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SUMMARY

The topological properties of ten stream networks have been analyzed and compared
with those predicted by the topologically random model. The topologically random model
states that, in the absence of geological controls, all topologically distinct channel networks
having the same number of sources are equally likely, and, in an infinite topologically
random network, all topologically distinct sub-networks occur with equal frequency. The
ten stream networks have moderately- to well-developed trellis drainage patterns which
have formed in response to differential erosion acting on sequences of folded and tilted
sedimentary rocks. Testing procedures included examining the frequency of occurrence of
topologically distinct channel networks, ambilateral classes and sets of Strahler stream num-
bers for sub-networks up to magnitude 10. Deviations from predictions of the topologically
random model occur in the magnitude-4 networks and are attributed to preferential develop-
ment of minor tributaries flowing in the down-dip direction of the local rocks. The only
other deviation from predicted frequencies occurs in the magnitude-10 stream number sets
and is not obviously explicable as a response 1o geologic controls.

To examine the stream networks in greater detail, a system was devised for classifying
individual links by type. Six link types were defined: two exterior types, the T-link and
TS-link; and four interior types, the CT-link, B-link, TB-link and T-link. Link types were
defined by the magnitude relationships with adjoining links at a link’s upstream and down-
stream terminating forks. Analysis of the link structure shows a greater than expected
number of low magnitude T- and TB-links occurring in the sample having a well developed
trellis pattern.

The observed departures from the expectations of a topologically random model are
related to geological factors, but the deviations are subtle and not observed in the streams
having less well developed trellis patterns.

The use of magnitude as a measure of channel network size has great potential, enabling
direct comparison of various streams from remotely sensed data or maps. Furthermore, in
the absence of gage data, the relative flood potential at any point along a stream can be
assessed simply from the growth rate of the magnitude of the main channel up to that point.
The fact that trellis patterns deviate only marginally from topological randomness implies
that flood hazards within such systems are more or less similar to those within the more
common dendritic systems. This information enables assessment of river barrier crossing
and denial to be estimated without recourse to long-term flood records which generally are
not available at specific sites.

The general conclusion is that the topologically random model serves as a very useful
standard with which to compare real channel networks. Furthermore, the presence of
strong geological controls, which affect the channel network patterns, has only minor ef-
fects on the topological properties.

vi




TOPOLOGICAL PROPERTIES OF SOME TRELLIS
PATTERN CHANNEL NETWORKS

by

Steven J. Mock

BACKGROUND AND OBJECTIVES

Introduction

The study of streams and stream networks from a gecomorphological rather than a hydrological
viewpoint has encompassed three clear and distinct eras, each of which can be associated with one
or two dominating individuals. The first era was largely given to descriptive work, the elucidation
of 4 stream’s age and place in the erosion cycle by observation and inductive reasoning. The
culmination of this era was reached in the many works of W.M. Davis and D. Johnson.

The second era was inaugurated by Robert Horton's work (1932, 1945) and culminated in the
studies of Strahler and his students. Horton's major contribution was in devising a methodical sys-
tem of describing networks numerically, thus allowing statistical analysis and comparative studies
of stream systems. Under Strahler’s impetus, stream basin parameters were devised and quantified,
and the interrelationships among parameters were sought by statistical techniques. Extensive studies
of drainage basins have led to the exposition of several “laws” relating various stream and basin

parameters. Many of his techniques, including the stream ordering system, are in standard use today.

The third period began with R.L. Shreve’s publications of 1966 and 1967 in which he examined
the network structure of stream systems from a topological point of view. Once a single basic
assumption was made, several of the empirical laws then became derivable as maximum-likelihood
events. The concepts of magnitude and links were introduced, and these focused attention on what
now seems to be a fundamental element in stream networks. A fusion of elements from the Horton-
Strahler *‘school with the newer topological view is now in progress, promising and delivering basic
insights into the makeup of streams.

Objective of study

The infinite, topologically random model as stated by Shreve (1966, p. 27) is “...in the absence
of geologic controls a natural population of channel networks will be topologically random," and
later (Shreve 1967, p. 178) “...in the overall network which will be termed an infinite topologically
random channel network, all topologically distinct sub-networks with the same number of suurces
occur with equal frequency.”

Topological identity means that the planimetric projections of two channel networks with the

same number of sources can be rotated and deformed within the projection plane so as to become
congruent. Figure 1 illustrates topological identity and distinction. Only two properties are
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(C) networks.

necessary to define topological identity — the number of sources, and the arrangement by which
they are linked together to form a network. Most of the common geomorphic descriptors and
parameters are independent ot topology.

Figure 2 shows the topologically distinct arrangements possible for three different size networks.
While it is obvious from Figure 2 that the number of topologically distinct arrangements increases
rapidly with increasing network size, a specific expression for that number will be postponed until
a later section.

Since Shreve introduced the topologically random model, a sizable body of work has accumulated
in which natural channel networks have been examined within the predictive framework of the
model. For the most part, Smart (1969) being an exception, such studies have examined natural net-
works which have evidence of minimal geologic - .trol in the channel network development. Channel
networks developed on horizontal or gently dipping rocks with homogeneous lithologies and display-
ing the classical pattern have formed the dominant subject material.

In this study, the topologic properties of 10 channel networks, all showing clear evidence of
geologic control, are compared with those predicted by topologically random models. If it can be
demonstrated that a correlation exists between geological structure and topological properties then
anew method of examining the interaction of geology and streams is available which may provide
insights into the evolution and subsequent readjustments within the system. Conversely, if no such
correlation can be shown, then there is legitimate reason for broadening the scope of the topologi-
cally random model by deleting *“...in the absence of geologic controls...” from Shreve’s original
statement.

In order to carry out the comparison cited above, several new methods of describing channel
networks and their component parts are developed. Each of these is shown as being predictable,
in a probabilistic sense, from the topologically random model. In particular, a small set of defin-
able sub-units or links are defined with which an entire channel network can be described. While
these link types are defined on the basis of numerical relationships with other links at junctions,
evidence indicates that each of the link types has distinct length-frequency distributions.
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Quantitative geomorphology and the infinite
topologically random model

Horton (1945) can fairly be satd to have supplied
the foundations for what has since become known
4s quantitative gecomorphology. While Horton's
work considered the morphological development of
the entire drainage basin, three important aspects of

the study deal only with channel networks:

1. Development of a numerical method (stream
order) tor describing a channel network.
2. The law of stream numbers.

3. The law of stream lengths.

y Subseqguently, the ordering system was modified
slightly by Strahler (1952). The Strahler system is
Figure 3. A “hannel network illustrating the  ys¢d here.
Strahler ordering system.

Stream ordering

The ultimate tributaries in a channel network
are designated as order 1. Wherever two streams of
the same order, €2, join, the resulting stream is of order £2+1. Wherever two streams of unequal order
join. the succeeding streams are of the higher order. Figure 3 illustrates the ordering system.

A complete stream consists of the entire reach of channels from the formation of order £2 to the
point where it terminates in a higher order. Thus in Figure 3 there are eight 1st order streams, three
2nd order streams, and one 3rd order stream. If we let N, and N, | be the number of streams of
order £2 and Q2+1 respectively, then R, | the bifurcation ratio, is defined as

b

N
Ry el (1)
> Ngay

The empirical fact that R, tends towards a constant through a range of £2's led Horton (1945) to
formulate the law of stream numbers, namely:

Ng = RES (2)

where £ is the order of the master stream (or drainage basin).

One would intuitively expect that on the average the mean length of streams would increase with
order. Based on observed data, Horton stated the law of stream lengths:

Lg = LR (3)
where L_” is the mean length of §2 order streams and

RL = _LSZ
LSZ—I

While both eq 2 and 3 have been found to be valid in many studies, it should be remembered
that they are empirical laws based on observation.
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Stream magnitude

/ Shreve (1967) introduced the concept of

{ stream magnitude. However, before magnitude
: can be defined, it is necessary to define certain

| other items. Shreve (1966, p. 20) defined terms
l‘ in the following manner: “The points farthest

: upstream in a channel network are termed

\

sources. The point of confluence of two chan-
nels is a fork. The term fink will refer to a sec-
tion of channel reaching without intervening
forks from cither a fork or a source at its up-

stream end to either a fork or the outlet at its

downstream end.” Links may be subdivided

into exterior links, which head at a source, and

Figure 4. The same channel network as shown  nterior links, which head at a fork (Shreve 1967).

in Figure 3, illustrating the magnitude system. The magnitude of a link “is equal to the total
number of sources ultimately tributary to it"
(Shreve 1967, p. 179) where all sources are

assigned a magnitude of 1. Magnitude is an additive property; twao links joining at a fork produce

a third link whose magnitude is the sum of the magnitudes of the first two. The magnitude of a

stream network is defined as being equal to the magnitude of the outlet link, which is defined by
the investigator.,

Figure 4 shows the same drainage basin as in Figure 3 but now with each link assigned a magni-
tude according to the above stated rules. Two items worth noting here are 1) 1st order streams and
magnitude-1 links are equivalent, and 2) the focus shifts from streams to links as basic entities in

the system.
Basic properties of networks

Let M signify the magnitude of a network, and u the magnitude of individual links. A network
of magnitude M contains M exterior links (u = 1) and M-1 interior (u > 1) links. The total number
of links is 2M-1 for a network of magnitude M.

Let N(M) be the number of topologically distinct arrangements possible for a network of magni-
tude M. N(M) is given by

NM) =t < 2';’4") (4)

(Shreve 1966, p. 29). The number of topologically distinct networks of order £2 having a magnitude
of M (Shreve 1966, p. 29) is given by

M-1 -1
NM; Q) = 3 [N Q1) xN(M~4; Q1)+ 2N(i; ) x Y. NM-i; w)] ()
i=1 w= 1
N(1;1) =1
N(1;9Q) =0
§=2,3,..,
NM; 1) =0
M= 2.
4




In a topologically random population of networks of magniwude M, in which all topologically
distinct arrangements occur with equal frequency, the probability of occurrence of any particular
order is given by

PIM: Q) M\‘(’tl‘fl _ (6)

The number of topologically distinct networks of order £ having n,, n,, ..., ng, |, | streams of
order 1,2, ..., 2 is given by

$2-1 St oyl St )

M, ny, i, 1) 77_ P el ('7““5!’“,,, ) (7)

w=1

and the probability of occurrence of any set of stream numbers in a topologically random popula-
tion of magnitude M(M =n ) is

N(III, Ny, ey gy, 1)
NV

(8)

Pl 0y sy, V)5

An infinite topologically random network is a network of infinite size in which all topologically
distinct subnetworks of the same magnitude occur with equal frequency. The probability of draw-

ing a link of magnitude p at random from a topologically random population of networks of magni-

tude M is given by

e M) (Mt DN (M= DN )
i M) = =i ©)

and as M goes to ==, it becomes an infinite topologically random network and the probability of
drawing a link of magnitude u at random becomes

3 o 2-(2u-1) 2u-1
Mal=E e (2 (10)

(Shreve 1967, p. 181). Equations 9 and 10 will be used extensively in a later chapter when link
types are studied. Details of the derivation of eq 4-10 may be found in the series of papers by
Shreve (1966, 1967, 1969).

CHANNEL NETWORKS AND GEOLOGY

Introduction

A channel network is a complex and dynamic response to climatic and geological factors. {f one
accepts an equilibrium point of view, both the network and the individual channels adjust to mini-
mize the amount of work necessary to transport the products of erosion. Because of constant
changes in the system, a quasi-equilibrium condition prevails. Because actual drainage patterns and
hillslopes are quite well adjusted in form and pattern for handling erosional products under many
different environments, the implication is that readjustment to radically changed conditions is
relatively rapid (Leopold et ai. 1964). Geologists and geomorphologists have implicitly assumed
that certain patterns manifested by channel networks reflect a degree of equilibrium between the




network and the underlying geology, and have long made use of this as an aid in interpreting
geology.

The geometric patterns displayed in plan view (either on maps or aerial or space photos) have
been classified by various authorities into anywhere from seven (Zernitz 1932) to eleven (Feldman
etal. 1968) major types. In terms of the equilibrium concepts discussed above, several of the
major drainage-pattern types (dendritic, trellis, rectangular, annular) can be considered products of
an equilibrium adjustment of the streams to the geology. Other types, hawever, such as a deranged
pattern, are not in equilibrium and are the result of recent (in geologic time) catastrophic events.

tundamental to the relationship between drainage patterns and geology is the concept of
ditferential erosion, which assumes that channels will tend to develop preferentially along lines of
least resistance. The principal geological element giving rise to differential resistance to weathering
and erosion is lithology. While structural features per se, such as joint systems or fault traces, are
also zones ot weakness which can and do control stream patterns, the primary influence of geologic
structures is in making 4 variety of lithologies, having differing resistances to erosion, available to
erosion. The drainage patterns which develop though are far more diagnostic of the underlying
structural features than they are of particular lithologies.

The dendritic pattern

Zernitz (1932) stated that the “dendritic drainage pattern is characterized by irregular branching
in all directions with the tributaries joining at all angles.” In fact, such a pattern is more in accord
with what is generally considered an insequent pattern, which is normally taken to mean a pattern-
less system (Lattman 1968). The dendritic pattern is usually taken to mean a pattern which has
the familiar tree-like appearance with random branching and non-random junction angles.

The dendritic pattern characteristically occurs where there is homogeneity in bedrock resistance
to erosion. While such a pattern can develop over complexly deformed crystalline rocks, where
sedimentary rocks form the bedrock, the dendritic pattern is usually indicative of, at most, gentle
tilting such that a widespread lateral homogeneity in lithology exists. Thus, although a gentle tilt
on a regional scale may impart a generalized preferred direction of flow, lateral homogeneity in re-
sistance to crosion should allow random branching.

The trellis pattern

The trellis pattern is characterized by one dominant stream direction with a near-orthogonal
direction along which major streams are connected and minor tributaries formed. The major
geological requirement for the development of trellis patterns is parallel or sub-parallel zones
having differential resistance to erosion. While purely structural features such as jointing (Thorn-
bury 1954, p. 121) can lead to the development of a trellis pattern, parallel belts of moderately
to steeply dipping sedimentary rocks of diverse lithology far more commonly give rise to trellis
patterns. The overall linear appearance of trellis drainage patterns is a result of preferential stream
development along the maore casily eroded rock units and generally reflects the direction of the
regional strike.

While the classification of stream patterns is largely a subjective matter, and the gradations which
occur between types are subject to varied interpretation, there is no question that the dendritic
pattern is indicative of minor geologic control and the trellis pattern is a response to major, and
usually easily recognized, geological factors.
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Study areas

I'welve drainage basins were selected for detailed study, nine in central Pennsylvania and three
in eastern Pennsylvania and western New Jersey. The basic criterion for selection was that a channel
network exhibit a pattern which was clearly a response to geological controls. This in turn dictated
that the local geology be known in sufficient detail for identification of at least the major geological
controls. Figure S shows the location of the central Pennsylvania streams. Figure 9 shows the
eastern Pennsylvania and western New Jersey streams.

Geology and physiography

Central Pennsylvania streams. The nine central Pennsylvania streams lie entirely within the
Foided Appalachians Physiographic Province (USGS 1970). The area is characterized by a series of
alternating and parallel ridges and valleys. Within the study area major ridge crests have an average
height of 1900 feet above msl (mean sea level) while the elevation of major valleys is about 600 feet
above msl. Secondary ridges and valleys, all paralleling the major relief features, have intermediate
elevations. The most distinctive feature of this typical ridge and valley topography is “‘grain’ im-
parted by the parallelism of the physiographic elements.

Figure 6 is a generalized geologic map of the area in which five of the central Pennsylvania
streams are located. The geology shown in Figure 6 is typical of that found throughout this part
of Pennsylvania: a Paleozoic sequence of sedimentary rocks with diverse lithologies which has been
folded into a series of parallel anticlines and synclines, imparting a regional NE-SW strike to the
rocks.

Complete channel networks of the nine central Pennsylvania streams are shown in Figure 7.
The drainage patterns are of the classical trellis type. Reference to Figures 6 and 7c, the geologic
and channel network maps of the same area, will be useful in understanding the way in which
geology has controlled the development of the drainage patterns. The clongated master streams are
aligned parallel to the regional strike of rocks while the majority of the lesser tributaries are oriented
perpendicular to the master streams and flow up- or down-section, depending upon the local bed- i
rock attitude. The master strecams have preferentially developed along zones of weakness which




Devonian System

Om  Marine beds: Shales, graywackes and sandstones.

Dho Mahantango — Marcellus — Onandaga Formations, undivided. Shales with interbedded sandstones at
bottom, black fissile, carbonaceous shale in middle, and thin bedded shale and medium bedded lime-
stone at top.

Doh  Helderberg — Griskany Formations, undivided. Fine to coarse grained sandstone, cherty limestone with |
some interbedded shales and sandstone at top. Thin bedded shales, cherty limestones to thick bedded |
crystalline limestone at bottom. |

Silurian System

Skm Keyser — Tonoloway — Wills Creek — Bloomsburg — McKenzie Formations, undivided. Limestones
grading downward to argillaceous limestones to interbedded shales and limestones.

Sc Clinton Group. Shales, interbedded downward with quartzitic sandstone to thin to medium, bedded shale
with intertonguing “‘iron sandstone."

St Tuscarora Formation. Medium to thick bedded, fine grained, quartzitic sandstone.

Ordovician System
Ojb  Juniata — Bald Eagle Formations, undivided. Fine grained to conglomeratic quartzitic sandstones.

Or Reedsville Formation. Shale with thin silty to sandy interbeds.

Figure 6. Generalized geologic map of Willow Run, Barton Hollow, Lick Run, Rhines Hollow and
Horse Valley Run. Source: Geologic Map of Pennsylvania (Pennsylvania Geological Survey 1960)
and unpublished base maps.
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are either more easily eroded rocks or formational contacts. The narrow outcrop pattern of the
rock units has caused the development of a series of parallel clongated channels rather than a tree-
like channel system.

The present result of differential erosion in this area is a landscape characterized by parallel
ridges and valleys. The geologic cross section shown in Figure 8 illustrates the relationship between
topography, lithology and structure. The most resistant rock unit, the Tuscarora Formation, a
quartzitic sandstone, underlics the three major ridges, while streams are incised into less resistant
siltstones, shales and argillaceous limestones.

Eastern Pennsylvania — New fersey streams. The three drainage basins in this group lie in the
Triassic Lowland physiographic province (USGS 1970).

The region and each of the three drainage basins have low to moderate relief with gently rolling
hills and occasional steep ridges with local relief on the order of 300 to 400 feet.

The geology of the area is shown in Figure 9 and the channel networks in Figure 10. Geologically,
the area is much simpler than that of central Pennsylvania, in that for the most part it can be con-
sidered a simple homocline locally interrupted by broad anticlines and synclines. The regional
strike is NE-SW with an average regional dip of 15° to 20° to the northwest.

The underlying bedrock in each stream basin is composed of members of the Triassic Newark
Group. Three interfingering lithofacies (the Stockton, Lockatong and Brunswick) compose the
sedimentary section (Willard et al. 1959). While the lithofacies exhibit a variety of lithologies, each
has a dominant one, arkose in the Stockton, argillite in the Lockatong, and shale in the Brunswick.
In addition, diabase dikes and sills have been intruded.

The stream patterns in these basins range from moderately well developed trellis to dendritic.
The trellis pattern is best developed where the Lockatong and Brunswick lithofacies interfinger,
such as in the eastern part of the Tohickon drainage. Streams have preferentially developed in the
direction of the regional strike on the less resistant shales of the Brunswick lithofacics. Where
lithology becomes mare homogeneous, such as the eastern part of the Stony Brook drainage or on
the diabase of the Tohickon, a more typical dendritic pattern forms. Despite the less-pronounced
development of trellis patterns, the effects of varying resistance to erosion between and within the
lithofacies of the Newark Group and the homoclinal structure have enabled differential erosion to
develop stream patterns characterized by a moderate degree of parallelism to the regional strike.
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¢. Neshanic River.

Figure 10 (cont'd). Channel network maps of eastern Pennsylvania and western New Jersey streams.




Channel network mapping

the channel network of cach of the streams was traced in its entirety from 1:24,000 scale
topographic maps. Channels not shawn as blue lines on the maps were defined by continuous
V-shaped contour lines. As a consequence of using contour shape to define channels, an element
o operator judgment becomes part of the data. For the most part, this manifests itself in deciding
where to terminate a channel as V-shaped contours grade slowly towards U-shaped ones. This
problem does not aftect topology so much as the study of link lengths, or the measurement of

drainage density.

Each link of a channel network was assigned an identification number and the following data

were tabulated

1. Identification number
2. Magnitude

3. Length

4. Type

This information formed the basic data set for much of the subsequent work.

TOPOLOGICAL PROPERTIES OF THE NETWORKS

Introduction

Equation 5 gives the number of topologically distinct channel networks (TDCN) possible for a
network of given magnitude. The simplest possible statistical analysis is to test the null hypothesis
that TDCN of the same magnitude occur with equal frequency. As a practical matter, this is
feasible only with low-magnitude networks because of the rapid increase of N(M) with increasing M
and the concomitant difficulty in obtaining a sufficiently large sample. Consequently, it becomes
necessary to group TDCN into classes having some common property or, alternatively, to develop
other means of classification which can be predicted by the model.

Smart (1968) and Werner and Smart (1973) have reviewed existing methods of topologic
classification and have proposed new classification schemes. The general strategy used herein will be
to proceed from examining low-magnitude networks to greater-magnitude networks, using at each
scale a classification system commensurate with the sample size.

Three methods of classification will be used in addition to TDCN, namely the ambilateral classifi-
cation introduced by Smart (1969), the right-left classes used by Krumbein and Shreve (1970), and
stream number sets.

The following convention will be used in this chapter. Each topologically distinct channel net-
work discussed will be initially illustrated by a schematic channel network map. Associated with a
particular TDCN will be a roman numeral, designating the ambilateral class to which it belongs, and
one or two letters designating its right-left class. See Table Il as an illustration of usage.

The essence of Smart’s ambilateral classification is that all TDCN which can be made equivalent
by simple right-left reversals at one or more junctions belong to the same ambilateral class. Smart
argued that the individual TDCN's within an ambilateral class would be expected to have similar
hydrological properties. Furthermore he noted that all TDCN's within an ambilateral class would
have the same set of link magnitudes and the same set of stream numbers.

The right-left classification used by Krumbein and Shreve assigns a TDCN to a right or left class
based on which side of the main channel (when viewed upstream) has the greatest number of

17




magnitude-1 streams ultimately tributary to it. In the modified form used herein, TDCN having
cqual contributions from both sides are classified as rl or Ir as shown in Tables Il and 111,

Stream-number scts are shown in the form (1, fly, ooy Mgy, V) where n ) is the number of Suahler
first-order streams, n, the number of second order streams, etc. Within a topologically random
population of given magnitude, the probability of occurrence of each possible stream number set can
be calculated from eq 8.

Table | contains basic information for the 12 streams studied here. The first seven streams in
lLable | are referred to throughout as the contiguous-seven and the last three as the Triassic. For the
most part, statistical analysis is confined to these two groups. Complete data for each channel net-
work are given in the Appendix.

Table I. Summary data for stream networks.

Area Drainage density
__Stream  Magnitude (/11‘//&2 (m//ci‘_"}_

Contiguous seven
Rhines Hollow 51 1.56 7.74
Barton Hollow 102 3.70 7.47
Lick Run 117 9.19 3.83
Willow Run 380 22.84 463
George Creek 246 9.49 6.51
[uscarora Creek E. 385 1825 5.67
Tuscarora Creek W. 281 - 1377 5.32 %
Horse Valley Run 175 15.24 391
Bixler Run 274 15.00 5_09
Triassic
Neshanic River 259 257 4.11
Stony Brook 274 44.5 3.29
Tohickon Creck 311 97.4 2.27

Magnitude-4 networks

There are five topologically distinct arrangements possible for magnitude-4 networks. These
arrangements are shown in the first column of Tables Il and I11. The statistics of magnitude-4 net-
works for the contiguous-seven and Triassic streams are shown in Tables 11 and 111. In these and
later statistical tables, the column headed £Expected is the expected number of networks which
would occur in that particular class for random selection of a sample of size 1 from a topologically
random population of magnitude-A networks.

Statistical analysis of the data is given in Tables [V and V. Throughout the statistical analysis,
unless stated otherwise, the null hypothesis tested is: the observed sample data have frequencies
of occurrence which could be expected from random sclection of an equivalent-size sample from
a topologically random population of networks of the particular magnitude under consideration.
For samples having three or more classes a chi-square goodness of fit test will be used to decide on
acceptance or rejection of the null hypothesis. The generalized likelihood ratio is




Table I1. Statistics of the 123 magnitude-4 networks
from the contiguous-seven streams.

TDCN  Class ()bw{ved Expected  Class

Obfeme_(l_ Ex pected

? I 36 24.6 Ir
and 59
q/ 1l 23 246 |

¥ Irl 20 24 6 Irl
R S e - and 37 49.2
¥ Ir |7 24.6 Hr

T I 27 24.6 I 27 246

Table 1. Statistics of the 48 magnitude-4 networks from the Triassic streams.

49.2

ITDCN  Class  Observed L')fpeued Class  Observed Expected

\FT( Ir 10 9.6 Ir
«qb/ and 19 19.2

Il 9 9.6 |

— e o

3'/ Irl 5) 9.6 Irl

’ and 20 19.2
\j-/ lr 15 9.6 Ir
T 1 9 9.6 ] 9 9.6

Table IV. Statistical analysis of magnitude-4 networks from
the contiguous-seven streams,

Sample =2In\ Degrees of freedom  x? os.pr  Decision
TDCN 8.50 4 9.49 Accept
Ietl, trltie, 11 5.37 2 599 Accept

Semple Observed Sample size Crit val  Decision
Ir, Il and Irl, lIr 59 96 56 Reject

Table V. Statistical analysis of magnitude-4 networks from the Triassic streams.

Sample -2In\  Degrees of freedom  x? os.pF  Decision
TDCN 5.36 4 9.49 Accept
Iell, Ieltle, 1 0.07 2 5.99 Accept
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where 1 is the total sample size, a1, is the number of samples in the /'Y class of the £+1 classes, and
P, is the given or known probubility of the jth class (Mood et af. 1974, p. 444). Tor large values of
n, ~2nA has approximately the chi-square distribution with £ degrees of freedom, and the decision
to reject the null hypothesis is made if =2/nA X2 for the a level of confidence.

In those cases where just two samples are being compared, the binomial distribution is used for
testing the null hypothesis. For sample sizes up to 150, tables of the cumulative binomial probabili-
ties were consulted (Army Materiel Command 1972) while for lat ger sample sizes the normal approxi-
mation for the binomial distribution was used (Mood et al. 1974, p. 120-121). For all tests, the
decision to accept or reject the null hypothesis was made at the 0.05 level of confidence.

The statistical analysis in Tables IV and V indicates that, with one exception, the null hypothesis
can be accepted at the 0.0S significance level. That exception accurs in the comparison of Class Ir
and Il networks with Class Irl and Ilr networks in the contiguous-seven sample. In a topologically
random population the two groups occur with equal frequency but the excess of the r and | group
over the rl and Ir group is sufficiently large to reject the null hypothesis.

The question raised by the excess of the grouped Class Ir and Il channel networks is whether

this excess occurs randomly throughout the sample or in some systematic way which can be related

1o geological or geographical factors. In order to answer this question, the magnitude-4 TDCN's

from the contiguous-seven streams were classified as a function of two attributes: 1) direction of

flow with respect to local strike, i.e. along-strike or across-strike, and 2) direction of flow with

respect to dip, i.e. up- or down-section. The original statement of the topologically random model
contains no reference to directional properties of topology. However, “in the absence of geologic
controls™ implies that the topological properties should be isotropic with respect to geological factors.
This in turn means that any subset chosen as a function of a geological characteristic should also be
topologically random,

In Tables VI and VI samples from various possible subsets are statistically tested. The null
hypothesis in each of these tests is that the sample could have been drawn from a topologically
random subset. The results shown in the tables indicate that the null hypothesis can be rejected
for the population of networks flowing along-strike. These, of course, are the streams whose
tributaries are flowing either up-dip or down-dip to reach the main channel. Of the Class | networks
whose tributaries can unambiguously be defined as flowing up- or down-section, approximately 67%
have their tributaries flowing down-section, suggesting that this may be the contralling geologic
factor.

A similar analysis of the Triassic magnitude-4 networks cannot be made. Orientations of the
magnitude-4 networks are less systematic with respect to the bedrock attitude. This, in conjunction
with the initially smaller sample, provides a sample size which is too small for meaningful statistical
testing.

Magnitude-5 networks

The 14 possible topologically distinct arrangements of a magnitude-5 channel network are shown
in Table VI with right-left and ambilateral classes indicated. Tables X and X show the statistical
analysis. Note that although the observed and expected frequencies of TDCN's are shown in
Tables IX and X, no goodness-of-1it tests are given in Tables X1 and XII. This illustrates the major
difficulties in comparing real channel networks with the topologicallv random model at the level
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Table V1. Direction of flow with respect to regional strike
of contiguous-seven magnitude-4 networks.

L Jirection of flow

Along- Across- Inter- A /()m/ Across- Inter-
Class strike strike mu/{gn ; strike sln/« media!e
S Ls
e 1:1 BENENE
S L ORI . NS TS S, SRS SRS, SRS
Irl 6 12 2 :
7% 7 26 {
e J,}_'_ L " TS T S Tl o s
1 9 15 2 9 18 2
—————— e 4 ———f————- —t———— ———
-2InA 11 38 i TS N 6.43 ] 0.84
Decision Rg;cu 41 ’\c.upl { 5, i i Rcﬁircu‘. l/\cccpl_L -

* Combined for goodness-of-fit test.

Table VII. Direction of flow with respect to dip of
contiguous-seven magnitude-4 networks.

Direction of flow

Class Down-section Up-section  Down-section — Up-section
Ir 7 12
I 9 5 16 17
Irl 3 9 d
lir - - 10 i6
I 6 8 6 8
-2In\ 3.33 3.26 1.43 0.036
Decision Accept Accept Accept Accept

Table VIII. Topological classes for magnitude-5 networks.

Ambilateral

T YT Y

YT
¥
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Table I1X. Statistics of magnitude-5 networks from the
contiguous-seven streams.

Ambilateral
. I
Class  Observed  Expected — Observed  Expected Observed  Expec ted

lar 12 53 W
Ibr 3 5.3
fer 5 53 2 7.2
Idr 2 53
= 43 424
lal 2 5.3
Ibl 10 53
Icl 3 53 2 42
Idl 6 83 .
Ilar 4 5.3
1br 8 5.3 12 b
g = 2 <3 20 21.2
a ;
1bl 6 5.3 8 104 B
ir 6 5.3 6 59
11 10.6
11 5 33 5 5.3

Table X. Statistics of magnitude-5 networks from the Triassic streams.

Ambilateral
FDCN Right-left class

Class Observed Expected Observed Expected Observed — Expected
lar 3 3.2
Ibr 1 3.2
ler 4 3.2 L s
Idr 2 32

22 25.6
lal 4 3.2
bl 2z 3.2
el 2 3.2 L 128
Idi 4 352
llar 2 3.2
lbr 5 3.2 ¥ &
Hal 1 3.2 b A
a ,
11bl 1 3.2 8 b
Ir 3 3.2 3 3.2

7 6.4
1 4 3.2 4 3.2

Table XI. Statistical analysis of magnitude-5 networks from Triassic streams.

Sample =2InX__ Degrees of freedom  x? ¢ 1, Decision
R-L classes 1.33 S 11.07 Accept
Ambilateral  0.97 2 5.99 Accept
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Table XII. Statistical analysis of magnitude-5 networks
from the contiguous-seven streams.

Sarnple =2Ink  Degrees of freedom  x* o5y Decision
R-L classes 1.76 5 11.07 Accept
Ambilateral 0.12 2 5.99 Accept

of TDCN, namely that the number of possible TDCN rises with such rapidity as magnitude increases,
that the problem of maintaining a sample size of at least five per class, considered good statistical
practice (Miller and Kahn 1962), becomes impractical.

The null hypothesis that these samples could have been drawn from a topologically random
population of magnitude-5 networks can be accepted for both samples whether classified by the
righ-left or the ambilateral system. It is worth noting that the wide disparity between observed
and expected TDCN in some classes is completely hidden in the right-left and ambilateral classifica-

tion.

Magnitude-6 to magnitude-10 networks

The statistics and statistical analyses of magnitude-6 through magnitude-10 streams are shown
in Tables XIH-XVII. For magnitude-6 networks TDCN were grouped according to ambilateral
class, while for greater magnitude networks they were combined into stream number sets. Note
also that even at the level of stream number sets, it was necessary to combine groups in order to have
a satisfactory sample size.

The statistical analysis indicates that, with one exception, there is no reason to reject the hypothe-
sis that these samples were drawn from topologically random populations of the indicated magnitude.
That sample for which the nuil hypothesis can be rejected occurs in the Triassic samples where the
stream number set (10, 2, 1) occurs with greater frequency than would be expected in a topologi-
cally random population of magnitude-10 networks.

Summary

All channel networks ranging from magnitude 4 to magnitude 10 within the contiguous-seven
and Triassic samples have been classified and grouped by TDCN's, right-left classes, ambilateral
classes, or stream number sets as appropriate for the available sample size. For each magnitude the
null hypothesis that the observed sample could have been drawn from a topologically random
population of that magnitude was tested using either a chi-square goodness-of-fit test or a binomial
test. The null hypothesis could be rejected at the 0.05 confidence level for two of the samples, that
of class | magnitude-4 TDCN’s from the contiguous-seven sample and that of magnitude-10 stream
number sets from the Triassic sample.

The magnitude-4 networks, for which the null hypothesis could be rejected, were subjected to
further study, examining TDCN as function of their flow direction with respect to the attitude of the
local bedrock. In so doing it is argued that the topologically random model, in particular the key
phrase “‘in the absence of geologic controls,” implies directional isotropy of topology with respect
to any geological parameter. Examination of the magnitude-4 streams shows that of those streams
which flow in the direction of the local strike, those having tributaries entering from the same side
occur with much greater frequency than can be expected in a topologically random population.
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Table X111, Statistics of magnitude-6 net-
works from the contiguous-seven streams.

11

Vi

Ambilateral
< class V_()ﬁairved Expected

? 3 18 20.6
? 6 5.1
¥ 8 10.3

SN
- 12 10.3

\<>/
—< 4 23
6 5.1

-2In\ -

2.20, xl'osj =11.07;
Decision: Accept

Table XV. Stream-number statistics for the contiguous-seven streams.

Mag::.ude

10

Stream numbers

Table XIV. Statistics of magnitude-6 net-
works from Triassic streams.

Ambilateral
e S Obseewed Expecied
I ¥ 13 13.0
I \Y/ 6 3.2
v ¥ 3 6.5
Y% \?: 0 1.6
4* 4.8
Vi \&[2/ 4 3.2

* Combined for statistical testing
=2nX =8.05, X2 45 4 = 9.49; Decision: Accept

i (ny,ny nyng) Observed Expec!ed_
(7,1,0,0) 5 6.5
(7,2,1,0) 19 16.4
¢7:3: 1,0) 3 4.1
(8,1,0,0) 4 46
(8,2,1,0) 18 17.3
(8,3,1,0) 7 8.7
(8,4,1,0) 1 0.3
(8,4,2,1) 2 L 0.1 | 04*
(9,2, 1,0) 9 10.8
(9,3,1,0) 9 9.0
9,4,1,0) 1 0.9
94,2, 1) 2} 5* 0.2 }3.2%
(9,1,0,0) 2 2.1
(10,1,0,0) 0] 1.2)
(10,2,1,0) 7 8.1
(10,4,1,0) 1 2.0
(10,4.2.1) 1t o5 (118
(10,5,1,0) 0 0.0
(10,5,2,1) 0) 0.0 |
(10,3,1,0) 13 10.1

* Combined for statistical testing.
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Table XVI. Stream-number statistics for Triassic streams.

Stream numbers

Magnitude (ny, n,y ny n,) Observed Expected

(7,1,0,0) 5 7.0

7 (7,2,1,0) 22 17.6
(7,3,1,0) 2 4.4
(8,2,1,0) 16 13.4
(8,1,0,0) 2 3.6

8 (8,3,1,0) 5 6.7
(8.4.1.0) of” g2 [106*
(8,4,2,1) 0 0.1
9,2,1,0) 9 7.5
9,1,0,0) 1 1.4

9 (9,3,1,0) 5 6.3
9,4,1,0) 1 0.6 |35
(9,4,2,1) 0 02
(10,2, 1,0) 10 59
(10,1,0,0) 0) 0.8)
(10,3,1,0) 4 7.4

10 (10,4,1,0) 2 1.5
(10,4,2.1) 06 04 (1017
(10,5,1,0) 0 0.0
{10, 5.2.1) 0 0.0 )

* Combined for statistical testing.

Table XVII. Statistical analysis for contiguous-seven streams.

Sample =-2In\ Degrees of freedom X2 05.DF Decision
Mag 7 1.1 2 339 Accept
Mag 8 4.28 3 7.82 Accept
Mag 9 1.14 2 599 Accept

Observed Sample size Crit val Decision
Mag 10 13 22 15 Accept

Table XVIII. Statistical analysis for Triassic streams.

Sample =-2In\ Degrees of freedom  x? 05.DF Decision
Mag 7 3.32 2 599 Accept
Observed Sample size Crit val Decision
Mag 8 16 24 17 Accept
Mag 9 9 16 12 Accept
Mag 10 10 16 10 Reject
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Further examination indicates that the tributaries entering on the same side and flowing down-
section are preferentially developed, in a ratio of about 2:1 over those flowing up-section. Thus it
is concluded that an identifiable geological factor is influencing the topological arrangements in
these small networks.,

It is perhaps more remarkable that these drainage systems, which show strong geological control
of their channel patterns, have no apparent systematic or identifiable bias in their topological
properties above the level of the magnitude-4 networks cited above.

LINK PROBABILITIES

Introduction

The analysis has so far considered networks from magnitude 4 to magnitude 10 with varying
degrees of topological resolution. To continue the statistical analysis to larger network sizes in a
similar manner becomes increasingly difficult. For instance, the entire sample contains 25 magni-
tude-20 channe! networks, while there exist 30 sets of possible stream numbers for that magnitude.
Thus, itis necessary to devise a system which allows examination of topological properties of higher-
magnitude systems.

In the preceding analysis, the TDCN has been considered the basic clement and, as the network
magnitude increased, TDCN's were grouped, by right-left classes, ambilateral classes and finally into
stream-number sets. The strategy to be applied now is to examine a more fundamental element than
the individual TDCN, namely the individual links. A coherent and consistent method of classifying
links is developed. Then, a set of equations describing their frequency of occurrence for topologi-
cally random populations is derived, followed by examination of the sample networks in the context
of these predictions.

The overall link-type classification and derivations which follow are largely abstracted from the
published paper A Classification of Channel Links in Stream Networks (Mock 1971).

Link frequencies

In a topologically random population of channel networks of any given magnitude M, the
probability of drawing a link at random of magnitude u was given by eq 9, while the probability of
drawing at random a link of magnitude u from an infinite topologically random network was given
by eq 10. Itis possible to examine the frequency distribution of link magnitudes to test the
hypothesis that the samples were drawn from an infinite topologically random population.

To properly test the hypothesis that a set of links could have been drawn from an infinite
topologically random population requires that the links be randomly selected. The links which
form the samples to be analyzed are the set of all links contained in a series of complete networks
and do not represent random selection. The fact that they are complete networks puts certain
limits on link magnitudes which would not be applicable had they been randomly selected. To
illustrate this point consider the following differences between a random selection of 3117 links
from an infinite topologically random population and the 3117 links that compose the contiguous-
seven sample. The number of magnitude-1 links is rigorously set in the contiguous-seven sample
while in a randomly selected sample it is not. There is no upper limit on the magnitude of a link in
arandomly chosen sample while in the contiguous-seven sample it is 385 and is equal to the magni-
tude of the largest network in any sample consisting of integrated networks. The point is that
selection of complete networks puts constraints on the possible outcomes and requires a certain
restraint in interpretation of results. Table X1X shows the statistical data for the contiguous-seven
and the Triassic samples.
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Table XIX. Statistics and analysis of link-magnitude
frequencies, contiguous-seven and Triassic streams.

Contiguous-seven
Link magnitude Observed Expected

Triassic
‘ l_//_lk magnitude  Observed

2 420 389.6 2 214

3 214 1933 3 104

4 123 1218 4 47

S 74 85.2 5 44

6 54 639 6 34

7 34 50.2 7 29

8 31 40.8 8 24

9 23 34.0 9 15
10 22 289 10 16

- 10 558 548.0 - 10 314

Expected

2103
105.8
65.7
46.0
34.5
27.1
22.0
18.4
156
29587

-2n\ = 21.58, %3 o5 4~ 16.92

5% Decision: Reject 5% Decision: Accept

Magnitude

2131445164718191|01>121
OTT"“""IW

-4

i

_8_1

“+/Freq 3

12

]

,IG—-

- 2oj

1
-24 —{
Figure 11. Hanging rootogram showing expected frequencies

and deviations from expected frequencies as a function of
magnitudes for the contiguous-seven networks.
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Ihe null hypothesis that the observed link frequencies could have been drawn from an infinite
topologically random population can be rejected at the 0.05 confidence level for the contiguous-
seven sample. In Figure 11, the contiguous-seven observed link frequencies and their deviations
from predicted values are plotted by means of a hanging rootogram (James and Krumbein 1969).
Figure 11 shows graphically the excess of observed magnitude-2 and -3 links and the dearth of ob-
served links in the magnitude-5 -10 range, in comparison with the expected frequencies.

The observed deviations can be related to geological factors in the area of the contiguous-seven
streams.  The master channels, occupying strike valleys, are separated from each other by less
casily eroded rock units. Networks tributary to the master channels are constrained by the inter-
vening, more resistant rocks, to a size range governed in part by the spacing of the resistant rocks.
Thus, depending upon local lithologies and structures, a certain range of link magnitudes will be
depleted in frequency with respect to an infinite topologicalty random population.

Within the contiguous-seven streams the factors cited above appear to inhibit development of
channel networks in the magnitude-5 to magnitude-10 range. The Triassic streams, on the other
hand, do not show any similar trends.

Link types

Interior and exterior links have been defined in Chapter 1. Within the set of interior links, James
and Krumbein (1969) defined two turther types: cis-links and trans-links. A cis-link was defined
as an interior link bounded at its upper and lower forks by tributaries entering from the same side.
A trans-link was defined as an interior link bounded at its forks by tributaries entering from oppaosite
sides. A tributary, in the sense used here, is the link of lesser magnitude of the two links upstream
from a junction. In the context of their study, James and Krumbein limited cis- and trans-links to
those having a magnitude greater than 10. That restriction will be relaxed here, with no magnitude
limits placed upon these link types.

In a topologically random population, cis- and trans-links occur with equal frequency. However,
in the James and Krumbein study cited above, in a sample of 485 links, over 60% were trans-links,
an occurrence with a probability of less than 0.00001 if the probability of occurrence of cis- and
trans-links were equal.

A later study (Krumbein and Shreve 1970) in the same area (Inez quadrangle, Kentucky) but
dealing with magnitude-5 networks, found trans-links occurring with greater frequency than cis-
links, but not in sufficient quantity to justify rejecting the hypothesis that they have an equal
probability of occurrence.

James and Krumbein (1969) proposed a model to explain observed cis- and trans-link length
frequencies. At its headward end, a channel network grows by random bifurcations, but within
the network channel adjustments take place, with coalescence of tributaries entering close to each
other on the same side and thus extinction of some cis-links. While the model has been criticized
(Abrahams 1972) it does satisfactorily explain the excess of trans-links in their study area.

The observed numbers of trans- and cis-links for the contiguous-seven and Triassic streams are
shown in Tables XX and XX1 a° a function of magnitude. In an infinite topologically random
population, the probability of occurrence of trans- and cis-links is the same, independent of their
magnitude. The null hypothesis tested in Tables XX and XXl is that the cis- and trans-links could
have been drawn from a population in which they occur with equal frequency. There is no reason
to reject this hypothesis for either the contiguous-seven or Triassic samples when the total samples
are considered. However when the link frequencies are examined as a function of magnitude, the
null hypothesis can be rejected for three subsets, two in the contiguous-seven sample and one in the
Triassic sample.
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Table XX. Statistics and statistical analysis of trans-
and cis-links for contiguous-seven streams.

Link Number of % Number of  Critical 5%
magnitu de trans ~ trans cis value decision
1-10 145 42.8 194 188 Reject
11-20 81 54.0 69 86 Accept
21-30 47 58.8 33 48 Accept
31-40 19 63.3 11 20 Accept
- 40 164 63.6 94 145 Reject |
4
Total 456 532 401 i '_i§78 Accept

Table XXI. Statistics and statistical analysis of trans-
and cis-links for Triassic streams.

Link Number of % Number of  Critical 5%

maynituc./c trans trans cis value decision 1
1-10 98 47.3 109 118 Accept
11-20 21 36.2 37 36 Reject
21-30 21 47.7 23 28 Accept
31-40 12 51.1 9 1S Accept
- 40 88 54.0 75 94 Accept
Total 240 48.7 253 269 Accept

The earlier analysis of magnitude-4 TDCN from the contiguous-seven sample indicated 2 preferen-
tial development of what have now been designated cis-links. From Table XX it is clear that up to
magnitude 10 there is a preferential development of the cis type. The same holds true for the Triassic
sample although the frequency of occurrence of cis-links is not sufficiently different from that of
trans-links for rejection of the null hypothesis. At the opposite end of the scale, i.e. for links with
magnitudes greater than 40, exactly the opposite situation occurs. Both samples have more trans-
links than cis-links, but the null hypothesis can be rejected only for the contiguous-seven sample.

The data shown in Tables XX and XXI and the analysis of magnitude-4 networks suggests the
following hypothesis: in regions where trellis drainage patterns are developed bedrock attitude will
preferentially favor certain flow directions. In low magnitude networks this will lead to mere
tributaries entering from the same side, hence more cis- than trans-links. At higher magnitudes,
implying greater age, interaction of tributaries entering from the same side will eliminate some cis-
links with an eventual predominance of trans-links.

Admittedly, the evidence which has suggested this hypothesis is hardly overwhelming and has
certain ambiguities. For instance, the large percentage of low magnitude cis-links in the contiguous-
seven sample as compared to the Triassic sample is consistent with its greater lithological diversity
and bedrock dips, but the greater frequency of occurrence of trans-links at higher magnitudes is not.
It is an area worth more study.

Exterior links. Two types of exterior links will be defined: 1) The S (source) link is a magnitude-
I link that joins another magnitude-1 link at its downstream fork. 2) The TS (tributary source) link
is a magnitude-1 link that joins a link of magnitude greater than 1 at its downstream fork.
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Figure 12. Definition of link types by the magnitude
relationships of link of magnitude u and its adjacent up-
stream and downstream neighbors.

Interior links. Figure 12 shows the upstream and downstream
S S criteria for defining interior links. 1) The B (bifurcating) link is
% a link of magnitude u that is formed at its upstream fork by the
% confluence of two links, each of magnitude u/2, and that flows
i TS at its downstream fork into a link of magnitude less than 2u.
B S 2) A TB (tributary bifurcating) link is a link of magnitude u that
8 < is formed at its upstream fork by the confluence of two links,
i each of magnitude u/2, and that flows at its downstream fork
cT = into a link of magnitude greater than or equal to 2u. 3) The T
e S (tributary) link is a link of magnitude u that is formed at its up-
“Cr e < stream fork by the confluence of two links of unequal magni-
2 tude and that flows at its downstream fork into a link of magni-
CT S

tude greater than or equal to 2u. 4) The CT-(cis-trans) link is

e a link of magnitude u that is formed at its upstream fork by the
6|1 confluence of two links of unequal magnitude and that flows at
its downstream fork into a link of magnitude less than 2u.
L Figure 13 shows an idealized network illustrating the link types.
Figure 13. Idealized network The last downstream link in any system under study, i.e. the
showing link magnitudes and highest magnitude link, is defined as either a T- or TB-link
types. depending on the magnitude relationships at its upstream fork.

Note that the CT category of links includes the cis- and trans-
links defined by James and Krumbein (1969). Cis- and trans-
links are not considered individually since they are dependent on topologic relationships as well as
magnitude relationships at successive forks, while the criteria used here are based entirely on arith-
metic relationships of the link magnitudes.

Since link types have been defined in terms of magnitude relationships, eq 9 and 10 provide the
bases for calculation of the probability of occurrence of each link type in finite and infinite topo-
logically random networks.
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Probability of occurrence

Exterior links. Exterior links are by definition links of magnitude 1. The probability of drawing
an exterior link at random from a topologically random population of networks of magnitude M is
given by eq 9, with u = 1. Designating this as Plext; M) it is

Plext; M) = w(1; M) = M/(2M-1). (12)

The probability of drawing an exterior link at random from an infinite topologically random popula-

tion is
Plext) = MM mi2m-1) = 0.5.
M0

Draw a link at random from a topologically random population of networks of magnitude M.
If the link is of magnitude 1, what is the probability that it connects with another magnitude-1 link?
The original draw leaves a topologically random population of magnitude M-1. The original link
has an equal probability of connecting with any one of the 2M-3 remaining links. The probability
that it connects with another magnitude-1 link is equal to the proportion in which the magnitude-1
links occur or (M-1)/(2M=3). Thus, the probability of occurrence of an S-link is

(S . - ...’._ X __w__l_
P(S; M) 591 13 (13)

and the probability of occurrence of S-links in an infinite topologically random population is

5] S lim b ”!”—‘l e =025 14
PS) = pyeo TR OM3Y ~ 02 (14)
To determine the probability of drawing a 7S-link, a similar type of argument is used.

A link is drawn at random. If it is @ magnitude-1 link, determine the probability that it connects
with an interior link in the (M-1)-magnitude network which remains. The probability of drawing at
random an interior link from a topologically random population of magnitude-M networks is (using
eq 12):

Plint; M) = 1-Plext; M) = (M-1)/(2M-1), (15)

The probability of occurrence of 75-links is given by

P(TS; M) = 2/(‘4”_] « Plint; M-1)

rice ik o Bl M-2
PUTSM) = 5 % amis e

for topologically random populations of magnitude M and by

P([S) _ lim M X M-2 =0.25

M=o 2M-1 ~ 2M-3 ' )

for an infinite topologically random network.
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My s Interior links. The essence of the rather heuristic arguments
\ to be presented is that a series of successive random selections of
links from topologically random populations of appropriately sized

networks will serve to define interior link types. Consider a topo-

logically random population of networks of magnitude M. From

u this population a link of magnitude u, designated as M3, is randomly
4 A y : o :
/ drawn. Along with the link u5, the four links joined to u at its

l upper and lower junctions are shown in Figure 14,
Hs From the definition of link magnitudes it is known only that
Figure 14. The randomly My T, T s

drawn link u , and the

four links to which it is g E s St .

attached. The arrow desig-

nates the tlow direction. In terms of the defining criteria shown in Figure 12 the possible
types of uy are:

My = Blinkif wy oru, = py/2and pg < 2u

ty = TB-ink if uy or uy = py/2 and pg - 2p
py = Cl-link if uyoor gy X ps/2and pg < 2u
My = T-ink if gyor u, % uy/2and pg > 2u.

In the following discussion reference to a network of any stated magnitude will refer to a topologi-
cally random population of such networks, and random selection of a link will mean random selection
from a topologically random population of the specified magnitude.

Consider now the link 4. 1t is the ultimate link of a sub-network of magnitude M3, imbedded in
the overall network of magnitude M. Since the link was randomly selected from a topologically
random population the possible topological arrangements of its network form a topologically random
population of magnitude u;. Since u, + 1, = iy only the magnitude of one of the two upstream links
is independent and need be considered. Taking u,, it can have any magnitude from 1 to (u3-1) and
the sub-network which it defines is a topologically random population of networks of magnitude
(uy=T). Thus the probability that u, =u4/2, denoted as g(uy; M) is, using eq 11,

qluy; M) = wluy/2;uy-1).

In the general case then, the probability that a randomly selected link from a topologically random
population of networks of magnitude M will bifurcate at its upper junction is

qlu; M) = wlu/2; u-1)
and the probability of occurrence is
QM) = wlu; M) wp/2; u-1). (18)

Since there is only one other possibility, the probability that the link g does not bifurcate at its
upper junction is

Ru; M) = 1-w(u/2; u-1)

and
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Ku;M) = wlu; M) 1 -w/2; u-1)] . (19)

Note that glu; M) and &k (u; M) are independent of M. Such is not the case for the downstream
possibilities relating uy, py and pg .

The two possibilities at the downstream junction of link u, shown in Figure 14, are

Mg < 20y = My < g,

and

My 2#_; My = My .

It is convenient to work with u, rather than y., so that the probabilities of interest are, having
randomly selected u, the probability that it joins a link uy < py or that it joins a link g = uy .
Remembering that these are topologically random populations, the effect of selecting u 4 is to re-
move all links tributary to it from the population of magnitude-M networks. That is, the remaining
population is now a topologically random population of diminished magnitude (M -5 ). Since u,y
can join any link in the diminished network, the problem is reduced to the problem of randomly
selecting a link of magnitude y, from the networks of (M-u,) magnitude. Thus, the probability
that g,y < uyis

B3l
s(uy; M) = Z Wy, M-us)
M4:|
and for the general case, designating the second link as v, the equation is
u-1
s(u; M) :Z w(y; M-p)
Y1
and summing over all possibilities the probability of occurrence is
M u-1
S M) =D 0N wli M) oly; M-u). (20)
“.-l ‘,:
The probability that y = u is then given by
u=1
tui M) =1 Z w(y; M-p)
=

and

-1

M
T{u; M) Z wlu; M) [1- w(‘r;M-u)]- 1)
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Equations 18-21 define the probability of occurrence of the defining criteria for topologically
random populations of magnitude-M networks.

The probability of drawing a link of specified u which satisfies a set of upstream and downstream

relationships is simply the intersection of the three probability spaces w(u; M), g (u; M) or k(u; M),
and s(u; M) or t{u; M). Designating this as Plu ;M) as shown in |igure 12 the probabilities are:

type’

Plug; M) = wlp; M) glu; M) s(u; M)

Pluy g M) = wls M) glu; M) tu; M)
Pligpi M) = wlus M) k(g M) s(u; M)
Pl s M) = ol M) k(s M) ¢ M).

Finally, to define the probability of occurrence of a particular type of link in a topologically
random population of magnitude-M networks it is necessary to sum over all possibilities. Desig-
nating this as P(type; M} the equations are:

M -1
2 Wl M) w(p/2; u-1) wly; M-p) (22)
I 9=

M
PBM) =Y Plugi M) = )
T |

M
M M M-

PTG M) =Y Plaagi M) = ) o M) eo(u/2; 1) [i - }: w(v;M-m}, (23)
=t u=1 v

M

M
PICT; M) Z P(/J(r, M) :Z
u=1

=l

=1
:s_ wl M) [1-w(u/2; u-1)] wly;M-u) (24)
e

and

\
P(T:M) = Plup; M) =
2
M -1
- wm;m[l-w(ufzzu-u][l-z w(v;M—u)] - w(1; M), (25)
g o

The quantity w(1; M) in eq 25 removes the exterior links which are included in the summation.

It is of interest to determine the limiting values, if any, of the probabilities expressed in eq 22-25
as M becomes infinite, i.e. for an infinite topologically random network. The approach is to calculate
analytically the marginal probabilities shown in Figure 12 for the infinite case and then to evaluate
numerically the joint probabilities P(8; M) and P(TB; M), which are sufficient to define the re-
maining joint probabilities. It can be shown that

M

M
2 Wl M)eo(u/2;u-1) = 1 z; w(u/2; M) wlp/2; M- W/2)] =
M= M=

M
1 wlw; M) wlw; M - a).
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Thus, the marginal probability Q(u; M) of | igure 12 can be rewritten as

M
QU M) = LN wolu; M) wolu; M - ). (26)

Shreve (1967, p. 181) has shown that

lim o ) = 2240 (%) <ot
’ M->co

so that eq 26 can be rewritten as

lim Q(u; M) =1 E vl viu). (27)
Moo Ml

This summation can be calculated exactly by using the functional relationships satisfied by the
gamma function (M. Dacey, personal communication, 1970), which gives

lim Qu; M) =L [(4/m)-1] =0.13622.... (28)
Moo -

Thus,
lim  K(u; M) =1-0.13662-0.5=0.36338... . (29)
M-

The remaining marginal probabilities for the infinite topologically random case become

o u-l
lim (s M) = DY vlu) o) (30)
M-—>o0 u=1 y=
and
lim T(u;M)=EZ viu) v(y). (31)
M0 u=1 y=u

Consider now an infinite topologically random network from which two consecutive random
drawings are made designating the magnitude of the first link u and the second link 7. Designate
the joint probabilities of v(u) v(y) as v(u, v); then a matrix of probabilities, as shown in Figure 15,
is symmetric. Because of symmetry,

ii vy, y) :2 2 v(u, y) (32)
u=2 =1

K=l y=utl
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Figure 15. Probability matrix for an infinite topologically random
network.

Zzl v, )+ Z i: vip, v) + 2 v, p) =1 (33)
=2y p=t L

-1

but

= u-1 = -l .
58 w585 g s
== B= 0

Since, foru =1,

-1
: vy, y) =0
Y

from eq 32 and 33,

OO

2 lim S(u;M)=1- E viu; u), (34)

Moo M=t

fim S(u; M) = 036338,
Moo

and

lim 7(u;M)=0.63662. (35)
M»oo

Now the limits of P(B; M) and P(TB; M) as M= can be evaluated;

lim P(B; M) + lim P(TB; M) = lim Q(; M) = 0.13662,
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which is
- M- x -
2 E v(p) wp/2; p-1)ely) - Z E vip) wlp/2; u-1)e(y) = 0.13662. (36)
B Bl Yu
Equation 36 can be rapidly evaluated to five significant tigures by means of a computer, so that
lim P(B; M) = 0.07086, (37)
M-»o0 |
lim P(IB; M) =0.06576, (38)
Moo

and using the remaining marginal probabilities of Figure 12

lim P(CT; M) =0.29252 (39)
Moo

and
lim P(/; M) =0.07086. (40)
Mo

Table XXI1 shows the probability of occurrence of each link type for topologically random popula-
tions of various magnitudes.

In Table XXII note that the probability of occurrence of T- and B-iinks is the same. It is
implicit in the defining criteria that, on moving upstream from a T-link, a main channel sequence
must terminate at a B-link. This holds true for any channel sequence within a network, thus giving
a one for one correspondence of T-links and B-links. Thus, although six types of links have been
defined, two exterior and four interior, there are only three independent link categories.

Table XXI1. Probability of occurrence of link types for networks of various magnitudes.

M P(S: M) P(TS: M) P(CT; M) P(T: M) P(B; M) P(TB; M)
2 0.667 0.333
3 0.400 0.200 0.200 0.200
4 0.343 0.229 0.114 0.114 0.114 0.086
5 0.317 0.238 0.159 0.111 0.111 0.063
6 0.303 0.242 0.182 0.100 0.100 0.074
7 0.294 0.245 0.200 0.098 0.098 0.065
8 0.287 0.246 0.213 0.091 0.091 0.071
9 0.282 0.247 0.224 0.090 0.090 0.067
10 0.279 0.248 0.231 0.087 0.087 0.069
20 0.263 0.249 0.264 0.078 0.078 0.067
50 0.255 0.250 0.281 0.074 0.074 0.066
100 0.253 0.250 0.287 0.072 0.072 0.066
200 0.251 0.250 0.290 0.072 0.072 0.066
400 0.251 0.250 0.291 0.071 0.071 0.066
o 0.250 0250  0.293 0.071 0.071 0.066
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Tables XXHI-XXVI give the statistics and statistical analyses for link types of the contiguous-

seven and Triassic streams. There is no reason to reject the hypothesis that the Triassic sample
was drawn from an infinite topologically random population. However the hypothesis can be

rejected for the case of the contiguous-seven networks. As shown in Table XXV, we can also re-

ject the hypothesis that the interior and exterior types occur with the frequencies expected in a

topologically random population,

Table XXIII. Link-type statistics
for the contiguous-seven streams.

Link type ~ Observed i fxpected

cT 856
[ 238
B 238
B 223
S 844
IS 718

9133
2213
2213
205.7
T19.3
779.3

Table XXV. Statistical analysis of link types for contiguous-seven streams.

Sample

Degrees of freedom

Table XXIV. Link-type statistics

for Triassic streams.

Link type Observed Expected
CT 493 493.7
T 119 1196
B 119 119.6
B 110 11t.2
S 432 4213
TS 412 421.3

All link types

Interior link types

S- vs TS-links

5%
=2In\  Critval  decision
18.13 Reject

7.61 Reject
820 Reject

Table XXVI. Statistical analysis of link types for Triassic streams.

Sample

Degrees of freedom

All link types
Interior link types
S-vs TS-links

5%
~2In\ Critval  decision
0.58 Accept
0.006 Accept

451 Accept

The deviations observed from predicted link type in the contiguous-seven sample are consistent
with the link-magnitude deviations shown in Table XX and Figure 9. A large part of the deviation
of CT-links is a result of the less-than-expected number of magnitude-5 through magnitude-10 links,
and at feast part of the excess in TB- and T-links corresponds to the greater-than-expected number

of magnitude-2 links.
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Joint probability for link magnitude and type

It is now possible to construct the joint-probability distribution for link type and link magnitude

for an infinite topologically random population using eq 22-25. The resulting probabilities are
shown in Table XXVII.

Table XXVII. Joint probabilities of interior-link types and magnitude
for an infinite topologically random channel network.

na Trans Cis T B 1B v(w)
2 0 0 0 06250  .0625 12500
3 01953 .01953  .02344 .06250
4 01074  .01074 .00977  .00537 .00244  .03906
5 .00993  .00993  .00748 02734
6 00699  .00699 .00457 .00147 .00048 .02051
7 00624  .00624  .00363 01611
8 00487  .00487  .00258  .00060 .00016 .01309
9 00438  .00438 .00214 01091

10 00362  .00362 .00165 .00030 .00007  .00927
- 10 07996  .07996 .01560  .00062 .00001 .17621

P(type)  .14626  .14626 .07086 .07086 .06566  .50000

Tables XXVIII and XXIX show the observed and predicted numbers of links as a function of
link type and link magnitude. The predicted values are those expected for random selection of
samples of equivalent sizes from an infinite topologically random population. As was discussed
previously, the samples do not consist of randomly selected links, thus a certain bias will occur.
This implies that rejection of the null hypothesis that the observed frequencies could have been
drawn from an infinite topologically random population will have some ambiguity. For con-
venience the statistic U = (Observed-Expected)?/Expected has been calculated. This statistic
follows the chi-square distribution so that if U > Xf, DF the null hypothesis can be rejected at the
a confidence level.

The results of the statistical analyses are included in Tables XXVIII and XXIX. There is no
reason to reject the null hypothesis in the case of the Triassic sample. For the contiguous-seven
sample the null hypothesis can be rejected for each of the following:

a. The total sample.

b. The total sample with cis- and trans-links combined.

c. The subset consisting of all links up to and including magnitude 10.
d. The subset defined in c. but with cis- and trans-links combined.

The results are consistent with many of the earlier results, and enable specific identification of
where deviations from expectation occur. For example, in Table XIX magnitude-3 links were ob-
served to occur with greater frequency than predicted. Table XXVIII shows that the major part of
the deviation is accounted for by the large number of T-links. In fact T-links occur with greater
than expected frequency up to and including magnitude 5, as do also TB-links. This means that
there are more small, but complete, networks in the sample than would be expected in a topologi-
cally random population.
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Table XXVIII. Observed and expected (in parentheses) frequencies of interior links

as a function of link type and link magnitude. Expected frequencies are those ex-

pected from a random selection from an infinite topologically random population.
Contiguous-seven sample.

Link [ ] __Link types =
ITIUt_jI_I['II_/l_/ﬂ. S ,,_,/."i/"i = ___‘4(‘./3 ek ! B e B i
2 214 208
(202.2) (187.4)
3 51 65 98
(60.9) (60.9) (73.0)
4 28 34 34 L |74 10
(33.5) (33.5) (30.5) (16.7) (7.6)
5 15 25 34
(31.0) (31.0) (23.3)
6 18 16 14 1 W 5 ]
(21.8) (21.8) (14.2) (4.6) (1.5)
7 10 18 6
(19.5) (19.5) (11.3)
8 5 16 6 4 0
(15.2) (15.2) (8.0) (1.9) 3 (0.2) .
9 8 13 2
(13.7) (13.7) (6.7) %
10 10 7 3 2 0
(11.3) (11.3) (5.1) (0.9) (0.2)
> 10 310 207 41 0 0
(249.2) (249.2) (48.6) (1.9)) 0 y
* Combined for statistical analysis
Sample DF U X2 0s. DF 5% decision
Total 18 83.5 28.87 Reject
1 > 10 excluded 18 60.3 28.87 Reject
Total with cis and 10 49.9 18.31 Reject
trans combined
Cis-trans combined, 10 48.0 18.31 Reject

u>10 excluded

et site




Table XXIX. Observed and expected (in parentheses) frequencies of interior links
as a function of link type and link magnitude. Expected frequencies are those ex-
pected from random selection from an infinite topologically random population.

Triassic sample.

Link ol t Link types By
T_ugn/lude W Trans . Cis T .B e 1 _lﬁ s
2 105 108 W
(109.3) (101.3)
3 25 28 52
(32.9) (32.9) (39.5)
4 1 17 10 8 1
(18.1) (18.1) (16.5) (9.0) (4.1)
5 16 18 10
(16.7) (16.7) (12.6)
6 12 13 5 4 ") 0
(11.8) (11.8) (7.7) (2.5) (0.8)
} *
7 14 9 6
(10.5) (10.5) (6.1)
8 10 8 5 0 1
(8.2) (8.2) (4.3) (1.0) " (0.3)
9 4 8 3 :
(7.4) L (7.4) (3.6)
10 6 8 1 1 0
(6.1) (6.1) (2.8)J (0.5) (0.1)
> 10 142 144 27 1 0
(134.7) (134.7) (26.3) (1.0)J 0
p,
« * Combined for statistical analysis
Sample DF U Xz_os, DF 5% decision
Total 11 18.66 19.68 Accept

Abrahams (1972) has cited the significance of “‘maximum extension" in the study of the
frequency distribution of interior-link lengths. Paraphrasing Glock (1931), as quoted by Abrahams
(1972, p. 731), maximum extension is the time when a drainage system is fully developed. In a
trellis pattern drainage network the master channels extend headward, usually along-strike; when a
bifurcation occurs, that link which is growing across-strike has a much more limited potential for
growth than its sister link. This arises from the fact that another master channel exists, at some
distance depending upon local geology, developing parallel to the first channel. Thus, cross-strike
channels are constrained to reach their maximum development within an area bounded by the
master streams. The net result one would expect is what has been observed in the contiguous-
seven sample, an excess of low-magnitude tributaries over what should be expected in a randomly
bifurcating system.
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LINK LENGTHS

Introduction

In previous chapters 4 systematic study of a sample of real channel networks has been made,
comparing observed properties with those predictable from a topologically random model. A
classification of channel-link types was devised to enable the study to proceed at a level different
from that of past work. The question arises: Do the link types defined on pages 28-30 differ from
cach other in any way other than in the numerical refationships of links at their upper and lower
forks? Are there physical or geometric differences between link types, or are they only definable !
in the context of a particular numeration scheme?

The above question is the subject of this section. In examining this question, the idea of
topological randomness or nonrandomness can be left aside as not germane, at least at the level of
simply determining if a physical difference exists between link types. Furthermore, the fact that
the sample under study here has been drawn from a particular type of stream pattern largely con-
trolled by geology will be disregarded in the analysis, although it may be a caveat in the conclusions.

Link lengths

The particular property of links to be examined here is their length. Two reasons exist for this,
one that it is the simplest property, other than magnitude, to measure from a map of a channel net-
work and two, there is a limited amount of pre-existing work on link lengths.

Previous work

Strahler (1954) and Schumm (1956) showed that length-frequency distributions of 1st-order
streams, i.c. exterior links, could be well represented by a log normal distribution. Smart (1968,
p. 1005) made the following assumption: lengths of interior links in a given network are independ-
ent random variables drawn from the same population. Later in the same paper, he introduced a
negative exponential density as a specific model for the interior-link-length-frequency distribution.
Shreve (1969) proposed a gamma density with a shape factor of 2 as a model for interior-link
lengths. These models have had varying degrees of success in describing observed interior-link-
length distributions. The most detailed study was conducted by James and Krumbein (1969) in
which they developed models for the distribution of trans-links and cis-links.

Observed link-length frequency distribution

Observed interior-link-length frequency distributions for the contiguous-seven and Triassic net-
works are shown in Figure 16. The basic assumption at the start will be that cited above, namely
that the lengths of interior links in a given network are independent random variables drawn from
the same population. The following hypothesis will be tested: The link-length-frequency distribu-
tions for each interior-link type were drawn from the same population as the total interior-link-
length-frequency distribution. Note that no specific population models are implied here.

Statistical analysis of interior links

The null hypothesis to be tested is: link-length frequencies are independent of link type.
Tables XXX and XXXI show the observed and expected link-length frequencies calculated under
the assumption that they were all drawn from the same population. These tables are contingency
tables for a two-way classification. The null hypothesis can be rejected at the 0.05 confidence
level for both samples.
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Table XXX. Contingency table showing length frequencies versus link type for
the contiguous-seven sample. Numbers in parentheses are expected frequencies
calculated under the assumption that link type and length frequency are inde-

pendent.
Length 2 PR B W ST R . A et 3 U N
B L/ AN |- S, © . £ R, SR
0-200 138 43 14 54 29
(81.3) (21.7) (42.5) (42.5) (39.9)
200-400 100 98 39 v 52 j
(105.3) (92.8) (55.1) (55.1) (51.6) |
400-600 69 94 47 36 38
(82.1) (73.2) (43.5) (43.5) (40.7)
600-800 58 53 40 34 31
(53.2) (55.7) (33.1) (33.1) (31.0)
800-1000 34 41 23 20 24
(41.5) (36.6) (21.7) (21.7) (20.4)
1000-1200 21 23 32 10 17
(30.1) (26.6) (15.8) (15.8) (14.8)
1200-1400 10 16 14 S 7
(15.2) (13.4) (8.0) (8.0) (7.5)
- 1400 25 33 29 8 2
i (BI5.1) (30.9) (18.4) (18.4) (17.2)
X2 = 149.83
v\:,os, 5 = 32.67; Decision: Reject

While these tests allow rejection of the null hypothesis for the total samples, they do not pro-
vide much insight into any similarities between pairs of link types. To examine this further a series
of contingency tests was made for each sample, comparing the length-frequency distribution of
cach link type successively with those of the other link types. The null hypothesis is that the
length-frequencies of each type in the pair could have been drawn from the same population.

The results, shown in Tables XXXII and XXXI11, support the view that several link-length
populations are present. In addition the length-frequency distributions of S- and TS-links are com-
pared and tested in the tables, and the null hypothesis rejected for the contiguous-seven and Triassic
samples.

Another approach is to consider the mean link length of each of the five interior-link types. The
samples are sufficiently large to justify large-sample methods, and use of the statistic
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Table XXXI1. Contingency table showing length frequencies versus link type for

the Triassic sample. Numbers in parentheses are expected frequencies calculated

under the assumption that link type and length frequency are independent.

X* 05, 21 = 32.67; Decision: Reject

Length e e et T ORI ¥
I | RO ... SRR - S SN SOy SSRGS .. el A ..
0-200 29 14 6 11 8
(19.4) (20.5) (9.6) (9.6) (8.9)
200-400 37 18 7 15 8
(24.3) (25.6) (12.0) (12.0) {1t.3)
400-600 37 30 14 13 12
(30.2) (31.9) (15.0) (15.0) (13.9)
600-800 15 28 8 15 9
(21.4) (22.6) (10.6) (10.6) (9.8)
800-1000 20 35 10 10 i
{24.5) {25.9) [h22) (12.2) (11.2)
1000-1200 28 18 9 14 12
(23.1) (24 4) (11.5) {11.5) (10.6)
1200-1400 10 22 i 11 i
(16.3) ({7t (8.1) (8.1) (7.5)
- 1400 64 88 58 30 43
(80.8) (85.1) (40.0) _14().0) (37.0)
X% =57.98
2

Table XXXI1. Results of two-way contingency tests of link type pairs and iength
frequencies for the contiguous-seven sample. Column labeled P(w) is explained

in text.

x2 DF Decision P(w)
Trans-Cis 52.15 7 Reject .001
Trans-T 72.00 i Reject .001
Trans-B 8.89 7 Accept g
Trans-TB 24.36 T Reject .001
Cis-T 22.81 7 Reject .001
Cis-B 24.78 7 Reject .01
Cis-TB 6.57 i Accept O
T-B 52.70 7 Reject .001
I-TB 16.19 7 Reject 019
B-TB 14.37 7 Reject .003
S-TS TS5 8 Reject .001

)(2‘05_ ,=14.07
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Table XXX, Results of twa-way contingency test of link type pairs and length
frequeiicies for the Triassic sample. Column labeled P(w) is explained in text.

e S S

Y2 DF Decision Pl(w)
Irans-Cis 30.79 b} Reject .007 #
Trans- 1 24.28 8 Reject 001 ;
Trans-B 9.86 8 Accept 9 5
[rans-TB 16.53 8 Reject 01
Cis-1 8.73 8 Accept A7
Cis-B 11.09 8 Accept 008
Cis-TB 7.84 8 Accept 29 ¢
-8B 17.44 8 Reject 001 i
I-1B 527 8 Accept 96 3
B-TB 8.87 8 Accept .009 :
S-TS 50.16 8 Reject 002

where X, is the mean link length, ,Si: is the sample variance, and 7, is the sample size. For large

sample sizes, w asymptotically approaches zero mean and unit standard deviation (Rao 1952,

p. 217). wis then a measure, in Gaussian standard deviation units, of the difference between the
means; thus, the probability that the two sample means were drawn from populations having the
same mean can be taken from normal probability tables. The w statistic was calculated for each
link pair and, if 0.05 probability is used as a decision criterion, similar results to those obtained with
the contingency tests will be obtained with the following exceptions: the cis-B and B-TB link pairs
from the Triassic sample can be rejected. The columns labeled P(w) in Tables XXXI1 and XXXIII
are the probabilities that the sample means were drawn from populations having the same mean

link length.

The results of these tests imply that there exists a relationship between link type and length
frequency distributions, i.c. there are different populations for certain of the link types. This is
summarized in Table XXXIV where the link pairs which appear to be drawn from different popula-
tions are tabulated.

As a final but qualitative demonstration of the relationship between link type and link length,
consider the data shown in Table XXXV, where link types for the two samples are listed in descend-
ing order of mean link length. If link types and length are related, then a similar sequence of types
as a function of length should occur. As can be seen in Table XXXV, there is a similarity in the
sequences. This is illustrated graphically in Figure 17 where the mean Iengths of link types from the
contiguous-seven networks are plotted versus the corresponding mean link length from the Triassic
networks. The solid line is a least-squares regression line having a correlation coefficient of 0.898,
significant at the 0.01 level. No predictive capability is implied by Figure 17; rather it indicates that
the link type and link length properties behave similarly in two widely separated samples.

Summary

The link types developed in the section Link Probabilities (p. 26) have been examined in the
context of their length-frequency distributions. Statistical tests strongly imply that the lengths
of interior links are not independent random variables drawn from the same population or
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Table XXXIV. Link pairs having different length-distribution
based on contingency tests.

(;unnquuus-wveuh Iriassic

Trans-Cis Trans-Cis
Trans-1 Trans-T
Irans-TB Trans-1B
Cis-1
Cis-B
I-B 1-B
T-TB

: B-1B

] S-TS S-TS

Table XXXV. Link types of contiguous-seven and Triassic samples
arranged in descending order of mean length.

Contiguous-seven =i 0 [riassic
Link type Mean length (feet) Link type  Mean length (feet)
7 880 TS 1752
TS 827 L 1663
B 725 T8 1650
Cis 682 S 1454
S 601 Cis 1435
B 553 Trans 32
Trans 544 B 1118

Mean Length of Link Types from Triassic

1 L

1 1 | 1 i
calor 400 800 1200 7600

Mean Length of Link Types from Contiguous-
seven Sample, ft
Figure 17. Mean length of each of the seven link types
for the Triassic and contiguous-seven samples plotted
against each other.
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populations. When considered by type, the evidence for a characteristic link length property is
stronger in the contiguous-seven sample than in the Triassic streams. This may be of some signifi-
cance (the Triassic sample being less geologically controlled than the contiguous-seven streams) in
fight of Werner and Smart's (1973) comment that, in an unpublished study of dendritic networks,
they found all interior links had essentially the same link-length distribution with the exception of
I-links.

The high correlation between link type and mean length for the two samples suggests that 4
systematic relationship exists between these variables. It is apparent though that this area of
inquiry needs more study, particularly with a more homogeneous set of channel networks.

SUMMARY AND CONCLUSIONS

Introduction

I'he intinite topologically random model serves as a norm with which the topological properties
of real networks can be compared. The model postulates that, in the absence of geologic controls,
channel networks will be topologically random. This study examines in detail a sample of channel
networks in which the presence of geologic controls is clearly evident from their network patterns.
While the stream patterns are striking, their departure from the expectations of topological random-
ness are much less discernible.

The samples used in this study can be considered as two parts of a continuum which ranges from
the classic trellis patterns with a dominance of geologic control to the classic dendritic pattern
developed with minimal geologic control. The contiguous-seven sample is representative of the trellis
end member of this system, while the Triassic sample lies somewhere in the mid range. In this
summary, it is shown that the topological characteristics of the channel networks follow a similar
continuum, albeit one which is not nearly so broad or as readily visualized.

Basically, two ditferent methods have been used to analyze the topological properties of the sam-
ple networks. The first method was to examine sub-networks within the larger samples, grouping
the sub-networks into classes such that their frequency of occurrence could be compared with
expected frequencies in topologically random populations. The second method examined individual
links, looking at their frequency of occurrence as a function of magnitude, then as a function of type,
and finally as a function of type and magnitude.

Sub-networks

All sub-networks ranging in size from magnitude 4 to magnitude 10 within the two samples were
examined. At the magnitude-4 level, the networks were grouped into individual TDCN and right-
lett classes. At higher magnitudes, right-left classes, ambilateral classes, and stream numbers formed
the bases for grouping. In all cases, the observed frequencies of occurrence were compared with
those expected in a topologically random population. Interpretation of the results from the Triassic
streams is quite simple; the hypothesis that these samples were drawn from a topologically random
population can be accepted at the 0.05 level except in the one case in which an excessive number of
magnitude-10 streams have the stream numbers (10, 2, 1). Considering the number of tests, this
constitutes only a small deviation, and the general conclusion that these samples were drawn from
a topologically random population is justified.

Apparent geologic controls are discernible in the topological characteristics of the contiguous-
seven sample. However, they are subtle and appear to affect only the smallest streams, i.e. the
magnitude-4 networks, where there is a preferential development of tributaries entering from the
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same side. This excess is most pronounced in those networks whose direction of flow is parallel

to the regional strike, indicating a preferential development of tributaries, related to the dip direc-
tion. Surprisingly enough, a4 similar tendency is not apparent in the magnitude-5 networks, although
the smaller sample size limits the detail of study. This leads to caution in ascribing geologic controls
as a causal mechanism. From magnitude 5 to magnitude 10, all tests indicate no reason to reject the
hypothesis that the samples could have been drawn from topologically random populations. Thus,
the general conclusion is that, with the exception of magnitude-4 networks, the topologically ran-
dom model provides the best explanation for the observations.

Links

Analysis of the link structure of networks provides quite a different means of viewing topological
characteristics. In this study, analysis of link frequencies as a function of type and magnitude has
revealed departures from the expectations of topological randomness that can be related to geologi-
cal controls.,

The contiguous-seven channel networks have a classical trellis drainage pattern. Major channels
are approximately parallel to each other and flow along the strike direction. This particular geome-
try puts & constraint on tributary development, both in the formative stage of the networks and in
later adjustments. The parallelism of the main channels and more resistant intervening rocks limits
the size to which tributary channel networks can expand. Thus one can expect to find an excess of
links in some particular magnitude range depending upon the spacing of master channels, and a
deficiency through some higher magnitude range, when compared with the expected frequencies of
a topologically random network.

Interior and exterior links form the basic subdivision of links by type. However, in the section
Link Probabilities (p. 26) both interior and exterior types were further subdivided. The interior-link
types can be thought of in terms of their relationship to channel sequences. A channel sequence is
terminated downstream with a T-link when it meets an equal- or higher-magnitude sequence, and
upstream with a B-link; a link bifurcates into two links of equal magnitude. All the intervening 1
finks constitute CT-links. A TB-tink is a channel sequence of one link. Thus, for each T-link, there |
exists exactly one B-link and zero or more CT-links. For finite or infinite topologically random net-
works, the expected numbers of each type can be specified. If geological controls actively limit

|
random growth, i.e. force development of small networks, then an excess of T- and B-links, and a |
deficiency of CT-links, can be expected. {

l

The frequency distribution of link magnitudes observed in the contiguous-seven and Triassic
streams were compared with the expected frequencies assuming both samples were drawn from an
infinite topologically random population. Using a chi-square goodness-of-fit test, there was no rea-
son to reject the hypothesis at the 0.05 level for the Triassic sample. The hypothesis was rejected ]
for the contiguous-seven sample where an excess of magnitude-2 and -3 links, and a dearth of |
magnitude-S through -9 links, largely caused the rejection. J

The frequency distribution of link types in both samples was compared and tested in the same
manner as above with similar results; the Triassic sample could have been drawn from a topologically
random population; and the contiguous-seven improbably so. Further testing of the contiguous-
seven sample showed that neither the interior-link types nor the exterior-link types, when consider-
ed separately, occurred with the frequencies expected if drawn from a topologically random popula-
tion. Greater than expected frequencies occur in the T, B and TB categories (those links which
terminate channel sequences), and a deficiency of CT-links, implying an organization made up of
greater than expected short channel sequences.




By combining the frequencies of link type and link magnitude for comparison with expected
frequencies, a fairly powerful tool is available for detection of the network structure. As in previous
statistical tests, the contiguous-seven networks can be rejected as having been drawn from a
topologically random population. Table XXI1X reveals in detail where the major departures occur:

. An excess of magnitude-3 to -5 T-links, i.e. short channel sequences.
2. Adeficiency of CT-links (trans and cis) through magnitude 8.

At magnitudes greater than 10, large departures from expected frequencies also occur but, be-
cause of the nature of the sample, i.e. complete networks rather than a random sample, less signifi-
cance can be attributed to those departures. The significance of item 1 above is that geological fac-
tors are acting as a partial constraint on net'vork growth, limiting the potential expansion of networks
tributary to the master streams, thus result ng in a much larger number of relatively small complete
networks than would occur in a topologically random network.

In contrast to the contiguous-seven, the riassic streams appear to represent a topologically ran-
dom population.

The classification of link types was based solely on the numerical relationships of each link with
its adjoining links at the upstream and downstream junctions. The mean lengths of each link type
and their length-frequency distributions were analyzed to determine whether type differences were
also reflected in length differences. The results were somewhat ambiguous in that separate length
populations did not appear to be present for each link type, while, at the same time, the hypothesis
that the individual samples were drawn from a common link-length population could be rejected.
The similarity in the trend of mean link length as a function of type, shown by both the Triassic
and contiguous-seven samples (Fig. 17), suggests a correlation between link type and link length.

To summarize, the infinite topologically random model of channel networks serves as a compara-
tive base for interpreting topological properties of real channel networks. As a predictor, it is re-
markably accurate, to the extent that even a network with strong geologic controls, such as the
contiguous-seven sample, shows only subtle departures from topological randomness.
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APPENDIX A. STATISTICAL DATA FOR THE CONTIGUOUS-SEVEN

Stream

Lick Run

Barton Hollow

Willow Run

George Creek

Tuscarora East

Tuscarora West

AND TRIASSIC CHANNEL NETWORKS

53

i Magnitude Link type Number Mean length (feet)
117 Trans 34 734
Cis 31 785
i3 15 867
B 15 456
B 21 958
S 66 743
TS 51 930
102 Trans 33 435
Cis 23 525
T 12 741
B 12 787
TB 20 748
S 56 744
TS 46 970 r
380 Trans {4 561
Cis 81 779
i 63 1055
B 63 7122
B 55 724
S 218 588
TS 162 925
246 Trans 76 530
Cis 60 633
ki 38 742
B 38 603
B 33 735
S 126 610
TS 120 800
385 Trans 93 555
Cis 114 635
T 68 831
B 68 409
B 41 545
S 200 482
TS 185 700
281 Trans 87 516
Cis 82 706
1] 32 836
B 32 435
B 47 787
S 150 653
B 131 827
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Stream Magnitude Link type Number Mean length (feet)

Rhines Hollow S1 Trans 15 363
Cis 9 569
1 10 968
B 10 508
B 6 540
S 28 613
1) 23 786

Contiguous seven Trans 455 544
Cis 401 682
1 238 880
B 238 553
B 223 725
S 844 601
TS 718 827

Stony Brook 274 Trans 73 1095
Cis 78 1167
T 46 1875
B 46 1113
TB 30 1356
S 142 1465
TS 132 1634

Neshanic River 259 Trans 78 997
Cis 65 946
T 38 1025
B 38 885
B 39 905
S 142 991
TS 117 1446

Tohickon Creek 311 Trans 89 1281
Cis 110 1914
T 35 2077
B 35 1376
B 41 2574
S 148 1885
TS 163 2068

Triassic Trans 240 1132
Cis 253 1435
i ] 119 1663 ]
B 19 1118 |
B 110 1650
S 432 1454
S 412 1752
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