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Abstract

~econu oruer rigid flapping response statistics of lifting

rotor blades are obtained by efficient algorithms developed

in this paper . These statistics enable us to analyze the

effect of a finite load correlation length on the blade response.

For our particular loading (typical of turbulence excitations)

and for an advance ratio small compared to unity , this effect

can be concisely expressed in terms of an am~1itude factor

and a p~~~ e factor . In the case of a blade excited by a

random vertical inflow with a spanwise correlation length of

the order of the blade length , the amplitude factor shows that

there may be as much as a 40% error in a solution which assumes

the inflow is spatially uniform . Tne analytical development

leading to the algorithms also illustrates how a ~patial

correlation method for general linear PDE with random forcing

previously formulated by the author may be used in conjunction

with a Ritz-Galerkin procedure .

~tctIes
~~Usa D

I u~;’.~ ‘ ‘  0
- f l  —



.~~~..-- .-.-_ _ _ _ _ _ _ _ _ _ _ _ _  .

- iv-

TABLE OF CONTENTS

Nomenclature v

List of Illustrations vii

1. Introduction 1

2. Spatial Correlation Functions for Flexible

Blade Response 5

3. The Rigid Flapping Motion 8

4. Exponential Correlation in Space --- Hovering 10

5. Forward Flight at Moderate Advance Ratios 13

6. Numerical Solution for Arbitrary Advance Ratio 17

7. Auto-correlation Functions 20
a

References 23

___________ —,--~ -—- ..- -  . — ~~—— , - ~~~~.-- .-—- .---—---- - —..~~- ~~~~~~ -~~ ---- .-- .—— ——‘-.-- -~-~~~~~~~~~~



-v-

Nomenclature

w (XT ) dimensionless transverse displacement of the blade

2. blaue length

y Lock number

= y / 6

uniform rotating speed of the blade

Vf constant forward velocity of vehicle-blade system

advance ratio (= V
f/~29.)

dimensionless stiffness factor (= EI/mL4~1
2
)

m linear mass density of the blade

A(x ,T) inflow ratio

dimensionless correlation time (see eq.(3))

R5(x,y) spatial part of the autocorrelation of the loading
(see eq.(3))

n(x,t) a temporally delta correlated random process
(see eq.(4))

u,s,t,v spatial correlation functions (see eq.(6))

R autocorrelation of w(x,c)

dimensionless correlation length of loading
(see eq.(28))

a positive constant (see eq.(28))

~~~~~~~ see eq.(9), (10), (12) and (13)

•(t) flapping angle of the blade

U ,S,T,V see eq.(18) (meansquare flapping angle , etc.)

k,c the spring force and damping parameter (see eq. (20))

p,q,P,Q see eq.(19), (21) and (22)

____ ______________________ ~~-— -—~~~~~~~~~~~~
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see eq.(23) and (24)

steady state solution of ~ and ~

see eq.(32)

U,S..V steady state solution of U , S and V

p (c),v(c) amplitude and phase factor (see eq.(32) and (47))
in the steady state response to random inflow

see eq.(31)

U and V with £ = 0

for a random change in collective pitch 0(x,T)

A (x,t;y,t)

A see eq.(57)

R(t 1’) =

P see eq.(60)
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Ca~tion for Figures

Fig. 1 Schematic diagram of a rotor blade

Fig . 2 Amplitude and phase factor

Fig. 3 Iieansquare flapping angle (p 1.0)

Fig . 4 Meansquare flapping velocity (~.i=l.0)

Fig. 5 Meansquare flapping angle (~=l.6)

Fig. 6 Neansquare flapping velocity (~.i=l.6)
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l. In t roduct ion

The dynamics of flexible lifting rotor blades in forward

flight (Fig.l) is complicated by the fact that the aerodynamic lift

acting on the blade changes significantly in the course of each

blade revolution . Even an analysis of the small amplitude motion

of such a structure must cope with problems such as parametric

excitation associated with the periodically time-varying system

parameters which characterize the aerodynamic damping and spring

force effects . In one model for the forced small transverse

vibration of a single blade , the dimensionless transverse displace-

ment w(x ,T) (normalized by the blade length t) is governed by

the rather forri’tidable (dimensionless) partial differential

equation [1 ,2,9]

+ Y O
!X+ 1~

l S i f l T I W
T 
+ L [wj = f ( x , T) (0<x<l , r>0) (1)

with

4 1 2L
XT

[ 
~ = 

~ ~ 
- 

~ (1-x ) [  + (x+y
0

pcosT~~x+ ps1nT~~) [  l x

( 2 )

where y 6Y0 is the Lock number characterizing the aerodynamic

effect, p is the advance ratio (the ratio of the forward speed

• of the vehicle, Vff to the rotating speed at the blade tip, c 2 9 . ) ,

x is the distance from the axis of rotation along the blade span

norm alized by the blade length, and t/~Z is the real time. The

effective bending stiffness factor of the blade, 
~~~~~~ 

is related

to the bendi~ig stiffness of the uniform blade, El, by the relation

= EI/m2. 4 c12 , where in is the ithear mass density of the blade.

_____________________________ _____________________ _______ 
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When the source of external excitation is a vertical inflow, we

have f(x ,r) = y 0Ix+~ sinh IA (x ,~t) where A is the so—called

inflow ratio. The temporally periodic coefficients in the PUE (1)

give rise to the possibility of parametric excitation and dynam ic

instability (see [1) anu references therein).

Aside from the var1bu~ stability analyses , there is also

the problem of tao effect of random air and rotor generated

turbulence on tne structural 1~ te . rity of the blade . In an

effort to understand this aspect of the rotor blade problem ,

several recent papers stucied the stochastic blade response to

a (zero mean) ranuom inflow with known 3tatistics (see [21 and

references given therein). Uccause of the time-varying coefficients

in (1), the steacy state response process w(x ,r) will be

temporally nonstationary even if A(x ,-~) is stationary . In spite

of the substantial reduction (by at least an order of magnitude)

in machine computation made possible by a new method of solution

developed in [3] and used in [2], i~ is still rather expensive

to generate useful information on the stochastic properties of

the nonstationary steady state response of the flexible blade

for design purpose.

If the inflow is uniform along the blade span so that X(x ,r)

is independent of x , one may expect that the dominant motion of

a bla de hinged at the axis of  ro ta tion is in the f o r m  of  ri gi-~
f lapping . A solution of the stochastic forced transverse vibra-

tion problem for a spanwise uniform loading based on a rigid flap-

ping blade model is considerably simpler than a more general

flexible blade analys i s  as f a r  as the amoun t of require d machine
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computation is concerned (see (4 1 and [5]). Inasmuch as the

stochastic loadings experienced by rotor blades are often random

functions of both space and time , a rigid flapping solution for

(zero mean) spanwise correlated random loads of comparable

simplicity should be of interest (as pointed out in [4]). Such

a solution and the string solution (ç~ = 0) of [2] together

delimit the range of the solution for any flexible blade with

finite bending stiffness (0 < < 00). With the help of the

spatial correlation method of [3], we can now formulate an

efficient computational procedure to obtain such a rigid flapping

solution for a spanwise correlated random excitation containing

as a special case the solution of [4] and [5] for spanwise uniform

inflows . While our results constitute a step toward a better

understanding of rotor blade behavior under random excitation ,

the analytical development leading to these results also illus-

trates how the general spatial correlation method may be used in

conjunction with a Ritz-Galerkin procedure.

For the purpose of illustrating our method of solution , we

take A ( x ,r) to be of zero mean and exponentially correlated

in time with an autocorrelation function

• — c & 1t2—t11
< A ( X 21i2 ) X (x1,t 1)> = e R5 (x 2,x1) (3)

where < ...> is the ensemble averaginç. operation, a is a known

positive cons tant and R5(x21 x1) R5(x1,x2) is a given function .

Rs(xi,X2
) was taken to be a positive constant a2 for the case

of a random inflow due to high altitude air turbulence in [4]. 

- 
_~~~~~~~~_~~~~~~~_

, .- . -  -, . . —~_ -- -.- - - - - - - — ~~—. .~~— .-~
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Since equation (1) is linear (so are the associated initial and

boundary conditions), w(x ,r) is also of zero mean and we can there-

fore concentrate on the second order response statistics of w(x ,t)

characterized by the autocorrelation function R (x21r2;x1,11)

= <w (x2,T2)w(x1,T 1)> . To determine R(x2, T 2
;x 11T 1

) , we will con—

sider X(xir ) to be the steady state stationary response to a

temporally uncorrelated random excitation n(x ,T) of a dynamical

system characterized by the first order ODE (see [2,3])

+ aA /~~ n(x ,r) (4)

where <n(x2,r 2)n(x1,t1)> = R5(x2,x1)5(T 2—T 1). It is not difficult

to verify that the autocorrelation function of the steady state

solution of (4) is as given by the right hand side of (3) [2]

Furthermore , it can be shown [2] that

= <n(y,1 )w
1
(x,T)> = 0 (5)

for all t ’ > r > 0 and 0 < x,y < 1. The numerical results to

be given in this paper will be for the special case Rs(x~
y)

= a2exp(-c~ x-y~ ) where a2 > 0 and C > 0 are given constants .

The analytical and numerical results for the rigid flapping

solution obtained with the help of the above device allow us to

study the effect of a finite load-correlation length characterized

by the dimensionless number c (with the correlation length equal

to 2./c) on the second order statistics of the (zero mean) flapping.

blade response. In the low advance ratio range , p 3 << 1, a pertur-

bation solution shows that the effect of the correlation length may

be completely described by an amplitude factor p and a phase factor

v ; both factors are simple functions of c. In the case of a random 

-.-•---- ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. —~~~~ 
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vertical inflow with a correlation length of the order of the blade

length (c = 0(1)), we see from the expression for p(c) that the

discrepancy between our solution and one ignoring the finite spatial

load-correlation (as in [4] and [5]) may be as much as 40% of the

former . In the high advance ratio range , an efficient numerical

solution procedure is formulated for the second order statistics

of the periodic steady state flapping blade response. The nuxneri-

cal solution obtained by this efficient procedure shows that the

effect of a finite load—correlation length (0 < c < 00) is

qualitatively similar to that described by the amplitude and

phase factor for the low advance ratio case.

2. Spatial Correlation Functions for Flexible Blade Response

The essential feature of the spatial correlation method for the

second order response statistics proposed in [3] and used in [2] and

[61 is the formulation of a nonstochastic mixed initial-boundary

value problem for the four unknown spatial correlation functions of

the response process w(x,r):

u(x,y,r) = <w (x,t)w(y,t)> , s(x ,y,r ) =
(6)

t(x,y,T) = <w~~(x,t)w(y,T)> , v(x,y,T) =

for all 0 < x ,y < 1 and t > 0. Note that these spatial correlation

functions contain the meansquare response properties as special cases

(when y=x). As we shall see, they also serve as the ini tial condi-

tions for a nonstochastic mixed ini tial boundary value problem for

the determination of the autocorrelation function R(x2,T2;x1,r 1),

(section 7).

To obtain an appropriate set of equations for u, s, t and v,

L _ 
_ _ _ _ _ _  -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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we observe that

U = <w (x,t)w(y,T )> + <w(x ,r)w (y,T)> = t + s (7)

and

t.~ = v(x ,y,i) + <w
~1

(x,T)w(y,1)> (8)

where we have made use of the fact that, within the framework of

meansquare convergence , differentiation commutes with the ensemble

averaging operation. We now use equation (1) to eliminate w t
from (8) so that

t~ = v — L
~~

[u] — 10Jx+Psintjt + ~ (x,y,t) (9)

where

=

(10)
y0~x+psint-)p (x ,y,t)

Interchange the role of x and y and we have also

S~ = V — L
~~

[U] - Y~~y+psint~ s + ~ (y,x,t) (11)

Finally, similar manipulations applied to the expression for
V
1 

give

V
1 

= — L,~~[s] — L~1(t] 
— y0 (Ix-4-psin1-I+Iy+psint ~ )v + ~ (x,y,r)

(12)

where

= y
0~x+psinr~q(x ,y, r) + y

0Iy +psint~q(y,x,-r) (13)

with q(x ,y, r) =

____________ _ _ _  - 
-~~—.~~

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

~~~~~~~~
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Equations (7), (9), (11) and (12) are to be satisfied in the

interior of the semi-infinite unit square column (0<x ,y<1), t>0)

in the x,y,r-space . On the base square of the column, t = 0, we

have froi~i the condition of no initial transverse motion :

u(x,y 0) = s(x,y,0) = t(x , y , 0) = v(x ,y , 0) = 0 (14)

We will not be concerned with the appropriate boundary conditions

on the four walls of the column (given in [6]) as they do not

enter into our analysis of blade flapping.

The four equations (7), (9), (11) and (12) contain six unknowns

since p(x,y,t) and q(x,y,t) involve the unknown w(x,t). We

need two more equations to complete the system. To get these, we

observe that

p(x ,y,t) <A
1

(x ,t)w (y,r)> +

(15)
= - ap(x ,y,t) + q(x ,y , t)

and

q1(x,y,
t) = <X 1 (x,t)w1(y,t)> +

= — (a+A 0~ y+ps irit~~)q(x ,y, r)  — L~~~[P (x~ Y~ t ) ]

+ y0ly+PSinTI R~
(X,y) (16)

where we have made use of  the PDE ~1) to elimina te w1~~, the ODE (4)

to elimina te At , and the conditions (5) to simplify the resulting

equations. The initial conditions

p(x , y , 0). = q(x,y,0) = 0 (0<x ,y<l) (17) 

- .. 
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supplementing (15) and (16) follow from the fact that the blade

experiences no transverse (out of the rotor plane) motion up to

some reference time t = 0. Again , we need not give here the specific

boundary conditions for p and q at y = 0 and y = 1, other than

noting the fact that they involve only two unknowns , p and q. As

such , we can first solve (15) and (16) for p and q in the y,t-space

with x as a parameter , and then use the result in (7), (9), (11)

and (12) for the determination of the other four unknowns . We note

also that the spatial correlation of the loading , charac terized

by Rs(X~
Y)
~ 

enters into the analysis explicitly only through its

appearance on the right side of (16).

3. The Rigid Flapping Motion

• We now introduce the rigid flapping assumption by taking

w(x,t) = xq (t), so that

u(x , y ,t) = xyU(T), s(x ,y,T) = xyS(t)

(18)

t(x ,y,r)  = xyT(t), v(x , y ,t) = xyV(t)

where U(t) = <$2(t)> etc., and equations(7), (9), (11) and (12)

become f ou r  ODE:

Ti = T +  S

2T = V - [w +k(t)]U - c(1)T + P(t)
S = V — [w2+k(t)]t) — c(T)S + p (t) (19)

= - (w 2+k(t)] (S+T) - 2c(t)V + 2Q(t)

where



--~ -- ~~~~~~~~~~~~ -• -
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1
k(t) = 3y0pcost J !x+psint l xdx

1 
0 (20)

c(T) = 3i~ J Ix+ iisintlx
2dx

0

and

= 3i~ x~x+psint~~{p(x,i),q(x,t)}dx (21)
J o

wi th

,1
= y{p(x , y , t),q(x ,y,t)}dy (22)

0

The constant cu is equal to 1 if the blade is hinged at the

blade root and is greater than unity if there is an elastic root

restraint.

The quantities p(x,T) and ~ (x,t) are determined by

— cip + cj, q = —[cx+c(t)]~ 
- (w 2+k(t ) ]~ + i(x,i) (23)

~ (x ,0) = ~ (x,0) = 0 (24)

where

~ (x,c) = 3i~ J yty+Psin1IR~ (x,y)dy (25)
0

Equations (23) are obtained from (15) and (16) by multiplying

through by 3’r0y and integrating over the interval (0,1).

The gener al proce dure is to solve the initial value problem

(23) and (24) with x as a parameter. The results are to be

used in the integrals on the right side of equations (21) and the

integrals evaluated to give P(t) and Q(t). Having P and Q,

we can then solve the four equations (19) subject to the initial 

~~~~~
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conditions

u(O) = S(0) = T(0) = V(0) = 0 (26)

which follow from (14). We note however that the second and

third equation of (19) together with S(0) = T(0) = 0 imp ly

S(T) T(i) for all t (consistent with the fact S = = T).

Theref ore , the system (19) is effectively a system of three equations

= 2S, ~ = V — [w2+k(t)]U — c(T)S + P

2 (27)
V = -2[w +k(t)]S - 2c(t)V + 2Q

The damping coefficients c(t) and the supplementary spring

rate k(t) due to the aerodynamic lift have been calculated in

[9]. In the case where A is independent of x, we have

R5(x,y) = ~
2 (a positive constant); the corresponding

= ~~
( t )  re duces to the envelope f u n ction f o r  the i nf l o w

ratio term given in (9].

4. Exponential Correlation in Space— Hovering

In  the remaining sections of  this paper , we restrict ourselves

to a sp ecial cla ss of  load spatial correla tion f unction

Rs(x~
y) = a2e~~~l~~~~

j (28)

where a 2>0 and E>0 are known constants. We will be interested

in how the ri gid bla de solutions obtaine d in [ 4 ) ,  (5] and (7)  f o r

a spatial ly  pn if o rm ran dom excitation are mod if i e d  by a f i n ite

load correlation length. In this section, we consider first the

•

~

.•. ~~~ • • • .
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simpler case of hovering .

With p = 0, equations (23) become

p1 = - a p + q ,  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(29)

where

,1
—

= 
2~~ 2 —c~ x—y~r 3yoo j y e  dy

0 (30)

= X2~~[2x 2+e2x4_x2C x_
~
20c~~

_U 
(l+c+

Since r is independent of t , the steady state solution of (29),

denoted by p~ 
and q~~, is also independent of t and can be

obtained simp ly by setting j~ = = 0. The resulting algebraic

equations give

= ~ (x)/~ , = , 

~ 
= 

2 
+ a2 + ay/8 (31)

Correspondingly , we have from (21)

p = ~~ j x2~ (x)d:: = 
y~a

2 
p ( e )

0 (32)

= aP5 , p (c) = Z~ [e~~~(1+c+ ~~_) - (1— !~~_ + ~~~~
_ -

which are also independent of 1. It follows that the steady state

solution of (27), denoted by U , S and V , is also independent

of  t. By setting U1 
= V1 

= S
1 = 0, we have immediately f rom (27)

= 
~~~ 

= 
2c&ya

2 
p(c) V0p(c)

2 
(33 )

t = U p(c) ya (8a+y) 
~~~ 

— 

= 0
0 36kw 

- ~~~~ ~~~~~~~*.• - - •_- - - -~~~~~~-•-- - - . -.-- , --- -- -.•~~ -• .~~~~. .- -
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Note that V0 and U0 are independent of C and are in fact

the meansquare velocity and displacement known for the case

of a spanwise uniform random inflow with the same exponential time-

correlation [4,5,7]. The factor p(c) in (3 2 ) and (33) may there-

fore be thought of as an amplitude factor associated with a finite

spanwise correlation length of the inflow . It is not difficult to

verify that p (c )  1 and p ’ (c) < 0 as C -, 0 so that V/V0

and 0/U0 decrease with increasing C for small C . A small but

positive c means a finite correlation length which is long compared

to the blade length . On the other hand , p(c) -
~ 0 and cp(c) -

~~ 9/5

as c -
~ ~~~, so that the solution tends to that of a spatially delta-

correlated inflow . The variation of the amplitude factor p (c) over

the whole range of C is given in Figure 2 where we have plotted

cp(c)/2 for all ~ > 2 in order to compare with the limiting case

of spanwise delta-correlated inflow . The plot shows that p is

a monotone decreasing function as C increases. Therefore , the

meansquare flapping displacement and velocity decrease with decreas-

ing spanwise correlation length of the particular class of inflows.

For blades in hover , the pro blem with a ran dom i nf l o w  excita-

tion is a ra ther ar tif icial one ; an excitation due to a ran domly

changing collective pitch angle 8(x,t) is more appropriate. For

this case , we have f(x,t) = 101x+psint (
20(x ,t). If 0(x ,r) is

exponentia l ly  correla ted both in space and time (as given by (3) and

(28)), similar calculations for p = 0 give

2aya 2 p0 (c), ~~ 
= 

yci2(8a+y) 

~~~~ 
g

0 
= 0

6 41kw

where 

-~~~~~~~~~ -~~~~~~
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4 5 6 7,~~~ _ ll52 C C C C
P0t C) — 

8 L ~~1 - - ‘

C
2 3 (35)

C + 
~~j- +

and where t~ is as given in (31). The variation of p0 
with c is

also shown in Figure 2. With p0 (c) 
÷ 1 as c -* 0, the results in

(34) tend to those for a spanwise uniform 0 obtained in [7]. As

C -
~ ~~~~, 

p0 (c) tends to zero while ~cp 0
(c) tends to 16/7 corresponding

to the case R5(x ,y) = a25 (x-y) . For finite values of c, p0
(c)

is again a monotone decreasing function as c increases . Therefore ,

the meansquare flapping displacement and velocity are also reduced

by a shortening of the spanwise correlation length of this particular

class of 0 (x,T)

Before leaving the hovering case, it should be noted that the

quantities V0 and (for both kinds of random excitations consider-

ed) are monotone increasing functions of y for all y > 0 and for all

positive values of and a. In the realistic range of y and

V0 increases almost linearly with y while U0 increases quadratically

with y f o r  a = 0 (1) and is nearly linear in y only f o r  broa d band

excitations (ci >> 1).

5. Forward Flight at Moderate Advance Ratios

While an exact elementary solu tion of  our pro blem was obtained

in section (4) for the hover case (p=O), the same is not possible

for the forward flight case (p>0). To gain some insight into the

ef f e c t of  a sp~ nwise correlation of the inflow , we restrict ourselves

in this section to the low advance ratio range so that p3 << 1. In

this ran ge , we expect that the contribution of the reverse flow ef—

fect can be neglected (see [4.8]) so that

c(t) 
~~~ J (x3+x2psint )dx = + ~~

. psin cn (t) (CoNTINU~D)
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1
k(i) 3y0pcosT J (x2+xpsint )dx

0

= ~pcosi + ~-p
2sin2i E k (t)

1 ( 3 6 )
a 3100

2 
J
~~y2+yp i ) o

_ cIx_ Y~dy

= 0
2y(r0(x)+r1(x)psinr] r~~(x,t)

where

r
0
(x) = C 

3 [2+c 2
x
2_e C C (l .~) (l+ + 1 2 )]

r1(x) = ~c
_2

[2cx+e x_o
_
~~ (l+c)] 

(37)

The form of cn (T)~ 
k
n
(T) and r

n
(x ,t) suggests that

a steady state solution of (15) and (16) in powers of p is

*possible when p < 1. Upon wri.ting

= ~~{p~~(x,t),q~~(x,t)}i? (38)

the coefficients p~ and q
~ 

(which are independent of p) are

evidently the particular solutions of the following sequence of

ODE:

p~ + 2c0
p0 

+ ~p0 = yr0(x) , q~ = p~ + cip0 (39a)

+ 2c~p~ + ~p1 
= yr1(x)sint 

— 

~sintp~ 
— 

~-(asinT+cost)p0

(39b)
q1 = p1 

+ ap1

A perturbation solution ot the initial value problem (15)-(17) it-
self can be obtained without difficulty . But we are not interested
here in the transient part of the meansquare response properties . 

~~--— . .- -- .- ~~ - • • • - - • . • —- --—-~~~~~~~~~~~
.-

~~~~~~~~~~~~~
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where dots indicate differentiation with respect to r, ~ is

as defined in (31) and c0 = u + y/lG. It is a straightforward

matter to obtain these particular solutions since the ODE involved

are with constant coefficients.

The steady state perturbation solutions (38) are then inserted

into (21) with the reverse flow effect neglected. Upon carrying

out the integration , we get

2 2
P(t) = 36~

+ p (P 
~~~ 1

V(6)]C0ST + 0(p
2) )

2 2 (40)
Q ( T )  = 

~~~~ 
p ( C ) {~ -s-p[ Q 50 +Q 1v ( E) ] s i nT

+ 
~~~~~~~ l

v )lc0sT + 0(p2) )

where p(c) is as given in (32) and

6 
2

p (C)v(C) = —~ N1—c+~— - )— e C
] (41)

The constants ~~~~ 1~~~’ ~~~ 
and Q .  depend only on y, a and

and will not be listed here. Therefore , the effect of the span-

wise correlation is completely described by the quantities p(C)

and v (C). Note that v(C) • 1 as C + 0.

Having the steady state solution for P(t) and Q(t), we

can now use (27) to determine the steady state meansquare proper-

ties of the blade response. In view of (40), a steady state solu-

tion of (27) may be taken in the form

{u ,s,v} = ~~~~~~~~~ + p[CU5,S5,V5}sint

2 (42)
+ {UC,SC,VC}cOST] + 0(p ) 

*—— - ,-~~~~- -.•• *-—~~ • . ,— - ---• -, ——-—- ,- 

—
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The 0(1) terms , U , S and V , are just the steady state solutions

for the, hover case given by (33). Iiy the method of undetermined

coefficients , the constants U , S , • . .,  V are solutions of a
S ~ C

system of six coupled linear algebraic equations which may be

written as two sets of three complex equations

~

‘ (] .  + ~i)V + = 2iQ - ~-1V
( 43 )

( - v +  (u 2 -~~~ -~~~ i ) U = P + ~~ iO

U — 2iS = 0 (44)

with

= fU5,...,Q5
) — i(Uci• ••~

Qc) (45)

2 2
= 

~3~ A p [CP 0~~...,Q 0} + {P i,...,Q~1
}V(c)] (46)

It follows from (3 3 )  and (45) that the solution of (43) and

(44) can be put in the form

U 02p (c)[U 50+U 1v (C)), etc. (47)

where U~0, ~~~~~~~~~~~ 
depend only on 

~r ’ a and ~2

In the case c = 0, the solutions for the functions U(T),

S(T) and V(T) as given by (42) are exactly the approximate

steady state variances and covariance of the flapp ing response

obtained in [8] for low advance ratio flight and will be considered

known. Our concern here is with the effect of a finite spanwise

correlation length (c>0) on these response statistics. This effect

is completely described by t he  two quantities p(C) and v (c).

_ _ _ _  --.—-•-, - . ~~~~~~ •-~~~~~~~~~~~ - . -~~~~~~~~~~~~~ - . -~~~ --•--• ..-- •.-- - 
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From the plot of v(c) in Figure ~~~~, we see that this monotone de-

creasing function changes by less than 10% of its value at C = 0

as the correlation length shortens (from infinity) to a fraction of

the blade length. Therefore , the main effect of a spanwise load

correlation is in the amplitude factor p(c). As both p and v

decrease with increasing c , a correlation length shortening in the

low advance ratio range gives rise to a reduction in the time aver-

age of the meansquare flapping properties as well as in the fluctu-

ation about these average values.

Solutions for 0(~
2)-terrns in (38) and (42) have also been ob-

tained . In the C = 0 case , these terms involve the second harmonics

cos 2i and sin 21 . The effect of a finite spatial correlation

length on these O(p 2)-terms is qualitatively similar to that on the

0(1) and 0(u) terms . As such the explicit solutions for the 0(p2)-

terms will not be given here .

6. Numerical Solution for Arbitrary Advance Ratio

If p3 is not small compared to unity , the situation is much

more complicated since the ef fect of reverse flow is no longer

negligible. For p < 1, we have from (20)

(C (T)

c(T) = 4
~ 4 (48)

+ ~~—(3-4cos2t+cos4t) ((2m +l)~ <i<(2zn+2)~~)

and

(k~~(T) (2m~ <T< (~ n+l)~~)
k(t) =

~~ 4 (49)
— 

~
_h (2sin2T—sin4T) ((2rn+1)u~~<(2m+2)~~)

Evidently, the effect of reverse flow is negligible in c and k

~~~Ii~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~. - ---- ~~~—~~~~—-~~~~ ---— ~~~~~~~~~
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if p 3 << 1. From (25), we get

( r ( x ,t) (2mlT<T< (2m+l)ii ,O<x <l)

r (x , T)  = -r (x,~~) — r
~, (x,1) ((~~tl+1)1r<T<(2m+2)1T ,:-~<—p sin1)

r( ;~,i) + r ( x ,T) ( ( ~~n + l ) n < T < ( ~~~ + 2 ) T r , x > —p s i n T)

(50)

where

r~~(x,i) =

_e X 5
~~

T) (2-epsinT)) (51)

rg (xiT ) = 1c
3{e (2_cpsinT )_C C P51flT)(2+cpsinT)}

With (50) and (51), it is not difficult to show that the effect

of reverse flow can be neglected in ~~~~~~~~ if p
3 

<< 1 at

least for c << 1 and C > >  1.

For p > 1, the entire blade is subject to reverse flow in

the range -sin~ > so that

c(T) = —c (r), k(t) = _k
n (T)~ 

r(x,T) = —r~~(x~t) (52)

for all r in the range - < T < ~~~~~
- + ij’ where ~ = cos 1’(l/p).

Having the expressions for c, k and r, we can now solve the

initial value problem , (23) and (24). numerically using a 4th

order Runge-Kutta scheme for x, say x0 = O ,xl,x2,..•,xm = 1. With

f.(xk) = f(xk,T.), the set of solutions {
~~
.(xk),~~

.(x
k)) for a

fixed j is used in (21) to get P(T~ ) and Q(T~ ) with the

integrals evaluated by Simpson ’s rule. Once P(t~ ) and Q(t~ )

are calculated , the initial value problem (26) and (27) is solved

numerically again by a 4th order Runge-Kutta scheme . Within the

stability boundaries of the two. sets of equations , (23) and (27), 

-.~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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We y e t  a ccu ra t e  steady s ta te  per iod ic  so lu t ions  of the mcansquare

blade flapping properties after four blade revolutions for the

r ea l i s t i c  r ange  of va lues  of ~ ( 2 <’~~ 12) . For a fixed set of

y, ~i, c , a and the entire solution process for P , 0, U, S

and V consumes about 50 seconds on a UNIVAC 1106 if 21 stations

along the blade span are used in the numerical evaluation of the

integrals on the right side of (21).

With R5(x2,x1) = ~
2 (a constant) , the class of random

functions characterized by (3) seems to adequately describe the

random inflow associated with atmospheric turbulence at altitude

higher than 300 ft. above terrain if the effect of the spatial

variation of the vertical turbulence component, of the longitu-

dinal turbulence component itself and of the blade motion are

all neglected (see [4) and references therein). In that case,

we have a = 2pL/L where P. is the blade length and L/2 is the

scale length of the vertical turbulence component. L is about

400 ft. for an altitude of 300-700 ft. above terrain and is

several thousand feet for higher altitudes. From the expression

for a, we see that, at the low advance ratio range, the correla-

tion time is long compared to one blade revolution for existing

blades which range from 33 ft. to 100 ft. As such, the results

of section (5) for the low advance ratio range serve only to

indicate the qualitative effect of a spatially correlated inflow ;

we are mainly interested in the case of high advance ratio flight.

The means quare f l ap ping res ponse of the bla de to a zero mean

X (x,r) with a correlation function given by (3) have been studied

- . . - -_ .-

~

.—_. - _

~

- _ . .-

~ 

~~~~~~~~~~~ . . . - - - -
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with the help of the numerical solution scheme outlined in this

section for a wide range of the blade and load paramenters.

The numerical solution shows that the perturbation solution of

section (5) (including O(p 2)-terms) gives a very good approxima-

tion of the exact solution for p < 0.4. It also shows that the

effect of a finite C for all 0 < p < 1.6 is qualitatively

similar to that indicated by the perturbation solution. The

actual distributions of the steady state <~ 2> and <~ 2> are

given in Figures (3), (4), (5) and (6) for p = 1.6 and p = 1.2

an d f o r  the two extreme rotor disc s izes , P. = 334 ft. and

P. = 100 ft, operating at 300 ft. - 700 ft. above terrain

(L = 400 ft.). We have taken = 1 in these examples since

most existing blades are hinged at the blade root. We see that,

aside front an increase in the magnitude of the xneansquare response ,

an increase in p tends to shift the time when <~
2> and

attain their maximum values f u r ther toward the midway point and

the end of the backstroke, res pectively.

Final ly , we show in Tables 1 and 2 the effect of the Lock
2 •2number y on the peak values of <4 > and <~ > . We see in

particular that the amplitude growth with y is nonlinear and the

growth rate depends significantly on p but not at all Ofl C.

7. Autocorrelation Functions

Having determined U , S and V , we can now calcula te the

autocorrelation of the flapping angle •(t) which characterizes

_ _ _ _ _ _ _ _ _ _ _  
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the second order statistics of the flapping response. We begin

by multiplying (1) by w(x ’ ,r ’) and ensemble-averaging the result

to get

R11 + y0Ix +psinTIR~ 
+ LXI[R] = y01X +psinTIA (X ,T;x ’,T ’) (53)

where R(x ,T;x ’,T ’) = <w(x ,r)w(x ’,t ’)> and

A (x,T;x ’ ,t ) = <A(x ,t)w(x ’ ,r ’)> . To ç~et the yet unknown load—

response correlation A , we multiply (4) through by w (x’,t ’)

and ensemble average giving us

It + aA /~~~ <n(x ,r)w(x ’ ,t ’)> = 0 (r > t ’)  (54)

where the right hand side vanishes for t > r ’ by (5). At

= r ’, we have from the relevant definitions

A(x ,r ’ ;x ’ ,t ’) p(x,x ’,r ’) (55)

It follows from (54), (55) and the assumption of rigid flapping

that

A 1 + aA = 0 (1>1 ’) ,  ~ (x,r ’;T ’) = p (x ,t ’) (56)

where

= 3 1  xA (x ,t ;x ’ ,r ’)dx ’ (57)
JO

The solution of (56) is

— —a (t—r ’)A (x,r ;r ’)  = p(x,r ’)e Cr ‘ r ’) (58)

I1
~~ II_ _—.,.—-.———-— ~.-_-.--.—_. ,, ._-- — . .—— .-.__ . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Upon introducing the rigid flapping assumption into (53),

we get

+ c(t)R
1 
+ [w 2+k(t)].~ = A(t ,t ’) Ct > t ’)  (59)

where R(l;t ’) = <q (t)t~(t ’)> and

tl
= 3~0 J  

xlx+p sintlA (x,r;I ’)dx

= 3y0e 
t_ T~)J xIx+psinh I~~(x,t ’)dx

4 ye (t_t ’
~~~(T;T 1) (60)

with P(t ’;t ’) = P(t ’). Note that

R(T ’;T ’) = <q~
2 (t ’ ) >  = U(t ’), R1 (T ’;t ’) = S(t ’) (61)

= V(T ’) (62)

The two conditions in (61) serve as initial conditions for (59).

But even wi thou t solvin g the ini tial value pro b lem (59) and (61)

explicitly for R(t;t ’), the following informative observation

can be made. Since the effect of a spatial load correlation

appears only in P(t;t ’) which is a periodic function of t

and r ’ at steady state, the correla tion time of the res ponse

depends only on the parameters a and y and not on ~~. Within

the framework of ri gid flap ping , our particular type of spanwise

load correlaticn only modifies the amplitude of the autocorrela-

tion of the response. 

~~ _ -_ - .~~~~~~~~~~~~~~.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Table Cl) Variation of Maximum <~
2(r)>/G 2 with Lock Number

for <A (x ,r)A(x ’,r ’)> = cl 2exp (—ajt—T ’J—cj x— x ’ J )

y~ 4 y=8 y=12

p=l.0 C=l.O 1.26 3.76 13.74 30.06

a=0.5 c=0 .  1.58 
- 

4.71 17.26 37.75

C=l.O 1.97 5.22 17.20 
- 

36.70

a=O.l67 c=0. 2.44 6.53 21.61 46.07

C l.0 2.30 9.58 61.29 183.30

a=0.8 c=~~. 2.91 12.09 77.55 231.32

3.17 13.40 85.92 251.25

a= 0 . 2 6 7  c= O .  3 .98  16.88 109.07 316.29

Table ( 2 )  Variation of ~1aximum <~
2(t)>/a 2 with Lock Number

for <A. (x,T)A(X ’,t ’)> = a 2exp(_att_T ’t~-C Ix_ x ’I )

y=2 y=4 y=8 y=12

C 1.0 1.03 2.91 10.54 23.05

cz=0.5 £=0. 1,29 3.62 13.18 29.11
- 

p 1.0 C=l.0 1.54 3.83 12.56 27.01

a 0.l67 c=0. 1.89 4.72 15.59 33.99 
—

C=1.0 1.62 9.20 75.01 246.14

a=O.8 c= o. 2.05 11.72 95.34 3l�.56

ii=1.6 c1 .0 2.08 12.77 103.90 331.84

u=O.267 C=0. 2.60 16.05 137.23 423.09

—,
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