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ABSTRACT

This report concerns the design of data types in the creation of a software system;
its major purpose is to explore a means for specifying a data type that is independent of
its eventual implementation. The particular style of specification, called algebraic axioms,
is exhibited by axiomatizing many commonly used data types. These examples reveal a
great deal about the intricacies of data type specification via algebraic axioms, and also
provide a standard to which alternative forms may be compared. Further uses of this
specification technique are in proving the correctness of implementations and in
interpretively executing a large system design before actual implementation commences.

This report is an expanded version of a paper given at the Second International
Conference on Software Engineering, October 1976. it will also appear in Current Trends
in Programming Methodology, Vol. IV: Data Structuring, Raymond T. Yeh, ed. (to be
published by Prentice~Hall in 1977).




1. INTRODUCTION

Creating a software system is generally regarded as a four-stage
pr.cess: requirements, design, coding, and testing. For some of these stages, tools
and/or techniques that significantly enhance the process have been developed. Recently,
concern has increased about developing aids for the design stage. Design is essentially a
creative, synthetic process, and a fully automated tool is very unlikely. What has been
suggested is a "methodology” or a style of working which is purported to yield improved
designs.

Top-down design is a process whereby a task is transformed into an executable
program. This process in its purest form calls for carefully refining, step by step, the
functional requirements of a system into operational programs. Further guidelines
regarding the choice of appropriate statements and the postponement of design decisions
can be found in [Dahl 72].

The purpose of this report is to explore a complementary design strategy, the
design of data types. A complete software system may contain a variety of types (lists,
stacks, trees, matrices, etc.) and a var cty of operations. One useful design procedure is
to treat those operations that act primarily on a single dzta type as forming a unit and to
consider the semantics of these operations as the definition of the type. This idea was
implicit in the SIMULA 67 programming language [Dahl 70], in which the syntactic
designation class denotes a collection of such operations. However, the class concept
applies this principle at the programming language level rather than at design time. Each
operation of a class is a directly executable program. It is also useful to consider a
collection of operations at design time; then the process of design (of data types) consists
of specifying those operations to increasingly greater levels of detail until an executable
implementation is achieved. The idea we wish to explore here is how to create an initial
specification of a data type.

A data type specification (or abstract data type) is a representation-independent
formal definition of each operation of a data type. Thus, the comnlete design of a single
data type would proceed by first giving its specification, followed by an (efficient)
implementation that agrees with the specification. This separation of data type design
into two distinct phases is very useful from an organizational point of view. Any process
that needs to make use of the data type can do so by examining the specification alone.
There is no need to wait until the type is fully implemented, nor is it necessary to fully
comprehend the implementation.

There are two chief concerns in devising a technique for data type specification.
The first is to devise a notation that permits a rigorous definition of operations but
remains representation-independent, and the second is to learn to use that notation.
There are many criteria one can use to measure the value of a specification notation, but
the two major ones are as follows:

Can specifications be constructed without undue difficulty?
Is the resulting specification easy to comprehend?

As with programming, there are potentially a very large numher of ways to specify an
operation. A good data type specification should give just e.ough information to define




the type, but not so much that the choice of implementations based upon it is limited.
Thus, we say that a data type specification is an abstraction of a concept of which the
eventual implementation is only one instance.

In this report our intent is to explore a particular specification technique, algebraic
specifications [Goguen 75], [Guttag 75], [Zilles 75], by exhibiting specifications for a
number of commonly used data types. Those we have chosen are typical of those that
are discussed in a course on data structures; see [Horowitz 76]. By supplying these
examples we hope to convince the reader that the style of specification we discuss here is
especially appropriate for designing data types and that it meets the two criteria
previously stated. Secondly, we hope these example specifications will provide a standard
by which other methods can be compared. We do not pretend to have supplied definitive
specifications of the example data types. Both our choice of operations and the semantics
we associate with some of the operations are somewhat arbitrary.

In the last section we indicate how these specifications can be further used for
proving the correctness of implementations and for testing, at design time, large software
systems. However, since these subjects are fairly lengthy, we limit our presentation here
to an informal discussion of reading and writing data type specifications. The remaining
subjects will only be hinted at here, but are dealt with in [Guttag 76b].

Many other people have been working on these and related areas and we have
profited from their ideas. A useful bibliography of this work is given in [Liskov 75].
Some of the particular axiomatizations have already appeared in the literature, notably
Stacks, Queues, and Sets; see [Goguen 75], [Guttag 76a], [Liskov 75], [Spitzen 75], and
[Standish 73]

2. THE SPECIFICATIONS

How can one describe a data type without unduly constraining its eventual
implemented form? One method is to define the object using natural language and
mathematical notation. For example, a stack can be defined as a sequence of objects
(al,...,an) n20, where insertions or deletions are allowed only at the right-hand
end. This type of definition is not satisfactory from a computing standpoint, where it is
preferable to define constructively a data type by defining the operations which create,
build up, and destroy instances of the type. Since software designers generally know
how to program, the use of a programming-like language for specification is especially
desirable.

The features we choose permit only the following:

free variables
if-then-else expressions
Boolean expressions
recursion

PON=

Moreover, we restrict the use of procedures to those which are single-valued and have no
side effects. Note that many features normally presumed to be present in conventional
programming languages (such as assignment to variables, iteration statements) are not
permitted in this formalism. This approach may seem so arbitrary as to eliminate the




possibility of ever achieving the previously stated goals, but actually it has several strong
points to recommend it. First, the restricted set yields a representation-independent
means for supplying a specification. Second, the resulting specifications can clearly
express the desired concepts if the reader is comfortable with reading recursive
programs. (Though many programmers are not so accustomed, a faithful reading of this
report will serve as a tutorial on this subject.) Third, the separation of values and side
effects lends clarity and simplifies a specification. Though requiring this separation may
be too restrictive for an implementation, the criterion of efficiency can be relaxed at the
specification stage. Fourth, the above features can be easily axiomatized, which is a
necessary first step for successfully carrying out proofs of implementations; see [Guttag
76b] .

Let us begin with the very simple example of a Stack data type which is given in
Figure 2.1. The operations which are available for manipulating a stack
are: (1) NEWSTACK, which produces an instance of the empty stack; (2) PUSH, which
inserts a new item onto the stack and returns the resulting stack; (3) POP, which removes
the top item and returns the resulting stack; (4) TOP, which returns the top item of the
stack; and (5) ISNEWSTACK, which tests if a stack is empty. For each operation, the types
of its input and output are listed in the declare statement. Notice that all operations are
true functions which return a single value and allow no side effects. If stack operations
are implemented by procedures with side etfects, their effect can be specified easily in
terms of the operations we have given. Extending the formalism in this way is discussed
in Section 4.

type Stack[item]

1. declare NEWSTACK() - Stack

2. PUSH(Stack,item) » Stack

3. POP(Stack) - Stack

4. TOP(Stack) = item u {UNDEFINED}
5. ISNEWSTACK(Stack) -» Boolean;
6. for all s € Stack, i € item let

7. ISNEWSTACK(NEWSTACK) = true
8. ISNEWSTACK(PUSH(s,i)) = false
9. POP(NEWSTACK) = NEWSTACK
10. POP(PUSH(s,i)) = s

11. TOP(NEWSTACK) = UNDEFINED
12. TOP(PUSH(s,i)) = i

13. end

end Stack

Figure 2.1

At this point let us introduce the notational conventions we will use throughout this
report. All operation names are written in upper case. Type names begin with a capital
letter, e.g., Stack. Lower case symbols are regarded as free variables, such as s and i in
Figure 2.1, which are taken to be of type Stack and item, respectively. Type names can
be modified by listing "parameters” within square brackets. These parameters may be
type names or free variables whose range is a type, e.g., item is such a variable and
indicates that the type Stack can apply to any other data type. The equations within the
Jor all and end are the axioms which describe the semantics of the operations.




At first these axioms may prove difficult to comprehend. One aid is to interpret the
axioms as defining a set of recursive functions. The empty stack is represented by a
function with no input arguments, NEWSTACK. Then asking for the topmost element of
NEWSTACK is regarded as an exceptional condition which does not result in an item; hence
we call it UNDEFINED. The only other stack we can have must be ot the form PUSH(s,i)
where s is any stack and i is the most recently inserted item. Then by line 12 the last
element inserted is the first returned. Notice that we need not worry about expressions
of the form TOP(POP(s)), since axioms 9 and 10 give us rules for expressing any value of
type Stack in terms of only NEWSTACK and PUSH.

Unfortunately, the Stack example is far too simple in many respects to properly
illustrate the intricacies of data type specification. A somewhat richer example is the data
type circular list defined in Figure 2.2. This type has seven operations. Five of these,
CREATE, INSERT, DELETE, VALUE, and ISEMPTY, have exact analogs in typestack. The
RIGHT and JOIN operations introduce additional complexity by allowing us to rotate the list
of stored eiements, thus permitting access to both ends of the list, and to join two lists
into one. This additional complexity is reflected in the recursion of axioms 17 and 19.

type CircularList[item]

1. declare CREATE( ) - CircularList
2. INSERT(CircularList, item) = CircularList
3. DELETE(CircularList) = CircularList
4, VALUE(CircularList) -+ item u {UNDEFINED}
5. ISEMPTY(CircularList) -+ Boolean
6. RIGHT (CircularList) = CircularList
7. JOIN(CircularList,CircularList) = CircularList
8. forall ¢, cl ¢Circularlist,i,il,i2¢ item let
9. ISEMPTY(CREATE) = true
10. ISEMPTY(INSERT(c,i)) = false
11. DELETE(CREATE) = CREATE
12. DELETE(INSERT(c,i)) = ¢
13. VALUE(CREATE) = UNDEFINED
14, VALUE(INSERT(c,i)) = i
15. RIGHT(CREATE) = CREATE
16. RIGHT(INSERT(CREATE,i)) = INSERT(CREATE,i)
17. RIGHT(INSERT(INSERT(c,i),i1))
=INSERT(RIGHT(INSERT(c,i1)),i)
18. JOIN(¢,CREATE) = ¢
19. JOIN(c,INSERT(c 1,i)) = INSERT(JOIN(c,c1),i)
end
ond CircularList
Figure 2.2

This specification is similar to one given by Valdis Berzins [Berzins] for a symmetric
circular list data type, which included a LEFT operation, but not a JOIN operation.

We have now introduced almost the entire specification language used in writing
algebraic axioms. All that remains is to introduce conditionals into the right-hand sides.
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This is done in the definition of type Queue, a first-in first-out list, in Figure 2.3. There
are six operations: four produce queues, one returns an item, and one s
Boolean-valued. An easy way to understand the axioms is to conceive of the set of all
queues as being represented by the set of strings consisting of

NEWQ or ADDQ(...ADDQ(ADDQ(NEWQ,il),i2),...,in),nzl.

The item s at the front and in is at the rear. Then the axioms can be concretely
thought of as rules which show how each operation acts on any such string. For example,
taking the FRONTQ of the empty queue is UNDEFINED. Otherwise FRONTQ is applied to a
queue whose most recently inserted item is i, and q represents the remainder of the
queue. If q is empty, then i is the correct result; otherwise FRONTQ is recursively applied
to g. A similar situation holds for the DELETEQ operation. Notice that none of the
common forms of queue representation, e.g., as linked lists or in an array, is implied or
precluded by this definition.

type Queue[item]

1. declare  NEWQ( ) » Queue

2. ADDQ(Queue,item) - Queue

3. DELETEQ(Queue) - Queue

4, FRONTQ(Queue) - item u {UNDEFINED}
5. ISNEWQ(Queue) - Boolean

6. APPENDQ(Queue,Queue) - Queue;

2. for all q,r € Queue, i ¢ item let

8. ISNEWQ(NEWQ) = true

9. ISNEWQ(ADDQ(q,i)) = false

10. DELETEQ(NEWQ) = NEWQ

11. DELETEQ(ADDQ(q,i)) =

12. if ISNEWQ(q) then NEWQ

13. else ADDQ(DELETEQ(q),i)

14. FRONTQ(NEWQ) = UNDEFINED

15. FRONTQ(ADDQ(q,i)) =

1€ if ISNEWQ(q) then i else FRONTQ(q)
17. APPENDQ(q,NEWQ) = q

18. APPENDQ(r,ADDQ(q,i)) = ADDQ(APPENDQ(r,q),i)
19. end

end Queue

Figure 2.3

Let us consider a third familiar structure, the binary tree (Binarytree), and examine
in morz detail the virtue of regarding all values of the data structure as being represented
by strings. Its specification is given in Figure 2.4.




typa Binarytree[item]

declare  EMPTYTREFE( ) - Binarytree
MAKE(Binarytree,item,Binarytree) - Binarytree
ISEMPTYTREE(Binarytree) -+ Boolean
LEFT(Binarytree) -+ Binarytree
DATA(Binarytree) - item u !UNDEFINED}
RIGHT(Binarytree) + Binarytree
ISIN(Binarytree,item) » Boolean;

for all l,r € Binarytree, d,e ¢ item let
ISEMPTYTREE(EMPTYTREE) = true
ISEMPTYTREE(MAKE(l,d,r)) = false
LEFT(EMPTYTREE) = EMPTYTREE
LEFT(MAKE(l,d,r)) = |
DATA(EMPTYTREE) = UNDEFINED
DATA(MAKE(l,d,r)) = d
RIGHT(EMPTYTREE) = EMPTYTREE
RIGHT(MAKE(l,d,r)) = r
ISIN(EMPTYTREE,e) = false
ISIN(MAKE(l,d,r),e) =

if d=e
then true
else ISIN(l,e) or ISIN(r,e)
end
end Binarytree

Figure 2.4

The operations included are EMPTYTREE, which creates the empty tree; MAKE, which
joins two trees together with a new root; and operations which access the data at a node,
return the left subtree or the right subtree of a node, and search for a given data item.
Three operations which we might naturally wonder whether to include are the usual
traversal methods (preorder, inorder, and postorder), which place the elements contained
in the tree into a queue (Horowitz 76]. Perhaps the strongest reason for including them
is the very fact that they are so succinctly stated by our recursive notation, e.g.,
INORD(Binarytree) -+ Queue and

INORD(EMPTYTREE) = NEWQ
INORD(MAKE(l,d,r)) = APPENDQ(ADDQ(INORD(1),d),INORD(r))

for I,r ¢ Binarytree and d ¢ item. The choice of which operations to include in a
specification is arbitrary. We have omitted this operation because it makes significant use
of the operations of another data type, Queue. However, this does give us the
opportunity to experiment with the string representation. Let us present an example
which starts with the binary tree

T = MAKE(MAKE(EMPTYTREE,B,EMPTYTREE),A,
MAKE(EMPTYTREE,C,EMPTYTREE))

and applies the axioms to INORD(T) to obtain

INORD(T) = APPENDQ(ADDQ(INORD(MAKE(EMPTYTREE,B,EMPTYTREE)),A),




INORD(MAKE(EMPTYTREE,C,EMPTYTREE)))

which by the definition of INORD becomes

APPENDQ(ADDQ(APPENDQ(ADDQ(NEWQ,B),NEWQ),A),
APPENDQ(ADDQ(NEWQ,C),NEWQ))

and now using the axioms for APPENDQ we obtain
APPENDQ(ADDQ(ADDQ(NEWQ,B),A),ADDQINEWQ,C))
and again applying APPENDQ we obtain
ADDQ(APPENDQ(ADDQ(ADDQ(NEWQ,B),A),NEWQ),C)
which gives the final result
ADDQ(ADDQ(ADDQ(NEWQ,B),A),C).

At this point the reader has seen three examples, and we are in a better position to
argue the virtues of the specification notation. The number of axioms is directly related
to the number of operations of the type being described. The restriction of expressing
axioms using only the if-then-else and recursion has not caused any contortions. This
should not come as a surprise to LISP programmers who have found these features largely
sufficient over many years of programming. One criticism we have encountered is that
recursion forces one into inefficient code, as evidenced by the FRONTQ operation which
finds the front element of the queue by starting at the last element. To this we reply that
a specification should not be viewed as describing the eventual implemented program, but
merely as a means for understanding what the operation is to do. One might also suppose
that the operation names are not well chosen, and then wonder how easy it is to discern
their meaning via the axioms. This is hard to respond to, especially when trying to
imagine how other techniques would fare under this restriction. Nevertheless, we might
ask the reader if he can determine what the operation MYSTERY does where
MYSTERY(Queue) » Queue and

MYSTERY(NEWQ) = NEWQ
MYSTERY(ADDQ(q,i)) = APPENDQ(ADDQ(NEWQ,i),MYSTERY(q))

are the axioms which define it.

Let us pursue the binary tree example a bit further. In most applications the
elements in the tree are somehow ordered. That is to say, the tree is built up from a
series of INSERT operations that preserve some ordering relationship among the nodes of
the tree. This non-primitive INSERT operation can be programmed in terms of the
primitive operations of type Binarytree. One drawback of such an approach to creating a
restricted kind of binary tree is that we cannot rely upon a type-checking mechanism to
guarantee that the desired ordering property is always maintained. I[f, on the other hand,
we declare a type with INSERT as a primitive operation, we can achieve the desired level
of security.




Consider type Bstree (binary search tree) defined to be a binary tree with data
items at each node, such that for any node its item is alphabetically greater than any item
in its left subtree and alphabetically less than any item in its right subtree; see [Horowitz
76]. Some axioms have to be changed and a new operation added in order fo transform
the Binarytree specification into one for type Bstree. The second axiom for ISIN is altered
to read

ISIN(MAKE(l,d,r)e) =
if d=e then true
else if d<e then ISIN(r,e)
else ISIN(i,e).

The new operation is INSERT(Bstree,item) » Bstree which searches for an item in a binary
search tree and, if it is not there, inserts it appropriately. Note that this is the only way
that a binary search tree can be created. This implies that the operation MAKE, present
in the specification of type Binarytree, must not be accessible to the programmer in this
new specification. If it were available, we could not guarantee that all binary search trees
would be well formed. Thus we regard MAKE as a "hidden" function [Parnas 72] and
attach a star to it in the new specification (Figure 2.5) to indicate that it is no longer
accessible.

type Bstree
declare EMPTYTREE( ) -» Bstree
‘MAKE(Bstree,item,leree) - Bstree

ISEMPTYTREE(Bstree) -+ Boolean
LEFT(Bstree) - Bstree
DATA(Bstree) - item u {UNDEFINED}
RIGHT(Bstree) - Bstree
ISIN(Bstree,item) - Boolean,
INSERT(Bstree;,item) - Bstree;

Jor all l,r ¢ Bstree, d,e € item let
ISEMPTYTREE(EMPTYTREE) = true
ISEMPTYTREE(MAKE(l,d,r)) = false
LEFT(EMPTYTREE) = EMPTYTREE
LEFT(MAKE(l,d,r)) = |
DATA(EMPTYTREE) = UNDEFINED
DATA(MAKE(l,d,r)) = d
RIGHT(EMPTYTREE) = EMPTYTREE
RIGHT(MAKE(l,d,r)) = r
ISIN(EMPTYTREE,e) = false
ISIN(MAKE(l,d,r),e) =

if d=e then true

else if d<e then ISIN(r,e) else ISIN(l,e)

INSERT(EMPTYTREE,e) = MAKE(EMPTYTREE,e,EMPTYTREE)
INSERT(MAKE(l,d,r),e) =

if d=e then MAKE(l,d,r)

else if d<e then MAKE(l,d,INSERT(r,e))
else MAKE(INSERT(l,e),d,r)
end
end Bstree

Figure 2.5




Let us consider another familiar type, String. In the specification of Figure 2.6, we
have chosen five primitive operations: NULL, which creates the null string; ADDCHAR,
which appends a character to a string; CONCAT, which joins two strings together;
SUBSTR(s,i,j), which from a string s returns the j-character substring beginning at the i
character of s; INDEX(s,t), which returns the position of the first occurrence of a string t as
a substring of a string s (0 if t is not a substring of s).

type String
declare NULL( ) - String
ISNULL(String) -+ Boolean
LEN(String) - Integer
ADDCHAR(String,Character) » String
CONCAT(String,String) » String
SUBSTR(String,Integer,Integer) = String
INDEX(String,String) - Integer;
Jor all st ¢ String, ¢,d € Character, i,j ¢ Integer let
ISNULL(NULL) = true
ISNULL(ADDCHAR(s,c)) = false
LEN(NULL) = O
LEN(ADDCHAR(s,c)) = LEN(s)+1
CONCAT(s,NULL) = s
CONCAT(s,ADDCHAR(t,d)) = ADDCHAR(CONCAT(s,t),d)
SUBSTR(NULL,i,j) = NULL
SUBSTR(ADDCHAR(s,¢),i,j) =
if j=0
then NULL
else if j = LEN(s)-i+2
then ADDCHAR(SUBSTR(s,i,j-1),c)
else SUBSTR(s,i,j)
INDEX(s,NULL) = LEN(s)+1
INDEX(NULL,ADDCHAR(t,d)) = 0
INDEX(ADDCHAR(s,c),ADDCHAR(t,d)) =
if INDEX(s,ADDCHAR(t,d)) # O
then INDEX(s,ADDCHAR(t,d))
else if c=d and INDEX(s,t) = LEN(s)-LEN(t)+1
then INDEX(s,t)
else O
end
end String

Figure 2.6

Notice that there are several types which make up this definition in addition to type
String: namely, types Character, Integer, and Boolean. In general, a data type
specification always defines only one type, but it may require the operations of other data
types to accomplish this. Another question which arises again is when should an
operation be part of the specification and when should it not, an issue we have already
encountered with binary trees. The operations we have chosen here are basically those
provided in PL/1.




So far we have concentrated primarily on how to read axioms. Now let us consider
how to create them. As a general outline of attack we begin with a basic set of
operations fl'"'"m' A subset of these, say fl,..,fk k<m, have as their output the data type

being defined. Out of the k operations are chosen a subset which we call the constructor
set, satisfying the property that all instances of the data type can be represented using
only constructor set operations. Then the axioms which need to be written are those that
show how each non-constructor-set operation behaves on all possible instances of the
data type.

As a new example consider the type Set. The operations whose range is of type
Set are: EMPTYSET, which has the usual meaning; INSERT and DELSET, which put an
element into or delete one from the set, respectively. Out of these three operations we
select EMPTYSET and INSERT as the constructors. Then an arbitrary set containing n21
items is given by the expression

INSERT(...INSERT(EMPTYSET,i 1 Dpati)-

A very important feature of this definition is the fact that there is no ordering assumed on
the items. Alternatively, the specification might insist that il<i2<...<in also be true.

type Set[item]
declare  EMPTYSET( ) - Set
ISEMPTYSET(Set) » Boolean
INSERT(Set,item) - Set
DELSET(Set,item) - Set
HAS(Set,item) - Boolean;
for all s ¢ Set, i,j € item let
ISEMPTYSET(EMPTYSET) = true
ISEMPTYSET(INSERT(s,i)) = false
HAS(EMPTYSET,i) = false
HAS(INSERT(s,i),j) =
if i=j then true else HAS(s,j)
DELSET(EMPTYSET,i) = EMPTYSET
DELSET(INSERT(s,i),j) =
if i=j then DELSET(s,j)
else INSERT(DELSET(s,j),i)
end
end Set

Figure 2.7

The next example, the Graph type in Figure 2.8, is interesting in several respects.
The mathematical definition of a graph is generally in terms of two sets: nodes and edges.
This is reflected in the constructors for this definition which are EMPTYGRAPH, ADDNODE,
and ADDEDGE. This definition allows for an unconnected graph and for nodes with no
edges incident to them. An edge is given by the' function REL(i,)) (a constructor of the
data type Edge), and it is not specified whether the edges are directed or not. Notice that
three of the operations result in sets, and the parameter notation has been naturally
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extended to distinguish between sets with different types of elements. ADJAC finds all
nodes which are adjacent to some vertex. NODOUT(g,v) removes the node v and all edges
incident to v. EDGEOUT removes a single edge from the graph.

{\ type Graph
declare EMPTYGRAPH( ) =+ Graph
ADDNODE(Graph,Node) -+ Graph
ADDEDGE(Graph,Edge) -+ Graph
NODES(Graph) = Set(Node)
EDGES(Graph) -+ Set(Edge)
ADJAC(Graph,Node) - Set(Node)
NODOUT(Graph,Node) -+ Graph
EDGEOUT(Graph,Edge) -+ Graph;
for all g ¢ Graph, 1,),k\,v,w € Node let
NODES(EMPTYGRAPH) = EMPTYSET
NODES(ADDNODE(g,v)) = INSERT(NODES(g),v)
NODES(ADDEDGE(g,REL(i,j))) = INSERT(INSERT(NODES(g),i),j)
EDGES(EMPTYGRAPH) = EMPTYSET
EDGES(ADDNODE(g,v)) = EDGES(g)
EDGES(ADDEDGE(g,REL(i,}))) = INSERT(EDGES(g),REL(i,j))
ADJAC(EMPTYGRAPH,v) = EMPTYSET
ADJAC(ADDNODE(g,w),v) = ADJAC(g,v)
ADJAC(ADDEDGE(g,REL(i,j)),v) =
if v=i then INSERT(ADJAC(g,v),j)
else if v=j then INSERT(ADJAC(g,v),i)
else ADJAC(g,v)
NODOUT(EMPTYGRAPH,v) = EMPTYGRAPH
NODOUT(ADDNODE(g,w),v) =
if v=w then NODOUT(g,v) else ADDNODE(NODOUT(g,v),w)
NODOUT(ADDEDGE(g,REL(i,j)),v) =
if v=i or v=j then NODOUT(g,v)
else ADDEDGE(NODOUT(g,v),REL(i,j))
EDGEOUT(EMPTYGRAPH,REL(,j)) = EMPTYGRAPH
EDGEOUT(ADDNODE(g,v),REL(i,j)) =
ADDNODE(EDGEOUT(g,REL(i,j)),v)
EDGEOUT(ADDEDGE(g,REL(k,)),REL(i,j)) =
i/ REL(k,l) = REL(i,j) then g
else ADDEDGE(EDGEOQUT(g,REL(i,j)),REL(k,I))

end
end Graph

Figure 2.8
The next example is a sequential File data type (Figure 2.9). The operations include

READ, WRITE, RESET, ISEOF (end-of-file check), and SKIP (past a specified number of
records).
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type File[record]
declare EMPTYFILE( ) - File
WRITE(File,record) = File
SKIP(File,Integer) - File
RESET(File) - File
ISEQF(File) » Boolean
READ(File) » record u {UNDEFINED}
Jor all f ¢ File, r,;s ¢ record, i,j € Integer let
SKIP(EMPTYFILE,i) = EMPTYFILE
SKIP(SKIP(f,j),i) = SKIP(f,j+i)
RESET(EMPTYFILE) = EMPTYFILE
RESET(WRITE(f,r)) = SKIP(WRITE(f,r),0)
RESET(SKIP(WRITE(f,r),))) = SKIP(WRITE(f,r),0)
ISEOF(EMPTYFILE) = true
ISEOF(WRITE(f,r)) = true
ISEOF (SKIP(WRITE(f,r),i)) =
if i=0 then false else \SEOF(SKIP(f,i-1))
READ(EMPTYFILE) = UNDEFINED,
READ(WRITE(f,r)) = UNDEFINED,
READ(SKIP(WRITE(f,r),i)) =
if ISEOF(SKIP(f,))
then r
else READ(SKIP(f,i))
WRITE(SKIP(WRITE(f,r),i),s)
if ISEOF(SKIP(f,i))
then WRITE(f,s)
else WRITE(SKIP(f,i),s)
end
end File

Figure 2.9

Sequential file operations would not, in practice, be implemented as functions, but
rather as procedures with side effects, say READP(f,r) and WRITEP(f,r). The operations we
have given can be used to specify the effects of these procedures: READP(f,r) means r «
READ(f), f « SKIP(f,1); and WRITEP(f,r) means f « WRITE(f,r). Note that the axioms imply
that if a SKIP operation immediately follows a WRITE, it means reset the file to its
beginning, then skip past i records. Also, if a record is overwritten, the part of the file
past that record is lost. For further study of the axioms note that all File values can be
viewed as one of the following string forms:

EMPTYFILE or WRITE(WRITE(..(EMPTYFILE,r ;),..)r )
or SKIP(WRITE(WRITE(...(EMPTYFILE,rl),...),r i)

We conclude this section with a presentation of type Polynomial. The usual
mathematical definition of a polynomial is an expression of the form

amx"‘ﬂm_lx""l +..4a,x+a,

where x is an indeterminate and the ai‘s come from some commutative ring. |f nm;lO. then




m is called the degree, a_ the leading coefficient, and am_lxm'l+...4alx+ao the reductum.
A specification of Polynomials as a data type with eleven operations in given in Figure

2.10.
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type Polynomial

declare

for all

end

ZERQ( ) - Polynomial
ADDTERM(Polynomial,Coef,Exp) + Polynomial
REMTERM(Polynomial,Exp) -+ Polynomial
MULTTERM(Polynomial,Coef,Exp) » Polynomial
ADD(Polynomial,Polynomial) -+ Polynomial
MULT(Polynomial,Polynomial) - Polynomial
REDUCTUM(Polynomial) -+ Polynomial
ISZERO(Polynomial) - Boolean
COEF(Polynomial,Exp) - Coef
DEGREE(Polynomial) -+ Exp
LDCF(Polynomial) - Coef;
p,a ¢ Polynomial, c,d ¢ Coef, e,f ¢ Exp let
REMTERM(ZERO,f) = ZERO
REMTERM(ADDTERM(p,c,e),f) =
if e=f then REMTERM(p,f)
else ADDTERM(REMTERM(p,f),c,e)
MULTTERM(ZERO,d,f) = ZERO
MULTTERM(ADDTERM(p,c,e),d,f) =
ADDTERM(MULTTERM(p,d,f),c*d,e +f)
ADD(p,ZERO) = p
ADD(p,ADDTERM(q,d,f)) = ADDTERM(ADD(p,q),d,f)
MULT(p,ZERO) = ZERO
MULT(p,ADDTERM(q,d,f)) = ADD(MULT(p,q),MULTTERM(p,d,f))
REDUCTUM(p) = REMTERM(p,DEGREE(p))
ISZERO(ZERO) = true
ISZERO(ADDTERM(p,c,e)) =
if COEF(p,e) = -c
then ISZERO(REMTERM(p,e))
else false
COEF(ZERO,e) = O
COEF(ADDTERM(p,c,e)f) =
if e=f then c+COEF(p,f) else COEF(p,f)
DEGREE(ZERO) = 0
DEGREE(ADDTERM(p,c,e)) =
if e> DEGREE(p)
then e
else if e< DEGREE(p)
then DEGREE(p)
else if COEF(p,e) = -c
then DEGREE(REDUCTUM(p))
else DEGREE(p)
LDCF(p) = COEF(p,DEGREE(p))

end Polynomial

Figure 2.10




In this specification every Polynomial is either ZERO or constructed by applying
ADDTERM to a Polynomial. Note the absence of assumptions about order of exponents,
non-zero coefficients, etc., which are important as representation decisions but not
essential for the specification.

The real virtue of this specification is that a fairly complex object has been
completely defined using only a few lines. The corresponding programs in a conventional
programming language may be several times this size. (This will be especially true if some
of the “fast" algorithms are used.)

3. CORRECTNESS OF IMPLEMENTATIONS

Algebraic specifications of data types can play a significant role in program
verification. As with any axiomatic approach, they permit factorization of proofs into
distinct, manageable stages; also, the use of pure functions and equations as the form of
specification permits proofs to be constructed in large part as sequences of substitutions
using the equations as rewrite rules. These points are developed at length in
[Guttag76b], which also describes a "data type verification system" (implemented in
INTERLISP) capable of interactively assisting a human user in carrying through many of the
steps of verifications automatically. In this report we shall confine our discussion of
verification issues to a brief example of the implementation of one data type, Queue
(Figure 2.3), in terms of another, Circular Lists (Figure 2.2). We first give, in a notation
very similar to that for the specifications, an implementation of the Queue type consisting
of a "representation” declaration and a "program” for each of the Queue operations in
terms of the representation.

implementation QueueByCircularlist[item]
declare QREP(Circularlist) » Queue
for all c,cle CircularList, i¢ item let
NEWQ = QREP(CREATE)
ADDQ(QREP(c),i) = QREP(RIGHT(INSERT(c,i)))
DELETEQ(QREP(c)) = QREP(DELETE(c))
FRONTQ(QREP(c)) = VALUE(c)
ISNEWQ(QREP(c)) = ISEMPTY(c)
APPENDQ(QREP(c),QREP(c 1)) = QREP(JOIN(c1,c))
end
end QueueByCircularList

Figure 3.1

A proof of correctness of this implementation consists of shawing that each of the
Queue axioms of Figure 2.3 is satisfied. For some of the axioms this is quite trivial
because of the close correspondence between the axiomatizations of some of the Queue
and CircularList operations. For example, we show that the Queue axiom ISNEWQ(NEWQ) =
true is satisfied by the following sequence of steps:

(ISNEWQ(NEWQ) = true)

S
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=[by NEWQ program]=> (ISNEWQ(QREP(CREATE)) = true)

=[by ISNEWQ program]=> (ISEMPTY(CREATE) = true)

=[by ISEMPTY axiom)=> (true = true)

=[by equality axiom]=> true.
A more difficult case is the following APPENDQ axiom:

[APPENDQ(q,ADDQ(r,i)) = ADDQ(APPENDQ(q,r),i)]
=[by substitution of q=QREP(c), r=QRTP(c1)]=>
[APPENDQ(QREP(c),ADDQ(QREP(c 1),i)) = ADDQ(APPENDQ(QREP(c),QREP(c1)),i)]
=[by ADDQ and APPENDQ programs]=>
[APPENDQ(QREP(c),QREP(RIGHT(INSERT(c,i)))) = ADDQ(QREP(JOIN(c1,c)),i)]
=[by APPENDQ and ADDQ programs]=>
[QREP(JOIN(RIGHT(INSERT(c 1,i)),c)) = QREP(RIGHT(INSERT(JOIN(c 1,¢),i)))].

The proof can now be completed by using the following theorem about the JOIN operation.
Theorem. JOIN(RIGHT(INSERT(c1,i)),c2) = RIGHT(INSERT(JOIN(c 1,c2),i))
This theorem will be proved from the Circularlist axioms using “data type induction,” i.e,,
induction on the number of operations of the data type which are performed to obtain an
element of the type (called “"generator induction” in [Spitzen75]). Proofs by data type
induction are often simplified if one first proves a "normal form lemma" for the data type,
which specifies a minimal set of constructors of the data type (cf. the discussion of
constructors following the String data type example in Section 2). For circular lists we

have the following: 3

Normal Form Lemma: For every c¢ CircularlList, (c=CREATE) or (3¢’¢ CircularlList, i’¢ item
such that c=INSERT(c’,i"))

Proof: By data type induction. Let ¢ be a circular list, then one of the following cases
holds:

¢ = CREATE

¢ = INSERT(c1,il)
¢ = DELETE(c!)
¢ = RIGHT(c1)

S XN =

for some cl,il. In cases 1 and 2, the theorem is clearly satisfied. In case 3, we use the
induction hypothesis to conclude that c1=CREATE or 3c2,i2 such that c1=INSERT(c2,i2). If
c1=CREATE, then c¢=DELETE(CREATE)=CREATE, by a DELETE axiom. Otherwise,
¢=DELETE(INSERT(c2,i2))=c2, by the other DELETE axiom. The induction hypothesis applies

——
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to c2, so ¢=c2=INSERT(c3,i3) for some ¢3 and i3. A similar argument proves the lemma for
case 4.

Proof of Theorem. By data type induction. By the lemma, it is sufficient to consider the
cases

1. ¢2 = CREATE
2. ¢2 = INSERT(c3,i3) for some ¢3,i3.

In case 1 we have
[JOIN(RIGHT(INSERT(c 1,1)),CREATE) = RIGHT(INSERT(JOIN(c 1,CREATE),1))]
=[by JOIN axiom]=> [RIGHT(INSERT(c1,1))=RIGHT(INSERT(c 1,i))]
=>t{rue.
In case 2 we have

[JOIN(RIGHT(INSERT(c 1,i)),INSERT(c3,i3)) = RIGHT(INSERT(JOIN(c 1,INSERT(c3,i3)),i))]

=[by JOIN axiom]=>

[INSERT(JOIN(RIGHT(INSERT(c 1,i)),c3),i3) = RIGHT(INSERT(INSERT(JOIN(c 1,c3),i3),i))]

=[by RIGHT axiom]=>

[INSERT(JOIN(RIGHT(INSERT(c1,)),¢3),i3) = INSERT(RIGHT(INSERT(JOIN(c 1,c3),1)),i3)]

=(by induction hypothesis]=>

[INSERT(RIGHT(INSERT(JOIN(c 1,c3),i)),i3) = INSERT(RIGHT(INSERT(JOIN(c 1,c3),1)),i3)]

=> true.

Thus the theorem has been proved and the APPENDQ axiom has been shown to be
satisfied. Many other useful theorems (or “invariants") about data types can be proved
from the axioms using the same techniques of case analysis and induction as in the
foregoing proofs. In some cases these techniques can also be applied to prove theorems
about an implementation. We used one such "implementation invariant” in the proof of the
APPENDQ axiom without explicitly mentioning it, namely (3c such that q=QREP(c)). This is

easily proved from the Normal Form Lemma, the programs for CREATE and INSERT, and
data type induction.

The proofs of the other Queue axioms for the circular list implementation require no
additional techniques and will be omitted. All of these proofs have been carried through
semiautomatically by the "data type verification system" described more fully in
[Guttag76b].




4. PROCEDURES AND BOUNDED TYPES

Until now all of the abstract data types that we have axiomatized have been
unbounded. It is relevant to observe a parallel here between computer science and
mathematics, i.e., that bounded types are often harder to define than unbounded ones. In
this section we intend to deal with the added complications of specifying more realistic
data types, in particular a type of bounded size. At the same time we will relax the
restriction that all operations be single-valued and permit a notation that resembles the
conventional use of procedures, first introduced in [Guttag 76b].

It will now be permissible to include procedures in the specifications. A procedure
P whose first argument, x, is altered as a result of its execution, but not its second
argument, vy, is syntactically declared as P(var x,y). If P is a pure procedure, i.e., it returns
no value, then this is syntactically expressed by writing P(var x,y) » . The definition of
procedure P would be included in the semantic specification of the data type using it. A
procedure has a body and an optional value part separated by a semicolon, e.g.,

P(var x, var y) = x « F(x,y), y « G(x); H(x,y)

is a possible definition of P where F,GH are functions returning a value. Notice that
simultaneous assignment to parameters is now permitted, but we continue to adhere to our
earlier approach by requiring that the value returned by a procedure be.expressed by
single-valued functions. In some cases these latter operations will no longer be accessible
by the user of the data type. We call them "hidden functions™ and indicate them by
placing a star next to their names.

As an example, we give in Figure 4.1 the specification of a queue of bounded size.
Notice that in comparison with the unbounded queue of Figure 2.3, four new operations
have been added. ADDQ and DELETEQ are now designated as hidden functions and in their
place the user will apply the pure procedure ENQ and the function DEQ, both of which
have the side effect of altering their first argument. SIZE returns the number of elements
contained in a bounded queue, and LIMIT the maximum number of elements permitted.
Notice also that we have augmented the UNDEFINED operation by allowing it to be
qualified. This will facilitate the handling of errors by distinguishing their source.

This technique of taking a specification of an unbounded data type and refining it
into a bounded one can be applied in exactiy the same way to yield specifications for
bounded stacks, binary trees, strings, etc.




type Bqueuefitem]

declare NEWQ(Integer) » Bqueue
sADDQ(Bqueue,item) - Bqueue
*DELETEQ(Bqueue) » Bqueue
FRONTQ(Bqueue) - item u {UNDEFINED}
ISNEWQ(Bqueue) - Boolean
APPENDQ(Bqueue,Bqueue) » Bqueue
SIZE(Bqueue) - Integer
LIMIT(Bqueue) - Integer,
ENQ(var Bgueue,item) - ,
DEQ(var Bqueue) - item;

for all a,r ¢ Bqueue i ¢ item let
ISNEWQ(NEWQ(in)) = true
ISNEWQ(ADDQ(q,i)) = false
DELETEQ(NEWQ(in)) = NEWQ
DELETEQ(ADDQ(q,)) =

if ISNEWQ(q) then NEWQ
else ADDQ(DELETEQ(q),1)
FRONT(NEWQ(in)) = UNDEFINED[underflow]
FRONT(ADDQ(q,)) =
if ISNEWQ(q) then i else FRONTQ(q)
APPENDQ(a,NEWQ(in)) = q
APPENDQ(r,ADDQ(q,i)) = ADDQ(APPENDQ(r,q),i)
LIMIT(NEWQ(in)) = in
LIMIT(ADDQ(q,)) = LIMIT(q)
ENQ(q,i) = if SIZE(q)<LIMIT(q)
then q « ADDQ(q,i)
else q « UNDEFINED[overflow]

DEQ(q) = q « DELETEQ(q); FRONTQ(q)
SIZE(NEWQ(in)) = 0
SIZE(ADDQ(q,i)) = 1+SIZE(q)

end

end Bqueue

Figure 4.1

5. OTHER DIRECTIONS

In this paper we have stressed the art of data type specification. Our major goal
has been to explore a notation which is especially attractive for formally defining a data
type without regard to its implementation. In this section we want to indicate briefly how
these specifications can be used to design reliable software, but to reserve a complete
discussion for [Guttag 76b].

The first use of an axiomatic specification is as an aid in designing and implementing
the type. A decision is made to choose a particular form of implementation. This
implementation will be in terms of other data types and we assume that their specifications
already exist. For a complex data type this process may proceed through several levels
before an executable implementation is achieved. The virtue of the specifications is that
each stage is made clearer by organizing the types, values, and operations that can be
used.
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A second use of these specifications, and perhaps its most important, is for proving
that an impiementation is correct. Establishing correctness now becomes equivalent to
showing that the original axioms are satisfied by the newly developed implementation.
This process also lends itself quite readily to automation.

Another use of these specifications is for early testing. It would be very desirable
if one could design a system in such a way that it could be tested before committing
people to actually build it. Given suitable restrictions on the form that the axiomatic
equations may take, a system can be constructed in which implementations and algebraic
specifications of data types are interchangeable. In the absence of an implementation, the
operations of the data type may be interpreted symbolically. Thus, except for a
significant loss in efficiency, the lack of an implementation can be made completely
transparent to the user. Interestingly, it is not necessary to spend many man-years
developing this system; the capability is essentially available in LISP-based symbol
manipulation systems such as SCRATCHPAD (Griesmer 71), REDUCE [Hearn 71), and
MACSYMA [Martin 71]. The use of REDUCE for this purpose is discussed in [Guttag 76b],
as are the essential ideas of a pattern-match compiler designed especially for compilation
of algebraic axioms.
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