .e real
system parameters, the model can be tuned to more closely predict ultimate system

performance.

Several examples of communicating processes are modeled using STEPPS including
pipeline processes, probabilistic processes. P/V synchronization and 't«der/wrl£r
synchronization. Two experiments are presented as validat.on of the usefulness of the
STEPPS tools In the Bliss/11 experiment, tK, implications of restricting the numbers
of available processors and using different scheduling algorithms were examined, and
tho effect of using alternate p-ogram structures was explored. In the Hearsay II
experiment it was shown that, wiien a multiprocess program under development is
sufficiently instrumented, the STEPPS model and system can be used to help tune the

program's structure.

The use of the tools for predicting the performance of a multiprocessing program falls
between purely analytic models, twch fcs queueing theory or P«t"-nels, and system
simulations built in a general purpose simulation language. The STEPPS system is
presented as a new approach to designing multiprocessing programs.

■'

,

iH UNCLASSIFIED

ifCliNlTY CL ASSIFICATION Of T»"' CAOtf»*« " Fnt»nm

Design Tools for Evaluating

Multiprocessor Programs

Philip Howard Mason

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pa. 15213
July, 1976

Submitted to Carnegie-Mellon University in partial fulfillment
of the requiremsfits for the degree of Doctor of Philosophy.

This research was supported by the Defense Advanced Research Projects Agency of
the Office of the Secretary of Defense (F44620-73-C0074) and is monitored by the Air
Force Office of Scientific Research. • ,„,

I (e)

IftriliHfiHiti Ni.^jj.... . ^ __

Abstract

An approach to designing programs for irt.Dlementation in a multiple instruction stream-
multiple data stream processing environment is presented. A program is modeled as a
directed gr iph consifting of two types of nodes: processing nodes and linking nodes.
Communication among nodes in the mode! is represented by message tokens. Each
processing node is similar in form to a semi-Markov process. A simulation of the
operation af the model is nondetermirtistic, but is based on prescribed probabilistic
choice functions. A system, called STEPPS, has been built in which a model can be
described and evaluation tools can be used to manipulate and act upon a model to
predict performance of a program decomposition.

. The design approach is to describe a multiprocessing program in terms of the modeling
system. The model is examined to determine some analytic attributes of the model.
The analysis available determines (a) whether the model is well formed, (b) whether
the model contains deadlocks, (c) predictions of steady state properties of each
process. In addition, without much difficulty, analysis functions external to STEPHW

may be included as needed by a program designer.

Some analyses, that may be interesting, may be difficult to determine without resorting
to simulation. Therefore the STEPPS system includes a model simulator with data
collection facilities. The STEPPS data collection facilities include such measures as wait
times and queue lengths. As in the case of analysis functions, STEPPS allows the
inclusion of data collection facilities not originally provided by STEPPS.

As a system is designed, alternate models can be examined; and based on an individual
designer's choice of performance attributes, a model can be chosen on which to base
the construction of a multiprocessor program. As more Is learned about the reel
system parameters, the model can be tuned to more closely predict ultimate system
performance.

Several examples of communicating processes are modeled using STEPPS including
pipeline processes, probabilistic processes, P/V synchronization, and reader/writer
synchronization. Two experiments are presented as validation of the usefulness of the
STEPPS tools. In the Bliss/11 experiment, the implications of restricting the numbers
of available processors and using different scheduling algorithms were examined, and
the effect of using alternate program structures WM explored. In the Hearsay II
experiment it was shown that, when a multiprocess program under development Is
sufficiently instrumented, the STEPPS model and system can be used to help tune the
program's structure.

The use of the tools for predicting the performance of a multiprocessing program falls
between purely analytic models, such as queueing theory or Petri-nets, and system
simulations built in a general purpose simulation language. The STEPPS system Is
presented as a new approach to designing multiprocessing programs.

ü

iii

ACKNOWLEDGEMENT

1 sincerely thank my thesis committee who with »heir advice, guidance, and criticism of
this thesis helped me to maintain their high standards: Bill Wulf (chairman), Sam Fuller,
Charles Kriebel, Victor Lesser, and Mary Shaw. 1 am grateful for having been
associated with the Carnegie-Mellon Computer Science Department and I must
acknowledge the initial, and continuing, inspiration gleaned from Alan J. Perils, my first
computer science teacher, former Carnegie-Mellon department head and supervisor. In
addition, I am grateful for the interest, support, and assistance from my friends,
colleagues, family, and especially my parents.

Most of all, I thank my wife, Lee, for suffering through all the lonely nights (and days),
for helping me to rewrite many pages, for learning to use the computer to type this
thesis, for keeping me going, and for her understanding.

TABLE OF CONTENTS iv

TABLE OF CONTENTS

CHAPTER PAGE

I Problem Statement, History and Goals

I.A Introduction I"l

I.B Direction of this work 1-5

I.C Other work bearing on the problem 1-8

I.D The STEPPS System 1-15

I.E The STEPPS system and simulator 1-24

I.F Thesis contributions and outline of remainder
of thesis 1-29

II The STEPPS Model

II.A Modeling the behavior of a process IM

II.B Data flow and links H-3

II.C Notation and definitions 11-6

II.D STEPPS system capabilities 11-11

III The Use of the STEPPS Approach to Program Design

III.A Use of the STEPPS model MM

III.B Using STEPPS during system design: A
Bliss/11 compiler 111-12

II1.C Using STEPPS during system construction and
tuning: Hearsay II 111-28

IV Analysis of a STEPPS Model

IV.A Markov and semi-Markov processes . IV-1

IV.B Well-formed STEPPS models IV-6

IV.C Deadlock structures and situations IV-8

IV.D Reducing a STEPPS model IV-13

\

TABLE OF CONTENTS V

1V.E The recognition of deadlocks IV-29

V The STEPPS Simulator and STEPPS Interactive System

V.A Simulation objectives *'*

V.B Simulation operation and data collected V-3

V.C The implementatiion of the STEPPS system V-10

VI Summary

VI.A Designing programs for multiprocessor
computers "'"*

VLB Experiments and results VI-D

VI.C Future research and refinements to STEPPS VI-9

VLD Conclusions Vl-12

A STEPPS System Manual

A.l Introduction A"1

A.2 Model creation A"3

A.3 Model analysis and system commands A-8

A.4 Simulation commands A"^

A.5 Keyword commands A"'

B Using the STEPPS System

B.l Bliss/11 example protocol B"1

B.2 The STEPPS Hearsay II model B-3

C Validation of Simulation Results

Bibliography

 vii Index

FIGURES

FIGURE PACE

Figure 1-1 Possible relationships between two proceses, A
and B 1-5

Figure 1-2 A marked graph 1-10

Figure 1-3 A finite state atomaton 1-10

Figure 1-4 A Petri net that is neither a marked graph nor a
finite state atomaton I-11

Figure 1-5 UCLA model nodes 1-13

Figure 1-6 Pipeline 1-17

Figure 1-7 Registrar's data retrieval system 1-20

Figure 1-8 Process ALPHA 1-21

Figure 1-9 Mapping between Petri nets and STEPPS model 1-23

Figure I-10 Mapping of UCLA model to STEPPS 1-24

Figure I-U Incompatible loop 1-27

Figure i-12 Incompatible non-loop 1-27

Figure II-1 Process and link graphical notation II-8

Figure III-l Fork and join processes III-2

Figure I1I-2 Subroutine process 111-4

Figure III-3 Concurrent processing subroutine call III-5

Figure III-4 Poisson arrival process III-6

Figure III-5 General service time process III-7

Figure III-6 Pipeline of processes III-8

Figure III-7 Lock/Unlock synchronization Ill-10

Figure III-8 Reader/Writer synchronization III-l 1

Figure III-9 Bliss/11 phase structure 111-13

 _ __._.._

FIGURES

Figure 111-10

Figure III-U

Figure 111-12

Figure 111-13

Figure 111-14

Figure 111-15

Figure 111-16

Figure 111-17

Figure 111-18

Figure 111-19

Figure 111-20

Figure 111-21

Figure 111-22

Figure 111-23

Figure 111-24

Figure 111-25

Figure 111-26

Figure 111-27

Figure 111-28

Figure 111-29

Figure 111-30

Figure 111-31

Figure 111-32

Figure 111-33

vii

Bliss/11 measured data 111-17

STEPPS Bliss/11 model commands 111-17

Bliss/11 graph model 111-18

Bliss/11 simulation FIFO table 111-18

Bliss/11 simulation LINK table 111-19

Bliss/11 simulation RANDOM table 111-19

Bliss/11 percentage maximum throughput 111-20

Graph of measured throughput 111-21

Bliss/11 simulation FIFO queue lengths 111-22

Bliss/11 simulation LINK queue lengths 111-23

Bliss/11 simulation RANDOM queue lengths 111-23

Table of results of multicopy Bliss/11 phase
models . 111-24

Multi-copy Bliss/11 phase model Thru Rate graph . . . 111-25

Multi-copy Bliss/11 phase model percentage Max
Thru Rate graph 111-26

LEX decomposition results 111-27

Simplified HSII system organization 111-32

Description of precondition process 111-33

STEPPS precondition model 111-33

Knowledge Source process description 111-34

STEEPS Knowledge Source model 111-35

PCSELECTOR process 111-35

Set of identical Knowledge Sources 111-36

Hearsay II locking structure matrix 111-40

Hearsay II representative results 111-42

Figure IV-1 Markov processes IV-3

Figure IV-2 Improper initial condition IV-10

Figure IV-3 Loop with immediate-recurfent states IV-U

Figure IV-4 Incompatible sequence IV-12

Figure IV-5 Link split paths IV-13

Figure IV-6 Process split paths IV-13

Figure IV-7 Process combinations IV-18

Figure IV-8 Adjacent ports of a process IV-21

Figure IV-9 Ports attached to SOURCE/SINKS IV-23

Figure IV-10 Combining processes that are in-parallel 1V-25

Figure IV-U An irreducible graph IV-29

Figure V-l A ring of processes V-2

Fißure C-l Bliss/11 FIFO 6 processors evaluation data C-2

1-1

Chapter I

Problem Statement, History and Goals

I.A. Introduction

This research develops both a methodology for enhancing the design of

programs to be composed of concurrently executable subparts and a set of tools to

support that methodology. The execution environment which we shall be concerned

with consists of several processing units operating under the control of separate

instruction streams. Intuitively, when parts of a program are processed in such an

environment, the real time required to execute the program should decrease . For

this reason, as uell as others, much current research effort addresses program

structure for jus. such a multiprocessing envirsnment. This thesis addresses the

problem of decomposing programs for concurrent execution in such a way that the

decompositions are efficient with respect to certain specifiable criteria. The approach

is to provide a set of tools with which a system designer can manipulate and analyze a

program model created to predict the performance of a system designed for a multiple

asynchronous instruction stream environment. The tools are applicable to both the

early design of a program and later tuning of a program under construction.

^"Real time" is the time elapsed between tho start of computation and the time the
final result is available. It is different from the total processing time since operations
may be performed concurrently.

*This does not always occur. Graham [Graham 72] has shown that adding more
processors can increase real time due to scheduling anomalies.

LA Introduction ^

There ore several reasons why many researchers are considering

multiprocessing and problem restructuring in favor of merely building fester computer

hardware without explicit concurrency. First, certain problem« overwhelm current end

projected technology when programmed for single instruction stream computers. An

example is the problem of weather forecasting for any single place on the earth. At

present, this problem can not b^ solved with enough lead time to make the forecast

useful. Another large problem is fast-response scheduling, cost accounting, and

resource management for large corporations. In this problem the mathematical

computations are not necessarily as complex as those for weather forecasting, but the

amount of data processing required can be extremely large and, as for weather

prediction, there is a time constraint on the answers. For each of these problems, a

solution might be attainable in a reasonable perioo of time if some of the computations

could be distributed and executed in parallel. Among the unknown factors are how the

problems should be decomposed for distributed processing and what communication

constraints and processing attributes elicit favorable computational attributes (such as

real time speed and low cost).

There may also be economic incentives to implement a program in a

multiprocessing environment. For example, it may be less expensive to Implement a

speech understanding system on a set of minicomputers than on one fast and relatively

complex uniprocessing computer. The price benefits may occur because of

1. the use of so called off-the-thelf equipment making total processing
power cheaper than large uniprocessing machines, and

2. economies of scale in manufacturing.

Perhaps the most compelling reason (possibly a consequence of the first two)

for wanting to decompose programs for multiprocessing environments is that such

I.A Introduction 1-3

environments are now available and it is important to use the") properly. C.mmp [Wulf

72b], L1BN Pluribus IMP [Heart 73], U.a Burroughs D825 [Anderson 62], UC Berkeley's

Prime [Quatse 72], and UC Irvine's DCS [Färber 75] all have some multiprocessing

capabilities. Additionally Clark's macronodules [Clark 72], Bell's register transfer

modules (DEC PDP-16) [Bell 72] and the similarly oriented projects of Fuller end

Siewiorek [Fuller 73], and others offer multiprocessing on a very low level.

There are, at present, no guidelines for decomposing a problem for

multiprocessing execution [Newell 75]. A number of questions related to tht discovery

of such guidelines have bsen investigated. These include.

1. Can a problem be decomposed for solution in a multiprocessing
environment? [Karp 66, Gosden 66, Miranker 71, Dennis 71, Anderson 65,
Ros'infeld 69]

2. How can the algorithmic structure of a multiprocessing task be
represented? [Adams 70, Baer 70, Bredt 70, Dennis 71, Dennis 73a, 73b,
Karp 69, Lesser 72, Miller 73, Noe 73]

3. Will the same results always occur, namely will a multiprocessing system
be deterministic? Can a multiprocessing system be proven correct? Are
there potential deadlocks and unattainable states? This is somewhat
analogous to discovering infinite loops and impossible conditions in ■
sequential program. [Karp 69, Keller 73a, 73b, Riddle 72]

4. When are two computations the same? [Karp 69, Keller 73a, 73b]

5. What measures are interesting about the computation? Some may be:
speed, redundancy, (inefficiency, resource utilization, and economies of
the components. [Browne 73, Lehman 66]

6. How can the system be scheduled when there are scarce resources?
[Adam 72, Graham 72]

7. How can bottlenecks be identified and their effects lessened or ciimmated?
[Courtois 72, Dijkstra 74, Rice 73]

8. What are the effects of restructuring the communications among the
cooperating processes? [Balzer 71, Horning 73]

9. What style of decomposition and machine structure would i st suit ..
particular programming system (eg. Illiac IV, STARAN, STAR-100, ASC,
Cmmp, etc.)? [Flynn 66]

LA Introduction 1-3

environments are now available and It is important to use them properly. C.mmp [Wulf

72b], BBN Pluribus IMP [Heart 73], the Burroughs D825 [Anderson 62], UC Berkeley's

Prime [Quatse 72], and UC Irvine's DCS [Färber 75] all have some multiprocessing

capabilities. Additionally Clark's macromodules [Clark 72], Bell's register transfer

modules (DEC PDP-16) [Bell 72] and the similirly oriented projects of Fuller end

Siewiorek [Fuller 73], and others offer multiprocessing on a very low level.

There are, at present, no guidulinis for decomposing a problem for

multiprocessing execution [Newell 75]. A number of questions related to the discovery

of such guidelines have been investigated These include:

1. Can a problem be decomposed for solution in ■ multiprocessirj
environment? [Karn 66, Gosden 66, Miranker 71, Dennis 71, Anderson 65,
Rosenfeld 69]

2. How can the algorithmic structure of a multiprocessing task be
represented? [Adams 70, Baer 70, Bredt 70, Dennis 71, Dennis 73a, 73b,
Karp 69, Lesser 72, Miller 73, Noe 73]

3. Will ihe same results always occur, namely will a multiprocessing system
be deterministic? Can a multiprocessing system be proven correct? Are
there potential deadlocks and unattainable states? This is somewhat
analogous to discovering infinite loops and impossible conditions in a
sequential program. [Karp 69, Keller 73a, 73b, Riddle 72]

4. When are two computations the same? [Karp 69, Keller 73a, 73b]

5. What mejsures are interesting about the computation? Somn may be:
speed, redundancy, (inefficiency, resource utilization, and economies of
the components. [Browne 73, Lehman 66]

6. How can the system be scheduled when there are scarce resources?
[Adam 72, Graham 72]

\

7. How can oottlenecks be identified and their effects lessened or eliminated?
[Courtois 72, Dijkstra 74, Rice 73]

8. What are the ef'ects of restructuring the communications among the
cooperating processes? [Balzer 71, Horning 73]

9. What style of decomposition and machine structure would best suit a
particular programming system (eg. Illiac IV, STARAN, STAR-100, ASC,
Cmmp, etc.)? [Flynn 66]

I.A Introduction 1-4

The last question points out that there are several styles of multiprocessing.

Flynn [Flynn 66] described processing organization in four ways:

single instruction stream - single data stream(SISD),

single instruction stream - multiple data streams (SIMD),

multiple instruction streams - single data stream (MI5D), and *

multiple instruction streams - multiple data streams (M1MD).

These computing styles may be used to describe an entire computing

environment and affect a problem's decomposition and algorithms. However those

systems that do not allow a programmer to program explicitly for multiple streams of

data or instructions will be considered as single stream machines. For example, any

multiprogramming machine performs some operations concurrently (e.g. I/O), but a

programmer is usually uruble to control this concurrency. In an array or associative

processor a control unit specifies which operation is performed simultaneously on

many data items simultaneously -- these are SIMD machines. The current pipeline

machines (CDC STAR-100, TI ASC) perform parts of single operations on several pieces

of data. The programmer has no control over which operations are performed

concurrently, so these are also single instruction stream machines . Even in multiple

instruction stream processing there can still be a spectrum of communication schemes.

Networks of computers and multiprocessing computers with common memory are are

defined to be multiple instruction stream machines only when a programmer can

specify concurrent operations and these operations can be performed concurrently.

A multiple instruction stream program is defined to be a program in which two

subparts of the program can be specified to execute concurrently. Since these are

A pipeline machine has multiple data streams as far as a programmer is concerned,
but actually the stream of data comes into the pipe sequentially.

I.A Introduction
1-5

•ubpart. of . tot.1 th.r. is some rd.tionship between them. The relationship must be

in the form of some common data communication and/or sharinß. If the subparta are

nemed A and B then at least one of the following must occur: data progress from A to

B. from B to A. from some C to A and B. or from A and B to some C. (Figure 1-1 shows

the possible relationships between two processes in a direct graph notation) When

deta progress from one program to another it means that the second program usec

some resuits of the first in its computations. Of course, other processing may

manipulate the data between the processing of two subprograms and additional data

may be provided to the second program from sources other than the first program

(and the first program can provide data to other programs).

Figure I-1. Possible relationships between two processes, A and B

If A and B are related, one of these relationships must hold; otherwise A and B

' would be unrelated and thus not subparts of the same program. In the first and

second cases one subprogram sends data to the other and continues to process after

sending data to the second subprogram. In the third case, data can progress to both A

end B from a common source and all three can be processed at the same time. In the

lest case, A and B can be processed simultaneously and each is able to send data to

the same third process, C.

. -..•

1-6
I.B Direction of this work

IB. Direction of this work

At present there are no proven guidelines on how to structure a problem for

implementation in a multiple-instruction-stream multiprocessinp environment. Rather

than address Jhe guidelines problem directly, this work presents a design environment,

a set of evaluation tools, and a design approach whereby a system designer can

explore attributes of alternative program decompositions. A major premise for this

research !« that the communication pattern among concurrent processes is critical to a

system's performance. The goal is to identify issues end to make predictions which

will provide some practical information to the system designer at an early stage and

also during later program tuning. This research has been directed towards solving a

more specific set of problems than those presented in the previous list, namely:

1. How can interactions among the concurrent computations be modeled?

2 Are the interactions safe, i.e. deadlock free? For example, can one show
that a program never arrives at a state in which one process is trying to
communicate with a second process while the second is waiting to send a
communication to the first process?

3. When the structure is not deadlock free, whet is the probability of a

deadlock?

4. Where will most of the process and communication activity occur?

5 Where »tlenecks occur, and how may they be relieved? For
examp introduction of buffers or additional processes help?

6 Are ther« working sets of processes? If certain subsets of processes
tend to be active at different times then fewer processors will be
required for a program (and consequently less parallelism can be

attained).

7. What are the effects of restricting the number of processors? What are
the effects of alternative scheduling algorithms?

These questions were chosen because they may present hidden problems to

 ._

IB Direction of this worK

the system designer. Inexpensive and fast approximate answers to these questions

should be useful when a program is being designed and also when It is being tuned to

Improve a program's performance.

Currently there are no generally accepted languages or graphical techniques

for representing or modeling a multiprocessing computation and the communication

interactions among processes. Thus problems that might be prevented by a clear

elgorithmic description technique may still occur. However a system designer has some

understanding of the relationships among the parts of his system. He can implement

the subparts in many different languages, but it is the interfaces between the subparts

that are usually not we'! described. Parnas [Parnas 71] has suggested communication

schema to be used while creating communicating modules, but has not described how

' to represent the communications in an entire system. This lacK of global view may

prevent the recognition of potential problems. This, then, illustrates the importance of

discovering a method for the automatic detection of deadlocked structures and

potential deadlocked structures. If the system designer can easily identify in advance

where he may have made such an error, then he is spared the task of finding the

problem later. It would be preferable to prevent such problems, since many of the

criteria for preventing deadlocks are known; however, in complex systems it is

increasingly difficult to be aware of all potential deadlock conditions.

If the system designer is able to estimate which particular subparts of his

system will contain the largest amount of activity, then these suhparts will be the most

appropriate places to expend effort to improve performance.

The ability to compare the potential performance of alternate systems easily is

extremely important. Almost all disciplines concerned with the creation of large

I.C Other worK bearing on the problem

interacting subsystems use the technique of moiling the behavior of the whole

system and extrapolating the performance of this model to deduce properties of the

large system. Examples of this technique range from the use of wind tunnels and

analog simulation of fluid flow to discrete computer simulations of supermarket check-

out counters. A tool for the prediction of computer system decomposition performance

should be just as useful. An important aspect of a design system is how easily the

designer can alter the attributes of his system and determine the effects of those

changes.

We feel that important assets of design tools are that they:

1. be easy to use,

2. provide results quickly,

3. be interactive (when using a computer system), and

4. make it easy to perform design iterations.

I.C. Other work bearing on the problem

Several kinds of tools are available to a system designer. These tools include

graph models, queueing theory models, simulation languages, programming languages

and theories of design of complex systems. Each of these tools can be useful at some

time during the design and construction of a multiprocessing program. Graph models

are usually used to represent multiprocessing computations and for analysis of control

/low within a program. Queueing theory is used to predict and study performance of

simplified models of complex processes. Simulation is an approach to modeling more

complex systems to obtain similar performance predictions. Programming languages

Ifc^ '■•■^^.<^*^:^^.. .A.. ..^.to.WA^^.—

I.C Other work bearing on the problem 1-9

•re tools for explicitly representing multiprocess algorithms. They also may contain

primitive operators that can facilitate proofs of properties of programs. Design

theories, such as that of Parnas, provide techniques that facilitate construction of

complex systems and their understanding. No one tool is comprehensive enough to use

as a quickly obtained predictor of the performance of a multiprocess program.

With sufficient instrumentation the behavior of a multiprocess program can be

measured. These data can be used in several ways to predict behavior changes when

some system parameters and structures are modified. Again queueing theory and

simulation techniques are useful tools for these predictions. As before neither method

necessarily provides fast predictions of the sensitivity of performance to changes in

program parameter and structure.

The following are brief presentations of some tools thst bear a relationship to

those that will be presented later. It will be seen that the purely analytic techniques

are often too restrictive on assumptions, not useful for overall program design, and of

limited applicability due to computational complexity. The simulation techniques require

too much effort both to construct a simulation and to modify it to achieve results

concerning alternate program decompositions.

I.C.I. Petri nets

After the original formulation of Petri nets [Petri 62] several MIT researchers

[Dennis 70, Holt 70, Paterson 70, Rodriguez 67] refined forms of the original model as

useful tools for studying concurrent processes. A Petri net looks like a directed graph

in which marks or tokens are placed on some of the arcs. (Only connected graphs are

of interest.) These tokens move about the graph to represent flow of control. When

l.v-» V/tllwi «TVI ry k^w* " JS

toKens are present on all of the input arcs to a node, that node is able to "fire." After

a node fires, one toKen is removed from each input nr« and a token is placed on each

output arc of that node. In fact, a Petri net is not a directed graph [Berge 62]

because it is possible for one ire to port to or come from more than one node. A

restricted Petri net called a marked graph [Holt 70] permits arc Initiation and

termination only at single nodes (not necessarily the same). Multiple arcs can still be

connected to each node. In contrast, a restricted Petri net becomas a finite state

automaton (state transition diagram [Holt 70]) by only permiting one arc to enter each

node and one arc to ieava each node. (Arcs can have muitiplr starting points and

terminal points.) In Figures 1-2, 1-3, and 1-4 the nodes are represented by straight

lines and the arcs are arrows with a circle that can contain the tokens (represented by

dots).

r*G>- x> o
<H,

O

■o—1

Oi

Figure 1-2. A Marked graph

"TT

Figure 1-3. A finite state atomaton.

 , . . .

I.C Other work bearing on the problem Ml

ten o

Figure 1-4. A Petri net that Is neither a marked graph nor a finite state
atomaton.

Marked graphs are the only form of Petri nets that have been used to study

concurrent processes. The general Petri net can be too complex and the state

transition diagram can not be used to model concurrent processing. Marked graphs

are used by modeling the potential flow of control in a system and then analyzing

possible markings in order to make predictions about future markings. Issues

investigated, for a particular inital marking, include:

1. Determine whether nodes will eventually activate (fire). In Petri net
terminology the question is whether a node is "safe" [Holt 70]. If all
nodes are safe the net is "safe," i.e. all nodes can be activated.

2. Count the number of activations of a node. The important counts are 0, n,
and infinity.

3. Determine whether the initial marking can lead to another particular
marking.

4 Identify nodes that can fire concurrently.

There are several difficulties in using Petri nets. One is that interesting

examples require a large number of nodes [Dennis 70, Merlin 75]. There are so many

nodes that it is difficult to do any analysis. In addition, none of the analysis is

mechanical. Another difficulty is that control flow in the graphs is completely

determined with no accounting for rates of processing at each node.

'.C.2. Th« UCLA mod«!

The original goal of the UCLA model was to "represent programs to be run on

variable structure computers" [Baer 73, Estrin 63]. Thus Its purpose was to help

describe concurrent comput-lions rather than to study the performance of algorithms.

However some extensions of, and associated restrictions on, the original model allow

for performance predictions in some restricted cases to determine the termination of

loops, the determinacy of representations [Regis 72], and the reduction of graphical

forms [Bovet 69]. In addition the UCLA model has been used to study the automatic

conversion of r'ORTRAN-like programs to a parallel computation form.

The basic form of the model is a directed binary graph. Most studies using this

model use an acyclic structure. The graph shows processing dependencies and, as

long as an acyclic model is used, potentially concurrent operations can b- easily

identified. Each node may have at most two entry arcs and also at most two exit a. cf.

The rules for firing a node are defined as part of the node. The node's firing rule

depends on the enabling of the input arcs and the node's result rule cause some of its

output arcs to be enabled. A node will not fire if any of its output arcs are already

enabled. Once a node fires the input arcs causing that node to fire are disabled. (See

Figure 1-5)

In the UCLA model, branching and merging control flow are modeled with EOR

type nodes. Concurrency is modeled by the use of AND type nodes.

Further restrictions are placed on the form of the UCLA graph model. There

must be a unique initial vertex (only output arcs) and a unique terminal vertex (only

input arcs). Another restriction is that all subgraphs must be AND type. This means

that if a choice is made at an EOR output node then it must still be possible for the

 ._. . .

I>W wiiiv*

AND input node

AND input type fires only if both Input arcs have been enabled.

EOR input node

EOR input type fires only if exactly one of the input arcs has been enabled,

AND output node

AND output type enables both of the node's output arcs after the node has fired.

EOR output node

EOR output type enables exactly one of the node's output arcs after a node has fired
(which one is undetermined).

Figure 1-5. UCLA Model Nodes.

terminal node to fire. In addition it should not be possible for both arcs of an EOR

input node to be enabled at once. The question of determinacy of a graph is

subsumed by the question of legal graphs. Legal graphs are those that start at the

Initial node and are guaranteed to terminate at the terminal node. When loops are

pUH'^iui!,, ,rr-?™—! T..-™ -^.-^ _- ■P7-w^^^^lnppViIw^|p|Vi^nip|tnnlV|p^^ ^-^

I.C Other work bearing on the problem 1-14

allowed, any loop must be able to terminate. Most who have used the model have

assumed acyclic structures in order to guarantee loop termination (naturally, no loops).

The analytic technique used to ignore loops is to expand all loops by some finite

repetition. Thti repetition factor is determined by a probabilistic argument [Martin 67].

The question of mean path length in a directed acyclic binary graph has been

studied at UCLA. Probabilities are assigned to each arc and computation times are

assigned to each node. These are used to determine the probability of traversing

paths through a legal graph and to estimate the mean path time of a graph [Martin 69].

One may also determine the maximum number of processors required by the graph

[Baer 69] under the same restrictions.

The difficulties with using the UCLA model also involve the need for a large

m-mber of nodes to represent interesting structures. This is particularly true since

aach node has at most two input arcs znd at most two output arcs. Another problem is

that most results have been dependent on acyclic models. Thus the mechanical

techniques for proving legal graphs, etc. are only applicable to a restricted set of

programs representable by the model.

I.C.3. An algebraic model of interprocess communication

In his dissertation [Riddle 72], Riddle presented a methodology for modeling

and analyzing supervisory systems, but the work can be applied to the problem of

analyzing any complex asynchronous system. He found the same difficulties with Petri

nets and other models as those reported in earlier sections of this chapter.

Riddle presented an explicit program-like description of the operation of a

process. This description was only concerned with the interprocess communication

itwrrh1ii#i^^^'^v^^':^',^t':-'-^"J'-1-"^ ^f:h'Jk^ f.^^.lir.. i . .^...... ,.... _

r1" ■■PPIMIWPIWMI ■, i>^"»>n ■■"TM"" .i!" ill, IP!,!, IM.III mil u* 11 i i p mm>m«. ii,u*w**-r-

I.C Other work bearing on the problem I_15

relationships of each process. However the description was close enough to being a

program that each process required information concerning the type of interprocess

messages. Therefore the descriptions of processes were themselves fairly complex.

The model was also based on a directed graph structure representing

interprocess communication. A graph consisted of two types of nodes, process nodes

and link nodes. The link nodes had properties that could require a certain amount of

computation associated with them, e.g. queueing disciplines.

One of the goals of Riddle's research was the development of an algebra to

descr ibe interprocess communication. Algebraic expressions could be used to describe

possible communication paths in a model. By using the graphical structure, the

program-like descriptions, and the algebraic expressions, theorems were developed to

analyze the behavior of a modeled syst« m. The creation of all algebraic expressions is

performed by the inspection of a graph. The proof of theorems concerning the

behavior of a system, as described by the algebra, is not a mechanical process. Riddle

did provide a set of theorems that can be used in a proof.

The examples that Riddle studied were based on communication paths of a

given system. He determined what termination and deadlock meant for that system and

was able to derive proofs showing that the system terminated and contained no

deadlocks. The questions he posed were specific to the system being modeled and

required the creation of algebraic expressions vor each question concerning system

behavior. These algebraic expressions were not necessarily easy to create and the

proofs of theorems were not very easy to construct.

The tools that Riddle's research provides may be used for the design of

multiprocessing programs. The drawbacks to his approach are the difficulty and effort

 . . . , . .--.*— - ■

r . - -

ID The STEPPS System I-i6

required to create the algebraic expressions needed to represent a model, and the

expressions representing communication within a model. The expression proof process

is also fairly tedious.

I.D. The STEPPS System

All of the models discussed in the previous section are tools for the analysis of

multiprocess programs. A common drawback of each model is that results must be

obtained through detailed, non-mechanical analysis. A second drawback is that none

contains the processing rates of the various processes of a multiprocess program as

part of the model. The speed and ease of obtaining results and the ability to include

expected timing of attributes of a program can be especially useful when making early

design decisions concerning the structure of a program.

The design methodology presented in this thesis is based on an inU ractive

system utilizing a particular model of multiple instruction stream problem

decomposition. The system and the model are called STEPPS (Some Tools for

Evaluating Parallel Processing Systems). The methodology of designing a programming

system has become an interesting and important question in the last few years [Brinch

Hansen 74, Dahl 72, Mills 71, Parnas 72, Parnas 75, Weinberg 71]. The author

subscribes to the "top down" approach to system design [S;mon 62]. Thus a "natural"

approach to building a system that will contain potentially concurrently executing

subparts is to decompose a system into functionally independent subparts and

describe the communication structure among the subparts before explicitly defining the

operation of the subparts. For example, when designing a compiler one might say that

•«wsr -^wrK^wsmvr -

ID The STEPPS System 1-17

the LEXICAL-ANALYSER and the SYNTAX-ANALYSER could process in a pipeline manner

with the LEXICAL-ANALYSER sending results to the SYNTAX-ANALYSER. A convenient

notation is a directed graph notation with the restriction that the connections between

two processes must go through an explicitly designated (and named) connecting LINK

(see Figure 1-6). At this stage of decomposition only potential communication is

important and data dependent communication (i.e. decisions based upon data) is not

considered at all.

LEXICAL-ANALYSER s. SYNTAX ANALYSER

LI

Figure 1-6. Pipeline.

Each of the previously discussed models considers interprocess communication

patterns to be impcrtant for understanding the performance of multiprocess programs.

Both the Petri-net and the UCLM model represent interprocess communication by

means of the movement of untyped toKens. Queueing models of multiple processes

a'^o use typeiess tokens to represent flow of control. Riddle was able to simplify

iome interprocess connecticns in his model schema and to enhance analysis by

introducing type identification for tokens.

The STEPPS model uses typeiess tokens to represent flow among processes.

The study of interprocess communication suggesfs several measures of multiprocess

performance such as queue lengths, deadlocking, and potential concurrency. A

difference between this model and the earlier models is that a STEPPS process must

be ready for a message before "firing" (due to the arrival of a message) instead of Its

f ^r^^.^1"^ ..

I.D The STEPPS System 1-18

firing being dependent on logical relations of the messages available on paths to it.

I.O.I. The STEPPS model: an informal description

The STEPPS model includes both probabilistic and timing expectations for

describing individual process activity. Whereas a standard probabilistic model, i.e.

Poisson; treats processes as operating on messages, the STEPPS model process

includes a natural relationship between a process' input/output activities. In addition,

the introduction of time parameters allows for better estimation of a program's

operational concurrency instead of potential concurrency. The model represents

multiprocessing at the message communication level and is not intended to represent

other multiprocessing problems such as memory interference and specific programming

techniques.

Concurrency can be modeled by having a single process send data to more

than one other process. Data streams are explicitly merged when a process receives

data from more than one other process. In the descriptions of processes, more than

one arrow may leave a process node or enter a process node. If a process node is

able to receive data from any of several processes, but the receiving process does not

care which process sent the data, several arrows enter a linKnode and only one leaves

it. If one of several processes may operate on data produced by another process this

is represented by more than one arrow emanating from a linKnoo» and going to the

separate process nodes.

+In Riddle's model a process must be explicitly programmed to accept a message.

k^.Hftü

I.D The STEPPS System I-19

Example I.D-1

Consider the problem of building an online university registration
system. This system would handle all of the scheduling and student
record Keeping for a university. One might decompose the problem Into
the graph of Figure 1-7. Students* requests are handled either by a
Schedule Requester or Schedule Updater, each of which processes the
request and sends data to a Scheduler. The Scheduler sends data to
the Data Base and then sends results to a Schedule Output process.
Requests to the system may also come from the Registrar. These
requests may also go to the Data Base and on return data is sent to the
Registrar Output by She Transcript request process. There also may be
requests for grades. The data base may access data in either the
Current Semester or its Archives.

All data travels through paths between nodes (the LINKS and the

PROCESSES) in units called messages and all queueing of messages occurs at each

LINK. Requests for data from a LINK are handled in a FIFO (First In, First Out) manner

by the LINK. The next step is to describe the action of a PROCESS node. Since only

the communication paths are important at this point of design, only the message

handling properties of a process are described. The source of data is not identifiable,

to a process neither Knows which process sent the data to the LINK attached to any of

its "input ports" nor does it Know which processes are attached to the LINK that is

attached to any of its "output ports." The reason for this restriction is that messages

contain no information such as sender or receiver identity. This will be shown not to

cause difficulty in using the model.

The execution sequence of a process is:

1. perform an input or output operation,

2. choose which input or output port will be active next,

3. compute for some time, and

4. repeat 1 to 4.

A
♦• -OP"*-

ID The STEPPS System 1-20

Student
Requests

JL

Schedule
Request

Schedule
Update

Scheduler

Schedule
Output

±2LJL

Data

Base

-iL

Current
Semester

Registrar
Requests

4L

Transcript
Request

1
Archives

X

±JiL

Grade
Request

Registrar
Output

Figure 1-7. Registrar's Data Retrieval System

Each process is a uniprocess and can only perform one input or output

operation at a time.

The method of describing how each process operates in the STEPPS model

requires that each port be named. For convenience, the notation used is to assign a

b ■

u .■ wm, ii •"'. vww mi"■> —-^"— - I III IMl!ll|l|lll[IJiU|llll .««Wlf!

1.0 The STEPPS System
1-21

type o. ei.her T for lops,, .r V .or output .»d . number. A treneltlon metrlK for

.Kh prooe» detlnes the probabitlly o. .uccdin, the «tivetion o. one port with the

„tivtion o. «Other port. The in.orm.1 de.tnitio ./ . P—" '•"" '« »* m,»,

recent port .CtlvetlPh (in this the. .« correspond to pert ectlv.tions). The

preces. remelns In the «hue it is computin, end enter. . new .let. et the

„.„ ecttvetlon p. . port. In most context, the term. -.Ute- .nd "porf ere u.ed

interchangeably.

Exampl« I.D-2

ALPHA is a process with two input ports, 10 and 12, and »wo output
po's. 0 and' 02. 10 may transfer to state 01 or 02. 12 may n se
to state 01 or 02. 01 may only transfer to state »0- 02 ^^ ^J'
only to state 12. The graph and transition matrix for this process is

shown in Figure 1-8.

Graph notation

Transition matrix (without timing)

ALPHA 10 12 01 02
10 0 0 a 1-a
12 0 0 b 1-b

01 I 0 0 0
02 0 1 0 0

Figure 1-8. Process ALPHA

The trensition matrix m.k.s it possible to describe the splitlln, »I processing,

the mergln, o. processing, end the choice o. .Iternete computetipn p.th.. In Exempt.

I.D-2, after an input from port 10, process
ALPHA can enter either state 01 or 02 (with

 "-•"■-'-•■■"■ r— - .11. ii ■«■ '-PfWHIWi.-

1-22
l.D The STEPPS System

probability of V to 01 and "1 - ." to 02). State 01 always enters state 10 .s the

next state.

Other features of a STEPPS model that can be specified are:

1. the initial state of each process,

2. the number of messages that a port may receive or send before the

process changes state,

3. the amount of computation time, defined for ^J'™*™'*** P™0"
computes before a transition takes place (this is fixed, but random
variable computation times can be approximated),

4 the amount of computation time taken by a LINK to accept or send a
message, or to restart when it is not already handling commumcat.on of

messages, and

5. the queue si« limits for each link and the initial number of messages in

each link.

The model that has just been described subsumes both the Petri net and the

UCLA model. The links and nodes of Petri net and STEPPS models are very similar!

each is equivalent to the corresponding STEPPS model shown in Figure 1-9. Figure I-

10 also shows the relationships between the UCLA model and the STEPPS mode!.

The STEPPS model allows for a more general specification of data flow than the

earlier models since it is possible to describe the probabilities that particular data

path, may be taken. When a message is accepted by a process it is easy to specify

which data paths are more likely. As further information about the system being

designed is learned or when the effects of alternate data path specification are taken

into account, probabilities are altered by the system designers to fit the new

structure.

■PfptrsT"^ Jiiwiij-1»» 7-

ID The STEPPS System 1-23

Pttrl STEPPS

The input port accepts N messages before changing state to an output port; the
transition between the output ports occurs in a sequence; and the last output state
transfers to the input port.

Petrl STEPPS

The input state accepts only 1 message and the transition to each output state is
equally likely. Each output state transfers to the input state. The link may be able to
hold more than one message.

Figure 1-9. Mapping Between Petri nets and STEPPS model.

 _... I L.

PHI- .N Mil IWfllillllllll II Win I 1 "^ ■ I, LP^PPPIP^P^^^PV^P *^**^mH^*mm^*m

ID The STEPPS System 1-24

UCLA STEPPS

The input state accepts 2 messages before transferring to an output state.

UCLA STEPPS

LA.
Ü

The link has a limit of one message, so only one message can get to the process. The
process input port accepts 1 message before transferring to an output state.

UCLA STEPPS

The transition matrix sequences through the two output ports.

UCLA STEPPS

The transition matrix shows an equal likelihood of transferring to each output port
from the input ports. After an output the process will perform an input.

Figure 1-10. Mapping of UCLA model to STEPPS.

_j

jm*"*^mmm^mm • ' ' 'mw |[|lll^ -im m\niMm*mmt'mii iimivrrymnmt

I.E The STEPPS system «nd simulator 1-25

I.E. The STEPPS system and simulator

Once a proposed multiprocessing program has been modeled, the model can be

implemented in the STEPPS interactive system in order to evaluate the particular

decomposition. The data entry language for STEPPS has been designed for

conciseness. A linear description of a directed graph and the associated transition

matrices may require the entry of a fairly large amount of data. To facilitate the entry

of these ciata, it is possible to recall previously stored data. The system designer can

manipulate his model in any way he chooses, e. g. remove nodes, change parameter

specifications, or display parts or all of his model. It is always possible to save the

description of the model or parts of it externally in a form that may be recalled by the

STEPPS system or examined on hardcopy.

Several useful tools are available to help the system designer evaluate the

structure of his decomposition. As a basic step, a STEPPS model can be certified as

being a wall-formed model. A STEPPS model is well-formed when:

1. For each process, every state is attainable from any other state (If a
process has N states, and X and Y are any two of them (possibly the
same), the probability of starting in state X and entering state Y in N or
fewer transitions is greater than zero. This restriction is discussed in
later chapters.); and

2. All ports of each process are attached to links;

3. All links are attached to both input and output ports;

4. The graph is connected. (When the directions of paths are ignored then
there exists a path between every pair of nodes.)

At some point it should be possible to simulate the execution of the modeled

program; thus the STEPPS system contains a model simulator. However, there remain

problems which can prevent a successful simulation of a program structure. One

UPWPHHWWWi tiililflllfi!imim!ii*i&**i^ — 1

IE The STEPPS system and simulator 1-26

problem is that the Initial state of the processes and the Initial message capacities of

the links might be incompatible. This would cause a simulation to halt almost

Immediately. Another problem is one of possible communication deadlocks. These

problems are discussed in Chapter IV.

I.E.1. Deadlocks

A process may deadlock in either of two situations:

1. no messages will ever be available at the link attached to an active Input

port, or

2. the capacity of the link attached to an active output port has been
reached, and no messages will * >r be able to leave the link.

Deadlocks may occur when a process can depend on itself improperly. They

may also occur when a set of processes are incompatible for reasons other than data

loops.

Example I.E-I

Figure Ml shows process A waiting for data from B while B is waiting
for data from A. If the initial state of A Is changed to be 01 then the
process has no deadlocks. If an additional change is made to A so that
state 01 or II is activated more than once and B 's not changed, then
this is again unsafe because a link will eventually overflow or never
have enough data.

Example I.E-2

Figure 1-12 shows a non-loop siructure where there will be a deadlock
as soon as the LI queue limit is reached.

None of the structures presented in Examples I.E-1 and I.E-2 showed problems

that can occur when a process has a choice of successive states. There are other

I.E The STEPPS system and simulator 1-27

II«
01

B
II*
01

01

II

11 01
0 1
1 0

11 01
0 i
1 0

LI

L2

TT

01
B

Figure Ml. Incompatible loop.

LI

A 01

02
—4-
—H— —>

11

12
B

A 31 02

L2

01[2>
02

B

0 1
1 0

11 12
U*
I2[2]

() 1
1 0

Figure 1-12. Incompatible non-loop.

deadlock producing structures. For example a process may be set up to produce

either N or M messages and the safety of this structure must be recognizable.

''"The asterisk in the example means that this is the initial state.

*01[2] means two occurrences of 01 before changing state.

jjajfeiteiiiiriai -i _

^ywm^'^Ki'T'wm .!> ■ -Ml.«-'« — UIH«.»«'

I.E The STEPPS system »nd simulator 1-28

The deadlock problem may be dealt with in two ways. One alternative is to

require any program decompo^ion to be deadlocK-free.

A second alternative is to determine where deadlocks may occur and the

probability of a deadlock. The existence of deadlocks in real systems is not always

bad as long as a suitable response can be made. For example, the ARPA network is

not deadlock free [Kleinrock 75]. However, when a deadlock is suspected the system

"times out" and requires reinitialization of a data message. This is a reasonable

solution under some circumstances, but only when a system can lose information.

STEPPS provides tools to recognize the possible occurrence of deadlocks.

The algorithms used to identify deadlocks are basically specialized graph

reduction techniques. A model is viewed as a graph whose nodes are the processes

and links. Under application of these reductions, a safe model will collapse to a graph

containing no nodes. If the graph does not collapse then a deadlock is possible.

As already noted, a STEPPS model of a program can be quite general. If a

model is acyclic and meets other criteria set by Martin [Martin 69] it is possible to

estimate mean path time; however, these criteria are quite restrictive. In genera.' it is

not possible to estimate mean path time through a STEPPS model without simulation.

Ordinary systems analysis techniques such as queueing theory and dynamic

programming models are intractable in all but the simplest cases [Fishman 73, Gordon

69]. It is for this reason that a simulator is a basic part of the STEPPS system.

The simulator is easy to use since it is a specialized system and requires no

programming. Naturally, any STEPPS model can be simulated using GPSS, SIMSCRIPT,

SIMULA, or any other simulation language. However the effort required to reprogram

'Chapter IV discusses the deadlock problem and past work in the area.

pug iij in ji i .pmifunw.ui i. .in. i .ii.m.i. .w.»y ■■! n ,■ i ' —
- :

I.E The STEPPS system and simulator 1-29

a general model is not well spent at the design stage of building a multiprocessing

program. It is at this early stage of program development that the designer needs

information about possible program decompositions, and the flexibility to be able to

alter his design easily and make new evaluations. If variations in the decomposition

needed to be reprogrammed, the understanding of alternative systems would be a

more dif*cult process than comparing alternative models using the STEPPS system.

A variety of simulation parameters can be easily altered for comparing their

effects on simulation results. These parameters include: restricting the number of

available processors, identifying processor competing and noncompeting processes, and

varying process scheduling algorithms.

The STEPPS simulator has a set of data gathering functions which help the

designer evaluate a particular decomposition. Some of the estimations that are made

based on the data are:

1. The expected time that each process is in each state. This can be
determined without simulation if only the processing time Is of interest,
but when process wait time is mcluded it is too difficult to estimate the
time spent in each state.

2. The expected number of messages h each queue.

3. The expected number of processes waiting to send a message to each link.

4. The expected number of processes waiting for a message from each link.

5. The expected number of processes that will be executing simultaneously.
This can be used to estimate the number of processors needed.

This list is not complete for all uses of the simulator. The system has been

designed so that it is not difficult to include additional measurement functions.

The simulation times required to obtain these estimates vary with the

complexity of a model. Usually, useful estimates can be obtained with a few minutes of

^p.W'.SF'^.-imill^lHUafi.iii J^IMl.i»fl|.i...mJM|Wi;W.4iB1!jpp!Wiu.i,i- .-_.-. '' >"'■ ^ ^ - ■-'

1-30

DEC PDP-10 compute time. The complexity of a graph is dependent on such attributes

as the number of connections, choice of process states, and linK delays.

! F. Thesis contributions and outline of remainder of thesis

The contributions of this thesis are tools that a system designer can use to

enhance the overall design of a multiprocess program. These tools, presented as the

STEPPS system, are based on a model that is described preciseiy in Chapter II.

Chapter II also discusses the STEPPS system's capabilities (Appendix A is a manual for

the STEPPS system). Examples of how the STEPPS model can be used to model a

variety of multiprocess structures are presented in Chapter III. In addition, Chapter III

presents two larger examples: one of the use of the STEPPS system in a user's early

design stage and the other of the use of the STEPPS system in system tuning. The

deadlock reduction algorithm is presented as a set of theorems with proofs in Chapter

IV. Other model analysis capabilities are also discussed. The STEPPS simulator and

data gathering facilities are discussed in Chapter V. Chapter VI contains a review of

the thesis results, the limitations of this research, conclusions and directions for

further research.

pi»,;,i. K'. "■•■" " «> m' LnL*' s'V"1.!""-"- " •vv ■i*-'U:-'-.*rvmm'mmnuv,»'r*''' u i ,ippiiiifippi^p<w^i">1"-,1 ' ■ '—■—'—^— r * —-——■ —__„_,_,

11-1

Chapter II

The STEPPS Model

This chapter provides some formalisms for later use and a precise definition of

the STEPPS model. Chapter I presented an informal description of the model and the

interactive design environment based on the model.

ILA. Modeling the behavior of a process

The term proceu describes the utilization of the processing unit of a single

instruction stream-single data stream computer (SISD). A "process" has sometimes

been defined as the execution of a program. For the purposes of this research, that

definition is too limited, since it does not take into account data transfers and accesses.

A process, as defined for the STEPPS model, exists in one of the following conditions:

1. processing (computing) before performing an input or output operation,

2. waiting to access an external resource that must be accessed exclusively
(simultaneous accesses are modeled by allowing zero time between
accesses), and

3. waiting to complete an input or output operation.

A process is modeled as a processing unit which can perform operations

internally, and which then must communicate with other units through one of several

port«. The communication occurs when a process 'dither requests or provides a unit of

information. Each port belonging to a process has only one function: input to the

process or output from the process.

The internal operations of a process are unknown to an observer of i process.

tt»Mtii<W^>lriiiii>i,»Mil'iMl''<'i»ilnilillMii'):, ,,

I

11-2
II.A Modeling the behavior of a process

All thai can be determined is the relationships among the activities of the process's

ports. Externally these relationships appear as probabilistic transfers of activity from

one port to another, plus a computation time between port activities. In general, the

computation time between any two successive port activations is dependent on the

particular ports. Such process activities as accessing resources and sharing resources

are modeled in terms of interprocess connections and message flow.

As defined in Chapter I, the leal« of a proceu refers to the most recent

activation of or attempt to activate a port. This was an informal use of the term

"state" since, more precisely, a process can be in the state of waiting to activate a

port, activating a port (doing the port's activation), computing before the next port

activation, etc. The imprecise definition of "state" will be used in most contexts, and it

will be made clear when the more precise meaning is used.

This definition of the state of a process is an abstraction based on potential

communications between a process and other processes. In addition, the concept of

time is included in the model to allow a designer to include processing time for

. computation during simulations. An important abstraction is that STEPPS processes are

not deterministic since port activations are based on probabilities and not on a data

directed control structure. The disadvantage in this is the inability to represent

programs on an instruction level. The advantage is that all potential communication

alternatives are emphasized.

The complete operation of a process is described by the following loop

(assuming the process starts in some initial state):

1 Perform the input or output operation associated with the present state
This may involve waiting to access an external resource and waiting for
the input/output operation to complete. Both waiting imes are
considered as time spent in a state while not processing. This step can be
repeated a specified number of times before the next step.

2. Choose a new state. By a probabilistic method, described below, a
successor state is chosen, but not yet entered.

:

II.B Data flow and links II-3

3. Process (compute) for a length of time as determined by the transition
from the present state to the next.

4. Enter the new state and repeat 1 through 4.

Given the Knowledge of the present state, probabilities for entering any of the

process's states are defined. Since the state of a process is related to the activity of a

port, probabilities are defined for potential successive port activations from every port

activation. Note that the choice of a successor state is dependent on the present

state. In addition, step 3 above implies that a processing time parameter is associated

with each transition and step 1 suggests that possible communication time is associated

with a port activation.

Two restrictive assumptions are basic to this model. They are that (1) a

process can not be interrupted (i.e. the transition matrix completely describes a

process' activity) and (2) processes are neither created nor destroyed dynamically.

These restrictions are used to keep the model relatively simple; they also make it

possible to perform the deadlock test by graph reduction (Chapter IV)^ The lack of

dynamic process creation and destruction can be approximated by including multiple

copies of processes, but there is no way to use the STEPPS system to model process

interrupts and preemption.

II.El Data flow and links

The previous section refers to units of information that are either requested or

produced by a process. A unit of information is called a mittag«. The number of

^These restrictions are examples of a tradeoff between analysis and representations.
Some system structures might have been easier to represent if there were, for
example, typed messages or dynamic process creation. However, automated system
structural analysis wa« not found to be feasible when these richer representations

were considered.

I ■ -■ ■

IM
IIB Data flow and links

messages in a STEPPS model need not b. conserved. Thus a process may successively

request messages from each of two input ports, yield a single message on an output

port, and then request more messages from an input port. A property of a message is

that it is only a token of information. It does not actually contain any information used

within the model. A process can not use the contents or type of a message to decide

on future activity. Only the existence of a message is meaningful to a STEPPS process.

This restriction will be shown not to affect substantially the class of program

structures that can be modeled with the STEPPS model The major restriction .s that

processes are completely defined by their transition matnces and can nfit be

preempted. Thus systems that contain parent/sibling process dependencies where the

parent process can stop, restart, or terminate a sibling process can not be modeled.

Processes are connected via link,. Each port of every process is connected to

exact- one link, but a link may be attached to several ports of both input and output

variety. Messages enter a link from output ports and leave a link going to input ports.

Requests for messages from input ports are handled on a first in - first out basis.

The link is the resource that can only be accessed by one process at a time.

This access may take rero time, but the restriction is used to prevent race conditions.

For this reason the STEPPS model includes a method that guarantees mutual, exclusive

access to a link. Since a process may only perform one input or output operation at a

time, it can only access one link at a time, so there is no opportunity for a "deadly

embraceMt due to the accessing of links.

The STEPPS model can be used to model the situation where there is a non-

zero overhead for message transmission. The properties of a link aro;

^A"'d"eädly"embräcera's"defined by Dijkstra, Habermann and others occurs when two
processing objects are able to reserve more than one resource at a t.me w-thout a
resources being reserved initially. For example, process ^rtM^M rewuret x
process B reserves resource y; process A needs resource y and can ^" ^UJ*"
B relinquishes it; process B needs resource x and can not contmue until A relmqu.shes
it. Neither process A nor B will be able to continue.

.

II.B Data flow and links 11-5

1. It can store a limited number of messages.

2. It may take a certain amount of delay Amt to either accept or transmit a
message (same delay time for accepting or transmitting).

3. Time may be required to start up a link when it is not already activeT.

4. It may initially contain a specifiable number of message tokens.

5. It can receive requests for messages and transmit a message to a
requestor if a message is available or force the requestor to wait in a
queue (whose size is dependent on the number of processes attached to
the link) until a message becomes available.

A link is not a process but its operation can cause timing delays. When a link

has a start-up time parameter set to be greater than zero then the link's start-up tint«

is significant. The other reasons that a link can force a process to wait in a state are:

1. The link that is attached to the current state's port is already in use.

2. The link has reached its limit of messages and the current state's port is
an output port.

3. The link has no messages and the current state's port is an input port.

4. The link's defined delay time is taken to perform an input/output
operation.

The complete operation of a link in the STEPPS model Is described by the

following loop:

1. Do nothing until a process requests the use of the link. Wait for a specific
start-up time (if any).

2. If the request is for the link to accept a message and if the link's specified
message limit has not been reached, then accept the message. Otherwise
do nothing, forcing the process trying to send a message to wait until a
message is removed from the queue.

3. If the request is for the link to provide a message and if there are any
messages available, then send a message to the process requesting a
message. Otherwise do nothing, forcing the process requesting e message
to wait until a message is sent to the link.

4. Wait a specified amount of time (if any) for data to transfer.

*A similar situation occurs in a virtual memory system when extra time is necessary to
bring a page that is not currently in use Into main memory.

 . .. _ _ _

1I.C Notation »nd definitions u'6

5. Allow the process that is currently accessing the linK to continue.

6. If a process is waiting for a message or waiting to send a message th»n
repeat 2 to 6 (the queue discipline is FIFO). Otherwise repeat I to 6.

Il.C. Notation and definitions

The notation that will be used In the remainder of this thesis is described here.

Wherever possible the linear notation will be the same as that used as the command

language and display language for the STEPPS system. (See Appendix A for complete

definitions and explanations.)

The attributes associated with a process are: its ports, the linKs attached to

the ports, its transition matrix, its initial state, and the number of repetitions of each

state that occurs before the process chooses a new state. The attributes of a link are:

the ports attached to it, its queue size limit, initial number of messages in its queue,

time" to accept or send a message (delay time), and the time to restart a link that has

been waiting for activity.

Il.C. 1. Notation

The following informal and incomplete W defines 5orri£t of the syntax of the

STEPPS system used to describe the attributes of the process and link nodes. The

usual definitions for letter, number, digit, and other non-terminals with common

descriptive names are assumed.

Generally used terms:

<nBme> ::- <letter> j <name> <diglt> | <name> <letter>
<process name> ::- <name>

tSome examples will use syntax not shown, such as: everything to the right of "!" is
ignored and the words Attribute, Queue, Volume, etc. can be abbreviated. The
complete syntax is defined in Appendix A.

II.C Notation and definitions
n-7

<llnk nama>
<port name>
<port type>
<input port>
<output port>

<n8me>
<process name>.<port type><up to 3 digit«>

HO
<process nama>,l<up to 3 digits>
<proces8 name>.0<up to 3 digit8>

Connections between ports (simple connections):

<connection> ::- «input port>«-<linK name> | <link name>4-<output port>

Transition matrices:

transition definition>

repetition factor>::-
<initial state> ::-
transition probabilities

<port id, prob., compute
<prob comp> ::-
<probability> ::•
<compute time> ::-

Link attributes:

::- <port name><repetition factor> - <initial
stalextransition probabilities and times>
<null> | [<positiva integer less than 26214a>]
<null> I «
and times> ::- «port id, prob., compute
time> | <port id, prob., compute time>i<transition
probabilities #->rf ♦'mes>
time> ::- <port type> <up to 3 digits>: <prob comp>
<probability>|<probability>,<compute time>
<real number between 0 and l>
<a non-negative real number>|<nuli>

<link attributes> ::- Attributes <link name> <list of attribute definrtions>
<list of attribute definitions> ::- «attribute definition> |

<attribute definition, <list of attribute definition8>
<attribute definition> ::- «attribute name> : <number>
<attribute name> ::- Queue | Volume | Delay | Startup

Example ll.C-1

ALPHA, L3, L7, and GAMMA are legal
Consider the following STEPPS commands:

process and/or link names.

ALPHAJl «-L3
L7 «- ALPHA.02
Attributes L3 Queue:?, Volume:3, DelayK).5, Startup:2.5
GAMMA.I2[3]- II: .4, 3.5$ 12: 0$ 04: .6, 1.5
GAMMA.04 -• 12: .5; 04: 0.5, 7.5

The first two lines are examples of the notation for connections. The
third line displays the attributes of a link. The last two lines show how
transition probabilities are represented. Thus the probability of
entering GAMMA.04 from GAMMA.12 is 0.6 and will taKe 1.5 units of
time. All STEPPS displays will order the ports of a process in numerical
order with input ports before output ports. In addition, missing
parameters are defaulted (e.g., GAMMA.11 probabilities).

J

II.C Notation and definitions II-8

V. 11 ALPHA 02 > ^

L3
Q7 V3
DOS 325

L7
OJ VO
D00 SOO

II

1
12(3)

GAMMA
04 •

T

GAMMA
U
I2[3]
04»

11 12
0.333,0.0
0.400,3.5
0.000,0.0

0.333,0.0
0.000,0.0
0.500,0.0

04
0.334,0.0
0.600,1.5
0.500,7.5

Figure II-l. Process and link graphical notation

Only one port of a process will have a » when a process's entire transition

matrix is displayed.

A graphic notation used in later sections and chapters is shown in Figure II-l

of the last example. A process is a convex figure and will be represented by either

boxes or circles. Links will always be represented by straight lines. Connections will

be represented by lines with arrow heads denoting the direction that a message would

flow.

Chapter III contains an example set of simple and complex STEPPS models of

program communication structures. These examples demonstrate that the STEPPS

model is expressive enough to represent both toy and non-toy structures while

eliminating the details required by programming languages and the details required by

a Petri-net like model.

tNot all of the attributes of a process or a link will be displayed in later

examples.

 t

II.C Notation «nd definitions ""'

II.C.2. Summary of ptrimotort to tho STEPPS modol

The following is • complete list of the parameters that must be supplied for e

STEPPS modelt

1. A connection betw-*r each process port and a linK. Default port
connections are to link "DANGLING".

2 A transition matrix for each process showing the probability of entering a
new state from each state and the amount of processing time taken before
the transition. Default probability values are determined by assigning
equal parts of any unassigned probability to each defaulted transition.

Default compute times are zero.

3. The initial state of each process (04*). The first port defined is the
defaulted initial state.

4. The number of times a port activation can repeat before a new state Is
entered (I2[3]). Default is 1.

5. The maximum queue length allowed for each link (Q:7). Default is I.

6. The initial number of messages in each queue (V:3). Default is 0.

7. The delay time caused by the operation of each link (D:2.5). Default is 0.0.

8. The start-up time to wait when using a link not already in use (S:0.5).

Default is 0.0.

II.C.3. Graph definitions

The STEPPS model is a graphical model and thus some abstractions have

proven useful in discussing the model. When a graphical structure is similar to that of

classical graph theoretical abstractions, the classical structure name has been used .

Some useful definitions are:

Nod« — A node is either a process node or a link node.

^he STEPPS system assumes default values for some of the parameters. Examples

refer to Figure II-1.

♦Many o^ the abstractions are based on the text by Berge [Berge 62).

II.C Notation and definitions 11-10

Path — A path between two nodes is a sequence of nodes with each node connected
to the next one in such a way that a process is connected by an output port to
a link that is connected to an input port of the next process in the path. There
may be many paths between any pair of nodes. A path may include alternate
branches as long as each branch leads to the final node of the path.

Adjaeent -- An input port and an output port are adjacent if they are both connected
to the same link and no other ports are connected to that link.

Attached to — A port is said to be attached to a link if it is connected directly to tla
link. An input or output port is attached to a (possibly different) process node
if the port is attached to a link that is attached to the process by a link of the
opposite type In particular, there must be a path between the port end the
process through only one link.

II.C.4. State definition»

The structure of a process is described by potential transitions among the

states. The following abstractions are used when discussing the properties of states

of a process:

ln-tequencc — A subset of the states of a process is said to be in-sequence if the
transition matrix of the process shows that once the process enters one state
of the set then, with probability 1, the process will enter the other states of
the set in a particular sequential order, in addition, no other state of the
process may transfer to any of the elements in the sequence other than the
first state.

Onto — State x is onto state y if for any sequence of transitions starting at x and
terminating at the first occurrence of y, state x is not reentered.

One-to-ane — is a relationship between two states of a process occuring when the
only way for a state to recur is to enter the other state exactly once and vice
versa. State x is one-to-one with state y if x is onto y and y is onto x.

Immediate-recurrent — A state is immediate-recurrent if it can return to itself in one
transition. The process may return to the immediate-recurrent state without
entering any other state.

IMx

II.D. STEPPS sygiem capabilities

The STEPPS system is designed for interactive use. It rontains facilities to

enter, manipulate, display, save and retrieve the description of a model. There are

facilities to test the legality and consistency of a description. There is a facility for

the automatic recognition of possible deadlocks. In addition, the STEPPS system

contains a parameterizable model simulator and facilities to display or copy the data

gathered during a simulation.

The notation defined earlier in this chapter is used both to enter a model

description and to c splay the model. The displays available include processes and link

connections, and transition values for a port and for a process. All possible paths

between any two processes can be displayed, but this is a very expensive operation

and not recommended because of large momory requirements.

Another fsature of fht? v1EPPS system h that it has been designed to facilitate

application o analysis programs that might be defined externally to the STEPPS

system.^ Such analysis programs could I written in Sail [VanLehn 71], Bliss/10 [Wulf

71], or FORTRAN. These program be abla io operate on process transition

matrices, on process r tion matricu, and on the graph connection matrix. The

incorporation of externaiiy defined functions necessitates a reconfiguration (• new

LOAD) of the STEPPS system, but no program modifications are required.

*The details of doing this are presented In Appendix A.

p|,pii<ji ... i M.. • '.. i|im. linn !JIIPI«,^IW11«WM,t^il«'rT»;., u" !»«S5»"«";:!f)W, . _ . -- . , _ , -_ "-^m^BBIH

m-i

Chapter III

The Use of the STEPPS Approach to Program Design

This chapter presents examples using the STEPPS model and the STEPPS

system. These examples demonstrate that the model is rich enough to represent

several standard program communication structures. One example demonstrates how

the STEPPS system can be used in the initial design of a program and another example

demonstrates how STEPPS can be used to analyze and help tune a multiprocessor

program that is under construction and was designed without using the STEPPS

system.

III.A. Use of »he STEPPS model

The STEPPS modeling schema can be used to represent a variety of program

conulruclt. The program designer controls the amount of detail he wishes to Include in

a model. Since the STEPPS model has been shown to be able to represent the detail

of both the UCLA and Petri net models, it can be used to represent programs at the

same operation level as those models. However, STEPPS is intended to be used to

depict a decomposition at a morv modular level which more closely represents a

functional system decomposition.

As a consequence of the STEPPS model being a communications structure

model, programming details such as specific data dependent branching, indefinite (but

finite) looping, case statements, and assignment statements are not intended to be

modeled. Thus the following examples will demonstr.te that the STEPPS model

mtmi-Atir— - -w---- ...■■ _ _ . ._.,...-f....^._. ..

I W*V"I"1 I:1. —— 1 1 ■" I I"

MLA Use of the STEPPS model II1-2

abstrtction, which is very much less expressive (or powerful) than a programming

language and more ' -?ressive than the simpler Petri-net or UCLA model, has the

expressive richnes; jdel some real program structures.

Ill A I. Fork and join

Informally, the ability for the STEPPS model to represent multiple data paths

has alreaoy been demonstrated. The situation is that one process can cause more than

one other process to commence processing (Conway's "fork" [Conway 66]). After

some concurrent processing, the data paths may unite and processing again occurs In

only one processing unit (Conway's "join"). There are several ways to model fork and

join. Figure III-1 shows one method. Process FORK sends a message to both process

UP and process DOWN. In turn, they send messages to process JOIN1. J0IN1 must

receive a message from UP before it requests a message from DOWN.

& ii FORK

01

02

l^
ii UP oi

ii DOWN oi

F0RK.I1-
FORK.Ol-
F0RK.02'

UP.I1-
UP.01-

* 01:1.0,t
02:1.0
11:1.0

«01:i.0,t
11:1.0

J01N1.11-
J0IN1.I2-
JOlNl.Ol-

D0WN.I1-
D0WN.01'

• 12:1.0,t
01:1.0,t
11:1.0

♦ 01:1.0,t
11:1.0

Figure III-l. Fork and join processes

III.A Use of the STEPPS model 111-3

III.A,2. Subroutine processes

A subroutine process is a program that can be shared among several different

processes. In terms of a STEPPS model a subroutine is a process that accepts

messages from another process, performs some computation and then sends a message

back to the calling process. Since messages do not contain any identification nor any

other information, the subroutine can not direct a resulting message back to the caller

process. Instead a technique is used whereby the caller waits for a response from the

subroutine before it proceeds. Figure 111-2 shows a graphical representation of the

subroutine SUBR and the process, CALLER, that calls the subroutine. CALLER calls

SUBR by sending a message to link SUBIN. As soon as the message is accepted

CALLER waits for a reply from link SUBOUT. Within this model each process that wants

to use the subroutine waits its turn to send a message to SUBR. Once the process

sends its request to the subroutine it waits for a reply from the link SUBOUT. The

timing parameters of the subroutine and the caller represent the action of a caller that

does no processing concurrently with a subroutine process.

A subroutine process can also be called while the caller process continues

processing concurrently. This situation is modeled slightly differently than the one

above. The difference is due to the requirement that the caller process receives the

reply corresponding to its original request. Otherwise a second process could receive

a reply before the subroutine computes long enough to request its processing, i.e. the

second process receives the reply corresponding to the first process initialization.

This problem exists because messages (as defined in the STEPPS model) do not contain

^An implication of this method is that there is no guarantee that the calling process
receives the result of its call to the subroutine. However if, by convention, all calling
processes take no time before requesting their respective results, no problem ensues
because requests to and from the subroutine will occur in the same order.

 . _. .._

fmimV'Kn'"m"w^^

IILA Use of the STEPPS model
1II-4

>/ \(. V SUBIN

^... ^
y

Qtwutt 1

CALLER

I

<

«

11

SUBR

01

/ S.. * n

\ f SUBOUT

V V
Ou»u» • 1

CALLER.O - I : 1.0,0,0 ! wait for response, no concurrent computation

SUBR.U - 01:1.0,t ! t is subroutine compute time
SUBR.Ol - 11:1.0,0.0 ! Wait to be called again

Figure 1II-2. Subroutine process

information and processes do not direct messages to other processes, only to

connected links. A solution is to introduce an intermediate process whose only

function is to call the subroutine and wait for a response. This is shown In Figure III-

3. CONCALLER continues to process before eventually requesting a reply from port Ix.

It is necessary that 0,, be onto Ix, i.e., once a message is sent from port 0X eventually

a message will be requested at Ix. The process INJTER will actually perform the

subroutine call in the same manner as shown in Figure III-2.

III.A.3. PoiBBOn processeB and general service time proceBBea

Typically, queueing theory models contain assumptions concerning the flow of

messages within a system of message processors. These assumptions concern

- -■■^|iHltWIW|f,JW^W^,T'^w'.^ "

IILA Use of th« STEPPS model 111-5

A ... A

CONCALLER
Ox

SUB1N

Queue t 1

SUBOUT

Queue - 1

CONCALLER.Ox - Ix:p,t ! p S 1

INTER.I1 -»01:1.0
1NTER.01 - 12:1.0
INTER.I2 - 02:1.0
INTER.02 - 11:1.0

Figure III-3. Concurrent processing subroutine cell

processing rates and take the form of assigning processing time as a random variable.

The STEPPS system models a single processing time related t a given state, but it is

possible to approximate a processing rate taken from some probability distribution.

The method used to approximate the production of messages with an

interarrival rate taken from a known probability distribution is as follows:

1. Let f be the probability density function of the given distribution. Choose
n to be the granularity of the approximation.

2. Divide the range of f into n distinct intervals I| In.

3. P| - \ f(t)dt This is the probability of t being in the Interval.

4. tj - (Um)dt)/(p|)

 , ,

psyr" ~<t^^^^mmm*r.v''*wmm*^ .„.,,,.,-

IILA Use of the STEPPS model
JÜ-Ö

6.

This is the expected value of t in the interval.

Let the process POISSON send messages to linK LINK ""d form the
connections LINK-P01SS0N.01,.... LlNK-POlSSON^. See F.gure (UM).

The transition matrix for process A is defined by:

POISSON.Ox - OJ: Pj, tj for x, i- I n.

LINK

Figure 1II-4. Poisson arrival process

An example of this technique can be used to approximate a Poisson arrival rate

in the following manner. The density function for an exponential rate between sending

messages with mean X is (1/X)e_ '*

Choose a value,., for the probability of the start of the distribution. Thus

• -^l/X)e-t/xdt

which implies that the maximum value for t is tmax - -Xln(.). The interval [tm8X,oo) is

one interval and that the remaining interval. [0,tmax). is divided into n-1 other

Intervals. For convenience, the division will be into uniform intervals of size w -

(t)/<n-l).t Thus ths values for the probabilities for intervals Ij through !„_! ire:

Pi-fVl/x^Adt-e-^^^-e^WX.

The values for the times for intervals Ij through In.i are:

!, - t^U-^ dt - ((i-Dsw^X) e^-l^A - (i»wX) e-'^A .

When X - 260, • - 0.001, and n - 10, the values for Pj and tj are:

^An example of » non-uniform interval will be shown in a later section of this chapter.

»The STEPPS system has a feature to automatically determine the probability values
end time given these parameters.

■w
. . _

-_

1II.A Use of the STEPPS model 1II-7

A.0X - 01: .535, 87.138| 02: .249, 286.696; 03: .115. 486.253; 04: .054, 685.81;

05: .025, 885.368

A.0X - 06: .016, 1084.925» 07: .005, 1284.482» 08: .002, 1484.041; 09: .001,

1683.604; 010: .001. 2056.011

In a similar manner, any arrival rate at a link (e.g. to link ALPHA above) can be

approximated using the STEPPS model.

A general service time process can also be approximated using the STEPPS

model (Figure II1-5). The transition matrix for the general service time process,

GENERAL, is defined by:

GENERAL11 - OJ: pj, tj and GENCRALOj - II: 1.0, 0.0

II
GENERAL

OJ 02 . . . 0n

V V

Figure III-5. General service time process

III.A.4. Pipeline of processes

One convenient structure for asynchronous multiprocessing is a pipeline

consisting of a set of processes organized so that the results of one process form the

data for the next process. Multiprocessing occurs when there are data in each of

several processes in the pipeline. Figure III-6 shows the general structure of a

pipeline of processes. At one end is a source of data units (process A) and at the

other end is a sink for processed data units (process F). Connected in between the

 i . .

I1I.A Us« of th« STEPPS model
1II-8

two .r. orocessas e.ch of which has input ports all .tt.ch.cl to one link and output

ports all attached to another link. Since the results of one process are the data for

the next, each link between processes is connected to input ports of one proces. .nd

output ports of a second process. Historically, structures similar to . pipeline have

been successfully studied using queueing models [KleinrorK 751 A STEPPS model

obtains results pertaining to this structure by means of simulation.

Figure III-6. Pipeline of processes

III.A.5. Synchronization

A multiprocessing program may contain process configurations that require

synchronization. One of the better-known synchronization primitive sets is Dijkstra's P

and V operations on a semaphore. It is possible to model this behavior with the

STEPPS model. A process implements a P operation by sending a message to .

LOCKSEM link and then waiting for a responding message before continuing (I.e. w.lt

for a response from LOCKEDSEM link). Likewise a V operation corresponds to sending

a message to an UNLOCK link. The STEPPS model would be:

! Attach to the lock semaphore LOCKSEM*-PROCESS.O100
PROCESS.1100*-LOCKEDSEM
PROCESS.O100- 1100:1.0 ! After performing a lock,

! wait for a response before continuing.

PROCESS.I100- other ports
UNLOCKSEM-PROCESS.0101 ! Attach to unlock semaphore

The notational definition of the synchronization processes is as 'ollows:

i _ _

.-, .

' II1.A Us* of th« STEPPS modtl "1-9

LOCKPROCESS.I1H.0CKSEM

LCX:KPROCESS.12«-SEMAPHORE

L0CKEDSEM«-L0CKPR0CESS.01
LOCKPROCESS.il - «12:1.0 ! Obtain message from semaphore
L0CKPR0CESS.I2 ■ 01:1.0 ! Let process performing lock continue
L0CKPR0CESS.01 - 11:1.0 ! Wait for next locK request
UNLOCKPROCESS.I l^-UNLOCKSEM
SEMAPH0RE«-UNL0CKPR0CESS.01
UNLOCKPROCESS.il -* 01:1.0 ! Arid one to semaphore
UNL0CKPR0CESS.01 - 11:1.0 ! Wlit • x more unlocks
Attributes SEMAPHORE Queue:«, Volume:!

! n is m*<imum value for semaphore
I Initial volume of 1 allows first lock to get through.

This technique is almost an exact analogy to Dijkstra's semaphores in that the

number of messages residing in the SEMAPHORE link determines the number of LOCK

operations that can be performed. The difference is that there is a limit, n, of possible

locks. The use of UNLOCKPROCESS and UNLOCKSEM link is redundant. The process

could be attached to SEMAPHORE instead of UNLOCKSEM:

SEMAPH0RE«-PR0CESS.0101 ! Attach to unlock the semaphore.

The graphic structure of the lock/unlock processes is shown in Figure 111-7.

A second example of a synchronization problem is the Reader/Writer problem.

The problem is to allow multiple reader processes to be able to pass through a lock,

but to exclude all writers so long as any reader is not complete. Once e writer

process tries to perform a lock other readers and writers are not permitted until after

the writer has performed an unlock. Naturally, the writer process does not proceed

until all readers have completed their read unlocks. The solution to this problem

requires three processes: READLOCK, WRITELOCK, and WRITEUNLOCK (Figure III-8). A

reader process will send a message to the PEAOLOCK process and wait for a reply

from the READLOCKED link before continuing. Likewise, a writer process will send a

message to the WRITELOCK process and wait for a reply from the WRITELOCKEO link

before continuing. The link RWLINK initially contains N messages. Each reader will

^_. . . __... _.... .

III.A Use of the STEPPS model
111-10

i

LOCKSEM I
I

LOCKPROCESS „.
u 01

12
 7K

Unlock the Semaphor'e
Q:n v:l

SEMAPHORE

LOCKEDSEM

—>

Figure III-7. Lock/Unlock synchronization

cause one message to be removed from RWLINK. Thus there can be a maximum of N

simultaneous readers before any reader is blocked^ The WRITELOCK process requests

all N messages from RWLINK before it allows a writer process to continue. When there

are already reader processes that have requested messages from the RWLINK,

WRITELOCK will wait until all current readers have performed a read unlock by sending

a message to RWLINK (each such message will be requested by WRITELOCK). After

WRITELOCK has all of the messages that were at RWLINK it allows a writer process to

proceed. No retders can proceed since there will be no messages at RWLINK until a

write unlock is performed by causing WRITEUNLOCK to send N messages to RWLINK

^s with the PV model, there is only a finite number of possible readers. This Is not a
problem because the STEPPS model does not Include dynamic creation of processes.

j _ _ .

II1.A Use of the STEPPS model III-U

•nd service to processes swsitlng it ■ llnK Is FIFO. Only one writer process csn pass

the lock since esch would csuse N messages to be requested from RWUNK end there

can never be more than N messages there.

Readlock

Readunlock

Wrlteunlock

Writelock

4

4->u READLOCK 01
12
T

II 01[N]
WRITEUNLOCK

4

4

RWLINK

QH
VN

 m
II 01

WRITELOCK 4

Readlocked

Wrltelocked

READL0CK.12«-RWLINK
WRITEL0CK.I2«-RWLINK«-WRITEUNL0CK.01

READL0CK.I1-
READL0CK.I2-
READL0CK.02-

• 12:1.0
01:1.0
11:1.0

WRITELOCK.Il-
WR1TEL0CK.I2[N]-

* 12:1.0
01:1.0

WRITEL0CK.01- 11:1.0

WRITEUNLOCK.il-
WRITEUNLOCK.OUN]-

«01:1.0
11:1.0

Attribute RWLINK Queue:N, Volume:N

! Request a message from RWLINK
! Allow a reader to proceed
! Wait for another read lock

! Request message from RWLINK
! After requesting N messages
! from RWLINK, allow a reader to proceed
! Wait for another write lock

! Send messages to RWLINK
! After sending N messages to
! RWLINK, wait for next writer unlock

Figure 111-8. Reader/Writer Synchronization

__. . , _._ _ _._

HH.liippiLBWpwF^ T

II1.B Using STEPPS during system design: A Bliss/11 compiler 111-12

III.B. Using STEPPS during system design: A Bliss/11 compiler

Bliss/11 [Wulf 72a] is a system implementation language designed for the DEC

PDP-11 computer. Its only compiler is an optimizing cross compiler implemented on

the DEC PDP-10. The language has been used as the implementation language for the

Hydra operating system [Levin 75, Wulf 75b] for the Cmmp computer, as well as for

other PDP-11 systems programs.

There are several reasons why a Bliss/11 compiler is an appropriate program

to implement on a multiprocessor (Cmmp). First, since Bliss/11 is the system language

for Hydra and Cmmp, it should be available on the Hydra system to make Cmmp self-

sufficient. In addition, the mechanism for moving programs between the two computers

is a time consuming and, presently, awkward arrangement. A second reason Is that the

Bliss/U compiler is very large and slow. The compiler requires a large amount of

PDP-10 memory to do even small compilations. A third reason is that the internal

structure of the Bliss/11 compiler [Wulf 75a] consists of separate phases that could

possibly be divided into separate processes1". Thus a Bliss/11 compiler is a program

that can be considered for implementation on a multiprocessor.

The STEPPS system will be used to predict how a Bllss/U Implementation

might perform as a multiprocess program. Possible structures for the compiler and

structural refinements will be discussed.

III.B.1. An overview of the structure of Blitt/11

The Bliss/11 compiler is divided into seven relatively independent phases

(Figure 111-9). The Lj's in the figure refer to intermediate representations of data

passed between the phases.

^This conjecture has been discussed with the authors of Bliss/11 [Wulf 75a].

ii¥"m,wwi|||P»BHWi i i iiüp,iMi«p!iiip»Bpi»j i wnu *ri•

III.B Using STEPPS during system design: A Bliss/11 compiler III-13

TLA

LEXSYNFLO

LEX SYN FLO

DELAY

OPI^D
PREF

[7.- EVO

ROX L,

OPTR SEL

GPOL

TM
LIFE

A
S
s
1

L,

G USEX
N

LABEL
ASSIGNMENT

I.

RANK

». RANK __

PACK

I PACK I "■v

CODE

CODE

FINAL

OP
COMB

OPTR

S

M
P

L
1
F
1
C
A
T
1
0
N

JMP

BR

LIST

TST
REV

INACC
CODE

REL
CODE

JMP
JMP

CRS
JMP

Figure III-9. Bliss/11 phase structure

.... _..

• ' — n-r.?«-w »'"•III,W«I^WW«IJ

IILB Using STEPPS during system design: A Bliss/ll compiler

The following is ■ description of the compiler [Wulf 75«] :

... the subroutine is the program unit to which each
physical phase is applied. Thus the source text for an entire
subroutine is read and the phase LEXSYNFLO applied to it,
producing intermediate form Lj. In turn DELAY, TLA, ..., and
FINAL are applied to the intermediate representations Lj, L2
Lg for the same subroutine, producing, respectively, L2, L3
L7. The next subroutine is processed only after all phases have
been applied to its predecessor. A consequence of choosing the
subroutine as the unit to which successive phases are applied is
that optimizations are applied to this unit; i.e., no optimizations
are applied which involve detailed structural knowledge of more
than one subroutine simultaneously.

The general attributes of the major phases are
summarized below ...

-iTO«i«"ll%W'iiB(iI"»™F«"l """'"''lUPIPI

in-14

LEXSYNFLO

DELAY

This phase performs lexical analysis, declaration
processing, syntax analysis, and flow analysis.
The input is the source program unit in character
string form. The output consists of: (1) a set of
symbol table entries, (2) a tree representation of
the parsed program unit, and (3) a set of lists
(generally threads running through the tree)
which define feasible global optimizations
(constant expressions whici may be moved out of
loops and the like).

Delay has three primary functions: (1) to
determine the "gen8ral shape" of the object code
to be generated, (2) to estimate the "cost" of each
(linear) program segment, and (3) to determine the
evaluation order for expressions. By the "general
shape" of the object code, we mean those
properties of the operators (e.g., commutativity)
or properties of the target machine (e.g., indexing)
which may be used to simplify the computation of
a value. Decisions are also made at this point as
to whether any (or all) of the "feasible" global
optimizations are, in fact, desirable. Actual
machine code is not generated; rather various
flags and fields are set to guide local code
generation in a later phase. The cost metric is
used to guide selection of evaluation order and in
register allocation. The output of this phase is
identical to that of LEXSYNFLO (i.e., symbol table,
tree, etc.) except that certain information has

^Reproduced with permission.

,*.** mm

tr* -f "!«»B(W~" ' ^^fSj^Rir IJ!"P"»""II>- ^

III.B Using STEPPS during system design: A Bliss/11 compiler 111-15

been added to the tree to signal the subsequent
phases of the compiler concerning the shape, cost,
and execution order of the code to be generated.

TLA, RANK, PACK
The function of these phases is what in ot.ier
compilers is frequently called "register allocation";
the difference being that not only registers are
allocated, but memory locations as well. The
ontities which are assigned to ! .• ions (registers
or memory) include both cs. .ipiler-generated
temporaries and user-defined "local" variables.
The output of this phase includes that of DELAY
plus the bindings.

CODE The function of the CODE phase is to produce
locally optimal code for each tree node; hence its
output is a representation of the targtt machine
language (the tree is discarded at this point). In
some cases the locally optimal code is completely
determined in DELAY; in these cases the action of
CODE is trivial. In many cases, however, further
analysis is required. For example, it is CODE'S
responsibility to determine the optimal sequence
of shift and masK instructions to move an
arbitrary subfield of one word into an arbitrary
position of another.

FINAL FINAL has two responsibilities. The simpler of
these is to prepare the final listing and object
code files. The more interesting responsibility is
a collection of relatively ad hoc "peephole"
optimizations. These optimizations are performed
by examining the actual code produced by CODE
and eliminating inefficiencies which CODE was
unable to detect. For example, FINAL will replace
a jump instruction which transfers to another
jump by one which transfers directly to the
ultimate destination. It will also remove
unreachable code, reverse the sense of certain
tests, combine some instructions, etc.

As can be seen from the above, the phases operate independently of each

other with respect to each subroutine. Thus while one phase is working with one

subroutine another phase can be compiling a different subroutine. The compiler looks

very much like a pipeline.

III.B Using STEPPS during system design: A Bliss/ll compiler 111-16

111 B 2 Application of the STEPPS system to Bliss/l 1

A multiprocess model of the Bliss/11 compiler was examined using the STEPPS

system. A protocol of the use of the system for this application is presented in

Appendix B. The issues that were explored concerning the multiprocess decomposition

are:

1. How do specific alternate multiprocess decompositions of the compiler
affecf throughput? Throughput was measured in terms of the number of
routines^ processed per unit time.

2. Does the performance of the model suggest other decompositions?

3. When the number of processors is restricted, what are the effects of
different scheduling algorithms?

4. What are the relationships among the number of processors available, the
average number of active processes, and throughput?

The model of a multiprocess Bliss/11 compiler follows the same general

pipeline structure as the phases of the original compiler [Wulf 75a]. Each phase is

modeled as a server with an exponentially distributed processing rate.

Measurements of the operation of the real Bliss/11 compiler were taken; nin»

programs of differing complexity were compiled by an instrumented version of the

actual compiler. The total time spent in each phase was determined and the

corresponding percentage of total piocessing time was computed. These data are

shown in Figure III-10. The phases are grouped slightly differently than those

discussed earlier, due to actual Bliss/11 structu-al properties; LEX is separated from

SYNFLO, and TNBIND combines TLA, RANK and PACK.

The processing rates of the STEPPS-modeled processes were chosen based on

the percentage of total processing from the Bliss/11 measurements. For example, the

processing rates for CODE and SYNFLO were chosen to be .084 units and .216 units

•"The unit of compilation in the Bliss/11 compiler.

III.B Using STEPPS during system design: A Bliss/11 compiler 111-17

Time Percent of
(seconds) Total
67.92943 26.0 X
56.38539 21.6 7.

9.64012 3.7 X
2.78647 10.7 X

22.08524 8.4«
77.17126 29.6«

261.07621 100.0 7.

Phase

LEX
SYNFLO
DELAY
TNBIND
CODE
FINAL
Total

Figure 111-10. Bliss/11 measured data

respectively. The LEX process was considered to be the generating process which

provided elements to be processed at an exponential rate with mean .260 units.

Figure III-11 shows the set of commands to the STEPPS system used to create the

model (Appendix A contains a complete description of the STEPPS commands).

Model Bill
Density expon port Iex.n0 link Is mean .26
Density expon port synflo.oO link sd mean .216
Density expon port delay.oO link dt mean .037
Density expon port tnbind.oO link te mean .122
Density expon port code.oO link cf mean .084
Density expon port final.oO link fr mean .296
synflo.I20«-ls
delay.I20«-sd
tnbind.I20«-dt
code.I204-tc
finai.I20*-cf
synflo.oO - I0:0j 120:1/10:1
copy delay.I20, tnbind.I20, code.I20, final.I20.synflo.I20
copy delay.oO, tnbind.oO, code.oO, final.oO:synflo.oO
result.iO*-fr
schedule noncompete result
attribute tc,cf,dt,fr,ls,sd Queue:100

Figure III-ll. STEPPS Bliss/11 model commands

A graph representation of this model is shown in Figure 111-12.

The first set of experiments consisted of simulating the model with one to six

-

1 ' i« nmiwmf -■imK^-n, n «» ml mill ■ ilnl.i i' » ..irimiuii. nuniMMiiili m , vn-..—.

HI .B Using STEPPS during system design: A Bliss/11 compiler
111-18

LEX SYNFLO DELAY i>-i> TNBIND ^-^ CODE

LS SO DT TC

> -^| FINAL

CF

»-^j RESULT"]

FR

Figure 111-12. Bliss/11 graph model

pr lessors using one process per phase. For each number of processors, the effects

of three scheduling algorithms were also measured. These algorithms were: First-In-

First-Out (FIFO), Random, and Link (select the process with the :argest number of

waiting messages). These algorithms are discussed in Chapter V.

The results of these experiments are shown in Figures 111-13, 111-14, 111-18, IH"

16, and 111-17. The measurements were performed on 700-900 messages

(representing routines) passing from the LEX p.ocess through the FINAL process. The

maximum possible throughput rate per experiment (i.e., simulation execution) is the rate

at which routines are produced by the LEX process. Thus the maximum expected

throughput rate is the reciprocal of the processing rate of LEX for each simulation,

4.00 routines per unit time when the expected time between routines is .250 (1

processor, FIFO). The observed throughput rate was found by dividing the number of

routines entering RESULT by the total processing time.

Prcrs. LEX Rate Thru Rate 7. Thru Rate Avg. Active Avg. Waiting

1 .254
2 212
3 .279
4 .252
5 .272
6 .259

0.96
1.78
2.74
3.40
3.37
3.28

240
48.4
76.4
85.6
91.7
88.3

1.00
2.00
2.96
3.33
3.66
3.57

4.98
3.28
1.61
0.44
0.04
0.00

Figure 111-13. Bliss/11 Simulation FIFO Table

The measure that was used as the basis for comparing performance was the

III.B Using STEPPS during system design: A Bliss/11 compiler 111-19

Prcrs. LEX Rate Thru Rate 7. Thru Rate Avg Active Avg.Waiting

1 .248 0.99 24.6 1.00 4.98

2 .241 1.84 44.3 2.00 3.39
3 .271 2.65 71.8 2.65 1.83
4 .259 3.45 89.4 3.54 0.49

5 .255 3.58 91.3 3.57 0.00

6 .270 3.26 89.7 3.47 0.00

Figure 111-14. Bliss/11 Simulation LINK Table

Prcrs. LEX Rate Thru Rate 7. Thru Rate Avg Active Avg.Waiting

1 .242 0.91 22.0 1.00 4.64

2 .241 1.96 47.2 2.00 3.37
3 .273 2.78 75.9 2.94 1.53
4 .263 3.36 88.4 3.50 0.48
5 .257 3.56 91.5 3.62 0.06
6 .259 3.50 90.6 3.64 0.00

Figure 111-15. Bliss/11 Simulation RANDOM Table

percent of maximum throughput rate. This measure was chosen because the measured

throughput rates varied due to the approximation to exponential processing rates. For

example, four processors using FIFO scheduling showed a throughput rate of 3.40 out

of max rate of 1/.252 - 3.97 for 85.6 percent.

Several implications concerning this multiprocess model were apparent from

these results. First, the addition of more processors has a major, approximately linear,

effect on throughput until four processors are used. Addition of a fifth processor does

not cause a very large improvement (about 867. to 917.). Adding a sixth processor

does not indicate any significant difference. Another factor is that the different

scheduling algorithms do not seem to significantly affect the rrod »i's performance. The

average number of active procettet (and processors) and average number of ready

proceuei measures also indicate that Mter four processors are available most of the

r—' ;

III B Using STEPPS during system design: A Bliss/11 compiler 111-20

% MAX
THRU
RATE

QO

80

70

60

50

40

30

20

 FIFO

- LINK

- RANDOM

:'■

. I

•V'

12 3^56

BLISS/11 PROCESSORS FCHEDULED

Figure III-16. Bliss/11 Percentage Maximum Throughput

* w

, III.B Using STEPPS during system design: A Bliss/11 compiler 111-21

THRU
RATE

3.0

3.6

3^

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1-2

1.0

0.8

0.6

0.4

0.2

12 3^56

BLISS/ll PROCESSORS SCHEDULED

Figure 111-17. Graph of Measured Throughput

IlLB Using STEPPS during systtm design: A Bliss/11 compiler 111-22

required processing power is available. This helps confirm the observation that the

addition of more processors beyond four does not lead to as major a performance

improvement as adding one processor to fewer than four processors.

The next set of experiments included multiple copies of some of the slower

processes as part of the model as an alternative to the simple pipeline structure. The

only process that could not be duplicated was the LEX process since part of its

function is recognizing the sequences of characters as delimiting a routine definition^

An examination of the data indicated that there were three major bottlenecks. The

bottlenecks were identified by locating links between >rocesses where the expected

queue length was large. Figures 111-18, 111-19, and 111-20 show the expected queue

lengths at the links between the processes. Naturally, these werö the same processes

that had relatively slow processing rates». Three alternate structures were examined:

A. 2 FINALS and 2 SYNFLOs;

B. 3 FINALS and 2 SYNFLOs;

C. 3 FINALS, 2 SYNFLOs and 2 TNBlNDs.

Prcrs. LS SD DT TC CF

1 9.194 0.000 0.000 0.000 0.000
2 8.403 5.148 7.172 8.107 9.354
3 2.108 0.010 0.263 1.505 6.401
4 5.682 6.648 8.817 9.048 9.643
5 2.765 t.770 2.556 3.300 6.674
6 3.596 2.100 3.432 5.350 8.732

Figure 111-18. Bliss/11 Simulation FIFO Queue Lengths

These structures were run with 1, 5, 8 and all possible processors. Although

^his can be done by Begin-End counts.

*The large queue that formed before the Code phase was due to Code being unable to
send results to Final and thus had to wait before processing new routines.

IU.B Using STEPPS during system design: A Bliss/11 compiler 111-23

Prcrs.

Prcrs.

IS SD DT TC CF

1 0.410 0.616 0.000 0.219 0.001
2 7.923 0.087 0.987 5.364 9.111
3 4.139 0.078 0.713 4.533 8.892
4 3.455 1.136 4.623 6.972 9.248
5 4.266 3.268 5.757 7.018 8.945
6 5.903 6.204 8.404 8.999 9.836

Figure 111-19. Bliss/11 Simulation LINK Queue Lengths

LS SD DT TC CF

1 8.461 4329 1.796 0.623 0.717
2 7.928 0.404 0.864 1.362 7.925
3 4.661 0.047 0.975 5.494 U S
4 3.355 2.727 5.326 7.749 9.ib3
5 3.419 1.488 3.306 5.738 9.176
6 2.976 3.762 7.766 8.661 9.472

Figure 111-20. Bliss/11 Simulation RANDOM Queue Lengths

the simulations were run using all three scheduling algorithms, there was not much

difference in performance due to the scheduling algorithm (less than one per cent).

Thus Figures 111-21, 111-22 and 111-23 show the results using either FIFO or LINK

scheduling. Figures 111-22 and 111-23 also show graphs of the FIFO «-esults without

using multiple copies of phases. As the graphs show, each of the multiple process per

phase models performs better than the single process per phase model, given enough

processors. Structure C, above, performed the best among them.

The difference among the structures was not very large, viz. about 57. of the

maximum rate. Although there is improvement using the multi-copy structures, the

improvement over the single process per phase does not appear to warrant such

structure. Instead, the bottl«neck appears to be the LEX process which is inherently

sequential. This observation suggested another experiment to determine the effects of

IILB Using STEPPS during system design: A Bliss/11 compiler 111-24

Decom- Prcrs. LEX Avg. Avg. Thru «Max

position Rate Active Ready Rate Thru Rate

Bll (A) 1 .253 1.00 4.78 0.98 24.8

3 .251 2.88 2.23 2.87 72.0

5 .272 3.68 2.28 3.59 96.8

8 .267 3.79 0.00 3.70 98.8

Bll (B) 1 .276 1.00 4.79 0.98 27.0

3 .276 2.82 2.04 2.77 76.4

5 .261 3.71 0.38 3.65 95.3

6 .255 3.99 0.00 3.89 99.2

8 .253 3.94 0.00 3.93 99.4

9 .278 3.64 0.00 3.58 99.5

Bll (C) 1 .288 1.00 5.43 0.92 26.5

3 .263 2.81 2.25 2.76 72.6

5 .274 3.55 0.41 3.46 94.8

8 .259 3.86 0.01 3.85 99.7

11 .244 4.03 0.00 4.07 98.3

Figure 111-21. Table of Results of Multi-copy Bliss/11 Phase Models

further decomposing LEX into a pipeline of phases: FILE, ATOM, and NT|SEARCK The

goal was to increase the rate at which messages reached the SYNFLO phase. The

results of this set of experiments are shown in the table of Figure 111-24. It can be

seen that the rate at which messages queued up to the SYNFLO phase decreased from

.26 to .18 for an increase of 447. due to the further decomposition of the LEX phase.

Other process structures may also be studied using the STEPPS system.

Current research into the phases of Bliss/11 indicates that two of the phases could be

restructured. The DELAY phase [Johnsson 76] could perform more complex operations

(and would be slower). The FINAL phaset could also be altered or decomposed even

further into smaller independent processes.

Since the data presented represent about fifty separate model simulations, the

Bliss/11 experiments were executed over several weeks. Each simulation required

^S. Hobbs, current research.

III.B Using STEPPS during system design: A Bliss/11 compiler 111-25

THRU
RATE

1.0

3.P
3.6

3.1
3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.1
1.2

1.0

A

B

C

1 3 56 8 9 11

PROCESSORS SCHEDULED

Figure 111-22. Multi-copy Bliss/11 Phase Model Thru Rate Graph

III.B Using STEPPS during system design: A Bliss/11 compiler 111-26

% OF
MAX THRU
RATE

100

95

90

^5
80

75
70

65
60

55
50

^5
40

35

30

25
/

1 3 5^ 8 9 11
PROCESSORS SCHEDULED

Figure 111-23. Multi-copy Bliss/11 Phase Model Percentage Max Thru Rate
Graph

III.B Using STEPPS during system design: A Bliss/11 compiler 111-27

FILE NS Send Avg. Avg. Thru 7. Max 7. Max
Prcrs Rate Rate Active Ready Rate of FILE "LEX"

3 .119 .29 2.96 2.97 2.38 27.13 69.02

5 .120 .20 4.41 0.79 3.20 38.40 64.00

7 .126 .18 4.92 0.02 3.52 44.35 63.36

8 .121 .18 4.85 0.00 3.29 39.81 59.22

Figure 111-24. LEX Decomposition Results

from four to thirty minutes of execution time for a total of about six hours of

execution time. This amount of time was not particularly large since it is about the

same amount of time that was required to obtein the Bliss/11 data originally.

As detailed in Appendix C, these simulation experiments were statistically

validated. Based on trial runs, message traffic flows and simulation run times were

determined for eliminating initial condition bias in the subsequent experiments. Since

there were many different simulation experiments, one was chosen for developing

statistical confidence intervals. Thus, for the experiment using six processors and FIFO

scheduling, the 907. confidence intervals computed were: LEX Computing Time,

[.245^2641 Percent Thru, [84.6,88.5], and Thru Rate, [3.28,3.57]. Comparing these

intervals with the results shown in Figure 111-13, it can be seen that each of the values

falls within these respective confidence intervals (i.e, 2.59, 88.3, 3.28).

These Bliss/ll experimental results should have several implications to system

designers of a multiprocess Bliss/11 compiler. Foremost is the conclusion that there

should be an increase in processing throughput of «bout four times over a sequential

compiler. This estimated increase is significant in that it demonstrates both potential

benefits and potential limitations in developing a (possibly) complex multiprocess

Bliss/11 compiler. Given that the designer chooses to develop the multiprocess

compiler, it can be observed that the compiler should not necessarily be designed to

II1.C Using STEPPS during sysJem construction «nd tuning: Hearsay II 111-28

dedicate a processor to each process. The simulated result shows that there Is en

approximate linear increase in throughput when using a small number of processors,

but after about two thirds of the number of potential processors are used the

maximum throughput rate is almost achieved. The bottleneck was shown to be the

lexical analysis phase of the compilation process. Finally, it was shown that simple

scheduling disciplines (FIFO and most messages waiting) did not affect potential

throughput .ate more than a random prociss scheduling technique. Thus these simple

experiments using the STEPPS model and STEPPS system should provide information

that would affoct the design of a multiprocess Bliss/11 compiler.

III.C. Using STEPPS during system construction and tuning; Hearsay II

The Hearsay II speech understanding system (HSII) [Fennell 75a, 75b, Lesser

74] has been designed to utilize a variety of analysis sources to solve the problem of

understanding human speech for performance of a lask [Newell 71]. The problem has

been functionally decomposed so that individual subparts of the problem solution can

be performed concurrently, with each contributing to the speech understanding task.

The Hearsay II system is being implemented on both a uniprocessor, a DEC

POP-10, and in a similar form on a multiprocessor, the CMU C.mmp. The uniprocessor

implementation is structured as if it were being implemented on a multiprocessor, with

a scheduler deciding on the actual order of processing. The C.mmp implementation

. contains some design alternatives chosen to reflect restrictions due to the Hydra

operating system [Levin 75, Wulf 74]. Some implementation issues are common for

both machines since the systems are based on the same design.

1II.C Using STEPPS during system construction and tuning: Hearsay 11 111-29

II1.C.1. Overview ol Hearsay II system erianlzation

The following is a description of the organization of the HSIl system [Fennell

and Lesser 75]^

... The Hearsay II speech-understanding system
(HSII) (Lesser, «t ol. 197*, Fennell, 1975} and Erman and
Lesser, 1975) currently under development at Carnegie-
Meiion University represents a problem-solving organization
that can effectively exploit a multiprocessor system. HSU has
been designed as an AI system organization suitable for
expressing knowledge-based problem-$olving »trategiei In
which appropriately organized subject-matter knowledge may
be represented as knowledge lourc« capable of contributing
their Knowledge in a parallel data-directed fashion. A
knowledge »ource may be described as an agent that
embodies the knowledge of a particular aspect of a problem
domain and is useful in solving a problem from that domain by
performing actions based upon its knowledge so as to further
the progress of the overall solution. It Is felt that the
Knowledge source is an appropriate unit for use In the
decomposition of a Knowledge-intensive task domain
Knowledge sources, being suitably organized capsules of
subject-matter knowledge, may be independently formulated
as various pieces of the knowledge relevant to a task domain
become crystallized. The HSIl system organization allows
these various independent and diverse sources of knowledge
to be specified and their interactions coordinated so they
might cooperate with one another (perhaps asynchronously
and in parallel) to effect a problem solution. As an example
of the decomposition of a tcsk domain there might be distinct
knowledge sources to deal with acoustic, phonetic, lexical,
syntactic, and semantic information.

* * *

... A production syttem is a scheme for specifying an
information processing system in which the control structure
of the system is defined by operations on a set of
productiont of the form 'P' -» A', which operate from and on a
collection of data structures. 'P* represents a logical
antecedent, called a precondition, which may or may not be
satisfied by the information encoded within the dynamically
current sat of data structures. If 'P' is found to be satisfied
by some osta structure, then the associated ociion 'A' may be
executed, which presumably will have some altering effect
upon the data base such that some other (or the same)

\lsed with permission.

■,"" • .■,■.—--.■.—.-•■——""■ ' ——I""-"1»'-"— "'■ ' ■" ■"""- " ' ' ' —— ' - - -

IH.C Using STEPP? during system construction and tuning: Hearsay II 111-30

precondition becomes satisfied This paradigm for sequencing
of the actions can be thought of as a data-directed control
structure, since the satisfaction of the precondition is
dependent upon the dynamic state of the data structure.
Productions are executed as long as their antecedent
preconditions are satisfied, and the process halts either when
no precondition is found to be satisfied or when an action
executes a stop operation (thereby signalling problem
solution or failure, in the cace of problem-solving systems).

* * «

. . . The HSII system organization, which can be
characterized as a "parallel" production system, hai. 5
centralized data base which represents the dynamic problem
solution state. This data base, which is known as the
blackboard, is a multidimensional data structure which is
readable and writable by any precondition or knowledge-
source process (where * knowledge-source process is the
embodiment of a production action). Preconditions are
procedurally oriented and may specify arbitrarily complex
tests to be performed on the data structure in order to
decide precondition satisfaction. Preconditions are
themselves data-directed in that they are tested for
satisfaction whenever relevant changes occur in the data
base, and simultaneous precondition satisfaction is permitted.
Testing for precondition satisfaction is not presumed to be an
instantaneous or even an indivisible operation, and several
such precondition tests may proceed concurrently.

* « «

. . . The basic structure and components of the HSII
organization may be depicted as shown in the message
transaction diagram of Figure 111-25, The diagram indicates
the paths of active information flow between the various
components of the problem-solving system as solid arrows;
paths indicating control activity are shown as broken arrows.
The major components of the diagram include a passive global
data structure (the blackboard) which contains the current
state of the problem solution. Acce-.s to the blackboard is
conceptually centralized in the blackboard handler module,^
whose primary function is to accept and honor requests from

The blackboard handler module could be implemented either as a
procedure which is called as a subroutine from precondition and
knowled-p source processes, or as a process which contains a queue OS
requests for blackboard access and modification sent by precondition and
knowledge source processes. In the implementation discussed in the
paper (i.e., Fennell and Lesser 75), the blackboard handler module is
implemented as a subroutine.

m9mmmmmimtmm*mmmm^Kmmmmm».w^mmmmimmmmmmmmm»\ji ■■ HWJIPP

III.C Using STEPPS during system construction and tuning: Hearsay II 111-31

the active processing elements to read and write parts of the
blackboard. The active processing elements which pose these
data access requests consist of knowledge-tourer procauei
and their associated pr«condition$. Preconditions are
activated by a blackhtard monitoring mechanism which
monitors the various write-actions of the blackboard handler;
whenever an event occurs which is of interest to ? particular
precondition process, that precondition is activated. If upon
further examination of the blackboard, the precondition finds
itself "satisfied," the precondition may then request a process
instantiation of its associated knowledge source to be
established, passing the details of how the precondition was
satisfied as parameters to this instantiation of the knowledge
source. Once instantiated, the knowledge-source process can
respond to the blackboard data condition which was detected
by its precondition, possibly requesting further modifications
to be made to the blackboard, perhaps thereby triggering
further preconditions to respond to the latest modifications.
This particular characterizatio . of the HSII organization, while
certainly overly simplified, shows the data-driven nature of
the knowledge source activations and interactions.

III.C.2 STEPPS model of Hearsay II organization

The STEPPS model was used to represent the operation of the individual

processing components of the HSII system, the precondition (PC) processes and the

knowledge source (KS) processes. In addition the data base (DB) blackboard was

modeled as a set of synchrrnization locks similar to those presented in Section III.A.5.

In aome cases locks cascaded, i.e i lock operation caused performance of two or

more other locks. The details of the STEi-FS HSII models are shown in Appendix B.

Figure 111-26 shows a detailed description of the PC process actions and Figure

111-27 shows the corresponding STEPPS graphic and system transition matrix notations.

The essential common actions of a PC are modeled: wait for condition, examine DB,

compute, possibly initiate a KS, and repeat.

Similarly, Figure 111-28 shows a detailed description of the KS process actions

and Figure 111-29 shows the corresponding STEPPS graphic and transition matrix

wmwppwfpw mwmvmmm mm*

III.C Using STEPPS during system construction ind tuning. Hosrsiy U
111-32

5 t 1
4 X

t
Ü or

V
k.
D

B
B

:
n

o
d

e
tr

u
c

t

"

Figur« 111-25. Simplified HSU System Orgen zation

'— •«w — ., m

1II.C Using STEPPS during system construction and tuning: Hearsay II 111-33

Precondition

II:

02:
12:
03:
Iflh

04:
05:

Wait for condition occurrence
With probability pc wait for more condition occurrences (go to ID

Perform DB read locK
Wait for lock completion
Perform read
Wait for read completion
Compute
With probability pr perform more reads (go to 03)
Perform DB unlock(s)
Start up a KS (or set of KS's or no KS's)
terminate processing (go to ID

Figure 111-26. Description of Precondition Process

t
Ji 02 12" 03 13 04 05

Precondition

PC.I1-* Il:pc,tD l02!l-Pc.W ! Either wait for more messages
c pc c Pc ! or DB read lock

! Wait for lock complete
! Perform read
! Wait for read complete

n, . ' :04:1-Pr.ti n ! Either read more or unlock
ä- SllSr ' « Start up KS(s); the time is processing ti

! before restart
! Wait for restart

PC.02- 12:1.0
PC.I2- 03:1.0
PC.03- 13:1.0
PC
PC

me

PC.05- 11:1.0

Figure 111-27. STEPPS Precondition Model

notations. The essential common KS process actions are modeled: wail to start,

examine data base, process, and possibly alter the data base.

It can be seen from these descriptions that there are relationships between

the Precondition processes and the Knowledge Source processes. These are

r.|.tion.hips whereby PC's send messages to KS's. In STEPPS, this is represented by:

KS.I1«-KSLINK«-PC.05 1 Connect PC to KS through KSLINK

mqt^^*' f " "■im i '■■■ IP> mi».■•■«»iii i i 11

1II.C Using STEPPS during system construction and tuning: Hearsay II 111-34

Knowledge Source

U- Wait for wake up
02: Perform DB read locK(s)
12: Wait for lock completion(s)
03: Perform read
13: Wait for read completion

Compute
With probability pr perform more reads (go to 03)

04: Perform DB read unlock(s)
Compute
With probability pj terminate processing (go to ID

05: Perform DB write lock(s)
15: Wait for lock comptttion
06: Perform write
16: Wait for write completion

Compute
With probability pw perform more writes (go to 06)

07: Perform DB write unlocMs)
Terminate processing (go to ID

Figure !II-28. Knowledge Source Process Description

The model has been designed so that there is some decision process which

chooses which PC will next receive notice to start processing. This decision process,

called PCSELECTOR. is attached to the port 11 of each precondition. Figure 111-30

shows the graphical relation between PCSELECTOR and the set of preconditions. A

possible transition matrix for PCSELECTOR when there are n preconditions is:

PCSELECTOR.Ox-01:p1;02:p2! • • • On:pn for x-1,. , .,n

The PC processes and KS processes interact with each other by reading and

writing the data base. The data base accessing is an example of the Reader/Writer

problem that was discussed in an earlier section.

The Hearsay II system has been designed to allow the dynamic creation of KS

processes. These processes perform their respective operations and then disappear.

Since the STEPPS model was not designed to allow for this facility, it must be

«SIPWIW iiiiwi.ii mvr «w II..~»-< v"(w"u..» .1. u ,ij wiigi»!.'«» ■' —ll"1" ■ ' '■ ~-^ ?— ■—

IILC U»ing STEPPS during system construction snd tuning: Hearsay 1! 111-35

JJ 02 12 03 13 04 05 15 06 16 07

Knowledge Source

! Transit
KS.I1-»

KS.02-
KS.I2-
KS.03-
KS.I3-

KS.04-
KS.05-
KS.I5-
KS.06-
KS.I6-

KS.07-

lon matrix Nex» step
02:1,1, ! tj represents computation time before

! doing read lock
I2:i.o ! Wait for read lock completion
03:1.0 ' Perform read
13:1.0 ! Wail for read locK
03:p , t ; Msl-Priti-o ! Either do more reads or perform unlock

r' P'' Pr ! Thr times can be different
Up. t ; 0B:1-Pt.ti 0 I Either terminate or perform write unlock
15:1 6Pt * ! Wait for write lock
06:1.0 ' Perform write
Ig-l o ! Wait for write complation
06:pw,tp ; 07:l-pw,t1.p I Either write more or unlock

11:1 ! Wait to restart

Figure 111-29. STEPPS Knowledge Source Model

PCSELECTOR

02

±.
PC,

A
KS

Figure IH-30. PCSELECTOR process

III.C Using STEPPS during system construction «nd tuning: Hearsay II 111-36

approximated. The method is to allow a fixed number of instantiations of a single KS

to act as a pool of KS's. These KS's compute in-parallel since different copies of the

KS can accept messages from their entry linK (Figure 111-31). Thü model performs as if

there were some maximum number of KS's of each type allowed. When a suitable

number of copies of a KS are available the limit will not affect performance.

4L

KS. KS, KS:

Figure III-31 Set of identical Knowledge Sources

III C 3 Performance questions pertaining to th« HSII model

The model of HSII emphasizes implicit interprocess communication via data

directed processing. This communication is the basis for interprocess interference

which occurs either when processes are blocked when attempting to perform a data

lock or when a process waits for the occurrences of actions of another process

(modeled as waiting for a message).

The following are pertinent questions for structuring of the Hearsay II system:

1. How much of the data base is locked and when?

2. What is the expected interference due to the locking?

3. How do various locking strategies compare?

4. Should a PC start up a set of KS instantiations sequentially, In pirallel or
in groups?

5. How many processors are needed?

6. What are the effects of alternate scheduling algorithms?

 "'I M« l'IHWA

IILC Using STEPPS during system construction and tuning: Hearsty 11 111-37

7. How cai the processing load be balanced among available processors and

with respect to the data base?

8. Is there a particular number of processes that should be dedicated to KS'a
and anothsr number that should be dedicated to PC's?

The ultimate goal is to be able to solve the speech prob'&m In the least amount

of real time. The questions relate to the goal in that they provide an understanding of

those places where Hearsay II is performing well and poorly with respect to

interprocess activity.

III.C.4. Application of the STEPPS system to Hearsay II

The STEPPS system was used to analyze a Hearsay II phenomenon discovered

by Fennell [Fennell 75a, 75b]. He appended a multiprocess simulator to a version of

the developing HSII system and measured the processing performance under several

multiprocessor configurations. One of the parameters of interest to him was the effect

of locKing on the the throughput of the multiprocessing system. Throughput is

important to the speed with which the HSII system would perform the speech

understanding tasK. Measures of throughput that he used were:

1, The average number of active processors, and

2. The average number of inactive processors.

One of Fennell's results was that when locking was used, to insure data

integrity and to prevent deadlocks, he obtained a measure of throughput averaging

4.16 processors with 16 processors available. However when the locking structure of

the simulation was turned off^ the average number of active processors was found to

be 11.84. Fennell did not explain this phenomenon, but noted that the locking

interference had a significant effect on effective parallelism [Fennell 75a, 75b].

^The'removVl of the locking, as reported by V. Lesser of the HSII researchers, does
not affect data integrity since the locking used in Fennell's simulations concerned

independent fields of nodes.

- - ■—

III.C Using STEPPS during system construction and tuning: He»rs»y II 111-38

The STEPPS system was proposed as a tool to analyze this phenomenon. The

motivation was twofold. First, the locking/no locking problem indication of close to

threefold processing utilization deterioration was important enough to analyze.

Second, this problem appeared to be a practical application of some of the STEPPS

^cilities^ A factor that added to the appropriateness of the STEPPS model was that it

is e^sy to model a data driven organizational structure, like HSII. One issue for

investigation was whether the probabilistic approach to modelling interprocess

communications was sufficiently powerful to reproduce the phenomenon found using

Fennell's simulation. If successful, the STEPPS model could be modified for

representing costly HSII system modifications, and predictions could be made of their

effects on HSII performance.

A brief discussion of a pertinent part of the locking algorithm follows (See

[Fennell 75a] for complete details). The data base consists of a set of nodes arranged

in a two-dimensional structure. Along one dimension are 9 categories called lexical

leveh. The second dimension represents uiieronc« limo and is divided into 30 distinct

units. Thus a node exists in a lexical level at a given utterance time. Nodes can be

grouped into lim« ragion, covering all nodes on a single lexicon level occurring

between time a and time b {o i 6). Locks can be performed on individual nodes or on

regions—locking all nodes within the regions.

In order to prevent deadlocks, locking is performed in a hierarchical manner

using specified conventions. The hierarchy is that locks occur in the order: by lexical

level and then by increasing time. Each process performs all of its locks, performs

some processing, and then releases all of its locks. There can be no deadlocKs since

all required data nodes must be available before any processing occurs and all nodes

♦it was not originally recognized that some limitations of the STEPPS system would
also be identified. This will be discussed later.

PIIUI i " ■ I'" »KW pi. Ji ■ — ~-T»«i II

III.C Using STEPPS during sysUm construction and tuning: Hearsay II 111-39

are released before any new locks are performed. In addition, when two processes

attempt to lock the same pair of nodes (possibly among other nodes as well), they can

not mutually block each other since they both must perform their locks in the same

order.

An additional attribute of the HSII locking convention is that a process

maintains a lock on a node until it releases all of its nodes. This means that if a

process locks node A but is blocked f^om locking node B, it waits for the release of

node B before continuing and maintains its lock on node A while being blocked. This

' method guarantees that each process will eventually complete its required processing,

but the method can cause a third process to be blocked unnecessarily if It only tries to

lock node A.

HI C 5 The STEPPS simulation of the locking problem

An analysis of the Hearsay II knowledge sources and preconditions was

performed to determine the parts of the blackboard examined by each process type.

By executing the HSII prototype system in a sequential mode with data collection

features turned on, members of the HSII development tearrr generated data that was

analyzed to determine proper probabilities and computit^n tines W".GJ In the STEPPS

model of HSII.

Due to the STEPPS sysf-.; overhead, ihe complete set cf por-ibls >jckinfc

structures could no: be mocV'-iO. Thus tS ^f^PPS modal of HS);. rop-L»x;mifed ?h»i

locking structure. For in« sctulation of HSII it was dolermntvd tli» locking -jccurrftd in

only 23 ways witn resptct to iextcon le...». Figure «11-32 shows the mktrix

representing these lo;*s and vhich oro^csses performed the locks. Each process

Special appreciation is ackncwl' Jgtd to V. Irsser, R. Fennell, and G. G»'!.

iw--

III.C Using STEPPS during system construction and tuning: Hearsay 11 1IM0

could choose from among its possible locks (as shown in the table) uniformly as the

current locking set for the process.

Lock Lexicon Lock Lexicon
No. Levels Locked No. Levels Locked

1. WORD + WROSURIM 13. PHON + PSEG
2. WORD + WRDSURN + BURN 14. PSEG + SEG
3. WORD + SURN + PHON ♦ MXN 15. SHDSENT
4. WRDSURN ♦ SURN + PHON 16. SHDWORD
5. WRDSURN + SURN 17. WORD
6. SURN ♦ PHON * MXN ♦ PSEG 18. WRDSURN
7. SURN + PHON ♦ MXN 19. SURN
8. SURN + PHON 20. PHON
9. PHON + MXN ♦ PSEG 21. MXN
10. PHON + MXN 22. PSEG
11. MXN + PSEG+ SEG 23. SEG
12. MXN ♦PSEG

Process\Lock 1 23456789 1011121314151617181920212223

xxxxxxxxx

X

X X

X X

PREIRPOL
KSIUV X X XX XX X XXX

PREIPSYN
KSIPSYN X X XX

KSICSEG X X XX

PREIPSC X X

KSISEARCH X X X X X X X X

KSITIME X X X X X X X X

PREIUTTB X X

KSIUTTB X X X X X X

PREISEG
KSISEG
PREIALO X

KSIALO X X X

X X

X

Figure 111-32. Hearsay II Locking Structure Matrix

The thrust of the simulation experimsnt was to reproduce Fennell's results

using a probabilistic model. Appendix B contains definitions of the probabilities used

for the simulation. The first question of interest was how the simulation performed

with locking vs. without locking.

f

IIl.C Using STEPPS during system construction and tuning: Hearsay II UMl

The individual time divisions for locks also contribute to locking Interference. A

second interesting question was how the region sizes affected simulated interference.

The STEPPS system posad an overhead limitation on what could be modeled and so

hindered answering this question. Specifically, it was not possible to represent locking

in all of the 30 possible divisions (4680 possible regions). Instead each lexicon level

was considered as a single region and decomposed into subregions in successive

experiments until the overhead of running the STEPPS system overwhelmed the

computer.

The parameters that could easily be altered for the system simulations were:

the existence of locking,

the number of subregions for each region,

the number of processors available, and

the probabilities that the processes performed their locks.

The region locks for each process were formed by examining the program

structures for each of the modeled processes. The probabilities used by a process to

choose locking structures were assigned uniformly over the possible locks. The times

between locks and the time for a lock to take place were taken from the HS1I system

data.

Several models of the system were simulated and representative results are

shown in Figure 111-33. The results demonstrate that with no process interference

there can be 12.26 processors active on the average. This corresponds to the results

found by Fennell's simulation of the entire HSU system. The second set of results

(with locking) shows that when the region locking interference is introduced there is a

dramatic decrease in parallel processing. As the regions were further decomposed,

parallel processing did not substantially change.

Ve ran out of memory at 200,000 words on the POP-10.

III.C Using STEPPS during system construction and tuning: Hearsay II IIM2

Locking Strategy Avg. Active Subreaions Total LpcKs.
No locking interference 12.26 9 23
With locking 3.11 9 23
Subregions MXN(2), PSEG(2) 3.06 11 53
Subregions MXN(2), PSEG(2), PHON(2) 3.27 U 75
Subregions MXN(2), PSEG(3)I PH0INK2) 3 11 13 85

Figure 111-33. Hearsay II Representative Results

As discussed in Appendix C, the statistical validation of these results, based on

the elimination of initial condition bias, was accomplished by performing trial runs of

the Hearsay II model to deterime subsequent simulation experiment run times.

Confidence intervals were not determined for the statistics presented sim.e

accumulated statistics (i.e., average active processors) requires multiple simulations

[Gordon 69] which were felt to be too expensive. Moreover, the STEPPS Hearsay II

simulation results were correspondences to Fennell's simulation experiments, which

were also not validated [Fennell 75a].

The STEPPS simulation results demonstrate that the probabilistic approach can

be used to model the Hearsay II multiprocess communication structure. Both the

Fennell and the STEPPS simulations indicated about a threefold decrease in a measure

of processing throughput due to locking. In addition, the relatively simple STEPPS

model indicated that the granular locking structure used by Hearsay II may not be

necessary.

III.C.6. Reflections on the STEPPS Hearsay II simulation

The STEPPS system's use as a tool for examining the Hearsay II process

structure was successful In that STEPPS adequaoly represented major interprocess

communication dependencies and proauced results reflecting on the Hearsay II system

mm

, —^ _ _- —

III.C Using STEPPS during system construction and tuning: Hearsay II 111-43

structure. The probabilistic approach applied within the STEPPS structure and the

approximations to the actual implementation were sufficiently powerful to reproduce

Fennell's result and indicate an area for HSII system modification. Another significant

observation was that the deta used to reproduce the Fennell result came from a

sequential operation of HSII and yet yielded appropriate predictions concerning the

multiprocess HSII system. This observation implies that the HSII multiprocess structure

does not produce a large amount of interprocess assistance (or interference) over the

STEPPS multiprocess model that contains no direct interprocess assistance.

Some further simulation experiments might have been useful for studying

Hearsay II. However, during the STEPPS simulations the Hearsay II system process

structure was altered. These modifications included the replacement of several

Precondition and Knowledge Source processes with new versions which resulted in an

increase in the total number of processes. To incorporate the Hearsay modifications

would have required the collection and analysis of data from Hearsay and the creation

of a new STEPPS model. The cost in computer time and analysis effort was too large

during the period that the simulations were performed. Experiments that might fwe

been useful are:

Restrict the number of available processors instead of using the maximum
possible.

Modify the process structure to use many simple Precondition and
Knowledge Sources.

Increase the number of subregion locking beyond that used.

An additional limitation to performing these simulation experiments was the

STEPPS system itself, since prototype limits of the STEPPS sys'em were reached when

the Hearsay II simulation mode' exceeded available PDP-10 memory.

Even considering the previously discussed limitations, the STEPPS system

■v ' i,n||ii .III^I^. «|U{l|i«!i|i|xi|i.uxp>iii).!i^i<<>Mi ■ ■ — .ijiuiiiii.ii,iii.Mii)i»iiiiiyu i ' —^-

111-44

application to Hearsay II was significant. First, the STEPPS model could easily

represent the non-trivial HSII communications structure. Part of this ease was due to

the HSII data directed process organization of interest in the experiment being well

suited to the probabilistic nature of STEPPS processes. The application demonstrated

that the data collected during a STEPPS simulation1 was sufficient to provide the

required results.* Finally, the STEPPS system could really aid the HSII systems

developers in tuning their system by providing a relatively simple framework to

examine the consequences of paramster changes (e.g. probabilities and timing) in

addition to structural changes.

■^See Chapter V for details on simulation data collection and parameters.

♦This can also be stated for the Bliss/11 application.

IV-1

Chapter IV

Analysis of a STEPPS Model

A STEPPS model of a program can be analyzed to predict some of th«

program'? performance properties. Unless a model is analyzed and certified as safe, a

program that is constructed, based on the model, may be useless. It is sometimes

valuable to exploit the similarity of the STCPPS model to Known models for application

of known analysis techniques; thus we begin with n review of these models and

techniques.

IV.A. Markov and semi-Markov processes

The model of a process described in Chapters I and II is essentially a

description of a semi-Markov process [Howard 71 vol. 1 & 2]. A discrete-time Markov

proceu is a probabilistic system composed of a set of states, a designated current

state, and a probabilistic rule for changing between states. The basic rule for a

Markov process is that the probability of a transition between the current state and

any successor state is independent of any past history. Let {l^^ be the set of

successive events and let the finite set {X^^ be the possible state values^ Then

the Markov assumption is formally:

P<En+l " *k I Ef - Xjt. t - 1... , n) - P(En+1 - Xk | £n - X^).

The probability that the next event, En+1, is a particular state, Xk, is only dependent

on the last event X^. When finite state processes are studied, the probabilities are

In general the state values could be an infinite set, but this research is only
concerned with finite state processes.

SSW»™W™TIJPimWi' -itTniii^www'ki.,. iJi.!J!ijitV'HT "

1V.A MarKov and semi-Markov processes IV-2

sometimes chosen to approximate known distributions to facilitate analysis. In all

cases, the sum of the probabilities of transferring from a particular state to the set of

next possibilities muf' be 1.

A Markov process may be composed of chain* of states. A chain is a set of

states such that once the process enters one of the states of the set the only other

states that the process can enter are in that set. In general, a process may have more

than one chain and whichever chain is entered first determines how the process will

eventually perform. The analysis and operation of a process with more than one chain

is dependent on the process's initial state. A process with only one chain is called a

monodenmic proceit.

For a monodesmic Markov process it is still possible that some states do not

recur. This happens if the process can ever reach a state such that the probability of

ever reaching some states is zero. States that can not recur in ueady itate are

called ironxMnt »täte». Informally, a transient state is a state of a process that can

only be entered between an initial state and a chain.

Example IV.A-1

Figure IV-1 (a) shows the transition matrix of a Markov process with
two chains. The states of the process are w, x, y, and z. If the process
is initially in either state w or x then the only states that it can ever
enter are w and x. However if the process is initially in either state y
or z then if can only enter states y or z. Thus the process has two
chains. No states are considered to be transient since all of the states
are in some chain.

Figure IV-1 (b) shows the transition matrix of a monodesmic process
having two transient states. The states of the process are a, b, c, and
d. The chain is composed of states c and d since once they are entered
no state other than either of them may be entered. In addition states a
and b do not form a chain since the process may eventually enter the c
- d chain from a and b. If either a or b is an initial state they may
recur many times, but eventually the chain will be entered and then it
will be impossible to enter either of them again.

^Steady «tat« is defined to be the operation of the process after some suitably large
number of transitions.

_ II ,,-p-————————— ' —

IV-3
1V.A Markov and semi-Markov processes

w X y z
w p l-p ö Ö
X q 1-q 0 0

V 0 0 r 1-r
z 0 0 1 0

(a) Two chains: (w,x) (y,z)

a
0 p l-p 0
q 0 0 1-q
0 0 0 1
0 0 10

(b) Transient States: a and b

Figure IV-1. Markov Processes

Markov processes have been studied in order to solve problems such as:

What is the expected number of transitions before entering state S?

What is the probability of entering state S from state T: (1) in m
transitions? (2) in m or fewer transitions? (3) ever?

In steady state, what is the probability of entering state S on the next

transition?

The last question points out one example where steady state activity is considered

important. For monodesmic processes the initial state is unimportant, but the activity

of processes with multiple chains is strongly dependent on the initial state since as

shown in Example IV.A-1 a process can behave quite differently in steady sUte

depending on how it was initialized. For this reason most models using Markov

processes are monodesmic.

This research is also concerned with the stead-, state properties of a

multiprocessing program. Transient states create difficulties in analyzing data flow in

the steady state of a multiprogramming model because It is possible that a process will

IV.A Markov and semi-Markov processes 'V-4

r^ver reenter a transient slate. The STEPPS model is restricted to disallow processes

with multiple chains and transient stahs because ihey do not contribute to the steady

state of a process. The STEPPS sysvim is able to analyze a process and determine

whether these restrictions have been met. The algorithms (or performing this antlysis

are discussed later in this chapter.

A $emi-Markov procen is a generalization of the Markov process model. In a

Markov model, one unit of time elapses between successive transitions in all cases. In

the semi-Markov model, the time taken between successive transitions depends on the

particular transition. In the model's most general form, the time taken between any

two successive states can be a random variable; in the STEPPS model this serves no

useful purpose, so the time taken between any two particular transitions is a constant

depending only on the two states, in fact, the real time between transitions In a

STEPPS model is usually not completely predictable since a process may be forced to

wait as discussed in Chapters I and II.

Some problems that have been studied using the semi-Markov process models

an:

What is the expected process time between entering state S and entering state

T?

What is the expected process time between recurrences of state S?

In steady state, what is the expected percent of time spent in state S?

Again, the last question is the most interesting one for the STEPPS model.

There is not always an accurate result for a STEPPS model because processes in the

STEPPS model are not semi-Markov due to the essentially unpredictable^ wait time.

However an estimate of the type of activity that a process will be performing when it

is executing is 'till a useful result.

^The wait time is unpredictable for a given process when considering the process
independently of the entire model.

IV.A Markov and semi-MarKov processes IV-5

The theory tells us that it is possible to predict the steady state probabilities

of which state will be entered next, not knowing the present state. This means that it

it possible to create a representative transition matrix such that each row is the same,

I.e. the choice functions are all the same when the most recent state is unknown.

These probabilities also reflect the probability of being in each of the states after a

large number of transitions.

The steady state probabilities can be determined analytically by solving a set

of n*I linear equations in n unknowns. Let ST,, 1-1, . . . , n be the steady state

probabilities of the process and let pitj be the probability of entering state j from

state i In one transition. The equations to be solved are:

STi-p1(i*ST1+... + pn(i«STn fori.l,....n

1 - ST! + ST2 ♦ •. ■ + STn

The first n equations are redundant, so the solution requires replacing one of

the first n equations with the last equation. The system of equations will be solvable

since the matrix describes a monodesmic process with no transient states^Howard 71

vol. 1J Otherwise the equations do not have a unique solution.

The analysis that has just been described is one of the Markov theoretical

analytic techniques that can be applied to the processes of a STEPPS model. The fact

that the STEPPS model processes are similar to semi-Markov processes is only useful

if a system designer wants to analyze components of a STEPPS model in this way. In

most cases, Markov and semi-Markov tnalysis of STEPPS processes is of limited

usefulness since the STEPPS processes are only components of a larger model and the

transition matrices do not entirely reflect the operation of a process.

In order to represent analytically an entire STEPPS model, all possible states

^his is guaranteed by the STEPPS system.

IV.B W«ll-formed STEPPS models IV"6

(In the Markov process sense, rather then STEPPS) must be Included in the enelytic

description. Not only must every STEPPS state be included as enolylic states, but also

analytic states must be introduced to represent the operations of the STEPPS links.

The effect is the creation of a matrix representing at least N squared states (where N

Is the sum of the number of STEPPS states in each STEPPS process). Not only is this

model complex, it requires the introduction of probabilities (and associated times) for

some new, potential Markov slate changes.

IV.B. Well-formed STEPPS models

As noted in Chapter I, in order for a STEPPS model to be useful it must meet

certain restrictions and be designated as a uell-formei model. Earlier in this chapter

it has been pointed out that each process in a STEPPS model must be monodesmic and

have no transient states (termed well-formed procen). An additional restriction

guarantees that a model represents a data flow which can be simulated and which can

reach steady state if simulated for a sufficient period of time. Hence other restrictions

to the model (termed well-formed graph) are that all links must be attached to both

input and output ports, that all ports be attached to links, and that the graph be

connected. If these restrictions were not imposed then some process would eventually

request messages from an empty link or try to send messages to a link whose message

limit has been reached.

IV.B.l. Monodeamic and transient state well-formed criteria

Let the N states of a proves' be identified by the integers 1 to N. Let the

probability of state j succeeding state i be Pjj, the entry in an N by N transition matrix

P.

IV.B Well-formed STEPPS models IV-7

In order to test whether a process is monodesmic and has no transient states it

is sufficient to determine whether the probability of each state transferring to each

other state in N or fewer transitions is greater than zero. The first step is to form a

tramition relation matrix, C, representing a relation between states, defined by Cj i ■

0 if Pj: - 0; and 1 otherwise. The next step is to form the transitive closure of the C

matrix, which describes whether there exists some succession of connections between

any two states. If the closure of C is all ones then every state is able to transfer to

every other state and so the corresponding process is monodesmic and has no

transient states.

There are several algorithms for forming the transitive closure of a relation.

One method to form the closure, as shown by Prosser [Prosser 59], starts by forming

Boolean powers of the matrix to show whether a transition can occur in two or more

transitions. The i,j term of the Boolean square of a matrix is the Boolean expression

(logical sum):

<c2)i.j - A-l Ci(kCK(

CL : - 1. The i,j term is equal to 1 if and only if there is some K such that Cj ^ - C^

Similarly if the N-th power of the matrix is formed, a 1 in the resulting matrix

represents that a transition can be made in N steps. If a Boolean sum is taken of the

first N powers of C, then the resulting matrix represents whether a transition can be

made in N or fewer steps. This matrix is the closure. (Other, more efficient, methods

for forming the closure of a matrix are known [Warshall 62].)

IV.B.2. Well-formed graph structure criteria

Three basic structural properties are necessary for a well-formed STEPPS

graph model. They are:

IV.C Deadlc ' uctures and situations IV"8

1. Each port is attached to a link.

2. Each link is attached to at least one input port and one output port.

3. All nodes are connected to each other via some set of paths, i.e. the graph
is not disjoint.

The last property means that for any partition of the nodes of the graph into

non-empty subsets of nodes, there will exist at least one connection from some node

in each subset to a node outside of that subset.

The first two properties are verified by examining each node of the graph and

checking the connections to the node. The third property is determined by first

forming a node connection matrix NC where ncjj - 1 if node i is connected to node j or

if node j is connected to node i; 0 otherwise (ignoring that the graph is directed). As

before, the closure of the NC matrix is formed. If the closure contains all ones, then

there exist connections between every pair of nodes.

IV.C. Deadlock structures and situations

The nature of communication dependencies can create problems for a system of

interacting communicators. The basic problem in a STEPPS model is that processes can

achieve states such that at least one process will never be able to change state

because it is waiting to activate its associated port; this is called the deadlock

prohUm. In some STEPPS structures a deadlock problem may be so severe that no

process can ever change state and no further processing of any kind is possible. On

other structures some subparts may still be able to continue processing (possibly

incorrectly). A structure that is completely deadlock free is defined to be 10/e.

Either of two views may be taken when examining a structure for deadlocks.

The first view is that a structure must not con.ain any chance of an occurrence of a

IV-9
IV.C DeadlocK structures and situations

deadlock. Th. second is that a process may have deadlocks as long a. it It possible to

identify how the deadlocks occur and the probability of their occurrence. The term

-deadlock" in the STEPPS model refers only to communication structures which can not

be removed other than by restructuring a model. In practice other methods, e.g. .«

restarting a process after an unusually long delay, are sometimes used In system«

where deadlocks can occur.

The deadlock problem has been studied extensively along several dimensions.

The survey by R. C. Holt [Holt 72] examines many of the deadlock problems. Most of

the deadlock algorithms are oriented toward solving problems concerned with resource

requests from a pool of resources. Holt presents a graph model of the resource

problem and a set of graph reductions to determine whether a modeled system

contains deadlocks. The difference between the STEPPS solution and his is that Holt

limits his analysis to necessary conditions (cycles) and sufficient conditions (a knot^)

for the existence of a deadlock. He does not report on the solution of the general

problem. Several problems that have been solved have been concerned with reusable

resources. The STEPPS model does not consist of reusable resources since messages,

which are the resources in STEPPS, need not be preserved. The STEPPS model is

somewhat different from the models that have been examined in paut resee-ch, so the

deadlock problem has been examined and solved (with a few restrictions) for the

STEPPS model.

The following sections present some structures and situations that can cause a

STEPPS model to deadlock. These examples are not necessarily independent nor

complete, but they demonstrate some types of deadlock structures.

^ÄVnöri'rrs'ubs'eToV nodes of a directed graph such that each node is attached to

the other.

IV.C Deadlock structures and situations IV-10

IV.C.l. Initial condition incompatibility

It is easy to create a structure that is safe for some initial states of the

components of the structure, but not for others. The possible problems are that data

are not available where required or that the system contains too much data. For

example, all output ports that are initial states might be attached to links that are

initially at capacity and all initial input ports might be attached to empty links. It is not

necessary for such a condition to occur before execution begins; the condition may

also occur after only a few state transitions. An example of initial condition deadlock

is shown in Figure IV-2. In this example process C is waiting for a message from B

and process B is wailing for a message from C. Process A will always be waiting to

send a message.

A
B

*

■>
el T\

0
V

1
1

I
vo

■■

vo

Figure IV-2. Improper initial condition

IV.C.2. Loops

A loop is defined to be a path from an output port, 0X, of a process to an input

port, Iy, of that process with no connections along the path between them going to the

original process. When each node in a loop is connected only to other nodes in the

loop, the loop is called a doted loop.

IV.C DesdlotK structures and situation«
IV-ll

If »ny port Of any proc.ss nod. is .m«*d..t.-rwufr.nt (including the nodes et

either end), then It is possible thet the port could send (or request) «Ira messepes. A

solution to this desdlock problem is IM both . SN<t and a SOURCE* must be attached

to nodes in the loop. Thus the loop cannot be «M when Ihm i. an immediate-

recurrent state within it (Figure IV-3).

A loop that is not closed and does not have both a SIW and a SOURCE

attached to nodes in the loop may conta.n deadlocks because it may be possible for a

message to be shunted to the SINK or any other process not in the loop. Similarly,

extra messages entering a loop from a node not in the locp en mm a link to become

filled with extra messages.

A
01.

ii

g _i M

01*
B

A 11 01

1_
■p

i

11*
01

B
11
01*

0 1
1 0

11 0
p 1
1 (

Figure IV-3. Loop with immediate-recurrent states

^A SINK is process whose only port is an input port.

*A SOURCE is a process whose only port is an output port.

IV.C DeadlocK structures and situations IV-12

IV.C.3. Incompatibl« taquanc««

t i. When a data path can be recognized as a cloud path, it is possible to

determine the number, N, of messages required to enter this path in order for any

messages to be available at the linK attached to th J end of the path. It is also possible

to determine the number, M, of messages that will be available at the end of the path.

The link attached to the end of »he path may require a certain number of messages, L,

before the input to the next path attached to it can yield any massages. If M does not

at least equal L and if N, M, and L are finite then the system can deadlock. It also must

be true that fewer than 2N messages enter the path before a response is required

from the path. Figure IV-4 shows an example of this.

(NJ AIM] ^ (LI B

Figure IV-4. Incompatible Sequence

IV C 4 Split paths that do not join properly

A data path may split in two ways. V, a link is attached to more than one input

port, messages that reach the link may go down either path. If the paths join again at

two different ports of the same process then it may be possible for an insufficient

number of messages to enter one of the paths and thus force the merging process to

wait for data that will never come. Figure IV-5 shows this situation, where processes

A and B send messages to C and C must receive a message from one before receiving

a message from the other.

^A dosed path is a path between two nodes such that all nodes In the path are
attached only to other nodes in the path.

IV.D Reducing a STEPPS model
IV-13

X. s. A

C
•

»

"•w B

Figure IV-5. LinK split paths

The second way in which data may go down alternate paths occurs when ■

process sends data along two different paths that eventually merge. If mora data can

go down one path than can be received by the port at the end of the path then this

path will eventually fill up with messages. The two processes must be exactly

synchronized as to their data dependencies. Figure IV-6 shows this situation. Every

message sent by A from port A.01 must be accepted by B.I1 and the same Is true for

A.02 and B.I2.

s*. 01 ■>» 11 ?
•
• A B
•

02 "■». 12

Figure IV-6. Process split paths.

IV.D. Reducing a STEPPS model

Under certain conditions it is possible to determine whether a STEPPS graph

IV.D Reducing a STEPPS rrodel IV-U

model is deadlock-free. The conditions are that the graph be well-formed, initial

process states be ignored, and the initial number of messages and queue size limits be

ignored. The method used to determine whether a graph is safe is to apply a set of

graph reduction». These reductions will be shown to reduce all safe graphs to other

safe graphs and to reduce all unsafe graphs to other unsafe graphs. In addition, it will

be shown that one of the reductions is always applicable to a safe graph. Thus, the

reduction process may be repeatedly applied until either an empty graph or an

irreducible graph is reached. When an empty graph is produced the original graph is

safe. When an irreducible graph results, then the original graph can generate a

deadlock.

There are four graph reductions that can be applicable wnen certain conditions

are met:

Rl: Combine two adjacent processes.

R2: Eliminate states of a single process.

R2a: Combine two ports of the same type, attached to the same link, to
become one port.

R2b: Eliminate ports of opposite type connected to the same link.

R2c: Eliminate ports attached to SOURCE/SINKS.

R3: Combine two processes that are in-parallel .

R4: Eliminate all SOURCES, SINKS, and unattached links.

Graph Reduction Process: The first three reductions are applied iteratively

until none is applicable and then the last, R4, is applied. If the result is an empty

graph then the model is safe; otherwise the model is unsafe. The reduction process

sometimes converts the graph into disjoint parts, and this is necessary to the reduction

process.

*Two processes are in-parallel when each process has exactly one input port and one
output port and the input ports of the respective processes are connected to the same
link and the output ports are connected to the same link.

IV.D Reducing i STEPPS model IV"15

The reductions are based on potential interprocess communications. Since a

process tranntion relation matrix represents the presence or absence of possible

interprocess port activations, it will be th^ vehicle used to demonstrate that the

reductions maintain process legality. Thus by proving that the transitive closure of a

resultant transition relation matrix is entirely 11, each reduction is demonstrated as

producing resultant processes that are monodesmic and have ro transient states.

IV.D 1. Rl: Combine adjacent processes

Two adjacent proeeuet* are combined when it is determined that their data

manipulation functions can be replaced by a single process. It will be demonstrated

that the combination of two adjacent processes in an unsafe graph will not convert the

graph into a safe one.

Rl is applicable in two situations:

Rla: neither of the adjacent ports is immediate-recurrent and they repeat
the same number of times.

Rib: one of the processes is a DELAY™.

For Rla, the two processes are combined and the link between them is eliminated. For

Rib, the DELAY and the link between the processes are eliminated. Rib is a trivial

case where the DELAY is functioning as a link. The remainder of this subsection is

concerned with Rla.

Rla relies on the assumption that each of the two adjacent processes will

^Some representative probabilities can be assigned to the resultant processes, but
these will not be presented since they detract from the clarity of the explanation of

the reductions.

*Two processes are adjacent when they contain adjacent ports.

t+A DELAY is a process with only two ports, an input port and an output port,
provided neither port is immediate-recurrent.

IV.O Reducing a STEPPS model IV-16

eventually enter the states of their adjacent ports. The situation can be modeled as

one where the process containing the output port sends a message to the other

process (and waits), and this second process computes until It requires another

message from the first process. Then the first process computes until it reenters the

original state. In this way, both processes are able to chanro state if one can (when

the graph is safe). The transition relation matrix of the combined process is formed by

a construction that (i) eliminates the adjacent ports and (ii) unites the successors of

states that immediately preceded an eliminated state of one process with the

successors of the state of the second process. In this way the new combined process

is still nonodesmic and without transient states since each state is still able to enter

each other state, but now may go through states of what was formerly part of a

different process.

The new transition relation matrix is formed in the following manner. Let the

ports A.e and B.f be adjacent and let neither state be immediate-recurrent. Let A.x,

A.z, B.y and B.w be other ports of the two processes. If the new combined process is

called AB, then c'tAB^ABz) ■ c(AxAz), c'(AB.y,AB.w) ■ c(B.y,B.w), c'(AB.x,AB.y) ■

c(A.x,A.e) ^ c(B.f,B.y) and c,(AB.y,AB.x) a c(B.y,af) A c(A.eA<)*

Lemma Rl.l: If A.e succeeds Ax and B.y succeeds B.f, then AB.y succeeds

AB.x, i.e. c'(AB.x,AB.y) - 1.

Proof: A.e succeeds A.x means c(A.xAe) - I «"d B.y succeeds B.f means

c(B.f,B.y) - 1. Therefore c'(AB.x,AB.y) - c(AxAe) A c(B.f,B.y) - 1 A 1 - 1.

Lemma Ri.2: If B.f succeeds B.y and A.x succeeds A.e then ABx succeeds

AB.y.

f The meceitor «10101 of a state are those that can be entered in one transition.

*c(s,t), a transition relation matrix entry, is defined to be the presence (1) or absence
(0) of probability of entering state t from state s. c'lw.u) is a transition relation matrix
after the application of a reduction. All operators (A and v) are logical operators.

IV-17
1V.D Reducing a STEPPS model

Proof; As in Lerrmi Rl.l.

LBmma BU' T^re exi8U 8 sequence ^ tr>n6i,ions ,r0m Aa* t0 AB-y-

Prsaf: Since A and B are assumed to be legal STEPPS processes, their

respective transitive closure transition relation matrices are all 1's. As a property of

transitive closure, this means that there exists a sequence of transitions from A.x to

each predecessor of A.e and their re:,ective similar states in AB. Similarly there

exiats a sequence of transitions fron, successors of B.f to B.y and their respective

similar states in process AB. By Lemma Rl.l and the above, there exists a sequence of

transitions from AB.x to each corresponding successor of B.f and thus to AB.y.

Lemm, B1A There exists a sequence of transitions from AB.y to AB.x.

Proof: As in Lemma R1.3.

Lemma Rlü: Process AB is a legal STEPPS process, i.e. the transitive closure

Of the corresponding transition relation matrix is all I's.

Proof; By Lemmas R1.3 and R1.4. there are sequences of transitions between

each slate that was originally in A to each state originally in B and visa-versa.

' Therrfore by juxtaposing sequences of transitions there exist sequences of transitions

between any two chosen states of AB. By the definition of trancitive closure this

corresponds to ail I's in the transitive closure transition relation matrix for AB.

Example IV.D-l

The processes in Figure 1V-7 are d by forming a process with
Iwo states fewer than the total number of states of the ong.na two
processes. As shown by the transition relation ^^es all of h
predecessor states of the output process now transfer to »he »u^esso
stetes of the input process. All of the predecessor states of the input
process now transfer to the successor states of the output processes.

Theorem RI: Rl (combine adjacent processes) preserves the message flow

structure of • model with respect to graph elements not involved in the reduction

(whether or not the original graph was safe).

IV.D Reducing a STEPPS model IV-18

11 12 01 02
11 0 0 0 1
12 1 0 1 1
01 0 1 0 0
02 1 1 1 0

B 13 14 03 0/!
13 0 1 1 1
14 0 0 0 1
03 1 c 0 0
04 1 1 I 1

Becomes

AB
11
12
14
02
03
04

11 12 14 02 03 04
0 0 0 1 0 0
1 0 1 1 1 \
0 0 0 0 0 1
1 1 1 0 1 1
0 1 0 0 0 0
0 1 1 0 1 1

V V
IJ. 14

12 AB
OA

02 03

TT

Figure 1V-7. Process combinations

Proof: Let A and B be the original processes and let AB be the result of

combining them. It will be shown that any message that could be requested by A or B

can be requested by AB and that any message that would bo sent by A or B to ■ link

will be sent by AB.

By Lemma R1.5, the new process is monodesmic and has no transient states.

Coupled with the reduction definition, this means that all states of AB can be entered

exactly as rften as in the original processes, A and B. Thus all input ports of AB are

guaranteed to be able to receive messages if they originally could, so the state

IV.D Reducing a STEPPS model IV"19

associated with a given input port will always be able to change. UKewise each state

associated with an output port of AB can change to another state if it could originally.

For these two reasons all messages that would be requested by A or B will be

requested by AB and all messages that would be sent by A or B will be sent by AB.

1V.D.2. R2t Eliminate atata of a procesa

There are three circumstances in which a state of a process may be removed

by applying reduction R2. There are two distinct methods of removing a state:

combine two states to become one; and eliminate a state. As with Rl, the removal of a

state does not affect data flow patterns. (An exception is that the combination of two

states into one sometimes modifies the r jmber of times a state repeats.)

The method used to combine (too itam into one state is defined as follows.

Let A.x and A.y be the names of the states of process A being combined. For

convenience, the resultant combined state will be called A.x. The rule for combining

the states, in terms of the transition relation matrix for process A, is:

Let A.z be a state of process A that is neither A.x nor A.y, i.e. it will remain

after the reduction.

cXA.x.A.z) ■ c(A.x,A.z) v c(A.yAz)
c^A-zAx) ■ c(A.z(A.x) v c(A.z,A.y)
c'(A.x,A.x> • c(A.x,A.x) v c(A.yAx) V c(A.yAy) V c(A.xAy)

The above means that any successor of A.y becomes a successor of Ax, end

any predecessor of A.y becomes a predecessor of A.x.

Lemma R2.1: The reduction to eomMn« iiaiaj yields a legal process.

Proof: It must be shown that the resultant process has no transient states and

is monodesmic. The original process. A, was legal and thus there existed finite

sequences of transitions from each state to each other state. The construction of the

1V.D Reducing a STEPPS model ,v"20

new process by comhin« »tatet guarantees a legal process since (a) if there existed a

sequence of transitions between two states without going through A.y, the reduction

does not alter the sequence and (b) any sequence of transitions that went through A.y

will now go through A.x instead.

The method used to eliminate a ttate of a process is defined as follows. Let

A.x be the state being elirrnated and let A.y and A.z be other states. The rule for

eliminating a state, in terms of the transition relation matrix for process A, is:

c'(A.y,A.z) ■ c(A.y,A.z) v (c(A.y,A.x) A c(a.x,A.z))

The above means that A.y proceeds A.z either if it did before the reduction or

if A.y proceeded A.x and A.x proceeded A.z.

Lemma R2.2: The reduction to eliminate a ttate yields a legal process.

Proof: A sequence of transitions between two states not going through A.x

still exists after the reduction. A sequence of transitions that went through A.x, simply

skips A.x after the reduction. Thus the reduction yields a process that is monodesmic

and has no transient states.

R2a: When two ports of the same type are connected to the same linK one port is

removed, depending on one of the following conditions.

(i) Each of the two states can succeed the other in one transition. This
means that the states are equivalent to one immediate-recurrent state.
The two states are combined to become one state.

(ii) The successor states of the two states are the same (not counting each
other). This means that the states act as one state with possibly different
transition probabilities from the original states. The two states are
combined to become one state.

(iii) The two states are in-sequence, i.e. one state will enter the other with
certainty. Alternatively, they may be one-to-one. This means that the
two states are really one with finite repetition. One of the states is
eliminated.

Note that a link is also eliminated by reduction R2 when all ports that had been

attached to the link are deleted.

IV.D Reducing a STEPPS model IV-21

R2b: When a llnK is only attached to both input and output ports of process, then

pairs of these input/output ports of the same process that are one-to-one and repeat

the same number of times can be eliminated. When this st ucture occurs, every

message sent to the link is guaranteed to be requested by one of the other ports of

the process. If the ports are the last two connected to the linK then the link is also

removed.

Example IV.D-2

In Figure IV-8, ports II and 03 are adjacent and are one-to-one. They
are eliminated as shown.

Becomes

ALPHA
U
12
03
04

Becomes

ALPHA
12
04

11 12 03 04
0 1 0 1
0 0 1 1
1 0 0 0
0 1 1 1

12 04

12 ALPHA 04

Figure IV-8. Adjacent ports of a process

R2c: A state that is attached to a SOURCE/SINKt is eliminated, since once it is

entered, the process can always be assured of being able to enter a new state. If the

♦A SOURCE/SINK is either a SOURCE or a SINK depending on the context. A SOURCE
would be attached to an input port, whereas a SINK would be attached to an output

port.

»w.L-» I^OWWVIII^ W w* ' I-' I \J TIIWWC7I

state it the last state of a process then the entire process is eliminated. If the port

was the last port attached to a link then the link is also eliminated.

Example IV.D-3

In Figure IV-9, both ports 14 and 06 are attached to SOURCE/SINKS.
They are both eliminated.

Theorem R2: R2 (eliminate states of a process) preserves the message flow

structure of a model with respect to graph elements not involved in the reduction

except for links attached to SOURCE/SINKS

Proof: Let A be a process that is reduced to A'. By Lemmas R2.1 and R2.2

each state of A' can always be entered. The cases to be considered are enumerated

by looking at how a link was attached to A and then to A*.

A link that was attached to A and not to a port of A that was eliminated by the

reduction will still have the same interaction with A' as with A since, by construction,

any states that would have entered an eliminated state will transfer to a successor of

the eliminated state. Thus the state that is attached to the link will occur just as often

in A' as in A.

A link that was attached to A and is attached to A', but by one fewer port, will

still have the same interactions with A* as with A since the remaining connections to A'

are constructed to guarantee this. Two states of the same type that are attached to

the same link and succeed each other act like an immediate-recurrent state since any

number of link interactions can occur before a different state is entered. Two states

of the same type have the same successor states and are acting in the same manner as

one state except for different probabilities to the successor states. Two states of the

same type that are in-sequence and are attached to the same link act like one state

that repeats before entering another state.

1V.D Reducing a STEPPS model 1V-23

1

14 08 ».

 > A
11 01

Becomes AM

11 01

— ->

r»
 >

t I
ii 14 01 06

n 0 1 i 0
14 1 1 0 1
01 1 0 0 1
06 1 0 o 1

Becomes

A0'
11 01

->
 >

A

' f

11 01 06
11 i i 1
01 i 0 1
06 i 0 1

Becomes

Becomes

II

11 01
11 i i
01 i 0

Figure 1V-9. Ports attached to SOURCE/SINKS

01

A link that was attached to A and is attached to A' by two fewer ports occurs

when pairs of input/output ports are removed. The message flow is preserved since

the ports were only removed if they were one-to-one. This means that whenever a

message is sent to (requested from) the link, it Is guaranteed that a message will later

be requested from (sent to) the link. A link that was only attached to those two ports

Is removed as part of the reduction. Since the message flows to and from the link

1V.D Reducing a STEPPS model 1V-24

were eliminated with the link, the remainder of the graph Is the same. This completes

the proof.

By assumption, Theorem R2 is not concerned with linKs that had been attached

to SOURCE/SINKS mi are no longer attached to a port of a process. This situation is

represented by reduction R2c. Messages flow between a SOURCE/SINK and the

reduced process. The reduction occurs by considering the SOURCE/SINKS as message

suppliers and terminators. Reduct'o.T R4 eliminates these processes and so message

flow involving them is eliminated.

IV.D.3. R3: Combine processes that are in-parallel

When two processes are in-parallel, each process has only one input and one

output port and both processes' input ports are c^-'hsd to the same link and both

output poris are attached to the same link. Wh&n a message is in the queue of the

common link attached to the processes' input ports, it can be requested by either of

the processes. Whenever the choice will not affect message flow the two processes

are combined. In particular, an immediate-recurrent state subsumes the function of the

state of the process that is attached to the same link. Thus a DELAY that is in-parallel

with other processes containing two states is eliminated.

A Bl/ICK BOX is a process having just two ports, one output port and one

input port. Both associated states are immediate-recurrent. Any process that is in-

parallel witt i a BLACK BOX can be removed since the BLACK BOX subsumes the

operation of the othor process.

Let the two processes be ALPHA and BETA with ports ALPHA.I1, ALPHA.01,

BETA.11 and BETA.01 (Figure IV-10). The second process, BETA, will be the combined

process. The new transition relation matrix is defined by:

c^BETA.!!,BETA.11) ■ c(BETA.Il,BETA.Il) v c(ALPHA.Il,ALPHA.Il)

WM«-" " ' ■ ^ ^ " ~ ' ' -^-w—^ 'I i "■'■■ -"■-■' ■ r , >Si .• .. .«»«crwMi

IV.Ü Reducing a STEPPS model IV-25

c'(BETA.Il,BETA.01) ■ c(BETA.lllBETA.01) v c(ALPHA.Il,ALPHA.01)
c'(BETA.01,BETA.Il) ■ c(BETA.01,BETA.Il) v c(ALPHA.01.ALPHA.Il)
c'(BETA.01,BETA.01) ■ c(BETA.0i,BETA.01) v c(ALrHA.01,ALPHA.01)

It is obvious from these simple equations that the new transition matrix is legal.

•^ 11 ALPHA 01

s.

s
*
t
•

•
•
•

Ii BETA 01
1 >

Becomes ^
's.

> 11 BETA oi »
• •
 ^ • ^ .

Figure IV-10. Combining processes that erö in-parallel.

Theorer" B3: R3 (eliminate processes that are in-parallel) preserves the

message flow of * model with respect to graph elements not involved in the reduction.

Proof: If one of the input ports that is attached to the link attached to the

input ports of the two processes is immediate-recurrent, tnen it is possible that an

undeterminable number of messages can be requested by the processes before a

message is sent to the linK attached to the processes' output ports. Thus, if one input

* state is immediate-recurrent then the elimination of the other does not affect the

number of messages that can be accepted by the reduction of the pair of process

into one process. Likewise if one of the output ports is immediate-recurrent, any

number of messages can be available at the link attached to the output ports and so

the other output port is eliminated.

If neither input port is immediate-recurrent then the combination of two input

ports is the same as one of them requesting a message twice, so the other can be

eliminated. Likewise if neither output port is immediate-recurrent then the combination

is the same as one sending two messages to he link and so the other output port can

be eliminated.

W»^'Tw^!l-™VIW/»;--l',',.'l,l'Wffl¥!^fr!Ta,mW»l'.il?- iJ.J^l|MllJp^.^i'P.i,l'.^WP,'«1.UiWWII»>l«l."J--*W»!1 "■•■ ,^r,..r.-..,*„.^„7,.„1~rr™,^ . ,, w.„ . ..r^^p^^w,.,.,,..„, . - '■"■"«■V '

IV.D Reducing a STEPPS model IV-26

IV.D.4. R4: Ramov« SOURCES ird SINKS

Since the original graph was well-formed, all links were originally connected to

both input and output ports. However, reduction R2c removes all connections of one

type to a link. When R2c is no longer applicable, no process is attached to a

SOURCE/SINK. Thus SOURCES and SINKS can be attached to links, but serve no other

purpose than to have allowed R2c to occur. They are eliminated. If the SOURCE/SINK

is the last connection to a link then the link is eliminated too.

Theorem Rfl: The elimination of SOURCES and SINKS preserves message flow

of those elements not attached to the SOURCE/SINKS.

Proof: This 's true since reduction R4 occurs after Rl, R2, and R3 are no

longer applicable and since R2 eliminates all connections to SOURCE/SINKS other than

the connections between a link and a SOURCE/SINK. Any other elements in ■ graph

are left unaffected since they are not connected to any SOURCE/SINKS.

IV.0.5. Graph reducibitity

The remaining requirements to show the validity of the reductions are that a

s<ife graph is always reducible and that an always reducible graph is safe.

Reducibilitv Theorem; A non-empty, well-formed, but not necessarily

connected, safe graph is always reducible. (Equivalently, an irreducible graph is not

safe.)

Proof: Assume the existence of an irreducible graph and consider all possible

connections to a link in the graph. The implications of the inapplicability of any of the

reductions are as follows. There e four cases:

Casel: A link is connected to only input and output ports of one process.

IV.D Reducing ■ STEPPS model 'V-27

Since reduction R2 is not appiiceble, then no p«lrt of these ports «re one-to-one end

so at least one of the ports can dominate the activity at the link. This will cause the

state associated with the other ports to wait indefinitely since eventually either no

messages will be available at the link or the link's finite queue size limit will be

reached. This is a deadlock situation.

Case2: A link is connected to only two ports, of the same type, of different

processes, i.e. adjacent processes. Since reduction Rl is not applicable, one of the

adjacent ports is immediate-recurrent. It is possible for one of the processes to

dominate the activity at the link. This will cause the other port to wait indefinitely

since eventually either no messages will be available at the link or the link's finite

queue size limit will be reached. This is a deadlock situation.

Case3: A link is connected only to ports of the same type of one process

connected to the link. Since reduction R2 is not applicable, no pairs of corresponding

states (i) succeed each other, (11) have the same successor states, and (ill) are h-

sequence. When a message is requested from (or available to) the link, there Is no

guarantee which port w'll request (send) a message first. This makes a difference

since the successor states of the two ports are different. There are no SOURCE/SINKS

in an irreducible graph so it is impossible to guarantee that another link access will

occur due to access from other processes. In addition, there are no DELAYS nor

adjacent one-to-3ne ports of a process and so there are no additional guaranteed link

accesses due to the process itself. Therefore a proce»» can deadlock because the

wrong port can access the link first.

Case4: At least two ports, of the same type, of different processes are

connected to a link. Since reduction R3 is not applicable, none of the corresponding

processes are in-parallel. Thus the operation of the model can be affected by

^i-™.,, .Li.■!(,iiiiij,.«^IPJUI11.' «•.,, — - —— •■"l ' '■' "• ■' ■-,■■■ ' 1 1 ———— —^~- "-

IV-28
IV.D Reducing a STEPPS model

whichever of the processes performs the first link access. It is also possible for one

process to dominate the activity at a linK. There are no SOURCE/SINKS and so no

guarantees of an eventual link access. The situation can cause a deadlock when the

wrong process accesses the link first.

It has been shown that all possible connections to the link yield a deadlock.

Therefore an irreducible graph is not safe. The contrapositive of this is that a safe

graph is reducible.

The arguments of this section have demonstrated that an irreducible graph is

unsafe and have proved the Reducibility Theorem.

Irreducibilitv Theorem: An unsafe graph is not always reducible. (Equivalently,

a graph that is «Iways reducible is safe.)

F>r00f: Let X be a graph that is always reducible. Assume that X is not safe.

It will be shown that this is impossible.

By Theorems Rl, R2, R3 and R4, the reductions Rl, H2, R3 md R4 each

preserve potential message flow in the graph with respect to those graph elements

not involved in the reduction. Thus no reduction can cause a deadlock due to

interprocess communication no' involved with the reduction. Further, by the definition

of each reduction and by Lemmas R1.5, R2.1, R2.2 and Theorem R3. a reduction is only

applicable to a safe element structure and produces a legal and a safe element

structure. Thus a reducible gruph is safe.

Example IV.D-4

Figure IV-1I shows an example of an irreducible graph since the
following set of state transitions could occur in sequence:

1. A.Ol
2. C.I1
3. A.02
4. B.I1
5. 8.01
6. A.01

-■-w,,,PI j. ,11^111, i,.,.,.^«.-,^-^ - -. ,^ „,-_ • .ill ■.WIUI,.«.., i..,.. -. . VSRII«

IV.E The recognition of deadlocks IV-29

7. Repeat 3 to 6 until the link L2 becomes full.
8. C tries to perform C.I2, but can not since LI is empty. B can not

change state since LI is empty. A can not change state since L2 is full.

L2

01
A

02

-

—^

<»■

x 11 B 01 11
C

12

J

-> '

LI

A 01 02
01*
02

0 1
0

B 11 01
11*
01

0 1
0

c 11 12
11*
12

0 1
0

Figure IV-11. A; irreducible graph

IV.E. The recognition of deadlocks

Graph Reduction Theorem: Assuming that a STEPPS model is well-formed, that

initial conditions are igt.ared and that queue size limits are ignored, the Graph

Reduction Process will yield an empty graph if and only If the original graph is safe.

Proof; By the Reducibility Theorem a safe graph is always further reducible.

By the Irreducibility Theorem an always reducible graph is safe. Thus after the Graph

Reduction Process is completed, if the result is an empty graph then the original graph

was safe; otherwise the original graph was unsafe. This completes the proof.

,Y-m:""' "

IV-30

The graph reductions do not solve the problem of initial state incompatibility.

This situation can be recognized by examining each process's initial state and the

attached links. If all initial output ports are attached to links that are full and if all

initial input ports are attached to links that are empty then the model is initially

deadlocked.

It is still possible for a model to enter a deadlock before the model reaches

steady state due to link queue length limits and initial queue volumes. A solution to

this problem is a requirement that no link attached to an initial output port be full

initially. Also these links can not be attached to input ports that are the initial states

of another process. In addition, not all of the processes can be in initial states that

are connected to links containing no messages. This is net an nnfimal solution since a

system may still be safe if some output ports are initially full. However the

requirement is a reasonable one to model and can be altered easily when steady state

properties are known.

p^ppfvpnw j*1»»1 ''i1

V-l

Chapter V

The STEPPS Simulator and STEPPS Interactive System

Since mmy performance properties of realistic programs are difficult to treat

analytically, a STtPHS model is simulated to collect data which, In turn, Is analyzed to

predict performance properties of a program. The STEPPS simulator end the

implementation of the STEPPS system are presented in this chapter.

V.A. Simulation objectives

An issue concerning the structure of a multiprocess program is whether •

particular program decomposition can be improved, i.e. is it a good decomposition. As

noted in Chapter I, this research does not address the issue of whether the designed

program solves the problem under consideration. The STEPPS simulation facilities

serve to enhance predictive performance understanding in the situation where a model

is so complex that it is essentially analytically intractabi? Another situation occurs

when a model may be analytically tractable, but very time consuming to solve,

especially when some modifications are made to it.

Specific performance issues concerning a STEPPS model are the following:

1. How much time will be spent computing for each state of a process?

2. In which states will a process be waiting and for how much time?

3. Are the queue sizes too small or too large?

4. What are the expected rates of data flow to a link and of requests from a

link?

5. What is the overhead due to interprocess communication?

ww.yff

V.A Simulation objectives
V-2

6. Which sets of processes tend to be active at the same time and which
processes are usually active at different times?

7. How many processes are active on the average?

8. What are the effects of limiting the number of available processes and
using a variety of scheduling algorithms?

The first question can be answered by performing the semi-Markov analysis

described in Chapter IV. However, all of the other questions are more difficult to

answer because they deal with interprocess activity.

Consider the question of h.w long a process will wait in each state. This value

may depend upon all of the possible interactions in a model. For example, consider the

ring of processes shown in Figure V-l. If all of the processes are DELAYS and there

is only one message in the loop, then the wait time at each input port is the time

required for the message to traverse the loop when there is initially only one message.

The problem is more difficult when there are initially several messages in the loop and

when the processes are more complex. Simulation is used to answer such questions.

_> ^-^ _>-=> H>-> ->-5» -^-> ->

<i_ <-^- «r-<r- <-<- «-<- *"*- *""

Figure V-l. A ring of processes

Queueing theory can be used to solve the same question and, in fact, to

produce a more exact result, given assumptions based on Known or estimated

probability distributions [KleinrocK 75J However, there are seemingly simple program

V.B Simulation operation and data collect J V-3

structures modeled by STEPPS that are difficult to solve using queueing theory. Each

queueing model must be solved individually and the applicable techniques do not

always transfer when systems with as many parameters as a STEPPS model has are

involved; these limitations of queueing theory are well Known [Fishman 73, McMillan

68]. STEPPS has been designed to be applicable to a variety of system structures and

to make analysis easy for a system designer. In particular, simulation allows rapid

interactive experimentation with a number of alternative problem decompositions.

V.B. Simulation operation and data collected

In order to discover the answers to the questions discussed in the last section,

it is necessary to collect a sufficient amount of data by simulating a modeled program.

The approach taken in this research is to make it possible to collect as much data

describing the operation of processes and links as might be expected to be useful.

The implementation of the data collection facilities has been carefully designed to

facilitate the incorporation of additional facilities so that other than built-in analysis

can be used.

The operation of a STEPPS modal was described in Chapter II. At every

possible change of simulated state^ of a STEPPS model it is possible to collect data.

Thus the specific operation of a process, a link, and the process scheduler will be

described below and the data collected at each operation change will be noted.

^State in this instance refers to the condition of the entire model, namely all
processes, all links and the process scheduler.

il,pjiini)i,u,»wm™i!ppww«,".»|l^(pi™.-"W""^».ll>-. ■'»"■■■■.> wi..ii|ipp«iqin'Wipi. ii..,lKI!niaii i .,i i >»"" '" ...in,». , ,.,..,—. -"" .,.'„'i. L«I—in«—■, ->—-■• — ■'

V-fl
V.B Simulation operation and data collected

V.B.I. ProcMt activity and the data collected

A •imul.t.d pro«« 8o.S th,ough . se,u.nc, of «tion. Ih.t r.pr.s.nt its

.divity. A. «eh ««on th. simul.-ion sys,.. records th. rocn. .e.lon .nd

co,l.cU .ppropri... dot. concernin, th. .c.ion. Th. sp.ci.ic d... colLCion point, .nd

data collected at these points are:

!. /I..I«.!»,. When a procss is ini.i.liz.d .1. drt. colLCion ..cili.i.. .r.

also initialized.

(b) the time that the link access b^ J^"^ access the
the link by performing a synchronization check to exclusively

link (a MP" operation on a semaphore).

3 Mu.*x. The time that is spent waiting on the link's ^'usive access

mutual exclusion between the link and the process.

<■ rtc-^r^r^rr^ÄÄ^
to respond. The time for initializing this wa.t is recorded.

5. lorendy. The time spent waiting before the I/O operation can occur is

accumulated.

;,compl.... Th. .im. sp.n. p.r.ormin8 th. I/O op.r.lion is KCUmuLtod.

EnJi,. Th. .,« when .h. '/0.^^l^r.'rVr.'^-nr.S
a process state is repeated, steps 2 througn / are H

activity relating to the current state is complete.

Choo,* The process then chooses which will be the ^•titt-JJj/jJ*
are coilelted'at this point since this operation takes no time. When the
operation of the model is traced this change of state it noted.

9. Compuiin,. The start of a process compute time is recorded.

10. En^mpu... The time spent computing in the current state is

accumulated.

11. R.«.«)»,. Th. proc «fy .0 b. r.s..r..d .nd rm». b. sch.dul.d.

The time is recorded.

%V AVp'endTx'A fö7d«cription of using the simulator and tracing . simulation.

6.

7.

8.

tmjrr ~-^r,.—~-. -r-..^ „wwjfuH.mnßi'Miwvif •• " """—

V.B Simulation operation and data collected

12. Readied. When the scheduler allows the process to proceed the time
spent waiting while ready to run is collected.

Activities 2 through 10 represent a more detailed description of the operation

of a process than is described in Chapter II. Steps 11 and 12 accumulate data

concerning the time a process spends wailing to be scheduled. Analysis of the data Is

discussed below.

V.B .2. Link activity and data collected

The sequence of actions that a link goes through represents changes in the

link's queue size, number of message requests, and time used by the link (if any). At

each change, tK> simulation notes the new activity and collects appropriate data

concerning the change. The activities of a link are:

1. Inactive. A link will be inactive until it is accessed. The time when the
link becomes inactive is recorded

2. Inacce»i. A link has been accessed by an input port. Accumulate the
amount of time between input request accesses and count the number of

accesses.

3 Outnccesi. A link has been accessed by an output port. Accumulate the
amount of time between message available accesses and count the number

of accesses.

4. Exclude. The link has been accessed and the time it was inactive Is
accumulated. The link now prevents any other access to itself by means
of mutual exclusion synchronization.

5. /Iccested. The time the link waited to exclude other accesses is

accumulated.

6. Starting. If the link had to be restarted, the number of restarts is
accumulated.

7. Started. The time after restarting is recorded.

8 (Mimit. If the link has no more room for messages (its queue size limit has
already been reached), then the number of overflow messages is
accumulated over time. This is the average number of processes that had

to wait.

.iijfllMi iilipt - * — —m 1 1

V.B Simulation operation and data collected V-6

9. Accept. If the link can accept a message then the queue length is
accumulated over time.

10. Endaccept. The time after accepting a message is recorded.

11. /IrrquMt The number of current requests is accumulated over time.

12. Xmi«. If a message can be transmitted to a process reauesting a message
then the number of messages in the queue and the number of current
requests are each accumulated over time.

13. Endxmit. After a message has been transmitted the time is recorded.

14. Rfireceiv*. If a process had been waiting to send a message to the link,
but could not, due to the link's queue size limit, then it is allowed to
continue. The number of processes waiting to send a message is
accumulated over time.

The activities listed cover all of the activity of a link. Data are collected

concerning each property of the link that changes.

V.B.3. The scheduler and sets of concurrent processes

The function of this set of data collection facilities is to provide information

that can be used to infer how the processes interact with each other over time. One

measure is the average number of active processes. Another measure is concerned

with which processes are active at the same time as other processes. Before a

process becomes active it is scheduled to run by a process scheduler. Likewise,

whenever a process becomes inactive, i.e. is waiting for some reason, the scheduler is

notified.

The simulator i* used to estimate the effects of restricting the number of

processors. This restriction brings about the problem of the schedulir g of processes

when more processes are ready to run than there are processors able to run them.

The STEPPS system provides the following scheduling algorithms:

1. First-in-first-out priority (FIFO). This algorithm schedules the process
that has been ready for the longest time. When several processes have

(p^w™Biii^)#.iWi.ii|||;#ki»«lVi™iiij'-- -■'■■• .■wiwrn'"*^

V.B Simulation operation and data collected v_7

been ready for the same length of time, an arbitrary choice Is used to
determine which one will be scheduled first.

2. PROCESS priority. Each process can be assigned a non-negative priority.
When a choice must be made among ready processes, then the process
with the highest priority number is scheduled first. When several
processes have the same priority, FIFO is used to resolve the choice.

3. LINK priority. Those processes that are ready to run and are in an input
state are examined first. These processes are req :«sting a message from
a link. The process that is requesting a message from the link containing
the most messages will be scheduled first. FIFO is used to resolve any
additional choices.

A. PRLK priority. This is a combination of 2 and 3. After these processes
with the highest priority are selected, then the process requesting a
message from the link containing the largest number of messages is
scheduled. FIFO is used to resolve any additiorH choices.

5. LKPR priority. This is another combination of 3 and 2. First the
processes requesting messages from the links containing the greatest
number of messages are chosen. Then the process with the highest
priority is chosen among them. FIFO is used to resolve any additional
choices.

6. RANDOM. A random choice is made among the ready processes.

These algorithms were chosen for inclusion in the STEPPS simulator because

they are simple and have counterparts in real systems. The last-in-first-out algorithm

was rejected because it does not adequately represent continued processing.

Modifications to the STEPPS system that could include different scheduling algorithms

are discussed in a later section of this chapter.

The data collected by the scheduler are listed belcw:

1. Slor». A process is ready to run. Accumulate, over time, the number of
active processes and the number of ready processors.

2. Runaprocom. A process is activated. Accumulate, over time, the number
of active processes and the number of ready processes.

3. Allactive. A process is ready to run, but all of the processors are active.
Accumulate, over ;ime, the number of active processes and the number of
processes ready to run.

4. Siorlproce«!. A prxass is about to become jctive. For each process that
is running collect the Jime. This represents processes starting to execute
concurrently.

V.B Simulation operation and data collected V-8

5. Stopproc(it$. A process becomes inactive. For each process that is still
running accumulate the time that the two processes were running
together.

6. De»chodule. A process has become inactive. Accumulate, over time, the
number of active processes and the number of ready processes.

The data concerning the number of active processes are always collected, but

the data concerning which processes are active concurrently are only collected when

optionally requested.

V.B.4. Analysis of the data

For each process the total time for each activity and wait is accumulated.

Performance expectation? are computed for each of the following;

Percentage of time spent computing in each process state.

Percentage of time spent waiting to exclusively access a link for each
state.

Percentage of time spent waiting until the link was ready to acknowledge
access for each port.

Percentage of time each state waited until the link could complete the
required I/O operation.

Percentage of Hme spent performing the I/O operation for each state.

Percentage of time the process was ready to run but had to wait to be
scheduled.

For each link the following performance expectations are computed:

The percentage of time the link was active, inactive, and restarting.

The percentage of accesses required for the link to restart.

The expected time between link accesses, between input port accesses,
and between output port accesses.

The expected queue length.

The expected number of processes waiting to send a message to the link.

■r~-m^,™^T^,mr>^-JT--.T™—j^-r-T---: ■,.rTS]r^rtmrynW,rr ^^.„^pg^p n- IIPPIJIILUHJ.« ™ — -

V.B Simulation operation and data collected v"9

The expected number of processes waiting to receive massages from the

link.

The analysis of the schedule data is used to compute:

The expected number of active processors.

The expected number of processes that must wait to be scheduled to run.

The fraction of time each process computes concurrently with each other

process.

Answers to the questions pi ,-sented in the first section of this chapter are ell

available from this analysis. Estimates are available concerning all of the activities of a

process and a link. Bottlenecks in the system occur at those links where queue

lengths are large and where processes are forced to wait for reasons other than the

■ completion of an input or output operation. By examining the number of active

processors, decisions can be made concerning numbers of processors needed for the

program. Data concerning the working set of processes can be used to facilitate

prescheduling of sets of processes. Likewise when processes are known not to run

concurrently it is possible to manage data resources to take advantage of this

occurrence.

For the simulations presented in Chapter III, a variety of the STEPPS simulator

variables, data collection, and data analysis facilities proved useful. The Bliss/11

experiment emphasized varying the number of processors available and using the

alternate scheduler algorithms: FIFO, LINK, and RANDOM. The specific data collection

and analysis facilities that were the most useful included:

number of messages into and out of each link,

expected queue lengths at each link,

expected process wait time at each link and process ports, and

average number of active processors.

Wp^w ' "l"" " n ■■'■ ^.^■■„M«-«^ .iw^lifiWBWWWPiWiWiiiHIWBfW^^M^

V.C The implementation of the STEPPS system V-10

The Hearsay II experiment was more complex, and used additional STEPPS

simulator facilities. The "working set of processes" analysis was used to determine the

proper number of Knowledge Sources to reproduce. Since tb? overhead associated

with this facility was large, it was not used beyond the system tuning simulations. The

other facilities that were utilized during the simulations were:

link queue lengtht used to show where interference,

percent of time spent in process states used to observe which processes
contributed to the link queue lengths, and

average number of active processors.

V.C. The implementation of the STEPPS system

The STEPPS interactive system has been implemented on the Digital Equipment

Corporation PDP-10 computer. It is constructed using the Sail [VanLehn 73] and

Bliss/10 [Wulf 71] programming languages. These languages were chosen since each

contains features that are most appropriate for its use. The discrete time simulator

uses a modification of a package of Bliss/10 (hereafter referred to as Bliss) programs

called POOMAS (Poor Man's Simula) originally written by A. Lunde [Lunde 71]. The

STEPPS system consists of about 45,000 words of PDP-10 36-bit word memory.*

The STEPPS system command language was designed with user convenience in

mind. The command syntax consists of three types: node connection, transition matrix

manipulation and keyword commands. Wherever possible, unique abbreviations are

acceptable. For example, ALPHA. 1 »-BETA. 1 means to connect port ALPHA.1001 to a

uniquely named new link (say Link003) and then connect this new link to port

BETA.0001. Another example, DIS CON ALPHA, LINK003, BETA.01 is the same as

'''This includes about 10,000 words for a debugging package and library.

1 "■" ' ■ i ■■ '■ i.." |»~||W|H

V.C The Implementation of the STEPPS system V-l 1

DISPLAY CONNECTIONS ALPHA, LINK003, BETA.0001 which displays the connections to

the objects requested. Every parameter to a STEPPS model can be displayed and

modified by one or more commands. An annotated protocol of examples using the

STEPPS system is presented in Appendix B.

The interactive portion of STEPPS was written in Sail and takes advantage of

Sail's powerful string manipulation and input/output facilities. The lexical and syntactic

analyzers for the STEPPS commands are written in Sail. The data structures

representing a model are maintained by a set of Bliss programs. The Sail program that

performs the interpretation of the STEPPS commands is recursive, so that when a

command to LOAD from a PDP-10 file is given, the system simply calls the main

interpret program recursively. This means that commands in files can cause other files

to be loaded. The displays of the STEPPS model components are in the same form as

the command language. Thus the display of the STEPPS components can be sent to a

file and later read in as a set of commands. The Sail portion of the system acts as a

front end to the Bliss portion of the system.

The Bliss portion of STEPPS contains programs which create and manipulate a

representation of a STEPPS model. The representation consists of a complex data

structure where each linK node and process node contains pointers to other nodes, as

in the directed graph representation of a program model. The use of pointers and

complex data structures is one of two reasons for choosing Bliss to implement the

representation of a STEPPS model. The other reason is the availability of the POOMAS

simulation package for Bliss programs.

The internal data structures are complex since the STEPPS system allows a

wide variety of manipulations of a model. A process is created when it is first used,

either to define a connection between a port of the process and a link or to create a

wüiwi^iriiiiimnni! H

V.C The implementation of the STEPPS system V-12

transition matrix for a port of the process. Subsequently, additional ports can be

added to the process, new connections made, and changes made to the transition

matrix. Whenever a modification that affects the transition matrix occurs, a validity

test is performed to insure that the matrix contains proper probabilities (i.e., with rows

summing to one). This prevents improper alteration of the transition matrix and

sometimes prevents the removal of a port of a process. A link is created in the same

manner as a process, viz. when it is first used for a connection or when it is assigned

attributes.

The model simulator is constructed from three types of POOMAS simulator

processes: STEPPS processes, STEPPS links, and the STEPPS schedules. The

operation of these simulated processes has been described earlier (section V.B). There

are pointers in the STEPPS data structures that go from the simulation representations

to the STEPPS representation and vice-versa. This facility makes it possible to

examine the progress of a simulation and later continue the simulation. The data

collection facilities are localized and this enables ease in adding to or modifying any of

these facilities. "I. data analyzer functions are also localized which also makes it easy

to add to or include other analysis facilities.

The speed of the simulator is measured by the number of events per second.

The events are: link access, link startup, link delay, process perform I/O, process start

computing, and process stop computing. Other states of a process and a link do not

cause the simulator to schedule an event. The time consumed by the scheduler is not

measured in terms of events, but is included as the overhead for process scheduling.

The resulting measured speed is approximately eighty events per second. An

estimation of the length of time required to obtain results concerning a model depends

on the complexity of ihe model. The STEPPS system maintains counts of the

V.C The implementation of the STEPPS system V-13

occurrence of various events and so it is possible to examine whether enough events

have occurred to continue or discontinue a simulation.

The remaining major component of the STEPPS system is the deadlock

recognition algorithm, which is also written in Bliss. The general algorithm has been

described in Chapter IV. The technique used is to iterate through the set of links und

apply reductions Rl, R2 and R3 to each process attached to the link. The links and

processes attached to them are examined repeatedly until none of the reductions is

applicable. Finally reduction R4 is applied to remove the remaining SOURCE/SINKS.

Actually, whenever a SOURCE/SINK is identified and all adjacent ports to it have been

removed, the SOURCE/SINK is removed as well so that it need not be examined on each

cycle through the graph.1" In addition, once the last connection to a link is removed, the

link is also removed. Although the order of application of the reductions is

unimportant, as far as the ultimate result is concerned, the following is the order

chosen for implementation, and reasons for choosing this order:

1. R2c (remove ports attached to SOURCE/SINKS). This reduction is expected
to cause the largest number of reductions to occur. It is also an easy
condition to determine.

2. R2a (remove ports of the same type and processes from the same link).
The conditions for this reduction are easy to determine and reduce the
number of ports attached to the link.

3. R2b (remove ports of different type and same process from same link).

4. Rl (combine adjacent processes).

5. R3 (combine parallel processes attached to the link). This reduction is the
one most likely to benefit from application of the other reductions.

Since each reduction removes one or more connections, the total number of

reductions is at most the same as the number of ports, which equals the number of

^he algorithm description (Chapter IV) was simplified by not including this
implementation alternative.

mW-W " '■ ' ", - — ■ iiiWMi'ni"'i|J«ll"! — -'—

V.C Tha implementation of the STEPPS system V-14

connections. A more interesting measure of the cost of the reduction algorithm is the

number of ports that must be examined. The worst case would be one successful

removal of one port per examination of the ports. If there are N ports in a graph,

then the algorithm would require at worst N! port examinations. A more realistic

estimate should be based on the successful application of more than one reduction per

pass over of the ports. If one fourth of the ports are removed per loop through the

ports'^ then the total number of examinations required is approximately 4»N. The

reason that this estimate is more realistic is that successful application of a reduction

at the beginning of a loop through the ports can cause the application of a reduction

that might not have occurred before.

The STEPPS system was designed so that it would be possible to include

analysis programs that are not original components of the STEPPS system. An example

might be to use an analysis of semi-Markov processes. The STEPPS system will allow

such a program to be written in FORTRAN, Sail or Bliss and later included with the

STEPPS system. The method is to link the new program with the STEPPS system and

then apply the new program to a STEPPS process. The STEPPS system will convert

the internal representation of a STEPPS transition matrix to the form expected by a

FORTRAN or Sail program (i.e., a matrix) and then perform a call of the FORTRAN, Sail

or Bliss program. The structure of the transition matrix is defined to be the same as

displayed by the STEPPS "DISPLAY" command. Another type of analysis that might be

written externally to the STEPPS system is the analysis of a connection matrix

representing the entire STEPPS model. For this situation, a matrix will be formed to

represent the connections among the processes and the application of the external

analysis program would be performed on the representative connection matrix.

^AII tested cases resulted in even greater reductions than this.

rvmrvimrfffi^i^^^^^f-

V.C The implementation of the STEPPS system V-15

Even though the STEPPS system was designed to accommodate externally

defined analyses, the easiest way to include new features into the STEPPS system

would be to add them to the system itself. This task should not be difficult for a Bliss

programmer, since the system is well organized Into many small subroutines, and is

internally well-documented. Very few of the routines in either the Sail portion of

STEPPS or the Bliss portion are more than fifteen lines long, so their complexity Is

Kept to a minimum. In addition, the system includes a large number of debugging

facilities. The removal of the debugging facilities would probably decrease the sire of

the STEPPS system by about twelve thousand words (this includes eight thousand

words of non-STEPPS debugging tools).

The STEPPS system, as constructed, is really a prototype for tools that should

be available to a system« designer. As such, a number of lessons were learned

concerning the systems implementation. One criterion adhered to was the emphasis on

man-machine interaction convenience. Many times the ease of using simple, yet

descriptive commands made the STEPPS system appear elegant even when features

were being debuggec In a successor system, even greater emphasis should be placed

on the man-machine interaction than in the prototype system. The amount of extra

code and nominal extra processing time are well worth the user convenience. The

STEPPS structure was noted above as being well organized, which also must be

emphasized as a valuable lesson. It was often found th»» disciplined programming

style used and appropriate testing and debugging aids constructed greatly assisted in

the overall system development.

There were implementation drawbacks in addition to the constructive lessons.

The STEPPS system uses a set of fairly complex data structures. It was not estimated

during the system design that these structures could grow rapidly (eg. whenever a

J,

V-16

new port w.s added). Thus during the .pplic.tion of the STEPPS system to the

examples of Chapter III, the data structure had to be redesigned and rebuilt.

Fortunately the previously mentioned programming discipline used made »We »omewhat

painless in terms of propagating errors (some "information hiding" had been used). It

must still be observed that the data structure problem is not solved, but could be if

the 'next version of STEPPS handled simulations and model structures in a fashion

different from the current system.

A similar improvement can be made to the STEPPS system by constructing a

discrete event simulator tailored to the STEPPS model. The POOMAS simulator was

used for convenience, but it contains unneeded features that add to the STEPPS

, system size and add to the t.me required for a STEPPS simulation. Thus the simulator

should be optimized for STEPPS simulations.

__*.

VI-1

Chapter VI

Summary

,„ thi, thasi,, th. pr.bl.m of designin, pro,r.n„ for «ynchronou.

mumpr«c.„or co.pu.ers h« b..n .ddf.M.d. A p.r.icul.r d.si,n philosophy h..

b ph«i«d con.l.l.m Of pr.dic.in, Ih. i.pliCions of d,Si,n d«l.ion. .t ..My

.,.,„ durin, muUiprocss pro,,.. d.si,r, .nd d.v„op..nf. Th. .h.sis pr.s.n..

„„„n t«l. consisfio. of . »od.1 for d^ribin, th. d.co.posi.ion of . pro,r.m in.o

..ynchronou,. concurr.n.iy ..««t*l. .obp.r. lysis *«^ " *>'"*•

„„..h« . .od.1 conLins . d.,dlo.K, .n in..r.c.iv. sy.t.m for m.nlpul.lin, . ..od.1

r.pr«.nt..ion., and a s-.lion .ys... for pr.diclin, th. p.rfor™oc. of pro,r.m

.tructur. und.r . v.ri.ly of schodulin, .iBOrithm.

Th.s. fools (c.ll.d STEPPS) h.v. bMP us.d .0 mod.1 posslbl. progr.m

.truc.ur.s with fin. 8r,nul.ri.y (as with P..ri n..s) and a. a functional l.v.l. Pot.n.1.1

„ruotur* probl.ms may b. id.n.lfl.d and a proB struc.ur.d b.for. .n

inv.s.n-n. is mad. in a poorly s.rUctUr.d pro,ra,n. Two - n.rim.nU hav. b..n

p.r,„r™d .0 pr.dic. porformanc. implications of multiprocess .tructur.. In on.

„p.. sin. a STEPPS modal and th. STEPPS sys.am, th. Implications of

 ctin. th. numbers of availabl. procssors and uslng dif..r.nt achedulin.

.„orltN» .amin.d, and th. .ff.ct of using alt.rnat. program structur« was

.,p,or.d. In th. ot perimanl it «as shown that, ultiprocss program

undar «.v.lopm. ufficiontly instrua-nt.d. th. STEPPS mod.l and sysfm can b.

used to help tune the program's structure.

Thus if has been demonstrated that th. STEPPS model and the STEPPS system

do help to accomplish a well structured design.

■■

VI.A Designing Programs for Multiprocessor Computers VI 2

VIA. Designing Programs for Multiprocessor Computers

The past few years have seen the advent of multiprocessor computers (See

Chapter I), and more are being developed as hardware costs decrease through

technological advancement. In addition, since microprocessors and mini-computers are

being connected to comprise new multiprocessor networks, the need has arisen to

design programs to utilize these multiprocessor computers. It is now recognized that

the total cost of a computer system has become based more on software costs than on

hardware costs [Boehm 73]. Through proper software design the costs for testing,

coding, debugging, redesigning, maintaining, and extending software can be better

controlled, thereby decreasing the total cost of the computer system. The software

design tools discussed within this thesis are particularly valuable due to the current

interest in multiprocessor programs.

The approach taken for understanding how multiprocess program components

interact is based on the interprocess communication structure. It is at this level that

an abstraction can often be made for a system. Central to the abstraction is the

decomposition of the total system into a suitable set of functional components.

Consequently, understanding how a multiprocessing system works can be aided by

understanding how the components of the system communicate.

Several tools have already been developed as aids to the design and analysis

of multiprocessor systems. Of these tools, modeling techniques used include Petri-nets

[Petri 62], the UCLA model [Estrin 63], and queueing theory models [Kleinrock 75].

They have been used to represent interprocess control and data flow, program

validity, bottleneck identification, and program determinism. However, these models

suffer from being so complex or abstract as to not really represent the functional

VI.A Designing Programs for Multiprocessor Computers VI-3

aspects of the total system. In addition, these models often have been difficult to

analyze. Another approach was taken by Riddle [Riddle 72], who combined a functional

structure with program-like descriptions of individual processes. This model was an

improvement in understanding overall system structure, but it still suffered from

requiring programming detail to describe a process's interactions. Similarly due to its

program-like ature and to its complex algebraic form, Riddle's models are difficult to

- analyze. Another type of tool, simulation, has proven to be a valuable approach to

analyzing system design. However, simulations must be individually programmed in a

suitable programming language (e.g. GPSS or SIMULA). Simulation models provide much

useful information, but like most programs they are difficult to construct and (often) to

modify.

STEPPS consists of a set of design tools that combine several of the

advantages of the abovementioned tools with a new idea felt to be natural for system

design. The major new concept is that processes comprising a multiprocess program

are abstracted as operating in a probabilistic manner with respect to their

interprocess communication activities. The STEPPS system was designed to avoid the

dual problems of very fine required detail and reprogramming for examining

implications of alternate multiprocess program structuring. The other features of the

STEPPS tools comprise an interactive system used to simulate, manipulate, and analyze

STEPPS program models.

VI.A.1. The STEPPS system

A STEPPS program model is a directed graph consisting of two types of nodes:

process nodes and link nodes. Communication among nodes in the model is

represented by the movement of message tokens. The operation of the entire model is

VI.A Designing Programs for Multiprocessor Computers VW

defined in terms of the individual operation process nodes. A process can request

messages from and send messages to link nodes. The sequence of operations of each

process is defined similarly to the operation of a semi-Markov process. That is, both a

probability and a computation time are associated with each possible successive

process operation (request a message from a link or send a message to a link).

The STEPPS model is more expressive in terms of modularity and potential

activity than Petri-net like models. Yet the STEPPS model abstracts many of the

expressive details provided in programming languages and programming-like models.

The model is at an abstraction level that emphasizes both interprocess communications

and internal process complexity based on probabilities and timing. In Chapter I it was

demonstrated that the STEPPS model could incorporate both the Petri-net model and

the UCLA model. In Chapter III. more natural examples were also demonstrated using

STEPPS: fork/join, subroutines, probabilistic server processes, P/V, and reader/writer.

More importantly, two non-toy, more complete examples were modeled and simulated:

Bliss/11 and Hearsay II.

The STEPPS simulator, which is invoked from the STEPPS system, can be

configurec.' to represent a variety of execution environments. These environments are

defined in terms of the number of processors available and scheduling algorithms used

when a scheduling choice is required. Data are collected and analyzed to predict such

aspects of » modeled program's performance as queue lengths, rates of data flow at

links, process activity and parallelism. Some measures of parallelism of interest to

STEPPS are those concerning the average number of active processors and the

working sets of processes.

The STEPPS interactive system was designed to facilitate man-machine

interaction. Some features of the »ystem are; commands for creating and manipulating

VLB Experiments and Results VI-5

STEPPS model representations» commands for saving a mo^pl or parts of a model for

later retrieval; commands for displaying all parameters of a model and simulation;

abbreviations for most commands; and automatic assignment oi default values to

unspecified model and simulation parameters.

The STEPPS model can be automatically analyzed to determine the existence of

a deadlock possibility. This analysis (detailed in Chapter IV) is performed by

iteratively applying a sequence of graph reductions to a STEPPS program model until

no further reduction is applicable. The reductions, which are applied when certain

constraints are satisfied, are: combine two adjacent processes into one; eliminate

states or combine two states to be one state of a process; combine two processes that

are in-parallel; and eliminate processes that can perform only one operation.

It has been demonstrated that each reduction preserves the possible

interprocess communication among those processes not involved in the reduction. If as

the result of the completion of all possible applications of the reductions there are no

nodes remaining then the original representation was that of a structure with no

deadlocks. Otherwise the original structure contained a non-zero probability of a

deadlock. The complete reduction algorithm has been implemented as part of the

STEPPS system.

VLB. Experiments and Results

Two non-trivial experimental applications were conducted to validate the

usefulness and significance of the STEPPS tools. The Bliss/11 compiler structure [Wulf

75a] was studied, modeled, and analyzed for reconstruction on a multiprocessor based

upon a design similar to its sequential structure. The Hearsay II multiprocess speech

VT fi
VLB Experiments and Results

understanding system [Lessee 74, Fennell 75b] was analyzed using STEPPS to help

explain a phenomenon of interprocess interference [Fenne'l 75a, 75b].

VI.B.l. The STEPPS Bliss/11 application

The STEPPS Bliss/11 application, presented in Chapter 111, was performed to

predict potential throughput increases if the compiler structure were moved to a

multiprocess organizational environment. Using a multiprocess structure, based upon

the compiler's pipeline organization [Wulf 75a], it was found that throughput could

increase approximately 3.5 timss over throughout achieved with a single process

structure. In addition, by using the STEPPS simulator features to restrict the number

Of avaiiabie processors and schedule ready processes on them, it was found that most

of the throughput increase could be attained by using two thirds of the potential

number of processors. Furthermore, it was found that varvir . schaduling ggorithms

available to the STEPPS system (i.e. FIFO, most waiting requests, and random) did not

appreciably affect the tiiroughput rate.

The Bliss/11 structure was augmented to examine i isequences of

providing duplicate processes for some of the Bliss .ompiler components. The

results of the simulations demonstrated that there would bo an increase in throughput,

but that potentially it was not large (about 4 times sequential). These results also

indicated that the necessarily sequential lexical analysis stage of the compiler is a

significant bottleneck preventing compilation speedups. Again it was observed that

most possible throughput was reached by jsing about two thirds of the potential

number of processors.

A systems designer embarking on designing a multir . sssor Bliss/11

implementation can use these results to aid in determining where to concentrate

, , . , .„ - - — a—, . -. .—_.^ ,—

VLB Experiments and Results VI-7

effort«. It was predicted that the crucial part of the compiler process structure was

the purely sequential lexical/syntactic analysis component. Hence this component

should receive attention to optimize its processing. Alternatively, 't could be

concluded that there is processing time available to perform more sophisticated and

time consuming semantic optimizations since the lexical/syntactic analysis uses the bulk

of the compiling process. Another conclusion for the systems designer is that there

does not appear to be a large gain in processing achieved by designing a compiler to

dedicate a processor to each process. Instead it appears that a design based upon

fewer processors than the potential number of processes can achieve almost as good a

throughput rate.

VI B 2 The STEPPS Hearsay II application

The STEPPS Hearsay II application, presented in Chapter III, demonstrated that

STEPPS can be used to model abstractly a -eal multiprocess program structure; to

reproduce an interesting phenomenon of that program structure; and consequently to

indicate whether the causr of the phenomenon is at the structural level abstracted by

the STEPPS model. The Hearsay II Speech Understanding System (HSII) [Lesser 74,

Fennell 75b] has been designed to utilize a variety of analysis sources to solve the

problem of understanding human speech for the performance of a task. The task has

been functionally decomposed in a data driven structure so that individual components

of the understanding process can be performed concurrently in a closely-coupled

multiprocessor environment.

The STEPPS model was used to represent the operation of the individual

processing components of the HSII system: the pr«con<fiiion (PC) processes and the

knowledge «ourc« (KS) processes. In addition, the d la base (DB) blackboard was

"■ i ' ' "~ '■ i ' ■ "■l ' m ■■ "*'""" " "'"■ -«•'•—»«—•- ■ -^...iiiif.im. i ^nii.

VLB Experiments and Results VI"8

modeled as a set of synchronization locks. This model is an abstraction based upon an

analysis of the HSII structure and upor <ata provided as a result of instrumentation

incorporated into the HSII system J HSII designers and implementers. The

specific data provided were obtained from executing HSII in a sequential (single

processor) manner.

The STEPPS HSII model is probabilistic in nature end is based on potential

communication activities. The three types of communication activities emphasized are:

initiate a precondition process, access the data base, and initiate a Knowledge source

process. The data provided from the implemented prototype HSII system were

analyzed to provide estimates for choices of precondition processing activity. The

data were also used to determine STEPPS HSII process computation times and

probabilities for accessing portions of the data base. Probabilities (based on the

provided data) also are used to indicate a precondition's potential initiation of a

knowledge source process.

The accessing of the HSII data base blackboard is organized as a hierarchical

(lock/unlock) synchronization structure to maintain data integrity and to prevent

processing deadlocks. Fennell [Fennell 75a, 75b3 performed simulations of a

multiprocessor HSII system and discovered that locking interference placed a

substantial overhead on the HSII throughput rate as measured by the average n-jmber

of active processors. Specifically, he found that the interference decreased processing

by about two thirds, but he did not explain the reason for this phenomenon.

The STEPPS system was proposed as a tool to determine whether the locking

interference phenomenon occurred due to locking of a small number of data base

segments or whether the problem was more complex. An implication might be that the

locking hierarchy mechanism might be made simpler, i.e. less finely grained.

ii^*niw*wi .,«'""S,!" ■" ,-'W!l*fl'

VI-9
VI.C Future research and refinements tq STEPPS

Simulation« were performed, based on the STEPPS HSI1 model, varying the number of

possible data base regions that could be locKed. In addition, the model was simulated

with locking turned off (as in Fermeirs simulations). The result was that the average

active number of processors with and without locking, using the STEPPS simulations,

corresponded to Fennell's results.

This result is significant in that the locking phenomenon was reproduced while

based on a simple probabilistic communications model. Since the probabilities used

were Uken from a sequential execution of the HSII system, the interprocess

cooperation did not seem to affect greatly the locking interference problem. The

hypothesis that the interference was due to locking of a small number of regions was

supported by the simulation statistical results.

The STEPPS system was demonstrated as providing the HSII system designers

with a tool for modeling communications structures. It has provided the HSII designers

some interesting information, and through modification of the computation times,

probabilities, and model structure it should be able to provide more Information. Thus

the STEPPS HSII model should be a useful framework for exploring the effects of

possible design changes suitable to the model's structure.

VI.C. Future research and refinements to STEPPS

The STEPPS model and simulator are based on a fixed interprocess

communication pattern and a fixed number of processes. These restrictions were

judged to be necessary when the deadlock detection algorithm was designed. It is

unknown whether dynamic creation and deletion of processes will still allow the

application of a deadlock detection algorithm. It may be necessary to restrict the

types of operations and connections that dynamically created processes can have.

(W'mWIRW.'r»',!. WPH^JPWPHWM ^jmv«m:.,l..w.mm— — . 1 '-> ' ' :_,,,,,, "'.'T^VT . ' ■" v' i 7^^ ■■-■—. —-■- — --w. -..-«T-f«,

VI.C Future research and refinements to STEPPS

Several other generalizations of interprocess communication may be considered

as modifications to the model. Hierarchical and interrupt relations are multiprocess

relations that it is not now possible to model using STEPPS, however, it may be

possible to modify the model to include such structures.

A limitation of the STEPPS model discovered during applications of the model

was the introduction of extra modeling complexity required to model some possibly

interesting program communication structures. For example, the STEPPS reader/writer

model demonstrated that the STEPPS model only worKed with a finite number of

readers/writers. This is a symptom of processes' actions not being determined by

information carried by the message tokens (e.g. tagging, sender, return-request, etc.).

The inclusion of actions (other than timing) based on message contents would add

program-like complexity to a process model and would also discount the present

formulation of the deadlock detection algorithm. Any extension to the STEPPS model

based on including message information may not prove fruitful due to its own form of

added complexity.

Areas of deadlock analysis beyond the detection algorithm would be the

identification of cause(s) and the prediction of the probability of a deadlock over time,

events, or some other measure. The STEPPS system can be used to trace the

application of the deadlock detection algorithm and to display a resulting irreducible

graph. Studying this trace and the resulting graph has proven useful in discovering

the cause of deadlocks while testing the STEPPS system, and it may be possible to

create an algorithm for this process.

The STEPPS interactive system uses simple linear displays of a STEPPS model.

It may be possible to create more natural displays of the directed graph

representation of a model. This problem may be difficult because a model has no

defined root, terminal or topology.

-■ ^[■■!1!IWi««p.,w™imi"H'--!»^JBI!ifP".lfF*.TO"li.. ■ - - - ~ -- ,^_.._, -' —'

VIC Future research and refinements to STEPPS VI-11

As the STEPPS system was applied to the examples presented in Appendix B,

features were added to enhance the convenient use uf the system. It is possible that

future experience using STEPPS will indicate other improvements. Some extensions

that might be useful are:

1. Compute time between port activations need not be fixed; instead it can
come from a definable density function. This is closer to the actual
definition of compute times for a semi-Markov process.

2. The ability to identify a group of nodes and copy them in one operation
may be used to organize similar subparts of a large structure. It Is
already possible to copy single nodes and transitions from a process
state.

3. The state of a simulation could be saved for future continuation.

The STEPPS system has been shown to be useful in the design and analysis of

two multiprocess programs, viz. Bliss/ll and Hearsay II. Now that the author has

tested and debugg ■< fhese examples on the STEPPS system, others should use STEPPS

or a system very muc.i like it in the complete design and construction of multiprocess

programs. STEPPS is intended as a useful group of design tools and should be used

for that purpose.

As experience is gained in using the STEPPS model, more techniques such as

those presented in the beginning of Chapter III can be ere ♦ jd. For example, other

synchronization techniques may be designed, in addition to the PV and reader/writer

examples shown.

Some problems which might be constructed for a multiprocessor and which

could use STEPPS are: a multiprocess compiler implementation, sort and search

programs, theorem provers, data pipelines (with and without feedback), and data bas»»

management programs.

'■Hi^MPWHH. '^mFWT W»«»!(,ipjJ.«Jpffnp.«i 1,1 |iiM::,,v»jWuwB,iIi»i,l,i|fl,ij^Wiii,«l|Wpliui •«jnmt.'

VI.D Conclusions VI-12

VI.D. Conclusions

As noted in Chapter I, several multiprocessor computers are available and/or

being developed. In particular, C.mmp [Wglf 75b] has reached a stage of maturity

where several multiprocess programs are being designed and developed for

implementation on it. The tools preserted in this thesis research should be useful to

those designing programs for C.mmp or for any communicating multiprocess program

environment.

By using an interactive system, a program designer can create a model of his

program and discover a variety of implications of his design decisions. The STEPPS

system is most appropriate for this type of exploration of a program structure space.

STEPPS provides analysis tools and simulation tools in one interactive system. Neither

unique model analysis nor unique simulation models need to be developed when the

STEPPS system is used.

A second advantage of jsing the STEPPE system concerns the ability to predict

performance changes in a running system before maKing modifications to the system.

This type of design decision is important for determining where to direct efforts to

improve a system's performance. The overall structure of a program is no longer the

only issue; instead considerations include the sensitivity of a program's performance to

modifications of the orogram structure and changes in modeled probability and time

parameters.

The major advantage of the STEPPS system over other systems analysis tools

and techniques is that the STEPPS system automates the production of results.

Furthermore, if methods of analysis that are not already available w'thin STEPPS are of

interest, it may be a simple tasK to include these other methods with the STEPPS

'•«CW;WW:Hll,*«lUL'

Vl-13

system. Finally, the Bhss/ll example demonstrated that STEPPS can be used to

provide performance predictions quickly for a multiprocess program design, and the

Hearsay 11 example demonstrated that decisions may be made concerning modification

to an ongoing system, based upon a simulation of . STEPPS model of that system.

Thus we conclude that the STEPPS interactive system is a useful tool for the design

and analysis of multiprocess program structure.

—~-

A-l

APPENDIX A

STEPPS System Manual

This appendix contains a complete description of the STEPPS system facilities

and their use. For clarity, more than precision, BNF notation is used to describe the

command syntax.

A. 1. Introduction

The STEPPS system is an interactive system for use in modeling and simulating

multiprocess programs. The following services and facilities are provided:

Creation and manipulation of models

Displays of all model constituents

Analysis for well-formed and deadlock-free model

Simulation and data collection

Display of simulation parameters, state, collected data, and statistics

Model description saving and retrieving

The three distinctive types of commands are: set model connections, define

transition matrices, and keyword. These distinctions exist for user syntactic

convenience.

The model connection command is recognized by its inclusion of at least one

V" and is used to connect model nodes. The transiticr •«Mrix command is recognized

by its inclusion of one "-"+. The keyword commands begin with a command keyword

and never contain V" or "-".

rThe one exception to this will be explained.

A.l Introduction A-2

Name» of objects, processes or linKs are defined as in most languages with the

restriction that a maximum of 10 characters can be uniquely distinguished.

<name>
<letter>
<digit>

;:- <lelter> | <name><letter> | <name><digit>
':-A|B|C|D|E|F|G|H|I|J|K|L|M|N|0|P|Q|R|S|T|U!V|W|X|Y|Z|«|HT
:-0|lj2|3|4|5|6|7|8|9

<process name> ::- <name>
<link name>::- <namc'>

While a'l input to the STEPPS system may be either upper or lower case

letters, lower case is automatically converted to upper cf.se. Thus lower case names

can be used for convenience, but they are indistinguishable from upper case names

with the same characters (and order).

Process ports are identified by the process name, the port type, and the port

number. The usual definition is:

<port name>::- <process name> <port type><port number>
<port type>::- 1 j 0
<port number> ::» positive integer less than 1000
<untyped port name> ::- <process name>.<port number>
<port id> ::• <port type><port number>

Some connection commands allow abbreviations for <port names> using

<untyped port name> and context for definition.

Keyword commands begin with a keyword and parameters follow on the same

line. The actual syntax of the keyword parameters is dependent on the particular

keyword. However, consistency among some keyword parameters is that keyword

subparameters are usually order independent. Also, keyword abbreviations and

parameter-subkeyword-abbreviations can be used by entering unique initial character

strings. Thus E may be used for EXIT, but DI must be used for DISPLAY since DENSITY

is also a command.

Spaces (at least one) are used as separators between keywords and

parameters. In some situations a comma may be used instead of a space, but a space

qipi III iJWW^. ——

A.2 Model Creation A

can not be used in place of a comma. Spaces may be freely inserted around separator

characters ":,•.«—[]"• Comments can appear on any line by placing an T which causes

everything to its right to be ignored. Line continuation is used by placing a "-" as the

last non-comment character on a line. Thus,

D1S-! ' rst line <cr>
PLAY-<cr>
GRAPH ! 3rd line<cr>

is a legal command .

Each parameter that can be set by commands has a defined default value.

These default values will be presented in the command descriptions.

For the BNF syntax descriptions, two notational assumptions will be used. A

syntax root, a list definition, and a command will all be assumed. Thus the following

describes the missing syntax:

<STEPPS commands> ::- <connect nodes> | <define matrix>
| <keyword command>

<keyword command> ::- <Mlsr keyword command> | <"2nd" keyword command>
| <M3rd" keyword command> ...

<y-list> ::- <y> I <y-list>, <y>
<x paramf>::- <x param> | <x parami> <x param>

A.2. Model Creation

A model is created by defining the connections among its nodes, its transition

matrix values, and its link attributes. A model can be given a name by using the

command MODEL. This name is used when displaying the model components, and when

saving and retrieving the model description.

*''<cr> means carriage leturn.

A.2 Model Creation ^.4

A.2.i. Connecting nodes

The following is the syntax for connecting nodes:

<connect nodes> ::« <port connection> | <link connection>
<port connection>:: <typeless port list> *- <connect nodes>
<link connection> ::■ <link name> *- <port connection>
<typeless port> ::- <process name>.<port number>
<port number> ::- non-negative integer less than 1000

A connection between an input port and a link is represented by: the input

port name, then a left arrow, and then the link name. In place of a single input port, a

list of ports can be used to denote that each port in the list is connected to the link.

Contrary to tha above BNF definition, the type of port can be included (i.e. Input port).

Also, when several ports of the same process are to be connected, the process name

may be left out after appearing once. The following are legal connections:

a.l «- alpha
b.il, C.I2 <- beta
d.1, a.2,.3,.i4, b.i7 ♦- alpha

The results of these lines would be to connect input port AH to link ALPHA,

input ports B.il and C.I2 to link BETA and to also connect input ports D.I1, A.I2, AI3,

A.I4, and B.I7 to link ALPHA. All will remain connected to link ALPHA.

A connection between a lin'-. and an output port is represented by: the name

of the link, then a left arrow, and then the name of the output ports. In place of a

single output port, a list of ports can be used for connecting each to the named link.

As above, the type of port may be included and process names need not be repealed.

The following are legal connections:

gamma4-d.2
delta«-e.l,f.o3l.4,g.7

The two types of node connections can be combined. When a link appear»

between sets of ports the meaning is that the input ports (to the left of the first left

tmw, " ■ ■™_^_-™-_„- ^.,.—■'■.■'-.- ~ —.«..»■■■,...! ,—

A.2 Model Creation A-5

arrow) are connected to the link and also that the output ports (to the right of the

sacond left arrow) are also connected to the link. The following is used to connect the

ports X.U, Y.I2, Z.U, S.03, R.02, T.03 to the link GORP:

x. 1 ,y.2,z.i 1 «-gorp«-r.o2,t.3,s.3

Another method for combining connections is used to denote the connection of

links to ports having the same number but different types. For example,

eta*-p.3,q.7*-nu

means the same as

eta*-p.3,q.7
p.3,q.7<-nu

Note that the ports must be typeless when using this notation since it

represents connections to both input and output ports.

A generalization of the above is also allowed:

a. 19«-epsilon«-f.3, l.7*-kappa«-c.3«-omega

An additional notational convenience is available to automatically generate a

unique link name. It is accomplished by using port names on either side of a left

arrow. Thus,

b.3pc.2«-a.421

means to generate a new link name (e.g. LINK017) and connect it to the ports used

(B.3, C.2«-LINK017«-A.fl21).

A 2 ii Setting transition values

The following is 'he syntax for setting transition values:

<set probabilities^:- <port name><repeat factor> - <initial flagxprob vector>
<repeat factor> ::- [<repeat number>] | null
<repeat number> ::- a positive integer less than 262144
<initial flag>::- * | null
<prob vector> ::- <prob seq> | <prob seq>; <prob vector> | <prob vector^
<prob seq>::- <port prob comp>/<prob seq>

A.2 Model Creation ^.g

<port prob comp>;:- <1 or 0><port number> ; <prob comp>
<prob comp> ::- <prob>, <conip> | <prob> |, <comp> | <prob>,

A <prob> is a real number. If It is in the range [0.0,1-0] then it is the assigned

probability. If in the range [2.0,3.0] it Is a defaulted amount and is ignored. If it is

negative then the value becomes defaulted. If it is larger than 3.0, then this Is an

error. <comp> is any non-negative real number.

To set transition probabilities the source port is written to the left of an "-".

If the port activity is to repeat before a transition is made, then the repeat factor is

placed within square brackets, between the port name and the "-". To the right of the

"-" appears the destination probability; identified by the destination port type and

port number followed by a colon and then followed by the transition probability, a

comma, and the associated compute time. If e V occurs to the right of the "-", then

the named port is designated as the initial port. The following are examples:

a.i2-o3:.5,l.6
b.o3[6]- o4:1.0,.l
c.il -»12: .6,0.0

These lines mean that p(A.I2,A.03)-.5 and the related compute time is 1.6. Port a03

repeats six times before entering state 04 (each time computing for .1). C.il is an

Initial port £.nd p(C.Ii,C.I2)-0.6.

Several abbreviations can be used:

1. Either the probability or the compute time can be le.'t 3üt.

2. The following is a sequence of state changes:

a.i3-ol:1.0,.5
a.ol-i2:.5,1.0
•.12-14:1.0
a.i4-o2:.2

This can be abbreviated as:

a.i3-ol:1.0p5/ i2:.5,1.0/ i4:1.0/ o2:.l

3. More than one sequence or single change can be shown on one line:

•"mfir-iw- ""f^- •, w ^--.■,. -—iw.ij-

A.2 Model Creation A"7

b.0l6-i5:.3
b.0l6-i2:.l/03:.5
b.ol6-o4:.5
b.ol6-i3:.l

becomes

b.o 16-15:3; i2:.l/ o3:.5; o4:.5i i3:.l

A.2 iii. Model manipulation commands

Several keyword commands are used to manipulate a model representation.

Their functions incluie creating link attributes, copying nodes, removing nodes or

ports, and creating special types of process structures. The following is a brief

description of these commands.

ATTRIBUTES is used to assign the link attributes to links. The specific

attributes are maximum queue length, initial queue volume, start-jp time, and delay

time.

COPY is used to copy nodes based on an existing node. It can also be used to

copy ports.

CLEAR is used to remove all processes and/or links.

DENSITY is used to connect a process to a link as If the process sent or

received messages with a rate based on a given probability density function. The

density functions available are exponential and normal.

DISPLAY is used to display model attributes at the terminal.

REMOVE is used to remove individual processes, ports, and links.

A special link called DANGLING is the default connection to any unconnected

port. Explicit connections can be made to DANGLING, but a model will not be well-

formed if any connections remain to it. DANGLING can not be removed.

 ' - '■■.■■■ 1 — -— r-r. WV,m,

A.3 Model Analysis and System Commands A-8

A.3. Model Analysis and System Commands

Keyword commands are used to analyze and test a model. In addit \ there

are STEPPS system commands used to Interact with the underlying PDP-10 operating

system.

APPLY is used to apply a function that i« defined external to the STEPPS

system to either individual processes or to an entire connection matrix.

TEST is used to test for a well-formed model. It is also used to test whether a

model is deadlock-free.

EXIT is used to exit from the STEPPS system and reenter the i-OP-lO operating

system.

LOAD is used to retrieve STEPPS commands from a PDP-10 file.

SAVE is ui;ed to save the repreoentation of a model onto a PDP-10 file. The

representation is in the form of commands to recreate the items saved.

A.4. Simulation commands

The simulation features of the STEPPS system allow for the assignment of

several parameters. Most of the simulation parameters can be displayed and altered

independently of the invocation of the simulation. The parameters are concerned with

scheduling, data collection, and tracing. A model can be simulated for a period of time

and then a snapshot can be taken of its current state. Statistics can be displayed and

the simulation may be continued. No alterations can be made to the model while a

simulation is in progress and the STEPPS system prevents this from happening by

asking whether the modification should really be made. If so, the simulation is

terminated.

— —,

A.5 Keyword commands A-9

COLLECT is used to mark the processes that will and will not have data

collection.

CONTINUE is used to continue a stopped simulation. It also can be used to turn

on simulation tracings.

DISPLAY is used to display the simulation parameters.

SCHEDULE is used to assign the simulation scheduling algorithm, to mark

process priorities, and to mark which processes are and are not competing for

processors.

SIMULATE is used to invoke the simulator. Some parameters can be assigned

using this command. In addition, tracing can be turned on by the command.

SNAPSHOTS is used to display the status of process nodes, link nodes, and/or

the scheduler when a simulation is stopped.

STATISTICS is used to display collected data with analysis for process nodes,

link nodes, and/or the scheduler when a simulation is stopped.

UNSIMULATE is used to terminate a simulation that has stopped. Once this

command is used, the simulation can not be continued.

A.5. Keyword commands

The following is a detailed description of each of the STEPPS keyword

commands. The commands are given in alphabetical order. Parameters are described

with each of the commands.

APPLY

<APPLY cmd> ::- APPLY External function name><APPLY param>
<external function name>::" <six character name>
<APPLY param> ::- GRAPH | PROCESS <list of process names>

yi*

A.5 Keyword commands A-10

The named function is applied to either the entire GRAPH or to the transition

matrix of each named process.

The method for incorporating an external function with STEPPS depends upon

the language used for the function: BLISS, SAIL, or FORTRAN. SAIL and BLISS are the

most appropriate languages to use since the use of FORTRAN requires some

restrictions (I/O can only be performed by using SAIL procedures). The following are

the required procedures to use a function GORP defined in different languages.

BLISS:

1. Define GORP as GLOBAL.

2. Link the STEPPS system and include module with GORP.

SAIL:

1. Define SGORP as INTERNAL and add 7 dummy parameters.

2. Add CALLSAIL (SGORP, GORP, 1); to file SETUP.BLI and recompile it.

3. Link the STEPPS system and include module with SGORP.

FORTRAN:

1. Define FGORP as the FORTRAN function.

2. Compile the following SAIL module:
ENTRY;
EXTERNAL FORTRAN PROCEDURE FGORP (ARRAY M);
INTERNAL PROCEDURE SGORP (ARRAY Mj INTEGER Dl,D2,D3,D4,D5,D6,D7);

FGORP (M);

3. Do steps 2 and 3 for SAIL

ATTRIBUTE

<ATTRIBUTE cmd>::= ATTRIBUTE <link name list> <link attributes>
<link attributes> ::•= attribute assignment | attribute assignment <link attributes>
<attribute assignment ::- QUEUE:<integer> (VOLUME:<integer> |

DELAY:<real> | STARTUP:<real>

Each link named in the <link name list> is assigned the attributes named. For

A.5 Keyword commands

example, to assign the attributes to link ALPHA of maximum queue length of 3 and

delay time of 2.0, the following would work:

ATTRIBUTE ALPHA QUEUE:3 DELAY:2.0

An abbreviation allows several links to obtain the same attributes. Thus,

ATTRIBUTE ALPHA, BETA. GAMMA QUEUE: 17, DELAY:4.0

assigns the sjme attributes to links ALPHA, BETA, and GAMMA.

CLEAR

<CLEAR cmd> ::- CLEAR <clear paramBt«r>
<clear parameter^:- ALL | null | PROCESSES | LINKS

The result of this command is to clear the model of all PROCESSes, LINKs, or

both, null is the same as ALL. For CLEAR ALL the model name is also reset to the

default model name: MODEL.

COLLECT

<mi I ECT cmd> ::- COLLECT <col key> <process name list>
<col key> ::- STATISTICS | NOSTATISTICS

The result of this command is to mark or unmark each process named for

simulation statistics data collection. Each process in the <process name list> must

already have been defined before issuing the command. The default is to COLLECT

STATISTICS for each process.

CONTINUE

<CONTINUE cmd> ::- CONTINUE <time> <cont. param>
<cont. param> ::- TRACE | MODELTRACE |

FILETRACE <file> | <null>

This command is used lo restart (or continue) a simulation where it halted (see

SIMULATE). The <time> parameter is a real number representing the length of time the

simulation should continue. TRACE means to display a simulation trace on the terminal

- ^.MIUII — ■ ~ —

A.5 Keyword commands A-12

device. FILETRACE <file> extends the named PDP-10 file with the simulation trace.

The extension TRA will always be used. MOOELTRACE extends the file named

<modelname>.TRA with the simulation trace. <modelname> is the current model name

as set by the MODEL command.

copy

The COPY command syntax has been changed since the examples in Chapter III

were created. Both the old and new follow, although the new syntax is the actual

syntax.

Old syntax

<COPY cmd>::- COPv <copy param5> : <master item>

New syntax

<COPY cmd>::- COPY <masler item> TO <copy params>

Common syntax

<copy params> ::- <!ink list> | <process list> | <port item list>
<port item>::" <port name> | <type-less port name> |

.<! or Oxport number> | .<port number>

The purpose of the COPY command is to duplicate items to the left of the colon

to have the same "attributes" as the item on the right of the colon. The actual

semantics is based on the type of <master iteri> as follows:

LINKS For each named link, the attributes of the "master item" link are copied.

Only the attributes are copied, but not any connections since ports can only b#»

connected to one link.

V.xampl«

A.3«-FOO
ATTRIBUTE FOO QUEUE:3 VOLUME:?
COPY FOO TO BAZ, GORP

Now BAZ and GORP are linked with identical attributes as FOO (Queue:3,
Volume:?, Delay:0, and startup:0). However, neither is connected to any port even
though FOO is connected to port A.I3.

■' ' ^ —^ _ - .

A.5 Keyword commands

PROCESSES For each named process, all of the attributes of the <master item>

process are duplicated. The attributes include connection to links, transition matrix,

and simulation parameters. Only an unused name can be the result of COPY. Thus a

process must be removed before its name can be used as a COPY of another process.

Example

A.3<-FOO
A.01-*I3:1.0/01:l
COPY A TO B,C

Assuming that B and C are previously unused names, they will now be identical
to process A. Thus the above COPY command is a short cut for the following
commands (assuming process A was previously undefined):

B.3<-F00
B.01-*13:1.0/01:l
C.3^F00
CO 1-«13:1.0/01:1

PQ-^TS Named ports are copied based upon the <master item> port. The

corresponding connections and transition matrix vector ma* be copied. If the master

port does not exist, it will be created and similarly a new process may also be created.

The ports named in the <port item list> may already exist. When a new process is

created or the <port item> process has the same number of ports as the <master item>

process, all probabilities and computation times associated with the <master item> port

are set for the <port item port> When the above docs not hold, a port only Is created

and given default properties.

The transition matrix values are set in the same order as the <master item>

port! no examination is made for concurring port number. The repeating factor of the

<port item> is also set to be the same as the <master item> port. When the ports,

<port item> end <master item> are of the same type, of the same process, and not

already connected to a link, then the <port item> port is connected to the same link as

the <master item> port. COPY makes no change in a process's initial state since that is

a process property, not a port property.

■

A.5 Keyword commands ^"**

As 8 nofational extension, the process name and/or port type may be left out

of the <pcrt iter.>>. When this occurs, the previously named process or/and port type

(to the left in the <port item list> is used. The initial default process name or/and port

type is the <master item> port process name.

Example

FOO-A.2*-BAZ
A.12-02:l/12:l
D.I1 - 05:1/02:1
COPY A.I2 TO A.14, 0.02

The above copy command replaces the following commands (assuming process
D did not exist previously):

A.14«-BAZ
A.Id - 02:1
D.02 - 05:1 ! since 05 is the third port of D.

DENSITY

<DENSITY cmd> ::- DENSITY <den. function fype><den. param«>
<den. function type> ::- NORMAL | EXPONENTIAL
<den, param> ::- PORT <port name> | LINK <link name>

FOR <positive integer> | GRAIN <positive integer>
MEAN <positive real> | VARIANCE <non-neg. real>
EPSILON <positive real>

Given a port name and a link name, connections and port transition values are

generated to represent the named probability density function se-v'ce rate as seen by

the link to (or from) the port. The mean (default:10.0), variance (default:1.0), and

appropriate grain (same as FOR; default:10) can be specked. EPSILON represents the

density mass of the distribution tail(s) and is defaulted to 0.001.

An exact description of the result of the DENSITY command is as follows where

the process name is PROCESS, given port type is TYPE and the given port number is

n.

1. Perform PROCESS.In»-PR0CESS.0n, i.e. create a link and two ports.

2. Create ports PROCESS.TTPKn+l, . . ., PR0CESS.7TP£n+(grain size) and
connect them all to fhe named link.

A.5 Keyword commands ^.15

3. Do PROCESS.On - In:l

4. Do PROCESS.ryPKn+1 - PROCESS.On:!

5. COPY PROCESS.TTPBn+l TO PROCESS.?TPEn+2, .
PROCESS.7TPf;n+(grain size)

6. Set PROCESS.In transition matrix probabilities and time values dependent
on the named density function. The successor ports are TTPBn+l, . . .,
TTPErHgrain size).

DISPLAY

<DISPLAY cmd> ::- DISPLAY <display arguments>
<display «rguments> ::- ATTRIBUTES <link list> | COLLECT (COMFETE |

CONNECTIONS <port, process, link list> | DANGLING |
GRAPH <DISPLAY GRAPH parameters> | LINKS | LOOPS |
MODELNAME | PATHS <obj 1> TO <obj 2> | PORTS <process lisl> |
PRIORITY null | PRIORITY <process list> |
PROCESSES | SCHEDULER | TRANSITIONS <process, port list>

<DISPLAY GRAPH parameters>::- ALL | ATTRIBUTES | JATTRIBUTES |
XONNECTIONS | JTRANSITIONS | null

The DISPLAY command is used to display items in the STEPPS model and states

of the STEPPS system (though not of a STEPPS simulation) on a terminal. Each

argument is a command to display different objects and will be described below.

ATTRIBUTES Display the attribubs of each link named.

COLLECT Display which processes will and will not collect statistics during a

simulation.

COMPETE Display which processes will and will not compete for available processors

during a simulation.

CONNECTIONS Display the connections to each port, process, and link named.

DANGLING Display which ports are not connected to any created link. These ports

are connected to the special, non-createable link named DANGLING.

GRAPH ALL or GRAPH Display all link attributes and connections, all process

transitions, all competing and non-competing processes, and all collecting

and non-collecting processes.

A.5 Keyword commands A-16

GRAPH ATTRIBUTES Same as JATTRIBUTES and JCONNECTIONS.

GRAPH JATTRIBUTES Display just attributes of each 'InK.

GRAPH XONNECTIONS Display just the connections for the entire graph.

GRAPH JTRANSITIONS Display just the transitions of each process.

GRAPH TRANSITIONS Same as JTRANSITIONS and XONNECTIONS.

LINKS Display the name of each link.

LOOPS Display each cycle in the graph.

MODELNAME Display the model name, the date, and the current time.

PATHS Display alt paths between the named nodes.

PORTS Display the port names for each process named.

PRIORITY Display the priority number of each process named (or all).

PROCESSES Display the name of each process and its priority.

SCHEDULER Display the simulation scheduling discipline.

TRANSITIONS Display transitions for each port or entire process named.

EXIT

<EXIT cmd>::- EXIT

Exit from the STEPPS system. If the EXIT command is issued in a file that is

LOADed, the result is to return to the STEPPS LOAD command (See LOAD).

IJOAD

<LOAD cmd>::- LOAD <file name> <load param>
<load param> ::- ECHO | null

LOAD is used to retrieve STEPPS commands from a stored PDP-10 file. <file

name> is the standard PDP-10 file name, viz. devi:e:name.ext (only device DSKs are

allowed). If no extension is used the extension TEP is assumed.

MODEL

■

A.5 Keyword commands A-17

<MODEl, cmd> ::- MODEL <file name>

For convenience, each model can be named; default model name is MODEL.

When a LOAD is performed, without any parameters, the model name becomes the

LOAD file name. The MODEL command can be used at any time to change the current

model name.

REMOVE

<REMOVE cmd> ::- REMOVE <port, process, link list>

Each item (port, process or link) in the parameter list is removed from the

graph. When a link is removed, any port that had been connected to it becomes

connected to the special link DANGLING. When a process has only one port, that port

can not be removed; instead the process should be removed.

SAVE

<SAVE cmd>::- SAVE <save parami>
<save param> ::- ALL | COMPETE | EXTEND | FILE <file name> |

GRAPH | LINKS | NODES | <list of nodes> |
PRIORITY | PROCESSES | SCHEDULER | null

The SAVE command is used to save a model description, components of a model

description, and simulation parameters onto a PDP-10 file. Its common use is saving

the entire description and parameters onto the file named by the MODEL command.

This is accomplished by simply using SAVE with no parameters. The use of the

parameter ALL is the same as null except that a file name is required. The format of

the data written is the same as that used by the DISPLAY command, as follows:

ALL -- same as DISPLAY GRAPH ALL

COMPETE -- same as DISPLAY COMPETE

GRAPH - same as DISPLAY GRAPH ATTRIBUTES and DISPLAY GRAPH JTRANSITIONS

LINKS -- same as DISPLAY GRAPH ATTRIBUTES

PRIORITY -- same as DISPLAY PRIORITY

A—1A
A.5 Keyword commands

PROCESSES - same as DISPLAY GRAPH TRANSITIONS

SCHEDULER -- same as DISPLAY SCHEDULER

The FILE parameter is used to name the file to receive the data. No device can

be specified.

The EXTEND parameter signifies that the named file is extended instead of

replaced.

The NODES parameter signifies that the connections and attributes or

trjinsitions of '.ne named nodes are to be saved

SCHEDULE

<SCHEDULE cmd> ::- SCHEDULE <scheduie parameter
<schedule parameter ::- BY scheduling sfyle> |

COMPETE <processlist> | NONCOMPETE <process list> |
PRIORITY -process-priority list>

<process-priority>::- <p,'ociSS name>:<non-neg8tive integer>
<scheduling style>::- LINK | LKPR | PROCESS | PRLK | FIFO I RANDOM

The SCHEDULE command is used to set attributes for the simulation scheduler.

The BY parameter is used to set the scheduling style. The PRIORITY parameter is used

to set priorities for processes. The COMPETE and NONCOMPETE parameters are used

'•' 'M which processes will and will not compete for available processors.

SIMULATE

<SIMULATE cmd> ::- SIMULATE <time> <sim param*>
<time> ::■ <a non-negative real number>
<sim param>::- FILETRACE <file name> |

MODELTRACE | PROCESSORS «positive integer> |
SCHEDULE «scheduling style> | SEED «positive integer> |
TRACE | WORKINGSET

The SIMULATE command is used to initiate a STEPPS model simulation for the

length of time specified. The other parameters set simulation details as explained

below. No more than one of the parameters TRACE, FILETRACE, and MODELTRACE can

be used.

A.5 Keyword commands
A-19

PROCESSORS sets the number of processors available (or the simulation.

SCHEDULE resets the simulation scheduling style: LINK, PROCESC, FIFO, RANDOM, LKPR,

or PRLK. SEED sets the simulation random number generator seed for this simulation.

Each simulation starts with the same internally defined seed unless specifically set by

the SEED parameter.

The TRACE parameter causes messages to be displayed on the terminal

describing each simulated event. FILETRACE extends the named file with the trace

information. MODELTRACE extends the file <model name>.TRA with the trace

information.

The WORKINGSET parameter causes those processes for which statistics are

being collected to additiomJy collect statistics showing related working sets of

processes.

SNAPSHOTS

SNAPSHOTS cmd>::- SNAPSHOTS <snap parami>
<snap param> ::- FILE <optional file name> | LINKS I

PROCESSES I NODES <process, link list> | SCHEDULER | null

The SNAPSHOTS command is used to display current status of a simulation that

has stopped, but not been terminated (UNSIMULATE).

The FILE parameter designates that the snapshot is to extend the file named

(colon precedes the file name) or the <model name>.TRA file. The other parameters

name the items to be examined; namely the SCHEDULER, all LINKS, all PROCESSES, or

individually named nodes. A null parameter means all items.

STATISTICS

STATISTICS cmd>::- STATISTICS <stat paramp
<stat param> ::- FILE <optional file name> | LINKS |

PROCESSES | NODES <process, link list> | SCHEDULER | null

A.5 Keyword commands A-20

The STATISTICS command is used to display the current accumulated statistics

of a simulation that has been stopped, but not terminated (UNSIMULATEd).

The meanings of the parameters are the same as for the* SNAPSHOT command.

TEST

<TEST cmd>::- TEST <test param>
<test param> ::- GRAPH | DEADLOCK <test dead param> |

NODES <process list>
<test dead param>::- TRACE | VERBOSE | NSAVE |

NSTRACE | NSVERBOSE

The TRACE command is used to analyze the structure of a STEPPS model. The

GRAPH parameter means to determine whether the entire graph is well-formed

(including each process). The NODES parameter is used to determine whether

individual processes are well-formed.

The DEADLOCK parameter means to determine whether any deadlocks exist in a

STEPPS modpl. The process destroys the model, so an automatic SAVE is normally

performed to a unique file before the deadlock test procedure begins and the model is

normally restored afterwards. Two types of traces can be performed showing how the

deadlock algorithm works. The DEADLOCK subparameters are used to determine how

the saves and tracer are performed.

TRACE -- Trace the application of each reduction.

VERBOSE -- Same as TRACE plus display all transition matrix changes.

NSAVE — Allow the model to be destroyed without being saved first nor restored

afterwards.

NSTRACE -- NSAVE + TRACE.

NSVERBOSE -- NSAVE * VERBOSE.

UlSISIMUL/lTE

<UNSIMULATE cmd> ::- UNSIMULATE
The UNSIMULATE command is used to terminate a simulation that has stopped

so that it can not be restarted (CONTINUEd).

B-l

APPENDIX B

Using the STEPPS System

This appendix presents a protocol of the use of the STEPPS system for the

Chapter III Bliss/11 example. A discussion of the Chapter III Hearsay II example input

problem and its solution is also presented.

B. 1. Bliss/11 example protocol

An annotated protocol of the use of the STEPPS system for the Bliss/11 mode!

shown in Figure III-U is presented below. Following the protocol, the simulation

commands used for the experiments will be presented. A sample of the statistics

produced upon request after a simulation will also be presented.

I PROTOCOL FOR BLISS/11
«nODEL 811

•DENSITY EXPON PORT LEX.01 LINK LS HERN .21
Port LEX.0888 Link LS n.»n .269«» Epsilon .tllH Tor (Grain) 111
Link naiM T INK 881" all I b« und.

»DENSITY EXPON PORT SYNFL0.0« LINK SO HERN .'ill
Port SYNFLO.Om Link SO Roan .21688 Eptllon .«8m For (Craln) 111
Link nam« "LINK6I2' Mill bo utod.
•SYNFL0.I2I»LS I INPUT FROR "LEX"
»SYNFL0.08. 18:8, I2lil I RFTER OUTPUT, INPUT FROM "III"
.SYNFL0.I28. Iltl I REQUEST HOPE INPUT

«DENSITY EXPON PORT DELRY.OI LINK DT RERN 1.137
Port DELRY.08II Llrk DT Roan .13711 Epallon .11111 For (Craln) 111
Link nana 'LINKIIS' HIII bo uaod.
•DELAY.I2I-SD I INPUT FROR 'SYNFLO'

•DENSITY EXPON PORT TNBINO.OI LINK TO HERN .122
Port TNBINO.OIII Link TC Roan .12211 Eptllon .11111 For (Craln) 111
Link namo 'LINKII4' will bo utod.
•TNBIND.I2I-0T I INPUT FROR 'OELRY'

•DENSITY EXPON PORT CODE.01 LINK CF RERN .114
Port CODE.Olli Link CF Roan .18411 Eptllon .11111 For (Craln) 111

-^CT—r - - „ ^ —

81 Bliss/11 example protocol 0-2

Link nan« -LINKUS' Mil: b« utld.
•C00E.I2e*TC I INPUT FROH "TNBIND"

•DENSITY EXPON PORT FINnL.Oe LINK FP HEPN .296
Port FINRL.Oeee Link FR Htan .29600 Epillon .06180 For (Grain) til
Link n«mt "lINKeeB" ullt b« uttd.
»FIN«L.120»CF I INPUT FRO« "CODE"

•COPY OELPY.I20, TNBIND.120, CODE.120, FINAL.120 i SYNFLO.I20
•COPY DELAY.OC, TNBIND.00, CODE.00. FINRL.00 i SYNFLO.00

•RESULT.I0-FR I DEPOSITORY FOR RESULTS

•SCHEDULE NONCOnPETE RESULT

•ATTRIBUTE TC,CF,DT,FR,LS,SD QUEUE. 10

The simuljtions were initiated by using the SIMULATE comm ind. The following

command was used to simulate the model using 6 processors and the FIFO scheduling

algorithm for 100 time units:

Slmu>a1a 100 procaitort 6 ichadula <lfo

The other Bliss/11 experiments were simulated by modifying the SIMULATE

command parameters for timing, number of processors, and scheduling algorithms as

described in Appendix A. In order to eliminate the requirement for recreating the

model for each simulation, the model was first written on a file (using the SAVE

command) and for each simulation it was restored (using the LOAD command). A sample

of the stat:stics displayed for links is shown below:

•»t»t l»t Id 1 at In» ■ ie«

Hod*l Bit i l3-«»>-?6 03.«

Si»('«tlci • t , i« 100.POO 6 prccttoort.

Link TIM No. Hr.. N», E'. E«. E«. » TIM » No. t TIM « t IM ACCK« R«qu«lt S.ndl

In«« I»» SI»M 1 icdf Paali Oil" Utit OvMo loictve Slirlup» Sttrlup Ott IVt P.I. P.I. P.I.

cr ion.QQ 1 337 3.-8 5175 .807 .571 180.00» .15» .80« .00» .30 .30
01 100.00 1 360 319 V529 297 279 100.00» .11» 00« .00» .Z9 M
FP 100.00 3^8 327 3,'B .000 1.000 .000 100 80» 58.09» .80» .00» 30 .31
LIWOBl 100 00 379 377 377 .000 .000 .800 100 80» 50 13» .80« .00» ?6 .26
UNKW leo.oo Ki 371 371 ire .000 000 100. M» 13.67» .00» .00» .17 .27
LINK«03 100.00 \ze 36" 36» .578 .000 .000 180.00* 17.79» .oo» .00» .78 28
LINKCOI mo.oo 23? 3<9 3<9 .r87 .000 .000 100.00» 33.95» 00» .00« 29 .29
LINfOOS 100 00 Z77 338 338 139 .000 .000 toe.oo« 10.96« .00» .80» 30 .30
Liweos loo.eo 3?e m 328 .007 .000 000 100.00» 54.80» .80' .00» .30 .30
LS 100.00 ? 37G 371 3.915 IZB .036 loe.oo» .27» .80» .00» .27 .26
SO 100.00 2 371 360 1062 .578 .eZ7 100.00» .27» 00« .00» r< .28 .27

it 100.00 2 3ia 338 6 276 .139 zs» 100.00» m ee» on» .15 .33 .29

 — IHM JliWIillMllM M ■ - ill «»Mii-fawMi. #^,,.w v*/mm

B.2 The STEPPS Hearsay 11 model 8-3

B.2. The STEPPS Hearsay II model

The STEPPS model of the Hearsay II system was discussed In Chapter III.

However, unlike the Bliss/I 1 model, the exact Hearsay II model was not shown since it

Is too large to place into the text of Chapter III. It was found that many of the

structures used for the Hearsay II model were similar, but not close enough to utilize

the STEPPS command COPY to facilitate input of the model. A STEPPS feature

discussed in Chapter VI as a future system tool for reproducing groups of processes

and links might have been u:?ful. Instead of implementing that feature, the action

pursued was to create a simple preprocessor program (in SAIL) to convert a

description of a Hearsay II model into a form appropriate to the STEPPS system. The

following is an example of the inout to the preprocessor. The actual probabilities used

in the STEPPS Hearsay II model are shown.

procr«t tflalo locV« cl •C?>cS'Mord>pN n
compute I IPO dont

prpect« prtlalo lock. cll'Cr*.cllb.cll*.clir.clls.cllh,cl4,cM*.cMb
Comput« 9>79 tnvobt bBlvlo '

proc»»» prt\p%rn lictl rpilSPfts l.ptts Z
co"pu'. • 58
mvoi.* btlcmfi.VOZ 653
invokt ('•Ipi.'ni 951 65*
don«

proc*«« ktlpavn
lot I.. c9.c9<.c9f.c9«.c9H,cie.cl««.cl9(.<.cl^.

elZb>cl2t>cltr>ciZt>rl2h.cll.etla>cllb.CMn.mn l.wi 2.CPM«.PM« I.PU« 2
ronpult PSBSP
don«

proc«»l tllcw?
lockt c9.c9«.c9r.c99.c9h,cte.ciei.cl0b.cl?.

cl?c.clZ« ciZf.cl29.cl?h.cl3.cl3«.cl3b.c««n.»«B l.«.n Z.cpniWi I'PMf ?
eonput« Z5.445
don«

proc«s« pr«|rpol
In'-l-i tM««nt .«hdword'WOrd'Wrdfucn -^rft,phon.C"<'n.ii)rn t .nvn 2.cpMt'PMt l'P9*9 Z'
conput« 31
mvol'« kflluvi ■ 376
don«

proc«tft fctluv
loci'* cl ,c2.c4.cS.c7.c7*.c7b.cB.c9.c9«.c9'.c9<i.c9h,cl«.

c|A«.clM>.cU.clla.cllb.cll«.cllf.cll9.cl|h,clZ.
cl2c.cI2«.cl?r,cl?«.cl7h.cM.cl4«.e|4b

compute 134

dont

— ■ I- —.

B.2 The STEPPS Hearsay II model B-A

proct«« rrtlttf

comrutt 35-IPO

■ nvoL« t«,|nq

den«

procvti ^vlatg
Ipct» T«9

Compu*« ^Ofl

c«ttpu*« <M
comput« 100

comput» 400

don»

pror*%% pr#|utb

loci-* c4,c5

conput* 50

mvoV« kslutbi OS? SO

dor»

procre« i-9 hjfh

lect« cZ.c3.cS«.eSb.c4.cS'cS*e6i.cir.c6f.c6h.el|.ctla*cllb
epmpulf 30
Cfjmpulf 30, 150

co*put« 30-150

dem»

proce«» pr»|psc

lorl<» c3<c3».c9b>c7.c7i'C7b

comput* 50

mvol-* bt|M«rcht.ia Hft.btllliftli.ia 13S
don»

proct»« kKlivtrch

in. i-- c?.c3.c3*.c3b.c4.cS.c6.c&ff.rGr.c69>c6h.c7rc7«.c7b.ce.cl3.ct3«.cl3b

cpwput« 50.1100

CO»PU»» tOO.UOO

don«

prnc»»» Vjlt I««

IPCW» C?r3'c3«.i3b>c4.c5'c6'c6«'c6f'c69c6h.c7,c7».c7b.cB>cl3'Cl3B'Cl3b

comp-jt« 50.??5

co»P'j*« 75.?t5
flpn«

(«vicnn s«g.pt«g !'Pv«fll 2-m*n \ ,mmn ? .phon .turn .Hrdturn .M0rd>

«hdwor J.»hdl»nI

trlock«

cpr«? pf«? r pf«9 1

CN«n «»n ? ■xn 1
cZ cl »urn

c3 *iord e7

C^ wrd'um cB

c5 tirdixjrn furn

cG cB cl2
C 7 furn c 10

cB »•j'-n phon

c9 phpn c\Z

C 10 phon C"«»n

C 1 1 r"»n c M

C \Z c«"*n cp««9

C13 phon cp««9

cM cp««« »»q

cM« p««? I »«9

cI 4b p««9 2 ■«g

t \ 3« phon p«.«9 1

cI 3b phon pt«9 ?

cIT* mxn I pfrg 1

cI2f «en 1 p««9 2

Cl?9 "*"> 2 Pf»9 I

c\Zh »»n Z pf«9 Z

ell» »«n 1 cM
cltb «-n 2 cM

IFIIiiniwi>wi^nw» .L.T.... 1 ■• ■ -■ ' ■ ■■ —'

B.2 The STEPPS Hearsay II model B'5

clla xn 1 cM«
clU m,n 1 eMb
c Ug m*n Z f M»
cllh *«n 2 cMb

c IP» rlw" K»« 1
clPb chon »«n 7

c9< phon cl?»
c3f c^wn clZf
c99 phon clZ^
c 9H phon c12h

c?« %>irn clO«
rTb »ijrn cl^b

(G* cS cl2<
cB(cB eltf
c6« cB cl2<)
c6h cB ellh

r 3» uord r-'•
t 3b word cTb

don«

f Im

The result of the Hearsay II model generation is the STEPPS model which

follows:

B.2 The STEPPS Hearsay II model
KrS&

B 6

* lock iiq b>' th«
'OP'»! pol

lO- Oil 75/nO.ll
Toprt It««!

7 If. icon livtlt • 2 tubllvtU
loprtlPtC Toprllptrn

or n i:i/'n(M. oJi t.es;/o«iir
'oprtlUMb ToprtlAIo

PetpUclor.,». o4i.009/0«; 1; oS 6 «66/oe.I. oSi «.««Z/oti 11
pci»l«clor ,o(«'».«il.l ' n,,,,,,t Coat tvtrr I uml «f tiat
re«»1»eI or. o- Tt to 1-prf11tclor. •
prolrpol . 1-loprolrpol'pctoUctor . 1
pr»lr«c. l-lopi (IptCTCttloctor,;
prtlpf yn. lMoprtlp»yn*-pc(«l«ctOr .3
pr • I **9 1 • t opr «| i»q- cr f • 1 «c I or . 4
prtlutb. l>lopr«Hulb>Pcf»l«ctor .{
pr«l»lo. l«lopr«|»10'K»»l»clor S
ich«^ noncoaptt« pcfoltctor

1 kalal« Loctf cl.cc.cS.Hord.phon
ktlolo. i !•■ olOh ."«"
kf(«lo.il> vIOZi ZOO
kllolo. I|a olOSt .»"l
litlal«. I|I oieii r«"
bolalo.i|a olOSi rno
iHllci'htlal*. ItUfwltcl
iNulcl-kdaU.MI
k«i«io oie'-rioiii/o3«ii i, nweoe/ojii
lHl|c2«l>t|(lo.l*r>(Hi|eZ
IHU|C2>II«|*1O.KK

t»i»io.oio?.iio::i/o3o?i i. iiae.eoe/oj.i
I.il I' '.-l-H.ln |lM-(.,l|r5
luuUS>l.>|*lo.303
I'tl»lo.ol03'iiq3il/o»3i 1. iioaeoe/oZi 1
lit Umrd-V.lilo. lOVflMuord
ulV lHord^il(lo.304

Irfl*le.el(4>il04il/aM4i 1. UW.WO/oZrl
t!l lphon.l.,|ilo.lM-flHphon
•jll'|phon-l.«|«|o.30S
i'ii«io.oiP5'iiesii/o3«Si i. noeeee/oZii
kdalo. rZ>lit|«|«.a2
kalaloocxZi 1
kalalo.it> ilil

' pr,|

prplal
pr a I a 1
pralal
pralal
prt lal

• pralal
pr a I a 1 >
praiali
pr a I a 11
pr a I a 1'
«wllrl
twirl
pr 11 a 1
lullcl
tuuUI
pralal
IHIUI

IHUUI
pr a I a 1
IHIUI

tuulcl
pralal
IMIICI

iMUlCl
pralal
(ullfl
«MJICI

pralal
(Mild
tMUld
pralal
IMIICI

luulcl
pralal
IMIICI

tuuld
pralal

alo Locks cll.clla.cllb.clla.cnr.cll«
.cllh.cM.cMa.cMb

. <l*a olOt: .109
. iJ« ol02i IM
.il« ol03i 100
■il- olOHi 100
•il' olOS, .100
■■!■ 0IO61 .100

olO^i .100
clOBi 100
ol09t 100
0IIO1 10«

a.il
o. .1
0. ll
9.1I
l-p^alaloioi^f^iun
1-pralalo 301
o.oi«ir,iei.i/o3oir 1, Teew/oZii
la-pralalo.|0r.ru||clla
la-pralali,302
o.oior.iior,i/j3o?i 1. Toooe/oJii
lb-pralalo. 103.ful|r.ltb
Ib-pralalo 303
O.ol03'rl03rl/o3«3i 1. TO.MO/oZil
la>pralalo lOI'fulIclla
la-pralalo.304
o.ol04.l104,l/o304i 1. TOWe/oJil
H>pra|alo IOS>rN||cl]r
H-pralaloSOS
oolOS'ilOSil/oSOS: 1. 7«,MO/oM
l^-prtialo |n6.f„i|cll9
lü-pri|alo.306
n o:»6. i ins i/r.3116 i. rewe/ojit
l^'pralalo l«7.f„l|cl|h
lh-pralalo.307
o.oie'-i|07il/o30?i I. 70 oeo/o?.!
4>pralalo.iee'(u||cl4
4*pralalo.308

olOfl.,109:!/o3«9: I. TOOee/oZil
4a-pralalo.ie9>(ul|cl4a
4a>pralalo.309

oieg-,109.1/031).. 1. 7eeM/o?ii

U'llcMb-pralalo.lie-fulleMb
luukl4b.pralalo.3l8
praiaio.oiio.iiieu/osie. i. Te.eee/oZii
pralalo,i?.pralalo.oZ
pralalo.o?«iri1

Wlalo.l^Hk.lalo'prtlalo.Sei
prtlalo.P2«O9011/O3I|

pralalo. p3.pralalo.o3
pralalo.o3>i3iI
pralalo. P3' 11II

' pralmyn Loci'» rpnas.ptai 1 .ptai Z
pralpii-n. il.« „|B1 .333
pralpfyt,. ||a olO;: .333
pi t\ptm, il« ol03i .334

»"llcpias-pralp,,,,. lOl-fullcpaag
luulcrooü.prair.^n 301

praipum •i«i*ii*iii/sni, 1, se.eeo/oz.i
tUlrsag l-pralpim. lO^.f ll|pM9 |
uUlprej l-pralptyn. 30?

praip,»n oiez.iioz!|/o3ozi 1. so.eee/oZii
lldlpta« Z'pralp.cn. ie3'nnp»a9 Z
ulHf=»9 Z-Pra|p^>n.303
prrip»>.n.oie3-ii03ii/o3O3i i, se.eee/oZii
pralp»).n. iZ'pra|p»yn.oZ
pralpfvn.oZ'iZil

l-fksa? l.vl.|l.,|c,a9'pralp«yn.9ei
prajpayn ,2.09011 .9O:.650/o3i I
pralr»rn.,?.03, .oge.SS«
pralpacn.i3>pra|p«vn.o3
prp|p«)'n.o3*i3: I

k.lp.yn.l.„l,|l.|pi).n.pralpI(.n.9«lZ
pralp.yn.,3.09«?! 951.S58/o4i I
prajptvn.,3.041 .049.658
pralpayn, i1»pra|pa>-n.o4
Pralp<yn.o4»l4l|
Pralpayn.14* i|t|

I Ulwrn Locka c9.c9a.c9f,c99.c9h,cI8.ciea,

clPb.clZ,clZb.cl?a.clZf,cIZ9,cl?h.cl3.
Cl3a.cl3bicayn,n>n |,«.n Z.cpaat-
Pf»9 I P?a9 !

I'flpjyn. ,1.. „ini, .043. ?5 000
k«lpf/n.il. 0|(V, .^3, 2g,Ulf

■043. zs.ooe
043. ZSOOO
043. !s<<m
843. ZS.ono

■O13. 25.000
043. 25 on«
043. 25.«tw
043. 25.000
043, 25 «0«
043, 25 «fi«
044, 25.«00
044. 25 008

■044, 25.0OO
■044. 25.000
044, 25.000

044. 25.000

044. 25.0O0
044, 25 «88
044, 25.900

044, 25.880

044, 25 900

llc9

lif |p»).n. il. ol93

Mlpfyn. .1« ol94

Irrlptrn. i|> ol«5
tsipuvn.1|. nlOB

tslptvo.i|a p|n7;
kajpay«.i|. niOB.
Inlp»>n. , |. ol09:
l.«lp»yn, ,|. o||0,
talpun. l|a ollll
kflpiin.,). oll2,
kalpfyn. ,|. 0| |3,
tflr*yn
luipfyn
IrlPf in
kflp*)n
k» tp»>n
l-JlP'yn. 1 1
•■»Ipfyn. 11

il« 0114,
il« .■II',
il* 0IIS1
il« 0117,
il« ollBf

oll9
ol2fli

k»|p»»ri. ,1. ol21
l-tipivn. ,1. ol22i
l-'IrBvn >!• 0|23,
t"l k9.l«|pS)n.lO|.f
Uiu|c3.|'«|p5yn.30|

V.|p.yn.ol«l.,101,l/o30|, 1, 959.909/02,1
t"l Ic9«-I.»|p,yn. l«2.ful |c9a
»w|rCa-l.|p,yn.302
I..lr.yn.oin2.,l«2,|/o302i 1, 959.909/02,1
Uil|c9».|.,|p,yn l«3»ful|t9f
Uiujc9f.|.f |p«yn.303
lu|pfyn.olO3.il03.|/o3O3i I
(ulk99.|,t|p,y(,.i0<.fwi|c99

lMuk99.|.f|pjyn.304
l.«lpfyn.ol«4.,104,l/„304, I, 9S9.090/o2,l
lul le9h«liitMrn, I05>rul k9h
lnuk9h.|,«|p,yn.30S

I'»lpfyn.ol05.il05,|/o305i I
tMlkl«-l.I|p,y„.|06.ful|(.le

859.808/02,1

959-8««/o2il

B.2 The STEPPS Hearsay II model B-7

tilp«.n.ol06'Mn6M/o3<»6i !■ BSB.WW/oZil

«ul)c ll1»'t«lP«»'"-1*7''"! !«•••
(HulclQ«*l'*ii trn.H?
k»|p»>n.ol«7T.lB:il/o397' l< BSeWfl/o^'l
tiattinb-t»lp»>'n- 19e-f"l|cl9b
tuij|clBb-l'J|»»l">-3<18
t.lr»v" olOB'.l'iBil/oJoei I. BSBBOB/oZil
tulleIJ'Wilptvn.lP9-»ullcl2
(«ulcU-ttlpi^-a^
lm|p«in.ol09'plP9il'o3n9- 1. BSB.BOB/oZil
lullcirb-nlr»'" IIO-(wllclZb
tuulcI2b'k»lrtKn.318
Wtlprvn.cllO'ilKM/oaiBi 1. Kt.ttf/tlii
lullclZ('^f|P(rn.lll>fHllcl7f
(MU|< l?ft«lpti'n.311
IxlPfrn.elll'illlil/oBlli I. KW PBC/oZil
twiicirf-kf iPK'n.iir-fuiui?'
tuulcirf-f Ic>»>"i31?
(.tlpti-n.oin'iMZil/eJtZi !■ IM.»W/oZil
«wllclZs'i'tlpf" 113'fMlleU«
tU'j|':l?<l-kllP«l"' 313
ttlp«^.oll3'ill3:l/o313i 1. Bse.eeB/oza
lulUlch-tllpi/n. IM-fullcirb
luijkl.'h-ktlpscn. 3H
k«lr»>".olM«ilMil/c31^ !■ BBWB/otil
t«llcl3-k»lr»»" 115-«ullcl3
»uuklS'WflP«)" 3IS
ktln.n oll5-rllSil/o314' I. BSBOBB/oZl
tullcl3r>'t»lpl)'n 1IS-<"1|CI3»
luulc13»-lllp«>n-316
ttlpfr, oll6'ill6.l/oii6: l> B59 »BP/oZ.l
tMllcl3b-kflrfyn.lP-(^l|cl3b
l.iulcl3b-kflp»cn.3K
k»|pfcn.oll7'ill7:l/o3l7i I. BSBBOe/oZ-l
Uillcm.n-ktlpfyn. 1 1B*(M1 lc">«n
lu,ilci»"n*k»lpfvn.31B
litlp»yn.cll««ilH"l/o3l»' I- BSBBW/oZil
UH"«n l.k»)p»^n. 119-flH"<-n I
ulklmvn la.lr-.r. IIS
k.lpiyn .J119-I119. Wo319i L BSB «W/o?il
tlk|iii«n Z»ktlp»yn. 1J0-f lH«»n Z
ulk|«-n Z-ktlPtyn.3r0
kilrtyn.olZtl-'IZOi l/o3Z9i I- BSe.BfW/oZil
tu\ lepMV'I'dPSrn. IZl-ful kp»»?
twuIcpfffQ'kilpivn.3Z1
isirv o.oizi.iizi.i/oszii l< Bs» eee/oz.i
tlklpf«? I'kilptKO. kZ-f 1HPM3 1
ulklr"«q l'kllplyn.3ZZ
ktP.Kn.oizz-iizzii/oSZZi i. B5«.eoe/oZ.i
l|k|t<*t| Z'kllpsyn. lZ3-'lk IPS«? ?
ul'/ Ipre9 Z'l'i|p?)'n.3Z3
k.|p.Kn.olZ3'.IZ3il/o3Z3' I- BSPBPO/oZrl
k«lr«>n.iZ'kllpsyn oZ
k»lp«yn . tiZ" iZ: 1
kslpsyn.iZ» fl'l

1 kllcM9 Lock» c9
! cl9«■c1 WJ ■ c
i clZh.rl3.cl
1 cpi«9-P11te|
k»lc»»9.ll»» 0191

il> olPZ.
i|> olOSi
.!• ol94i
il' 0105:
ii« oioe>
il« olPZi
il- olPBi

If« Us»9-
1i|c««9.
k« |C««9'
IrflcMf'
k«lc«e9.
kf lcf«9.
k»|cf«9-
kflcf«9.il' Ol09i
kllc««3 ll" OIIPI

k«lc«4< il* nl 1 1
jrflCI««. ll« ollZl
kf|c««9 •1* ol13t
k«lcfr9. i I' ol Mi
k»lc»»9 ll« «US'
k«lc»I9 iI« otlSl
k«lc»«9- I I« oll7:

k«lc»«9 ll« »I'B'
b»lc*M' '■* o'19'
irslcMI' 'I* «l^'
Iralcmf'''' "'■''

c9«.t9f .c99 <:9^i.cle.
IZ.i-.lZc.clZt.clZ'.clZ».
3«.': ISb'i:»»" ■•'" l.wn Z-
I ^««9 Z
.9«. Z5.9n9
9<3. Z5.909

.013. ZS.POO

.0«3. Z5 90«

.943. Z5 000
P43. ZS 900
.943. Z5.9P0

.043. ZS POO

.943. ZS PCP
943. ZS.pnn
.043. ZS ooo

.943. Z5 900

.944. ZS oon

.944. ZS «0«

944. ZS 909
944. ZS.OOO

.044, ZS.9O0

944. ZS.009

944. ZS 909
944. /S BO«

944. ZS 9««

44S

445

BB9/oZil

,99P/oZi|

909/oZil

e99/oZil

.999Ai7il

«4S

1«

k.k««9 .1« olZZi 944. ZS OW
k.k..9 il« clZ3i .944. Z5.99e
lulk9-kik»»9 fkfHlkB
ln.jk9-k«k««9-391
k.k««9 ol01'il01il/o391i Ii 445
tnlle9f-liilei«».lBr*'N>lefc
U<iilc9«-kilt«..9.39Z
kfkft^ olOZ'ilPZil/o3PZi 1
lul k9('kf lcft9.1P3'twlk9f
Uiuk9<-kfl<;t«9-303
kflcr«9.olo3'ilP3 1/0303' 1. <<5
lul k9=i'l.»lc'«9-IP^'f"'Ic99
tui)ltl9-kf kf«9 314
l-»kJ»90l04.il04.1/o39' 1
tul k9h.k«lc«9 105-ful k9h
ti.i.jk9h.k»|r5t9.3n5
k,|i:».9.c|95 .105 Wo30S: 1
IwllclB'ktle«». IBS'fjllcH
•,ji.ikl9-kj|c«»9-3PB
Illicit«.«IBS' 1IP61I/15306. I
tulkl9»-k«lc»«9 107-(ulkl9«
SuuklO«-k«k»«9 307
k.k«e9.olP7'ilOM/o307; 1. 445
lul i.l0b'ktU'»9lPB>(ulk;9b
luuklOb-lfk!i»9.3PB
l,f |c?fg.olOB'iinB:l/ti308i 1
UilklZ-kf kft9 109*'ulklZ
lHuklZ-k«kt»9.3n9

. kf|tn9 tilP9^i|P9i 1/P399I 1
lul k IZc-ktUng. HO*'"! k IZc
tuuklZc-ktkf«9-319
k«k«9 tin9'illO:l/o319i 1. 445
tulklZ»'k«k»*9- lll-'u- klZ«
tuijklZ»-kf|i:««9 311
l.»|e»«».oltl«illlil/oJlti 1. **«
lul|clZf-k«k»«sllZ-'ulklZ'

luu|rlZf-k«k»«9 31Z
k.k..9 ollZ"llZil/o3IZi I. VS
tuWclit-^ticttt-lli'lui klZ9
»uuklZi-kfkf«9.313
kf |r.<«9.all3'ill3il/o313i I > US
lul klZlTk»lcf»9lH',"lklZh
1uu|clZtTkf|cf«9.314
k»UM«.olM«>114il/Bll<i I
lul kl3-k»lcf«9 115>lulkl3
tnulcl3'kflC!t9.31S
l>flcfi«.<>IIS«lUSit/oltSi I
tulklSa^'Icttg Il6-fulkl3*
Iuukl3»>k«lc««9 3IB
k»k5«9 ollfi'iM6il/o31B! 1. «5.

tul Icl3b'l<f IcMS.Il?''«! It 13b
tuglc 13b-k»kH9-31"
kfk..9 "117.1117,1/0317, t, 445
tul k">'n-l>lk»«9- llB*ful k»-o
tMulcAvn-ktlcttf.ltfl
k.k««9 ollB-illB,l/o3IB, 1. 445
llklmxn l.l.|c»»9 119-llHl»'" I
ulklmyn l-lfk"? 319
k.k««» oll9'ill9,l/o319i 1. «5
llk|iii»n Z.krlc«9.1Z0-nH««o Z
ulklm-r. Z'k'|i:r«3.3ZP
ktk»r9-olZP'ilZ9il/o3Z0i I. 445.
tul kPff9'kf lefts 1Z l-f "lit P«»9
tuukPft'),l'iilr««9.3Zl
k«k«9.olZl'ilZlil/o3Zli I. 44S
llHr«»9 l'kfkf»9.1ZZ*fll'|P»«9 1
ulk lrf»9 l-k«kK9.3ZZ
k»l':f.9.olZZ'ilZZI/o3ZZi I- 445.
tlHpft9 Z«ktk«»9lZ3*nHp««9 Z
U1HP»»9 Z-ttk»«? 3Z3
k.k««9 olZ3"lZ3,l/o3Z3, 1. 445
l<»k««9 ,Z'k»k»«9 oZ
k»k«e9 oZ'iZ; I
k«k>*9 iZ- ill

1 prtlrpol Lock« •hd«»nt.«hduord.uord.
' ufd«urn.furn.phon.c»'n .»'n l.»*n Z

! .cpf«9.PfC9 I.PM9 Z.M9
prtlrpol.il'« olPli 976
prilrpol.ll« olBZi -977
prtlrpol.il' ol93i 977
prtlrpol. II« ol94i .977

445

44S.999/oZil

900/oZ,l

909/oZil

999/oZ,l

909/oM

999/oZ,l

.909/oZ,|

.999/oZil

909/oZil

900/02:1

poo/cZn

.*M/^Z,1

.999/oZ,l

909/oZil

990/oZil

009/,oZil

99«/oZ,l

909/oZil

44i

4<5

B.2 The STEPPS Hearsay II model B-8

pr 11' PC 1 oins. (<77

pr»Irppl. oins^ e?;
rr c 1 r po I ■ 0107, ,»77

pr 11 r po | rinfli .077

pr ■ 1 r pr 1 ol09i 077

prt kpnl PII«, »77

pr « 1 r pn 1 . Olli: »77

P' t 1' PO 1 ■ OUT: 077

pr 11 r pn 1 oll3i 077

t U !•'■ !*•■•' -I • «!■ i"il IOl-rU IfhdHlt

ull jtMimfprtirpol 901
prt|rpo|.ol0l'>I0|i|/o3O|i I, 31 O00/o;>l

I Ik l«MiiordT<-t|rrol lOiMIHibdword

U I k I Jhduor d- pr r I r PO I . J'V

crtirpni oior*iiorii/o3o:: i. ji.ooo/o^ii
lU luord'pr«l'Pol m-Oiuord
uU U«<rd-P'»l'prl 303
l;r»|r,ol ol03"IP3:l/c3O3i 1. 31.000/oM
Ilk ll -H»urn«pr»|rpol I0<» (U I wr d»urn
ulk JHr^turnktrflrCtol , 304
pr»kpd ol04.,|01i l/o3'<4i I. 31 OOO/oM
(lUturn.prtlrp-l.lOS'nUturn
ullr|furn»pi-f|rppl. 305

pftkpol olOt., 105, |/o3nV I. 31 »0«/nM
llk|pH<-n.prt|rpol 106-f IHphoo

■ j |i If Son»pr f |r po] 306

prjlrcol ol06-,|OS: l/oSOe^ I. 31 OflO/o?!
twl |r«.n.pre|fpnl 107» fwl |r.«»n

1 wu lcw»n-prt kpd ■ 307
Pr»|rrol.ol07.,)071/o3O7:). 31 «OO/o? 1
UH«.n lTr»|rpol lOB-MH«»" I
uUlff-n l*prc(rpol. 308
t.'«irpoi.oiee-'U>ii:i/o308, i. 3i oeo/oM
llH»-n {•rrt|rp«|.|M*fllilaMi !
ull U.n Z-prtlrpol 309

prtlrpc>|.0in«ilM>l/eJNi !■ 31 OW/oM
Iwl IrPftq-PftI'pol HO-lul IcpfM
twulcpftg-p'ftrpolSlO
pr«|rpol PllO',110, Wo3IO; I. 31 WO/oJ'
tlMp»« l^prtlrPll III>(U|PH« I
ulklpfr? l»p*-»kpol. 311
pr<|rp«l.Olli-,111,1/0311' I. 31 ««O/o? I
nil,."* ?>prikpoi nr-rikiPHi ;
u|k|p»«g 2*pr»|rpol . 31t
prcirpoi.oii;>,iir,i/o3i;, !■ 31 e>w/o.' 1
t |l>|««t*pra lrvol.lt >• MlilMfl
ulk If^q*rr»|rpril 313
prt|rpal.olU«ill>il/«llli I' 31 OOO/o? 1
prplrpol ,r-pr«|rpol 0?
p^pUpol Ot •)?I 1

ktluv l>vk Ikiluvprilrpol 901

pftlrtol. iZ-oDOl, ,37S/o3,l

prtlrpol ,?»o3; ■fiC*
pr»lrpol . :)■ r'f I'inl nl

prtlrpol o3« ,3' 1

pr 11 r po 1 . , 3« (111

1 Vtluu Lock» el t2.c4.c5 i:7.c7»,c7b cB.

! c9 c9..c9r c99.c9h.cl0.cl0i.cl*b.

! cl .clltcllb.clU.cllf.clls.cllh

1 t\Z.mr,., iri.cl?f clZj.clZhcll.

i cMi.cMb

klluv. ' olOl, »31

kllu»- oio;, 031

ktluv ol03, «31

ktluv. ol04. 031

klluv. oiet. 031

kfttuw. ol06, 031

ktluv. 0107, 031

kfluv. oioe, 031

kffluv. olP9, 031

kl luv. ollO, (•31

klluv. (•111 «31

ktluv. oii;> »31
ktluv. 0113, 031

ktluv. olM> 031

klluv oils. 031

klluv. oil«, 031

klluv. ell7i 031

klluv. oil». Oil

klluv all9, 031

klluv olJ«, 031

kiluv.,1- ol21, »31

ktluv ,!• ol?2, .»31
ktluv. il> oin .031

ktluv.il> sl24i 031

ktluv.i|t ol?5i 632

ktluv.lit ol2Si .032

ktluv il> 0127, .032'

ktluv.,!• oi:», 032

ktluv.,]. ol29i »32

ktluv.,!• P13P! ■»32

ktluv.i|t ol31i 032

ktluv ,1. ol3:, »32

i«lltl'ktluv 101'fullcl

•uulcl-ktluv 30|

kiluv o|Oi.,|fl|:l/o3ni, 1. 134 »»0/o2,l

t«lle?*ki|,jv.|92.fMl(c?

»u.j|r::'k|l,jv.302
ktluv ol0?..|OM/,3O?i 1, 134 »»e/o2,l

»Mlk'-ktluv 103'<-llc4

tuuld-ktluv 303

ktluv o|03..103 1/3303 1. 134 eee/o2,i
lulkS-ktluv 10<.(N1|C5

tuulc5-ki|uv.304

ktluv.olOl.,|,'4: 1/O304I 1 134 e»e/o2.i
«Hllc7.kiluv 105'<,<llc7

tHulc7.ktluv.305

kiluv.pIKtilPSil'pJMi 1. 134 »»»/o2:l
«Hllc7»*kiluv.|0S*»nl|t7«
tu'ilr7«.k»|,,v.306

ktluv.rl06',106i1/P306I 1. 134 000/o2,1
»MlicTt,.ktluv.107.(MlU7b

(uult't-k«luv.307

ktluv nl07.,107,l/o307, 1. 134 OOO/oJ:1
(ul UB'ktluv 109-<«llcB

tuulrB-l tluv 309
ktluv olOB',10» l/n308; |, 134 «99/o2,1
l.4l|t9-ktluv 10<)-tMl|c9

Iuulc9>ktluv.309
ktluv.Ol09>,109:l/o309: 1. 134.a09/o2:l
t»llr9.-kl|.,v IIO.(ul|c9«

tuulc9**kt|uv.llfl
kfluv Oil«',110:1/0310: 1. 134 OOO/o.-, 1

I,.llc9<-kiluv Hi-fi,llc9f

tuulr9<*kiluv.31t

ktluv olll.,1111/0311, !■ 134.!»»«/o2,l
U,l Ic99>ktluv. lU'lHllct»

t«ulc99'kt|uv.312

ktluv.olir'ill2:l/o312, 1. 134.9»e/o2,l
Iv,llc9h.ktluv 113.fMlk9h

1>"j|c9h-ktluv.313

ktluv oll3-,113,l/o313, 1. I34.B»O/O2,1

U,l|rin.k||uv. IM-fulId»

U.,jk|0.k,|uv.3|4

ktluv oll4.,114,1/O3I4, 1. 134.»99/o2,l
IHI IclOfktluv 115-rullcl» t

lHulcl»*>kt|uv.8ll

kiluv.D1IS',11S:1/O315' 1. 13' »99/02,1

tullclOb-ktluv 116-(,llcieb

U<ukl0t.-ki|u/.31S

ktluv ollB-,116:l/o31B, 1. 134.999/02:1

»MIICII.ktluv. ll7.fnMell
twlcll'ktluv.317

kfluv.0117.,117,1/0317, 1. l34.»»»/o2,l
tul|:lll>ktluv.llB>rullcll •
luuictu^duv.aia
kiluv.ollB'llB:1/031B, 1. 134.»»e/o2il
*nllcllb-ktluv.ll9-fullfllb

(Hulcllb-ktluv.319

kiluv.oll9.:119,l/o319, 1. 134.809/02,1
lullcllt.'-tluv. 120.ful|cll t

tuulcllfktluv.3"0

ki|,v.ol?0.,120:l/o320i 1. 134 OOfl/oM

)u||clir>kt|uv.|21>rul|cll r
twltllf.ktluv.321

ktluv.ol21.,121il/o321, 1. 134.»99/o2,l
tHllcll|«lr«|uV.U2>(ulletl 9
lMj|clla*kt|uv.322

ktluv.ol22.,122:l/o322i 1. li-'. 999/02,1
tullcllh>ki|uv.l23>(Hllcllh

tuulcllb>ki|uv.323

kiluv.ol23'il23,l/o323, 1. 134 000/o2:1
lMllcl2-kilu .U4.ful|cl2

- - ■ - - - '■'W'"."
 „, , ._-„ —

B.2 The STEPPS Hearsay II model B-9

IWllCtt'l'f |UV'W4
kfluv.olZ<'il?4l|/o3ri
(Hiicizckduvin^rwiic

k»luv O1J5«I1Z5I|/P3?5

luulclZfVflwv.KI
i'tiuv.«in>imi i-'o3:6

«►.jlrlZf.t.l.jv.az:
k»luy ol?7«.|Z7il/o3?:

Iwlcl^flr^luv 3:8
tii>jv.oi?g-,i:8>i/»3:B
lullti:h.li|uv.i:9-ful|c
iHulciitwliluv.KI
•■«IUVOIZS-IICS l/'o3?9i
(ullCl4>b«luv |3(>-lu||cl
(wuleM.lflu, 33p
•■•Igv ol30*it3Q> I/P330:

(MllcH».tiluv 131-fullc
(uulf Mi-t»luv.33l
kfluv.fltl'illlit/tllli
(ul|cMb>l>iluv. I3;>fullc
lKjlcMb-kfluv,33Z
••tluvol3e«il3r 1/033?.
ttluv.iZ*kt|gv.o?
i- pi'iv f..-.,; |

btluvij« .li|

I. 134
12c

I 134
l!i

I. 114.
I?f

I. 134

!?!>

1. 134
12h

1. 134
4

1. 134
|4|

1. 134.
14b

eoo/cZii

MW/o?i|

»W/oZil

»0«/o?il

op«,-: i

»W/oZil

«•O/c? 11

M>«l/fZ.l

i. 134 we/oz.i

pr«it»« .i.» oieii rso. 3s "no
petit«».il. olO?: rio. 3S PP«
prtlt»'j .!• (,in3; ?S(). 35 00«
crtii,,. ,i. (|«4, .up, 3s eoo
l"lIcpft9"pr||?t?.IPl-lulIcptti
l»Kjlcpft«i>rrtIftti 301
»rtU*('»lt|til9ii|/«W|i I. |0«.(tW/o?.l
UtlPfts l-Pftltt» inj-fiup»«« |
ulUptt» l>pr«Mis 3n;
p'tittsriorniez.i/c3«?: i. loo.we/oZii
nuptt» z-Pftitu ie3-fuiptt» i
ulMut» ?-p-tl«.=i 3»!
prtitt» i>i«3».io3ii/93»3: i. leeew/oZii
t 11- lt«vpr«|ttf Id«. (|V lltl
ulkllt»-prtlt«9 3«4
prtittnoiw-.i^ii/o3«4. i, leene/t?.!
prtltt».it«»rtlitf-*2
Pf tlttfl 0?" i^: 1
btlWf. !•»* HtlttJ-prtlltf 901
prtl«t»,i?.o9«l-l/o3il
prtlrtj i3'rrtltt» «3
pr*)rt9.o3"i3i 1
ftlttj. ij« >li I

' htlft^ Loclt 1*4
l.tlt»». il-t ol91i I
tUlttf^ilttsiei-ribiti«
uUlffv^ilttt'WI
bllM«.«ifl«i|*|i|/»M|i I- 4M((WI/oZil
liflttt. iJ-Vtltts oZ
l>tl»*f.«2*i{i 1
btiMriti oiezi i
tUlMt'lrtlm». l*Z«fU|M|
uUlMt>b(|t>».MI
ktitt» oiez-.iez.i/oMZi i, ««o »««/os i
l«lt»» >3>lrt|l«f o3
litlMf 03- i 3 1
btlnf. i3- 0193: 1
iibi>tii-i.iitt«.iA3>ni.it«f
ull llM*hflt*fl*l
l.tU«9.<>l?3'.lB3.1/t.393i I. 400 (IW/o4il
kf Iff«. .4«l.i|t»».o4
kttfts o4«i4i1
Vtllt» ll« ol"4i 1
IlklMt^itl*««' IM-'lHtu
ulHttj-l-ilt», 304
i>iiit9.9ie4.,iA4:i/o3eii i. 4M em/osi
ktlto iS'i'titt« oS
biltt'i o5«<S> 1
ttltxf.'S» I|II

1 p'tlutb Lorkt i:4.c5
prflulb.i|tl oieii .50«
rralutb. '1« olOZr SM
«ullc4.pr,|,j|b. Iil|>ru||c4
luukt-p. ,|utb.3Cl
pr«iutb.oiei-iiotii/o3eii i. se eoe/o.'-i
u.l U5-prt lulb. 10r.(ul leS
iHulcS.prtlulb»?
rrtiuib oiw-iieM/osezi i. u »e/oZii
p^tlulb.iZ>pr»|utb.o?
rrtlutk.oZtiti1
V'lutb.l.vUktlutb'prtlutb 981
P'tlutb. iZ«o9C|i .P5:.68/o3cl
prtlutb I7«P3I 943.6n
prtlulb.i3»Prtlulb.o3
prtlutb o3"iJlI
prflutb. ')• I ll I

1 ttl'jtb Lotlt cr.c3.r3».c3b.c4,e5.c6.
c6«.r.i;r.':S<l.rSh.cl3.Cl3«.r.|3b

ktlutb ll«« olDl 871
ktMb. ii- oieri .MI
bilutb.ll« olf3 .071
ttlulb. i 1« ol04i .1)71
ktlutb.ll« elOSi .071
btlutb.il« ol06< ,071
ktlulb.ll« ol07i 071
kf lutb i|« i.H'h .071
t-f lu«b. ll« 0l09i 07?
ktlulb.iI« olIOi .07?
litfutb. ll« »Uli .07?
ktluU.. ll« olIZi .07?
•-»lutb. i|« oU3i 07?
ttlutb. 1. oll4, 07?
tulkr-ttlulb 101'fullr?
tMj|C<>k(|ytb.ni
■'•lu(b.«ltl«lt*|i|/«W|i I. 3«09e/o?i|
«MllcS-l'tlutb.lor-rulkS
«•'ul(.3>i>ilutb 30?
lil'<tb.ol0?»il0?:l/o3O?.. |, 3e.OO0/o?il
lul IcScbtlutb. 103-ri,l|c3«
Iwulc3«*ktlutu. 303
l'tlu(b.olO3'.|O3il/o303i I. 38.000/o?il
tnllc3b'l.flutb.l04.(ul|c3b
tkiuldb-kilutb 304
ktlulh.r.|04.il04i|/o3O4i 1. 30.O00/o?il
<"lk4.l,tlutb.l05-fwllc4
luule4>kilu(b.M
t-»lu(b.ol0S'il0Sil/o3O5i 1. 30.«00/o?il
("Ilc5-i'ilutb.l06-f«lk5
»Mjk5'.i'tlutb.3n6
Vtl'j'b ol«6-il»6.|/o306i I. 3e.O0O/o?il
t"l kR-ltlulb. I«7.tulk6
twulcB'ktlutb.M?
l«luU..ol«7.,|B7M/o3P7i 1, 30.eoo/o?il
lulkBt-l'iUlb ji^MulkE«
luulcB««l>i|ulb.M
••«lutb oioe-iioo: I/OJOBI i. 3«.eeo/o?i
lulkS<'l.«|uib.|09«(Mlk6(
luulcG(-l>lu(b.3n9
ttlulb.pl09-il09: l/o3P9i 1. 3O.OO0/o?il
lul k6^»l.f|u(b.ll0'»wlk69
(nukB?*k«iulb 310
ltlutb.ollO'illOil/0310: I. 3OO00/c?il
lHl|c6h>li>lulb.|ll«rHllcih
tuukBh'lf luib.311
ktlutb-otll'illlil/ollli 1. 30.0ifO/o?il
t"lk.l3'Vtlu'b. l^'fulltlS
iMllclMtlWtb.llt
I'«lufb.*ll2«i||2i|/«i|2i I. 3O.O00/o?i|
«ul Irl3fl.»|ijib.ll3'fulkl3»
(uwlelh>l>i|ulb.|ll
kalutb-atlltiUlit/tllli I. 30.O<W/o?.l
(ulkl3b-l'tlutb.ll4>(Ml|cl3b
Imkl.3b-Vi|u(b.3l4
k«lwib.oll4.,|14.1/o314i 1, 30.0ee/o?rl
ttluii. ..■•i.tiuib.or
Wlu(b.o?«l?il

071. 30 000
»71, 30.000
»71. 30.000

l<«lu«b.i?- ol.'Bi
btlutb.■?• olIBt
kvlutb.I?« sll7i
ttlutb I?« olISi 071, 39 000

udiiWP^i.^'W»iw»w"i'MM. ' ' '- .i.iwpwii.v-wii« I™P;»!-IIM" .1 .1,^1 — lfm

B.2 The STEPPS Hearsay II model B-10

Wtluth. iZ- oil»! .Wli »««O
kflutb. >Z* el2«i (•71. 39W
^•lulb.iZ« oL'li .071. 90.00(1
ktlutb.ll> oUZ' 071. 30 «0
b;luU..i!> oU3< 072. 30 000
ktlutk'){• Ott*) 07;. 30.000
k«|«tb. it> Olli■ 077. 30.000
ktlwtb.ll« olJB .072. 3000«
ktltilb. It* «IX?! 077. 30 00«
ktlMtb.i7" 9\ZBi .077. 30.000
lHllc7>kt|«lh.llS>rul|el
lH«if(>ks|ult>.lll
kcMb-ollS'illlil/Olili 1- ISO.000/o3'l
lHllcl>kt|iilb.lll*(ull(l
lMilcl4«i«ib.lll
krlutb.ollS->ll£it/o3lt: I. IM.000/o3 I
(unc3cliilulk..ll7><ul|c3*
tHulc3»>liilulb 31V
bflulb.oll7->ll7tl/<.317. I. ISO
)Mllc3b>^ilg<b llt'.'ullcSb
(wulc3b>b«|u(b.3ll
t.|.,U. nllB .118: Wo31B: I. ISO
Iwl Ic1*k»lwtb. 119-»ullc1
»Mulc^.kiluib 315
ktlu*b.»llt«tlll'l/**l|i I. ISO
(uikS'V^iuib iro.fuiits
«MUICS'. il'jtb 370
b*|uib al70-il70i|/«370: I. IS« 000/o3 I
lHllrt«ktlttlb. IIIWHIIH

iHulcl^tlvtb.Ki
kf|Hlb.oi;i»IZI>t/oKli 1. ISO
lHllc6*^«|gtb ir7>(ullcG«
lHulcSo*k*|it(b.l2Z
Iitlulb.<>177'<t77>l/D37?i I. IS«
U.llc6<>kf |ulb.l73>«MllcS(
lMilc6(^hilutb.373
Vflutb.ol73'>l73<l/o373> I. ISO
«ullcGf.lflutb K'^ful IcE«
«.■ulc6v''»lu'b 3''
ktltt<b.»IZ4«ilZ4i|/tK4i I' ISO
I. II r.t.-l..l..U i;S-(M|r6H
<wuli:Bh-Vi|.jtb.375
kt|«tb.*in>iinii/»K>> I- ISO00O/o3:|
lMllcll>k«|H(b-in*(Ml|cll
(uulcl3>ttl'j(b.376
k.iuib oi.-B-.irs i/t>3:6 i. tso
«ullclSa-bllulb I77>(til|cl3*
tuulcl3cb>|u(b.377
Li|ii«b.ol77'il77il/o377i I. ISO
(u||r.l3l>>ViMb.|7B>(Hlkl3b
t>.ulcl3b'lrt|ulb.3re
k.lulh 1.irB-.|.,l. 1 'nl.'B I. ISO
liilulb. >3-l>«lulb »3
ktlulb.o3-<3>l
ktlutb.i3- oirSi 071. 30 000
ktlutb.i3* ol3ni 071. 30.000
l-ilu»b.i3« elSli 071. 30.«00
W*lutb.<3> ol37: .«7|. 30 000
l-flutb. i3- ol33i 071. 30 OnO
ktlulb-il* »134! 071. 30 poe
Wilu'b. .3> ol3Si 071. 30 «00
t.l.i't. .3- 0131J 071. 30.000
ktlxtb.ili »137: .077, 30.000
■■tiutb. >3' o!38' 077. 30.000
ktlitlb.ll« ol39t .077. 30 OOO
ktlulb. i3* oMO: .077. 30.000
Iitlu1b.i3' oMIi 077. 30.000
|.>|utb.i3* (KZi 077. 30.000
tHllc7>btliilb 179>rHllc7
lwj|c?-bi>lu(b 379
l'tlulb.eil79'il?9il/o379i
it.l IcS^dulblSO'fullcS
tuulc3>l.ilu(b.33n
I'«lu<b.ol30'il30i|/o330i I. ISO.OOO/olil
(Mllc3»>ki|ulb.13l-(«llr 3,
lHuU3cl>>lu(b.33l
Iiilutb.el3l-il3li|/i>33li I.
(ullc3b<.kt|u(b.l37>rull<:3b
tMij|c3b>»'tlu(b.337
I'«lutb.0l37>il37i|/e337< I.
tMllc4>l<tlu(b I33>(MIIC4

lMulc4-.bcMb.133

»00/o3>l

OOO/oJl

OOO/oSI

O00/o3' 1

000/113: 1

000/1)3:1

Oon/o3il

000/031

000/031

tOO/o3 1

I. ISOOOO/o^l

iso.oeo/oi'i

ISO 000/olrl

I<ilu)b.ol33«il33>l/o333i I. 1S4.00V«4 I
«ullcS-. /lull. Ul-fMllcS
(uulcS'.|'«lu(b.334
t.lull. 0134.,13VI/o334. I, 1W»"00/04,1
l..l|tr>-l.luib 13S-fulkB
tuulcE-l-tlutb.33S
l>f lu(b.ol3S'il3Sil/oa3S> I' IS«.000/o4r<
lMMrB..l..luth.l36-U.k6.
luulc l,«.t> lutb 336
V>lulb.ol3e'>136>l/o336i 1. ISO ,4>0/o4 ,1
i,,i i. I,I.. . iuii. n.'-i,.i i.bf
tHuk6(>l.tlu(b.337
l,»lult.ol37.il37.1/0337. 1, IS».000/o4.1
IMI Irr.-.-l-.lull. 138-(ulkBg
lHulcM»k»lu<b'IN
bduib nl38<.13e.l/o33e. 1. .S« OOO/oV 1
)ul k6h.|.<|,jlb. 139>(H1 IcGh
tv.uk6H.lrslutb.339
l<«lutb.ol39-.139.1/0339. 1. 1S0.000/O4.|

tMlkl3>l,>lulb l40>(Hlkl3
• uukl3.lrtlutb.340
lr«luib.ol40>.M0.1/o340> 1. lS0.e0O/o4.|
lHllclla>k«|ulb.HI*Mtello
luuk n.-uiutb 3ii
Imlulb ol41'iMlil/o341i 1. lSe.00e/o4.l
(ulkl3b.lrf|utb.l47>'ullcl3b
U.ujr 13b-l.tlutb.31?
krlutb.Dl4?'il47il/o347. 1. 150.000/04.1
ktlutb. .i>lrtlulb.o4
(•tlutb o4.i4il
kt lutb. i4< d.l

1 i-

w»
r. »
pr r

pr*
prt
P' »

(„1
(,.,
fr »

t,.l

l.KJ

(' f

IHI
U.M

rr c
(Ml
1.«,

f«

t.rl

t W.J

rrr

(ul

I.«J

rrt

r^e
t* •

k«ll
prp

kfj
prr
err
pri

pr»

pr»

tlMC Lockt c3.c3i.c3b.c7.c7*.c7b

ptc il" olOl: . 166
166
1G7

1S7

167

167

ptc .1" ol07.

ptc- 11« ol03.
p«r.t|t olOl.

ptc..1« olOS.

ptc.11B 0IO6.
c3.pr«|pic. 10|.(Mlk3

c3.pc»|ptc. 301
Ptc.al0l-il0l.l/o301. I. S0.000/o7.l
L3*.pr*|ptc.l07>(Mlk3*
c 3». ci'* ktc. 307
Pfc.ol07«.10?.|/o3e?i I. 50.000/07.1
cSb.pc.lptc 103.(Mlk3b
c 3b*prtIctc. 303
r»c ol03'.103:l/o303. 1. S0.000/o7.l
c7-prtlP«C.I04.(Mlk7
c7.prr|p<c 304
p,c.olOl'.104.1/0301. 1. S0.000/o7il
r7,.pr.|Ptc.lOS'fMlk7»
c 7t.pr«|ptc■305
ptc olOS-. IBS. l/o305' I. SO.000/07.1
c7b.pftIptc.lOfi.fwlIcTb
c'b*pr«|ptc ■ 306
pr-coioc ,iof.i/o306: 1. so.eoe/o7.i
ptc.i7.pct|ptc.o7
Ptc.o7« i7i I
ttrch. kvV jirtltetccH'pr'Clptc.SOl
Ptc..7'o90l. .130.135/03.1
.M«. l.vkIkt11(Mt.prttPtC.SO?
PFC.i7'a907. .130.135/03.1
PfC.i7>o3. .740.135
ptc. 1 S.prclPtr .o3
ptc.o3'i3.l
ptc.3« '1:1

ktltxrc
el.
cB

tltttrch.
BlMarch.
tltttrcH.
•ItVtrch.
tltaarcH.

• Itcarch.

altaarcH.

«Iraarch.

■Itaarch.
fltaarch.

h Lockt 1

c6«.c6(.i
cl3.cl3*
.l-t olOl
il- old.--

H« ol03.
I|a ol04:

.1- "U".:
I|a 0IO6.
I|a el07i
ll> OIOB:

II« 0109:

II* oil».

7.c3.c3a.c3b.c4.cS.
B9.c6h.c7.c7a.c7b.
cl3b

5«. 000
Sfl.ono
SO.OrtO
50.000

OSS. SO 000
.055, SO.OOO
.055. 50.000
.055, 50.000
, Pao • BO ■ W™

ess, so eoo

.«ss.
OSS,
055.

.055,

^"

B2 The STEPPS Hearsay II model B-U

.OSS.
«56.
ess.
nss-
ws.
Ki-
ns.

s» wc
SO.COP
S9.«00
SO. on«
SO. 000
5« 00«
SO 00«

I. II««

II««

I. Ill

WtUitrcV il> olll.
tiltivch. >l- <ilt7>
k«l«««rc)<. il> ellli
li«lf««rch. il> olMi
ktlftweh. i !• ellSi
Vf!»••'ch.i|" olISi
Vplfevch il" oll'i
'-'.•• eh ■!• oil«
lHtlct>l>*lM«reti,|l|>lwt|(|
»uu kZ'I'iltttrch. 30|
b«lu«r(h.*l«t>il(li l/oWh
lHll(l>li||nirch. |H«fHllci
l-ulr1.kfll.wch.30J
i.i.... ,h OKC-, i«:, uoao:. i
I>illc9«^i|f*arch Idl-l-l I,).
IwililcbttMtreh.lU
k»l»»wtlvi)l03>.|03il/o3O3' I
lullt3b>bili»arch ie4>(u||c3b
luult3V.-l«ltt»i-ch 30«
lf.lfc»rch (il0<.i|04.|/o30<i
liillc4^flM(rch. |OS*(ul|c4
«Mulc4'k||«»irch 30S
'. »ij.irch clOS'i|05. WoSOS'
tMlUI*ktlt««rr»i. lOS-fuljcS
lMulct>l'«l»t«rc*>. 306
ktlwcrth ';|0('l|06>l/c3«6
«ui>fi.k>it««rcs inr-fuiic«
tuukfi-tlUtvch.307
i.«i»t».ch.<)io:..io:M/o3t)r,
IHI IcGf kl|>ttrch lOB'ful let«
ti«jk6»'l.tl»»«rch 30«
1-I1....H fl.lS-. |l>fl 1 /njll« I
lul lclf>k«|wv(h. log.fuiicg«
i....j,f,i.i,if,„,., jiig
U.U««rct. oiog.,!!.? l/o309: I
lMilcM^>«|(««rch,ll*>tHllclt
1W::6<..I.»I..K-CS 310
k.I..„fh oil"-. 110:1/0,110: |
<Mllc6h.l.»li»»rch Ill-'wllcSh
luulc(Sh>kf |Mtrch.31|
l>«lHir(h.«til'illlit/*illi I
lHl|c7«l>«l«««P(t«.IIZ«fulU7
luulc7«trtl««V(H.tlt
k«|Mar(h.»||;>l|IIi|/(tl{i I
(ul |c7«*li«lf««rt*>. 113>'ul Ic?«
1uulc?»*lil|tt*r .K 313
lr»|M«reh.«IINilllit/«ll|i t
lMl|r7b*litlMvch. IM-fullcTb
iHKlcTb'kflMarcH.lt«
k«l««ir«h.«tM'ilHi|/«ll4i I
tu'lte-k.Ut.nS llS-(u||c8
«uulca-.|.ll>t*ch.3IS
li«|«»«rch.ollt«iliSil/ollii I.
(ullcl3>|.f Ifftrch IIS*f-llcl3
lMllcll*l'«|«««rtli 3IG
I'llMW-ch.ollE* HSil/oSIS *.
tullcl3*>l<tUc*rch IITMullctl*
luulcll*>k«|H«rt»< 317
li«|surch.»||7«ill7i|/*IUi I. 11««
UillclSb'ktlftarch.lie-rHl|cl3b
tMul(llb*lrtltMrcH.|il
tiln..^ oUB-llB: IVI'S' I. II««
kdtKrch. it*l>i|w«reh.«I
t «I «••' rh o?" 'T I
li«|M«reh, It« ollS:
kill»»- rh II» sl?«i
Irtlatarch..;« g|?li
kilaaarcH.■?• ol??:
kslHarch. iZa oi.'l
tolaaarch i2> el24i
taliaar rh. IZ« ol2Si
k«l«««reh, IZ< III2E<

lifltf»rch.,7. oi:?<
kolMWCh. 1?" QlZtl
k«|M«rch. iZ" ol?9<
Vflfaircn iZm (i|30:
k»ti««rt>i. iZ> olll
kt|«««reh,>Z« oi >
kiliafch. iZ» ol33i
k«lM«reh. iZ' «IWi
kalaaarch. iZ« ol3Si

kalaaarch..?■ ol36i

0O«/o2: I

000/oriI

no« »oe/oZii

I, II««»OO/O;.I

OfM/oM

«OO/oZi 1 I II««

l. nwooo/o: I

iioo eoc/oZM

1100 0««/0?:1

l!00 OW/oJil

II««

1100

«««/oZil

0O0/o?.l

110« 0«e/o2:|

1100

n«e

UP

eoo/oJ.i

oeo/oj.i

BOO/O?:I

00«. oi |

««•/«J. I

«SS. .00 00«
«ss. ?oo.ooe
ess. ?w ooo

.oss. ZM.WO

.055. J00 10«

.«55. ^eo.oo«

.055. JOO.ono
055. J«o.«0«
OSS. roo ooo
056. 200 »n«
OSS. ion ooo
058. J00 ooo
OS«. ?00 000
OSS. Z^O.oo«
«56. :»o oo«
056. ?oo oo«
056 J«0 00«
«56 ;«««««

tutlc2-.ka|it«rch.|IS.fwllct
t"ulcr-l..l..»rch 319
l.»l«aarrh.(,115.ill9i|/oJ19i I. 1100 OOO o3:l
tMllc3.MI..,arch.l?0.(..llc3
'":ilr3-ltl.»arch.3;fl
ii»ii*arch.oi;«-ii?«ii/,.3?ei i. iiM.««e/oiii
«MllcScktlitwch.lJI'.fullcS*
<viulcl*>bi|iiarch.J2t
k«|««irch.«IZI«liZtil/«IZIi 1. ll«0 OOO/o'.il
(..Ik ll.-k.UfKrr., l7;-(ulk3b
(iKj|c3l-l<f|ft»rch.3.:2
t»lM«rcli.«IZt*IIZZil/«KZi li 1100 OOO/olil
twl It^.kalttarch. U3.fHl|c*
luul(<*k«|H«rchiKI
k»l»ira'th.til23.ii:3i|/o3?Jc I. 110«.«0«/i>3i I
tulkS'kal««arch.i;4.fu||cS
ti«j|c5'k»li«trch.32<
Vil»»arrh.olZ<»iir4[|/o324i I. 11««.«0»/O3I 1
twllc(>l>t|M«reh.tZI>rMl|cl
tuulcC'kilMireK.Ki
ktlt*«rch.alZt>ilZStt/«IZIi I. noo oeo/o3:i
IMI |et«>k«|«mreH. i;6>fullc6a
tuulcSv^lalaaarch.3r6
tt 1.-^. . K „1.-6-. ITS: 1/0376: I. 1.00 000/03:1
Uil |c(f>ktlt«areh. I27*(HI|CII

(.iulc6Ul.al.»llrch.3Z7
l'»l«»»rch.ol?7«il?7c|/o3r7i I. ll«e.«Oe/o3il
(..llcF.r.-l..l»nrch. 1,-B.(,.llt6s
liiulc69'l'«l»«af ch. 'JPB
WUr,, h oirB':l.-8-l/ol.'B I, 1100 000/03:1
tMl liRh.t.li.ar i. in. (wll'6h
1u.jlc6h.|-»|n»rch.3:9
l.ilit*rch.iilZ5.iK'9i|/ei3Z9i |. Il«0.»00/o3! 1
twlk7.v,|f,r.ch. l30>fMlk7
ti«/k-7.1-.|,.»rch.330
l'«l»»«Th.(ll30»l|3ni|/o330: I. Il«0«0«/o3:|
«ul|c7a>k«|Marrh.|||>ful|(7«
tuulc7a>kt|tMrrh.III
k«|Marth.*||iai|tii|/i|||i I. I|00.«e«/o3il
lHlicrk>ktftn«rcti.llZ»fHllc7h
luuk7b.|.«l««.«rch.33J
Lfliaarch.ol3r'il32 l/tttZl I. 1100 OOO/ol I
lul kB'ktlatarch. lll.d.ll.B
t..olrB.t.|.r.rrh 313

kM«r„rt,.olll-. 113: 1/0133: |, llOOOOO/ol 1

lwl|ell*ksl«Mrch.il4>rHltill
IMUIC l3.kt|faarcH.334
k»Ut»rcli.ol31«il34il/o331i 1. llOO.eoe/oSil
Uilkl3a*kf|faarch.|3S>rul|cl3a
IHUIC 1 1a-k» I »rar f h 33S
kfk*arcH.ol35*il3S.|/i>33S: I. 11«« OOO/ol.l
lul IclSb-ktlfaarch. ISS-lulklSb
I uu k I Sl-.ta I aaarch. 336
ktlfaarch.ol36*.|36i l/o336: I. 1 IflO.OOfl/ol: 1
kflaaarch i|>k(|March.«l
kflaaarch.o3*.31
k«l(*«rch..1- iliI

1 k«| 1 -«a Lockf i . .c3.c3a.c3b.c4.c5.
1 cGcGacB« c69.c6K.c7,c7».
! cTb.cB.cIS cl3a.cl3b
kcMiM. .I" olOl 055. 50.00«
kalliW. il» oiori .055. 50.000
kaitiM.ila ol03i 055. 50.000
kfltim.il' olOl, OSS. SO.OOO
kaII■*•.i|a olOSi 055. SO 000
killlaw.ila ol06. .055. 50.000
kflli-t.l- et«7i .«5b. 50 ooo
kailimm. i|a olO«. 055. SO.ooo
kflli»».il» ol09i .056. 50.00«
kfltira.i|a olio, .056. SO.OOO
kcKlM, l|a «Uli .056. 50.00«
klUiW.lla oil? .056. 5» 00«
klltlM. l|a ol III 056. 5« «00
lifltlM.ll> olMi 056. SO.«««
kf It im. I|a olISi .056. 5« 00«
kalliM l|a oll6. 056. SO OOO
kcltlM.lia oll7i 056. 50 «0«
ktltlM. ll- Oil«: «56. 5«.«««
iHik?>kfiiiM.iei •»MIICZ
1 Mil..-.l.jl ... 301
k.ll,-, olOl-.lOl 1/0381. 1. Z7S «««/aM

Iliiiii ill inuppWBi — " "" i"w|.iPPiwnji^, . '— m ' '»' ' " «i

B.2 The STEPPS Hearsay II model B-12

lMulc3-kflli"W 3«:
ktn.i«r.Bii«?'iio:ii/o3PZi i. ^^s.»w/o^ll
«wllcS^'Vtlti»« l,'3'»ullc3«
(Mulc3»-k»UiiM WJ
iitl«iM.im«ilN>l/smi !■ zzsew/oZii

iHUUKMrlltlW.IM
v»i«i»«(iio«'ii'»<ii/i>3B«i !■ zzswe/oJii

t.H.«« <<l«-ilOSil/o3fl5i !• ?Z5.W«/oZil
l>il |il>ktlllW' 106-'M1 kS
«wulcS-t«|li»« 306
kiiiiM.«lw>ii*iil/*Mi I. zzs eoo/oZ:i

k«lllW.*l*7«il«7i|/tW7i I. ?Z5.e««/c.2rl
lullcK«>Wf II.M.I09>lHllc&t
twulcBfttlt IM S^fl
k«Hir.«.oine«il0e-l/63n8i l> ZZSWe/oJ'1

k»|l i(M.olM«ilB9:1/0309: 1. ZZSWW/oZ^l
1MII<:69-V»HI«« lin^'MllcB»
twUSs-tKlli"« 31«
tilt... ollO'.im.l/oSl«' I- «».•»•/•«■I
IMI lr6h-liU .»• 1M-<"1 IrBh
luu)f6h.t..U .-. 311
b«|lia«.«lll>illi<t/otlli '• r?S »W/o2M
|ullc7*Vl|(iM. II{*(HI|C7
luuic^-itit'M.si;
»■((■■•••(('••iilil/itlZi l> zrsew/oz.i
twllc7.-l.»Hi«« Il3-I"llc?»

Iiwlc7a>kfl(iaf.lll
k»Hi»«.oll3'.ll31|/o313> I. Z2%.*W/o2'\
txl If^'ktlliM. IK-fullcTt.
lHulc7k*k»HiM.lH
l.,M ... MM-ilMiWoJIV I. ?r5 eoo/o.M
tul |(I>I>|||IM. llS-f-l h 8
«MulcS-btll .M.3IS
ktllin«lll'>ill>i/«llli 1- M».*»»/»M
lHllcll>ktll>*• IIB-'-ll' 13
i.■jk i3.i,|i ... 316
w»n.r»«.oii6"ii6a/o3i6: i. tn.M*'»I<i
tullcl3fk»Hi««ll7'f-llcl3«
IwlclScliltxM 317
k«lti»€.oll7..117il/o3l'i !• Zri.eM/oZl
l..llcl3b-k»|t.««.118-1-1 Icl3h
I «olcl3b-l.lt... 318
.tHi»».oiH"iii>i/»3i«i i. ?rs.Me/o?ii
bllt IM. lt*tf It IM 0?
Hit IW.*>*tIll

.W4. TS.eoo
PbS. 7S one

Iff It IM. ll" 0113
kf it IM. it* oi:".
k«itIM.ii« oi;ii
ktlliM. il* olZZ<
nl i tat. i?« ol23'
k«M IM il« olZ^i
tilt IM it» iini

«55. 7S.«>0

kilt .M
ktl< IM

blltiM
k*ll >M
ktlliM

kill IM

kllliM

L.11.».

l(a olCEi
lZ. 01Z7:
.«■ oirfli
it* »i.'s
It« ol30i
it« ol31i
it« «132<
it« ol33i

oss
PSS
»5S
ess
"SS
"SB
KS

7* 00«

kill IM. It« «I34i
kllliM. it« ol3Si
kvlliWi

?j.00#
7S 000
7S 00«
7S OOO
rs.^oo

096. H.*»
»S6. 7S «00

7S.0O0
TSOO»

os«. 7S eoe
«SS. 7S M«
0S6. ?5 000
OSS. 7S 00«

es6.
0S6.

. i?» »136
tHlle;-kt|tiM.119-'ullc2
twultr-ktHiM 319
VdliM sll9'ill9il/o3l9>
t«llc3-l.«lliM 1ZI»-«M1IC3

tMulc3-kiHiM 320
^•I«IM.OI20*I170: l/e3Z0i
IHI IC J*-li*|t IM U1>'MI It 3«
tmlcSckdtiM.Ul
k«ltiaa-«ltt«>ltlil/*KI< ■
«ullc3b-.liilliM.172>'ullc&
tMuic3b>ki|tiM 127

1. 225 »00/o3.l

I. 22S«0«/o3il

225 OOO'.l'l

■

B.2 The STEPPS Hearsay II model
B-13

. tn

. m

. in,

. w

.«M/o3'l

IWO/oJi 1

m

tn.tM/d'l

»uulc<-Wtl«>»« 323
klingt.•in»ii«iirtirii i
»uiics-mt.-t i.-^-'xiitS

li,|li««.«»Miii:4iJ/oK«i I
tMlU»*k»Hi«t.ll»»fMlUI

tu)itSt*vii(i**'irs-iwiicSt
l..ult6">-t«ll ■"€ 3C6
ktM i«' olZt'ilIlil/»*?*1 '

> «v I c B'• !• t It i •• 32 7

U.llc6s'k»lt ""• UB-fwltcB«

1 WIJ I c 6<)-11111 "• 3C8
l,,|(.n,. OU9-.128 I'oSrS- 1

»Mllelt»liiUn>t.U9*'»'lltl>1

(«ulcBh-ltlt.«» 3:9

ktni««.»ii»">r>'i'»»f*i i
lu||c7*b«|t>M IW'fwIle'
»UUlcr-fctlliM 33"
l.,U,».,i)l30'.13'Vl/o33n^ I

(wilt P«-t«|li««» I31>(ullc7t

Iwglc^i-lilM ""• 331
|i,|l.«».olll'illM/oMli 1, Z?S «»«"03.1

(Mulc7t»l'tltiM'33! . .
l„M,.. nl32..13M/o33Z' !■ 2«.«««^3:1

tMlkfl't-Ki«» 133-f-Ilte

tuijI'-B'ViH "•• 333
k.M.-» "133'.133 1/0333^ !■ Z2S M*/o3.1

l»i||rl3«k«Ui»t.lH>'»ll«H
twulcli'^tldM.IH

twlli:n»-l«l«'"« I35'<"n'-13»

(uult I3»-I'ill'"« 335

lullcllb-t«!»'»» l3S-<"llcl3b

(wj|rl3t<-Hlti"« 336
k.lfM ,136..l36:l/o33S: I. 2?S.«M/o3:|

litll IM. rl«lfiltl«t.»l

h«|t IM.«l>>|ll

|r«||iaw.ll* 'I'l

' Lfcon lock lUftl
(IkU'o-lMt»» M1HM»

Ulttt J'MIVIMB

H lf«i il"« 'Z'l / oM ' ,'',

BM .jlH»«9 out'J«'I"*- »•1|1

Sch«d nonco«« Ik I»»»

Coll«':« no»««» U !••»

1 L»ic*" '■''w "■ Irt«« I
»lWlr»«< 1-IHr»«* I 1-tlHp««« 1

Ik Irt«« IZ-ulUr»«» 1

lHe««a 1 il" '■I ' o1'1 / ',l1

«It ulklr««» I au«u« I**' «It

Sth«d nonco« lHp«»9 I

Coll»cl not>»< lk '•*•• '

' L«''con lock H(p»»» Z

finrf»? :-IHP.»< r I-UHP.«« Z

nipti« :..i" 'Z'i ' »>•' ' ',,,

«M ulklP»«! J qu»u«il"*- «»I'I

Sr>«4 nnnio« lklpm«9 t

Coll«" no«!«' UlP»«« Z

' L«.'CO" lork IH"»" I

dkl—n MM»«" 1 l-tlH«'" I

Ik \m-r< 1 r-ulkl-.n 1

|k|>.n l.il«« 'M ' »I'1 ' ^ '
BM ulk I»»" I •!•«•'!••■ »«I'l

S'.had nonco« Ikl»'" I

Coll«cl no«(«l IH"«" I

1 (.».'ton locW lk|»"n Z

rivinoi j'ino'n riMiki««« z
iki»-n e.j-uin«'"' z
lkl«..n ril«» '^'1 ' Ol'l ' 'll1

MM ulU"""1 Z <»u«u«ilM' »olil
Sch«d nonco« IH""" Z

Coll«ct noil»» lH«»n Z

< L«»iC0n lock Ikjphon

nHp»ion-lHphOO (»tlklf*»"

Ik (phon.J-ulk (»►wn

lUphon ll«« iZ'l /Olli / 'I'l

Bit ulklpho" I»U«U«'1M>. vol'l

Sch«d nonco« lUphon

Coll«cl no«l»t Ik Iptwn

1 l«»iCon lock Iklfurn

»Ik|»urfIk|«urn.1*tiki«urn

Ik |furn.2-ulk l«u"i

IHpurfi.ll«» i?il / fl1' ' ll'1

Bit ulklfurn quounl?0' vol'l

Schrd nonco» IV(»urn

CsttlC* no»t»l lH«urn

' Lt'iccn lock lllurdsu'o
flkl^d.'jrr..lH«rd.ur" 1-UklMrd.urn

Ik IM. d»uro.2-ulk |urd«'jrn

Iklurdmurn l|«« 'J'l / ol'l / 'III

Btt ulHurd«'J'0 ^«u« I«*), vol'l

Sch«d oonco» Iklurdf'jro

Coll«ct no«I«I Iklurd.urn

• l«"iCOn lock Ikjword
Mklwcrd-lkluord l-tlkl«Kird

Ik Itmrd T'ulk luord

lk|..ord ll«« 'M ' »I'1 ' '•',

Bit ulUword llu«u«'IPO. «ol'l
Sch«d nonco» IklMOri*

ColUct no«lit Ik luorH

I L«>"On Inck Iklthd^rd
f 1 kl «hd«nr d-I k I f^*"!'d 1 • 11H »Muor d

Ik llMuord ?-ulk Ifhduord

lklfhduord'1'« llll / Ol'l / '111

Bit ulklf^duord 1U»'J«'I"*' «ol'l

5ch«d nonro* lk|«Kdwn'd

Coll«Cl no»l«l lk|fhd>«ird

i L««icon lock lkl«M»«nt
• »lHfhd««"flH«t'<*..nt l-tlk|»hdl«nt

lkl«hd»»nt ?-ulH«hd»«nt

lH«M««nt 'I • '? I / Ol'l / Uli
Btt ulk!«Kd«»nl »nu« lOO- vol'l

Sch«d nonco» Ik HM««nt

ColUct no»t»l lHf>id«»n<

' Cl Mord'wdlurn

fullcl'xltl 1-t-llcl

MUC1.1**MU1C1
tlklMrd«u'n.ulcl :>'lkl-rd»u'n

ulk lMrd«urn*wucl Z

||t (urrd—I'l J*'IH"oH

ulk lunrd-u-jrl J . ,
„Id '1-oM/ 'M' •»'«' '' " '''" ',',

wucl 'l»«oZ'W o3'W 'II

Bllnbut« vHkll«lo Ou«u«' ZT*- Wcl'J"«:

Btlr.but« vklktlc« Ou«-«' ZV). Uolu-'

Bttr.but« vk|k.lP«vn »'«u« TM- «olu«.'

Bttr.but« vklk.lM«« flu«"« tia. *!•"

B1tr.k«1« vklkflf»« ÖU.U«' ZV)- Wolu««'

Bllr.but« vklk.ll.« «Ki'u«. :&•■ Wolu*'

Bllr.bul« vklktlu'k- 9u«"« 'W- Wolu««'

Btlr.but» vklktIUV ».»u« !!•• Wolu-»'

Bllr.but» TOmiBlO ((..••<•' .-W. Wolu»»'

BHr.but« tO»*f|PSC Ou«u« ?». Wolu«»'

BUnbul» tOP»tl',S»N Ou»u»' 7SB. Wolv.«»'

». D«l»r<

•. 0«l»r>

« D.l«>

*. 0«l«.

«. D«l«v

t. 0«Ur'

*. 0«l«r'

t. 0«1«.

fi D«l»r'

I». 0«l»r'

«. Dtlari

W«. SlBTluP:

»OS Sir ur

MM. Sl«rtuP'

(WO. SlprtuP

WW. 5l«rluP'

W«. Sl^rtu»

M* SHrlup:

«no Startup'

•M. SI«rluP'

•M. Sl»rtuP
tM StBrtup.

(X»

BM
»oo

■ ',)■> I'ttDfut, .!..

B.2 The STEPPS Hearsay II model B-14

• llnbut* lOPniW« 0.j»u«i 5«». Volu»»i ». D«l*pi .«». Jt»rlu»i
MMribul* IWPCIStG »jtg«! .'SB. Uolu«. «. D»l,y, aM. Slarlupi .1
Attribut« TOPPCITU1S »Jtuli {ft- Vnluxi 0. D»l«^ «06. Stirtupi
tepx Mlcp«t».ulc«.n.ulc7.ulc3.ule<.i<lt5.ult6.-lc7.HlcB.MlcS.MlcU i «Id
COPK "ucp««l.uuci«-n.tiuc?.uuc].'iuc4.uucS.>iuct.uuc7.uuct.»ic9.uuct(i uucl
COPK Mlctl.wUII'wlcll.wlcH>Hltt««.ult|4h>Hlclte'aiUllb>iilclIl i ulcl
copy tiuclt .iiucl7.uucl3.uucl1.HucMi.uucMb.uucl]*.M>cl3t<.Hucl2i ■ MKI

cop» ulttlf.iilclZ(>Ht(IA<<ulcll«.Ml(llb-HlclliiHl(lir.alell| ■■ uM
Copy HUCl{f •HUCltt't<Utl9*'UVtlltiHUCllbiHH(il«.MMllfl«VC||| ' WCl
copy iilc)lh,i<lcl»a.Hlcl0b.ulr9*.ulc9(.ulc9«,ulc9h.Hlc7«,Hlc'b i MICI

copy Mucllh.wjcl<>».wcieb.uut9«.Muc9».Muc9».uuc9h.Mut7i.i«ic?W i MUCI

copr uU6«.Hlc6r.ulcE«.ukSh.ulc3t.ulc3b I -lei
copy HucBv.uucSf uucB^.KucSh.HucIi.Muclb i wcl
»r h«rt npnconr«!« utcl.Mtfd
toll fio»'»(xlcluucl

' <:r>*9 pit? Z • pits 1
fwl Icptvs'Hicpf*?. 1 -n-l (cpf«9
wucpftt. I'tmjkPffS
tlUp»»» t'ulcp»9.?>rilr|p>li I
uUtr^rq 1*MI)CP««9.2

llUp.t? Z-Nlrpi«s.3.»|HP,«s 2
ulVlr«»a ?-ui;cpf»j.3
■cH*d rtnnconpatt Mlcpt*9>Hucptt9
collect notttt Hlcpfl«3.uucpc»9

• CW'H w.n Z • *.n 1
fwl Icmrn^ulcnvn. |*(u) |c«vn
wijCÄxn. i*tw(jlc«''n
tlMm-n l>ulci>>n ;>f|l|ai>n |
ult' Iwn ItMiicm'n.?
t)i.ir..n ;>uic«i'n.3>rii>i«'n !
ultI».n 2*wuclft'n.3
frh»»J nonconpf*« MlcMvn.HUCMfn
cnllvct nostst Mlcnvn.MurKvn

* C* CI • •urn
<uiic;>uic;.i-tuiic?
MUCZ. l-tmjfe?
tlkUurn.ulcr.J'lUliurr
uU Ifurn'MucT-Z
lHllel«HlcZ.I*rHllel
t™lc|.Muc: 3
•Cbffd noncoaptt« wltT.wuCt
collict nmtal U1(7.HUC2

1 c3 Mord • e7
lu] Ic3'ulc3 UtHllel
"uc3 1»IMUIC3

Iul|c7>u|t|.2>fullc'
IUUIC7-MUC3.7

IU|u«r4>ulel 3>'IVIuard
u IV iMor d»M»JC 3. 3
»rh«d roincnap«!« vll.uutl
collffrt notttt MICA.UUCS

' e4 Mrd»urrt « r9
'..11 <■.,! < I'lullc«
wuc«. !•tMulc4
lul.cS'ulc« 2-(H1ICI

1*iulc0>wuc4 2
t Ik lurd«urn.u)c< 3-(lit lur d«ur X
uU lurdsurn>Muc4 3
ftchvd «oncowc*»» wlc4.Mur4
COlltCl "Ottlt ulc< WC4

' cS ►* dlurn • torn
'ullcS-.uleS IOMIICS

w«jr S I • Iwu IcS
t II Iturti.wlcS ?«f|k|Mr«
U Ik I »'iC «-MUt5 2
tU lurdcurn-xUS kfll lirdtu'"
wU IMT d«u'n*Muc5 3
■cH#d noncoapvt« wUfc-wuct
nllWl nettat alc&.MUtS

' c6 cB • .1?
fullc6>»lc6.IMullcS
MUC6.1* tnuIc6
lMl|cll>Hlt|.I*fHll(ll
tMulcl?'HUC6 ?
l.,l|eB-Klc6.3-<MllcB
tMulcB*uuc6.3
•cH»d noncompttt W1C6.»HJC6

cnlUc« noittl "IrB.xjre

' r7 »urn ♦ clB
fulk7-ulc7.1.tMl|c7
wuc7. I*tuulc7
lulklB'wlcP.rWullclB
tMUIc'O'WUC?.?
i u l«urn*ulc7.l*Mh|«urii
uV l»i *n*Muc7. 3
fcf->ed incompett H1C7.MUC7

collvct noilut M1C7.MUC7

1 cB »urn ♦ phon
<..ll'B-i,lrB l-l"llrB
wucB. UtiiulcB
tlUphpn-ulcB Z'MH^icn
ult Iphpn-.uucB?
t It l»urn>ulcB 3>'UI«urn
uU lturn»Huc9< 3
«rh«d noncomptl« ulcB.uucB
CPlltCt nn»*»' ulrB.WlcB

1 c9 phpn » cl2
i..I |cl>HleS. ■•tullcB
uuc9.l-twu:c9
tullcl? ..Ic9.2-fullc:tr
tuu Ic 1 T- um 9 7
til. Iphcin>ulc9 3-.(lllphpn
ulW|phpn»wuc9.3
»ch»d npncoMPttt M1C9.MUC9

coll. I no»tat M1C9.UUC9

' tie ohnn ♦ cm*n
I..I I. 1W...1. 1« 1.1-1 I. 10
UUClBlOMUltlO
Iwl ki"»n-ulclB.2-fMl lc»»n
twulc«yn>MijclB.2
tll.|phnn.u|cie.3-flHpN)n
u It lp*^on*Mucl6. 3
»cK«d noncompBt» ulclBtUUcli
collvct np»t»t ulclB.MuclB

' ell c«>n • cM
f«llctUulell.t>tHl|cll
MUC11 l*tMUlclt
IM1UM>MUII 2>'ullcl4
IUUUM-MKII.7

tnuIcw-n^MuC11.3
»ch«d nonco"P»l» ulcll'Uucll
CPllttt no»t*t ulcll.uucll

1 r|2 CP-n • CP»»«
fwllcl2-uli:l2 I'tulldZ
MUCI; l>lHuUtZ
t"l 'cp»»9>u|clt ?>'ul kp»ti
ti*i kr»«9*uijc 12 2
lullcMfl'ulelf 3>(Hlkawn
tt#jlc»-n'*<uc!2 3
ffc^vd noncOPptt» M1C12.UUCI2

col|«r1 no«t»t wlel2.uucl2

1 rI 3 pHp" • cp»»9
(..Ilcl3-u)ct3 I-IMIICII

MMC 13 I'luukl3
Uil ICP«»9>M1C 13 2*fwlkp»»f
t*«u irp»v9*Mut 13 2
I |l iphpn.Mlc 13 3-llHt*»"'
uU lp*ipn*uuc 13 3
»c»^d npncoapttl "lrl3 •*tl3

B.2 The STEPPS Hearsay II model B-15

colltrt not'!' M1C13'X'JC'.3

i eH cpus ' »tj
«nllcM'ulcH MullcM
wicM. i- iwui. M
ill li»s-ulcM?-flk|«»li
uU I t*g>uucM '"
lul |cpt»?'wlcM. 3'<M1 ICPM»

twuIcrtt9*wucl4.3
fcK»d noftcomp«*» M1C14>WUCM

rolltet noit«! iilc|4.uucl4

1 cMt P<l« I * «9
fullcH»-«lcM» 1-lullcMi
wurMi I'tuult Mt
(11 lMt»MleH»-?*'lHtM
ull Im-wcHtZ
tltlPtt» l-ulcMt S'Uklptts 1
uIMpfts l»«u«t<i-l
tcKtd ooncompt*» MlcHt'MJCMi
colltt« notttl ulcMtuucHt

1 cHb pttq ? • »ti
fulUMb-ulcMb I'lullcHb
uucMb. UtHulcMh
lit ll.a-ulcMb.r-UHt»?
uU If t9*iAJcHb'?
«IVlPft? :.ulfMb.3-flHptM z
uH Ip»f9 r*Muc Mb. 3

' »th»d nonco»P«lt ulcMb.MUCMb
cnlltct nottti ukMb.uucMb

1 Cl3t phen ' Ht9 1
fwl UI3t>ulcl3t Mtwllcllt
uucl3t l-tu'jlr I3t
• |b|pt<<i l>>.lr|3t Z-nviPf«« I
uU |P>«9 |-»'jr|3l r
« U lpH(.r.MU13t. 3-nk Iphon
ulW tphpn-wycI3t 3
m '—I noncompttt wlr13t'MUC13t
CnlltCl notttt ulcl3txucl3t

' cl3b pbo" • Pit» !
lul Icl3b>xlcl3b i-t-l Ir I*.
., ris i-'..,!, nt
llHrit? Z-i..lcl3b J-nnptt» 2
uU lr"»9 T'-wuc 13b C
(lHphrn.ulcl3b 3'<1HP>XP'<

ull Ipt-on^tiuc 13b 3
«rhtd r>nnr.P*pttt M 1 C I 3b ■ «^J' 1 3b
tolltrt "cUtt »It I3b>«jt 13b

1 rlTt •»" t ♦ P'ti 1
»ullcirfulcltt l-'xllclZt
mttXt* IMmlcirt
lUlr*t(l>wl;l2t :-<ll |p*t(I
ulbIrtt« 1*MUCiTt T
t III»» MHUIN 3->ln.." I
ulk IBM l-MUClTt 3
tft.«d nonCO»Pttt MIC ITt-»UC l?t
Ctlllft nctltl ultirt.uuelit

■ t \:i ••'> i • pft» i
<..iituf-Mitir' i.i»iiti?'
mitMl l-luultl?'
(IklPfc^ ?-».ltl'« r-MHp«»9 "
,.k i «■ i-Mutir* r

UM-" i—iti:» 3'»inf» i
ulkla-n |>W(<|7I 3
SCK«4 r..»'^'»«f*t»t witit' *^tir'
C'llf' »««'t' ultl?' »wcl?'

■ ci?« •■" r • »»•» t
IMIICI7V>ICI2« I-I»IICI7«

xucITt IMMUICI?«

tlilrtt« l>MltU« i'UHp—l I
«It Irttt l>Mt(ltt 2

l|l.|p.n ?-ulcUr 3-»UI««n ?
uU lr»-n 2>HUI l?9 3
irh«d npncomottt ulc It<J.MUC 1?»
tolltet notttt ulclZ9'«'ctZ9

1 cITh »vn i ♦ Plt9 ?
K.llrlZh.MlcUh.l'tulltlTh
wuclZb.I.t«ulcl2h
(iupn9 r-wicUb.e-'iHptt» z
ullIpir9 r»wu<lth.2
«lU»-" r^ulrltb 3-nH«i»n 2
ullf(ffwn t'WUtlt^ 3
»tbtd nnncO"iptlt ulc Itb .»uclJb
Colltc« KOittl uldZb.uuclZh

i dlt •-" I • rM
(ullcllfuUllll-lullclll
UUCllt.l-tuultlll
ttillcl4*HlelU'2>(ullcM
.iulcM>Mut II 7
UUi»-n I.HICII« 3>llHfn 1
ult l»-i l»>iut 1 It 3
»thtH npntpmrt't wit I It-MUCI It
ColllCl ntittll ultllt.uut lit

I cllb ">•" : • cM
»..I Irllh-nl'llb l-tullcllb
wrllb l-l.i'ilcl lb
tullcM-ulcllb r>«"llcM
luulcM-uurl lb ?
tH |».n ?>Hlcllb.l'*U|aM Z
ulb \min 2*MIC1 lb 3
ic^td noocowpt't i.lc I Ib-wvJClIb
tollttl notltt ulcllb.ui.Mlb

i tilt *•" I • cM»
(ulkllfultlltl-lullcllt
MUt|1# l-luultllt
lullrMfulcllt :-lullcMt
tnult Mt»Myc t It T
(|l.|s.n l-ultllt 3'MH»"' I
ulbla.n |>HUCII« 3
fcHtd fo^rn-pttt wit 1It-witllt
CQlltC* nn«ltt ulr lit ■ w.;t I It

i c||< •.<- I • cMb
<ullclH-ulr 11« l-tullcll'
UUCll' I-(UU|C|M
(«llcMb-HlclM 2-<ulleMb
luulc Mb-uucl [I Z
UH»-" 1-ulclM 3-nUt-n I
ull |>..n l-uut I 1)3
. •.. •• •-i»!« ultlHuutll'
trllttt .•■">• uli ll> uuctK

' -(19 ••', » ' '<*•
»ulltllf-lt 11« l-<ulkll9
«j. II« |.«-.l' 11»
(-lit Mfult 119 r-'xllll«»
tuult Mfuut I 1« ?
t|t la.n r-»lr 119 3-'U I«"" r
,jll lawn r.uijr lit 3
tr^td "OTiapt't ult 119 "'ell*
tnllt':• "Off ul'l^"''!'»

, Hh a.n r • r l>b
«..1 IcIIH-alcllh l-l-llrll»«
iaKll*>. |-i>«.lcllh
l,.l - l«b »li lib :-<-llcMb

. tuult Mb>i~t ll>i I
(|l la,. .--..Itllb J.t kla.« 2
ulk la.» r-aullth 3
(Ih«d "nntracttt »Itllb ^itllh
tolltt) -i-««t« »If I l'--'«Jt lib

■ t l^t p»«" • a." I
(»1 It IPfwll I't l-l-lltl»t

;

B.2 The STEPPS Hearsay II model B-16

UM«™ l*ulet*t-Z>rib|Bir«i I

tit Iphon-uit 10. 3-<|W)pt,on

uU lpHen*uucl^*. 3
•chtd noncaart)* ulcIA> uuclga
coll»,(ftotl«! U1CI9«,HUCIS«

I clPb phon ♦ i»n Z
IMI k lot-M.l, K* i-uiii, I*

MUclOt. 1-luulrlOt-

tlk Imm Z'HICII* 7WlH«,n 2

t It-jphon-ulcieb. 3-f U Iphon
ult Iphpn.-HUclW'. J
■ch*d noncoMpttt wlcl^b.Mucl^b
«OlitCt notttt uldtb.MuclM)

1 c9« phon « clZl
rMikOt^Htett' i-tHiic3«
uuc9«.I»tuu)c9tt
Ullel?t*HlcB«.2«(uileit«
tuulclt»-Kuc9» 2
llHphon.ulc9€.3Wlk|phon
uIb|phon>uuc9*.3
«cl'€d nonconpttt Hlc9*.uuc9ft
ccillfct noftil ulc9«,uuc9*

1 c9< phon • clJ»
fnl lc9f>ult9».|.tMl Ic9f
Mut9(.(•luulclf
«"llcl2f.Mlc9r.2>fMllcl2f
»uulcl2f-uut9f.2
t lHpticn.Mlc9f 3-f 1W jphoo
ulklphon«uuc9(.3
fcH«d nonconpvtff Mlc9f<wuc9f
colltcl no»i«i Mlc9f.uijc9f

1 c9» p«on ♦ cl2§
fwllc9!i-ulc99.1-tnlk99
M-JCB? l*tMulc94
lwllci2fMU9t'2*ful|elZf
Uiulc]29*uuc93.2

«It lphon.ult9r 3-nHphon
ull'lphon'uuc93.3
fch*d nonepmrttt Mlc9g'Uuc99
colltct na«t*l M1C99>UUC99

1 c9h phon « cl2h
f"llc9h«wlc9ti.l-tMllc9h
wuc9h.]*-(wulc9h
•Ml|r.l2h.nlc9h.2-fMl|clZh
tuj(cl2h'Muc9h.2
tlHphon.ulc9h.3»flW|phon
Uli lphon»>nji;9h. 3
fch«d noncowp«*« u|c9h.uuc9h
callrct nottd ulc9h,viuc9h

' c?a turn « clO«
fuitc7a>Hlt7*.t>|u||e7i
Huc7«.l>tMulc7s
(MIIC lfl«-u|(7. J-lullclfl,

tMujc10a»Huc7t>2
«IVIfurn'ulc7l.3*riV|furn
ultlfurn*Muc?».3
tch«d noncompttt wIc^t.HUC?*
colUct nortat Hlc7*.uuc7«

1 c6» c9 • cl2t
fw;|cB«.Mlc6».l-tul|cB«
uuc&«. iMuu IcB«
twIlcl2fMlcS«.2>(wl|cl2«
tuulcl2r-uucGt.2
lullcB-ulrS. 3.(^1 UB
UIUICB-IIUC6».3

»ch»d noncempttt Hlc6t<Muc6t
collect nortat wIcGt.uucEa

1 cB» cB ♦ tl2f
fulkBf-wlcBf.l-UlkBf
wjcBf■l-tuuicBf
tullcl2fulc6f.2-fwllcl2f
tM-j Icltf ^wucBf ■ 2
t."lk8-«lcBf.3.fulkB
tuukB-uucBf 3
■ chad noncompata uk6r>uuc6f
collacrt noata' ukEr.HucBf

1 cB? cB • el's
<ullcB?.ulcB3. ktMlkBg
i-'uc6'i l-1i;u kfi<»

twUcl2«i'Hk6!i.2*fwlkl2t
tuukir<>»wucB9.2
U/lkB»nk69.3-fwllcB
IwukB-uucBo 3
ffched npncpmrctt M1C69>HUC69

collect noftat ulcBguucB«

1 cBh cB • cl?h
ful IcBh^wkBh. l-tu) kBh
wucBh. ktwukBh
t"lkl2h.uk6h,2.*ul|c|2h
t"ukl2h-uui:6h.2
lulkB-uk6h.3'fulkB
tnujcB-MurBh-3
ached nancompate ulcBh.MucEh
collect noalal ulcBh.aucSh

1 c3a uord • t7»
• MI Ic3e>ulc3a. klul|c3B
wucSa. NtMukBa
tnl|c7a'uk3a.2-fHlk7a
Uiuk?a*-Muc3a-2
111- luord-uli 3» 3-nH«ord
ult iMnrd*-Muc3a-3
ached noncompete nlc3a-uuc3a
collect noatat ulc3a.Nuc3a

1 c3t word * c7b

f"lk3b-uk3h.klulk3b
Muc3b. l»tMuk3b
«ulk7b»Mlc3b.2»fwlk7b
tuuk7b-wuc3b.2
IIUword-uk3b.3-nMl«rd
UH U'Ord-UUf 3b 3
achad nonconpata wlc3biwuc3b
collect noflat Mlc3b.uuc3b
cop»' tflalol il'jalo
COPV t- ltr«,q| IWJ |cjt9

cop)- tclpo-nt .lalpoVtltalpo'n
copy talaearchlikalaearch
copy l-tlaagl'l'ilie92il>Blti;t
copy kijttaililtcliiM
copy kalutblikalutb
copy baluvt .I'aluv2^aluv3<l'iluv

I cTb aurn ♦ cIPb
ful Ic7b-ulc7b. ktwl IcTb
wuc^b- IMuulcTb
tulkl%>ulc7b.2*fMlkl9b
»uulcl%-u.jc7b-2
I III laurn-MlcTb-S-fUjaurn
ullr laurn»Muc7b. 3
ached noncompete Mlc7b<uuc7b
collect noatat nlcTb.uucTb

 ' ' ■ll1 ^^^ **'■*"'"'" m»1 HI»I Mimimij j niiwiu.riL.iinw—f i'^im*'*»'m*^****m*'.<-'-***.**i'*ww*.*-'- . ^y*****

C-l

APPENDIX C

Validation of Simulation Results

Both the Bliss/ll and Hearsay II examples of Chapter III relied on the -esults

of statistics obtained through simulations. When using statistics, one must be prepared

for the possibility of error. For simulation experi./ents, two validation factors are

required to verify the significance of the results [Gordon 69]. These are:

1. Elimination of initial bias.

2. Development of a confidence interval.

The method chosen for the elimination of initial bias was the use of trial runs

to detjrmine simulation run times. Since many simulations were required for the

Bliss/11 experiments, a small number of trial runs were used to estimate the simulation

run times for all other runs. It was observed that the initial bias was eliminated after

about fifty messages entered the RESULT process of the Bliss/11 model. The number

of messages used in the experiments ranged from 475 to 850. In contrast with the

Bliss/11 message number measure, the Hearsay II simulations were based on simulated

time. It was observed that the Hearsay II results stabilized after about 5000 time

units. Consequently, the amounts of time used for the emulation experiments ranged

from 10,000 to 100,000 time units. Thus, following one of Gordon's recommendations

[Gordon 69], the initial bias was eliminated from the experiments.

The determination of confidfince intervals for all the simulations J/ould have

required a relatively high overhead in the simulations. The standard techniques

require either repetitions of a particular simulation using different random number

generator seeds or, alternatively, one very long simulation run that is divided into a

Validation of Simulation Results c_2

set of batches. Considering the large number of Bliss/11 simulations that were

performed, it was felt that the development of a confidence interval for one simulation

would be used to represent the entire set of Bliss/11 simulations. Figure C-l shows

the data taken from one long simulation run from the Bliss/11 simulation using six

processors and FIFO scheduling.

Stop No. F^ No. LS LEX Time Percent Thru
Time Sends Sends Computing Thru Rate

40 75 76 .238 89.3 3.75
60 65 78 .239 77.7 3.25
80 69 83 .241 83.1 3.45
100 53 56 .355 94.1 2.65
120 66 69 .226 74.5 3.30
HO 58 50 .248 71.9 2.90
160 58 62 .249 84.7 3.40
180 79 74 .270 106.6 3.95
200 82 79 .253 103.7 4.10
220 68 85 .226 76.8 3.40
240 64 67 .280 89.6 3.20
260 74 80 .234 86.6 3.70

Figure C-l. Bliss/11 FIFO 6 Processors Evaluation Data

From these data, 907. confidence intervals were computed for the LEX

Computing Time, [.245, .264]; Percent Thru, [84.6, 88.5]j and Thru Rate, [3.28, 3.57].

From the data shown in Chapter III, it can be seen that each of the values falls within

these respective confidence intervals (i.e., .259, 88.3, and 3.28).

Based on the validation of the numeric significance of this selected simulation,

the other BIiss/U simulations are felt also to be valid. This seems reasonable since

the various simulation rasults did not have any unusual patterns.

The same general techniques were used to run the Hearsay II simulations as

were used for the Bliss/11 simulations. As discussed earlier, the initial condition bias

was eliminated by runni the Hearsay II simulation for a long time. Confidence

 , ■■■.™-"- " "■"' 1—I — 1 ——

intervals were not established for the Hearsay II experiment, because the Hearsay II

result was based on an accumulated statistic (i.e., average active processors) and the

method used for validating this type of statistic required multiple runs [Gordon 69].

Since each Hears- ' II experimental run was relatively expensive (from 20 minutes to 1

hour computer run time), this validation was not felt to be worth spending the required

resources. Moreover, the Hearsay II simulation results were correspondences to

Fennell's simulation experiments, vhich were also not validated [Fennell 75a}.

» lall«!»!»«'!«■■>»■»»■■■■—■—M—i in r um i ■! 11-ni'^.-- w. i ■ mi i

3-1
Bibliography

Bibliography

;„ Cvye»«ms with Multiprocessing

(1972).

M.ms, OA, -A Mo.. -/--.^rs^Än-rar *'""*"
Ttchnologifi* and /ipphcatton; L. C. Hobbs, to. \i

And.P.on. .P. .. a,., "^ ■ A-... C.^ M.. - C0M.na .n. Con,.,;
Proc. FJCC Vol. 22 (1962), 86-96.

A^on, .P., ■Pro... SU« of P.,.«.! P-o-i"..- C^C« V.,. 8 No. .2
(1965). 736-789.

„nJ /Ipplic«».".. L. C. Hobbs, Ed. (1970), 376 110.

p , J. -A Survey of So™ Theoretic,! Aspeds ot Mul.iproc.seln,,- C.-P««-,

p , PM "Ports - A Method for Dyne* Iht.rprogr.m Commoniction end Job
Ba'"r' RcJoi;APPA Report No. 189-. (1971).

B.,,, CO., aresoo, . aod ^„, A 0..^. C.P.P- - »"•* S— ^
Press, Maynard, Mass. (19/Z)-

B.rg., C, ».or. ./ Crop'.. •- '" ^"^ *>* ^ ^ ^ ^ ^n

CA. (Sept. 1973), 27-40.

Bove., D.P., -L...«, o, MU«!..... Grephs.- .stitote di Aotoe,...., Hn.ersi.y di Po..

(1969).

/Jpplica.ion«, L. C. Hobbs. Ed. (1970). 287-295.

1 ■ l "■ ' "w»»-———» ■—' '■• ' -' " ' ■ ■' ' ' ' ■ - ——•-— ' •*"■»- ——-

Bibliography d-W

Brinch Hanssn, P., "A Programming Methodology for Operating System Design," Proc.
IF IP 74 Congren (1974). 394-397.

Browne, J.C., Chandy, K.M., Hogarth, J. and Lee, C. C-A., "The Effect of Throughput of
Multiprocessing in a Multiprogramminf Environ nent," IEEE Tran». Comput.
Vol C-22 No. 8 <Aug. 1973), 728-735.

Clark, W.A. and Molnar, C.E., "The Promise of Maciomodular Systems," IEEE CompCon
72 (Sept. 1972), 309-312.

Conway, M.E., "A Multiprocessor System Design," /IF I PS Proc FJCC Vol. 24 (1966),
139-163.

Courtois, P.J., "Instabilities and Saturation in Multiprocessing Computer Systems," Notes
for Advanced Course on Computer Systems held in Alpe d'Huiz (Grenoble),
Dec. 1972.

Dahl, O.J., Dijkstra, E.W. and Hoare, CAR., Structured Programming, Academic Press,
New York (1972).

Dennis, J.B., "Modular, Asynchronous Control Structures for a High Performance
Processor," in Co.irurr«nt Sy»t«mi and Parallel Computation Conference,
ACM (1970), 55-80.

D. i-snis, J.B., "Coroutines and Parallel Computations," Fifth Annual Princeton Cont. on Inf.
Sciences and Systems, 1971.

Dennis, J.B., "First Version of Data Flow Procedure Language," Project MAC computation
structures memo No. 93 (Nov. 1973) (a).

Dennis, J.B. and Fosseen, J.B., "Introduction to Data Flow Schema," Project MAC
computation structures memo No. 81-1 (Sept. 1973) (b).

Dijkstra, E.W., "Self-stabilizing Systems in Spite of Distributed Control," CACM Vol. 17
No. 11 (Nov. 1974), 643-644.

Erman, I.D., Fennell^ R.D., Lessor, V.R. and Reddy, DR., "System Organizations for Speech
Understanding: Implications of Network and Multiprocessor Computer
Architectures for AI," Proc. 3rd IJCAI, Stanford, Calif. (1973), 194-199.

Erman, L.D. and Lessor, V.R., "A Multi-level Organization for Problem Solving Using
Many, Diverse, Cooperating Sources of Knowledge," Tech. Report, Computer
Science Dept., Carnegie-Mellon University (1975).

Estrin, G. and Turn, R., "Automatic Assignment of Computations in a Variable Structure
Computer System," IEEE Tram, on Electronic Computer» EC-12 (Dec. 1963),
756-773.

Farber, DJ.. "A Ring Network," DATAMATION Vol. 21 No. 2 (Feb. 1975), 44-46.

^

Bibliography IS - Hi

Fennel!, R.D., "Multiprocess Software Architecture for AI Problem Solving," Ph. D,
Thesis, Computer Science Dept., Carnegie-Mellon University (1975) (•).

Fennell, R.D. and Lesser, V.R., "Parallelism in AI Problem Solving: A Case Study of
Hearsay II," Tech. Report, Computer Science Dept., Carnegie-Mellon Uniersity
(1975) (b).

Fishman, G.S., Conceptt and Methodi in Di'jcr«!« Event Digital Simulation, J. Wiley &
Sons (1973).

Flynn, M.J., "Very High-Speed Computing Systems," Proc. IEEE Vol. 54 No. 12 (1966),
1901-1909.

Fuller, S., SiewioreK, D. and Swan, R, "Computer Modules: An Architecture for Large
Digital Modules," ACM/IEEE First Annual Symposium on Computer
Architecture, Gainesville, Fla. (Dec. 1973), 231-239.

Gordon, G., Syttem Simulation, Prentice-Hall, Englewood Cliffs, N.J. (1969).

Gosden, J.A., "Explicit Parallel Processing Description and Control In Programs for
Multi- and Uni-processor Computing," f/CC(1966), 651-660.

Graham, R.L., "Bounds on Multiprocessing Anomalies and Related PacKing Algorithms,"
S/CG (1972), 205-217.

Heart, F.E., Ornstein, S.M., Crowther, WR. and Barker, W.B., "A New
Minicomputer/multiprocessor for the ARPA Network," Proc. A/CC (1973), 529-
537.

Holt, A. and Commoner, F., "Events and Conditions," in Concurrent Syitemi and Parallel
Computation Conference, ACM (1970),, 1-52.

Holt, R.C., "Seme Deadlock Properties of Computer Systems," Computing Survey» Vol. 4
No. 3 (Sept. 1972), 179-196.

Horning, J.J. and Randell, B., "Process Structuring," Computing Surveyt Vol. 5 No. 1
(Mar. 1973), 5-30.

Howard, R.L., Dynamic Prohahilittic System», Vol. I: Markov Model» and Vol. II: Semi-
Markov and Doci»ion Proce»te», John Wiley & Sons, Inc., New York (1971).

Johnsson, R.K., "An Approach to Global Register Allocation," Ph. D. Thesis, Computer
Science Dept., Carnegie-Mellon University (1975).

Karp, R.M. and Miller, R.E., "Properties of a Model for Parallel Computations,
Determinancy, Termination, Queueing," SI AM J. Appl. Math. Vol. 14 No. 6
(Nov. 1966), 1390-1411.

Karp, R.M. and Miller, R.E., "Parallel Program Schemata," Journal of Computer and
Sy»tem Science» Vol. 3 (1969), 147-195.

Bibliography B - lv

Keller, R.M., "Parallel Program Schemata and Maximal Parallelism I: Fundamental
Results," JACM Vol 20 No. 3 (1973) (a), 5U-537.

Keller, R.M., "Parallel Program Schemata and Maximal Parallelism II: Construction of
Closure," //Of Vol 20 No. 4 (1973) (b), 696-710.

Kleinrock, L, Quwing Syilemi Volume I: Theory, John Wiley & Sons (1975).

Lehman, M., "A Survey of Problems and Preliminary Results Concerning Parallel
Processing and Parallel Processors," Proc. IEEE Vol 54 No. 12 (Dec. 1966),
1889-1901.

Lesser, V.R., "The Design of an Emulator for a Parallel Machine Language," PhD Thesis,
Elect. Eng. Dept., Stanford University (1972).

Lesser, V.R., Fennell, R.D., Erman, L.D. and Reddy, D.R., "Organization of the Hearsay 11
Speech Understanding System," IEEE Sympoiium on Speech Recognition
(Apr. 1974), 11-22.

Levin, R., Cohen, E., Jefferson, D, PollacK, F. and Wulf, W., HYDRA Uier'i Manual,
Carnegie-Mellon U. Report (prelim), 1975.

Lunde, A., "POOMAS, Poor Man's Simula," unpublished report. Computer Science Dept.,
Carnegie-Mellon University (1971).

Martin, D.F. and Es^rin, G., "Models of Computational Systems -- Cyclic to Acyclic Graph
Transformations," IEEE Tran». Comput. EC-10 No. 1 (1967), 70-79.

Martin, D.F. and Estrin, G., "Path Length Computations on Graph Models of
Computation," IEEE Trans. Comput. C-18 (1969), 530-536.

McMillan, C. and Gonzalez, R., Systems Analysis: a Computer Approach to Decision
Models, Richard D. Irwin, Inc. (1968).

Merlin, P.M., "A Note on Recoverability of Modular Systems," Dept. of Information and
Computer Science, University of California, Irvine (1975).

Miller, R.E., "A Comparison of Some Theoretical Models of Parallel Computation," IEEE
Trans. Comput. C-22 No. 8 (Aug. 1973), 710-717.

Mills, H.D., "Top-down Programming in Large Systems," in Debugging Techniques in
Large Systems, R. Rustin, Ed., Prentice-Hall, Englewood Cliffs, N.J. (1971), 41-
55.

Miranker, W.L., "A Survey of Parallelism in Numerical Analysis," SIAM Reviete Vol 13
No. 4 (Oct. 1971), 524-547.

Newell, A. et al., Speech-Understanding Systems: Fitiil Report of a Study Group,
Computer Science Departmental f jport, Carnegie-Mellon University (May
1971).

Bibliography ^-v

Newell, A. and Robertson, G,, "Some Issues in Programming Multi-minl-procestors,"
Computer Science Departmental Report, Carnegie-Mellon University (Jen.
1975).

Noe, J. and Nutt, G., "Macro E-mH for Representation of Parallel Systems," IEEE
Tran$. Compul. C-22 No. 8 (Aug 1973), 718-727.

Parnas, D., "On the Criteria to be used in Decomposing Systems into Modules,"
Computer Science Departmental Report, Carnegie-Mellon University (Aug.
1971).

Parnas, D., "A Technique for Software Module Specification with Examples," CACM Vol.
15 No. 5 (May 1972), 330-336.

Parnas, D., "The Influence of Software Structure on Reliability," Proc. Inter. Con/, on
Reliahh Software, IEEE (1975), 358-362.

Paterson, M.S. and He/itt, C.E., "Comparative Schematology," in Concurrent System« and
ParalM Computation Con/«r«nc«, ACM (1970), 119-127.

Petri, CA., "Kommunication mit automaten," Translated in Project MAC-M-212 Report,
Originally published in 1962.

Prosser, R.T., "Applications of Boolean Matrices to the Analysis of Flow Diagrams,"
Proc. of t/i«? Kantern Joint Computer Conference (1959), 133-138.

Quatse, J.T., Gaulene, P. and Doge, D, "The External Access Network of a Modular
Computer System," Proc. SJCC (1972), 783-790.

Regis, R.C., "Systems of Concurrent Processes: Structural Properties and Stochastic
Analysis," Computer Science Dept., Johns Hopkins University (1972).

Rice, D.R., "An Analytical Model for Computer System Performance Evaluation," SICME
Vol. 2 No. 2 (June 1973), 14-30.

Riddle, W., "The Modeling and Analysis of Supervisory Systems," Ph.D. Thesis, Elect.
Eng. Dept., Stanford University (1972).

Rodriguez, J.E., "A Graph Model for Parallel Computation," Ph.D. thesis. Elect. Eng. Dept.,
Massachusetts Institute of Technology (1967).

Rosenfeld, J., "A Case Study in Programming for Parallel-Processors," CACM Vol. 12
No. 12 (Dec. 1969), 645-655.

Simon, K, "The Architecture of Complexity," Proc. of the Amer. Phil. Soe. Vol. 106 No.
6 (Dec. 1962), 467-482.

VanLehn, K.A., Ed., Sail Uter Manual, Stanford Artificial Intelligence Laboratory, Memo
AlM-204, 1973.

Bibliography

W«rshall, S., "A T m on Boolean Matrices," JACM Vol 9 No. 1 (1962), 11-12.

B- vl

Weinberg, G.M., The Ptychoiogy of Computer Programming, Van Nostrand Reinhold
Co., New York (1971).

Wulf, W., Russell, D. and Habermann, A., "Bliss: A Language for Systems Programming,"
CACM IA (December 1971), 780-790.

Wulf, W. et al., nu»»-ll Programmer» Manual, Digital Equipment Corporation, Maynard.
Mass. (1972) (a).

Wulf, W. and Bell, C.G., "C.mmp — a Multi-mini-procensor," Proe. AFIPS 1972 FJCC
Vol. 41, AFIPS Press, Montvale, N.J.(1972) (b), 765 - 777.

Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R., Pierson, C. and PollacK, F., "HYDRA:
The Kernel of a Multiprocessor Operating System," CACM Vol. 17 No. 6
(1974), 337-345.

Wulf, W. et al.. The Detign of an Optimhing Compiler, American Elsevier (1975) (a).

Wulf, W., Levin, R. Pierson, C, "Overview of the HYDRA Operating Systtm Development,"
Proceedings of 5th Symposium on Operating Systems Principles, ACM
SIGOPS, Austin, Texas, (Nov. 1975) (b), 122-131.

INDEX 6-vli

INDEX

adjacent processes, 1V-15
adjacent, 11-10
APPLY, A-9
attached to, 11-10
ATTRIBUTE, A-10

BLACK BOX, IV-24

chains, IV-2
CLEAR, A-ll
closed loop, IV-10
closed path, IV-12
COLLECT, A-ll
combine two states, IV-19
Comments, A-3
connecting nodes, A-4
CONTINUE, A-ll
COPY, A-12

deadlock problem, IV-8
doadlock-free, IV-14
delay time, II-5
DELAY, IV-15
DENSITY, A-14
DISPLAY, A-15

eliminate a state, IV-20
EXIT, A-16

Graph Reduction Process, IV-14
Graph Reduction Theorem, IV-29
graph reductions, IV-14

immediate recurrent, 11-10
in-parallel, IV-M
in-sequence, 11-10
Irreducibility Theorem, IV-28

keyword abbreviations, A-2

Lemma Rl.l, IV-16
Lemma R1.2, IV-16
Lemma R1.3, IV-17
Lemma R1.4, IV-17

Lemma R1.5, IV-17
Lemma R2.1, IV-19
Lemma R2.2, IV-20
line continuation, A-3
LINK, 1-17,1-19
links, 11-14
LOAD, A-16
loop, IV-10

Markov assumption, IV-1
Markov process, IV-1
message, II-3
MODEL, A-16
monodesmic process, IV-2

node, 11-9

one-to-one, 11-10
onto, 11-10

path, 11-10
ports, IM
PROCESS, 1-19
process, II-l

Rl, IV-13,IV-15
Ria, IV-15
Rib,IV-15
R2, IV-14
R2a, IV-14
R2b, IV-14
R2c, IV-14
R3, IV-14, IV-24
R4, IV-14, IV-26
Reducibility Theorem, IV-26
REMOV:, A-17

safe, IV-8
SAVE, A-17
SCHEDULE, A-18
semi-Markov process, IV-1, IV-4
SIMULATE, A-18
SINK, IV-11
SNAPSHOTS, A-19

INDEX

SOURCE, IV-11
SOURCE/SINK, IV-21
spaces, A-2
split paths, IV-12
start-up time, II-5
STATISTICS, A-19
steady state, IV-2
successor states, IV-16

TEST, A-20
Theorem Rl, IV-17
Theorem R2, IV-22
Theorem R3, IV-25
Theorem R4, IV-26
transient states, IV-2
transition matrix, 1-21
transition relation matrix, IV-7

UNSIMULATE, A-20

well-formed criteria, IV-6
well-formed graph, IV-6, IV-7
well-formed model, I-25,IV-6
well-formed process, IV-6

5 ' viii

