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Introduction

Models of economic planning have traditionally focused on the design of
iterative procedures to achieve the optimal allocation and distribution of
economic goods and resources. Models of this type generally assume that the
iterative exchange of information between the central planning organization, the
center, and its decentralized agents, the producers, can be continued until the
center has enough information to choose an optimal plan. Suppose, however, that
constraints on information exchange compel the center to choose a planning strategy
. in the absence of complete certainty about the conditions of production. What is
the best strategy for the center to adopt under such circumstances? In a recent
paper, Martin Weitzman (1974) sheds some light on this important question by con-
trasting the performance of two planning instruments, "prices and quantities,"
under conditions of uncertainty. Weitzman assumes that at the time the center
chooses a planning instrument, it is uncertain about the actual conditions ot
nroduction and consumption which will prevail when the plan is implemented. He
then examines whether under such circumstances, the center would do better to
set a quantity for producers or to set a price and allow the producers to sot
output according to profit-maximization.

Our purpose in this paper is to build upon the foundation laid by Weitzman
by examining a third polic’ strategy available to the center, namely, the
adoption of a general performance incentive function (PIF) or contract to gquide
the producer's output choice. In Section I, we def.ne such a function or contract
and demonstrate how it works as a planning tool. Section II demonstrates the
superiority of a PIF over both specifving either a price or a quantity in a single~

producer planning model. The analvsis indicates that a properly specified PIF

guarantees efficiency in production and requires less information processing by




-
the center than either the nrice or quantity method. Section III extends the
examination of PIF's to cover the case of two or more producers and reaffirms the
conclusion that PIF's do at lea;t as well as prices and better than quantities as
incentive mechanisms to achieve production efficiency. Finally, Section IV
summarizes the results,

Before embarking upon a formal analysis of PIF's, it is important to
recognize their potential applicability in a variety of circumstances. The idea
of a "contractual incentive function" which specifies a mutually acceptable
rule relating the monetary rewards paid by one decision maker to the subsequent
performance of another is not new. Most of the existing work (see for example,
Berhold (1971) and Wilson (1968)) has focused on performance contracts to
motivate ag .ts within an enterprise hierarchy éo act in compliance with mana-
gerial goals or to motivate government contractors to meet their production
commitments in the most efficient possible manner. Performance incentive
contracts have actually been applied in both sets of circumstances.

Numerous enterprises have devised profit-sharing plans to motivate super-
visory and managerial personnel. The Department of Defense and NASA have
relied on performance incentives to monitor the work of contractors in billions
of dollars worth of government expenditure programs.1 Recent innovations in
the use of PIF's have appeared in the new Amtrak contract relating railroad
payments to the quality of various railroad services (Baumol, 1975) and in a
contractual arrangement in Orange, California linking the salaries of policemen
to various indicators of crime prevention and control.2

Although the existing literature on central planning does not specifically
mention the ase of performance contracts, the concept does arise in discussions
of "success indicators" in the Soviet Ulnion. The Soviets are noted for a system

of planning in which enterprise agents are rewarded according to the degree to

i




I which certain plan targets are achieved and, more recently, according to the
accuracy of the plan targets they project (Weitzman, 1974). By choosing
enterprise success criteria and a related reward structure, the Soviet

planners define a performance incentive system. In contrast to similar systems

employed in the West, the Soviet system is not “contractual" in the sense that

it 1s agreed upon by the planners and enterprise managers. Instead the state

unilaterally chooses success indicators and rewards, and enterprise managers

P

are expected to comply out of self-interest. This "non-contractual" incentive

e

f system is an example of the use of PIF's in central economic planning. Future t
examples will be forthcoming as more societies look toward some degree of

planning to foster the efficient use of scarce resources.

1. Performance Incentive Functions in a Simple Planning Modeli

We begin with Weitzman's model of a single commodity, aq, and a single producer.
We assume the existence of a cost function, C(q), which relates moncv costs to the
level of output produced, and a benefit function, B(q), which relates aggregate
E benefits measured in money term53 to the level of output consumed. In this 1
simple model the planning problem is to achieve the level of production which

just maximizes net benefits defined as
B(gq) - C(q) (1)

where by assumption, B11 <0 C1l > @ 3 Bl(O) > Cl(O) ; and Bl(H) < Cl(H)

for H sufficiently lazge;a for PIF's, the less restrictive single condition
Bll . C11 < 0 can replace the separate conditions on Bll and c11 » but
4 for comparison purposes, we will assume these conditions to hold throughout

the analysis.

As long as the center has complete knowledge of the benefit and cost functions,

yreon
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4.

®
it can choose an optimal quantity dirdctive q according to the first order

condition:

B, (q 3 (2) |
ltq ) = cl(q ) |
or it can choose an optimal price directive p. according to the first order
condition

* * " (3)

P = Cl(q ) = Bl(q )

allowing the producer to choose the optimal quantity via profit maximization. ' l
Now consider the more realistic and therefore more interesting case in which

the center must make its planning decision in the presence of uncertainty. From

the point of view of the center, the cost function is of the form C(q,8) and
the benefit function is of the form B(q,n), where 6 and n are independent
random variables reflecting the certer’s informational uncertainty about costs
and benefits at tl when the plan is formulated. At t2 + when the plan is
implemented, the value of 6 1is revealed to the producer, and at ty v when
benefits are realized, the value of n is reéealed to the center. At tl ’
the center's planning problem is to choose an optimal planning strategy with
limited information at its disposal. Since the optimal strategy depends on

the center's objective function, it is first necessary to identify the function
to be used. Weitzman assumes that the center, acting in accordance with the
dictates of the consumer it represents, maximizes the expected value of net
benefits or net social profits or rent at tl . The optimal quantity directive

A

g is then the solution to the following problem:

Max E {B(q,n) - Clq,0)} . (4)
q

The first order condition for the optimization at é is




.

EBl(q) = Ecl(q) (5)

indicating that at the optimal quantity, expected marginal benefits just equal
expected marginal costs.
In the case of a quantity directive, the producer simply produces the level

of output chosen by the center at t regardless of the value of 6 at t

1 2

In the case of a price directive, the producer chooses an output level to

maximize profits given the price announced by the center at tl and the observed

value of 6 at t2 -

A reaction function of the form
q = h(p,0) (€)

thus links profit-maximizing levels of output to price and 8 at tz . Given
this reaction function, the optimal price directive p or the price which

maximizes expected net benefits at t is the solution to the following problem:

1

Max E {B(h(p,8),n)- C(h(p,8),8)} . (7
P

This solution must satisfy the first order condition:
E{Bl(h(ﬁ;s).n)hl(ﬁ,e)} = E{Cl(h(ﬁye),e)hl(ﬁ.e)} « 18}

Because at t the producer equates p, the non-stochastic solution to (7),

2 ’

and Cl(q.O) . this condition can be rewritten simply as

1-:{131 (h(p,0) .n)hl(f:,e)}
p = - (9)
!{hl(f).e) }

Instead of specifying a simple price or output target,the center may design




6.
a PIF, relating earned profits of the 'producer to certain characteristics of his
performance. Such a function will be of the general form m(g,c), where c
represents actual production c;sts at t2' and T is measured in the same
units as benefits and costs. To maximize rewards, the producer will choose an
output level which maximizes the PIF. Clearly, a special case of performance
incentives is the use of the optimal price P in a contract which specifies

that the producer bears full production costs. The PIF then becomes
m(q,c) = Pq - c . (10)

5
To derive the optimal PIF, suppose first that the center could choose an

output level at t when the actual value of 6 1is revealed. Under these

2

circumstances, the center would want to maximize expected net benefits at t,
and would find the optimal quantit{ by solving the following maximization
problem

Max E {B(q,n)} - C(q,8) . (11)

q

=k
The first order condition for the optimal q from the center's perspective

is therefore

E{8. (g ,n)} g 2
B, (g ,m}=c (a0 . (12)

This condition characterizes production efficiency at t from the point of

2

view of the center. However, because the center cannot observe 6 at t2 ’

it cannot solve this problem directly. Instead, it can use a properly specified

L]
PIF to guarantee that the producer will choose gq at t2 . Recall that the

producer at t, will maximize the PIF. The associated first order condition

2
for the producer can be written as:

*® * * 1
nl/n2 = cl(q ,0) (13) !




* *
where T and T

1 , are the two fisst partial derivatives of the optimal PIF,

*
and q is the optimal output level for the producer at t2 . Substituting
this condition into the first order condition for the center's maximization

problem yields the following condition for the optimal PIF:
r L] } * * *
E'Bl(q (n)= Cl(q ,0) = "1/“2 (14)

which can be rewritten as

*

" i ) 15
", o= -ﬂ2E,B](q) - (15)

This condition indicatés that the center has a degree of freedom in choosing
the optimal PIF. It may specify any function whose partial derivatives satisfy
expression (15). All such functions will generate the same total net benefits

or social net rent. In terms of informational requirements, however, the center

*

may prefer to choose a PIF for wvhich By = -1 , thereby forcing the enterprise

to bear total actual production costs. Any other arrangement requires the

center to measure actual production costs at t2 , to make sure that the desired
sharing of total costs is realized.

I1f the center chooses ﬂ; = -1 to minimize information gathering, then
. = Eal(q) and integration yields a general optimal PIF of the form:

v.(q,c) = Gl@) = ¢ (16)

where G(q) is equal to EB(q) plus or minus some arbitrary constant of

| integration. In this case the center only needs to know EEl(q,n) to specify
the optimal PIF.
A PIF of the'form suggested in equations (15) and (16) has a simple intuitive
explanation. If the center were certain of the actual cost conditions which would
such that expected

prevail at t then it would set an output target at t

2/ 1
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.

marginal benefits would just equal actual marginal costs. However, since the
center cannot know actual costs at tz , it cannot specify this output target

at tl . Nonetheless, it can still motivate the producer to choose this output

level at t by devising a contract so that the producer always operates at

2
the point where actual marginal costs at t2 just equal expected marginal

benefits at tl . The PIF corresponding to equation (15) yields a contract of

this form. The producer is motivated to do the job which the center wants

done at t, by a performance incentive contract specified at t1 . Moreover,

2
the center does not need any information about the producer's cost function at
either t1 or t2 to determine this performance contract. As far as the

center is ooncerned, the producer's cost function is an unknown function whose

first derivative is replaced by EBl(q,n) in the specification of the PIF,

Thus, the center does not need to know either the cost function or the distribution

function for © , and privacy or the guarding of technological information by
producer is maintained during the planning process. In contrast, both equations
(5) and (9) indicate that the center must know C(gq,8) at t1 to specify either
the optimal quantity or the optimal price. Given the difficulties involved in
information flow between the center ad the producer and given the premium ﬁ
placed on "privacy" or the guarding of t- znologic@l possibilities by the

producer, the PIF is undeniably superior to both the optimal price and the

optimal quantity tools.

II. The Allocational Efficiency of Performance Incentive Functions

Because the use of an optimal price or quantity at t1 does not yield an
2! when the value of 6 is revealed,
]

both price and quantity directives are second-best solutions to the problem of

optimal price=-output configuration at ¢t

maximizing expocted net benefits at t and both involve a deadweight loss to

2 ’

. I’ i i i‘“ g _“ e it .J




9.
society. In contrast, a properly specified PIF yields first-best optimization at
t2 by guaranteeing that expected marginal benefits just equal actual marginal

costs at t given the realized value of 6 . The superiority of a PIF

2 ’
over prices and quantities can be illustrated using a technique suggested by
Weitzman for the measurement of the comparative advantage of prices over

quantities.

weitzman defines the comparative advantage of prices over quantities as
A = e{(B(§(8) ,n) - c(q(e),08)) - (B(g,n) - Cl(g,6))} (17)

where the loss function which the center wishes to minimize is the expected
difference in gains between the two modes of control. Analogously, the com-

parative advantages of performance incentives over quantities can be defined as
* * A » ‘
A = E{(B(g (8),n) =~ €lg (6),0)) ~ (Blg,n) = clg,08)1}. (18)

To obtain some insight into what determines 4 and A , some additional
assumptions are required about the shapes of the underlying cost and benefit
functions. Weitzman assumes that the slopes of the marginal cost and marginal
benefit functions are non-stochastic. Given these assumptions, he argues that
it is reasonable to use stochastic linear approximations of the marginal cost
and marginal benefit functions around é , the prescribed quantity. Using
these approximations and the associated stochastic quadratic approximations of
the cost and benefit functions around ; , Weitzman derives the following
approximation for A

o? (8, ,+c,,)
AE-__._.l_l___l.l_ (19)

2
2(¢y,)

= E(Cl(q,e) - E(Cl(q,e)))2 and represents the variance of pure random

2
where ©




shifts in the marginal cost function.'
To compute the ccefficient of comparative advantage of the PIF over the
guantity control tool, it is necessary tc further assume that a second order

approximation of the optimal PIF of equation (16) about the prescribed quantity is

iccurate in the neighborhood of q. Combining this assumption with the Weitzman
assumptions, a few simple manipulations shown in the Appendix yield the following
approximation for A 02'
A = (20)
-B
2(¢cyy ll)
Since Cll > 0 and B11 < Q0 by assumpticn, it follows that A > 0 or that

the PIF is always superior to the gquantity control tool. In fact, the analysis
in the Appendix reveals that A 1is a measure of the deadweight loss caused by
using a quantity control target instead of a PIF.

To compute the comparative advantage of the PIF over prices, A must be

subtracted from A yielding the following relationship:

2
v o? ol - e >
A"A=2(C _Bv')" 2 . (21)
G 2C11
Again, as long as C11 > 0 and Bll < 0, or, less restrictively, as long as
B11 - Cll < 0 , this expression is positive indicating that a PIF is also

superior to a price control tool. The coefficient A - A 1is itself a measure of
the deadweight loss caused by using a price control mechanism instead of a PIF.

The superiority of the PIF over prices and quantities can be graphically
illustrated for the case in which the benefit function is deterministic and in
which there are only two possible values for 6 , 61 and 62 , each occurring
with probability equal to 1/2.

Consider Graph 1. The optimal quantity tool q' is chosen such that EC1 = Bl

S5




11

£2)

Graph |




12.

at t, . Ifat t,, 0= o, then' the optimal point for the producer is

point D ;3 if at ¢, ; @ =0

2 then the optimal point for the producer is

2!
A . The expected deadweight loss resulting from the fact that given a gquantity
target, the producer must always produce at point C 1is given by 1/2(area ABC) =~
1/2 (area CED).

In the case of an optimal price tool, pictured in Graph 2, if 91 is the
value of 6 at t_, , the producer chooses pcint L when point D 13 optimal.

2

If, instead, 92 is the value of 6 at t2 , the producer chooses point F

when point A is optimal. The expected deadweight loss in this case is
1/2(area FKA) + 1/2(area DHL). The Weitzman A can be calculated from the

graphical analysis as

A-%—(FKA+DHL—ABC-CED). (22)

-

In the case of the PIF, shown in Graph 3, the producer will operate at D
when 6 = el and at A when 6 = 62 . There is no deadweight loss and
optimality is achieved at tz for the actual value of 8

Summarizing the results derived in this section, we may conclude that an
optimal PIF structured by the center at tl yields first best allocational
decisions at t2 when the true value cf 6 becomes known. Moreover, in
structuring the optimal PIF, the center does not need to know the cost function
of the producer. Thus, the PIF emerges as a powerful planning tool which

satisfies the criteria of privacy and efficiency identified in the literature

as desirable properties of planning procedures.

I11. Performance Incentives and Two Producers

Suppose the center is trying to coordinate the activities of two producers,

each of which produces a single output. In this ~ase the benefit function is of

, ——
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the form B(ql,qz,n) where B <0 and B < 0 . Each producer in turn

11 22
has its own cost function of the form Cl(qi,ei) .« 1i=1,2, such that
i 6 '
Cll >0

To find the prescribed quantity for each producer, the center will maximize

the total expected net benefits from the production of both goods. Thus, the

center will solve the following maximization problem:

2 ;
Max E(B(q,,q,.,n) = )} C (q,,0,)} . (23)
172 Py > S &
9,49,
To find the optimal price signal for each producer, the center will maximize
the total expected net benefits from the production of both goods given the
reaction functions hi(pi'ei)’ relating profit-maximizing output to price

and € values for each producer. With these reaction functions, the optimal

price directive P; for each producer or the price which maximizes expected
net benefits from the production of both goods at t1 is the solution to the

following problem:

g .
5 i N .
Max E{B(h; (p;,8,),h,(p,,0,)) = [ € (h (p;,6,),80} . (24)
pl’pZ i=1

As derived by Weitzman, the coefficient of comparative advantage of prices over

quantities in the two producer case can be expressed as:

- A P
i
8, = E[(B(q,,d,/n) - i§1c @,0,0 - (Blgy,q,m)
2 i
- (q08,0)1 . (25)
i=1
Using an approximation approach like the one used in the single-good case,
L




16,
this coefficient is estimated by ‘.
2 2
2 . - A g 2 g
e § 1 AL, ] -2 (26)
i=1l j=1 2C11C11 i=1 2011

2 : ’ ;
where o, 1is the covariance of pure random shifts in the marginal cost functions

of the two producers.
If the center wants to use PIF's to guide production decisions, then by

analogy with the one good case, we can show that it must specify functions of

the general form:

i i i i
™ (qi,C ) =G (qi) =C (qi,ei) i=13, 2. (27)

Profit maximization for each producer at t2 implies:

i

*
1(qi.ei) i=1,; 2 (28)

; *
Gl(qi) = C
which in turn yields a reaction functional
* i .
q = F'(6y.8) 1=1,2 (29)

relating the optimal output choice to the PIF and the actual value of € .
To find the optimal PIF for each producer, the center must solve the
following maximization problem:

Max E@BF,F,n) - ctetie)) - ceie . (301

1 2
Gl'Gl

The first best solution to this problem is characterized by the following relation-

ships:

(B, (q,,q, la0) =0 (31)
E 1 qllqzon)) s cltqlpel) .




*q 2" 0 2
E(leql,qz.n)) - Cl(qz,ez) = ~ (32)

These conditions imply that unless the benefit function is separable so EBi
does not depend on qj(i#j) , the optimal PIF for producer i will depend on
the output level of producer j . Realistically, of course, the center will
never choose to make the reward structure for one producer contingent uporn the
performance of another unrelated producer. Consequently, the center's choice
of a PIF is restricted by the constraint that the performance incentives offered
to one producer do not vary with the other producer's output. This constraint }
renders the "first-best" optimal PIF's characterized by (31) and (32) infeasible,

and the center must adopt alternative functions which fail to achieve efficiency

at tz.

One possible "second-best" solution under these conditions can be obtained

by integrating ej out of the center's first best optimality condition for

producer i . The relevant first order conditions for this solution then become:
E (EB, (@ ,F2(G2,8,),n) - C (g ,6,) =0 (33)
ke G T B T T |
O
2
and
£ (BB, (F (6},8.),q5,n)= c2(q,,8,) = O (34)
2 b W 179+ ;
eln ’

The constrained second best solution for the PIF's can then be achieved if

we substitute Gi for Ci , thereby obtaiuing

1 1
B | W Rl
Gl = E (EBl(ql,F (61,92),n)) (35)
6. 0
2
and
2 G b
Gl = E (EBZ(F (Gl,el) rqun)) . (36)
61 n
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The relevant marginal benefit functiogs used in these conditions are obtained
by averaging for each producer the output level chosen by the other producer.

It is significant to note that the center must have information about
the reaction functionals Fl and Fz to find the second-best solution. Since
the reaction functions in turn depend on the underlying cost functions, it is
necessary for the center to have knowledge of each producer’'s cost conditions
under these circumstances. Therefore, we can conclude that the center requires
considerably more information in the two-goods case than in the one good case
where the cost function need not be known by the center.

The second best PIF's identified here can be shown to be superior to
quantities and to perform at least as well as prices on efficiency grounds.
Using guadratic approximations of the cost and benefit functions and evaluating

the expected benefits of one good at the prescribed quantity target of the

other good, approximations to the second best FIF's satisfy the following

conditions derived in the Appendix:

~

1 R A x
G1 = EBl(qlnqz,n) + (ql-ql)Eall(ql'q2'n) (37)
and
2 A x P
Gl = EBz(ql,qz,n) + (qz—qz)EBZZ(qllqz.n) . (38)

These relationships suggest that in the more general case, when quadratic

approximations are not employed, the marginal cost of producing each good should
be set equal to the expected marginal benefits of that good, evaluated at the
optimal quantity target for the other good.

Using thic quadratic approximations of the cost and benefit functions, the

comparative advantage of the second best PIF's over quantity targets is cal-

culated in the Appendix as

e e S A B . . i ke ot
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g B g g
A v 12 122 & 111 2 222 e TR
(C117Byy) (€11%Byp)  2(Cyy=Byy)  2(Cy-By))
Under our assumptions about the signs of C1 C2 B and B this
5k p 6 11 22 ¢ 8

expression is positive indicating that the second best PIF's are superior to

prescribed quantities.

Subtracting the comparative advantage of prices over quantities in the two
producer case from expression (39) in turn yields the comparative advantage of

the second best PIF's over prices as:

2 2 2
912812 1 92
- Sa, oo 2 e ke g X
(C1=By ) (€} =B,o)  2(€);7By))  2(c) -By,)
2 2 2 2 2
93289 %Pz %3 %y %
VY e R T e Tk ke (40)
o o TS T

Under our assumptions, this expression is always nonnegative, indicating that
PIF's perform at least as well as price signals. Intuitively, this conclusion
is to be expected since price signals are just special cases of the more general
PIF's. To see this conclusion more clearly, consider the case in which both
producers provide the same output. In this case, the goal of the center is to

solve the following maximization problem:

A
8
Max E(B(q,,+q,,)/n) - _2 C gy, 08;)) - (41)
Gl GZ i=1
A

The results of using optimal price signals are contrasted with the results of
using optimal PIF's for this case in Graph 4. We make the further simplifying

assumption that ei takes on only two possiblie values for each producer
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(811,812,i=1,2) . A priori, the use of a price signal seems to be desirable
in this case because marginal qosts are equated to a single price and productive
efficiency is thereby achieved. Wwhen a price is used, however, the wrong
amount of output may be produced. For example, in Graph 4, if 612 is the
state of the world for producer 1, the price signal will lead producer 1 to
output level ql , when the optimal output level is q; . Similarly, if 822

is the state of the world for producer 2, prices will lead to an output level

*
of qz when the optimal level is a, - Although PIF's do not lead to productive
efficiency by obtaining a least cost solution with equal marginal costs for both
producers, they bring total industrial output on average closer to its socially

correct level than a price signal does.

Finally, we conclude this section by noting that the generalization of the
two-good, two-producer case to the n-good, Meproducer case is straightforward.
In this general case, we know that PIF's will do at least as well as prices. For
example, in searching for the optimal PIF for producer 1 the center's maximization

process scans over functions of the form

which yield the optimal price signal for producer 1.

IV. Conclusiens

In this paper we extend Weitzman's analysis of the comparative usefulness of
prices and quantities as planning instruments to include a third planning
instrument, the so-called performance incentive function. Such a function relates
the rewards of producers to certain characteristics of their output and cost
performance. Using Weitzman's model we demonstrate the superiority of PIF's

over both prices and quantities as a means for achieving socially optimal output
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decisions. In the one-good, one-producer case, the PIF is also shown to be
superior in terms of the informational requirements imposed on the center. When
the analysis is extended to more than one good, the center's problem for all of
the control tools is finding a second best sclution. Bnder these circumstances,
PIF's are shown to lead to the same informational requirements as prices or
quantities, but as price signals are a special case of PIF's, they do at least as
well as prices and better than quantities.

It is necessary to realize that the optimal PIF results in a more complicated
message being constructed and transmitted by the center and responded to by the
producer than is the case with either prices or quantities. It has been
implicitly assumed in the analysis that the construction and transmittal of
messages by the center and the producer response to messages take place cost-
lessly. In the real world, however, these activities carry significant costs,
and only a comparison of these costs with the potential gains in productive
efficiency and the potential savings in information gathering can indicate whether

a PIF is the optimal planning tool under a given set of circumstances.
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Appendix

I. The derivation of "A" , the coefficient of comparative advantage of a PIF
over a quantity tool.

Start with Weitzman's stochastic quadratic approximations of the benefit and

cost functions around ¢q .

1 A1 g e
B(gq,n) = b(n) + (B +E(n)) (g-q) + *3—-(q-q) (p.1)
1 g cll T2
cl(g,8) & a(8) + (C +a(6)) (g-q) + =" (g-q) (A.2)
: 1 5 11 ¢ - 11
where B = EBl(q,n), (i —ECl(q,e) 3 B —EBll(q,n) -Bll(q) o IC =
Ecll(q.ﬁ) = Cll(q) . b(n) and a(B) respectively estimate the effect of the
random variables on total benefits and total costs at q so E(a(8)) = EC(a,b)

and E(b(n)) = EB(g,n) ; B(n) and a(6) respectively estimate the effect of

the random variables on marginal benefits and marginal costs at ¢ , and
Ex(9) = EB(n) = 0 and E(a(6) * B(n))= 0O by assumption.
In addition, we need Weitzman's approximation of the variance of marginal

costs

2

o® = E(c,(a,0) - E(c,(@,8)° = E@®)) .
Now consider a PIF of the form
*

T (d,c) = EB(q,n) = c *+ k =G(lg) —¢c . (A.3)

Profit maximization by the producer implies that
* e ! * *

The juadratic approximation of this equality around q is

’ ~ - * ~
¢t o+ ate) + et = ¢+ etlig-a (A.5)




24,

i - B 11 = b " 5
where G = EGl(q) = EBl(q,n) and 6" - EGll(q) = EBll\q,n) = Bll(q)

Now by Weitzman's analysis, it is true that for the prescribed quantity gq ,

ECl(q,e) = EBl(q,n) which allows us to rewrite (A.5) as
* - e
a(e) + ctlig®-q) = ¢t q"-q (a.6)

and to directly solve for the approximation of the reaction function as

ARSI - {1 (A.7)
g q EIT:;II‘- .

Substituting this expression into Weitzman's approximation of the cost function

yields

A~ a(8) A

*
Clq ,8) 2 a(8) + (Cl+a(6))(q--EI*—IT -q)
C =G
11 . ;
C a(8) 2
+ e 24T ¢ | (A.8)
R S 0 ¢

2
Taking expected values and using the definitions of E(a(6)) and o we derive

o2 . . o2
Al 2 (ctlglly?

EC(q ,8) = E(a(8)) - (A.9)

Next substituting (A.7) into the quadratic approximation of the benefit function

to yield
5 K L
B(a ,n) = b(n) + (87+8(n) (a- oAt ~a)
C =G
EL v e
+ —B-—( 2L9) -q)2 . (a.10)

2 2 i1
C =G

Using the assumption that 6 and n are independent, the expected value of this

expression is computed as

BJ..LOZ
?(Cll—Gll

EB(q.,n) = E(b(n)) + (A.11)

)




We now substitute (A.9) and (A.1ll1l) into equation (18) for A to derive

e B11_.C11 02 k 32 i
2 (Cll~Gll)2 Cll_Gll
Finally, substituting Bll for G11 and recalling that Bll = B,,(g) and

11 g : ; -
e = Cll(1) by assumption, we derive expression (20) in the text.

II. Interpretation of the A Coefficient.

"A" can be interpreted as the expected deadweight loss caused by using a
juantity directive instead of a PIF. (A.7), the approximation of the reaction

function, can be used to solve for the difference between the quantity target

& *
q and g , the quantity chosen by the producer maximizing the PIF. For
any a(f) , the deadweight loss involved can be computed as the triangle

RS i () 1 | ; ; X . ) 4
(1) /2(C” -G~ ) . Taking the expectation of this expression and substituting

¥ ¢ .
Bl for G . then yields exprz2ssion (20) for "A"

[11. The derivation of "A_" , the coefficient of comparative advantage cf the
& ) : .
second best PIF's over quantities in the case of two producers.

Begin with the guadratic approximation of the benefit function taken around

the prescribed quantities.
B(q. ,q.,0) = bin} + (B +B, (n)) (g, =q.) + (B°+E, (n)) lq,~q.)
e T i 1 979 2 VL N™

+ 1/2a%B (A.13)

L

2 2 2t £ T ;
where B~ = th(ql,qz,n) e B 1 EBl(ql,q2,n) ; Bl(n) and Bz(n) represent

the effect of random variable n on mérginal benefits of good 1 and 2 at

49, and d, respectively. b(n) estimates the effect of random variable n
on total benefits at a and q, and E(b(n)) = EB(ql.q2,n) ; and

1 - 12 2

2 & el E T
= - - - \ - "
d°B (ql ql) B + z(ql ql) (q2 1, B + (q2 qz) B :
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' = E3. . (q.3q,,n) = B, (q,,q,)
8 R e 1199
2?2 = EB._(q.,9./0) = B,.(q, 9
= Elgg iy 90 2219 /9))
and 12 w » ik
B = EBlz (ql'q2:n) - Blz(ql'qz) .
Taking the derivative of (A.13) with respect to q,  we obtain
1 i 11 " 12
Bl =B + Bl(n) + (ql—ql)B + (q2~q2)B é (A.14)

*
From the one good analysis we know that the reaction function for q, evaluated

at the optimal quantity targets 9 and q, is

Ee, a(8,)
Pl (A.15)
2" % " 3 i1l

where a(82) represents the effect of 62 on producer 2's marginal costs at

112 o LR AR
= Ecu (qzlez) - Cn(qzl

equals the nonstochastic slope of producer 2's marginal cost curve at q, i

112 IR S S i o
and G = EGll(ql'qz) = EBll(ql,qz,n) = Bll(ql'qZ) equals the nonstochastic

9 + 9 and E(G(BZ)) = 0 by assumption; C

-

slope of the marginal benefit curve at ql, a, with respect to output of producer 2.

Substituting (A.15) into (A.14) and taking expectations yields:

1 o L ) “(92)312
EB, = B + (q,~q,)B ~ + =——m———m—— . (A.16)
. 1™ d12_ 112

Recalling that E(a(ez)) = 0 by the construction of the quadratic approximation,

we can integrate out 62 to obtain

1 gegce b |
E (EBl) =B + (ql-ql)s . (A.17)

62 n

This allows us %o ignore the cross-partial term 812 and permits us to

structure a PIF by setting




e R
G, = E (EBl) = B + (q1 ql)B ’ (A.18)

In words, the approximation of the first derivative of the optimal PIF is

equal to the expected marginal benefit function of the center evaluated at the
nrescribed quantity of the other good.

Now to derive A2 , first define it as

* * 1 *‘9 )9 )
A2 E(B(ql(el),q2(92),n) -c (ql 1'%

= s
c?(a,(8,),6,)) - (Bla,a,m)
(A.19)

A 2"
€ (ql,el) (& (q2,62))
The own partial derivatives of this expression are the same as in the one good
case, so the only additional computation required is the expected value of the

cross partial term:

E( (ql-ql) (qz-qz)Bl2 . (£.20)

Substituting the reaction functions (A.15), taking expected values, and replacing

Glll by Bl1 and G112 by 822 one obtainsg
» g °52812
E((q,-q,) (g,-q,)B" ) = (A.21)
3 (M 2 2
(A _glly J112_.22,
where of2 = E(al(el) . u2(62)) . Adding this to the results that apply to the

"A" coefficient for the one good case (equation (20)), and using the definitions

of C111 ’ B11 ’ C112 and 822 , we obtain expression (39) in the text.
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Footnotes
i . e -
A rough estimate indicates that during the 1967-69 period, the Department
of Defense used some form of a performance incentives contract in projects
worth at least $27 billion. For more details on the use of PIF's in such

projects see DOD and NASA Guide, Incentive Contracting Guide, October 1969,

2
“The Trenton Times, Sunday, December 15, 1974, p. 16.

31\ function of the form B(q) assumes that there is no income effect in
the consumption of good q since the willingness to spend on q does not
depend on cost conditions. This assumption is implicit in Weitzman's analysis.

4 ’ ’ d ¥ R >

The notational convention used in this analysis is that a subscript of a
function indicates the derivative of the function with respect to the argument
of the function indicatad by the subscript. For example, Bl represents the
derivative of the benefit function with respect to its first (and only in this
case) argument ¢, whereas, Bll represents the second derivative of B with
respect to q.

3It is possible to solve directly for the optimal PIF by setting the

following problem for the center

* % ;
max E{B(q (n,0),n) - C(q (7,6),0)}
'[(q;“)

%
where q (m,0) is the reaction function relating the producer's choice of output
at t, to the PIF. However, a complicated variational calculus procedure is
needed to solve this maximization problem, and the method of deriving the

optimal PIT presented in the text is much simpler and straightforward.

6 . - .
For performance incentive functions, the conditions on B y and B,, and
11 22
i - T . 1
C‘] cin be replaced by the iess restrictive conditions Bll - (‘,]1 < 0 and
{ 2 :
Byy = € { < (. However, for comparison purpoces we retain the more restrictive

conditions throughout the analvsis.
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