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AIISTRPiCT

This report concerns the design of data types in the creation of a software system;
its major purpose is to explore a means for specif ying a data type that is independent of
its eventual implementation. The particular sty le of specification , called algebraic axioms,
is exhibited by axiomatizing many commonly used data types. These examp les reveal a
great deal about the intricacies of data type specification via algebraic axioms , and also
provide a standard to which alternative forms may be compared. Further uses of this
specification technique are in proving the correctness of implementations and in
interpretivel y executing a large system design before actual implementation commences.

This report is an expanded version of a paper given at the Second International
Conference on Software Engineering, October 1976. It will also appear in Current Trends
us Prograrnnung Methodology, Vol. IV: Data StructurSng, Raymond T. Yeh, ed. (to be
published by Prentice-Hall in 1977).
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S. INTRODUCTION

Creating a software system is generally regarded as a four-stage
pr ..cess: requirements , design, coding, and testing. For some of these stages , tools
and/or techni ques that significantl y enhance the process have been developed. Recently,
concern has increased about developing aids for the design stage. Design is essentiall y a
creative , synthetic process , and a full y automated tool is very unlikely. What has been
suggested is a “methodology ” or a st y le of working which is purported to yield improved
desi gns.

Top-down design is a process whereby a task is transformed into an executable
program. This process in its purest form calls for carefull y refining, step by step, the
functional requirements of a system into operational programs. Further guidelines
regarding the choice of appropriate statements and the postponement of design decisions
can be found in [DahI 72].

The purpose of this report is to explore a complementary design s’ra tegy, t l~,e
desi gn of data t ypes, A complete software system may contain a variet y of types (lists ,
stacks , trees , matrices , etc.) and a va~ ...;y of operations. One useful design procedure is
to treat those operations that act primaril y on a single d~~a type as forming a unit and to
c onsider the semantics of these operations as the definition of the t ype. This idea was
implici t in the SIMULA 67 programming language [DahI 70], in which the syntactic
designation c Lass denotes a collection of such operations. However , the class concep t
applies this princip le at the programming language level rather than at design time. Each
operation of a class is a directl y execu table program. lt is also useful to c onsider a
collection of operations at design time; then the process of design (of data t ypes) consists
of specif ying those opera tions to increasing ly greater levels of deta il until an executable
implementation is achieved. The idea we wish to explore here is how to create an initial
specifica tion of a data type.

A data type speci ftcatwn (or abstract data type) is a representation-independent
f ormal defin ition of each operation of a data type. Thus, the com7 te te design of a sing le
data type would proceed by first giving it s specif ica t ion, followed by an (eff icient )
implementation that agrees wi th the specification. This separation of data type design
into two distinct phases very useful from an organizational point of view. Any process
tha t needs to make use of the data type can do so by examining the specification alone.
There is no need to wait until the type is fully implemented, nor is it necessary to full y
c omprehend the implementat ion .

There are two chief concerns in devising a technique for data type specification.
The first is to devise a notation that permits a rigorous definition of operations but
remains represen tation-independent , and the second is to learn to use that notation.
There are many criteria one can use to measure the value of a specification notation, but
the two major ones are as follows:

Can specifications be constructed without undue difficulty’

Is the resulting specification easy to comprehend?

As with programming, there are potentially a very large nui~~er of ways to specify an
operat ion. A good data type specification should give just e .ough information to define

I
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the type, but not so much that the choice of implementations based upon it is limited.
Thus, we say that a data type specification is an abstraction of a concept of which the
eventual implementation is only one instance.

In this report our intent is to explore a particular specification technique, algebraic
specifications (Goguen 75], (Guttag 75], (Zilles 75], by exhibiting specifications for a
number of commonly used data types. Those we have chosen are t ypical of those that
are discussed in a course on data structures; see [Horowitz 76]. By supplying these
examples we hope to convince the reader that the sty le of specification we discuss here is
especially appropriate for designing data types and that it meets the two criteria
previously stated. Secondly, we hope these example specifications will provide a standard
by which other methods can be compared. We do not pretend to have supplied definitive
specifications of the example data types. Both our choice of operations and the semantics
we associate with some of the operations are somewhat arbitrary.

In the last section we indicate how these specifications can be further used for
proving the correctness of implementations and for testing, at design time, large software
systems. However , since these subjects are fairly lengthy, we limit our presentat ion here
to an informal discussion of reading arid writing data type specifications. The remaining
subjects will only be hinted at here, but are dealt with in (Guttag 76b).

Many other people have been working on these and related areas and we have
profited from their ideas. A useful bibliography of this work is given in (Liskov 75].
Some of the particular axiomatizatior is have already appeared in the literature , notably
Stacks , Queues, and Sets; see (Goguen 75], (Guttag 76a], (Liskov 75], (Spitzen 75], and
(Standish 73].

2. TIlE SPECIFIC’lTIONS

How can one describe a data type without unduly constraining its eventual
implemented form? One method is to define the object using natural language and
mathematical notation. For example , a stack can be defined as a sequence of objects
(a 1~ ..,a~ ) n�O, where insertions or deletions are allowed only at the right-hand
end. This type of definition is not satisfactory from a computing standpoint , where it is
preferable to define constructivel y a data type by defining the operations which create ,
build up, and destroy instances of the type. Since software designers generally know
how to program, the use of a programming-like language for specification is especially
desirable.

The features we choose permit only the following:

1. free variables
2. if-then-else expressions
3. Boolean expressions
4. recursion

Moreover, we restrict the use of procedures to those which are single-valued and have no
side effects. Note that many features normally presumed to be present in conventional
programming languages (such as assignment to variables, iteration statements ) are not
permitted in this formalism. This approach may seem so arbitrary as to eliminate the

L — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~
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possibility of ever achievin g the previousl y stated goals , but actually it has several str ong
points to recommend it. First , the restricted set yields a representation-independent
means for supplying a specification. Second, the resulting specifications can clearl y
express the desired concepts if the reader is comfortable with reading recursive
programs. (Though many programmers are not so accustomed, a faithful reading of this
report will serve as a tutorial on this subject.) Third, the separation of values and side
ef fec ts  lends clarit y and simplifies a specification. Though requiring this separation may
be too restrictive for an imp lementation, the criterion of efficiency can be relaxed at the
specifica tion stage. Fourth, the above features can be easil y axi omatized , w hich is a
necessary f irst step for successfull y carry ing out proofs of implementations; see [Guttag
76b ) .

Let us begin wi th the very simple examp le of a Stack data type which is given in
Figure 2.1. The operations which are available for manipulating a stack
are: (1) NEWSTACK , w h i c h  produces an instance of the empt y stack; (2) PUSH, w h i c h
inserts a new item onto the stack and returns the resulting stack; (3) POP, which removes
the top item and returns the resulting stack; (4) TOP, which returns the top item of the
stack; and (5) ISNEWSTACK , which tests if a stack is empty. For each operation , t he t ypes
of its input and output are listed in the declare statement. Notice that all operations are
true functions which return a sing le va lue and allow no side effects. If stack operations
are implemen ted by pr ocedures with side effects , their effect can be specified easil y in
terms of the operations we have given. Extending the formalism in this way is discussed
in Section 4.

type Stack[item]
1. declare NEWSTACK() -‘ Stack
2. PUSH(Stack ,item) -. Stack
3. POP(Stack) -. Stack
4. TOP(Stack) -. item U (UNDEFINED)
5. ISNEWSTACK (Stack) -. Boolean;
6. f or  all s ( Stack , i ( item let
7. ISNEWSTACK(NEWSTACK) - tru e
8. ISNEWSTACK(PUSH(s,i)) = false
9. POP(NEWSTACK) - NEWSTACK
10. POP(PUSH(s,i)) - s
11. TOP(NEWSTACK) - UNDEFINED
12. TOP(PUSH(s,i))
13. end
end Stack

FIgure 2.1

At this point let us introduce the notational conventions we will use throughout this
report. All operation names are written in upper case. Type names begin with a capital
letter , e.g., Stack. Lower case symbols are regarded as free variables , such as s and i in
Figure 2.1, which are taken to be of type Stack and item , respectivel y. Type names can
be modified by listing “parameters ” within square brackets. These parameters may be
type names or free variables whose range is a type, e.g., item is such a variable and
indicates that the type Stack can apply to any other data type. The equations within the
for all and end are the ax ioms which describe the semantics of the operations.

~
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At first these axioms may prove difficult to comprehend. One aid is to interpret the
axioms as defining a set of recursive functions. The empty stack is represented by a
function with no input arguments , NEWSTACK . Then asking for the topmost element of
NEWSTACK is regarded as an exceptional condition which does not result in an item; hence
we call it UNDEFINED. The only other stack we can have must be ot the form PUSH(s ,i)
where s is any stack and i is the most recentl y inser ted item. Then by line 12 the last
element inserted is the first returned. Notice that we need riot worry about expressions
of the form TOP(POP(s)), since axioms 9 and 10 give us rules f or expressing any value of
type Stack in te ms of only NEWSTACK and PUSH.

Unfortunatel y, the Stack example is far too simple in many respects to properl y
illustrate the intr icacies of data t ype specification. A somewhat richer example is the data
t ype circular list defined in Figure 2.2. This type has seven operations. Five of these ,
CREATE , INSERT, DELETE, VALUE, and ISEMPTY, have exact analogs in typestack . The
RIGHT and JOIN opera tions introduce additional complexit y by allowing us to rotate the list
of stored ete’rents , thus permitting access to both ends of the list , and to join two lists
into one. This additional complexity is reflected in the recursion of axioms 17 and 19.

type CircularList[itemj
1. declare CREATE( ) -~~ CircularList
2. INSERT(CircularList , item) -. CircularList
3. DELETE(CircularList) -9 CircularList
4. VALUE(CircularList) -. item u {UNDEFINED}
5. ISEMPTY(CircularList) -. Boolean
6. RIGHT (CircularList) -. CircularList
7. .JOIN(CircularList ,CircularList) -

~ Circular List
8. for all C, c i CircularList , i, it , i2 item let
9. ISEMPTY(CREATE) - tru e
10. (SEMPTYONSERT(c ,i)) — false
11. DELETE(CREATE) — CREATE
12. DELETE(INSERT(c ,i)) — c
13. VALUE(CREATE) - UNDEFINED
14. VALUE(INSERT(c ,i)) — i
15. RIGHT(CREATE) - CREATE
16. RIGHT(INSERT(CREATE,i)) — INS ERT(CREATE,i)
17. RIGHT(INSERT(INSERT(c,i),i 1))

— INSERT(RIGHT(INSERT(c,i 1 )),i)
18. JOIN(c,CREATE) — c
19. JOIN(c,INSERT(cl,i)) — INSERT(JOIN(c,cl),i)

end
ød Circular List

era 22

This specification is similar to one given by Valdis Berzins (Berzins) for a symmetric
cIrcular list data t ype, which included a LEFT operation, but not a JOIN operation.

We have now introduced almost the entire specification language used in writing
algebraic axioms. All that remains is to introduce conditionals into the right-hand sides.

- - .. ~~~~- , ~——~~~~~~~~~~~~ -—---~ 
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This is done in the definition of type Queue, a first-in first-out list, in Figure 2.3. There
are six operations: four produce queues, one returns an item, and one is
Boolean-valued. An easy way to understand the axioms is to conceive of the set of all
queues as being represented by the set of strings consisting of

NEWQ or .ADDQ(...ADDQ(ADDQ(NEWQ,ii),i2),...,i
~

),n�1.

The item is at the front and is at the rear. Then the axioms can be concretely
thought of as rules which show how each operation acts on any such string. Eor example ,
taking the FRONT Q of the empty queue is UNDEFINED. Otherwise FRONTQ is applied to a
queue whose most recentl y inserted item is i, and q represents the remainder of the
queue. If q is empty , then i is the correct result; otherwise FRONTQ is recursivel y applied
to q. A similar situation holds for the DELETEQ operation. Notice that none of the
common forms of queue representation , e.g., as linked lists or in an array, is implied or
precluded by this definition.

type Queue(item]
1. declare NEWQ( ) -. Queue
2. ADDQ(Queue,item) -. Queue
3. DELETEQ(Queue) -‘ Queue
4. FRONTQ(Queue) -. item u (UNDEFINED)
5. ISNEWQ(Queue) Boolean
6. APPENDQ(Queue,Queue) -+ Queue;
7. for all q,r ( Queue, i ( item let
8. ISNEWQ(NEWQ) - true
9. ISNEWQ(ADDQ(q,i)) = false
10. DELETEQ(NEWQ) = NEWQ
11. DELETEQ(ADDQ(q,i)) —

12. if ISNEWQ(q) then NEWQ
13. else ADDQ(DELETEQ(q),i)
14. FRONTQ(NEWQ) = UNDEFINED
15. FRONTQ(ADDQ(q,i))

if ISNEWQ(q) then i else FRONTQ(q)
17. APPENDQ(q,NEWQ) - q
18. APPENDQ(r ,ADDQ(q,i)) - ADDQ(APPENDQ(r,q),i)
19. end
end Queue

Figure 2.3

Let us consider a third familiar structure , the binary tree (Binarytree), and examine
in more detail the virtue of regarding all values of the data structure as being represented
by strings. Its specification is given in Figure 2.4.

_  - .. ~~~~~~~~~~~~~~~~
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typo Binarytree(item]
declare EMPTYTREE( ) -

~ Binarytree
MAKE(Binarytree ,i t em ,Binary tree) Binary tree
ISEMPTYTREE(B inarytree) -+ Boolean
LEFT(Binarytree) -‘ Binary tree
DATA(Binaryt ree) -

~ item U ~UNDEFINED)
RI GHT(Binary tree ) Binary tree
ISIN(Biriarytree ,item) -~ Booleari ;

for all l,r Binary tree , d,e ‘ item let
ISEMPIYTRE E(EMPTYTPEE) = true
ISEMPTYTREE( MAKE( l ,d,r ) )  — fahe
LEFT(EMPTYTREE) = EMPTYTREE
LEFT(MAKE(l ,d,r ) )  =

DATA(EMPTYTREE ) - UNDEFINED
DATA(MAKE(I ,d,r)) = d
RIGHT(EMPTYTREE ) = EMPTYTREE
RIGHT(MAKE(l ,d,r ) )  — r
ISIN(EMPTYTREE ,e) = false
lSlN(MAKE(l ,d,r),e) =

if d=e
then true
che ISIN(l ,e) or l S l N(r ,e)

end
end Binarytree

Figure 2.4

The operations included are Ek4PTYTREE, which creates the empty tree; MAKE, which
joins two trees together with a new root; and operations which access the data at a node,
re turn the left subtree or the right subtree of a node , and search for a given data item.
Three operations which we might naturall y wonder w hether to include are the usual
t raversal  methods (preorder , inorder , and postorder) , whic h place the elements contained
,n the tree into a queue [Horowitz 761. Perhaps the strongest reason for including them
is the very fact that they are so succinctl y stated by our recursive notation , e.g.,
INORD(Binary tree ) -‘ Queue and

INOPD(EMPTYTREE) = NEWQ
INORD(MAKE(I ,d,r)) - APPENDQ(ADDQ(INORD(I ),d),INORD(r))

for I,r ( Binaryt ree and d ( item. The choice of which operations to include in a
specification is arbitrary. We have omitted this operation because it makes significant use
of the operations of another data type , Queue. However , this does give us the
opportunity to experiment with the string representation. Let us present an example
which starts with the binary tree

T — MAKE(MAKE(EMPTYTREE,B,EMPTYTREE), A,
MAKE(EMPTYTREE,C,EMPTYTREE))

and applies the axioms to INORD(T) to obtain

INORD(T) - APPENDQ(ADDQ(INORD(MAKE(EMPTYTREE,B,EMPTYTREE)),A),

.. 
~~~~~~~~~~~~~~~~~~~~~~~~~



— ..~~~~ 
-.--— —-----.-.--— .—.- —

~~
, _.-_— _J_~

_
~ 

- --- - ---
~

7

INORD(MAKE(EMPTYTREE,C,EMPTYTREE)))

which by the definition of INORD becomes

APPENDQ(ADDQ(APPENOQ(ADDQ(NEWQ,8),NEWQ),A),
APPENDQ(ADDQ( NEWQ,C),NEWQ))

and now using the axioms f or APPENDQ we obtain

APPENDQ(ADDQ(ADDQ(NEWQ,B),A ),ADDQ(NEWQ,C))

and again appl ying APPENDQ we obtain

ADDQ( APPENDQ(ADDQ( ADDQ(NEWQ,B),A),NEWQ),C)

whic h gives the final result

ADDQ(ADDQ(AOOQ(NEWQ,B),A ),C).

At this point the reader has seen three examples , and we are in a better position to
argue the virtues of the specif icat ion notation. The number of axioms is directl y related
to the number of operations of the type being described. The restri:t ion of expressing
axf oms using only the if-then-cisc and recursion has not caused an~ contortions. This
should not come as a surprise to LISP programmers who have found these features largely
sufficient over many years of programming. One crit icism we have encountered is that
recursion forces one into inefficient code , as evidenced by the FRONTQ operation which
f inds the front element of the queue by starting at the last element. To this we reply that
a specif ication should not be viewed as describing the eventual imp lemen ted program , but
mere ly as a means for unders tanding what the operation is to do. One might als o suppose
that the operation names are not well chosen , and then wonder how easy it is to discern
their meaning via the axioms. This is hard to respond to, especial ly when trying to
imag ine how other techniques would fare under this restriction. Nevertheless , we might
ask the reader if he can determine what the operation MYSTERY does where
MYSTERY(Queue) Queue and

MYSTERY(NEWQ) = NEWQ
MYSTERY(ADDQ(q,i)) = APPENDQ(ADDQ(NEWQ,i),MYSTERY(q))

are the axioms which define it.

Let us pursue the binary tree example a bit further. In most applications the
elemen ts in the tree are somehow ordered. That is to say, the tree is built up from a
series of INSERT operations that preserve some ordering relationship among the nodes of
the tree. This non-primitive INSERT operation can be programmed in terms of the
primitive operations of t ype Binary tree. One drawback of such an approach to creating a
res tr icted kind of binary tree is that we cannot rel y upon a type-checking mechanism to
guaran tee that the desired ordering property is always maintained. If , on the other hand,
we declare a type wi th INSERT as a primitive operation, we can achieve the desired level
of security.

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~~~~
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Consider type Bstree (binary search tree ) defined to be a binary tree with data
items at each node, such that for any node its item is al phabetically greater than any item
in its left subtree and al phabe t i c a l l y less than any item in its right subtree; see [Horowitz
76). Some axioms have to be changed and a new operation added in order o transform
the Binarytree specification into one for type Bstree. The second axiom for SIN is altered
to read

lSlN(MAKE(I,d,r),e) —

if d—e then true
else if d<e then ISIN(r ,e)

else ISIN(i ,e).

The new operation is INSERT(Bstree ,item) ~ Bstree which searches for an item in a binary
search tree and, if it is not there , inserts it appropriatel y. Note that this is the onl y w a y
that a binary search tree can be created. This implies that the operation MAKE, present
in the specification of type Binarytree , mus t not be accessible to the programmer in this
new specif icati on. If it were available , we could not guarantee that all binary search trees
w ould be well formed. Thus we regard MAKE as a “hidden” function [Parnas 721 and
attach a star to it in the new specification (Figure 2.5) to indicate that it is no longer
accessible.

type Bstree
declare EMPTYTREE( ) -4 Bstree

‘MAKE(Bstree ,item,Bstree) Bstree
ISEMPTYTREE(Bstree) -‘ Boolean
LEFT(Bstree) -4 Bstree
DATA(Bstree) -~~ item u (UNDEFINED)
RIGHT(Bstree) -~ Bstree
ISIN(Bstree,item) -. Boolean,
INSERT(Bstree;,item) ~ Bstree;

for all l,r ( Bstree , d,e E item let
ISEMPTYTREE(EMPTYTREE) = tru e
ISEMPTYTREE(MAKE(l ,d,r))  = false
LEFT(EMPTYTREE) = EMPTYTREE
LEFT(MAKE(l ,d,r)) — I
DATA(EMPTYTREE) - UNDEFINED
DATA(MAKE(l ,d,r)) — d
RIGHT(EMPTYTREE) — EMPTYTREE
RIGHT(MAK E(l,d,r)) — r
ISIN(EMPTYTREE,e) — false
ISIN(MAKE(I,d,r),e) —

if d=e then true
else if d<e then ISIN(r,e) else ISIN(I,e)

INSERT(EMPTYTREE ,e) - MAKE(EMPTYTREE,e,EMPTYTREE)
INSERT(MAKE(l,d,r),e) —

if d—e t hen MAKE(I,d,r)
else if d<e then MAKE(l,d,INSERT(r ,e))

else MAKE(INSERT(l,e),d,r)
end

end Bstree
Figure 2.5
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Let us consider another familiar type, String. In the specification of Figure 2.6, we
have chosen five primitive operations: NULL, which creates the null string; ADDCHAR,
which appends a charac ter to a string; CONCAT, which j oins two strings together;
SUBSTR(s ,i,j), which from a string s returns the j- character subs tr ing beginning at the 1th
character of s; INDEX(s ,t), which returns the position of the first occu-rence of a string t as
a substring of a string s (0 if I is not a substring of s).

type String
declare NULL( ) -. String

ISNULL(String) -4 Boolean
LEN(String) ~-‘ Int eger
ADDCHAR(String,Character ) -. String
CONCAT(String,String) -. String
SUBSTR(String,lnteger ,tnteger) -. String
INDEX(String,String) Integer;

for all s,t ( String, c ,d ( Character , i,j ( Integer let
ISNULL(NULL) — true

ISNULL(ADDCHAR(s ,c)) — false
LEN(NULL) = 0
LEN(ADDCHAR(s ,c)) = LEN(s)+1
CONCAT(s ,NULL) - s
CONCAT(s ,ADDCHAR(t ,d)) - ADDCHAR(CONCAT(s,t),d)
SUBSTR(NULL,i,j) - NULL
SUBSTR(ADDCHAR(s,c),i,j) =

if j — 0
then NULL
else if j LEN(s)-i +2

then ADDCHAR(SUBSTR(s,i,j-1),c)

else SUBSTR(s,i,j)
INDEX(s,NULL) = LEN(s). 1
INDEX(NULL,ADDCHAR(t,d)) = 0
INDEX(ADDCHAR(s ,c ),ADDCHAR(t ,d)) -

if INDEX(s ,ADDCHAR(t ,d)) 0 0
then INDEX(s ,ADDCHAR(t ,d))
else if c=d and INDEX(s ,t) = LEN(s)-LEN(t)+1

then INDEX(s,t)
else 0

end
end String

Figure 2.6

Notice that there are several t ypes w hich make up this definition in addition to type
String: namely, types Character , Integer , and Boolean. In general, a data type
specification always defines only one type, but it may require the operations of other data
types to accomplish this. Another question which arises again is when should an
operation be part of the specification and when should it not, an issue we have already
encountered with binary trees. The operations we have chosen here are basically those
provided in PL/1.

~ 

- . - ~~~~~~ - ——- --.-- --- . - --,-~~~ - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~-
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\
So far we have concentrated primarily on how to read axioms. Now let us consider

how to create them. As a general outline of attack we begin with a basic set of
Operations 

~j ’~ ’~m~ 
A subset of these, say 1j ’~’

1k k~m, have as their output the data type
being defined. Out of the Ic operations are chosen a subset which we call the constructor
set , satisfying the property that all instances of the data type can be represented using
only constructor set operations. Then the axioms which need to be written are those that
show how each non-constructor-set operation behaves on all possible instances of the
data type.

As a new example consider the t ype Set. The operations whose range is of type
Set are: EMPTYSET , which has the usual meaning; INSERT and DELSET, which put an
element into or delete one from the set , respectivel y. Out of these three operations we
select EMPTYSET and INSERT as the constructors. Then an arbitrary set containing n~ 1
items is given by the expression

INSERT(...INSERT(EMPTYSET,i1 ),...,i~
).

A very important feature of this definition is the fact that there is no ordering assumed on
the items. Alternativel y, the specification might insist that 

~~~~~~~ 
also be true.

type Set[item]
declare EMPTYSET( ) -. Set

ISEMPTYSET(Set) -, Boolean
INSERT(Set ,i tem) -~ Set
DELSET(Set ,item) -, Set
HAS(Set ,item) Boolean;

for all S ( Set , i,j ( item let
ISEMPTYSET(EMPTYSET) = true

ISEMPTYSET( INSERT(s ,i)) = false
HAS(EMPTYSET,i) = false
HAS(INSERT(s ,i),j) =

if i=j then tru e else HAS(s ,j)
DELSET(EMPTYSET ,i) EMPTYSET
DELSET(INSERT(s ,i),j) =

if i=j then DELSET(s ,j)
el’se INSERT(DELSET(s ,j ),i)

end
end Set

Figure 2.7

The next example , the Graph type in Figure 2.8, is interesting in several respects.
The mathematical definition of a graph is generall y in terms of two sets: nodes and edges.
This is reflected in the constructors for this definition which are EMPTYGRAPH, ADDNODE,
and ADDEDGE. This definition allows for an unconnected graph and for nodes with no
edges incident to them. An edge is given by the function REL(i ,j) (a constructor of the
data type Edge), and it is not specified whether the edges are directed or not. Notice that
three of the operati ons result in sets , and the parameter notation has been naturally

~ 

—-,-.-~
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extended to distinguish between sets with different typos of elements. ADJAC finds all
nodes which are ad jacen t to some vertex. NODOUT(g,v) rem oves the node v and all edges
incident to v. EDGEOUT removes a single edge fr om the graph.

type Graph
dec lare EMPTYGRAPH( ) -. Graph

ADDNODE(Graph,Node) -. Graph
ADDEDGE (Graph,Edge) -. Grap h
NODES(Grap h) -. Set(Node)
EDGES(Graph) Set(Edge)
ADJAC (Grap h,Node) -~ Set(Nocie)
N000UT(Graph,Node) -~~ Graph
EDGEOUT(Graph ,Edge) -. Grap h;

for all g Graph, i,j,k,I,v,w ( Node let
NODES(EMPTYGRAPH) = EMPTYSET
NODES(ADDNODE(g,v)) = INSERT(NODES(g),v)
NODES(ADDEDG E(g,REL(i ,j ))) = INSERT(INSERT(NfJDES(g),i) ,;)
EDGES(EMPTYGPAPH) = EMPTYSET
EDGES(ADDNODE(g,v)) = EDGES( g)
EDGES(ADDEDGE(g, REL(i ,j ))) = INSERT(EDGES(g) ,REL(i ,j))
ADJAC(EMPTYGRAPH,v) = EMPTYSET
ADJAC(ADDNODE(g,w ),v) = ADJAC(g,v)
ADJAC(ADDEDGE(g,PEL(i ,j )),v) —

if v— i then INSERT(ADJAC(g,v),j)
else if v=j then INSERT(ADJAC(g,v),i)

else ADJAC(g,v)
NODOUT(EMPTYGRAPH,v) = EMPTYGRAPH
NODOUT(ADDNODE(g,w),v) =

if v=w then NODOUT(g,v) el se ADDNODE(NODOUT(g,v),w)
NODOUT(ADDEDGE(g,REL(i ,j)),v)  =

if v— i or v=j th en NODOUT(g,v)
else ADDEDGE(N000UT(g,v),REL(i ,j ))

EDGEOUT(EMPTYGRAPH,REL(i ,j)) = EMPTYGRAPH
EDGEOUT(ADDNODE(g,v ),REL(i,j )) —

ADDNODE(EDGEOUT(g,REL(i ,j )),v)
EDGEOUT(ADDEDGE(g,REL(k,l )),REL(i ,j )) =

if REL(k,l) = REL(i,j ) then g
else ADDEDGE(EDGEOIJT(g,REL(i ,j )),REL( k,l))

end
end Graph

Fi gure 2.8

The next example is a sequential File data type (Figure 2.9). The operations include
READ, WRITE, RES ET, ISEOF (end-of-file check), and SKIP (past a specified number of
records).
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type File [record)
declare EMPTYFILE( ) -4 File

WRITE(FiIe,record) 4 File
SKIP(File ,lnt eger) -. File
RESET(FiIe) -. File
ISEOF(File) Boolean
READ(File) ~ record u (UNDEFINED)

for all I ( File, r,s ( record, i,j ( Integer let
SKIP(EMPTYFILE,i) — EMPTYFIL E
SKIP(SKIP( f ,j),i) = SKIP(f ,j+i)
RESET(EMPTYFILE) — EMPTYFILE
RESET(WR ITE(f ,r)) — SKIP(WRITE(f ,r),O)
PESET(SKlP(WR ITE(f ,r),i)) — SKIP(WRITE(f ,r),0)
ISEOF(EMPTYFILE) — true
ISEOF(WR ITE(f ,r))  — tru e
ISEOF(SKIP(WRITE(f ,r),i)) —

if i 0  then false else ISEOF(SKIP(f ,i- 1))
READ(EMPTYFILE) - UNDEFINED,
READ(WR ITE(f ,r)) - UNDEFINED,
READ(SKIP(WRITE(f,r ) ,i)) —

if ISEOF(SKIP(f ,i))
then r
else READ(SKIP(f,i))

WRITE(SKIP(WRITE(f ,r),i),s)
if ISEOF(SKIP(f,i))

then WRITE(f ,s)
else WRITE(SKIP(f,i),s)

end
end File

Figure 2.9

Sequential file operations would not, in practice , be implemented as functions , but
rather as procedures with side effects , say READP(f ,r) and WRITEP(f,r). The operations we
have given can be used to specif y the effects of these procedures: READP(f ,r)  means r

REAO( f ), 1 ~ SKlP(f ,1); and WRITEP(f,r) means 1 ~- WRITE(f ,r). Note that the axioms imply
that if a SKIP operation immediately follows a WRITE, it means reset the file to its
beginning, then skip past I records. Also, if a record is overwritte n, the part of the file
past that record is lost. For further study of the axioms note that all File values can be
viewed as one of the following string forms:

EMPTYFILE or WRITE(WRITE(...(EMPTYFILE,r 1 ),...),rn)
or SKIP(WRITE(WRITE(...(EMPTYFILE,ri),...),rn),i).

We conclude this section with a presentation of type Polynomial. The usual
mathematical definition of a polynomial is an expression of the form

where x is an indeterminate and the a,’s come fr om some commutative ring, If 
~m~

t0
’ then 

~~~~~~~~~ - --~~~~- - ~~~-~~~-- --- -~~~~- -~~~~~~~~~~~~~~~~~~~~~~~~~ -—-~~~~~~~~~~~ - --- - ---
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m is called the degree, am the leading coefficient , and am l x m_ 1 4....alx .I.aO the reductum.
A specification of Polynomials as a data type with eleven operations in given in Figure
2.10.

type Polynomial
declare ZERO( ) -. Polynomial

ADOTERM(Polynomial,Coef ,Exp) -. Polynomial
REMT ERM(Polynomial,Exp )  -~~ Polynomial
MULTTERM(Polynomial,Coef ,Exp) -. Pol ynomial
ADD(Polynomial,Polynomial) -. Polynomial
MULT(Polynomial ,Polynomial) -. Polynomial
REDUCTUM(Polynomial) -. Polynomial
ISZERO(Pol ynomial) -. Boolean
COEF(Polynomial ,Exp) Cod
DEGREE(Polynomial) -. Exp
LDCF(Polynomial) Coef;

for all p,q ( Polynomial, c ,d ( Cod , e,f ( Exp let
REMTERM(ZERO,f )  - ZERO
REMTERM(ADDTERM(p,c ,e),f) —

if e— f then REMTERM(p,f )
else ADDTERM(REMTERM(p,f),c,e)

MULTTERM(ZERO,d,f) — ZERO
MULTTERM(ADDTERM(p,c,e),d,f) —

ADDTERM(MULTTERIc,4(p,d,f),c*d,e + f )
AOD(p,ZERO) - p
ADD(p,ADDTERM(q,d,f)) — ADDTERM(ADD(p,q),d,f)
MULT(p,ZERO) - ZERO
MULT(p,ADDTERM(q,d,f)) = ADD(MULT(p,q),MULTTERM(p,d,f))
REDUCTUM(p) — REMTERM( p,DEGPEE(p))
ISZERO(ZERO) — true
ISZERO(ADDTERM(p,c,e)) —

if COEF(p,e)  — -c
then ISZERO(REMTERM(p,e))
else false

COEF(ZERO,e) — 0
COEF(ADDTERM(p,c,e),f) —

if e—f then c+COEF(p,f) else COEF(p,f)
DEGREE(ZERO) — 0
DEGREE(AODTERM(p,c,e)) —

if e> DEGREE(p)
then e

F else if e< DEGREE(p)
then DEGREE(p)
else if COEF(p,e) — -c

F then DEGREE(REDUCTUM(p))
else DEGREE(p)

LDCF(p) — COEF(p,DEGREE(p))
end

end Polynomial

Figure 2.10

--- -

~

-. -- -

~
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In this specification every Polynomial is either ZERO or constructed by applying
ADDTERM to a Polynomial. Note the absence of assumptions about order of exponents,
non-zero coefficients , etc., w hich ar e important as representation decisions but not
essential for the specification.

The real virtue of this specification is that a fairl y complex object has been
completely defined using only a few lines. The corresponding programs in a conventional
programming language may be several times this size. (This will be especiall y true if some
of the “fast” algorithms are used.)

3. CORRECTNESS OF IMPI.EMENTiITIONS

Algebraic specif ications of data types can play a significant role in program
verif ication. As wi th any axiomatic approach , they permit factor izat ion of proofs into
dis tinct , manageable stages; also , the use of pure functions and equations as the form of
specif ica tion permits proofs to be constructed in large part as sequences of substitutions
using the equations as rewr i te rules. These points are developed at length in
(Guttag 76bJ, whic h also describes a “data type verif ication system ” (implemen ted in
INTERLISP) capable of interact ivel y assis ting a human user in carry ing through many of the
steps of verif ications automaticall y. In this report we shall confine our discussion of
ver ification issues to a brief example of the implementation of one data type , Queue
(Figure 2.3), in terms of another , Circular Lists (Figure 2.2). We f irst give , in a notation
very similar to that for the specifications , an implementat ion of the Queue type consisting
of a “representa tion” declara tion and a “program” for each of the Queue operations in
terms of the representation.

implementation QueueByCircularList[item]
dec lare QREP(CircularList) -‘ Queue
for all c,c l CircularList , i i t em let

NEWQ = QREP(CREATE)
ADDQ(QREP(c),i) — QREP(RIGF4T(INSEPT(c ,i)))
DELETEQ(QREP(c)) — QREP(DELETE(c))
FROt’JTQ(QREP(c)) — VALLJE(c)
ISNEWQ(QREP(c)) = ISEMPTY(c)

APPENDQ(QREP(c ),QREP(c 1)) — QREPUOIN(c 1 ,c))
end

end Qu~ueByCircuIarList

Figure 3.1

A proof of correctness of this imp lementation consists of showing that each of the
Queue axioms of Figure 2.3 is satisfied. For some of the axioms this is quite trivial
because of the close correspondence between the axiomatizat ions of some of the Queue
and CircularList operations. For example, we show that the Queue axiom ISNEWQ(NEWQ) —

tru e is satisfied by the following sequence of steps:

(ISNEWQ(NEWQ) - true)

-~ — - - - , - .—— —-~~~~~~~ —..----—. - -.———— - - — —- - - - --- .~ —., -~~ -S-~ -
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— (by NEWQ program)—> (ISNEWQ(QREP(CREATE)) — true)

—(by ISNEW Q program) —> (ISEMPTY(CREATE) — true)

—[by ISEMPTY axiom) -> (true — true)

—(by equalit y axiom )— > true.

A more difficult case is the f ollowing APPENDQ axiom:

[APPENDQ(q,A000(r,i ) )  ADD Q(APPENDQ(q,r), i) ]

— (by substitution of q— QREP(c), r =QF’ P(c 1)]—>

(APPENDQ(QREP(c ),ADDQ(QREP(c I ),i)) - AODQ(APPENDQ(QREP(c),QREP(c 1 )),i)J

—(by ADDQ and APPENDQ programs)->

(APPENOQ(QREP(c ),QREP(RIGHT(INSERT(c 1 ,i )))) — ADDQ(QREP(JOlN(c 1 ,c )),i))

—(by APPENDQ and ADDQ programs)->

[QREP(JOIN(RIGHT(INSERT(c 1 ,i)),c)) — QREP(RIGHT(INSERT(JOIN(c 1,c),i)))).

The proof can now be completed by using the following theorem about the JOIN operation.

Theorem. JOIN(RIGHT(INSERT(c I ,i )),c2) = RIGRT(INSERT(JOIN(c 1 ,c2),i))

This theorem will be proved from the CircularList axioms using “data t ype induction,” i.e.,
induction on the number of operations of the data type which are performed to obtain an
element of the type (called “generator induction” in (Spitzen75)). Proofs by data type
induction are often simplified if one first proves a “normal form lemma ” for the data t ype,
which specifies a minimal set of constructors of the data type (cf. the discussion of
constructors following the String data type example in Section 2). For circular lists we
have the f ollowing:

Normal Form Lemma: For every c CircularList , (c—CR EATE) or (3c ’( CircularList , i’E item
such that c—INSERT(c ’,i’))

Proof: By data type induction . Let c be a circular list , then one of the following cases
holds:

1. c - CREATE
2. c — INSERT(c l,il)
3. c — OELETE(c 1)
4. c — RIGHT(cl)

for some cl ,il. In cases 1 and 2, the theorem is clearly satisfied. In case 3, we use the
induction hypothesis to conclude that cl—CR EATE or 3c2,i2 such that cl— INSERT(c2,i2). If
cl—CREATE, then c—DELETE(CREATE)—CREATE, by a DELETE axiom. Otherwise,
c—DELETE(INSERT(c2,i2))—c2, by the other DELETE axiom. The induction hypothesis applies 

~~--.. ~~~~~~ -.-—~~--- -.—--.--—~~~ - - - -- - - -~~~~~~~—- ~~~~ —‘.-—.
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to c2, so c— c 2—INSERT(c3 ,i3) f or some c3 and i3. A similar argument proves the lemma for
case 4.

Proof of Theorem. By data t ype induction. By the lemma, it is sufficient to consider the
cases

1. c2 — CREATE
2. c2 — INSERT(c3 ,i3) for some c3 ,i3.

In case 1 we have

[JOIN(PIGHT(INSERT(c I ,i)),CREATE) — RIGHT(INSERT(JOIN(c 1 ,CREATE),i)))

— (by JOIN axiom] — > (RIGHT(INSERT(c 1 ,i ))— RIGHT( INSERT(c I ,i )))

~>true.

In case 2 we have

[JOIN(RIGHT(INSERT(c I ,i )),INSERT(c3 ,i3)) — RIGHT(INSERT(JOIN(c 1 ,INSERT(c3 ,i3)),i)))

—(by JOIN ax iom)=>

(INSERT(JOIN(RIGHT(INSERT(c 1 ,i )),c3),i3) = RIGHT(INSERT(INSERT(JOIN(c 1 ,c3 ),i3),i ))]

— (by RIGHT axiom) — >

[INSERT(JOIN(PIGHT(INSERT(c 1 ,i)) ,c3),i3) — INSERT(RIGHT(INSERT(JOIN(c 1 ,c3) ,i )),i3))

—( by induction hypothesis)—>

[INSERT(RIGHT(IN5ERT(JOIN(c 1 ,c3),i)),i3) — INSERT(RIGHT(INSERT(JOIN(c 1 ,c 3),i )),i3)J

> tru e.

Thus the theorem has been proved and the APPENDQ axiom has been shown to be
sa tisfied. Many other useful theorems (or “invariants ”) about data types can be proved
fr om the axioms using the same techniques of case analysis and induc tion as in the
foregoing proofs. In some cases these techniques can also be app lied to prove theoremc
about an implementation. We used one such “implementation invariant ” in the proof of the
APPENDQ axiom without exp lici tly mentioning it , namel y (Jc such that q=QREP(c)). This is
easil y proved from the Normal Form Lemma , the programs for CREATE and 1NSERT , and
data type induc tion.

The proofs of the other Queue axioms for the circular list implementation require no
additional techniques and will be omitted. All of these proofs have been carried through
semiautomatically by the “data type verificati on system” described more fully in
(Guttag76b].

~
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4. PROCEDU RES /IND BOUNDED TY PE S

Until now all of the abstract data types that we have axiomatized have been
unbounded. It is relevant to observe a parallel here between computer sc ience and
ma thematics , i.e., that bounded types are often harder to define than unbounded ones. In
this section we intend to deal with the added comp lica tions of specif ying more realistic
data types , in particu lar a type of bounded size. At the same t ime we will relax the
rest r ic t i on that all operations be sing le-valued and permit a notation that resembles the
c onventional use of procedures , first introduced in [Guttag 76b).

It will now be permissible to include procedures in the specif ications. A procedure
P whose f irst argument , x , is altered as a result of its execut ion , but not its second
argument , y, is syn tact ical l y declared as P(var x ,y). If P is a pure procedure , i.e., i t returns
no value , then this is syntact ical l y expressed by w rit ing P(var x ,y) -i . The definition of
procedure P would be included in the semant ic specif ication of the data type using it. A
procedure has a body and an optional value part separa ted by a semicolon , e.g.,

P(var x , var y) — x F(x ,y), y ~- G(x) ; H(x ,y)

is a possible definition of P where F,G,H are functions returning a value. Notice that
simul taneous assignment to parameters is now permitted , but we cont inue to adhere to our
earlier approach by requiring that the value returned by a procedure be. expressed by
sing le-valued functions. In some cases these latter operations w ill no longer be accessible
by the user of the data t ype. We call them “hidden functions ” and indicate them by
placing a st ar ne~ to their names.

As an example , we give in Figure 4.1 the specificatio n of a queue of bounded size.
Notice that in comparison with the unbounded queue of Figure 2.3, four new operations
have been added. ADDQ and DELETEQ are now desi gnated as hidden functions and in their
place the user will appl y the pure procedure ENQ and the function DEQ, both of which
have the side effect  of altering their first argument. SIZE returns the number of elements
c ontained in a bounded queue, and LIMIT the maximum number of elements permitted.
Notice also that we have augmented the UNDEFINED operation by allowing it to be
qualified. This will faci l i tate the handling of errors by distinguishing their source.

This technique of taking a specificatio n of an unbounded data type and refining it
into a bounded one can be app lied in exact l y the same way to y ield specifications for
bounded stacks , binary trees , strings , etc.

I 
. - - ~~~- - -  —~~~~~~~~~~~~~~~~~ — 
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type Bqueue(item]
declare NEWQ(lnteger) ~ Bqueue

SADDQ(Bqueue,item) -. Bqueue
sDELETEQ(Bqueue) -. Bqueue
FRONTQ(Bqueue) -. item u {UNDEFINED}
ISNEWQ(Bqueue) .4 Boolean

APPENDQ(Bqueue,Bqueue) -~ Bqueue
SIZE(Bqueue) -. Integer
LIMIT(Bqueue) Integer ,
ENQ(ta r Bqueue ,item ) -.
DEQ(var Bqueue) -. item;

for all q,r ‘ Bqueue i ( item let
ISNEWQ(NEWQ(in)) = true

ISNEWQ(ADDQ(q, i)) = false
DELETEQ(NEWQ(in)) = NEWQ
DELETEQ(ADDQ(q, i)) -

if ISNEWQ(q) then NEWQ
else ADDQ(DELETEQ(q),i)

FRONT(NEWQ(in)) = UNDEFINED[underf low]
FRONT(ADDQ(q,i)) =

if ISNEWQ(q) then i the FRONTQ(q)
APPENDQ(q,NEWQ(in)) — q
APPENDQ(r ,ADDQ(q,i)) = ADDQ(APPENDQ(r ,q),i)
LIMIT(NEWQ(in)) in
LJMJT(ADDQ(q,i)) = LIMIT(q)
ENQ(q,i) = if SIZE(q)<LIMIT(q)

t hen q ~ ADDQ(q,i)
el.,e q i- UNDEFINED[overf low]

DEQ(q) = q ~- DELETEQ(q); FRONTQ(q)
SIZE(NEWQ(in)) — 0
SIZE(ADDQ(q,i)) = 1+SIZE(q)

end
end Bqueue

Figure 4.1

5. OTh ER DIRECTIONS

In this paper we have stressed the art of data type specification. Our major goal
has been to exp lore a notation which is especiall y at t ract ive for formally defining a data
type without regard to its implementation. In this section we want to indicate briefl y how
these specifications can be used to design reliable software , but to reserve a complete
discussion for [Guttag 76b].

The first use of an axiomatic specification is as an aid in designing and imp lementing
the type. A decision is made to choose a particular form of implementation. This
implemen tation will be in terms of other data types and we assume that their specif ications
already exis t. For a complex data type this process may proceed throug h several levels
before an executable implementation is achieved. The virtue of the specifications is that
each stage is made clearer by organizing the t ypes, values, and operations that can be
used.

L . _ _ _  . —- - -— -.~- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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A second use of these s pecif icat ions , and perhaps its  most important , is for pr oving
that an imp ieme ntat iori is correct .  Establishing correctness now becomes equivalent to
showing that the original axioms are sat isf ied by the newl y developed imp lemen tation.
This process also lends itself quite readil y to aut omation .

Another use of these spec i f icat i ons is for earl y testing. It would be v e r y  desirable
if one could design a syst em in such a way that it could be tested before committ ing
peop le t o ac tu a l y build i t .  Given suitable restrictio i’ s on the form that the ax iomat ic
equations m a y  take , a s~~ tem can be const ruc ted in which implementations and al gebraic
spec i f i ca t i ons  of data t ypes are interchangeable.  In the absence of an imp lementat ion , the
operat ions of the data t ype may he interpreted symbol ical l y. Thus , except for a
s ign i f icant  loss -n e f f - c enc -y , the t a c ~ , of an imp le men tat io n can be made completel y
t ra n~ paren t to t h e  u~er Interest ing l y, it is not necessary  to spend many man-years
deve lop ing th is ~-, . te m ; the c apab W t y  is essentia l I~ avai lable in LISP-based symbol
manipulat ion s ,st e ms suc h as SCRATC HPA D [Gr iesmer 71J, REDUCE [Hearn 71), and
MACSYMA Mar t in  71]. The use of REDUCE for this purpose is discussed in [Guttag 76b],
as are the esc ent al ideas of a pat tern-match compiler designed especial l y for compilat ion
of al gebraic axi o ms.

,1(;K .\OW I.E DC ~t E NTS

This report is an expanded version of a paper given at the Second International
Conference on Software Engineering, October 1976. A number of people made valuable
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