b o s

z U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD-A034 855

PROBLEMS, MECHANISMS AND SOLUTIONS

CARNEGIE-MELLON UNIVERSITY
P1TTSBURGH, PENNSYLVANIA

Aucust 1976

NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

SR ———— S —

| e 'UNCLASSIFLED : <

ECURITV CLASSIFICATION OF THIS PAGE (When D.u‘l‘:mued)L

L —

— READ NSTRUCTIONS
REPORT DOCUMENTATION PAGE BE7ORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.l 3. RITCIPIENT’'S CATALOG NUMBER :
AFOSR - TR- 77 = 0006 :
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED ;
. PROBLEMS, MECHANISMS & SOLUTIONS Interim i
i 6. PERFORMING ORG. REPORT NUMBER i
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Ellis S, Cohen F44620-73-C-0074
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Carnegie-Melion University ARESIMOSKUNITINOMBE A%
Computer Science Dept. 61101D
Pittsburgh, PA 15213 AO 2446
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

August 1976

13. NUMBER OF PAGES

Defense Advanced Research Proiects Agency
100 Wilson Blvd

17
’mwmm“m dilferent from Controlling Office) |s.l’s'zcun|'rv CLASS. (of this report)
Air Force Office of Scientific Research (NM)
Bolling AFB, DC 20332 UNCLASSIFI®D
15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue on reverse side {f necessary and identify by block number)

; This thesis formalizes the notions: problem, mechanism and solution, and
shows how such a formalization is useful in describing problems and proving

the correctness of solutions to them in computational systems.

e

|
DD !:2:“’13 1473 €oiTioN OF 1 NOV 65 1S 0BSOLETE UWCLASSIFIED I 1

Y

' SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

— —— d

e e TS C T T e ———

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) .
a2

Mechanisms are formally defined as mappings (layers) betusen two |
computational systems. They provide natural ~ models for protection,
synchronization, and sequential and parallel control mechanisms. Certain
algebraic properties of mechanisms are discussed; these correspond to
properties one would ordinarily consider in studying the mechaniems listed
above. f

We consider those problems in computational systems that may be solved
either by adding a mechanism to a system or by imposing a constraint on the
states in which the system is initially permitted to operate. We find that
many such problems can be described as behavioral problems, constraints on
the hehavior of a system. These problems may be described in a manner that
is independent of the particular system. A variety of important nrotection
problems are defined in this way.

We develop a formal methodotogy for solving problems in systems wuith
mul tiple mechanisms. MWe use it in developing a number of solutions to a
particular protection problem, wuhich uwe solve by constraining both a
protection ‘mechanism (determining acceptable - initial protection
configurations) and a control mechanism (specifying properties that must be
satisfied by programs which are to be executed by certain users),

Finally the thesis develops a variety of constructs for specifying
behavioral problems and discusses considerations for analyzing, comparing
and measuring solutions to them.

UNCLASSIFIED

SECURITY CLASSIFICATION OF TuU'® PAGE(W ¢ .*a Fntered)

PROBLEMS, MECHANISMS & SOLUTIONS

Etlic S. Cohen

Depar tment of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

August 13976

Submitted to Carnegie-Mellon University in partial fulfilliment
of the requirements for the degree of Doctor of Philosophy

This work was supported by the Defense Advanced Research Projects Agency
(#F64620-73-C-BB74) where it is monitored by the Air Force Office of
Scientific Research, and by the National Science Foundation under

grant ﬂCS?S—Q?ZSlAGl.

Problems, Mechanisms and Solutions if
ABSTRACT

This thesis formalizes the notions: problem, mechanism and solution, and
shows how such a formalization is useful in describing problems and proving
the correctness of solutions to them in computational systems.

Mechanisms are formally defined as mappings (layers) betuween two
computational systems. They provide natural models for protection,
synchronization, and sequential and parallel control mechanisms. Certain
algebraic properties of mechanisms are discussed; these correspond to
properties one would ordinarily consider in studying the mechanisms |isted
above.

We consider those prob'ems in computational systems that may be solved
either by adding a mechanism to a system or by imposing a constraint on the
states in which the system is initially permitted to operate. MWe find that
many such problems can be described as behavioral problems, constraints on
the behavior of a system. These problems may be described in a manner that
is independent of the particular system. A variety of important pratection
problems are defined in this way.

We develop a formal methodology for solving problems in systems with
mul tiple mechanisms., We use it in developing a number of solutions toc a
particular protcction problem, which we solve by constraining both a
protection mechanism (determining acceptable initial protection
configurations) and a control mechanism (specifying properties that must be

satisfied by programs which are to be executed by certain users).
Finally the thesis develops a variety of constructs for specifying

behavioral problems and discusses considerations for analyzing, comparing

and measuring solutions to them.

i

LT TP

TR 3 N B R Y

Problems, Mechanisms & Solutions page iii

ACKNOWLEDGEMENTS

This thesis is dedicated to all of thase whose time, (ove and friendship
helped make this journey a joyful one. | especially want to thank the
fo!loning people:

Bill Wulf, who has been my advisor since I have been at CMU. I have
learned from him the value of clarity and elegance in thought and
expression. Any measure of those qualities. to he found in this thesis is
almost wholly due to his influence, He has been supportive of the
directions |'ve taken in pursuing this research, ahd ‘has shoun confidence in
the end results even wuhen my ideas uere not espe.ciallg coherent.

Anita Jones, chairman of the thesis committee, She has been a valuable
sounding board for many of my ideas. It is impossible to estimate the
extent to which her oun notions about mechanisms and problems (especially
relating to protection) have become incorporated in this work. She has been .
a careful reader of innumerable drafts of the thesis, providing additional

encouragement with each one.

Nico Habermann and Garrell Pottinger, the remaining members of my
committee. Nico has been helpful in pointing out ways in which my initial
emphasis on protection could be smoothly broadened. His comments
particularly suggested a new apprpach in presenting the case study.
Garrell's extraordinarily careful reading of this thesis, his copious
comments, and his eye for fudges and imprecisions have been responsible for
many improvements in the style and notation.

John Papp, Eric Ostrom, Lee Cooprider, John Gaschnig, Gary Goodman, John
Burge, Larry Flon, Larry Robinson, Jack Mostow, Gideon Ariely, Doug Clark
and Dave Jefferson for many conversations that have helped me formulate and
evaluate a variety of ideas, including many that came to appear in this

thesis.,

Lo e i A A AN il 55

Problems, Mechanisms & Solutions page 1iv

Dorothy Denning and Bruce Lindsay for comments on an early draft of this
work. f

The HYDRA group, for getting me started.

Susan Sevigny, Barb McAuley and Anita Andter, departmental secretaries,
for help throughout. A

The entire Computer Science. department,'_for‘ providing a stimulating,
creative and friendly environment. e '

Problems, Mechanisms and Solutions v

TABLE OF CONTENTS

N ——

page

1 1 Introduction

1 1.1 Overvieu

2 1.2 Synchronization Problems and Mechanisms

6 1.3 Protection Problems and Mechanisms - 5
11 1.4 Problems and Solutions i
15 1.5 Mechanisms)
16 1.6 Information Problems
17 1.7 Plan of the Thesis

139 2 HModelling Computational Systems

138 2.1 Introduction é
20 2.2 Computational Systems é
28 2.2.a Discrete Serial Free Systems %
21 2.2.b Objects
22 2.2.c DOperations

23 2.2.d Executors and Generic Operations

24 2.2.e Histories and Behaviors

25 2.3 Mechanisms

75 2.3.a Introduction

2& 2.3.b Formal Definition

31 2.3.c Homomorphism

33 2.4 wwv: Concurrent Mechanisms

33 2.4,a v Introduction

33 2.4.b se5:e Markov Mechanisms

35 2.4.c veer Weakly Consistent Mechanisms

36 2.5 Mechanisms and Behavioral Constraints

37 2.6 Initial Constraints

7 2.6.a Constraining the Base System

33 2.6.b Constraining the Mechanism

48 2.8.c ww: Layers of Mechanism

41 3 Decision Mechanisms

41 3.1 Introduction

44 3.2 Formalization

45 3.3 Gatekeeper Mechanisms and Markov Constraints
47 3.4 Sequential Control Mechanisms

51 3.5 Multiprogram Control Mechanisms

*%%-may be skipped on initial reading

Problems, Mechanisms and Solutions vi
page |
53 3.6 wx Mechanisms & Problem Specifications
56 3.7 Monotonic Behavior
56 3.7.a Induced by Decision Mechanisms
56 3.7.b s Construction of an Inducing Mechamnism
58 3.8 v Consistent flechanisms
58 3.8.a e Introduction
53 3.8.b v Strong Consistency
| 60 3.8.c e Reduction
62 3.8.d v Weak Consistency

B3 4 Enforcement Problems

63 4.1 Introduction

64 4.2 Behavioral and Static Problems

67 4.3 Maximal Solutions

63 4.4 A Methodology for Solving Problems
78 4.5 Protection and Control

73 4.6 yeveve Constraining the Augmented System

76 5 A Case Study

| 76 5.1 Introduction

i 77 5.2 The Problenm

§ 80 5.3 Creation Rules

§ 82 5.4 Verified Programs

; 84 5.5 The First Solution
86 5.8 The Second Solution
88 5.7 The Third Solution
90 5.8 Conclusion

92 6 Productive Problems

92 6.1 Enforcement Problems and Productive Problems
o 6.2 The Souffle Example

94 6.3 Producing Solutions

36 6.4 Producing Solutions to Protection Problems
98 6.5 Producing Mechanisms

99 6.6 Local Soiutions)

182 6.7 Examples of Productive Problems

184 7 Problems and Solutions
184 7.1 Introduction

- *%%-may be skipped on initial reading

Problems, Mechanisms and .ciutions vii
page

185 7.2 Characterizing Probliems

187 7.3 Constraining arnd Measuring Solutions

141 57 7.4 Information Problems

115 8 Conclusion

119 A Access Matrix Systems

125 B Proofs

143 C References

%-may be skipped on initial reading

—

bl

Problems, Mechanisms and Solutions

DOMAINS
. tt,ff ¢ TT - Truth Values
0 ¢ I - States
§ ¢ & - Operations
H ¢ Ax ~ Histories (Sequences of Operations)

<o,H> ¢ BEHAVIORS = [I x Ax)

P ¢ STATE-CONSTRAINT = [I --> TT]
INITIAL-CONSTRAINT = STATE-CONSTRAINT
¥ < BEHAVIORAL-CONSTRAINT = [BEHAVIORS --> TT)

T ¢ MECHANISM-MAP = [BEHAVIDRS --> BEHAVIORS)
usage: 7T<o¢',H> = <o,H>

M ¢ MECHANISM = [MECHANISM-MAP x INITIAL-CONSTRAINT]
usage: M = <rn,¢h>

<P,M> ¢ SOLUTION = INITJAL-CONSTRAINT x MECHANISH
X ¢ PROBLEM = (SOLUTION --> TT]

STATIC-PROBLEM = STATE-CONSTRAINT
BEHAVIORAL-PROBLEM = BERAVIORAL-CONSTRAINT

INDEX OF DEFINITIONS

g.a

o

o.A

ol 02

ol 02
Executor (§)
H(o)

§ ¢ H

H & Hw

Hl < H2

M is a mechanism from <Z',4'> to <,4>

QU

viii

Problems, Mechanisms and Solutions i
page
31 26 w3
32 2-7 M is homomorphic
34 2-8 1 is markov
» 35 2-9 M is markov
35 2-18 M is weakly consistent
36 2-11 M induces ¥
37 2-12 M enforces Y
38 2-13 @ induces ¥
38 2-14 ¢ enforces Y

38 2-15 91 contained in 92

39 2-16 ¢ is invariant

33 2-17 M:¢

40 2-18 <9,M> induces ¥

48 2-19 <9,M> enforces Y

48 2-280 <9,M> induces Y given Y’

43 3-1 §' is T-invisible

44 3-2 ™M is direct

45 3-3 M is a runtime mechanism

45 3-4 M is a decision mechanism
46 (markov) VY

46 3-5 Y is markov

46 3-6 T is state isomorphic

56 3-7 Y is monotonic

56 H‘V' Ty, Py

59 3-8 M is stronagly consistent

60 3-9 M is strongly constrained
61 3-18 H/,Y

62 3-11 /Y

65 4-1 <P M> enforces @

i solve’ problem
i' P 65 4-2 Py5ive enforces Poroblem
B5 4-3 M enforces Phroblen
B3 4-4 <Py,)yei¥soive> enforces Yoroolem
69 45 <Pg5iverYsolve> enforces Fropien é

80 5-1 P is Y-invariant

94 6-1 <P,M> produces Y

o b . e

Problems, Mechanisms and Solutions x
page

9s 6-2 <?Pso|ve > produces ¢prob|em

893 6-3 <¥,Mi> produces <9,M>

101 6-4 <¥Pw,Mw> locally produces <9,M> for X

101 6-5 H/X

185 7-1 91 A 92, 91 v 2

185 7-2 <®1,M1> contained in <92,M2>
187 7-3 @,ax Maximally solves X

110 7-4 <Worth,<> is a monotonic measure
111 7-5 <9,M> optimally solves X

A NOTE ON NOTATION
Throughout this thesis, we have taken the liberty of removing
universal quantifiers in logical formulae, wuhenever readability

might be improved. For example, in definition 2-12, we
urite

Pqlo’) > (VHI(Y(ry<o’, H'>))
where uwe should write

(Vo) (Py’ o (YH)(Ylry<o',H>)))

Problems, Mechanisms & Solutions (1 1 page 1

Chapter 1 - Introduction

----- Section 1.1 --- QOvervieu

When we interact with a complex system, be it a human system or a
computing system, we inevitably find some of its behavior acceptable and
some unacceptable. Just as inevitably, we tend to do what we can to bring
about acceptable behavior and prevent unacceptable behavior. Such problem
solving is the focus of this thesis.

I[f a problem is complex enough or important enough, we create mechanisms
to help us solve the problem. Protection mechanisms, for example, arose
from a need to solve certain protection problems, such as preventing those
(unacceptable) behaviors uhere one user might access another user’s private
data.

One finds many sorts of mechanisms in computational systems. They
include protection mechanisms, synchronization mechanisms, high level
language mechanisms and scheduling mechanisms. These mechanisms have
certain common traits. They interpose a layer between a base system and a
system as provided to a user. They enhance, alter and modify the operations
availabie in the base system, sometimes hiding base level operations,

sometimes making new operations available.

In this thesis, ue will present formal definitions for the terms problem,
mechanism and solution. We will demonstrate how this formalism may be used
in describing problems in computational systems, developing solutions for

them, and proving their correctness.

This thesis focuses primarily on protection problems (also called security
policies, as in [Jones & Wulf 74]). While many protection problems have
been described in the literature (for example, the Mutual Suspicion Problem
[Schroeder 72], Safety Problems [Harrison, Ruzzo & Ullman 75] and the
Confinement Problem [Lampson 73]), no general theory of protection problems,
no formal language for their specification, and no ;et of proof techniques
has yet evolved. It is hoped that this thesis will provide a framework for

such developments.

Problems, Mechanisms & Solutions (1.1) page 2

It is important that research in protection move in such a direction.
The variety and quantity of information stored in computational systems
continues to increase, and it is becoming increasingly more important for
users to be able to exercise finer and finer control over the use of that 1
information. Users must be able to formally specify, in as elegant a
language as possible, their protection requirements. Further, they must be
able to determine when and how those requirements may be met. In effect,
this requires a formal theory of protecticn, for which the ideas in thic
thesis form a base.

----- Section 1.2 --- Synchronization Problems and Mechanisms
We will shou that there are many parallels betueen synchronization and

protection problems and the mechanisms designed to solve them.
Formalization in synchronization has proceeded more rapidly and more
generally than formalization of protection. In this section, we wWill survey
research in synchronization, paying special attention to the development of
specification and proof techniques in order to determine whether some of
these might be important for, or applicable to, protection as well.

[[Hewitt 74] contrasts synchronization and protection problems
and mechanisms, in terms of a universal "actor" formalism. That
uwork, especially the notion of behaQioral specification as pursued in
(Greif & Hewitt 751 and (Greif 75], has influenced many of the ideas
discussed and formalized in this thesis.)

One of the earliest synchronization problems to be stated was the Mutual
Exclusion Problem, discussed in [Dijkstra 68al. MWhen multiple users share
access to an object (e.g. processor, memory, file, etc.), maintaining the
integrity of the object may require that operations on it do not overlap.

To prevent this overlap, a process requesting use of the object fust wait
until that object is not being used by any other process. Dijkstra showed
hou his mechanism, which introduced the operations P and V, could be used to
solve the Mutual Exclusion Problem, and could in principle, be used to solve
any synchronization problem at all,

T/

However, PV proved inadequate (or at least inconvenient) for solving

Problems, Mechanisms & Solutions (1.2) page 3

certain generalizations of the Mutual Exclusion Problem. The PYmultiple
mechanism ([Patil 711 permitted a user to gain exclusive access to a set of
objects all at once. A process making such a request would be blocked until
it could be granted access to all objects requested. The PVchunk mechanism
[Vantilborgh & Lamsueerde 72) was developed for those situations in which
resources are represented as collections of objects (such as pages of memory
or tracks of a disk), and processes request a chunk (some number) of these
at a time. Using the PVchunk mechanism, a process would block until the the
process could be granted exclusive access to the exact number of objects
requested.

Even these mechanisms proved to be inadequate for solving more complex
problems. In Reader-Writer problems I[Courtois, Heymans & Parnas 71}, a

distinction is made between processes that read from and those that write to
an object. Multiple realers may access an object simultaneously. However,
writers must be given exclusive access to the object and must not overlap
With any reader. Versions of the problem abound, differing in the way one
assigns priorities to the readers and writers. PV mechanisms do not admit
especially elegant solutions to Readsr-Uriter problems. Other mechanisms,
subsequently introduced are better in that regard, notably the up/doun
mechanism [Wodon 72].

The mechanisms described above define new operations (P and V, etc.),
which could be misused by users. Monitors [Hoare 741 and Regions
[Hansen 73] also introduce new sets of operations but embed them in a
syntactic structure to prevent misuse. (The oper~tions for monitors are:
enter monitor, wait, signal and exit monitor. Brinch Hansen's operatiors
permit a process to block until an arbitrary condition is satisfied.) The
syntactic constraints provide an important function, By imposing a
structure on the solution to a synchronization problem, one might reasonably
consider proving that it is correct.

Jf course, a proof that a solution to a given problem is correct requires
a “ormal specification of the praoblem. [nitially, specifications for
synchronization problems wuere given informally, much like our description of
the problems above. The imprecision of informal specification inevitably led
to controversy, in particular regarding the correctness of the PV solution
to the second Reader-Writer problem as presented in (Courtois, Heymans &
Parnas 711.

Probiems, Mechanisms & Soluticns (1.2) , page' 4

In order to discuss the formal specification of a problem, we must first
describe the effect of a mechanism upon a system. Consider the system that
happens to contain the operations, req(p,r), use(p,r) and freel(p,r).
These operations define operations executed by process p that request, use
and free object r. The sequence of operations '

req(l,r) wusel(l,r) freell,r) reql2,r) use(2,r) freei2,r)

describes the behavior of the system uhere'processll first requests, uses
and frees r, followed by request, use and freeing of r by process 2. The

sequence
reqll,r) reql2,r) wusell,r) usel(2,r) free(l,r) free(2,r)

describes a situation in which process 2 uses r before r has been freed by
process 1. I1f the system contains no synchronization mechanism, this
sequence is perfectly legitimate. But if the system contains a mechanism
designed to solve the Mutual Exclusion problem, this sequence is prevented
from occuring. MWhen process 2 requests access to r, it will block until r
has been freed by process 1. ;

In general, mechanisms prevent the occurrence of certain sequences of
operations. A synchronization problem can ‘then be specified as set of
acceptable sequences (for example, those in which no process uses an object
that is in use by another process). A mechanism can be used to solve a
synchronization problem if it permits just those sequences wuhich are
acceptabie. Since ue cannot expect to expl'icitlg list those sequences which
are acceptable or unacceptable, We next consider ways in which the set of

acceptable sequences might be specified.

The specification techniques closest to explicitly listing the set of
acceptable sequences are those which are modifications of the regular
expressions of formal language theory [(Hopcroft & Uliman 631. These include
event expressions [Riddle 73), path expressions [Campbell & Habermann 751,
and the recent work reported in [Schneider 761}.

In [Lipton 73], a problem is specified as a "solution" defined for a given
mechanism. For example, Lipton defines one set of acceptable sequences to

OSSP ——

Problems, Mechanisms & Solutions (1.2) page 5

be just those permitted by the up/doun "solution" to the 2nd Reader-Uriter
problem as described in [Wodon 72). Lipton then goes on to shou that this
set of sequences cannot be uenerated by using PV instead of up/dowun.

In [Robinson & Holt 741, a synchronization problem is specified as an
invariant property of the state of the system, that is, a predicat. on
states that must remain satisfied over exscution of any sequence of
operations. The state contains pseudo-variables that are used to to encode
salient characteristics of the previous behavior, such as the difference
between the number of requests and frees executed.

To show that a particular mechanism can be wused to solve a
synchronization problem specified by an invariant, one must shouw that the
mechanism blocks a process as long as suhsequent execution of the process

would result in a state not satisfying the predicate. We will find that
invariants are useful for specifying protection problems as well as
synchronization problems. We will refer to problems defined in this way as

static problems.

[Habermann 721 first specified synchronization problems as invariants.
Houever, he only considered those invariants which could be expressed in
terms of the number of times an object has been requested or freed.
Counting constructs alone are not sufficient for specifying many
synchronization problens, particularly those involving priorities.
[Belpaire 751 has suggested additional constructs that may be useful in

developing a special purpose specification language for synchronization.

(Greif 75] argues against taking the "invariant" route. She specifies
the set of acceptabie sequences by imposing ordering constraints. For
example (using pruse in oalace of her notation): If onperation-1
(e.g. req(l,r)) precedes opcration-2 { regql(2,r)) then operaticn-3
(free(l,r)) must preczde operation-4 (usel(2,r)).

The danger of invariant specifications is that by adding pseudo-variables,
whose value may be altered os execution proceeds, one comes perilously close
to defining specifications in terms of an implementation (the
pseudo-variables becoming part of the actual state of the mechanism used to
implement the specification). [t should be noted that there are those,

Problems, Mechanisms & Soiutions (1.2) page 5

be just those permitted by the up/doun "solution" to the 2nd Reader-Uriter
problem as described in [Wodon 72). Lipton then goes on to show that this
set of sequences cannot be generated by using PV instead of up/doun.

In [Robinson & Holt 74), a synchronization problem is specified as an
invariant property ot the state of the system, ‘that is, a predicate on
states that must remain satisfied over exscution of any seguence of
operations. The state contains pseudo-variables that are used to to encode
salient characteristics of the previous behavior, such as the difference
between the number of requests and frees executed.

To show that a particular mechanism can be wused to solve a
synchronization prob'em specified by an invariant, one must show that the
mechanism blocks a process as long as subsequent execution of the process

would result in a state not satisfying the predicate. MWe will find that
invariants are useful for specifying protection problems as well as
synchronization problems. MWe will refer to problems defined in this way as

static problems.

[Habermann 72] first specified synchronization problems as invariants.
Houever, he only considered those invariants which could be expressed in
terms of the number of times an object has been requested or freed.
Counting constructs alone are not sufficient for specifying many
synchronization problems, particularly those involving priorities.
[Belpaire 751 has suggested additional constructs that may be useful in

developing a special purpose specification language for synchronization.

[Greif 75) argues against taking the "invariant" route. She specifies
the set of acceptablie sequences by imposing ordering constraints. For
example (using prose in plece of her notationl: If operation-1
(e.g. reql(l,r)) precedes operation-2 (req(2,r)) then operation-3

(freel(l,r)) must precede operation-4 (use(2,r)).

The danger of invariant specifications is that by adding pseudo-variables,
whose value may be altered as execution proceeds, one comes perilously close
to defining specifications in terms of an implementation (the
pseucdo-variables becoming part of the actual state of the mechanism used to
implement the specification). [t should be noted that there are those,

Problems, Mechanisms & Solutions (1.2) feR _ page 6

especially ([Griffiths 74], who do not find this sort of specification
dangerous. Greif argues (I think correctiyl that behavioral specifications
(such as hers, and those based on regular expressions) -have the potential
for describing problems in a manner closest to our intuitive understanding of

~them. [This potential has not yet been fully realized, for each of the

behavioral specification languages referenced treats many situations
inelegantly. 1 Problems described in terms of behavioral specifications are
termed behavioral problems, in contrast to static problems which are
described in terms of invariants. e

————— Section 1.3 --- Protection Problems and Mechanisms
In this section, we will survey the developments in protection problems
‘and protection mechanisms, insofar as there are parallels wWith

synchronization. We argue that the same formal treatment already provided
for synchronization, rigorous definitions of problem, mechanism, and
solution, techniques for proving the correctness of solutions, and
specification languages for problems, can be usefully applied to the study
of protection. All but the last are dealt with in this thesis.

We start by discussing some of the early protection mechanisms and the
problems they were designed to solve. Tuo of these, the Access problem and
the Hidden Facilities problem will be discussed more formally in sections
4.2 and 5.2 respectively.

The earliest protection mechanisms were designed to solve Access
Problems. For example, the creator of (or some user reponsible for) an
object (e.g. a file) may wish to prevent certain other users (or classes of
users) from reading or writing the object. CTSS [Crisman 65] was one of the
early systems that provided a mechanism that could be used to solive the
problem. It associated an "authority list" with each file, a list of names
specifying those users authorized to access the file, and the tupe of access
permitted for each of these. The protection mechanism prevented execution
of any operation that would allou ari unauthorized user to access a file in a
way not permitted by the authority list. :

The Proprietary Program Problem can be solved Qsing the same sort of

Problems, Mechanisms & Solutions (1.3) page 7

mechanism. A user may Wish to make a proprietary program available to other
users as long as they are unable to read the program (they may only execute
it). The autherity list for the file containing the program can contain an
indication that other users are permitted to execute the file, though not to
read or write it.

The introduction of the Multics protection mechanism ([Organick 72,
Schroeder & Saltzer 72, Saltzer 74] permitted the solution of a number of
additional problems, the Hidden Facilities Problem, the Protected Subsystem
Problem and the Trojan Horse Problem. MWe will briefly discuss each one
belou.

Many facilities (compilers, devices, etc.) may ordinarily be available to
users of a computing utility. The Hidden Facilities Problem requires that

certain users (e.g. students in programming courses) be denied access to
certain of these facilities (except perhaps through the controlied use of
other facilities).

The Protected Subsystem Problem is an amalgam of the Proprietary Program
Problem and the Hidden Facilities Problem. A user is to be permitted to
access an object, but not directly. Instead, certain programs are to made
available to the user, which may be executed (but neither read nor written).
Only these programs are to be able to access the object directly. The

collection of programs (and the objects they maintain) are called a

Protected Subsysten.

As described above, the Proprietary Program problem can be seen as
characterizing a situation in which the ouner of a program does not trust
users of the program. The JTrojan Horse Problem is concerned wWwith the

reverse situation. A user wishes to execute a borrowed program, but wants
to guarantee that when executing, the program will not (maliciously or
accidentally) access or damage files owned by the user that the program has
no need to access. (The problem is called the Trojan Horse problem since,
lurking within the depths of an elegantiy crafted program made available by
another user, may be a collection of code that could potentialiy destroy the
user (or at least her files)).

It is possible that neither the owner nor the borrower of a program trust

i o

it i

A St

Problems, Mechanisms & Solutions (1.3) page 8

one another. This problem, termed the - Mutual Suspicion Problem
(Schroeder 72], cannot be solved in Multics, though Schroeder shows how
Multics may be modified to support a solution. This example illustrates a
point to which we will return in discussing negotiation below. A mechanism

(Multics rings) that supports solutions to some set of problems (Protected
Subsystem, Trojan Horse) may not be able to support solution to combinations
of these problems (Mutual Suspicion).

We have not intended to be complete in our discussion of either
protection problems or protection mechanisms. Descriptions of additional
problems and mechanisms used to solve them are described in [Dennis & Van
Horn 661, I[Lampson 71}, [Gray 721, [Atuwood 721, (Ncedham 72)1, [Graham &
Denning 721, [Jones 731, (Cosserat 74), [Jones & Wulf 74}, [Redell 74],
[Rede!! & Fabry 74) and [Cohen & Jefferson 751, This list does not include
a class of problems ue call Information Problems; we will discuss them
separately in section 1.6.

While at least as many protection problems have been described in the
literature as synchronization problems, no specification languages for
protection have yet appeared, and not one of the protection problems
discussed above has yet been specified in a suitably formal manner.
However, we can characterize a protection problem in the same way that we
characterized a synchronization problem - as a set of acceptable sequences
of operations. For example, consider the protection prohlem: guarantee that
Cohen cannot write the Salary file. The set of acceptable seguences are
those that contain no operation uwhose effect is that Cohen writes the Salary

file.

The reascns why an operation may not appear in a sequence are different
for synchronization problems and protection problems. In synchronization,
the fact that an operation (e.g. uselZ,r))} cannot appear signifies that its
executor must be blocked f{e.g. another process is currentiy using the same

resource). In protection problems, an operation {e.g. write(Cohen,Saiaryl)
may not be permitted because otheruise in access violation may occur {e.g.
if Cohen is not to be permitted to write the Salary filel. Lihen an
operation is not permitted in a protection system, the process generally
does not block. In early sustems it might have been aborted; in current
systems, an error may ke signalled. [This does not impiy that

Problems, Mechanisms & Solutions (1.3) page 9

synchraonization should always imply blocking - if an executor cannot gain
access to a resource, one might want to allow the user the option to use
another resource instead. Similarly, when an access violation occurs, one
might want to block the offending executor wuntil it is granted the
appropriate access rights.] In any case, both synchronization and
protection problems can be stated in terms of acceptable sequences of
operations, no matter what semantic action is intended when unacceptable
behaviors are attempted.

Given that we want to formally describe a protection problem as a set of
acceptable sequences, we find we are faced with the same choice as the
specifier of synchronization problems. We will show in sections 4.2 and
5.2 that certain protection problems may be specified most generally li.e.
without regard to the particular protection mechanism used) as behavioral
problems. Once the mechanism is specified, the problem may often be
restated as a static problem, that is, as a property of the state of the
entire system (including the mechanism) that is to remain invariant. While
the behavioral specification is more general, it is easier to demonstrate
invariance of the static specification than satisfaction of the behavioral

specification.

Some protection problems have been formalized, but the specifications
have all made some sort of assumption about the system in which the problem
is to be solved. In [(Price 73}, a proof is provided of the
"Chinese-American War Games Theorem" - that is, that two processes may
execute concurrently yet be guaranteed to not interact. The statement of
the problem is only valid though, for the particular virtual memory

mechanism that Price studies.

In [Harrison, Ruzzo & Ullman 75], safety problems are discussed, those
guaranteeing that no user can ever gain some particular kind of access to
any object. These problems arec equivalent to those of the form: Guarantee
that user x cannot gain ¢ access to object 3. 0Of course, these problem are
very strongly mechanism dependent. They are only relevant for those
protection mechanisms that can be described using Lampson's access matrix

(Appendix A).

[The access matrix describes at any given instant who may access

Problems, Mechanisms & Solutions (1.3) | page 10

what in which way. (The rouws are users, the columns are objects,
and each entry lists the ways in which a user may access an object).‘
When a user attempts to execute an operation, the mechanism prevents
exacution of the operation if it wWwould cause an access to be made
that is not permitted by the apﬁropriate entry in the matrix.
Access matrix systems also provide operations that permit aceess tn
be shared with or revoked from another user: these operations change

the configuration of the matrix.]

In [Jones 73], & number of protection problems are specified and
solutions to them are proven correct. This thesis extends that wuwork by
providing a formal notation that permits a formal specification cf problems
independently of the mechanisms (in Jones' case, an access-rights mechanism)
used to solve them. We also develop a number of (straightforward] proof
techniques that permit a rigourous (and potentially mechanizable)

demonstration of the correctness of a solution.

As the use of protection in systems becomes more varied and more
widespread, we wuwill come to understand, better than uwe do nou, uhat
protection problems are important. MWe will come to see the st ucture of the
probiems we want to solve, «.d from that understanding, see hou to build new
mechanisms to help solve them. For example, a paradigm that will likely
increase in importance is the negotiation paradigm. Consider a user who
builds a protected subsystem for object r, and then makes this subsystem
available to another user in such a way that access to r may subsequently be
revoked at any time. The other user then expends some significant amount of
time and energy predicated on her continuing ability to use r. She wishes a

guarantee that her access to r will not be revoked {or at least not for a
while), This pairing of problems is similar to that encountered in the
discussion of Mutual Suspicion above, . but may lead to more serious
difficulties. The requirements of both users may actually conflict, and

some sort of negotiation mechanism may be needed to uetermine whether or not
they can ever be mutually satisfied. The HYDRA system [Cohen &
Jefferson 75] [Levin 751 does include some mechanisms that pernit
negotiation, houever these are far from general.

One might imagine that protection mechanisms of the future will permit

users to specify (in some undetermined language) their access and control

Problems, Mechanisms & Salutions (1.3) page 11

requirements. Such negotiation mechanisms should be able to detect
conflicts and possibly mediate disputes. [Rotenberg 73] has discussed the
social implications of such mechanisms. [Peuto 74) has compared this
feature of protection with the legal process in real estate law.

A negotiation mechanism for any reasonably complex system must be
incomplete. There are conflicts in access requirements which a negotiation
mechanism wili be unable to detect, much less mediate, so we can never
expect to find the ultimate mechanism. We do expect that a variety of
interesting mechanisms, including those explicitly designed to permit
specifications for negotiation, will continue to be developed. A
formalization of protection problems will help us evaluate these mechanisms,
for we can formally determine how well they can be used to solve important
problems.

----- Section 1.4 --- Problems and Solutions

In this section, uwe discuss the relationship betueen behavioral and static
problems and discuss tuo different classes of behavioral problems,
enforcement problems and productive problems, We show hou problems can be
solved by imposing a constraint on a system and/or adding a new mechanism to
it. This notion of solution gives rise to a methodology for solving problems
that is especially useful for systems containing multiple mechanisms.

We have described problems as sets of acceptable sequences of operations.
Houever, what is acceptable may depend upon the state of the system. In one
state, some operation may have the effect of writing into the Salary file,
while in another state the operation may have an entirely cifferent effect.
[f we want to prevent the Salary file from being written, the operation
would be unacceptable in the first case, acceptahle in the second case.

In some states of the systenm, all sequences of operations may be
acceptable. For example, in a access matrix system, it may be possible to
find some initial configuration of the access matrix that guaranteed that
Cohen could never gain urite access to the Salary file, no matter what
operations might subsequently be executed. In general, wWwe might solve a
problem by permitting the system to operate only in states in which all

Problems, Mechanisms & Solutions (1.4) ‘ page 12

sequences of operations are acceptable. MWe characterize those states by an
initial constraint. ‘

g ; : '..‘5”“.--:',\‘“‘.'-'_.:;((.7.‘}','... 7 72
Since sequences may be acceptable in some states Buthot “Tn-others, e

Wwill find it convenient to call the pair < state, sequence > a behavior

(since the initial state of a system and the sequence of operatinns executed
in that state completely specify the behavior of the system). An acceptable
behavior is one in which the sequence is acceptable for the initial state.

A behavioral problem is any problem that can characterized in terms of an
acceptable set of behaviors. MWe have said that static problems are those
that are specified as a property of the state of the égstem. However, even
static problems can be seen as a shorthand foE a corresponding behavioral

problem. An acceptable behavior is one whose execution results in a state
satisfying the specified property. The guarantee. that the property remains
invariant is equivalent to the guarantee that only acceptable behaviors are
to be permitted.

We have assumed thus far that all behavioral problems are to be solved by
guaranteeing that only acceptable behaviors are to be permitted. MWe will
find below that productive problems are defined differently in terms of the
set of acceptable behaviors; those that we have been discussing, we call
Enforcement Problems. We showed above how an enforcement problem (prevent
Cohen from gaining write access to the Salary file) could be solved by

imposing an initial constraint on a system, and throughout this introduction
we have noted houw mechanisms may be added to a system to solve problems.
Below, ue present three examples that illustrate how these approaches

interact.

-- [Impose Constraint 1 -~ Suppese that uwe wished to prevent
Cohen from uriting the Salary file. Given a system containing an
adequate protection mechanism, one might try to find an initial
constraint on the states [(e.g. a constraint on the initial
configurations of the access matrix) that guaranteed that Cohen
could never gain urite access to the Salary file.

-~ [Add Mechanism] -- Next, suppose that we wished to solve the
same problem (preventing Cohen from writing the Salary file) in a

R e

3

Problems, Mechanisms & Solutions (1.4) page 13 i
system containing no protection mechanism. One.might choose to add
the cheapest mechanism to the system that could be used to solve the
Instead of adding an access matrix system, one might build
l[f execution

problem.
a mechanism that inspected each operation attempted.
of the operation would permit Cohen to uFite the Salary file, the
mechanism would not permit execution of the operation.

-- [Impose Constraint & Add Mechanism] -- Finally, suppose that
we uere given a system that contained an incomplete access matrix
mechanism, one in which Cohen might cichNvent the protection
mechanism by executing the operation One might
add an additional mechanism to this system that simply prevented all
sneaky-write's. 0Of course, as in the first example, to prevent
Cohen from writing the Salary file through non-sneaky operations, we
would still have to impose an initial'cbnstraint on the given system

"sneaky-urite",

that prevented Cohen from gaining write access to the Salary file.

Enforcement problems are solved by guaranteeing that no unacceptable
behaviors are permitted. The preceding discussion argues that this
guarantee can be met either by initially constraining a system or by adding
some mechanism to it. UWe imagine that one ‘might like to avoid adding
mechanisms when possible, and that when mechanisms must be added, they
should be as simple as possible. A methodology for solving an enforcement

problem might then be described as:

L Find an initial constraint that witl eliminate as many
unacceptable behaviors as possible (hopefully all of them).

2. 1f any unacceptable behaviors remain to be prevented, add a
mechanism to the system that prev:onts them.

In practice, we may not be given the option of adding an arbitrary
mechanism to a system. Some fixed mechanism may be provided, though we
imagine we can vary the behaviors prevented by the mechanism by initializing
it in different ways. Our methodologuy for solving a problem then becomes:

1. Find an initial constraint that wil! eliminate as many
unacceptable behaviors as possible.

:
|

T

i ?
|

SRl O R S e

Problems, Mechanisms & Solutions (1.4) A page 14

2. Initialize the mechanism so that it will prevent the execution
of the remaining unacceptable behaviors.

In effect, this latter approach provides a means of dealing with systems
that include multiple mechanisms, where the use of one of the mechanisms is
to be preferred (e.g. for reasons of simplicity or reliabilityl. Assume
that the system as given includes just the preferred mechanism, but not the
other mechanisms. [f an initial constraint on that given system eliminates
all unacceptable behavior, then the remaining mechanisms need not be used.
At uworst, they will be used sparingly. We apply this approach in section
4.5 and chapter 5. :

We close this section by briefly discussing Productive Problems. We
found that the enforcement problem - Cohen is not to urite the Salary file -
might be solved (in an access matrix system) by imposing some initial
constraint on the system. VYet at system initialization time, it may not be
clear that Cohen’s access will need to be restricted, and the requisite
initial constraint may not be satisfied uhen the problem needs to be solved.
As a result, the Salary file manager may need to solve the following problem
instead: Produce a state that satisfies the requisite constraint.

That productive problem may be described in termz of acceptable behaviors
- those uWhaose execution results in a state satisfying the requisite

constraint. However, it is not necessary that every behavior executed be.

acceptable - only that for any of a set of current states, there be at least
one acceptable behavior that the Salary file manager can execute.
Productive problems, like enforcement problems, can be solved by an initial
constraint and a mechanism. The initial constraint defines the set of
"current states" from which an acceptable sequence of operations can be
executed. The mechanism can be used to represent the program that executes

that acceptable sequence.

e]

SISO —,

o el Db v, .54 D

Ll

Problems, Mechanisms & Solutions (1.5) page 15
————— Section 1.5 --- Mechanisms

The description of a mechanism can be seen as analogous to that of a
level of hierarchy (Dijkstra 68bl, a virtual machine monitor (Popek &
Goldberg 74] and decomposition of a module (Parnas 72]. Each level of an
hierarchy provides a set of operations that may be used in constructing the
level above. For example, a level of hierarchy corresponding to a
protection mechanism might wuse the operation "urite", supplying the
operation "protected-urite" to the level above.

In [Robinson 751, a level is formally specified in terms of a mapping from
operations defined by the level to programs implemented in terms of
operations defined by the level below. Our definition of mechanism may be
considered to be a dynamic realization of such a specification. We define a

mechanism as a mapping from a behavior defined at one level to a behavior

defined at the level belou.

While our definition of mechanism derives in large part from
[Robinson 75), the idea of mapping sequences of operations to sequences of
operations is adapted from ([Lipton 73]1. Lipton's realizations map sequences

of operations provided by oné synchronization mechanism to sequences of

operations provided by another. synchronization mechanism. Lipton's
definition of a synchronization mechanism contributed to the formulation of
what ue call Decision Mechanisms, a class of mechanisms that can be used to

mode! both protection and synchronization mechanisms.

Finally, the work reported in [Jones & Lipton 75] has strongly influenced
our formal approach to the way in which mechanisms may be used to solve
protection probfems. The mechanisms defined in [Jones & Lipton 751 do not
map behaviors to behaviors, but rather programs to programs. Given a
program P, M is said to be a mechanism for P if, for any input, M either
outputs the same value as P or a distinguished output, a violation notice.
A violation notice results if execution of P on the input would violate the
requirements of some given protection problem. A mechanism thal gGives
violation notices at least as often as it should is said to be sound.

Soundness is related to the notion we call enforcement. Suppose we
specify a constraint on the behaviors acceptable in a system - those

Problems, Mechanisms & Solutions (1.5) page 16

behaviors satisfying the constraint define the '"acceptable" set of
behaviors. [f a mechanism prevents the occurrence of all of the
unacceptable behaviors (analogous to sending a violation noticel, the
mechanism is said to enforce the constraint on behavior. Note that the a
mechanism may prevent acceptable behaviors from occurring as uell. If the
mechanism only prevents the occurrence of unacceptable behaviors, then wue

say that it induces rather than enfortes the constraint on behavior. This

is analogous to uwhat Jones & Lipton call a maximally complete mechanism.

Jones & Lipton view a mechanism as a transformation of a program and
evaluate it (e.g. soundness and completeness) on the basis of whether the
result of executing the program reflects a violation of protection. We vieuw
a mechanism as constraining behavior and evaluate mechanisms more generally
on the basis of the behaviors they permit.

————— Section 1.6 --- Information Problems
Information probfems are those protection problems concerned with

preventing the transmission of information. In this section, we briefly
describe these problems and their relation to the material in this thesis.

Nygeeret®™

Early research in information problems was prompted by military
requirements. Each object in a military system is classified and categorized
according to the information it contains. JThe Military Security Problem
requires that no information be transmitted to a user Whose clearance does
not permit access to that information. The Adept-58 system [Weissman B3]
was the first to include a mechanism intended to solve this problen,
'.45 houever, as pointed out in [Denning 761, ‘hat mechanism is flaued.

Variants of the military security problem have been described by a number

of researchers and various theoretical treatments of information
transmission have recently appeared, notably those by ([Jones & Lipton 75]
and [Denning 761. None of these formal treatments have been based on a
description of acceptable behavior, nor can they be converted to such a) 3
description in any obvious uay. (Cohen 76] discusses the relationship of

these approaches to a behavioral approach.

B L U U J

o A - s 5 S A S M G SR SN ST s A 8005

o e e

Problems, Mechanisms & Solutions (1.6) page 17

We will suggest that information problems can be specified as enforcement
problems, houever we shou .that such specifications must inherently be
incomplete and incorrect, by showing that solutions to information problems
do not satisfy certain properties that must hold true of solutions to
enforcement problems.

In effect, we show that the initial constraint itself partially determines
what behaviors are judged to be acceptable. . This demonstration suggests a
new formal appreach to information transmission which is pursued in [Cohen

Section 1.7 --- Plan of the Thesis

Chapter 2 introduces the basic definitions of a computational system and
a mechanism. MWe define formally hou the imposition of an initial constraint
or the addition of a mechanism may enforce or induce constraints on the

behavior of a system.

In chapter 3, we discuss decision mechanisms; a special class of
mechanisms that can be used to mode! protection mechanisms, sequential and
mul tiprogrammed control mechanisms, and synchronization mechanisms. An
initial constraint of a control mechanism is shouwn to correspond to
specification of a program or a property some program must satisfy. We also
shou houw a system may be extended with pseudo-operations, useful for
specifying a problem independentiy of the specification of the mechanism.

In chapter 4, we formally define behavioral and static enforcement
problems and shouw how behavioral specificatians may be converted to static
ones given a system that already contains a mechanism appropriate for
solving the problem. We show how these prablems may be solved and why it
may not be particularly important to find maximal solutions to them.

We develop a formal methodology for solving enforcement problems and
illustrate its use in a system that contains both a control mechanism and a
protection mechanism. MWe find it useful to treat the mechanisms as if they
had been added in layers, with the contro!l mechanism added to a system
already presumed to include the protection mechanism.

e —

Problems, Mechanisms & Solutions (1.7) page 18

In chapter 5, ue study 3 solutions to an enforcement problem. We want to
guarantee that a set of sensitive objects may be altered only by certain
verified programs, in a system (described in Appendix A) containing a
protection mechanism. We abstractly specify the probiem as a behavioral
problem (independently of the mechanism). We then show how to state the
problem as a static probiem, where the mechanism is assumed. The latter
form is more useful for proving the correctness of the solutions. Each of
the 3 solutions both constrain the protection mechanism inciuded in the given
system (restricting the initial configurations of the access matrix) and a
control mechanism (dictating certain properties of verified programs) that
must be added to it.

In chapter B, productive problems are formally defined, and the
methodology developed for solving enforcement problems is extended to them.
We discuss in grearter detail the phenomena described in section 1.4 - the
fact that many enforcement problems require the solution of a corresponding
productive problem as well. Finally we consider a formal characterization of
the requirement that some user be able to produce an acceptable behavior in
the face of interference from other users.

In chapter 7, we formally define a problem as a characteristic function
of its solutions. Such a notation is shoun to be useful for evaluating,
comparing, and specifying properties of solutions. MWe show that solutions
to enforcement problems satisfy two important properties, a Containment
Property, and a Join Propertuy, neither of uhich are satisfied by information

problems.

Chapter 8 summarizes the results of the thesis and indicates directions
for future research as well as work already in progress.

.Problems, Mechanisms & Solutions (2) page 19
Chapter 2 - Modelling Computational Systems

"We have a definite system, we name its parts, and we adopt, in
. many cases, a single symbol to represent each name. In doing this,
forms of expression are called inevitably out of the need for them,
and the proofs of theorems, which are first seen to be little more
than a relatively informal direction of attention to the complete
range of possibilities, become more and more recognizably indirect
and formal as uwe proceed from our original conception...

“The discipline of mathematics is seen to be a way, pouwerful in
comparison With others, of revealing our internal knowledge of the
structure of the world, and only by the way associated with our
common ability to reason and compute."

G. Spencer Broun "Laws of Form"

----- Section 2.1 --- Introduction

In this chapter we forma!ly defire a computational system in terms of
states and operations. A state is comprised of uniquely named objects;
operations alter the state by changing the contents of these objects uhen
executed. Using this model, we formally define the terms executor, history

and behavior.

A mechanism may be thought of as a layer interposed between a given base
system and a system as presented to a user, an augmented system. The
mechanism transforms operations executed by the user in the augmented system
to operations executed in the base system. A part of the formal
specification of a mechanism describes the mapping from behaviors in the
augmented system to behaviors in the base system. In order to perform this
mapping, the mechanism may require its oun mechanism state, distinct from
the state of the base system. The mechanism state may need to be
initialized to perform properly. A specification of the required
initialization completes the formal specification of a mechanism.

One might imagine cases where, in adding a mechanism, the happy hacker

Problems, Mechanisms & Solutions (2.1) - page 20

might be tempted to change (albeit in small ways) "the definition of the
operations of the underiying base system. We will not consider such
mechanisms in this thesis beyond showing that they correspond to a ciass of
mechanisms that are not homomorphic. Homomorphism is but one of a number of
algebraic properties of mechanisms that we will discuss.

The behavior of a system may be constrained by imposing a constraint on
the initial state of the system or by adding a mechanism to it. We conclude
the chapter by describing how mechanisms and initial constraints can be used
to induce and enforce constraints on the behavior of a system.

----- Section 2.2 --- Computational Systems

————————— 2.2.a --- Discrete Serial Free Systems

A Computational System is a discrete serial free system. Such a system
is a pair <2,0> uhere I ie ‘he set of states of the system and 48 s

" the set of operations, each of which effects a state transition uhen

executed. A system is discrete in the sense that the state does not change

continually; execution of an operation causes a discrete state transition.

A system is serial in that there ‘is no concurrent execution of
operations. This does not preclude use of this mode! in studying systems
uith concurrency. It is only necessary to assume that when operations

execute concurrently, the result is the same no matter how their execution
is interleaved (see section 2.4).

A system is free in that the choice of the operation which is to be
executed next is always completely arbitrary. No a-priori rules, either
deterministic or probabilistic, determine the selection or exclusion of any
operation. Such constraints are introduced separately.

Problems, Mechanisms & Solutions (2.2.b) page 21
--------- 2.2.b --- Objects

We will assume that the state of a computational system is comprised of a
set of objects. The objects are presumed not to overlap and the contents of
the objects in a given state completely define the state. In the domain of
programming languages, we might associate -an object with each variable. In
the domain of operating systems, objects might represent files, directories,

users and processes.

We assume all objects have fixed unique names taken from some set NM

uhich may be different for each system. MWe will assume that NM is ordered
by some lexicographic ordering. Formally, a computational system is a triple
<2,A,NM>, however in general we Will not write NM explicitly and will

continue to describe a computational system simpfg as <2,0>.

If a is the name of an object, we urite o.a to mean the value of « in
state o. Formally we may think of a state as a vector of values - the
contents of each object in the state, ordered lexicographically. That is,
if <nl,n2,...> is a vector of the names in NM in Jexicographic order, then

(o R) U
If A is a set of object names taken from NM, then we write o.A to
represent just that portion of the state named by the objects in A,
Formally, if <al,«c2,...> is a vector of the names in A in lexicographic
order, then
olA Edef <U.a1.U.G2,...>
This definition permits us to write
gl.A = 02.A for (YacA) (olia= 02,0)
We cdefine
>> Def 2-1) ol Z'UZ

ol 02 ®yef {(VagA) { ol.ax = 02.«)

-

e R s e

Problems, Mechanisms & Solutions (2.2.b") pége 22

That is, if ol = 02, then states ol and 02 may differ only in the values
of the objects named by A. For the special case, where ol and 02 may differ
only in the value of a single object a, we define

>> Def 2-2] ol - 02
ol ; 02 Sdef (Yovera) (0l.ave = 02,0)

Objects may themselves have some internal structure (including pointers
to other objects). However, such details are part of an interpretation and
not part of our abstract model. As an example though, we might write o.x.K
to mean the value of the k'th component of object x in state o, and o0.xIn]
to indicate the value of the n'th element in the array-structured object x in

state o.

The objects of a system do not necessarily correspond only to the
internal state of a machine that the system might model. Some of the
objects may, for example, represent input and output devices. The modei
includes no requirement that objects be of a fixed size. Thus an
arbitrarily long input stream could be modelled by an arbitrarily large
object containing a representation of the input.

--------- 2.2.¢c --- QOperations

We formally define an operation § as a function from states to states.

Semantically, we interpret
5(0) = 0%

to mean that execution of operation § in state o results in state ox. We
assunie that the result of § is always defined.

We will find it useful to describe an operation § in terms of an informal
programming-|ike language. For example, suppose that & were defined so that

(Vx=g8) (§(0).x = 0.%x)
A §(o).8 = 0.

ot g

Problems, Mechanisms & Solutions (2.9.¢} page 23

That is, let ow be the state resulting from execution of & in state o. Then
B's value in owx is the same as «'s value in state o. The value of other
objects are the same in both states. In effect, execution of & copies a's
value to 8. We might define § in the programming language-like notation

[B ¢ a
and urite
& B ¢«
In place of &§(0) = o we may urite

[Beallao) = ox

--------- 2.2.d --- Executors and Generic Operations

In a computing system, we tend to associate an executor wuith each
operation, an object (traditionally representing a user or process) presumed
to be responsible for the execution of that operation. MWe assume that there

is some function Executor and uwe interpret
Executor (§) = m
to mean that m is the object responsible for execution of §.

The fact that the name of the executor is determined solely by the
operation may conflict with the astute reader's intuition, for one could
easily imagine the same operation executed by different processes. We model
such an operation by a set of operations having the same gener = name.

Suppose "op" is the generic name of an operation that could be executed
by any process. MWe define a set of operations, op(pl), op(p2), etc. such
that op(p) defines the operation op executed by process p. For each p,
op(p) is a distinct member of A.

Generic operations are useful more generally for describing classes of

Problems, Mechanisms & Solutions (2.2.d) ' ‘ page 24

operations. For example, a generic "move" operation, move(p,B,ax) might

E represent the operation executed by process p which moves the contents of «

3 =%

. to 8. For each p, f and «, movelp,B,a) is a distinct memeber of A.

L move (p,2,%) can be described as gyt .

move (p,B,x): B « «
where Executor(move(p,B,a)) = p

By defining commands in this way, the executor of a command can be
determined strictly from the argument of the command itself, independently
of the state in which the command is executed.

In much of the thesis, the notion of an executor may not be pertinent to
the discussion. As a result, in many of the examples, we will not bother to
associate an executor with an operation. [n cases where we do distinguish
the executor, the executor will uniformly be placed as the first "argument"
of the generic name as in "move" above.

————————— 2.2.e --- Histories and Behaviors

A history is a sequence of operations. Execution of a history in a given
state means sequential execution of the ocperations in the history. For
example, if history H is the sequence of operations 616283, then

H(o) = (818283) (o) = £3(82(81(0)))

Pictorialliy

—~—~—->~t~—~—,. T e G e

)]

P

<3 4 1a) (sl Sz.}(:;—) ‘\,%\335:5)(3) -

We can define the execution of a history in a state recursively as

Problems, Mechanisms & Solutions (2.2.e) page 25
>> Def 2-3] H(o) (recursively defined)

Ao) <== ¢
(H8) (0) <== §(H(0))

where A is the nul! history (no operations) - {not to be
confused with the lambda calculus "A\" which is also
used in this thesis)

and the symbol "<==" i3 to be read as "recursively defined as"

We urite & ¢ H to mean that operation § appears in H. For example,
82 ¢ 818283 and &4 ¢ 818283,

We wurite both HHx as well as H & Hr to mean the concatenation of

the sequences H and He (note "&" is not commutative).

We write HI < HZ to mean that HI is an initial sequence of H2.

Formally
>> Def 2-4] Hl < H2
HL s 2 =4.¢ (BHI(HL & H=H2)

[f a system is started in state o and some arbitrary sequence of
operations H is executed, then the system exhibits some Lehavior which can
be completely described by the pair <o,H>. We call a pair <o,H> a

behavior or a computation.

----- Section 2.3 --- Mechanisms
————————— 2.3.a --- Introduction

We may think of a mechanism as a layer interpused between a given
computational system <Z,8> which we call the bagse system and the system
<2',0'> as provided to the user, which we call the augmented sustem.

Problems, Mechanisms & Solutions (2.3.a) . page 26

When a user executes an operation § . provided in the augmented system,
the mechanism intervenes and transliates & into execution of some sequence of
operations (e.g. §16283) in the base system. The mechanism may even decide
to execute no operation at all - the null history A. [f the mechanism
represents a level od hierarchy, then the sequence of operations executed
define the implementation of §’.

The mechanism may execute different histories for the same operation in
different cases. For example, suppose a hase system provided the operation

move (p,B,a): B « «

which, wWhen executed by process p, copies the value of a to B. Suppose a

protection mechanism augmented this system, providing the user instead with

the operation move'(p,B,a). UWhen that operation is executed, the mechanism .
executes move(p,B8,a} in the base system only if process p has permission

to read « and write B, otherwise the mechanism executes no operations at all

- the null history A.

Addition of a mechanism often (but not always - see section <gate>)
implies the addition of components to the state as well - we call these
additions the mechanism state. For example, when a protection mechanism is

added to a system, a mechanism state component is added (in the form of
additional objects, or extensions to objects already defined) which contains
information about who has permission to access what. The mechanism state of
a protection mechanism is often called the protection state, and is often
described as an access matrix - see appendix A.

The state space 3' of the augmented system provided to the user may be
seen as consisting of two parts - the mechanism state space, Which we wurite

as I'yach @nd the state space 2 of the underlying base system, which ue
may now think of as the data state space of the augmented system 2'y.4,.
Pictarially

Problems, Mechanisms & Solutions (2.3.a) page 27

TR
: PV M ENTED :
sysTe M NECRAN S H Gl
i]
' Zru\
z /
3ASE \ ‘ '
S IGTEM '
—_—]
i T

The data state of the augmented system, 'y 45, need not be the same as
the state of the underlying base system, . Instead, the mechanism may
present 2'y,t5 as an abstraction of . For example, if a mechanism
corresponded to a module implementing an abstract data type T, then 2'y.4,
might contain objects of type T, while I would instead contain objects
comprising the representation of elements of types wused in T's

representation.

While we may know that the augmented system <2',4'> is composed of a
base system <3,A> with a mechanism M added to it, a user may be
presented with <2',A'> as a “"black box", taking it to be a base system to
which she may add a new mechanism (implement a new level).

A program language interpreter is an example of a mechanism that provides
an augmented system in which operations are programming language statements
and the data state consists of variables, arrays and other data structures.
In the base system, operations are machine language instructions and objects
include an accumulator and memory locations.

Consider the way that a programming language interpreter mechanism may

map the operation

to a sequence of machine level operations. Ordinarily, & might be mapped to
the sequence of operations in the base systen.

— — - M

Problems, Mechanisms & Solutions (2.3.a) | page 28
[LOAD mem,] [STORE memg]

The first operation loads the contents of the memory location mem,
representing a into the accumulator; the second operation then stores the
contents of the accumulator into the memory location memg representing @.

As in the "move" example above, the sequence executed in the base system
by the mechanism might be different in different cases. |f a were known to
be B, the interpreter might map 8 into an operation that simply cleared memg

[CLEAR memg]

Finally, if o’s value were knoun to be the the same as f@'s, the mechanism
need map &' into no sequence at all, that is, into the null history XA. In
general, the mapping from histories executed by the user in the augmented
system to histories executed by the mechanism ‘in the base system depends
upon the (data and mechanism) state.

_________ 2.3.b --- Formal Definition

Since a mechanism maps states and histories in the augmented system into
states and histories in the base system, and since a state/history pair is a
behavior, we can define & mechanism M in terms of of a mapping ™ from
behaviors in the augmented system tg behaviors in the base system. . We urite

T™™<0’, H> = <o,H>

if the mechanism M maps state ¢' to o and history H to H (uhen executed in

state o').

The mapping of the initial state is independent of the history
subsequently executed in that state. That is

If ™M<ol’,Hl'> = «<ol,Hl>
and TM<02', H2'> = <02,H2>

then ol" = 02" > ol = 62

a8

s e alhin

page 29

Problems, Mechanisms & Solutions (2.3.b)

Since uWwe can ignore the history in mapping the states, i f
'rn<o‘,H'> = <o0,H> we can make the abbreviation

‘rn(o') = g

to mean that state o’ is mapped into state ¢ in the base system. In the

example above,

(o'} .mem, = o'
rn(o').mema = 0.8

That is, the value of a in the augmented system is the same as the value of
mem, in the base system, and similarly for B and memg.

We also make the abbreviation
TM(H) (o'} = H

to mean that H' is mapped by the mechanism to H when executed In state o'.

In the example above, we would define 14 so that

™w™m®) () = X if oa=0d.0
[CLEAR memg PR o Sk il
{ LOAD memy,] (STORE memg] otheruise

These two abbreviations are defined in such a way that
<o’ H> = < mq(e’), q(H) (") >

The map ™y from states in the augmented system to states in the base

system only depends upon values in the data state space. That is, If two

states ol' and 02’ have the same values in their data state part and differ

only in their mechanism state part, then ol’ and 02’ must be mapped to the

game state in the base system. That is

Tn(ul') = T“(UZ')

The values in the mechanism state are only used by the mechanism to

Problems, Mechanisms & Solutions (2.3.b) - page 38

determine how histories executed by the user are td be mapped into histories
executed in the base system (though the mechanism may use the data state to
determine this mapping as well).

A mechanism might only work properly if its mechanism state is properly
initialized. We describe this initial constraint on the mechanism state as

¢M' defined so that

(P” (a')

holds only if the mechanism state part of state o' is properly initialized.

We want to ensure that ¥4 is defined so that it only constrains the
mechanism state and not the data state. In effect we guarantee that the
imposition of @4 cannot result in the imposition of any corresponding
constraint on the states of the base system.

AVLMENTED

RTINS
SIS TEM I N
mech
(Rn)
/
b =
=1 T
s STEM :
E e Z&o&‘\
; -

Formally we require
e 1 = | mia’) | dyle'))

We collect the detzils discussed above aid formally define a mechanism as

follows:

Problems, Mechanisms & Solutions (2.3.b) page 31

>> Def 2-5) M is a mechanism from <I',0'> to <Z,0> iff

M is a pair < vy, ¥4 > wuhere

1. [f Tq<ol’,HL'> = <ol,Hl>
and 1’H<02’. H2'>s = <02,H2>
then gl' = ¢2' >o. o0l = 02

[We can therefore abbreviate T4 so that
if ™™<o' H'> = <o,H> we write
m(0’) = 0 and Tq(H)(c') = H]

2. Lay(e) 1 = {1yle) | @yle))

We noted above that two states o0l' and 02’ may differ only in their
3 mechanism state (both satisfying ¥4} and therefore map to the same base

state. MWe will find it convenient to create the notation ol’ = 02' for
that situation. Formally

>> Dot 2-61 o1* U o2’
01' rl 02' Edef
Plol”) A (1qlol’) = 1yl(02')) A P4 (02)

_________ 2.3.c --- Homomorphism

Earlier in this section, ue provided an example of a language interpreter
mechanism that would map the operation {8 ¢« a in the augmented system
to the operation [CLEAR memg] in the base system if a were 8. Suppose

that the mechanism performed the same map in a state o' in which o'.a = 7
instead. Nowu

(B e al(ahf = 7

since the semantics of [B « a] are such that (subsection 2.2.c) 'its
execution copies the value of « to @. Since for any state ©0o°,
r”(o’).memﬁ = 0'.8, ue have

Problems, Mechanisms & Solutions (2.3.c) : page 32

™l [B8« alld)).memc o

However
[CLEAR memg 10 n(a”)).memﬁ = 0

N.riting [Be«al as H, the mechanism has determined miH) (") to be
[CLEAR memg], uyet in executing H in the augmented system, the value of @
(and therefore of mema) is set to 7. In effect, the mechanism has changed
the semantics of a CLEAR operation so that it sets 8 to 7 instead of to B.
: Homomorphic mechanisms correspond to a "black box" view of base systems. To
i add a non-homomorphic mechanism, one has to be able to "see" inside the
|

"black box" in order to alter the definitions of the base system operations

provided by it.

m(H (")).memc w7
Crq(H) (")) i’).memp = 0

If a mechanism aluways correctly translates behavior in the augmented
system to behavior in the base system (for any state satifying @n). He say

its mapping is homomorphic. Formally we define
>> Def 2-7] M is homomorphic iff

Ple’) o0 T HG)) = CTy(H) (o)) 1y(o’))

We can describe homomorphism pictorially as

Ruz &’ . > Hi(s)
b '
hrﬂ \\\"'\a." TH
v
o -——--——\-I\—-—— s H(e)

H is executed in state o' resulting in state H'(e¢') which is mapped to o

!
|

G B s A AN S

Problems, Mechanisms & Solutions (2.3.c) page 33

[T(H(0")) = ox). The behavior <o’ H'> is mapped to <0, H>
[v<o',H'> = <o,H>]. If the state resulting from execution of the behavior

H(o) is the same as o%, and this relation holds for any behavior <o,H>, then
T is homomorphic.

————— Section 2.4 --- v Concurrent Mechanisms

————————— 2.4.a --- yve Introduction

In this section we shou how a mechanism may be formalized to model
concurrent execution of operations provided in the augmented system. Those
mechanisms that do not model concurrency, but are sequential, are formally
described as markov mechanisms.

When operations are permitted to execute concurrently, the resulting
state of a computation may depend upon the way in which the operations
interleave. Mechanisms in which interleaving has no effect upon the
resul ting state are formally defined as weakly consistent.

--------- 2.4.b --- sk Markov Mechanisms

Suppose that a hase system provided tuo géneric operations, §1 and §2, so
that 8l(p) and 5§2(p) denote the execution of &1 and §2 respectively by
process p. That is,

Executor(81(p)) = Executor{ §2(p) } = p
Imagine that we want to guarantee that a process p can only execute the
sequence of operations §1(p) §2(p). MWe could add a mechanism to the system
that would only make a single operation §&§(p) available, defined so that
for all states ¢’

v(8(p))/ o') = B81(p) 82(p)

Imagine that a process executes &' and then executes it again. MWe imagine
that the base system operations would be executed serially. That is

- e — e e ———

Problems, Mechanisms & Solutions (2.4.b) - page 34
v(8§(p) &(p) V(o) = §1(p) 8§2(p) Sl(p) $2 (p)

Houever, suppose that & were executed by two different processes pl and pZ2.
In some cases, we might imagine that again, there would be no interlieaving

v(§(pl) 8(p2) M ol') = §1(pl) 82(pl) 81(p2) $2(p2)

In other cases interleaving might be possible

‘%» v(8'(pl) 8'(p2))(02") = . 8l(pl) §1(p2) $2(p2) §2(pl)

We may use the contents of the mechanism state to model variability in
interleaving. The mechanism state is presumed to contain the information
that tells the mechanism (e.g. - an oracle, see [Milner 72), [Cohen 75])
which process should next execute an operation in the base sgstem'. By
initlalizing the mechanism state differently, the mechanism may interleave
5 5 the operations differently.

We will nouw consider how a mechanism M might be characterized.that does
not permit interleaving. Suppose that when 81' is executed in state ol’,
history Hl is executed in the base system; when §2' is executed in 02', H2 is
executed. If 02' is the state resulting from execution of §1' in state ol’
[§1°(ol’) = 02’], then execution of 8§1'$2' in state ol’' should always result
in execution of Hl H2 in the base system if there is no interleaving. A
mapping (and the mechanism it is part of) that satisfies this property for
every state o', is said to be markov. Formally

>> Def 2-8] T is markov iff

TA)(a') = A
T(H'8)(6') = 1(H) (') & 7(8') (H(0"))

Theorem 2-1]

1f T is markov
then ~v(HI'H2") (0') = ~(HL") (0") & 7(H2") (M1'(0'))

Problems, Mechanisms & Solutions (2.4.b) . . | page 35
>> Def 2-9] M is markov iff
TM is markov

If a mechaniem is both markov and homomorphic, we say it is markov
homomorphic. ' : ('

Theorem 2-2]

If M is markov
and wq(§'(0")) = (8" (")) (T4(0’)):

then M is homomorphic

--------- 2.4.c ~-= v Weakly Consistent Mechanisms

If a mechanism is not markov and operations: may be interleaved, the
resulting state of a computation may differ depending upon houw the
operations are interleaved. For example, suppose that

81(p): o « 0
$2(p): o e o+ 1

- For any state o', we find that

(§1(pl) &2(pl) 8§1(p2) &2(p2) }(¢’)i = 1
(81(pl) 81(p2) $2(p2) 82(pl) }J(¢’ Jiax = 2

Data base system designers [Gray 75) and those interested in proving
properties of parallel ‘programs [Lipton 75] often find it important to be
able to show that no matter how operations are permitted to interleave, the
resulting state is the same. A mechanism that has this property is defined
to be weakly consistent. Formally '
>> Def 2-10] M is uweakly consistent jff

o1’ D620 5 (V)L my(H(01") = (K (62')))

AR A A AR

s

b o it i b S i) S

Problems, Mechanisms & Salutions (2.4.c) et page 36

This characterization follous from the fact that ol’' and 02’ differ only

in their mechanism state, which we noted earlier is responsible for different

i interleavings. The history executed in the base system if H is executed in

f state ol' is .ty(H')(0ol'). The resulting state in the base system is

€ r(H) (017)) (1y(ol’)). If 7y is homomorphic (which we will assume), the

reulting state is just Tq(H'(6l’)). As a result, to determine whether

interleaving affects the resulting stats, we compare Tn(H'(0l")) and
™7™ (H (62°)).

----- Section 2.5 --- Mechanisms and Behaviorz] Constraints

The addition of a mechanism to a base system may prevent the occurrence
of certain behaviors in the base system. For example, consider the
mechanism M defined so that the single operation provided, &', is always
mapped to the history §156263. '

™™<0', &> = <o, 816283>

816283 can only be executed in this sequence. The behavior <o, $25183>
cannot occur, for 82 must follow §1.

We can characterize those behaviors that can occur by a behavioral
constraint, a predicate on behaviors, Y. MWe say that M induces Y if
Y(o,H) is true exactly when <o,H> is a behavior that can occur. For the
example above, if M induces ¥, we find that Yl(o,816263) but =Y(o,528183).

Formally, the set of base system behaviore permitted by a mechanism is
just ;

{ ty<o’, H'> | 94(0') }

that is, the set of all behaviors which can be mapped from behaviors

executed in the augmented system. We define

>> Def 2-11) M induces ¥ jff

Y(o,H) = <o,H> ¢ {'rn<a'.H'> i ¢”(o') }

ik i

Probiems, Mechanisms & Solutions (2.5) - : page 37

A mechanism might be added to a system in order to constrain the behavior
of a system as specified by Y. We might call all of those behaviors that
satisfy Y acceptable. Those that do not satisfy Y might be deemed

e unacceptable.

e

We might want to add a mechanism M to a system that prevents all
unacceptable behaviors. Optimally, such a_ mechanism might only prevent
unacceptable behaviors. That is, M induces Y. A cheaper mechanism might
prevent some acceptable behaviors as well. As long as all of the
unacceptable behaviors are prevented, we say that M enforces Y. Formally

>> Bef 2-121 M enforces ¥ iff
<o,H> ¢ { ty<o’,H'> | dy(o’} } o, Yio,H)
or equivalently
(Vo',H) (¥4(0’) > Y(ry<o',H>))
or alternately
P’ > (YH) (Y(ry<o',H>))
In chapter 4, we uWill show hou the set of behaviors characterized by Y

may represent some problem we would like to solve. The addition of a
mechanism may solve that problem by inducing or enforcing Y.

----- Section 2.6 ~-- Initial Constraints
--------- 2.6.a --~ Constraining the Base System

We may decide to constrain a given base system so that it may not operate

in certain initial states. In so doing, we prevent the occurence of certain

‘ behaviors in the system - those behaviors <o,H> whose initial state ¢ is

»f not one of those initially permitted. MWe write @ to characterize such an
| initial constraint. ®(g) is true iff o is a permitted initial state.

B3 S i i » - e . e S S s - R T

Problems, Mechanisms & Solutions (2.6.a) ‘ page 38

The behaviors induced by imposing 9 are exactly those whose initial state
satisfy ®. Formally

>> Oef 2-13] ? induces Y iff
- (Wo,H) (- ®(0) = Y(o,H))

By preventing the occurrence of certain behaviors, the imposition of an
initial constraint ? may permit a constraint on behavior to be enforced. We
define ; '
>> Def 2-14] ¢ enforces ¥ iff

(Vo,H) (?(0) > VY(o,H))

[f ¢ enforces Y, then the imposition of @ guarantees that only
acceptable behaviors (those characterized by Y) will be permitted.

We introduce the notation
>> Def 2-15] ?1 contained in 92
Pl € P2 Egef (Vo) (91(0) > 92(0))
Pl is contained in 92 if it is a stricter constraint (the set of states
satisfying ?1 are a subset of the states satisfying ¥2). By imposing
stricter initial constraints, more unacceptabl'e behaviors can be prevented.

Theorem 2-31 (proof left to reader)

If 92 enforces Y
and ¢1 ¢ 92

then ¢1 enforces Y

“ Initial constraints may or may not be invariant. Invariance is defined as

Problems, Mechanisms & Solutions (2.6.a) page 39

>> Def 2-16] ¢ is invariant if

P(og) o (VO (€(8(0)))
We noted in subsection 2.2.b that the contents of an object could
represent a stream of input. An initial constraint could then represent

restrictions on the input. In general, there is no reason to expect that @
Wwill remain invariant as values are input from the stream.

--------- 2.6.b -~- Constraining the Mechanism

We may decide to both impose an initial constraint ¢ on a base system
as well as adding a mechanism M to it. We will find it convenient to
define

>> Def 2-171 M:¢®

(M:P) (0") myus Py (0”) A‘P(Tn(o')l

RoeHenved
SISTEM MECHANISH i
wmech
() '\ ,
e o
BAS € | r ‘ j) (M P)
S5 ™ :
> ?Ad"a.

\

M:® characterizes the initial constraint on states as represented in the
augmented system. [t includes both the constraint on the mechanism state
‘9” as well as the initial constraint @ imposed on the base system. The
set of behaviors induced in the base system when ¢ is imposed and M is added

can be characterized as:

{ 7m<o’.H’> I (M) (0') }

Problems, Mechanisms & Solutions (2.6.b) % e page 48
We can then define
>> Def 2-18] <9,M> in,duceé ¥ _i_t_f_‘
Y(o,H) =, <o,H> ¢ [Ty<o',H> vl m:‘?)(o")'l

>> Def 2-15) <¥,M> enforces ¥ iff

<o,H> € { tq<o’,H> | (M:9) (") } . Yo, H
or equivalentliy
(M:9) (0') > (VH) (Y(ry<o',H>))

In the case that M is the identity mechanism, or ¢ is the always true
predicate, the reader can verify that these definitions reduce to definitions
2-13 and 2-14, and 2-11 and 2-12 respectively.

————————— 2.6.c --- vevewe Layert of Mechanism

If mechanisms are added to a system in layere, then one can determine the
behavioral constraint Y induced in the system at some level from @, the
constraint imposed at that level, and M, the mechanism provided at that
level, given the behavioral constraint Y' induced at the level above.
Formally Wwe can define

>> Def 2-201. <?,M> induces Y given ¥' iff

Y(o,H =&, <o,H> ¢ { <o’ H'> | (M:9) (") A ¥ (o', H) }

Problems, Mechanisms & Solutions (3) i page 41

Chapter 3 - chision Mechanisms

----- Section 3.1 --- Introduction

In this chapter we discuss a class of mechanisms; decision mechanisms,
that can be used to mode! a uide range of protection and control (including
synchronization) mechanisms. We show that decision mechanisms induce a
class of behavioral constraints defined as monotonic, and further show that
every monotonic behavioral constraint can be induced by some decision

mechanism.

We also show how pseudo-nperations may be added to a base system in order

to specify synchronization problems. These pseudo-operations are meant to

' correspond to synchronization operations that must be provided by mechanisms
‘ added to solve those problems.

A decision mechanism is one added to a base system in order to decide. on
an operation by operation basis, uwhether or not each operation in the base
system should be permitted to execute or whether its execution should be
prevented. For example, consider the base system <Z,0> wWith defined
operations §1,...,8k. &1 is an operation that clears the disk.

§1: disk « @

Our task is to add a suitch to this system, so that the disk may only be
cleared (81 may only be executed) if the switch is set.

The addition of the switch augments the base system. The augmented
system it produces, <2',4’>, has the follouing properties:

' 1. The data state space of the augmented system, 2'y 4, is the
, same as the state space of the base system 2.

2. The mechanism state space 'y, consists of a single object
"switch" whose value may be 1 (indicating that the suitch is set)
or B (indicating that the suitch is not set).

Problems, Mechanisms & Solutions (3.1) % 3 s page 42
3. The operations &' of the augmented system are §1°,..., 8k’
$2' through tk’ are defined exactly like 82 through &k respectively.
81’ may be defined as ' =

81't if suwitch = 1 then disk « @

In effect, adding the suitch makes the operation &1 unavailable to the
user. The augmented sustem instead provides §1’ which checks the suitch
before performing the function of §1, that is before clearing the disk.

The addition of the suwitch defines a mechanism M with the following
properties:

l. ¥y = tt. There is no initial constraint on the mechanism
state. The initial state of the switch is not specified.

2. (o' = o'.NM wuhere NM are the names of the objects in the
base system (suwitch ¢ NM).

3. ™m(8i') (0') = &i, e 2,5 ey Ke The mechanism directly
implements §2',...,8k"” as $2,...,8k respectively.

4. UWhen the user executes §1', the mechanism executes §1 only if
the switch is set. If the switch is not set, no operation in the
base system is executed by the mechanism.

(81" (') = 81 if o'.switch =1
A o'.suitch = B

=

Having added the switch, we may feel compelled to add an operation to the
system that permits the switch to be changed. We could add an operation
§8’ to the augmented system which flips the switch.

§0’: suwitch « 1 ~ suiteh

The execution of 88’ is invisible in the base system. The mechanism
executes no operation in the base system when $B' is executed. §B' affects
the mechanism state only. Formally, we say that &8’ is rq-invisible where ﬁ

RN S e Sl o, Do Sl s

Problems, Mechanisms & Solutions (3.1) . ‘ page 43
>> Def 3-11 8" is v-invisible 1ff
(Vo') (v(8') (") = A)

Protection mechanisms are excellent examples of decision mechanisms. A
base system may provide operations that copy data, perform arithmetic
operations and execute programs. The addition of a protection mechanism
provides a new set of operations corresponding to the set provided by the
base system. When an operation in the augment'ed system is executed by a
user, the mechanism evaluates some protection condition In order to
determine whether or not the corresponding operation In the base system
shaould be executed.

The protection conditions may often be modelled as an access matrix (see
Appendix A) which comprises the mechanism state We urite

<x, 0> (0’)

to describes the set of access permissions that executor x has for « in
state o’. For example,

r e <x,a>(g") A W oe <x,B>(0")

means that the access matrix in state o' indicates that x has the right to

read (“r") o and to urite ("u") g.
Where the base system might praovide the operation
move(x,B,a): @ ¢ «
the augmented system might provide the operation

roe <x;a> A H e <x,f0>

move' (x,B,c): if
then @ « «

The mechanism would be defined so that

Problems, Mechanisms & Solutions (3.1) page 44

™™ move'lx,B,a))(o') =)
move (x,B,a) if r e <x,o>(0’) A W e <x,0>(0")
A otheruise

That is, when move’ (x, B3, a) is executed, the mechanism executes
move (x,£, &) in the base system only if the the access matrix indicates
that x has the appropriate rights.

We noted above that operations invisible to the base system may be added
by the mechanism in order to provide for manipulation of the mechanism
state. In protection systems, these operations can be used to permit
sharing and revocation of access. (Note that nothing prevents operations
which are not invisible from altering the mechanism state as a side effect of

execution as well.)

The initial constraint on the mechanism state @y, represents an initial
-constraint on the possible configurations of the matrix.

----- Section 3.2 --- Formalization

Each operation provided by the augmented sgsvtem (e.g. move'(x,B,a)) is
mapped either a single operation in the base system (e.g. move(x,B,a))} or
into no operation at all. Formally we say that the mapping vy is direct.

>> Def 3-2] M is direct iff

7(8) (') ¢ O U A}
where M is a mechanism from <2',0'> to <Z,0>

We want a formal definition of a decision mechanism to reflect the fact
that a mechanism’s decision to execute an operation in the base system is
final. Subsequent behavior can have no effect on earlier decisions.
Further, any decision made by the mechanism depends only upon the current
state and not the previous history (except as it may be encoded in the
current state. For example, the mechanism may store in the mechanism state,

a record of the history executed).

PR SRR

T :

Problems, Mechanisms & Solutions (3.2) = ds A page 45

1f & has executed after H has been executed in state o', the
determination of whether an operation should be executed in the base system
or not depends only upon § and the current state H(o'). Formally, Ty
must have the property that ; A

M) (e') = A :
™ (H'$") (o') = ™(H) (o") & T (§') (H'(0"))

that is, Ty I8 markov (definition 2-8),

>> Jef 3-3]1 M is a runtime mechanism iff

M is direct and
™ is markov

Decision mechanisms are runtime mechanisms with one additional property -
they are homomorphic (definition 2-7). When an operation is executed in the
augmented system, a decision mechanism decides only whether or not a
corresponding operation may be executed in the base suystem. Any side
effects are confined to changes in the mechanism state only. .

>> Def 3-4) M is a decision mechanism iff

Mis a runti}n,e mechanism and
M is homomorphic

The reader may note that the examples of ‘mechanisms in the previous
section were indeed homomorphic.

----- Section 3.3 ~-- Gatekeeper Mechanisms and farkov Constraints

In this section, we discuss gatekeeper mechanisms, those decision
mechanisms which have no mechanism state. MWe show that such mechanisms

induce a class of behavioral constraints we call markov (not to be confused

with markov mappings).

1f there is no mechanism state, and if 'the mechanism, in mapping the data

E 1
|
E |
-
kL 3

S —

A

—

page 46

Problems, Mechanisms & Solutions (3.3)

state of the augmented system to the 'base.sgstem does not implement an
abstraction, then the state space of the augmented system and of the base

system are the same, that is I = 2' and wy(o') = o',

Since there is no mechanism state, the mechanism can only use the current
value of the data state to decide whether or not an operation should be
to determine whether § should be
the mechanism performs some
' in the base

defined so

executed in the base system. That is,
permitted when the base system state is o,
test p(8§) (o). Formally, for each operation 5 - provided
system, the mechanism provides the corresponding operation 8,

that

(o) = § (o) if p(8) (o)
A otheruise

This mechanism induces the behavior that can be recursively described as

Y(o,\) <== tt
Y(o,H8) <== VY(o,H) A p(8) (H(o))

That is, <o,H§> is an acceptable behavior (satisfying ¥) if § is permitted

in the state in which it executes - H{ol (i.e. if p(8)(H(g))), assuming

<o,H> was also acceptable. We will write ¥ in such cases as

(markov) Y(o,8) = p(8) (o)

We next formally define a markov behavioral constraint and show that any
decision mechanism without a mechanism state induces such a constraint.

>> Def 3-5]1 VY is markov iff

Y(o,\) = tt
Y(o,H8) = Y(o,H) A Y(H(0),?)

>> Def 3-6] T is ctate isomorphic ff

ol' = ¢2' iff 7(ol’) = 71(02")

—

B o M Lo b o

Problems, Mechanisms & Solutions (3.3) ' page 47

State isomorphism is a way of saying that there is no mechanism state,
since any tuwo states in the augmented system mapped into the same base state
must themselves be the same. Formally, we can shou that if M is a proper
mechanism (definition 2-5) and 7y is state isomorphic, then ¥ must be the
aluways true predicate - indicating that there is no mechanism state to
caonstrain.

Theorem 3-1}

If M is a mechanisnm
and T is state isomorphic

then ¢h s tt
Theorem 3-21

If M is a runtime mechanism
and ™M is state tsomorphic
and M induces Y

then Y is markov

----- Section 3.4 --- Sequential Control Mechanisms

In this section, we demonstrate how decision mechanisms may be used to
model! sequential control mechanisms, those that induce a base system to
behave as if it were executing a sequential program.

The underlying base system defines a set O of operations which may be
executed in any order. The mechanism state of a sequential control
mechanism specifies the order of execution of the operations.

We specify a sequential control mechanism so that its mechanism state
contains a specification of the program to be executed plus a pc (program
counter) which indicates which operation in the program is to be executed

next.

T

Problems, Mechanisms & Solutions (3.4) . A page 48 z

The mechanism provides a single operation §' which can be interpreted as
meaning “"execute the next instruction (operation)". Suppose that the
mechanism state in state o' indicated that 8 should be executed next. Then
™(8') (¢') = §4. :

We may model a sequential control mechanism by specifying a mechanism 3
state containing tuwo objects. [Other models might do just as well. This
one is convenient for our purposes.]

1. pc - the program counter

2. code - an object defined so that cadelil indicates the name of
an operation to be executed when the value of the pc is i. codelil
either names a base system operation or a "control® operation that
only alters the pc (e.g. a "goto"), :

For example, if
code (7] = "§4"
then 8 is to be executed when the value of the pc is 7. That is, if

o'.pc = 7 then ™8] (') = 84. As a side effect of execution of 84,
the mechanism also adds 1 to the pc, so that §'(¢').pc = 8.

If the value of the pc is i and codelil contains the name of a control
operation, then Ty(8')(¢’) = A. A control operation has no effect on the
data state, that is ™8 (a')) = ™). A control operation onfy changes
the value of the pc, which is in the mechanism state.

We will be content to arbitrarily define three control operations: goto,

branch and halt.

goto(n): pc «n
branchl(a,n): if a then pc « n gelse.pc « pc + 1
halt: pc « @

For example, if o'.pc =8 and

Problems, Hech_anisms & Solutions (3.4) ‘ page 49
code[8) = "goto(3)"

then §'(0').pc = 3. We urite
control (¢')

to mean that o’.codelil, where i is the current value of the pc
(o’.pc), namea a control operation rather than an operation defined by
the base system.

We will interpret a pc of B as indicating that th: program has hal ted.
Subsequent execution of & has no effect. . That is, if o'.pc = B8, then
™™(8') (') = X and §(¢').pc = B,

If NM names the objects defined in the base system (all objects but
code and pc), then 7Ty can formally be defined as

() = o".NM

™m(8)(0') = X if o.pc=8
if control (¢")
§ otheruise
uhere o'.codelo’.pc] = "§"

P4, the initial constraint on the mechanism state may specify the initial
value of the pc (usually 1) and may constrain the code object as well,
thereby specifying a property of the proaram represented in the code gbject.
In particular, ¥y may fully specify a program. For example, the flouchart
program :

Problems, Mechanisms & Solutions (3.{0) / , % 11 page S0

S‘\’&r’\"

can be represented by the initial constraint on the mechanism state

Pqle’) = o'upc =1

A o'.codelll = "branch(«,3)"
A o'.codel2] = "§4"

n o'.codel3] = "§7"

A o'.codel4] = "halt"

If #4(e’) and o'.a is false, then

™(8') (a") = A (branch is a contro! operation)

™™(8'8") (¢') = 84 \

Tm(878°8") (0") = 8487 :
TM(8°8°8°8". ...) (0") = 8487 (after 87, the system "halts")

We can formally define & (the single operation supplied by the
augmented system - which means "execute an operation") as '

sl i

!
;
1

Problems, Mechanisms & Solutions (3.4) : ; page 51

(a").NM = o' .NM if o'.pc=8
o'.NM if control(s"
§(o’.NM} otheruise
where- o'.codelo’.pc] = "§"
(e)upc = B if o.pc=20

dcontroi 19’ .pe if ' control (0")
uhere ¢'.codeld’.pc) = "S.ontrol’”
pc + 1 otheruise

$'(o’) . code = o’.code

Note that the code component always remains unchanged. The reader may
determine that M is indeed homomorphic, and thus 1 is a decision mechanism.

A control mechanism induces a constraint on beﬁavior that reflects the
execution of the problem it encodes. For example, the sequential control
mechanism initialized according to ® as defined above induces the
behavioral constraint ey

Y(o,H) = H =X
v (o.x A H= §84)
v (e.a A H= §487)
v (-0.a A H= §7)

That is, if 0.0 is true, the only histories permitted are A, 8 and 84§7.
1f o.a is false, the only histories permitted are A and §7.

----- Section 3.5 --~ Multiprogram Control Mechanisms

In this section, we shouw hou to extend the sequential control mechanism
so that concurrent execution of a system of programs can be modelled,
including syichronization operations. Instead of specifying a single pc and
code object in the mechanism state, we associate a pc and code component
Wwith each executor; ne call this the program component of the executor. For
example, o'.x.pc is the value of x’'s pc in state o',

S R ——

Problems, Mechanisms & Solutions (3.5) page 52

Instead of providing a single operatioﬁ 8, a multiprogram control
mechanism provides a set of operations §(x). UWhen §(x) is executed in
the augmented system, the mechanism executes . the operation determined by x’'s
program component. - :

: Formal ly, fn is defined so that

k ™ &0))) = o'.x.pc = 8

] —
-

control (¢")

i Executor(8) = x

otheruise
where o'.x.codelo’.x.pc]l = "§"

-~

o X >
=~ |

That is, when executor x next executes, the mechanism executes the operation
pointed to by x's pc (unless its pc is B) as long as the operation is
supposed to be executed by executor x.

Fallowing I[Lipton 73], we show how a sgnchronﬁzation mechanism may be
embedded in this mechanism. First, we may add objects to the mechanism
state (like semaphores) that represent the synchronization state. ¢h then
also specifies the initial value of the suynchronization state (the initial
value of the semaphores). The operations P:and V [Dijkstra 68al, when
{ executed by x, can be modelled by the control operations

P(x,sem): if sem > @8 then
(sem « sem - 1; x.pc « x.pc + 1)

Vix,sem): (sem « sem + 1; x.pc « x.pc + 1)

Note that, if the value of sem is B, execution of P(x,sem) I|eaves the
value of x's pc the same, so that the next time process x executes an
operation (§(x) is executed in the augmented system), the P is attempted

again.

Suppose the code component of process i (i = 1,2) contains

Problems, Mechanisms & Solutions (3.5) page 53

codelll = "P(i,sem)"
code(2] = "§(i}"
code (3] = "V{(i,sem)"

and the value of the pc is initially one for both processes. Then

™M))) = X
[P(1,sem) executed)
(O 8(1) 8(2) V(o) = A
[P(2,sem) executes and "fails" }
™7™ 8(1) §(2) &) V(o) = §Q)
™7™(§7(1) 8(2) §(1) &(2))(o) B
[P(2,sem) tries again)
v &(1) 8(2) (1) 8(2) (1))(o') = B§(1)
[V(1,sem) executes) '
(& (11 §(2) §(1) §(2) (1) 821 1 o’) - §(1)
[P(2,sem) finally "“succeeds" 1
(§(1) §(2) (1) §(2) §(1) 8(2) 8(2)) o') = 6(1) §(2)

[This section has described. a multiprogrammed control mechanism
in uwhich a synchronization mechanism has been embedded. It is
possible to define a pure synchronization mechanism that is not
embedded in a control mechanism. For each operation § provided by
the base system, the mechanism wouid provide an operation §' with
exactly the same effect. In addition, it would provide P and V as

invisible operations.]

————— Section 3.6 --- yaer Mechanisms & Problem Specifications

In this section, uWe show how the definition or a base system may be
extended to include pseudo-operations, useful in specifying the behavior of

a system.

The specification of the 2nd Reader-Writer problem [Courtois, Heymans &
Parnas 711 states that uriters must have priority over readers. That is, if
both a reader and a writer are waiting to use the same resource, then the
uriter will gain access before the user. It is shoun in detail in [Greif 75)

f
:
1
|
|
$
§

AT e B T —

Problems, Mechanisms & Solutions (3.6) page 5S4

that the controversy surrounded the solution is due to a certain fuzziness
as to uhen the resource is actually requested and freed.

We shouw hou to formally indicéte when a resource has been requested or

freed by adding the pseudo-operations
req(x) and free(x)

to the base system. They are both no-ops which will be executed by the
mechanism when executor (process) x requests or frees a resource (we will
assume a single resource here to keep things simple).

We assume that some control mechanism augments 'the base system. In
particular, we will assume that the multiprogram control mechanism defined in
the previous section is used. Né Wwill define two additional control
operations that may be named in code interpreted by that mechanism.

Preq(x,sem): if sem > @
then (sem « sem - 1; x.pc « x.pc + 13
x.block « ff)
else x.block « tt

Vfree(x,sem): sem « sem + 1

These two operations are defined exactly like P and.V, except that Preq
sets x.block (the mechanism state is extended so that a "block" component is
added to each executor) depending upon whether the process is blocked.

Most importantly, while execution of P and V is invisible in the base
system, execution of Preq (its first execution ohlg if the process becomes
blocked) and Vfree and mapped info executions of req and free in the
extended base system. That is, 7y is modified so that

™M 8'(x) 1 (a’} = reqlx) if -0¢'.x.block .
A o'.x.codelo’.x.pc] = "Preq(x,sem)"

™7™ §(x) V(") = free(x) if
o'.x.codelo’'.x.pcl = "Vfreel(x,sem)"

m

_Problems, Mechanisms & Solutions (3.6) i page S5

In effect, a user of the augmented system explicitly indicates wuhere
requests and frees occur by using Preq and Vfree respectively in place of P
and V. The following example, adapted from the one .in the previous section,
indicates hou the behavior is mapped from the augmented system to the base
sys tem. e

Suppose that the code component of process i (I = 1,2) contains

codelll] = "Preqli,sem)"
codel2) = “§(i)"
codel3] = "Vfreel(i,sem)"

and the value of the pc is initially one for both processes. Then

(€ 8(1) §(2) §'(1) §'(2) &) &(2) $(2)) (") =
req(l) req(2) 8§(1) freel(l) §(2)

The set of acceptable behaviors can then be specified formally in terms
of the way that ordinary base operations and the req and free operations
interleave las in [Greif 75) and [Riddle 73)).

This example suggests that problem specifications may generally require
the addition of pseudo-operations to a base system that will have to
correspond in some way to ordinarily invisible operations (e.g. P and V)
provided by the mechanism. The pseudo-operations represent an abstract
specification of the primitive actions relevant to the problem domain (req
and free are relevant because we are considering synchronization problems).
The definition of the mechanism indicates when these primitive actions can be

considered to have taken place.

A similar approach may be useful in specifying protection problems as
well, though we have not yet investigated what the appropriate primitives

(pseudo-operations) might, in general, be.

Problems, Mechanisms & Solutions (3.7) : page 56
----- Section 3.7 --- Monotonic Behavior
————————— 3.7.a ~-- Induced by Decision Mechanisms

We noted in section 2.5 that mechanisms induce constraints on the
behavior observed in the base system. In this section, we will show that
the cfass of behaviors induced by decision mechanisms can be described as

monotonic.
>> Def 3-71 VY is monotonic iff

H2 2 H1 >. VY(o,H2) > Y(o,H1)
Monotonicity guarantees that if some behavior <o,H2> is acceptable
(satisfies Y), then any earlier behavior <o,Hl>, where Hl < H2, must
also have been acceptable.

Theorem 3-3]

1f Y is markov
then Y is monotonic

Every decision mechanism induces a monotonic behavioral constraint. More

generally
Thegrem 3-4)

If M is a runtime mechanism
and M induces Y

then Y is monotonic

--------- 3.7.b ~-~ wex Construction of an inducing Mechamnism

Any monotonic behavioral constraint can be induced by adding some
decision mechanism to a base system (and possibly imposing some initial

PR p—— -

Problems, Mechanisms & Solutions (3.7.b) : page 57

constraint). In this section, we will show how, given an appropriate Y,
such a mechanism, w«hich we designate as '"‘f'""?" N>. can be
constructed.

For each operation in the base system, My provides a corresponding
operation § in the augmented system. We wWill urite ~ & to indicate
this correspondence. Whenever operation §' is executed, the mechanism
evaluates VY(o,H8), where §& ~ §, and where- <o,H> is the behavior
already executed in the base system. . The mechanism executes & only if
Y(o,H8) is true. This implies that the mechanism must somehow. remember the
initial state ¢ and the history H already executed. The mechanism state
must contain all of this information.

If NM are the names of the objects defined for (the data state) Z,
then define NMx to name a set of objects that will hold a copy of the
initial state. The mechznism state consists of the objects NMx as well as
an object HIST that remembers the history executed. The data state space
of the augmented system is the same as the state space of the base system.
That is, ‘

*y(o’) = ¢’ NM

Initially, no history has been executed and the contents of NM and NMe
are the same. Formally

Pylo’) s o HIST =X A o'.NM = o' N
For each operation §, .define §' so that
8’ (0’) .NMye = o’ NMse

8" (0’) .NM

L}
554
<

o' .NMw, o' HIST & §)
then §&(o'.NM) else o'.NM

8’ (0’) L HIST YO o'.NMyx, o' HIST & &)

then o'.HIST & .8 else o' HIST

NMw remains the same; it remains a copy ot the initial data state.

Problems, Mechanisms & Solutions (3.7.b) . page 58

Using NMv and the past history which is in HIST, the mechanism
determines whether § can execute. If so, the data state is appropriately
changed by allowing § to execute. As a side effect, HIST is updated to
refiect the fact that § executed. Of course, Ty is defined so that it Is
markov and

Ty(&’)(oﬂ = § if Y(o'.NMw, o' HIST & §), 8~ 8
A otheruise

Theorem 3-5]

My is a decision mechanism
Theorem 3-6]

If Y is monotonic

then there is some @ such that
<¢.Nv> induces VY

————— Section 3.8 --- e Consistent Mechanisms

————————— 3.8.a -~= yver Introduction

In previous sections, we argued that once a mechanism was added to a
system, a user would know of its existence and would realize that her
interaction was wWith the augmented system. However, one might imagine that
a user _does not know that a mechanism has been added, and believes she is
still interacting with an original base system. The effect of each operation
may appear to be the same, however, when operations are attempted, they
sometimes are not executed - exactly in those cases where the decision
mechanism prevents their execution.

For example, suppose a base system provides the operation move (x, @3, «}
which moves the contents of a to when executed by x. A protection
mechanism is added to the system and the augmented system instead provides

Problems, Mechanisms & Solutions (3.8.a) ' : page 59

the operation move’ (x,B,«). When this operation is executed, the
mechanism only executes movel(x,B3,a) if x - has the appropriates access
rights for « and @. l1f x does not have the appropriate rights, the user
Wwill note that her attempted execution of move(x,8,a) fails.

We find that when decision mechanisms are added, a base system may appear
to act inconsistently to an observer of the base system. MWe discuss uweak
and strong consistency - two ways in which consistency may be guaranteed.
e also introduce reduction, a notation used to indicate the history
actually executed given the history attempted.

———————— 3.8.b --- v Strong Consistency

Mechanisms with state may appear to act capriciously or in:onsistently to
an observer who can only view the base system. Consider a mechanism that
only permits an operation § to execute if some switch in the mechanism
state is set. An observer of the base system may find that in one case 8
may initially te permitted to execute while in another case it may be
prevented, even though the data (observable) state is the same in both
cases. In the first ca-~, sWitch is set, in thg second case, It is not.

Such apparent inconsistencies cannot occur if there is no mechanism
state. Houwever, consistency may still be obtained if there is a mechanism
state, as long as it is suitably constrained by %. In the example above,
®4 might have initially guaranteed that suitch uas set, and therefore, §
would always initially be permitted.

Formally we define
>> Def 3-8] M is strongly consistent {ff
ol' 2 02' > (YH)(my(H) (ol') = m4(H) (02"))
That is, if two states are observed to be the same in the base system and
the same history is executed in the augmented system in both cases, then if

M is strongly consistent, the same history will be executed in the base
system in both cases.

——— e —

o ——

Problems, Mechanisms & Solutions (3.8.b) page 60

The mechanism state may be so constrained by @y - that only a single
initial configuration of the mechanism state is permitted. We then say that
the mechanism is strongly constrained.” 7y s an example of a strongly
constrained mechanism. Strongly constrained mechanisme are always strongly
consistent. : :

>> Def 3-9] M is strongly constrained jff

ol’ L 02’ >, o0i’ = 02’
Theorem 3-71 (proof left to reader)

If M is strongly constrained
then M is strongly consistent

Suppose that Ty is not strongly consistent and that
TM<ol’, §'> = <0,8> uhile <02, §'> = <0,A>

If ™ induces Y, then VY(o0,8) holds because <ol’,8'> is observed as
<o, §>. However, this does not necessarily imply that execution of & is
state o will always be allowed. In particular, both ol’ and 02’ are observed
as o (they only differ in their mechanism state), yet attempted execution of
§ in the latter case will not be permittéd,

In general, suppose thaf M induces ¥ and VYl(o,H). Execution of H in
state o can only be guaranteed if M is strongly consistent.

————————— 3.8.c --- vsese Reduction

Reduction formally describes the history actually allowed by any
consistent decision mechanism (more generally, any consistent mechanism that
induces a monotonic behavior) given the behavior attempted.

Suppose that the history 515263 were attempted in some base system, and
the mechanism decided to permit 81 and 83 to execute, but not §2. The
induced behavior constraint Y would have the property: Yio, §1),
Y(o, 5182), ¥l(o0,5183). The history actually permitted to execute is £183.

Problems, Mechanisms & Solutions (3.8.c) o R page 61

The history alloued to .execute depends in genbral upon the state in which
the history was attempted. An operation may be permitted to execute in one
state but not another (even for a consistent mechanism - the decision may
.depend upon values in the data state). Given a consistent decision
mechanism that induces ¥, if H Is attempted in state o, we wWrite the
history actually permitted to execute as

H/ ¥

Remember that the history is attempted from left to right, and the.
mechanism permits execution of an operation only if Y would be satiefied. So
‘we can define H reduced by Y in ¢ as

>> Def 3-10) H/ .Y (recursively defined)
A GY <== X
(H8) /¥ <==

be H/ N in
o,R8) then R§ else R

Reduction only produces histories that satisfy VY.
Theorem 3-8)

I[f VYo,
then Y(o, H/ Y)

and if Y is monotonic, the set of histories that satisfy Y is the same as
the set of reduced histories that satisfy VY.

Theorem 3-9]

If Y is monotonic
then Y(o,H >. H=H/ Y

It is convenient to define H reduced by ¥ as

B .

Problems, Mechanisms & Solutions (3.8.c) ; ‘ page 62
>> Def 3-111 H/Y
HY ®yes Ao (H/ Y) (0)
We see that »
(H/Y¥)(a) = (H/ ¥)(o)

which is the resulting state when H is attempted in state o.

————————— 3.8.d --- yeve Weak Consistency

When a decision mechanism that is not strongly consistent is added to a
system, the state of the mechanism may affect the execution of a history
attempted in the base system. However, the resulting state may be the same
in any case. Formally

ol’ Q

02" > (VH)(ryq(H (01")) = 1q(H (62°)))
We have already defined this property (definition 2-18) as weak consistency.

Theorem 3-18)

If M is strongly consistent
and M is homomorphic

then M is weakly consistent

Probiems, Mechanisms & Solutions (4) - ; page 63

Chapter 4 - Enforcement Problems

----- Section 4.1 --- Introduct'yon

In this chapter we define a behavioral problem as bne that can be
expressed as a constraint on . behavior. A class of these problems,
enforcement problem, are solved by imposing an initial constraint on the
system and/or adding a mechanism that enforces the behavioral constraint.

We define static problems as a special case of behavioral problems -
those in which the state of a system is required to satisfy some property no
matter what history is executed. A static specification of a problem is
suitable when the particular system (including any mechanisms it may already
contain) is specified, otherwise, a behavioral specification is generally
required. When we wish to solve an enforcement problem, specified
behaviorally, in a particular system, the behavioral specification can be
converted to a static one. Static specifications are generally more useful
for proving the correctness of solutions,

We discuss maximal solutions to problems and their relationship to the
undecidability results discussed in ([Harrison, Ruzzo & Uliman 75]. UWe
indicate why maximality is not necessarily an important requirement for a
solution.

Finally, we develop a m{thodologg for determining. the solution to a
behavioral problem. First an initial constraint is found which eliminates
some unacceptable behavior (behavior that does not sétisfg the given
constraint). Secondly a mechanism is found which eliminates the remianing
u.nacceptable behavior. MWe present a simple example of the application of
this approach in a system containing multiple mechanisms.

Problems, Mechanisms & Solutions (4.2) page 64
----- Section 4.2 --- Behavioral and Static Problems

We define a behavioral problem to be a constraint on the behavior of a
system, a description of those behaviors we deem acceptable. We
characterize these acceptable behaviors as Wproblem' so that Yproblem("'m
is true only if <o,H> is an acceptable behavior.

We solve a class of behavioral problems, enforcement probiems, by
guaranteeing that only acceptable behaviors may occur in a systenm. In
chapter 2, we noted that unacceptable behaviors couid be prevented in tuwo
ways - by imposing an initial constraint on the system, which We designate
‘psolve or by adding some mechanism M. That is, vproblem may be solved by
finding a pair <¢solve'n> such that

<Pgo|ver 1> enforces wproblem

We do not require that <@solve'n> induce Wproblem' As a result,
acceptable behaviors may be prevented by the solution as well as unacceptale
ones. |f our goal is to prevent as few unnecessary hbehaviore as possible,

then a solution that induces Y would certairty be optimal. However,

probiem
one might imagine other criteria for determining adequate or optimal

solutions. These are discussed in section 7.3.

We may want to guarantee that some property of the state of a system
remain satisfied over execution of any history., We will call such a problem
a static enforcement problem and describe it as @problem where
P

problem(°) is true only if o satisfies the given proper ty.

An example of a static enforcement problem is the following Access
Problem (section 1.3): Cohen should never gain urite access to the Salary
file. We can represent this formally as

P (0) = w ¢ <Cohen,Salaru> (o)

problem

Static enforcement problems include the safety problems discussed in
(Harrison, Ruzzo & Ullman 75). The safety problem for right q ie the same
as the static problem

¢problem(°) s (Vx,yl(g ¢ <x,y>(0))

That is, the problem is to guarantee that no object may ever have g-rights
for an object. '

The static problem ¢problem can be seen as auahorthand notatipn for the

behavioral problem vproblem defined so that

Y (o,H = @ (H(o))

problem problem

That is, a behavior <o,H> is acceptable onlg'if }ts'resulting state, Hlo),
satisfies ¢problem'

We defined (definition 2-19) <¢ M> enforces vproblem as

solve’

(M Pgoiye) (00 > (YH) (Yo ep(Teo’ H>))

solve

We can alter that definition in the following way so that it refers to static
problems. ' - :

>> Def 4-1] <9 M> enferces ¢prob|em iff

solve’

(M: @0 ve) (') > (VHI (@ o)on by (H (a")))

For the cases where oniy the initial constraint or the mechanism is used

we define

to solve vproblem'

E | >> Def 4-21 ¢ enforces ¥, itf

solve roblem

¢ (o) > (VHI(@ (H(0)))

solve problem

'i ! >> Def 4-31 M enforces ¢problem P ff

v’} > (YHI(¢ (ry(H (")))

problem
In section 1.3, we argued that static specifications are useful given a

particular system, while behavioral specifications are suited to more general

problem statements. For example, the statement of the access problem

Problems, Mechanisms & Solutions (4.2 ¥ . : page 65

R

A G

Problems, Mechanisms & Solutions L 4.2) . page 66
Poroblem{®) = w ¢ <Cohen,Salary> (o)

implied an access matrix mechanism that permits Cohen to modify Salary only
when Cohen has uwrite access to it (as in the system described in appendix
A). s

In order to state a more general hehavioral specification, ue need to
assume a general predicate "Wacc". MWe write MWaccla,0,8) to mean that in
executing & in state o, a write access is made to object a. An appropriate
statement of the problem would then be

{markov) Yprob!em(a's) =

Cohen = Executor(§) > -Wacc(Salary,o,b)

That is, Cohen is never to be permitted to execute an instruction that
causes a Write access to be made to the Salary file.

When we wish to solve this problem in a system in which an appropriate
mechanism is already included, we can convert the behaviorai specification to
a static one. In the suystem defined in Appendix A, if Cahen does not have
write access to the Salary file, then no operation executed by Cohen can
cause a urite access to Salary. Formally,

w ¢ <Cohen,Salary>(o) >
(V8) { Cohen = Executor($) > -Wacc(Salary,o,8))

As a result, wue can convert the specification of Yoroniem t¢ Pprobiem:
Formally, this follows from the theorem

Theorem 4-~1]

¢ P orces ¢

solve enf probiem
and Wproblem is markov
and ¢problem(°) > (V&) Yproblem(a'a))
then 9.,,,e enforces Yproblem
The value of such a conversion Will be demonstrated more forcefully in
chapter 5§
T

Problems, Mechanisms & Solutions (4.3) page 67

————— Section 4.3 --- Maximal Solutions

Different combinations of initial constraints and mechaniems lead to a
variety of different solutions to behavioral problems. However, even:if we
restrict our attention to initial constraints alone, there may be more than

one solution. We may find more than one Pg,,e that enforces Vproblem'
that is, more than one 9,,,,, such that

Peoive(0) > (YHI (Y
?

probiem (0 H) ("t"-arrows for emphasis)

Houever, there is a maximal solution, one that least constrains the set of
initial states. It is

Pnax(0) = (VH) (Ypoopien (o H))

iy

[We note here that the maximal solution 9, . does not necessarily

induce vproblem‘ For example, consider an arbitrary system with a
singie operation §. The maximal solution to

vprob|em(0,H) -4 H= X v H=§

is ‘Pmax(a) =z ff

which certainly does not induce Ypnopniem:)

The follouwing example illustrates the value of non-maximal solutions.
Consider a system that includes as two objects, a bank vault and a robber.
“e robber can rob the bank unless the vault is locked or the robber is
drunk. For now, the only action in this system we will focus on is the
attempted robbery, which can be represented by the single operation

§1: if -drunk(robber) A -locked(vault) the.

(robber.money « robber.money + vault.money;
vaul t.money « B)

Our problem is to find some uag to guarantee that the robber can get no

Problems, Mechanisms & Solutions (4.3) : page 68

money by robbing the vault. This can be stated formally by the follouing
markov behavioral constraint ')

(markov) vproblem(a'a) = o.robber.money = §(0).robber.money
v o.vault.money = §(0).vault.money

From the definition of the system, uwe see that this can be accomplished
if either the vault is locked, the robber is drunk or the vault is empty.

The maximal solution to Yproblem is

P (0) = drunk(o.robber) v locked(o.vault)

max
v o.vault.money = B
As a practical matter, a more restrictive saolution will suffice
Psojvel0) = locked(o.vault)

that is, the problem is solved by constraining the initial states to those in
which the vault is locked, without regard to whether the vault is empty and
certainly without depending upon drunk bank robbers,

[Harrison, Ruzzo & Ullman 75] as well as this author (unpublished) have
shoun that even under very special circumstances the safety problem in
pro.ection matrix systems is undecidable. In our terminology, that means
that there is no algorithm that can determine ®,. ., the leasi restrictive

solution, even for static problems.

Undecidability is not so negative a result as it might seem. @, .. s
after all a maximal solution. In general, the user of a pratection system
is not seeking a maximal solution, but rather any reasonable solution that
will solve the problem. In the bank robbery exampie, a reasonable solution
meant locking the vault. In the Salary file example, an adminis‘rator might
not really care about the obscure circumstances under which Cohen might be
prevented from gaining urite access to the Salary file. She is really only
interested in showing that a particular solution will prevent Cohen's access.

The question, "What makes a solution reasonable?" will be discussed in

more detail in section 7.3.

Probtems, Mechanisms & Saluticns (4.4) page B3
----- Section 4.4 --- A Methodology for Solving Problems

We may solve a behavioral problem by imposing an initial constraint
Psolve @nd adding a mechanism M to a system. Instead of determining them
together, we may find find the following approach more convenient: We first
pick ®Pgoiver Imposing P .o will eliminate many of the unacceptabl s
behaviors. ‘Next determine M so that its addition eliminates the remaining
unacceptable behaviors. Formally, define

>> Def 4-4) <Pgolver Ysolve> enforces Vproblem iff

¢

sotve(8) > (YHI (Yoo oo Hl 3 Yorop omlo Hl)

only eliminates all unacceptable behaviors if the behaviors
Once Ygoive i8 determined, a mechanism
Our expectation is that enforcement of

That is, ¢solve

| are already constrained by Y g5 e-

must be provided to enforce Y

Ysolve is ;
reasonably) than enforcement of Y, opjem Psolver together with the

solve*
less complex (or can be accomplished more easily or more

mechanism that enforces Y., ,e can then be showun to enforce Yp.op|em:
Formaliy :

Theorem 4-2)

If <Pgo)verYsolve> enforces Y opiem
and <¢solve'"> enforces Ygq ve

then <¢solve'"> enforces Wproblem

That is, after determining the remaining unacceptable behavior, find a
mechanism M whose addition prevents those behaviors. That mechanism, along

with @ then solves the original problem.

solve’

For static problems we may similarly define

>> Def 4-5] <Pgoiver Ysolive> enforces ¢probiem iff

)

so’ve(u) 5> (VYH) (Wsolve(U'H)) ¢problem(H(°)))

Problems, Mechanisms & Solutions (4.4) : page 70

Theorem 4-3]

If <PgoiverYsolve> enforces Poroblen
and <P, yesM> enforces Yeolve
and M is homomorphic

then <¢solve'"> enforces ¢problem

The technique discussed here is useful even when the mechanism is already
specified, as long as only the mapping Ty is specified, and not the initial
constraint on the mechanism state ®%y. After finding a <Pg5verYsolve>
that enforces ¢prob|em (or Vproblem)' we may try to find an appropriate
¢h so that the mechanism M, now fully specified, eliminates the remaining
unacceptable behavior specified by wsolve'

----- Section 4.5 --- Protection and Control

In this section, we will apply the methodology discussed in the previous
section to solve a behavioral problem., We will consider a system that
contains not one, but two mechanisms, a protection mechanism as well as a
mul tiprogram control mechanism (section 3.5).

Consider a system with two kinds of objects, processes and files, and a
single generic operation

copy(x,B,a): if processi(x) a file(B) A filela)
then @ « «

where Executor(copy(x,B,a)) = x

Let us suppose that a mechanism based on an . access matrix is added to
this system. The augmented system instead provides the generic operation

copylx,B,a): if r e <x,0> A W € <x,f>
A process(x) A file(B) A fitela)
then B « «

e gds

Problems, Mechanisms & Solutions (4.5) page 71

That is, the mechanism checks to see whether x has the right to read a and
write B before copying « to f.

We now treat this augmented system as the given base system and add a
mul tiprogram control mechanism to it. The base system supplies the set c*
operations

copylx,B,a): if r ¢ <x, 0> A W€ <x,0>
n process(x) A file(f) A file(a)

then B « «

that is, what we called copy’ above.

r

tofa TR oL

tAGCH] AN I\S T >3

Z wech g L j
5% > Ty,
1 _ff
|

The mul tiprogram contro! mechanism M (as defined in section 3.5) prevents

arbitrary execution of operations. The control mechanism state associates
with each process a program counter (pc) and a code component containing the
operations to be executed by the process. The mechanism guarantees that
operations are executed in the base system only when pointed to by the pc.
That is, if Executor($) is x, then x can execute § in state o' only if

o’.x.codelo’.x.pc] = "§"

Now, suppose that we want to solve the follouing behavioral prablem

Problems, Mechanisms & Solutions (4.5) ; page 72

{markov) VY, 2 o0.Salary = §(0).Salary

problem(u'S)

that is, guarantee that the value of the Salary file remains unchanged over
execution of any operation. The most direct way to solve this problem is to
ignore the fact that there is a control mechanism augmenting the system, and
simply guarantee that no process has the right to write the Salary file.
That is, define

Paolveld) = (Vx)(u ¢ <x,Salary>(v))

We can easily prove that
Psolve enforces Yoroblen

This follows from the theorem

Theorem 4-4]

If Psolve I8 invariant
and Yproblem is markoyv
and Pyoivelol o> (V8I(vproblem(°'5’)

then Qsolve enforces vproblem

Psolve -is invariant, since in the simple system we have defined, there is no
way to change the access matrix. Yprmﬂem has been defined as markov.
The protection mechanism (which is part of the base system) guarantees that
if no process has the right to write the Salary file, the contents of the
Salary file cannot be changed.

‘Suppose that for some reason, this solution is not allowed, and the best
we can manage is the following

? (0) = (Vx«Administrator)(w ¢ <x,Salary>(0))

solve
That is, the system administrator may not be prevented from having
permission to write the Salary file. The problem may be solved only if the
administrator does not exercise this right - that is, does not urite the
Salary file. Formally this property can be stated as

Problems, Mechanisms & Solutions (4. 5) 4 E page 73

(markov) Yggiyel0,8) =
(Ya) (& » copy(Administrator,Salary,a))

Then, since copy is the only operation defined in this system, we can show
that i

<Pgolver Ysolve> enforces Ypropien

Since the base system is augmented with a multiprogram control mechanism,
Ysolve C€an be enforced by guaranteeing that the Administrator’s code
component does not contain an operation whose execution would alter file.
If 7Ty is the multiprogram control mechanism mapping defined in section 3.5

and ‘Pn is defined as

P(0') = (Yo, i) (c’.Administrator.codeli] =
"copy(Administrator.Salarg'.'a) ")

then M enforces wsolve'

So, we first imposed an initial constraint 95, ,e that, by itself, did
not enforce vproblem' Rather, imposition of @, ,e 8till permitted the
occurrence of certain unacceptable behaviors (those not satisfying Ygqivel:
These remaining unacceptable behaviors could then be eliminated by specifying
a constraint ¢y on the mechanism state that guaranteed that M could
enforce Ygq ve:

In a sense this example is too simple. An application of the methodology
that would be more clearly useful might use a Y ye that was not markov.
Such an example is left to future research. :

------ Section 4.6 --- vy Constraining the Augmented System

In section 4.4, we showed that if the mapping 7ty of a mechanism is
already provided, then a behavioral problem can be solved by imposing both
an initial constraint 9.,,,e on the base system, and an initial constraint
P4 on the mechanism state. Since the user is presented With an augmented
system, combining both the base system and the mechanism, it may be use ful

Problems, Mechanisms & Solutions (4;6) ‘ page 74

to specify both constraints as the single canstraint @, ,,e which
constrains the initial state of the augmented system.

In this section, we will show that any constraint .., . on the initial
state of the augmented system can be decomposed into @ and %5, ,e- The
possibility of decomposition is not obvious for two reasons.

1. MWhile ¢ ,,e constrains the augmented system state, Ponlva
constrains the base system state. The mapping between them, Ty,
need not be trivial.

2. 94 must satisfy the property
{mqte’) | ") } = { q(0’) 1}
We shall nou shou that any ¢ can be decomposed into a @ and a ¢
such that P = M9,
Theorem 4-5]

Define ¢ so that
P(o) s o0 ¢ | Tn(oW | 9(¢') }

Define ¢4 so that
$lo’) a (") v ~Plryla’))

Then ¢ = 9:M
and { Tn(oW | ¢h(uW b= | Tn(aW }

For example, the solution to the problem in the previous section can be
uritten as
Peotveld’) = (Ya,i) (o'.Administrator.codelil =
"copy(Administrator,Salary,a)")
A (Yx=Administrator) (w ¢ <x,Salary>(c'}))

which was decomposed as

S IR g RO ML A

Problems, Mechanisms & Solutions (4.6)

(o)

¢eolve

80 that

(Va, i) (o’.Administrator.codeli]l =

L

\
solve

~ "copyl(Pdministrator,Salary,c)").

(o') = (VxwAdministrator) (u ¢ <x,Salary> (o))

(6') = Bylo") A Pggiyelmyie’))

page 7S

Problems, Mechanigms & Solutions (5) page 76

hapter S -~ A Case Study

----- Section 5.1 --- Introduction

This chapter provides a case study of the solution to the following
protection problem: Imagine that some 'sgst,em contains a set of sensitive
objects. These objects are to be altered only by programs which have been
verified to treat these objects properly. '

We will solve this problem for the base system described in Appendix A.
{ Readers unfamiliar with capability-based protection systems are advised to
turn to appendix A before proceeding] 1t is described as containing a
capability-based protection mechanism. Each object in the system has two
components, a C-list and a Value-part. The C-lisi of an object indicates
which other objects may be accessed by (uhen it represents an executor) or
through it. The Value-part of an object holds arbitrary data. In the case
of objects which represent executors, the Value-part contains a
representation of the program executed by that object. The system also
models dynamic creation of objects, including (via the “call" operation)
creation of new executors.

The remainder of this chapter is organized in the following way: We first
specify the problem formally as a behavioral enforcement problem in notation
independent of the mechanism pravided. Next, using the definition of the
mechanism, we specify a static problem that is easier than the given problem
(any solution to the easier problem solves the given problem as well). We
develop three increasingly general solutions to the problem. Finally we
discuss the nature of solutions to protection problems and the impact of
exercises such as this one on the design of protection mechanisms. In
particular, we we may find that additional mechanisms are required or
desirable in order to solve problems or to enhance reliability.

Problems, Mechanisms & Solutions (5.2) page 77
————— Section 5.2 ~-- The Problem
We may formally state the problem described above as follows:

{markov) vproblem(°’8) =
-Trusty(Executor(§)) > (VB)(Sensitive(f) >. 0.8 = §(0).08)

[Instead of 0.8 = §(0).B, we might have uritten
-Wacc (8,0, §) as in section 4.2]

where

Trusty(x) means executor x is trusted to only execute programs
verified to treat sensitive objects properly.

Sensitive (B) means B is a sensitive object. We shall assume

that sensitive objects may not be executors.

The treatment of objects as Trusty or Sensitive is external to the
system. No object itself contains any information indicating how we (as

theorem provers) will treat it.

Treated as an enforcement problem, the formal specification above
requires that no operation executed by a program that has not been verified
be allowed to alter the contents of a sensitive object. It is important to
note that this specification relies in no way upon the representation of the

protection system.

We will actually solve an easier problem. But first we must note tuo

facts about the system described in appendix A.

1. Al operations are specified so that nn executor x may alter
another object B unless x has permission to write B - that is,

W <x,0>.

2 No object x may act as an executor unless 8 ¢ <x,x>. No

operation allous sharing of an "s"-right.

Problems, Mechanisms & Solutions (5.2) page 78

Therefore, ue can solve the problem by guaramteeing that no non-trusty
executor may ever have urite access to a sensitive object. Actually we will
solve an easier problem. MWe will show how to guarantee that no mon-trusty
executor has any access to sensitive objects. [We will discuss in section
5.8 how one might adapt the last solution given so that reads, but not
urites, can be permitted.] This problem is, in effect, the Hidden
Facilities problem (section 1.3). Sensitive objects represent the facilities
that are to be hidden from certain users. Trusty executors represent those
users uho are trusted to use those facilities. Formally, we will be solving
the problem

(markov) Wproblem(°'5) E
~Trusty(Executor(§)) > (¥B8)(Sensitive(B) > -Acc(B,0,8))

where Acc(@B,0,8) means that B is accessed as the result of executing & in

state o.
We uill convert vproblem to the static problem vproblem' defined as
¢problem(°) = (¥Vx,8,9)

(s ¢ <x,x>(0) A q ¢ <x,8>(0))
>. Sensitive(f) 5> Trusty(x))

i Formally this substitution of problems can be justified by theorem &4-1 -

that s
If 9Pgo1ve enforces Qproblem
and Yproblem is markov
and Oproblem(U) > (V8§ (Wproblem(°'8))
then ¢solve enforces wproblem

Below, we prove that Oproblem(°) > (V8)(vproblem(°'8))
By inspection of the operations defined in Appendix A, we find

x = Executor(§) A Acc(@,o,?) S.
s ¢ <x,%x3(0) A (x=f v q ¢ <x,f>(0))

‘Problems, Mechanisms & Soluticns (5.2) ; : page 79

That is, an executor can only access itself or some other object
for which it has some access right. [f we assume that
vproblem(a) holds, then we can show that

x = Executor(§) A Acc(B,o0,8) >.
Sensitive(8) o (x=p v Trusty(x))

Since executors cannot be sensitive

x = Executor(8) A Acc(B,o0,8) >.
Sensitive(B) > Trusty(x)

which is just a rearrangement of Yproblem(U'S)

Te find a ¥4, that enforces Poroblems We might find a Pecive
that is invariant and stricter (though hopefully not much stricter) than
Poroblems Formaliy

Theorem 5-11

1f Psolve € ¢problem
and Qso|ve is invariant

then P, e enforces @problem
[f such a solution could be found, then the protection mechanism would be
shoun to provide all the tools necessary to solve the problem. Houwever, we
will see below that additional constraints on the behavior of the system are
required, which means that some additional mechanism must be added. That
mechanism is assumed to be a control machanism (as in section 3.5) which
must be constrained so as to further specify the behavior of trusty
executors. MWe must find a pair <Peoiver Yeolve> such that Ysolve Can be

enforced by the contra! mechanism (section 4.4) and such that
<P

L > enforces ¢

solve’ "solve problem

As above, we can pick Peoive 0 be contained in 0probleM‘ If a

behavioral constraint ¥ is required, then, while we cannot e pect

solve

L A 3

Problems, Mechanisms & Solutipns tB2) s page 88

Poolve to be invariant (else Yeolve Would not be needed at all), we can
expect it to be Y, ,e-invariant. That is, ¢,,),o remains satisfied so long
as only histories satisfying Y., , are executed. Formally,

>> Def 5-11 @ is Y-invariant jff

Y(o,H) >. @(0) > 9(H(o))

Iheorem 5-2]
1f Psolve € 'pproblem

and 'Psolve is Ysow‘e-invariant
~ then <Py, verYsolve> enforces Py en

To demonstrate Yeoive-invariance, we will find the follouing theorem
useful: :

Iheorem 5-31

If Y is markov
and VY(o,8) »>. (o) > ?(8(0))

then ? is Y-invariant

Throughout the remainder of this chapter, we Will choose Yeolve's that are
markov and we will show that <¥955),e:¥gq)ye> enforces @,.,1)em by shouing
that Yoo ivel0:8) o0 P iyel0) 5 P elblo)).

----- Section 5.3 --- Creation Rules

In the system described in appendix A, neuw objects may be created by the
operations "call" and "create". Formally, it is best to treat new objects
as if they were not actually created, but rather, were selected from a pool
of existing oojects that have not yet been used. Therefore, we assume that
no object has access to any of these objects prior to the time of their
selection. UWe express this formally by the following Creation Ru'e.

Problems, Mechanisms & Solutions (5.3) page 81

Rinew): (Ya,x)(g ¢ <x,N>(0))
where N made new in state o

The description of the "create" operation indicates that the executor of
the "create" wuill have access to the new object after execution of the
operation. That is, if & is [create(x)], and N is the object
created in state ¢, then

<x¢,N>(8(0)) = {r,u,cl}

"Sensitive" is a predicate applied to object names, thus when a new
object N is '"created", we must decide whether it is to be treated as
sensitive or not. It is clear that we must not treat it as sensitive if it
is created by an untrusty executor x, for if N is the name of the object
“created", then w ¢ <x,N> after creation. If N were treated as sensitive,
but x were not trusty, then ¢prob|em would immediately be violated. We

define our treatment of created sensitive objects by the following Creation

Rule.

R(sensitive: create)t Sensitive(N) > Verified(o.x)
where N made neu for

create(x) in state o

We have noted that sensitive objects are not to be executors. Formally
as part of each solution below, we will require that ¢sensitiva hold,
where i

P) = SensitivelB) > s ¢ <B,8>(0)

sensitive(?
Since the new object created by the "call" operation is an executor, and
sensitive objects may not be executors, there is no corresponding Creation
Rule for "call". Initially, we will assume that there is a fixed number of
trusty executors, so we need no creation rules for trusty objects at all.

- askbesEEoREE e SRR R AL SRR AR Yot i e RS 0 S A

Problems, Mechanisms & Solutions (5.4) : page 82
----- Section 5.4 --- Verified Programs

A verified program is one that has been guaranteed to treat sensitive
objects in some trusty way, that for the most part, need not concern us. We

=
e b 1

Wwill only be concerned uwith those properties that verified programs need
satisfy in order to solve the problem stated above - that is, guarantee that

b
]

only verified programs can be used to alter sensitive objects.

While "Trusty" is a property of objects (their npames, actually),
"Verified" is a property of the contents of an object. MWe will wurite
Verified(o.x) if object x contains a verified program in state o. MWe buiid
a bridge between these tuo properties by guaranteeing that trusty executors
contain verified programs.

; Puariflo)l. = Trustufx) > Verified(o.x)

ﬁ This requirement will be part of each of the solutions we will discuss belou.
i Since ue uwill be proving the invariance of those sdlutions, we note two
properties of the "Verified" predicate uwhich follow from the representation
of "programs" in the system described in appendix A, which will be helpful in
proving that invariance.

VRF1: ol.gBl.Value-part = 02.82.Value-part
. Verified(ol.B8l) = Verifled(02.02)

R i

That is, the static representation of a program is contained wholly within
the Value-part of an object, so if the Value-parts of two objects are the
same, one contains a verified program only if the other one does.

We also note that execution of a verified program does not alter the
property of its being verified (i.e.. by changing the Value-part of the
object containing the program). Formally

VRF2: Trusty(x) A x = Executor($) >,
Verified(o.x) o Verified(§(o).x) 3

But what if x is not the executor of §? Could execution of an operation
by some executor alter the contents of some other object that is trusty? We

Gl e o i

Problems, Mechanisms & Solutions (5.4) page 83

will arrange each of the solutions below so that such a situation is
prevented.

That prevention is not difficult to accomplish. We noted above that an
executor can only alter another object if it has permission to write it.
Because of rule R(,e,) (and the semantics of "call"), when a neu executor is
created as the result of a call, no object, including the caller, is given
permission to write the neuw executor, [f uwe guarantee that no object
initially has urite access to trusty objects las all solutions below will -
via ptrustul and ¢trustu2), then we can guarantee that if ‘a trqstg
object in.tially holds a verified program, then it will continue to ho!d a
verified program after execution of any operation, for its Yalue-part cannot
be al tered.

Next we will examimne whether there are any actions a trusty executor
might perform that could violate ﬁproblem' I[f there are any, then we must
establish additional conditions that verified programs must satisfy.

A trusty executor might grant access for a sensitive object to- some
object also accessable to an untrusty executor. 1f the untrusty executor
subsequently takes that access, then ¢problem would be violated, for an
untrusty executor could gain access to a sensitive object. This is depicted
in the diagram belou.

T%us*y
| cw 2 S |
‘ °":.\°C'* SQI\LA‘\UQ
Un\-ws‘y iy
-7

grantq(Trustg.Some-object.Sensitive) (qe¢ {(ryu,c) must be prevented.
A similar violation may occur if a trusty executor executes a "call"

Problems, Mechanisms & Solutions (5.4) page 84

operation, passing as an argument, access to a sensitive object (e.g.
call (Trusty,Some-object,Sensitive)).

We must now imagine that some control mechanism augments the protection
system provided, for these violations may not be prevented by constraining
the initial state of the access matrix alone. It is necessary to guarantee
that trusty exescutors do not execute the operations described above., That
guarantee can be formalized as constraint on the behavior of verified
programs.

We assume that the control mechanism state can be so constrained
(remembering from section 3.4 that a constraint an the control state models
specifications for the programs executed) as to prevent the occurrence of
the operations noted above uhen executed by objects containing verified
program. Formally, we expect that such a constraint can enforce the
following behavioral constraint in the base system (uhich includes the

protection mechanism):

(markov) Ygq yeflo.8) =
Verified(o.x) A x = Executor(8) A Sensitive(p)
o § = grantq(x.a,ﬁl n §x cafl(x,a.a)
A § = call(x,B,a)

That is, verified programs do not execute operations which could lead to a
violation of ¢problem' The constraint also guarahtees (&= callix,B,a))
that sensitive object remain passive - are not called by trusty objects (our
solutions will guarantee that no non-trusty executor ever has the right to
call a sensitive object, but trusty executors do, in particular, When they
have just created one),.

————— Sectign 5.5 --- The First Solution

The first solution assumes a fixed set of executors containing verified
programs; these executors are characterized as being trusty. Our solution
first requires that 9 .. .itive and Poris be satisfied - that is, there
can be no sensitive executors, and each trusty object must contain a
verified program. MWe noted that @,..;¢ could remain invariant only if
initially, a trusty executor could be accessed by no other object. Formally

SEp .

Problems, Mechanisms & Solutions (5.5) page 85
¢trustg1(°) 2 Trusty(x) > (Ygws,a)(q ¢ <a,x>(0g))

Now we must only guarantee that only trusty objeéts may directly access
sensitive objects.

Pdirect(o) =
' (Va) { q ¢ <x,B>(0) >. Sensitive(f) > Trusty(x))

The solution to Qproblem is the conjunction of these predicates.
P

solve * Psensitive N Pverif A Qptrustgl A Pyirect

<¢solve'vsolve> enforces ¢prob|em since

¢solve < ¢direct S ¢prob|em

and Psolve 18 VYgg|ye-invariant which we prove by showing that
Yeoive(0:8) and 9, ,,o(0) guarantee P55 yglblo)) (Theorems 5-2 and
5-3). :

1+ @ (8(o)). There is simply no way to create neu

sensitive
sensitive executors.

2. Puorisldlo)). If Trustylx), then by ¢trustg1' x cannot be
written into by another executor of & through execution of &.
Puerif and VRF2 guarantee that x cannot alter verified-ness by its

oun action. Finally, no neuw trusty objects can be created.

3s @trustgl(S(o)). [f Trusty(x), then by otrustgl' no other
object has access to x. The operations of Appendix A permit access
to be granted or taken, but access to x cannot be gained if no
object initially has access to x. Finally, no new trusty objects

can be created.

4. Pyirect(8(o)). Suppose B is sensitive and after execution of
8§, a non-trusty object x gained access to . This could not happen.
Consider the following possibilities:

e ——

Problems, Mechanisms & Solutions (5.5) page 86

--- a) A trusty executor granted x access to 8. By ®,g.i¢,» the
executor contains a verified program. Prevented by Ysolve'

--- b) x took access to 8 from some object which must be trusty
due to @yiectr Prevented by ¢trustgl' which guarantees that no

object can have read access to a trusty object, required by the
semantics of "take".

-——- c) X created a sensitive object. Prevented by

R(sensitive: create)s Since x is not trusty.

-—- d) @ uas called, resulting in a new trusty executor x wWith
read access to (. By ¢direct' the caller must be trusty.
Prevented by (?,o.;¢ and) Yg ye-

--- e) B was passed as an argument when x was created as the
result of a call. By 9y .ect the caller must be trusty.
Prevented by (P opr g and) ¥

solve*
GLE 1D,
————— Section 5.6 --- The Second Solfution
For our second solution, we will not presume that trusty objects are

executars only. They may be non-executors that can be "called", resulting
in the creation of new trusty executors. This implies that we must add a
new Creation Rule.

R(trustg: call): Trusty(N) iff Trusty(p)
where N made new for

call(x,B,a} in state o

Even when an object is not an executor, its Value-part may hold the
representation of a program. In fact, according to appendix A, when a
"call" is made, the program to be executed by the neuwly created executor is
copied from the Value-part of the object called. So, as in the first
solution, all trusty objects (uhether or not they are executors) must

e ———————————. ho———

Problems, Mechanisms & Solutions (5.6) page 87

contain a representation of a verified program. That is, ®,o.;¢ must be
satisfied.

We will continue to require that only trusty objects may access sensitive
objects, so Pyirect Must be satisfied as well.

Finally, though we permit trusty objects to be called, they may not be
read from (lest some other object take access to a sensitive object) nc. be
written into (lest some untrusty executor alter the representation of the
verified program in the Value-part).

¢trust92(°) = Trusty(@) »>. r ¢ <ap>(0) A u ¢ <ax,p>(0)

Our solution is

Psolve = Psensitive N Pverit A Ptrusty2 N Pdirect

As in the first solution, 9g51ve € Pgirect g¢prob|em' Below we prove

that Y. vel0.8) and ¢ (¢) guarantee ¢ (§(o)).

solve solve

1. @ {§(0)). Same as for solution 1.

sensitive

2. Puerigldlo)). If trusty(x) and & is not a call operation
which creates x, then the proof is similar to that for solution 1.
If & is a call uhich creates x, then by R({rusty: call)® the object
calied was trusty. By @,..;¢, that object contained a a verified
program. Since call copies the Value-part of that object to x, by
VRF1l, x contains a verified program as well. Finally, trusty
objects cannot be created except by a call.

3 ¢trustg2(8(“))' If trusty(B) and & is not a call operation
which creates B, the proof is similar to that of trustyl in solution
1. If & is a call uhich creates B8, then by R(,e,) and the semantics
of call, no object gains read or urite access to B. Finally, trusty
objects cannot be created except by call.

4, ¢ ($(0)). Proof same as for solution 1.

direct

Q.E.D.

Problems, Mechanisms & Solutions (5.7) ‘ page 88
----- Section 5.7 --- The Third Solution

In the previous tuwo solutions, we have required that only trusty objects
have direct access to sensitive objects. In our third solution, we will
permit that access to be indirect. We permit capabilities for sensitive
objects to be held in other objects. These other objects must be sensitive
as well, and must not be executors (or callable), since the programs they
might execute are not verified, and therefore, they might execute one of the
operations prevented by Y¢,iye- Instead of requiring that 94irect
hold, we require

Pindirect{®) = q ¢ <a,f>(0) >

(Sensitive(B) >. Trustyla) v Sensitivela))

Our third solution, then is

Psolve = Psensitive N Pverif N Ptrusty2 A Pindirect

Before proving invariance, we note that since trusty objects may be
called, and since non-trusty (though sensitive) objects can access sensitive
objects, we may weaken the requirements for operations that may not be
executed by trusty programs. We change Y 5jye to require that

{markov) vsoivei”'S) =

Verifiedlo.,x) A x = Executor(8§) A Sensitive(p)
o. (6§ = grantq(x.o,c) 5. Trustyla) v Sensitivela))
A (8§ = call(x,a,f) > Trustyfa))
A (&5 = call(x,B,a))
Nouw, ue note that
Psolve € Psensitive ” Pindirect ! € ¢problem

So, again we need prove only that Yg . ,e(0,8) and Psolvel0) together
guarantee 9., ,e(8(0)).

i

Problems, Mechanisms & Solutions (5.7) page 89

1. ¢ {8{(o)). Same as for solutions 1 and 2.

sensitive
2 ¢verif(8(u)). Same as for solution 2.

3. ¢trust92(8(°’)' Same as for solution 2.

4. Pidirect(8(o)). Suppose that § is sensitive and the object «
which is neither trusty nor sensitive has access to 8 aftr execution
of &§. This cannot happen. The possibilities are:

--- a) A trusty executor granted « access to B. Prevented by

(P f and) Y

veri solve’

--- b) « took access to B from some object, which by ®; 4irect
must be trusty or sensitive. Prevented by ¢trust92 if that object
is trusty, since "take"-ing requires read access. Prevented by

¢ if that object is sensitive.

indirect

--- c) a created a sensitive object. Prevented by

R(sensitive: create) Since we assumed that « is not trusty.

--- d) Puas called, resulting in a new executor a which has read

access to 8. By ¢ the caller must either be sensitive

indirect:

(prevented by ¢) or trusty (prevented by P q.j¢ and

sensitive
Wsolve)'
--- @) B uas passed as an argument when a was created as the
~ &
result of a call. By mindirect' the caller must be sensitive

{prevented by ¢) or trusty, which by (9,,.i¢ and) ¥

sensitive solve
viould require that the objec: called be trusty as well. By

R(trustg: call)» « would then also be trusty which contradicts the

assumption that « is neither trusty nor sensitive.

a.tE.D.

Problems, Mechanisms & Solutions (5.8)

----- Section 5.8 --- Conclusion

In this chapter, we explored solutions to a protection problem that
required both initial constraints on the base system (including an access
matrix mechanism) as well as behavioral constraints enforced by constraining
the programs executed by the control mechanism. -

In our final solution, we constrained the protection state by requiring
that sensitive objects could not be executors and could only be accessed by
trusty objects and other sensitive objects. We further guaranteed that,
while trusty objects might be calied, no object might have have read or
urite access to one.

[New trusty objects can only be created through "call", and not
by a "create". We might extend the solution to permit such
creations, though only by trusty executors, who would then be
permitted to have read and write access to those objects, presumably
for the purpose of making new trusty programs. The reader might
note that access rights for trusty objects would further complicate
Ysolves for ue would have to guarantee that trusty executors would
not grant these accesses to non-trusty objects (perhaps not grant
them at all), and we would have to guarantee that in filling in the
Value-part of a new trusty program, the executor would insure that

it was verified)

[The reader might see how a solution could be found to the
original problem, which permitted non-trusty executors ta read,
though not urite, sensitive objects. We might designate some of the
sensitive objects as "cautious" and permit non-trusty executors to
have read, but no other access to these objects. Cautious objects
might even have access rights for other sensitive objects, although

only those which are alsc cautious, and only r-rights]

In each of our solutions, uwe found we had to constrain the behavior
permitted by the control mechanism, by specifying a property that must be
satisfied by verified programs. In solving a problem such as the one
studied here, it is often desirable for the solution to constrain the

protection state only. Proving that programs meet specifications is a task

A~

Problems, Mechanisms & Solutions (5.8) page 91

one might in general like to avoid. Furthermore, unreliable hardware is more
likely to violate security by altering the program than by altering the
protection state, especially if the protection state is coded to permit
error detection and correction.

[f the problem studied here were important enough, ane might try to solve
it by adding an additional mechanism to the system so that the constraint on
the control state might be eliminated.

In this case, we might consider marking each object, indicating when an
object is trusty or sensitive. Whenever an object is created by a trusty
executor, it is marked as sensitive. Whenever a trusty object is called,
the new executor created is marked as trusty as well. The mechanism might
then directly guarantee that only trusty executors may write into sensitive
objects. Additional reliability may be obtained if this mechanism also

prevents those grants and calls specified by Ygq)ye-

The problem we have been studying can be thought of as a simplification
of a system containing multiple types of sensitive objects, each of which is
to be written only by trusty executors of the same tupe. These executors
may be thought of as the protected subsystem for that type. The mechanism
suggested above is then seen to be analogous to one uwhich stamps types on
each object and permits an object to be written by an executor only if the
type stamped on the executor matches the type 'stamped on the object. 1f
this mechanism also prohibited those grants and calls specified by vsolve
as it would be altered to include the case of multiple types, then the
reliability of the system might he further enhanced.

The major point to be gleaned from the discussion above is this: MWhen a
new system is designed, it is especially important that we undertake the
euiution of problems such as the one posed in this chapter. By so doing, we
determine how suitable are the mechanisms provided by the system, and what
additional mechanisms might be added to solve problems or to enhance

reliability.

Problems, Mechanisms & Solutions (6) : page 92

Chapter 6 -~ Productive Problems

————— Section 6.1 --- Enforcement Problems and Productive Problems

The behavioral problems described in the previous sections have all been
enforcement problems. They have represented guarantees about the continuing
behavior of the system. For example, "No untrusty executor must ever be
able to urite a sensitive object" and “The robber must never be able to
get any money by robbing the bank". That is, all behaviors permitted in the
system were required to be acceptable. For a productive problem, we must
only guarantee that from any appropriate initial state, some acceptet'e
behavior is possible. When a productive problem is represented statically -

as a property of the state, ¢ it is solved by guaranteeing that

probfem
some behavior results in a state satisfying P, hjeye In addition to
formally defining productive problems, we will show how the methodology of

section 4.4 can be extended to thenm.

Protection problems may often be thought of as having two-parts: How can
some bhehavior be enforced (the enforcenent problem), and under uhat
conditions may the solution to that problem be imposed on the system (the
productive problem). We will explore this situation in a formal setting in
this chapter.

Finally, in a protection system, we may expect that some executor (or set
of executors) is responsihle for bringing about the conditions that
guarantee the colution of a problem. Other executors may wish to thuart
these responsible executors. HWe might like to guarantee that a protection
mechanism permits the responsible executors to produce a solution even uhen

other executors arbitrarily interfere. In this chapter, we will formally

characterize such guarantees, as well ac formally specifying solutions to

productive problems.

A A DA 3 i

—

Problems, Mechanisms & Solutions (6.2) page 93
----- caction 6.2 --- The Souffle Example

Consider the making of a spinach souffle. QOur domain I is what might be
called the kitchen state space. Each element o ¢ I represents some state
of the kitchen - what ingredients and utensils are in the kitchen, what's
being used, what is mixed, uhat ¢ cooking, etc. The operations § ¢ A are
stale transitions for this state space. For example

81 (x,y,2): add x tsp u

.
(=3
(o]
b
~N

82(x,y,2z): mix % at speed y for time 2z

83(x,y,2): bake x at temperature y for time z

The problem is: Make ¢ spinach souffle. Unlike static problems, we don't
Hant to guarantee that the syctem invariantly contains a spinach souffle (in
fact, we rather expect that if the souffie s good it won't stay around long
at all). Instead, starting in a state containing the appropriate
ingredients, we want to transform the state and produce one containing a
spinach souffle. This transformation is generally accomplished by fol'owing
(executing) a recipe.

There may be more than one acceptable spinach souffle. MWe will write
“’problem(“) iff o is a state conta ning an \cceptable spinach souffle. We
call 'pproblem a static productive problem.

A recipe is simply some sequence of cooking operations, that is a
history, Hrecipe'

The recipe requires trat we start out with certain ingredients and
utensils. This is a constriint on the initial state. There may be more than
one acceptable initial state. For example, it may not matter much if the
initial state has oleomargarine instead of butter or a 9-inch baking dish

instead of a 1B@-inch baking dish. Ue urite (0) iff o contains the

¢so|ve
necessary initial utensils and ingredients far the given recipe.

Given an appropriate initial state, the recipe presumably will produce an
acceptable spinach souffle. That is '

P

(o) o ¢ (H (o))

solve problem'"recipe

Problems, Mechanisms & Solutions (6.2) page 94

Of course, therc may be more than one recipe that produces a spinach
souffle, although some recipes will work only with certain initial ingedients

and utensils and not with others. So we wWill write Ysolve(°'Hrecipe} iff
Hrecipe is a recipe that produces an accepiable spinach souffle when used

with the ingedients and utensils supplied by state o. Formally

? (o) o (YH)(Y (o,H > ¢

oroblen(H(a)))

solve solve

The formula above is exactiy the same formula as that for the solution to
a static enforcement problem, pproblem' That is,
<P

Y > enforces ¢

solve’ 'salve problem
In the next section we will explore this similarity.
————— Section 6.3 --- Producing Solutions

In chapters 4 and 5, VY was specified in such a way that (assuming

solve
that the system was initially constrained by 945)ye] execution of any

behavior satisfying Y., ye

the jrevious section Y

results in a s:ate satisfying ¢prob!em‘ In
solve is specified in exactly the same way.
Houever, in solving a behavioral problem we expect that any behaviors not

satisfying VYgqjye Will be prevented by the mechanism augmenting the

system; in solving a productive problem, we expect that the mechanism
guarantees that some behavior satisfying Yggo)ve Wwill be produced.

Formally ue define (compare uith definition 2-13)
>> Def 6-1] <$,M> praoduces ¥ iff
M:@) (0') > @EH) (Y <o’ H>))

that is, if <9
satisfying ¢

M> produces Y then for any initial state

solve* solve’

solver the mechanism permits the production of at least one
behavior that satisfies Y 5 e- [f M is a control mechanism (section 3.4),

then ¥4 can be used to specify the program (recipe) that is to be executed.

{ We previously shoued (theorem 3-4) that all behavioral

Probliems, Mechanisms & Solutions (6.3) page 95

constraints enforced by a decision mechenism are monotonic. This is
not true of constraints produced by a decision mechanism. Yg,)e
may satisfy <o, §18283> in some system, but not <o,8182>.
Certainly this makes sense for the spinach souffle example. While
(615283) (0) might contain an edible souffle, (8182)(¢) may not,
especially if &3 is the operation "bake the souffle".)

We further can define <¢ M> produces 4broblem to mean that, from

so!ve’
any initial state satisfying ?y.opjemr the mechanism can be used to
produce a behavior whose result state satisfies wnroblem‘ If M is a
control mechanism, 94 may specify a program uhose execution will result in a
state satisfying ¢prob|em when executed in a state satisfying Pg5|ye-

>> Def 6-2] <P M> produces ¢problem iff

solve’

(M:Pgqpye) () > (3H)(Propienl TH(H (8))))

Thus the productive problem ¢prob|em can be distinguished from the
enforcement problem ¢probiem which is solved when
M:9

)J{e¢’) o (VHI{ @ (q(H "))))

solve problem

At the end of the previous section, we noted that productive problems
could be solved by a pair <P, 5 verYsolve
be explained by the following theorem (compare with theorem 4-3)

> that enforces ¢problem' This can

Theorem 6-11]

If <¢solve'w > enforces Qproblem
and <P54ver

and M is homomorphic

solve

M> produces vso!ve

then <P M> produces @problem

solve’
Like a static enforcement problem, a static productive problem @y . phjem
is shorthand for the behavioral problem Yproblem defined sa that

\ (0,H) = @ e (Hio))

problem

Probtems, Mechanisms & Solutions (6.3) page 96

that is, a behavior is acceptable (satisfying Yoroblem) if the state
resulting from its execution satisfies ¢problem4

Theorem 6-21

It <Psoiver Ysolve> enforces Yoroblem

and <¢so|ve'"> produces vsolve

then <¢so,ve.n> produces Yprob'em
The two theorems above are analogous to those of section 4.4 and suggest
the following methodology for solving productive problems:

1. Find an initial constraint ¢ which eliminates ali states

solve
in which no acceptable behavior can be produced.

2. Characterize | Ysolve) @ set of acceptable behaviors. Each
state satisfying Reolua
behavior in the set.

must be the initial state of at least one

3. Determine a mechanism M that can produce at least one behavior

characterized by VY for each initial state satisfying ¢

solve solve*

----- Section 6.4 --- Producing Solutions to Protection Problems

What we tend to informally call a protection problem o%ten turns out to
be two problems, one of them productive. Suppose that we are interested in

solving some enforcement problem Y We may find some solution

problem®
Psolve that solves the prohblem. It is useful to know how vsolve may

itsel'f be produced.
For example, in section 4.3 we discussed the bank robbery problem.

(markov) VY, o.robber.money = §(o).robber.money

problem(0s &)
o.vault.money = $(o).vaul t.money

in 2 systen in which

Problems, Mechanisms & Solutions (6.4) page 97
81: if —~drunk{robber) A -locked(vault)
(robber.money « robber.money + vaul t.money;

vault.money « 8)

We showed that Yproblem could be enforced by a solution that required
that either the vault be locked or empty, or that the robber be drunk.
Further, we shoued that a requirement that the vault simply be locked was an
acceptable (though not minimal) solution.

Pooivelo) = locked(o.vault)

Another solution would simply require only that the robber be drunk.
Intuitively, that solution is not acceptable. The reason is that such a
solution may (presumably) not be produced.

We made the implicit assumption that someone (e.g. the bank manager)
wanted to solve the problem and would take some action to bring about the
solution. We imagine that locking the vault is within the control of the
bank manager; guaranteeing drunk bank robbers (presumably) is not.

Formally we treat 9.,i,, as a productive problem Piyropiem:

P ¢

problem =def Tsolve

We expect that in the case that ‘p"'problem characterizes the locked vault,
some other operation, for example

$2: wvault.lock « tt

(note we can nouw define the predicate locked as
locked(x) =yq¢ x. lock)

can be executed tu satisfy ‘p’"problew That is, we find that
<¢""solve'w‘solve> enforces ‘p’"problem where

Q)'cso've(u) = tt

Yegoive (0, H) = H = 52

e —————

Problems, Mechanisms & Solutions (6.4) page 98

In any state, execution of $2 (locking of the vault, presumably by the bank
manager, Executor (§2) = manager) will produce @*problem'

In the example above uWe could aluways solve Pprobiem® This may not
aluays be the case. Possibly the vault could be locked only by someone with

a key. Instead of a single command §2, we might have

82(x): if key € <x,vault> then vault.lock « tt

where Executor (§2(x)) = x

This introduces the possibility that no one may have the key. v*problem
can only be solved if someone has the key. For example, suppose that x has

the key. ¢*problem can then be solved by <P g |yesYigolve> where

Pre (o) = key ¢ <x,vault>(o)

solve
Yoigoive(8) = H = 62(x)
Now if
Psoive enforces Y, oniem
Poroblem =def Psolve

<Pregoiver Yrgolve> enforces v*problem

then uwe say that @& is a context for the solution of vproblem' In

solve
this example, it is possible to produce a state in which a bank robbery

yields the robber no money in any context in which x has a key to the vault.

----- Section 6.5 --~ Producing Mechanisms

In section 6.3 we shouwed that a solution <¢*solve'n*> could produce

Piproblem BY guaranteeing that for any state satisfying gy yer the

mechanism Mwx permits execution of some history resulting in a state

satisfying 9 In section 6.4, ue showed how v*problem might

problem*

ivself be a solution to some enforcement problem Yproblem' That is

P enforces Y

solve probiem

- ¢*problem

where Qsolve

-

A S A A e 5 T A A RN e 0 LN S S i Al P g

Problems, Mechanisms & Solutions (6.5) ' page 99

But, we have noted that an enforcement problem may be solved by adding a
mechanism M as well. That is

<¢so,ve,n> enforces Yproblem

The mechanisms M and M« may be almost, -but not exactly, the same. T and
My 2re the same. However, @, represents the initial constraint on the
mechanism state. After execution of some history {producing 9goive ’» Py
may no longer hold; instead ¥y is expected to hold. Formally we define
(compare uith definition 6-2)

>> Def 6-3) <Py, Mye> produces <?,M> iff

TN* i Tﬂ 4
(Mye: @) (0') o> (IH) (. (M:9) (H (0")))

Thus if we want to guarantee not only that some enforcement problem
vproblem can be solved, but that the solution can be produced by <@, Mw>,
then we must find a <?,M> such that

<P,M> enforces vproblem and
<Py, Mye> produces <®,M>

————— Section 6.6 --- Local Solutions

Not

everyone in a given system (e.g. the bank robber) necessarily wants a
problem to be solved. We say that a problem can be locally produced by some
set of users if an acceptable behavior can be produced in the face of active
inter ference by other users. We will motivate the formalization of this
relation by continuing the discussion of the bank robbery example (section
6.4)

Suppose that x has a key, but x is not the manager (perhaps x is the
manager’s goat-like dog who ate the keyl. Theoretically ¢*problem (uhich
requires that the bank vault be locked) can be solved, but possibly not by
the executor (in this case the bank manager) that wants it solved. We
really are only interested in the solution

G Ak o e 0 —— WL e e

Problems, Mechanisms & Solutions (6.6) - page 1080

Pregoive (0) = key ¢ <manager,vaul t> (o}

Yﬁso‘ve(o.H) = H = $2(manager)

which guarantees that the manager is the executor that can produce the
desired solution.

First let us imagine that the system contains yet one more command.

83(x,yl): if evil{x) A forgetful (y)
then <y,vault> « <y,vault> - key

where Executor (§3(x,y)) - x

That is, if y is forgetful, y may forget her key to the vauit and the key
may be thrown away by the evil executor x (remember that the key does not
uniock, but only locks, the vault. Perhaps a different key mau be required
to open it). If the manager forgets her keys and the evil Oemono throus
them auway (executes §3(0emono,manager)), the vault cannot be locked.

Now formally, the solution given above can still produce a state
satisfying v*problem' however, W*solye does not take into account any
operations other than §2(manager). We should like to find a solution that
guarantees that even if other executors interfere, ¢*problem can still be
satisfied. For example, we might strengthen ¢*solve'

Piegoive (0) = key ¢ <manager,vaul t> (o)
n =forgetful (o.manager)
That is, as long as the manager is not forgetful, it does not matter what

other executors do. Once §2(manager) executes, the problem is solved.

In general, ue might im-gine that if some consortium of executors X were
trying to bring about a state satisfying Q*problem' they might be thuarted
by other executors. This might 2e prevented in two ways. The approach
taken above strengthens the initial constraint v, ,e 80 that actions
taken by other executors can have no ill effects. Al ternately, the
mechanism M producing Ywgy(ye Might be so constrained (or chosen) to
prevent operations of other executors that would thwart satisfaction of
Pye

problem*

B e

Problems, Mechanisms & Soiutions (6.6) page 101

In either case, ue uwant to guarantee that if <®Prgy|ye)fv> permits
execution of a history that produces a state satisfying ®Peproplemr then
adding or removing operations from that history not executed by executors in
X should have no effect on the satisfaction of q""problem'

Below, we wil! formally define H/X to mean H with all operations removed
except those executed by X. As a résuH. H1/X = H2/X if the sequence of
operations performed by executors in X are the same for histories Hl and H2.
So, wWe can define

>> Def 6-4] <P,Mi> locally produces <®,M> for X iff

e =™ A
(Mye: @) (0') o (3IH) (VI He/X = H/X 1) ((M:®) (Hel(0’)))

Belou we define H reduced by X. The similarity in notation to that of
definition 3-18 is justified by a similarity in intent ("reduction"), as well
as by a similarity in the form of the definitions.

>> Def 6-5I H/X (recursively defined)

MY <== A

(H8) /X <==
Let R be H/X in

if Executor(8) ¢ X then R$ else R

We close this section by pointing out the likely meaning of ¥4, when
<®s,Mw> locally produces <?,M> for X in the case that Mv is a mul tiprogram
control mechanism (section 3.5). 9y, presumably speci‘ies the program
components of X whose execution (when the base state satisties ®%) results
in a state satisfying M: 9.

faos e i

TR PRy v

Problems, Mechanisms & Solutions (8;7) page 182
----- Section 6.7 --- Examples of Productive Problems

In previous chapters we have shown hou enforcement problems correspond to
many protection and synchronization problems. In section 6.4 we noted that
productive problems may arise by considering how solutions to those
enforcement problems may be brought about. In this section, we will provide
examples if productive problems important in and of themselves.

First we consider the static problem
‘pproble.m(") = uw ¢ <Cohen,Salary> (o)
In section 4.2 ue treated this problem as an enforcement problem - as a
property that had to be enforced. As an enforcement problem, Py.oh1em

corresponds to the Access problem - guarantee that Cohen can never gain
access to the Salary file.

When we treat ‘pproblem as a productive probliem - as a property to be
produced, it corresponds to an entirely different problem, a Revocation
problem [Redell 74). ¢problem is solved (as a productive problem) by
determining how the system may be brought to a state in which Cohen does not
have urite access to the Salary file. 1f PestverVsolve> 18 @ solution to
‘pproblem' and @ ,|,e is satisfied by some state in which Cohen does have
urite access, then a corresponding behavior satisfying Wsolve must have

the effect of revoking that access.

Productive problems can also be used to characterize scheduling problems.
For example, to guarantee that executor x is not starved [Dijkstra 72], we
must show that some history can be produced containing an operation executed
by x. Formally, this situation can be characterized by the behavioral
productive problem

Y (o,H = § ¢ H A x = Executor (§)

problem

In this chapter ue have studied productive problems - constraints on
behavior that are to be produced or locally produced. Productive problems
and enforcement problems model a large number of problems encountered in
computational systems. Even so, we find in the next chapter that all

Problems, Mechanisms & Solutions (6.7) : ‘ page 183 |

g protection problems (in particular, information problems) cannot be modelled
] in this way. :

R i

Bt il el

Problems, Mechanisms & Solutions (7) page 184
Chapter 7 - Problems and Solutions
"In this world, things are complicated and are decided by many
factors. We should look at problems from different aspects, not

just one."

Mao Tse Tung "On the Chungking Negotiations"

————— Section 7.1 --- Introduction

Throughout this thesis we have restricted our attention to behavioral
problems, those that can be characterized as a constraint on behavior to be
enforced or produced. MWe developed a model in which those problems could be

solved by imposing a constraint and/or adding a mechanism to a given system,

In this chapter, we expand our notion of problem to include any problem that
may be solved by an initial constraint and a mechanism, developing a notation
for a problem as a characteristic function of its solutions.

Certain problems may be described using this notation that cannot be
appropriately described as behavioral problems. We find that enforcement
problems cannot be used to model information protiems, even though they
appear able to at first. Solutions to enforcement problems are shoun to
satisfy two properties, the Containment property and the Join property,
neither of which may be satisfied by solutions to certain information
problems. '

We explore the constraints (boundary conditions) one might wish to
require of solutions to problems and consider ways of measuring and
comparing solutions. Finally, we explore the relationships between maximal
(least restrictive) solutions and those whick «°2 opiimal according to some
measure, paying special attention to a class of measures we define as

monotonic.

(o P S

i A A R R i b kR A A i 2

. i . o AR i AN 5

ks g e e e 5 oy s

Problems, Mechanisms & Solutions (7.2.) page 185
----- Section 7.2 --- Characterizing Problems
We will formally characterize a problem as a predicate X such that

X(®,M) only if <®?,M> solves some given problem. For example, the
enforcement problem vp*oblem would be characterized by

X(®,M) = <?,M> enforces Yp.qp)em

The productive problem @problem is characterized by

X(®,M) = <P,M> produces ‘pproblem

In cases where we do not consider adding any mechanism to a system, we
Wwill instead write X as a predicate on an initial constraint alone. For
example ’

X{(®) = ¢ enforces vproblem

The X notation makes it easy to describe and compare properties of
solutions to problems. First, we develop some nptation

>> Def 7-11 Pl A P2, Pl v 2

Pl A 92 =qef A0.(910} A 92(0))
Pl v 92 2def Ao. (91 (o) v P2(0))

Eartier, we defined (definition 2-15)

Pl € 92 =4o¢ (Yo)(Pllo) > $2(0))
We extend that definition so that
>> Def 7-2] <?1,Ml> contained in <92,M2>

<P1,Ml> € <92,M2> =ye¢
Uy (o', H) 1 (ML) (0') 3 € yp (o’ HY | (M2:92) (0') }

That is, <®P1,Ml> ¢ <P2,M2> if all behaviors that can occur when <®1,Ml> is
imposed on a system car also occur when <92,M2> is imposed.

Problems, Mechanisms & Solutions (7.2) page 186

If Yproblem is an enforcement probrem.'then'ang solution that enforces
vproblem is contained in any solution that induces Yproblem' since the
latter solution is guaranteed to permit all behaviors satisfying vproblem'
Formaliy

Theorem 7-11]

1f <?1,M1l> enforces Y
and <92,M2> induces Y

problem
problem

then <®1,Ml> ¢ <¥2,M2>
which follows directly from definitions 2-18 and 2-18.

Next we show that enforcement problems satisfy two important properties,
the Containment property and the Join property.

Theorem 7-21 The Containment Property
P2 < P1 >, X(P1) > X(92)

wuhere X(P) = ¢ =nforces vproblem

That is, if 1 enforces vproblem and 92 is more restrictive than ¢1
(permitting a subset of the initial states permitted by ¢1), then @2

enforces Y as well,

problem
Theorem 7-3]1 The Join Property

X(P1) A X(92) o>, X(91l v 92)

where X(P) = P enforces Wproblem

That is, if ¢1 solves wprmﬂem and 92 solves Vproblem- then a weaker

solution will solve VY as well, one in which the initial states are

problem
constrained so that either 91 or 92 must be true.

More generally, ue can shou that

i)

Problems, Mechanisms & Solutions (7.2) : page 187

Theorem_ 7-4]

1) <9P2,M2> ¢ <P1,Ml> >, X(®P1,M1) > _X('PZ.HZ')
2) X(P1,M) A X($2,M) o>, X(" v 92, M)

where X(®,M) = <9,M> enforces vproblem '

I1f we are to solve some problem X without adding a mechanism, we may be
interested in finding the maximal (least restrictive) solution to the
problem. 1f the join of any tuwo solutions is itself a solution, then the
maximal solution is simply the join of all of the solutions.

P

by w e

More generally, if X does not satisfy the join property (for an
example, see section 7.4), then ue define a maximal solution as one that
is no more restrictive than any other solution. Formally we define

>> Def 7-31 @, ., maximally solves X jff

X(‘pmax) A

(Ppax SP A X(@® 5 @ =9)

Theorem 7-5)

If X(91) A J(92) >, X(91 v)

and 9. maximally solves X
than V.o = v 191 X09))
----- Section 7.3 --~ Constraining and Measuring Solutions

In section 4.2 ue noted that the optimal so'ution to an enforcement
problem Y, .opjem need not be one that induces VY. pjeme and in fact in
section 4.3 we shouwed that if we were not permitted to add a mechanism in
solving a problem (i.e. only impose an initial constraint), that no solution
inducing Y, might even be possible. In this section, we will

problem

Problems, Mechanisms & Solutions (7.3) page 188

consider measures for solutions, including a class of measures, those that
are monotonic, for which an optimal solution does correspond to one that

induces Y More generally, we Will consider the relationship between

problem*
optimal and maximal (least restrictive) solutions.

Even if we are not concerned with optimality, we may nonetheless want to
eliminate certain solutions from consideration. For example, any
enforcement prohlem can be solved by "pulling the plug" - that is, by adding
which never executes any base system operation, or by
s ff, which does nut permit the system to

the mechanism mnull

imposing the constraint 9 ,|.e

operate in any initial state.

We restrict the class of acceptable solutions by requiring that solutions

satisfy some constraint, which we write as X For example, if ue

constraint:
wished to guarantee that an initial constraint satisfying some enforcement

problem be satisfied by some state in the set S, we would define

X(®) = {9 A @ enforces Ypropiem

xconstrain

{FocS) ((o))

whece Xcongtraint (P =

Suppose that we wanted to guarantee that for any solution <®,M> to the

enforcement problem Y the mechanism permitted the execution of at

problem’
least one acceptable behavior from any state satisfying ¢. We would define

X(e,M) = X aint (M) A <?,M> enforces wprob!em

constr

where X traint (%M = <@.M> produces ¥y.op)em

cons

As a final example, suppose that we want to guarantee that the solution

to some enforcement problem VY can itself be locally produced by

problem

some set of users X in context ¢ We define

context:

X(@,M) = Xeonstraint(®:M A <?,/1> enforces Wproblem
where xconstraint(@'M) s
(M) (<¢context'”*> local ly produces <®,M> for X) ﬂ

é
|
i
{
1
1
|
i
i

Problems, Mechanisms & Solutions (7.3) A page 189

In the bank robbery problem (section 6.4), we found that vproblem could
be enforced both by

Qsolve(") a |ocked(o.vault) and
¢so|ve(°) 2 drunk (o.robber)

Houever, uwe noted that for some reasonable context, the local production
constraint, formalized just above, eliminates the second of those solutions.

In the bank robbery example, the added constraint eliminated one possible
solution. In fact, an added constraint may eliminate all solutions, except
by requiring the addition of a mechanism. For example, suppose We conjoined
with Xconstraint above, the requirement that

P(0) o. -locked(o.vault) A o.vault.money = 8

The problem may still be solved, but not without adding a mechanism that
can provide additional protection for fhe*vault. since the added constraint
requires that it not be locked. MWe add a mechanism that provides merciless
kitler dogs, such that the robber can only get to the vault if the dogs are
not guarding it. That is, in place of the command 81, the mechanism
provides §1’, defined so that

™™(81') (") = 81 if -guarding(a’.vault)
A otheruise

where guarding(c’.vault) indicates that the dogs are guarding the vault in
state o', Addition of this mechanism solves the bank robbery problem so long
as it is constrained so that

$4(0’) = guarding(e’.vault)

A likely constraint is that a solution be at least as good (according to

some criteria) as a given solution. That is

Xconstraint (P = Worth(¢® M) < Worth(®,M)

given'''given

v

where MWorth is some measure of a solution's worth and "<" is some partial

orcder of those worths.

ey

S
aaeg

Problems, Mechanisms & Solutions (7.3) page 110

Just as we wuwrote X(®) uwhen no mechanism can be added, we Wwrite
Worth(?) for the worth of a solution that does not admit a mechanism.

It is often reasonable to believe that it one solution permits all of the
behavior permitted by another solution, it should be at least as worthy.
3 Measures of worth that exhibit this property are monotonic.

>> Def 7-4] <Worth,<> is a monotonic'nseasura iff

e

i <Pl ,Ml> € <P2,M2> 5. MWorth(®1,M1) < Worth(¥2,M2)

We might value worth directly in terms of the behavior permitted,

assuring a monotonic measure. Define
Worth(®,M) = { 1<’ ,H'> | (M:®) (o) }

with "<" defined to be set inclusion (€). Then one sofution is more
worthy than another if it permits more behavior. Yet this measure may be

too restrictive. Consider the system

§l: if a =1 thenfBl em
82: if a =2 then Bl em
83: if xa 23 then B2 em
1 :
i The problem

(markov) vproblem("'“ = 6(0).»32 = 0.02
can be solved both by ®1 and 92 where

Pl(o) = o0.a <
$2(0} = 0.«

[}
N -

iA

:‘ 92 strictly contains ?1, and therefore, by the measure above is more
wor thy. Houwever, from a semantic viepoint, it may be argued that ®1 is just
as good as 92. Both solutions have the effect that the only behaviors
permitted by the system transmit information from m to f1 - no more and no
less. It is clear that additional research on valid measures is necessary.

B e e

Problems, Mechanisms & Solutions (7.3) ' page 111

In [Cohen 761, we study a monotonic measure based on an Iinformation
transmission formalism. Using that measure, one solution is as worthy as
another if it permits at least the same infaormation transmission paths.

Given a measure of the worth of a solution, we may naturally be
interested in finding optimal solutions, those with maximal worths. Given
some measure of worth, we may define (With respect to that measure)

>> Def 7-51 <?,M> optimally solves X iff
Warth(®,M) = Max { Worth(®w, M) | X{(@x,Mw) }

I1f X respresents an enforcement problem Yproblem' then any solution
that induces Y .

is optimal, With respect to any monotonic measure.
Formally '

problem

Theorem 7-61

If <®,M> induces Yproblem
then <®,M> optimally solves X
with respect to any monotonic measure
where X(®,M) = <9,M> enforces Ybroblem

In particular, this theorem shows that an optimal solution may be found
for any monotonic enforcement problem (with respect to a monotonic measure) .
In section 3.7, we showed hou such a solution might be constructed.

1f we are not permitted to add a mechanism to a system in order to solve
an enforcement problem, then the optimal solution may not induce vproblem
(see section 4.3). Houever, for any problem satisfying the Join property, 2
maximal solution is an optimal solution (far a monotcnic measure). Formally

|

Problems, Mechanisms & Solutions (7.3) page 112
Theorem 7-7]

If X(P1) A X(92) o> X(91 v 92)
and @, maximally solves X

then @, optimally solves X
With respect to any monotonic measure

----- Section 7.4 --- Information Problems

In this section, we briefly discuss information problems, those concerned
Wwith guaranteeing that transmission of information froem certain objects to
other objects is prevented. MWe will show that, while it is tempting to
treat information problems as enforcement problems, solutions to information
probiems do not satisfy the properties that must be satisfied by solutions
to enforcement problens. '

We could write (adapted from [(Denning 75))
a-(o: H) ->0

to mean that when Wis executed in state o, information can flow from object
a to object g.

Suppose that uwe uanted to solve the problem: prevent transmission of
information from a to B. This can be represented by the enforcement problem

Y (o,H = = a-(o:H)->0

problem
that is, acceptable behaviors are those in which no information can flow
from o to B. The problem can be solved by ¢® where

¢ enforces Vproblem
We will show that this formalism for information problems is incorrect,
for the solutions to the problem of preventing information transmission from
« to B do not correspond to the solutions to wproblem' and in fact, the
solution cannot correspond to the solutions of any enforcement problem.

E |
?
?

Problems, Mechanisms & Solutions (7.4) page 113
Consider the system

81 ﬂo-q
$2: if m then 8 ¢« «

: Transmission of information from « to @ may be prevented by imposing the
constraint ‘

P(g) = -o.m

That is, if m is constrained to be false, execution of §2 will not transmit
information from a to B. Nou according to theorem 7-2, if an information
problem is a behavioral problem, a more restrictive solution should prevent
information transmission from o« to B as well. Consider the stricter
constraint (the more restrictive solution)

P(o) = =-o.m A 0.q = 0.Q

In addition to requiring that m be faise, ¢ requires that the initial values
of g and a be the same. However, since a and g are the same, executionvof
81 transmits information about a to @, for an-observer of B can (after &1
has executed) infer the initial value of g, and knowing ®, can thereby infer
the initial value of a! Solutions to information problems do not satisfy the

Containment Proper ty.

Next consider the system
§: B ¢« «

A solution that prevents transmission of information from « to @8 is
@1(0) = 0. = 23

If the value of « is initially constrained to be 23, no information can be
transmitted from a to B. The amount of information transmitted from a
source to a receiver depends upon the number of messages that can be
transmitted and the probability of transmission of each one [Shannon &
Weaver 43]. If only one message can be sent, no information can be

Problems, Mechanisms & Solutions (7.4) . page 114

transmitted. By constraining « to be 23, only one message can be sent from
a to B as the result of executing § - the "message" 23. An equally good
solution is i

P2(0) = o.a =396

Houwever, 9 =91 v 92 is not a solution. If a may initially be either
23 or 96, then tuwo messages can be sent from a to , and information can be
transmitted from o to B. Therefore, solutions to information probiems do
not satisfy the Join Property (theorem 7-3) either.

Solutions to information problems may not satisfy the Containment
Property or the Join Property because of the irferential nature of initial
constraints. [If the value of an object is constrained to be constant, no
inference can be made about the object, and therefore no informz2lion can be
transmitted from it. If the value of an object is constrained to correspond
to the value of another object, an inference may be made about that other
object, and information may he transmitted from it.

In effect, the initial constraint itself partially determines which
behaviors are acceptable. This suggests that a formal theory of information
transmission must consider the constraint initially placed on a system.
[Millen 76] does note the importance of considering constraints in analyzing
information paths in sequential programe. A formalism for studying
information transmission in the presence of constraint is developed in [Cohen

76]) .

dhde .

Problems, Mechanisms & Solutions (8) page 115

Chapter 8 - Conclusion

This thesis has developed formalisms for the concepts - probiem,
mechanism and solution - useful for proving properties about real systems.
In this conclusion, we wWwill describe the important contributions of these

formalisme and their value as part of a continuing study of computational
systems,

These formalisms are based upon a simple description of computational
systems as a state space and a set of discrete Indivisible operations.
Parallelism is not modelled directly, but can be modelled through the
addition of a mechanism that interleaves the operations in appropriate ways.

States are described as being wholly comprised of objects having fixed
unique names. As a result, it is possible to designate objects as belonging
to some class (e.g. "trusty" or "sensitive” as in chapter 5). The executor
of (process executing) an operation corresponds to the name of some object.
That name is part of the name of the operation and can be determined
independently of the state in which the operation executes. These aspects
of the model were responsible for simplifying descriptions of problems and
proofs of the correctness of their solutions.

We defined a mechanism so that it can be used uniformly to model those
things commonly called "mechanisms", including protection mechanisms,
sequential and parallel control mechanisms, synchronization mechanisms,
levels of hierarchy and interpreters, but commonly described in diverse
ways. We categorized mechanisms in terms of algebraic properties,
describing them as direct, homomorphic, markov and consistent. These
properties correspond to properties one might ordinarily consider in studying
these mechanisms. The tatter two properties, for example, relate to

concurrency.

We did not consider properties of mechanisms beyond those required for
the purposes of the thesis. Mechanisms do seem to have a rich algebraic
structure; they are related to or extensions of structures found in automata
theory, formal language theory and category theory. We also did not study
embedding of mechanisms (e.g. - the synchronization mechanism embedded in
the multiprogram control mechanism - section 3.5). These may be useful
research topics.

Problems, Mechanisms & Solutions (8) page 116

We described mechanisms in terms of an elegant notation that aided the
description and development of a number of proof techniques. Proof
techniques known to be useful in studying one mechanism may be cast in a
more general framework and applied in studying a different mechanism. For
example, the method of static invariants [Robinson & Holt 74) wused in
studying sunchronization was shoun here to be applicahle to protection.

Systems may contain multiple mechanisms, each of which may need to be
constrained in order to solve some problem. A uniform mechanism formalism
permits the deveiopment of a formal methodology for determining those joint
constraints. That methodology was developed in section 4.4, [t was used in
chapter S to find a solution to a protection problem that specified both an

‘initial constraint on access rights as well as a property that had to be

satisfied by the programs to be exetuted by certain users.

This thesis primarily has studied a class of problems we called behavioral
problems, those that can be described as a constraint on the behavior of a
system. Using behavioral specifications, both protection and sgnchronization
problems can be described independently of any system in which that problem
might be solved. This means that we can show, very naturally, how a
protection mechanism might, for example, be used to solve a synchronization
problem, as when mutual exclusion is enforced by a protection mechanism that
permits non-sharable capabilities (i.e. only one process at a time has
access rights for some object).

We showed how the behavior of a system could be constrained by adding a
mechanism to it or by imposing some constraint on the states in which the
system might initially be permitted to operate. This led us to define a
solution as a < constraint, mechanism > pair. We described a number of
primitive relationships betueen < constraint, mechanism > pairs and
behavioral constraints, including induce, enforce, produce and locally
produce. These cdescriptions can be used in various wWays as part of a
fanguage for problem specification. For example, "enforce" is used in
describing that class of problems (including many synchronization and
protection problems) solved by guaranteeing that execution of only certain
acceptable behaviors are to be permitted. "Produce" is used in describing
that class of problems (including other protection problems such as the
revocation problem, and scheduling problems) solved by guaranteeing that at

N DE S SIE S R

A A Nl b+ P . S i e

ST, I

e T W TR,

b
§
|

Problems, Mechanisms & Solutions (8) page 117

least one acceptable behavior may aluays be executed. The primitives can be
combined in various ways to describe numerous sorts of probiems.

Behavioral problem specifications can be. independent of any particular
system, and therefore quite general. As a result, >theg may not be in a form
well suited for praving the correctness of a salution in some given system.
When a particular system is given, it may be possible to convert the
behavioral specification into a static one - specified as a property of the
state of the system. It is often easier to prove that some property of a
system is invariant than to prove that only acceptable behaviors can be
executed. MWe formally demonstrated the validity of certain conversions from
behavioral to static specifications and also developed techniques for proving
invariance. This technique was used successfully in chapter 5.

We discussed measures for solutions and characterized a property of
measures - monotonicity - which requires that the worthiness of a solution
increase as its generality increases. UWe did not consider particular
measures in great detail. We might have [(iked to present a measure that
would have formally indicated how the three solutions for the problem
discussed in chapter 5 differed. Future research might explore useful
measures and might consider ways of proving optimality of solutions beyond
those considered in chapter 7.

Finally, we briefly discussed information problems, those concerned Wi th
preventing certain information transmission in computational systems. We
showed that one might think of information problem as enforcement problems -
an acceptable behavior being one in which illegal information flow does not
take place. However, we showed that in general, information problems cannot
be described in this way, for their solutions satisfy neither the Containment
property nor the Join property, uhich we proved had to be satified by
solutions to enforcement problems.

In [Cohen 76) we continue the study of information problems, presenting a
definition of information transmission based on ideas taken from infor~mation
theory, and using those definitions to formally define a simple version of
the Confinement problem and the Military Security problem. A study of a
more complex version of the Confinement Problem (including
"declassification") is in progress, including proof of a solution in a system

Problems, Mechanisms & Solutions (8) page 118

similar to that described in Appendix A, modified to correspond to the
mechanism provided to solve Confinement in the Hydra system {[Cohen &
Jefferson 75),

Mechanisms may be added to a system tc prevent information transmission.
Houever, [(Rotenberg 73] and [Denning 751 have shown that mechanisms may
subtly add new paths for information transmission. Research in progress
indicates that the formal definition of mechanism developed in this thesis
may be usefui in understanding how the addition of those information paths
may be prevented. In particular, strongly consistent mechanisms do not add
information transmission paths. Since many of the implementation levels of
an operating system may be viewed as consistent mechanisms, the mechanism
formalism may be useful in simplifying proofs of the information security of
an operating system (e.g. [Millen 76]).

Finally, while this thesis has provided a framework for descrihing
protection problems, it has not discussed any specification l|anguage for
them, in the sense that path expressions [Campbell & Habermann 751 are a
specifica ‘on language for synchronization problems. Certainly, the
relations induce, enforce, produce and locally produce should be included

(or derivable from other constructs) in any such language.

; Problems, Mechanisms & Solutions (A) ; page 113 ﬁ ;
Appendix A - Access Matrix Sgstéma : : | ;

In this appendix, we uWill describe Access Matrix systems and present a
simple example of ane that will be used in chapter 5.

[Lampson 711 was the first to describe protection in terms of an access
matrix, A, where Alx,yl contains the set of rights x has for y. For
example, if r represents the right to read, and w represents the right to
write, then Cohen will be allowed to read the Salary File only if
r ¢ AlCohen,Salary]l and Cohen will be able to wurite the Salary file only if
u ¢ AlCohen,Salaryl. : :

A B L L 5 Al D S

A el

We will use the notation <x,y> as a shorthand for Alx,yl.
3 We will assume a base system which provides four generic operations. UWe
é delay our discussion of tuo these, call and create. The operation

move (x,y, j,z,k,n), when executed by x, moves a portion of the contents of z
to y. The access matrix mechanism only allous this operation to execute if
x has the right to read z and to write y. The operation opgy(x,y,i,j,k)
when executed by x, performs some operation on the contents of y. The
mechanism only permits this cperation to execute if x has both the right to

read and wurite uy. In general, an access matrix mechanism tests a
) conjunction of conditions, each of the form, q ¢ <x,y>, in order to
i determine whether some operation should be permitted to execute.

Ll‘*‘(‘»* Coalnr o Teaber Lhcacy JAeas

. -
B

S (v
Lawgson o
| \
w ' €
v s
Conen o o]
g (3 3 {
KLeabon
v ;
t\\’O“f ! l.
- el A -' S I
5 |
- ' l
L SU‘,-QC L ‘i e, {'Q;Q(‘(“(‘l "'o (N 4@.(* j %

Problems, Mechanisms & Solutions (A) page 120

Since the mechanism contains a mechanism state (the matrix), there are
operations that manipulate this state. For example, the operation
(1) take, (x,y,z) takes a copy of y's r-right for z and gives it to x.
Thus, take. (Cohen,Lampson, [deas) gives Cohen read access to Lampson's
Ideas. There are tuwo pre-requisites for this operation. Lampson must have
r-rights for his ldeas and Cohen must have r-rights for (be able to read)
Lampson.

The “"grant" operation is the complement of the "take" operation. Once
Cohen has taken r-rights for Lampson’s ldeas, Cohen can execute
(2) grant.(Cohen,Library,ldeas) which grants Library the right to reszd

(r-rights for) Ideas. Subsequently, - Reader might execute
(3) take.(Reader,Library,ldeas) to get r-rights for Ideas, so that
Reader’s attempts to use ldeas will be successful (not be prevented by the

mechanism) .

In Lampson’s description of the access matrix, the matrix was not square.
The rouws only listed "subjects", those objects that represented executors.
The matrix we describe here is square so that passive entities like Library
can have the right to access objects, if only so subjects can "take" these
rights. As a result, we need some formal way to distinguish subjects from
other objects. MWe specify a neuw right, s-rights, so that x can be an

executor only if s ¢ <x,x>.

As "grant" and "take" share rightslaround, "remove" removes rights from
the matrix. For example, remove.(Cohen,Library,ldeas) will remove Library’s
right to ldeas.

Both remove,. (Cohen,Library, Ideas) and grant. (Cohen,Library, Ideas)
require that Cohen have u-rights for Library. The reason has to do with
information transmission.

Suppose that Cohen has the right to write into an Spy. By uriting into
Spy, Cohen can transmit information to Spy. Now suppose that Coken did not
have wu-rights for Spy, and that w-rights were unnecessary in order to grant
some right to Spy. Cohen can transmit (one bit of) information to Spy
depending upon whether or not he grants Spy access to some object, say
Salary. Spy can "read" this transmitted information by attempting to read

é

S N —

| s p—

Problems, Mechanisms & Solutions (A) : page 121

(via a "move") Salary. If Spy succeeds, Cohen has transmitted a "1"; 1f Spy
fails, Cohen hac transmitted a "8".

Requiring w-rights for “grant"s (and “"remove"s), as well as for for
"writes" ("move"s and "op"s), lets us consistently treat w-rights as an
indication of whether or not information can be transmitted. A discussion of
these and related issues can be found in [Cohen & Jefferson 75].

The example system contains a "create" operation that creates a neu
object, and gives the executor of the operation all rights for that neu

object. To simplify the formal treatment of objects, we will assume that a
new object is not actually created. The system provides the name of an

object not yet used - ocne for which no other object has access rights.

The protection state (the protection'matrix) could be modelled as bundled
up in a single object A. Then o0.Alx,yl (also written as <x,y>(o)) would
contain the set of rights x had for y in state o.

It is more useful to model the protection matrix as a Capability system
{this system is in fact, a simplification of the HYDRA system [Wulf 74)), We
consider all of x’s rights for other objects to be part of x itself. MWe
divide each object into tuwo components, its "actual" contents, called its
Value-part and its set of rights, called its C-list (for capability list -
the set of rights that x has for y is called x’s capabilit. for yl. In this
model, we define

<x,y>(0) =4o¢ 0.x.C-listly)

In the diagram belou, Cohen is a subject with the right to read the
Salary file.

Sala v

Cbkew ”f‘ /

Problems, Mechanisms & Solutions (A) ' page 122

This treatment of the protection state is especially useful in analyzing
information transmission. Information can be tranemitted to some object if
that object can be written into. As we noted abové. x can also transmit
information to y if x can change the rights y has for other objects. If y's
rights for other objects are part 2f y itseif; then manipulation of the
protection state need not be treated as a special case in analyzing
information transmission.

A thesis by [Rotenberg 73) presents a collection of examples that show
how subtle (and not so subtle) manipulations of the protection state can be
used to transmit arbitrary amounts of information. By representing the
protection state explicitly in the manner described above, these covert
information channels can be detected directly using the methods of analysis
described in [Cohen 76].

Now we can finally describe the "call" operation, "Call" is a
simple-minded version of a re-entrant subroutine call (with no corresponding
return). Programs (subroutines) have tuwo distinct parts.

1. Thre code that will execute. In our system, this is assumed to
be in the Value-part of the object representing the program.

2. The set of objects every incarnation of the program will need
to access (i.e. oun variables rather than arguments). The C-list
of the program object contains capabilities for these objects.

The diagram belou depicts an example in which Cohen calls a Program,
passing along some Argument, call{Cohen,Program,Argument) (the dotted
dotted |lines represent "after the call").

Problems, Mechanisms & Sclutions (A) page 123

Comar

Praome &

B

\ -
R (¥ N/ - beSot2
& e = e
SNt Caky i o P

Llhen Program is called, a new object N is created. N gets a capability
cbntaining the came rights Cohen had to Argument so that N can access
Argument. [t also gets r-rights to Program, so that by executing "take"s,
it can get access to any of the objects in Program’s C-list,

The Yalue-part of N is an exact copy of the Value-part of Program. This
insures N will execute the appropriate code (see section 3.5).

In order to call Program, Cohen must have c-rights for Pragram. In this
way, Cohen may be ahle to call a program without necessarily being able to
incpect or alter Program’s code (Value-part) or gain access (via "take") to

the olziects that
The creation of

not only allou:

Program (that is, each of its incarnations) can access.

. new object (incaranation) N of the program for each "call"

e entrancy, but it is also important for soiving a number

of clarsic protection problems (e.qg. Mutual Suspician)

Note that rio object, including the caller, gets any right to access the

incarnation, N, of the program. This means that (unlike other examples of

access matrix system, [Lampson 711, [Graham & Denning 721), subjects cannot

control cach other directlu, but can only communicate by transmitting

information through intermediate objects.

b ccllsak o S it

Sk

|
|

Problems, Mechanisms & Solutions (A) ' page 124

The operations as provided by the base system augmented by the protection
mechanism are described belou.

A Simple Pratection Matrix System

Notation Rights
<x,y> x's rights for y r - read
x (i) i'th word of x's datapart W - Write
x| size of x’s datapart c - call

s - subject

Operations

move (x,y, j,z,k,n): if s ¢ <x,x> A F € <X,2> A H € <X,yY>
then ylj+i) « zlk+il, i=8,...,n-1

OPy (%, y, i, j, k) if s ¢ <x,x> A {r,u} € <x,y>

@ ¢ tfadd,...] then ylil « al(yljl,ylkl)
takey (x,y,2): if s € <x,x> A r € <x,U> A aC <y,z>

a ¢ {r,u,ct then <x,z> « <x,z> U {a}

granta(x,g.z): S € <X,X> A W € <X,Uy> A a € <x,2z2>

f
& ¢ ir il then

<y,z> € <y,z> U flal

S € <X, X> A W € <X,y>

remove, (x,y,2): i

t
a ¢ {r,u,cl then <y,2> « <y,z> - f{al

create(x): s <Xy X>

if C
then let N be neuw object in

<x,N> « {r,u,c!}

calh Ex,uy,2)s 1f B8 ¢ <xyx> A € ¢ <X, U>
then Jet N be npeuw object in |
<N,N> « copmie {s];
NLil « ylid, i =1,.00,1yls

<N,y> « {rl;

<N, z> € <x,2>)

Problems, Mechanisms & Solutions (B) page 125

Appendix B - Proofs
Theorem 2-1

Given:
1] v is markov

Prove: Tv(HL'H2')(0') « <v(HI")(o') & v(H2') (H1'(0"))
by induction on length of H2'
Base H2' = A, Direct by subsitution and def 2-8
Induction Assume for H2', prove ior H2'$'
T (HLU'H2'$") (o)
= T(HI'H2') (0") & (81 ((HI'H2) (67) (1]
= T(HI')(0") & T(H2') (H1'(c')) & 7(§') ((HI'H2') (0")) [Induction)
= T(HL') (0') & v(H2") (H1'(a")) & v(§") (H'(HI'(a")))
= T(HL') (') & v(H2'$') (H1'(o")) (1)

Keads

A

R

Problems, Mechanisms & Solutions (8) page 126
Theorem 2-2

Given:
1] M is markov
2] vyt 8'(e")) = L ry(8)(e")) rylo'))

Prove: M is homomorphic
thot i dlot >, iyl He')) = [1yiH) (o)) ylo’))
ke will prove the more general result:
wl Hie')) = (ry(HIGe) D ryle’))
by induction on length of H
Bace H = A, Direct by substitution and def 2-8
tion Assume for H', prove for H'S’

T 018 (o'))
- (8 H ()

8 (H ()) y(H (D)) (2]

(8 (K (a')) JC € ry(H) (e')) (7qie’))) linduction)
1q(H) (") & T(8) (H'())) { yta’))

NS L) M te)) 1)

]
B

Theorem 3-1

Given:
1] vy is state isomorphic

Prove: #y = tt
Proof by contradiction

2] Assume -~ylol’)

3] Let qiel’) =0

41 o ¢ yle) } 3]

Sl o « ! aula’) | Pyle’))[4, Def of M

6] (302'wol) (Ty(02') = o) [2,3,5)
D.E.D. (3,6 contradicts 1]

Problems, Mechanisms & Solutions (B) page 127 Problems, Mechanisms & Solutions (B) page 128

Lemma A-1 Theorem 3-2
Given: Givens
1) v is direct 11 M is a runtime mechanism
2) v is markov 2] 1y is state isomorphic
31 v(H)(a') « H§ 31 N induces ¥
Prove: (JHesH) (v(Ha) (0') = H) Prove: Y is markov
by induction on length of W That is: Y(o,H8) e Y(o,H) A Y(H(o),$)
Base H = §
4) Case 1l =Y(o,H)
31 Assume T(8')(0') = H} S) -Y(o,H8) (1,3,4, Th 3-4)
4) H =1 (1,3
Sl r(A) (o) = 2 [2) 6] Case 2 Y(o,H
Bl A =z &
0.E.D0. (3-(5,6)) 7] ==> Assume Y(o,H$)
8] (30", H) (Ty<o',H'> = <o, HE>) (3,7)
Induction Assume for H', prove for H'§' 9) mic') = o [8)
101 TH(H) (0') = H§ (9]
7] Assume T(H'$')(0') = HS 1] (FHI'H2'=H') (vq(HL') Lo’} = H) (18, Lemza A-1}
8] r(H)(e') & v(§')(H(c")) = H§ (7,2) 12] TH(H2') (H1'(e')) = § (18,11, (2, Th 2-111
9] T(8)(H(e')) =8 v T(8)(H(e")) = A [8,1) 13) T(HLI') (0*) = H [11)
18] Case 1 v(8)(H (o)) = § 14] (HI"(0')) = Hlo) (13,9, 1(vy homomorphic), 2(Th 3-1)
11] T(H)(o") = H (8,18) 15] Ty<HL'(0') ,H2'> = <Hlo), 8> [12,14)
121 H < H'S§ 161 Y{H(o), $) [15,3)
131 Case 2 v(8)(H(0')) = A
14) T(H) (¢') = HS (8,13] 171 <«= Assume Y(H(o),$)
15] (IHe<H) (T(He) (0') = H) (14, Induction) 18] (30", H) (<o’ H> = <o,H>) [(6,3)
16) (IHesH' 8') (T(He) (0') « H) [15] 19) Tv(o') = o (18]
0.E.0. (9,18-(11,12),13-16) 20) ™m(H) (0') = H (18]
uuuuuuuuuuuuuuuuuuuuuuuuuu e cmeemme 21) TH(H'(e’)) = H(o) (19,28, 1(74 homomorphic))

221 (Jove, Hie) (Ty<ow, He> = <Hlo), 8>) [17,3]
231 o = Hio') [(21,22,2)

. 24) THHe) (H(0")) = § (22,23) !
25) Tq(H'H) (o) = Hb (28,24, 1(™ markav)1
26) <o’ HHi> =« <o,HE> [19,25)
27 Y(o,H$) (26,3])

TR T O T

2 iU fa sl et

Probiems, Mechanisms & Soluiions { B)
Theorem 3-3

Given:
11 Y is wmarkov

Prove: Y is monotonic

That is: Y(o, HE& He) > Yl o, H!
by induction on length of H

Base Hr = A. Direct by substitution
Induction Assume for Hi, prove for Hub

2] Assume Y(o, H& Hib)
3] ¥Y(o,. HE W) (2,1)
4) Y(o, H) (3.Induction]

Theorem 3-4

Given:
1) M is a runtime mechanism
2] M induces Y

Prove: Y is monotonic

That ist Yl o, HH 82) > Yl{ o, H)
by induction on length of H

Base H2 = A. Direct by substitution.
Induction Assume for H2, prove for H2%

3] Assume Y(o,HIH2%)

4) (30’ ,H) (<o’ H> « <o, HIHZE> (2,3]

S] wylo’) « o (4]

6] i) (e') = HIHRE (4)

71 (3HesH) (rylHo) (e') = HIKR2) (6,1, Lemma A-1)
8] vy<o’,Mi> = <o,HIH2> 5,7)

9] ¥Y(o,HIH2) (8,2

181 Y¥(o,Hl) (9,Induction)

page 129

T o G cisaeg

Probtems, Mechanisms 8 Saolutions (B) page 138

The follouing seguence of Lemmas are preparation for the proof of
theorems 3-5 and 3-6, that is, My is a8 decision mechanism, and if ¥ is
monotonic, then there is a ¢ such that <@ My> induces Y.

We detine My in section 3.7 so that for each operation & defined in the
base system, My provides a corresponding operation §', and we denote this
correspondence by wuriting 4~ b He will find It convenient to extend
this correspondence to histories so that if, for example, §1' ~ 81 and
$2' ~ 52, then ue could wurite §1°82'61" ~ §18281.

Lemma H-1
Given:
1) 9y (o)

21 ryle’) =0

Prove: (VH)(H(o"). Nt « o)
[note My = <vy.¥y> detined in section 3.7)
Iy induction on length of W
Base H =)
31 A(o').NMw = o' N
4} o' .NMw = o'. NI (1)
S) o'.Nil « 0o [2, def of 7y)

Induction Assume for H', prove for H'b'

(H'8") (o") . NI

- 8§ (H (0")) . NMye

= H(0o") . NMx [def of 8 1]
= ¢ (Induction)

er

o

B i i L TR b e

Problems, Mechanisms & Solutions t8) page 131

Lemma -2
Given:

1] H ~H

21 @ylo")

3] 4‘—.-« -0

Prove: Tvy(H) (o) = H (') HIST = W/ ¥
by induction on length of H
Base H = A

4] ryiarle’) = A [Det of Tyl
S§] o' HIST =« A (2]
6) y\eé a A

Induction Assume for W, prove for H'Y'

(H'8) La') . HIST
c = §"(H(0")) . HIST
« Let R be H(e').HIST in

if YO H (') . Nt RS)
hen RS elss R
R be H/ ¥ in {Induction)
it Yio,RH) (Lemma M-1]
wrml.:zonl_uh:
\a

-

- (H8)/ Y

1(.1.?...0.-

- aé.:.:a._ & ryldh (Hia')) [ry markov)

- WY& Ty (87) (W (o)) {induction}

WY &5 wuhen Y(H(0') Ntte, Hlg') . HIST & 5)
H/ ¥ otheruise

-« Let R be I\Q(in
As when Y(o,AR8) [Lemma H-1, Induction)

Problems, Mechaniems & Solutions (B) page 132
Lemma M-3
Given:
1] H ~H
2] tyle’) =0
31 dylo’)

Prave: (H/Y) (o) = 1y(H'(0')
by induction on length of H
Base M = A. Follous directly by (1,2)

Induction Assume for H', prove for H'§'

Ty ((H'$') (0"))

Ty(8' (H (0")
8 (M4 (a')) . N
§(H (o') .NM) uhen Y(H (o). N, H(e').HIST & §)
H' (o'} .NM otheruise
Let R be H/ ¥ in
$(Rlo)) when Y(o,RS) [Lemmas H-1, -2, Induction)
R(o) otheruise (Induction)
((H8) /7 ,¥) (0) i
(H8/¥) (a) |

Theorem 3-S

1)
2)
3)
4)
S)
61
7

Prove: My is a decision mechanism
Ty is defined as direct and markov. }
Below we prove that Hy is homomorphic

Ty(H' (0')) = (H/Y) (o) [1,2,3,Lemma N-3)

Ty H (o)) = (W ¥ (o) 14)

Ty(H(6")) = (rylH)(o'))t o) [1,2,3,5,Lemma n-21
v (H (o)) = (vy(H) (0')) (1y(e’)) (6,31

Q0.€.0. (1-7)

T S A S

IREIES . ~ b R ned TR AR M

T

S

.

Problems, Mechanisms 8 Solutions (B)

Theorem 3-6

11
2]

3]
4)
S)
6]
71
8]

Given:
¥ is monotonic
Plo) = V¥Ylo,2)
Prove:

<®,My> induces ¥

==> Assume ¥(o,H)

<o H/¥> 1 Ty<o' H> | 9yle')) [Lemma H-2)
<o H> ¢ | ry<o', H> | fylo') } 16,1,3, Th 3-9)
Yio,N) (3,1

Plo) (6,2]

<o,Hr ¢ | ry<o' H> | (My: P (0')) 15,7)

<== Assume <o.H> ¢

1 1y<o’ H> | (Mya®) (0'))

Ple) (9]

Yig,A) (18,2)

<o,H> ¢ | ry<o' H> | Pyle’)) (9]
(k) H o= He/ ¥) (12, Lemma M-2)
Ylo, He/ oY) (11, Th 3-8)

Yio,H [13,14)

page 133

BT ot U SO

Problems, Mechanisms & Solutions (B}
Theorem 3-8

Given:
1] Y(o,X)
Prove: Yl o, WY)
by induction on length of H
Base H = A, Oirect by substitution and (11.

Induction Assume for H, prove for Hb

2] Case l ¥l o, H Y& b))

3] :.mv\ai = I\u< [2)
4) Yo, (HS)/ ¥) (1,3, Induction)

8] Case 2 Yl o, Wg¥)
6) (H8) /¥ = W ¥ &35 [5)
71 ¥(o, (H8)/o¥) (5,6

Theorem 3-9

Given:
1) ¥ is monotonic
Prove: Y(o,H o, H= H/ ¥
induction on fength aof H
Base H e A,
Induction Assume for H, prove for Hb

Direct by substitution.

E?H.&.‘_m{_n.:s
2) Yle, W) 12,1)

4) H = W ¥ (3,Induction]
S) ¥l oo, W Y835 [2,4)
) :_:\94 - I\G‘ &5 (5

71 (H8)/ ¥ = Hb 14,6)

page 134

Problems, Mechanisms & Solutions (B) page 135S
Theorem 3-10

Given:
1} N is strongly consistent
2] ™M is homomorphic

Prove: M is weakly consistent

3] Assume o}’ L 02’
4] T(H) (a1 = y(H) 029 11,3)
Sl wylel’) = vy(e2') (3]
61 (vu(H)(ol')) vylol')) = (vy(H)(62")) Ty(02)) (4,5)
71 #ylel’) A ¥ylo2') (3]
8] ¢« y(H'(ol")) = wy(H(02")) 16,7,2)
Q.E.D. (3-8)

Theorem 4-1

Given:
11 ¥,5)ye enforces Qv..oa_u-
21 Yprohlem 18 markov
3] .«.uwou_ns.a_ 5> (v8)(<u_.oc_n._._q.5)

Prove: @4, e enforces Yo opien
That is: @g) el0) > (YHI U ¥y op) am
by induction on length of H

Base H = A. Follous immediately from [2]

(o,H))

Induction Assume for H, prove for Hb

»
—
>

saume P e f0)
problem(0.H) 4, Induction]
oroblen (o)) [1,6)
broblem!H(0), 8) (6,31

problen(.H8) 15,7.2)

n n
——
< _4

00
-
% ¢

Problems, Mechanisms & Solutions (B)
Theorem 4-2

Given:

13 <PgqjverYeolve> enforces <v1°c_-
2] <9gqive > enforces Yq4 e

Prove: Aemo_;.:v anforces 4!.3_0-

3) Assume (M:9,,,.) (0')
41 0 0elmle)) (3]
51 (VHC Yoouuelmle) W > Yoropienlmlo) W) (1,40
6] (YH) (Yo peltn<o’ H>) > ,..v-.cu_ul::Aq..:.v.. 5]
71 VH) (Yoo yeltyeo’ H>)) (2,3)
8) (YH)(Yo o enlmea’.H>)) 16,7)

0.E.0. (3-9)

Theorem 4-3

Given:
1) <%551verYsotve> enforces ¥ op)am
2] <Py, yes > enforces ¥
3] M is homomorphic

solve

Prove: <®,.|,e.M1> enforces ev..ou_nl

4) Assume (M:9) (o")

22 solve
S) .emo_<n.:=.n.: ()]
61 (YH) (Yeotve(mnio') ,H > éu..ow_u-_.x::.q.:_) [5.1)

71 YH) O Yoo velmy<o’.H> >

«.vﬂo.u_nl. (ry(H) (")) (ry(a’))) } (6]
8) (YH)(Ygq elry<o’ H>)) [2,4)
9] (YH)(63.63.0!- (ry(H) (0*)) (rle™)))) (7,8])
18) ¥ylo’) (4)
111 (V) (svﬂoc_m!. v(H (")))) (9,18,3)

Q.E.D. [(4-11)

page 136

B R

M

LG

i - AR

Problems, Mechanisms 8 Solutions (B) page 137

Theorem 4-4
Given:

1] P51y i9 invariant

2] Yproblem iS markov

31 9 pvelo) > (VD)L Yproblem(o.8))
Prove: @, enforces vaou_ng
That is: @55.el0) > (YHIL ¥, o 1gplo H))
by induction on length of H
Base H = A. Follous immediately from [2)
Induction Assume for H, prove for H§

4] Assume P . .e(0)

Sl Yoroblem{o:H 14, Induction]

6] P 1velHlo)) 14,1)

7) Yproblem(Hl0), §) 6,31

8}

Yoroblemto. H8) 15,7,2]

Problems, Mechanisms & Solutions (B) page 138]
|
Theorem 4-S
Given:
11 ¥(o) = o ¢ (Tyle) | (")}
2) ¥ylo") . (o) v l.e:z_u.:
Prove: ¢ = M:¥
(M:7) (0°) i
= dplo) A Plyle)
= (PU0) v ~Plrple))) A @lryle)) (2] 1
= W (') A @lryle’)) M
= (")) (1) 3
Prove: [wylo") 1 = 1 1yle’) | ¥ylo’)) f

tapgla’) | dyle’))

« Layle) 1#6)) U (1ol <9)
« U Urgie) 196 1 U Lol ~9lo))
U Layle) 1 @)) U yle’)
CUrgle’) 1 @4e) 1 U (g1 ~0la)))
= (1ol 9) u fol~Pa)l) A |

- 1 ryle))

Fap(o) 1 900" 1 U 1ylo’) | ~Plryle)) | f2)

n i’ 1)
)

))

n o Lryle'))
ie') } 1)

Problems, Mechanisms & Solutions (B8) page 139

i Problems, Mechanisms & Solutions (B) page 148
|
Theorem 5-2 Theorem 6-1
!
Given: { Given:
11 9550ve € %problem 1) <Pg5iver Yaolve> enforces 9o o on
21 ®5o1ve I Ygo ye-invariant i 2] <Pg.|ye:M> produces Yoo e
i 3} ™ is homomorphic {
Prove: <Pg51ye:Yaolve> enforces 9yrqp) em
Prove: - <®¢.,,a.M> produces ¢, 1
3] Assume @,,),e(0) solve problem
4) Assume Y 5 yelo.H) 4) Assume (M:9g.)..) (0")
S1 Pg5)yeHlol) 12,4,3) 51 9. 1,elmylo’)) (4]
ﬂ 6] em1ma_u-.d“.u_“. 15,1) 81 (YH (Yoo iye(mlo') W > o eq(Hiryle’)))) (5,1)
> -60., £93.4)-5] 71 YH) L Ygo elmy<e’,H>) >

Poroblent (THIH) (61 tyyte'))) 16)
8] (AHI L Yo yeltyeo’ H>)) 12,6)

Theorem 5-3 9] GHIU P opiem! (y(H) (0')) (ryle’)))) (7,8)
. 18] dylo’) [4)

i ‘.n"<n_.: : 1) GHIC P opiemimy(Hic’)))) 19,10,3)
is markov ; Q.E.D. [4-11)

2] Y(o,8) >. 9lo) > ?(5l0))

3 Prove: ¢ is Y-invariant Theorem ©-2
That is: Y(o,H) >. @®(0) > P(Hlo))
by induction on length of H Given:

Base H = A. Direct by Substitution. !
P o 1) <Pq51verYeolve> enforces Yoropiam : |

Asoo_ <¢.3v produces Y,

Induction Assume for H, prove for Hb 2] :
solve

3] Assume Y(o,HS)

Prove: <¢ M> produces Y,

4] ¥loH) (3.1 solve* problem
S] Plg) > #(H(o)) (4, Induction) 3) Assume i@y,) (0"
5 6] VY(H(o),8) [(3,1)

« 4] O velmnle’)) (3]
71 TH(0)) > P((HS) (o)) [6,2) 51 (YHI(Yoo1ye (o) B 5> Yoronienlmie) W) [1,4) _
8] ®(o) > P((H8) (o)) [5,7) 6] (VH)(Ygq ye (<o’ H>) o> Yo ohiemiTyco’ . H>)) (5]
0.€.D. [(3-8] é
71 GHI Yg) v lmeo’ H>)) 12,3)
LS SR B e e ~e=me 81 (GH) (¥ opienlteo’ H>)) (6,7)
Q.E.0. (3-8)

i

4
)
§

—

Problems, Mechanisms & Solutions (B) page 141

Theorem 7-4

Given:
11 X(P,M) = <¥,M> enforces Yoroblem

Prove: <%2,M2> ¢ <¥1,M1> »>. X(®1,Ml) > X(M2,M2)

2] Assume <¥2,M2> < <?1,Ml>
3] Assume X(?,M1)
4) 1 mp<o’ WS> 1L (M2:92) (0')) ¢ (g0’ H> | (HLR1) (0")) (2]
S <o,H> ¢ | myp<o’ H> | (ML:91) (0") } > <n1oc.aa.e.z~ 1,31
6] <o’ B> ¢ | Thz<o' H> | (M2:92) (0) 1 > ‘.vﬂoa.au_q.:- (4,5)
71 X(¥2,M2) (1,6)

0.E.D. [((2,3)-7)

Prove: X(P1,M) A X($2,M) > X{ Pl v 2, M)
proof follous immediately from proof of the follouwing lemma
M:®l v M:92 &8 Mi(Pl v 92)

(M:¥1) (0") v (M:92) (¢")

= (63:..- n @1 (ryla’1) } v (dylo') A P2lryla’)} }
= Pylo) A (Pllryle')) v R2(rylo’)))

= (M:(1 ve2))"

Problems, Mechanisms & Soluticas (B) page 142

Theorem 7-5

1]
2]

3]
4]
5]
6]
7]

Given:
X(91) A X(92) >, XU 91 v e2)
Prax Maximally solves X

Prove: = vIielX(®}

max

Let G_OTD = v {91 X9}
e, 12

Pnax € .omo.:., (3.4
:A..._o:._v (1,3]

ook = .t-.o._: 15,6,2]

Q.E.D. (3,7]

Theorem 7-6

11.

21
3)

Given:

X0 M) = <Ps,My> enforces <u..oc_ma
<Uorth, <> is a monntonic measure

<P, M> induces <_u_,,o_u_ms

'rover <P {1 optimally solves X

K0P M) o0 <P, Mhve> € <¥,M> (1,3, Th 7-1] \
o.M 11,3)
Uorth(f. M) = HMax | Horth(®w M) | X(8,Me) } [2,64,5)

Theorem 7.7

1)
2]
3]

4)
S)
6]

Given:

<lorth,<> is a monotonic measure
Chax maximally solves X

X(PL) A X(92) >, XU 91 v 92)

Prove: @ . optimally solves X

Ppax = Vv 1O X® 1 12,1, Th 7-5)
Horth(®,) = Uorth(v 19 1 X9 1) &)

Worth(®,.) = Max | Uorth(® | X(9)) 15,1]

.

WM*"*‘ . _
. , .

Probiems, Mechanisms & Soiutions (C) ”. page 143

Appendix C - References

(Atwood 72] J Atwood, ed. "Project Sue as a Learning Experience", U
Toronto, CSRG-19, Sept 1972

[Be[paire 751 G Belpaire, "Synchronization: ls ‘a synthesis of problems
possible?", ACM Sigcomm-Sigplan Interprocess Communication Workshop,
March 1975

(Campbel| & Habermann 75] R Campbell, N. Habermann, "The Specification of
Process Synchronization by Path Expressions", Proceedings
International Symposium on Operating Systems Theory and Practice,
April 1974

[Cohen 75) E Cohen, "Semantic Models for Parallel Systems", CMU TR Jan
1975

[Cohen 76] E Cohen, "Strong Dependency: A Formalism for Describing
Information Transmission in Computational Systems", CMU TR August
1976

[Cohen & Jefferson 75] E Cohen, D Jefferson, "Protection in the HYDRA
Operating System", Proceedings S5th Symposium on Operating System
Principles, Nov 1975 (also SIGOPS, v9, S)

[Cosserat 74) D Cosserat, "A Data Model based on the Capability
Protection Mechanism", International MWorkshop on Protection in
Operating Systems, IRIA 1974

(Courtois, Heymans & Parnas 72) P Courtois, F Heymans, D Parnas,
"Concurrent Control with 'Readers' and ‘Writers'™, CACM v14,18 (Oct
1971)

(Crisman B65] P Crisman, ed. "The Compatible Time-Sharing System: A
Programmer’'s Guide", MIT Press 1965

[Denning 751 DB QOenning, “"Secure Information Flow in Computer Systems", PhD
Thesis, Comp Sci Dept, Purdue Univ, May 13975

Problems, Mechanisms & Solutions (C) page 144

4 [Denning 761 D Denning, "A Lattice Model of Secure Informatior Flow", i
CACHM v19,5 (May 1976) 2
¢

[Dennis & Van Horn 66) J Dennis, E Van Horn, "Programming Semantics for :

Mul tiprogrammed Computation", CACM v17,7 (March 1366)

[Dijkstra 68a) E Dijkstra, "Cooperating Sequential Processes", In
Programming Lanquages, F Genuys, ed., Academic Press 1368

(Dijkstra 68b]l E Dijkstra, "The Structure of the 'THE'-Multiprogramming
System", CACM v11,5 (May 1968)

[Di jkstra 72] E Dijkstra, "A Class of Allocation Strategies .Inducing
Bounded Delay only", Spring Joint Computer Conference, 1972

[Graham & Denning 72) R Graham, P Denning, "Protection - Principles and
Practice", Spring Joint Computer Conference, 1972

[Gray 721 J Gray, B Lampson, B Lindsay, H Sturgis, “The Control Structure
of an Operating System", [IBM Research, RC 3943, July 1372

(Gray 751 J Gray, R Lorie, G Putzaolu, 1 Traiger, "Granularity of Locks
and Degrees of Consistency in a Shared -Data Base", IBM Research, RJ
1654, Sept 1975 '

[Greif 75) 1 Greif, "Semantics of Communicating Parallel Processes", PhD
Thesis, MIT MAC-TR-154, Sept 1975

[Greif & Hewitt 75] | Greif, C Hewitt, “"Actor Semantics of PLANNER-73",
2nd ACM Symp on Principles of Programming Languages, Jan 1975

[Griffiths 741] P Griffiths, "Synver: A System for the Automatic
Synthesis and Verification of Synchronization Processes", Harvard
Center for Research in Computing Technology, TR 22-74, 1974

(Hansen 731 P Brinch Hansen, "Operating System Principles", Prentice-Hall
1973

Problems, Mechanisms & Solutions (C) page 145

[Harrison, Ruzzo, Uliman 75] M Harrison, ™M Ruzzo, J Ullman, "On
Protection in Operating Systems", Sth Symp. on Operating System
Principles, Nov 1975

[Hewitt 74) C Heuwitt, "Protection and Sgnchronliation in Actor Systems",
Working Paper 83, Al Lab MIT, Nov 1974

[Hoare 74 C A R Hoare, "Monitors: An ‘OPerating System Structuring
Concept", CACM v17,18 (Oct 1974)

[Hopcroft & Uliman 691 J Hopcroft, J Ullman, "Formal Languages and their
Relation to Automata", Addison Wesley, 1969

[Jones 73) A Jones, "Protection in Programmed Systems", CMU PhD Thesis,
June 1873

[Jones & Lipton 75I A Jones, R Lipton, "The Enforcement of Security
Policies for Computations", G5th Symp. on Operating System
Principles, Nov 1975

[(Jones & Wulf 74] A Jones, W Wulf, "Towards the Design of Secure
Systems", International Workshop on Protection in Operating Systems,
IRIA, 1974

fLampson 711 B Lampson, "Protection", Sth Annual Princetan Conference on

Information Sciences and Systems, March 1971

[Lampson 73) B Lampson, “A Note on the Confinement Problem", CACM v16,18
(Oct 1973)

fLevin 78] R Levin, E Cohen, W Coruwin, F Pollack, W Wulf,
"Policy/Mechanism Separation in Hydra", GSth Symp. on OPerating
System Principles, Nov 1975

[Lipton 73] R Lipton, "On Synchronization Primitive Systems", Yale CSRR,
22, 1973 (also CMU PhD Thesis)

[Lipton 75] R Lipton, "Reduction: A Method of Proving Properties of
Parallel Programs", CAGM v18,12 (Dec 1975)

Problems, Mechanisms & Solutions (C) : page 146

Millen 7681 J Millen, "Security Kernal Validation in Practice", CACM v13,5
(May 1976)

[Milner 72) R Milner, "Processes: A Mathematical 'Node|‘ of Computing
Agents", Proc. Logic Colloquium, Bristol 1972

[Needham 72) R Needham, "Protection Systems and Protection
Implementations", FJCC 1972

[Organick 72] E Organick, "The MULTICS System: An Examination of its
Structure", MIT Press 1972 :

[Parnas 72) D Parnas, "A Technique for Software Module Specification with
Examples", CACM v15,5 (May 1972)

[Patil 71) S Patii, "Limitations and Capabilities of Dijkstra’s Semaphore
Primitives for Coordination among Processes", MIT MAC-CSG-57, Feb
1971

[Peuto 74) B Peuto, "A Comparative Study of Real Estate Law and
Protection Systems", PhD Thesis, UC Berkeley, ERL—N43S, May 1974

[Popek & Goldberg 74) G Popek, R Goldberg, "Formal Requirements for
Virtualizable Third Generation Arvhitectures", CACM v17,7 (July
1974) [Price 73] W Price, “lImplications of a Virtual Machine
Mechanism for Implementing Protection in a Family of Operating
Systems" PhD Thesis, CMU, June 1973

{Redell 74] 0 Redell, "Naming and Protection in Extendible Operating
Systems”, PhD Thesis, UC Berkeley. Also MIT MAC-TR-148 Nov 1974

[(Redell & Fabry 74] 0 Redell, B Fabry, "Selective Revocation of
Capabilities”, International Workshop on Protection in Operating
Systems, IRIA, 13974

(Riddle 73] W Riddlie, "A Method for the Description and Analysis of
Complex Systems”, Sigplan Notices v8,9 (Sept 1973)

B

aa

Problems, Mechanisms & Solutions | C ‘) g nage 147

[Robinson & Holt 74) L Robinson, R Holt, "Formal Specifications for
Solutions to Synchronization Problems", SRI, 1974

e

a {Robinson 75] L Robinson etal, "A Formal Methodology for the Design of
Operating Sustem Software", Proc - 1975 Conference on Reliable
Sof tware, Apr 1975 R

[(Rotenberg 731 L Rotenberg, "Haking’ Computers Keep Secrets", PhD Thesis ;
MIT, MAC-TR-116, Sept 1973 = = - . . 7

[Saltzer 74) J Saltzer, _"Pr‘otect'ioh and - the l_:dntrol of Information
Sharing in MULTICS", CACHM w17,7 (July 1974)

(Schneider 761 E Scneider, "Sgnchnoniza‘ﬁbn of Finite State Shared
Resources", CMU. PhD Thesis, Narch 1876

{Schroeder 721 M Schroeder, "Cooperation of Mutually Suspicious
Subsystems", PhD Thesis, MIT, MAC-TR-184, Sept 1972

[Schroeder & Saltzer 721 M Schroeder, J Saltzer, "A Hardware Architecture
for Implementing Protection Rings*, CACH v15,3 (March 1972)

{(Shannon & Weaver 491 C Shannon, W Weaver, "The Mathematical Theory of
Communication”, U Illinois Press, 1943

[Vantilborgh & Lamsueerde 72] H Vantilborgh, A van Lamsueerde, "On an
Extension of Dijkstra's Semaphore Primitives", Information Processing
Letters, vl, 5, Oct 1972

[Weissman 69] Weissman C, "Security Cantvrols in the Adept-58
Time-Sharing System" FJCC 1963

(Wodon 721 P Wodon, "Stili another Tool! for Controlling Cooperating
Algorithms", CHU-TR 13972

E | (Wul £ 74) W Wul#, et.al., "HYDRA: The Kernel of a Multiprocess Operating
b ~ System", CACM v17.6 (June 1974)

