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Let us consider the nonlinear sy2tem lIIIii~41 U L ~ 1~JL.~~LJ LI L~
(1) = f (z ,t,E) ~7

.48

of N nonlt~~a~ equations on some finite subinterval of t > 0 subject to

the InitIal ccndlt~ on

(2) z(0) = z0(E)

in the limit a~ the ~rnall positive parameter E + 0. Any acquaintance with

singular perturbations would lead one to expect that the unique solution

of this initial va]ue problem might converge as € -* 0 to a solution Z0
of the limiting equation

( 3 )  f (Z 0,t,0) = 0

away from any “boundary layer ” regions of nonuniform conver gen ce .. In the

singular situation tha t f
~

(Z o,t,0) is a singular matrix , this limiting

equation has an Infinite number of solutions , so the lImItIn~ equation (3)

Is not adequate for the purpose of’ determining the reduced problem satis—

fled by the limiting solution (assuming that such a limit exIsts). Tradi-

tional methods apply whenever is everywhere stable. The solution to
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(l)—(2) then convergc.~ to the unique solution of’ (3) away from the initial

poIr~t t = 0 (cf., e.c’~., O’r4alley (19714)). Indeed , the ~;olu tIon cm then

be uniformly ri~ yrnptotically represented as the  sum of a f u n c t i o n  of t ar .d
a decaying f u n c t i o n  of the s t r e t ched  va r iab le  T = t/E .

Many singular perturbation problems can be written In the  form ( l ) — ( 2 ) .
Indeed , partIal differential equations are often disguised as such ordinary

differential equations In appropriate Banach spaces (cf. Friedman (1969))

and boundary value problems for ordinary differential equations are often

conveniently studIed via shooting techniques (i.e., by using solutions of

auxil iary initial value problems ) (cf. Bernfeld and Lakshm~ karithari (197)4)).

Singular problems (i.e., those where f~ Is singular) oc cur throughout
the literature , though they do not seem to have been analyze d in a system-
atic fashion. We note that Fife (1972) studied problems “whose degenerate

forms have many solutions” . His work was motivated by the need to analyze

the dispersion of flow in small tubes (cf. Fife and Nicholes (1975)).

Likewise , Gordon (1975) considered the quasilinear problem (1) in a Banach

space where the matrix f
~
(z ,t ,0) = f

~
(0,t,0) had a one—dinensional null

space. His applications Include a nonlinear stability analysis of the con-

vection state in a Benard problem (cf., Gordon and Hoppensteadt (19 )).

Our interest was generated by studying singular arc problems in optimal

control (cf. O’Malley (1976)). The solution of these singular singular—

perturbation problems involves projections and a resulting reduction to

certain algebraic systems and lower dimensional systems of dIfferential

equations , both for the outer solution (asymptotically valid away from

regions of nonuniform convergence) and for the boundary layer corrections

(which allow nonuniform convergence). Such considerations are basic to our

general plan of attack and to the related approach of Butuzov and Vasil’eva
(1970) and Vasil’eva (1975).

We shall consider the initial value problem (1)—(2) under the primary

assumptions that the matrix

(
~~

) f
~
(z,t,0) E

has constant rank k, 0 < k M , that its null space is spanned by ~ k
linearly Independent elgenvectors , and that f~ has k stable eigenvalues

(counting multiplicities) for all z and t. Assuming sufficIent dif—
ferentiability of 1’ and asymptotic expansions for both I and z~ , we

shall attemp t to construct an asymptotic solution of the form

_ _ _ _ _  
_ _ _ _ _ _ _ _



p.-

(5 )  z(t,() = Z(t,€) + ri(t ,E)

where Z and 11 have asymptotic power series expansions in E and the

terms of IT all tend to zero as the stretched variable

(6)

tends to i n f i n I t y .  gince  Z ( t ,E )  provides the  a s y m p t o t i c  so lu t ion  for
t > 0, It is called the outer solution , while ll (i ,E) is called the

boundary layer correction since it is asymptotically negligible away from

the Initial region of nonuniform convergence. Simple examples show that

the form of solut ion (5) would differ if there were a deficiency of eigen—

vectors in the null space of (cf. Butuzov and Vasil’eva (1970)).

To proceed, it is helpful to realize that the matr ix f0~~
(z,t) car.

be put into its row—reduced echelon form by an orthogonal matrix E(z,t).

Thus, we have

(7) Ef0~ 
=

row—reduced with U being a k x M matrix ol’ rank k .  (Ever s ince Levin
(1957) , It has been common In the singular perturbations literature to use

block diagonalization In such situations . It seems more convenient , how-

ever, to instead reduce to triangular form . For purposes of efficient

computat ion , we note that it Is Important to use iterat ive procedures to

con’2ute E (cf. Golub (1965)). DefinIng

(8) A = (OIM k )E and B = (Ik o)E,

the matrix A(z ,t) annihilates and B(z,t) is its orthogonal

comp lement, I.e.,

( 9 )  Af0~ 
0, AB’ = 0, AA ’ =

BB’ ‘k and A ’A + B’B =

Such matrices are convenient since they allow us to represent any M vecto~
w In the form w z Mu + B’v and separately examine u Aw and v Bw .

(We note that Claseri et al. (1976) used such matrices to develop numerical

schemes for solving stiff differential equations.) It is Important to



realIze t h a t  our a~ u u mp t i o n s  on 10z I m p l y  t h a t  the  m a t r I x

(10) S = Bf B ’Oz

Is stable , hence nonsingular , because

1~f OZ B ’ Bf0~Aq
Ef0~

E’ =

0 0

has k elgenvalues w i th  nega t ive  real pa r t s .  The s t a b i l i t y  cond i t i on  (10)
will be especially critical in obtaining the boundary layer behavior

needed at t = 0.
We will  completely solve several large classes of problems , but the

original problem must be studied further . We shall show how the outer

solution and the boundary layer correction can be generally obtained , but

our matching procedure for determining Z(0,€) is not yet satisfactory .

The Outer Solut ion

Since the boundary layer correction It Is asymptotically negligible

for t > 0, the representation ( 5 )  Implies that the outer solution

(11) Z(t,E) ‘~~

ITIS

must asymptot ically satisfy the system ~~~~~ o
0

(12) = f(Z,t,€) ~ ~ f4 (Z,t)E~ ____

j= 0 .J 
~~Iy

Or ~~~~ (5 T’~~ AVA U.AIILI D ~~~~for t > 0. When E = 0, then , we have the reduced ~~~~~~~~~~~~~~~~~~~~~

(13) 10(Z0,t) 
= 0.

This fails to determine Z0 because f~~ is singular. However , ( 9 )  and
(13) imply that

(l~l) B(Z0,t)f0(A’(Z0,t)A (Z0,t)Z0 + B’ (Z0,t)B(Z0,t)Z0,t) = 0,

and since the Jacobian S with respect to BZ0 is nonsingular , we can

determine B(Z0,t)Z0 in terms of the many remaining variables. We shall

assume that the system (13) Is consistent . (An example where the reduced 



system Is inconsistent Is provided by ~z1 = + b , Ez2 = b2, b2 ~ 0.

Then, the solution Is
We shall obtain differential equations for Z0 and later terms Z,~

in a termwise fashion . RewritIng (12), we have

(15) = B’(Zo,t ) B ( Z o,t ) f o~
(Z o,t ) ( Z  — z0)

+ ( f ( Z ,t,t) — f
o~

(Z o,t ) ( Z  —

since f0~ 
= B’Bf 0~ 

by ( 9 ) .  DIfferentiatinG (12) with respect to t ,

however, provides the Lagrar.gian derivative

+ ft(z,t,
E)  = E Z .

Thus, multiplication by 13 ImplIes that

(16) B(Zo,t)fo~
(Zo,t)~ 

= _B (Zo,t)ft(Z,t,E) + B(Zo,t)(fo~
(Zo,t )

— f
~
(Z ,t,

~
))
~ 

+ EB(Z0,t)Z.

Using (15), (16), and the invertibility of 5, then , implies that

(17) 
~
B(Zo,t ) f o~

(Zo,t)(Z — Z0)

= S
~~
(Zo,t)B(Zo,t)(_ft(Z ,t,E) + ~~ + (1o~

(zo,t) —

— ~f02(Z0j)(f(Z,t,E) — fo~
(Zo,t)(Z — z0))}.

Finally substituting into (15), we have

(18) A(z 0, t)[_ f t(Z ,t,€ )  + €Z + (f’ o~
(Z o, t )  - f

~~
(Z , t ,E ) )

~~
]

+ ~8(Z0,t)[f(Z,t,€ ) — f o~~
(Z o, t ) ( Z  — Z0)]

where



A(z01 t) = 13’ (Z 0, t ) s~~~( Z 0, t ) i ~( Z 0, t )

(19) and
8(Z0,t) = I — A ( Z 0, t ) f 0~

(Z 0, t ) .

We note that the projection 8 = 8~ satisfies SB’ = 0 and BIOZB 
= 0.

When E = 0, then, we find that Z0 must satisfy the nonlinear

equation

(20 )  ~0 ( t )  = — A ( Z o, t ) f ot ( Z o, t )  + 8(z 0, t ) f 1(z 0, t ) .

Likewise, the coefficient of E In (18 ) implies that Z1 must satisfy

the nonlinear equat ion

(21) ~1(t) = A (Zo,t)[ fot~
(Zo,t)Zi — nit (zo,t) + zo

— ‘Ozz~~ O~
t
~~ l + fi~

(Zo,t))Zo]

+ 8(Zo,t)[.~
.f
o~~

(Zo,t)Z~ 
+ fi~

(Zo,t)Zi + f2(Z0, t)]

where the quadratic term must be Interpreted appropriately . Succeeding

terms Z will satisfy linear equations obtained as the coefficient of
E in (18). UsIng the. resulting differential equations (20), (21), etc.,

it follows that Z0, Z1, ... will be uniquely obtained on some sublnterva

of t > 0 once their Initial values are specified . These initial values
by (12), must necessarily satisfy

(22) E~ (O,€ ) = f(Z(0,E),0,E).

Since the prescribed initial value z°(0) will generally not satisfy (22)

at € = 0, the need for an initial boundary layer is obvious .

Expanding (22) and introducing ‘M = A ’ A  + B’B, we have

(23) f0(Z
0(0),

0) = 0

and

(211 ) 80(Z(0,€ )  — z0(o)) — S~~B0rfg~A 0A~ (Z(0 ,€ ) — z o ( o ) )

+ (f(Z(0,E),O ,E) — f
~~

( Z (0 ,E )  — Z0(0)) —



where

(2 5)  (B 0, So, f~~
,A o ) = (i ,S,fo~,

A )
~ (z (0)

Equating coefficients of E~ , j > 0, in (21!) implies that

B0Z~ (0) = ~~~~~~~~~~~~~~~~~~ + aj 1

where Is kno~:n in terms of the initial values Z~ (0) of earlier

terms. Thus , (9) and (19) imply that

(26) Z~(0) = 80A~A0Z~ (0) + B
~
cL
j 1~ 

j > 0,

where 8
~ 

= 5(Z0(0),0), so only the initial values

(27) 80A~A 0Z~ (O)

need be specified for each j > 0. The equation (23) for Z0(O) also re-

maIns. (Equation (11!) ImplIes that B0Z0(0) can be uniquely obtained in

terms of S0, B0, and A~A0Z0(0), but the relationship will generally

be much more complicated than the linear relationship (26).)

The Boun dary Layer Correct ion and Natch in~
Since the outer solution Z satisfies (12), (5) implies that the

boundary layer correction 11(t ,E) must be a decaying solution of the

boundary layer equation

(28) = f ( Z + fl ,Et ,E) — f(Z,ET ,E).

Further , since TI -
~~ 0 as t + 

~~ , we must have

(29) ll (t,E )  = — f E f ( Z ( E s ,~~) + iI ( s ,€ ) , Es ,E )  — f ( Z ( E s ,€ ) , Es ,Gf ld s .

Before rec onsiderIng the general problem , we consider some specIal  cases .

a. The guasilinear problem

We ’ll consider the quasiliniear problem with

(30) f0(z ,t) F0(t)z + G0(t)

(cf., also , Butuzov and Vasil’eva (1970)). Here , f~~, E, A, B, S,



A , and B are all independent of ~ , so

(31) Z( t ,€ )  = A ’ ( t ) A ( t ) Z ( t ,E) + B’(t)13(t)Z(t,€ )

(Cf. (9), noting that A and B are now completely specified). Further ,
f0(Z 0,t) = 0 implies that

(32) B(t)Z0(t) = -S~~(t)[B(t)F 0(t)A’(t)A (t)Z0(t) + G0(t)J

and there remains a nonl inear  in It i a l  value problem for A(t)Z0(t) (cf.

(31) and (20)). For higher order terms Z,~, we ’ll now obtain BZ~ as a
linear function of AZj and a linear differential equation for AZ~ will
remain with nonhomogeneous terms being functions of the preceding Z1’s.

Here, the boundary layer correction IT will satisfy

(33) = F
0(ET)1I + {f(Z + fl ,Ex ,E) — f(Z,ET ,E) — f0(Z + TI ,Et)

+ f0(Z,€r )}.

Thus, when E = 0, (9) implies that

dl!
(31!) -

~~~~~~~ = F
0(0)(A’ (o)A(O) + B’(0)B(0))110

and A (O)F 0(0) = A (0)fo~
(0,0) = 0 implies that

(35) A(O)11
0(t) = 0

since TI0 
-
~~ 0 as t + ~ . From (314), it follows that

~~(B(o)rr 0) = S(0)B(o)n0,

hence

0 0(t) = e5(0)TB(0)fl0 ( O )

and , by ( 5 ) ,  ( 9 ) ,  and (3 5) ,

(36) 110 (t )  B? (0)eS($~~
TB (0)(Z O ( 0) — Z0(0)).



We note that ( 3 5 )  Imp1Ie~ that

(37) A( 0)Z 0( 0 )  = A ( 0 ) z 0( 0) ,

so we can now integrate the initial value problem for AZ0. Then , (3 2 )
will provide BZ 0 which by (31) and ( 3 6 )  Imply the leading terms Z0
and It 0 of both the outer solution and the boundary layer correction .

We note , in par t i cu la r , that  our formulas  imp ly tha t

(38) Z0
(0)  = B(0)A’(0)A(0)z0(0) — B’(0)S~~~(0)G0

( 0 ) .

Higher order terms follow analogously . Thus, we have

dri
-

~~~~~~~~ 

= F0(0)11 1 +

where -y
1

( t )  is known and exponentially decaying . Clearly, A(0)F0(0) = 0
implies that

(39) A (0)111(t) A (O)J 11(s)ds

and this provides the in i t ia l  value A ( 0 ) Z 1( 0)  = A ( 0 ) ( z 01 
— 111( 0 ) )  nee ded

to completely de termine  A(t)Z 1(t) and Z1( t ) .  Cont inuing , we have

( 1 4 0 )  B(0 ) 111( t )  = e5(
~~
)tB(0)(z01 — Z 1( 0 ) )

+ 
J

T
e

0 ) _ ~~~B ( o ) [ p o ( o ) A ~~( o ) A ( o ) J y l (r ) dr  + y
1(s)]ds

and

(141) 111( t )  = A’(0)A(0)111(t) + B’(0)B(0)r11(T)

Is completely specified. In this way , all terms of’ the asymptotic solution
to the quasilir.ear problem (30) are completely and uniquely determined.

b. The classic probicm

A much—studied nonlinear initial value problem

L . _____________________________________



v(x ,y,t ,E), y(0,~ ) = y°(€)
(142)

= u(x ,y,t ,E), x(0,€ ) =

can be analyzed under the principal assumption that the reduced problem

0 = v0(x,y,t)

(143)
u0(x,y,t), x(0). = x

0(0)

has a unique solution (X0(t), Y0(t)) along which v0 (X0(t), Y0(t),t)
< 0 for t > 0 ( c f . ,  e.g., O’Malley (19714)). For simplicit y ,  we ’ll as-

sume that x and y are scalars and that

(414) v0~ (x 3~~3t) < 0

everywhere . The problem (142) can be put into the form (l)— (2) by intro-

ducing z = 
(.~

), so that we have

v(x ,y,t,~ )
(115) €~ = f(z,t,E )  , z(0,E) = z0(E).

E u ( x ,y,t,E)

The limiting system f(Z0,t,0) = 0 reduces to

(46) v0(X0,Y0,t) = 0

and the Jacobian matrix

v0~ v0~\
(117) f’o~ = )

0 0

has rank one under hypothesis (1414). (Here, there cannot be a deficiency

of eigenvectors , since the null space of f~~ and Its transpose are both

one—dimensional.)
Because f0~ Is already row—reduced , we can take E = (

~ ~
} ,

A — (0 1), and B = (1 0), so that y — Bz and x = Az. The reduced

problem (146) can be solved for = $(X0,t) since v0~ is nonisingular ,

- - -



but (146) fal is to deterin i~~. X 0. TI~~ crItical a~ surrpt ion (1414 ) correspor :dz

to the earlier hypothe sis (10), s~ nco .~~ 
= v0~, < 0.

F1or this ~~~~~~ the leading term Z0 of the outer solution satis—

• fles the equat ions

) _v
0~

(v
0~ + vo~

uo), X0 = u0

(a special!zat.!on of (20)). Indeed , we can rewrite this system as

~~-v0(X 0,Y0,t) = 0 with = u0, so the initial condition v0(X 0( 0) ,
Y
0( 0 ) , 0) = 0 reduces the system to the familiar reduced problem ( 14 3)

provided X0(O) 
= x0(0).

If we further set the boundary layer correction IT = ~~~~~~ the lInit~ r r

form of the boun dar y layer system ( 28) redu ces to the pair of equa tio n s

d~0 d~0(149) = V0(X 0( 0 )  + ~0,Y0( 0 )  + fo,0), ~~~ 
= 0.

Moreover , the decay required as t -
~
. Imp lies that  ~~~~( i)  0, so we

must have X0(0) 
= x0(0) and the limitine outer solution (X 0(t), Y0(t))

Is uniquely specified. Thus, there remains the problem

dfl0 0 a 0 o
(50) = v0(x (O),~~(x (0),O) + q 0,0) ,  r~~(0)  y (0) — ~ (x ( 0) , 0).

The Dini-Hukahara theorem (cf. TUlle (1969)) and the negativity of’ v0~~,

Imply the existence of’ a unique decaying solution n 0
( t ) .  Thus , the

lead inr bcondary layer correctIon term is completely determined.

SucceedIng terms follow •~ a straIghtforward manner.

We note that a considerably more complicated vector problem would

result If Voy had zero eigenvalues.

c. The original problem

For the problem (l)—(2), the initial value B0Z0
(0) of the B0

portion of the leading term of the outer solution is restricted by (114).

It restricts the leading boundary layer term It0 since it must satlsf’y

B0fl0(0) = B0(z
0(0) — Z0(0)) (cf. (5)). Alternat ively the in it Ial  value

A Z (0) is free as far as the outer solution is concerned , thou gh It woul d
be determined through A 0fl0(0) = A 0(z (0) 

— Z0(0)).

Multiplying (28) by B~ and Integrating from 0 to t implies that

~ o ~ S0(t—s )
(51) B6B0II(t ,€ ) = B~e 

0 (z (€) — Z(0,E)) + B~ I e B0JO



[f(Z(Ls ,(.) + A~t~~H(~~,E) +

— f ( Z ( ,~~) ,~~s ,(~) —

whIle (29) implies that

(52) A~A0fl(i ,~ ) = ~~~~~~~~~~~~~~~~ + ~~A 0fl(r,
€ )  +

—

Putting these together , we get the new integral equation

(53) ll (t,E) = JT°(t) + F ( r i )

where

0 50tIT (T) = B~e B0(z (
~

) — Z ( 0 ,E ) )

and

~T S0(t— s)

~(fl) = B~5J e B0[ f ( Z ( € s ,€ )  + l l ( s ,E ) , Es ,E )  — f(Z(~ s,€ ),~ s,E)0

- 

~
B
~~o

n(5 ,
~
)]d3 - A

~
A
01 

[f(Z(Er ,~~) + fl (r,E),€r ,E)

— f(Z(Er,~~),~ r,~~)]dr.

We recal l that for any Init~ a1 value Z ( 0 ,€ ) ,  cons istent w it h ( 12) ,
Z (t ,E) is completely determined. Likewise , the exponential decay of
S 

0
t

e Implies tha t for  any ar bit rary in it ial vector B0~j(0 ,E) a k— di—

rnensional manifold of exponentially decaying solutions of (53) is ob-
tainable by successive ap~i:y !n~iticns. We simply define

fl (i+ 1)(1~~~) = fl 0( t )  + F(n~~~ ), j > 0

(54) and

fl(t ,~~) = iim f l ~~~~(t ,~~)

(cf. Erd~ lyi (19614)). As for the quasilinear and classic problems , ‘::e

are prescribing the vector B
~Bd1 

(0,E) (of rank < k) and letting the



vec tor A~ A 0
t~(Q ,L) (of imk < — 

~‘) be determined by the exponential y

decayin - solution constrHctel (cf. ~51) and (52)). Vasil ‘eva (:975)

expresses  this relationsl ]p by wr i t In f ~ an exp re s sion  l ike  A~ A 0TI ( 0 , E )
= ~(B~I30fl (0,t),Z(0,~~)). Thi s actually relates initial values of the

outer solut!on since it Implies that

(55) A~ A0
( z 0(~~) - Z ( 0 ,~~))  = ~ (B~D0(~~

0( E )  - Z ( 0,€ ) ) ,  Z(0,E)).

It is Instructive to further consider the asymptotic expansion

(56) iT(t ,~~) ~ I II (t)E~j=0

for the un’inry layer correction . Clearly, lb must  s a ti s f y  the

non 1~ near s:;ste:~
dli

(57) = f0( Z 0( 0 )  + Il o , 0)

an~i wo hav .~

0 ~ S (t—s)
(58) :~~~~( T )  = II ( i )  + f B ~e 

0 B
0

[f 0(Z 0(0) + 110
( s ) , 0)

— 

~~~
Bofo(s)1d5

- A~A 0J 
f0( Z 0( O )  + 110(r),0)dr.

We no te , in particular , that we ’ll generally have A 0T1 0 ( T )  ~
‘ 0, unlike

for the qua silinear or c lass ic pro b lems where A 0f0~ 
= 0. Moreover , ~~

will satisfy a linear system

= 
~
‘o~

(zo(0) + TI o, 0) II i +

wher e

= 1~~. (- ~-(f( + ll0,~~~t ,~~~)  — f(Z0(0) + ~~ ,0,0) - f(Z ,~ i ,E)}.
0 ~~~~~

Since the coefficient matrix f’
~~ 

has 1< stable elgenvalues , we

can anticipate a k—dImensional manifold of initIal values rt i ( 0 )  cor-
responding to decaying solutions as T ~~~ . This allows us to prescribe

B~I30fl1(0) while the remaining components A~A 0fl1(O) of’ the i ni t i a l



vector becone  spec ! f l~~i .  (We reca l l  that  Vasil’eva (1975) seems to re-
la te these  i n i t ia l  va lues  in terms o ’ t h e  M — k e igenvec to rs  s [ an n l  nr
the n u l l  spa ce  of ft .) Analogous consideratIons apply for hi~ her ori~ r

terms.

A f u r t h e r  problem r ema ins ;  name ly ,  the in i t ia l  value Z ( 0 ,€ )  of
the outer solution is still imbedded in the nonlinear equations for the

outer solution and for the boundary layer correction (cf. (12) and (114)

with t = 0 and (55)). We shall , for the time being, simply assume th~ t

the resulting~ nonlinear equations have a unio .e solution Z(0,€ ) as t h e y
do in the specIal cases already considered (of. also Vasil ’eva (1975)).

More critically , it .!s important to develop numerical methods for stiff

systems based on th i s  analysis. Such work is in progress.
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