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Introduction

Let us consider the nonlinear system

(1) €z = £(z,t,€)

of M nonligear equations on some finite subinterval of t > 0 subject to
the 1nitlal condition

(2) 2(0) = z°(€)

in the 1imit as the small positive parameter € + 0. Any acquaintance with
singular perturbations would lead one to expect that the unique solution

of this initial value problem might converge as € -+ 0 to a solution ZO
of the limiting equation

(3) £(2:50) = 0

away from any "boundary layer" regions of nonuniform convergence. In the
singular situatlon that fz(Zo,t,O) is a singular matrix, this limiting
equation has an infinite number of solutions, sc the limiting equation (3)
is not adequate for the purpose of determining the reduced problem satis-
fied by the limiting solution (assuming that such a 1imit exists). Tradi-
tional methods apply whenever fz is everywhere stable. The solution to
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(1)-(2) then converges to the unique solutlon of (3) away from the initial
point t = 0 (ef., e.g., O'Malley (1974)). 1Indeed, the solution can then
be uniformly asymptotically represented as the sum of a function of t and
a decaying function of the stretched variable 1 = t/€.

Many singular perturbation problems can be written in the form (1)-(2).
Indeed, partial differential equations are often disguised as such ordinary
differential equations in appropriate Banach spaces (cf. Friedman (1969))
and boundary value problems for ordinary differential equations are often
conveniently studied via shooting techniques (i.e., by using solutions of
auxiliary initial value protlems) (cf. Bernfeld and Lakshmikantham (1974k)).
Singular problems (i.e., those where fz is singular) occur throughout
the literature, though they do not seem to have been analyzed in a system-
atic fashion. We note that Fife (1972) studied problems "whose degcnerate
forms have many solutions". His work was motivated by the need to analyze
the dispersion of flow in small tubes (cf. Fife and Nicholes (1975)).
Likewise, Gordon (1975) considered the quasilinear problem (1) in a Banach
space where the matrix fz(z,t,O) = fz(O,t,O) had a one-~dimensional null
space. His applications include a nonlinear stability analysis of the con-
vection state in a Benard problem (cf., Gordon and Hoppensteadt (19 )).
Our interest was generated by studying singular arc problems in optimal
control (cf. O'Malley (1976)). The solution of these singular singular-
perturbation problems involves projections and a resulting reduction to
certain algebraic systems and lower dimensional systems of differential
equations, both for the outer solution (asymptotically valid away from
regions of nonuniform convergence) and for the boundary layer corrections
(which allow nonuniform convergence). Such considerations are basic to our
general plan of attack and to the related approach of Butuzov and Vasil'eva
(1970) and Vasil'eva (1975).

We shall consider the initial value problem (1)-(2) under the primary
assumptions that the matrix

() f,(z,t,0) = foz(z,t)

has constant rank k, 0 < k < M, that 1its null space 1s spanned by M -« k
linearly independent elgenvectors, and that fz has k stable eigenvalues
(counting multiplicities) for all z and t. Assuming sufficient dif-
ferentiability of f and asymptotic expansions for both f and zo, we

shall attempt to construct an asymptotic solution of the form




(5) z(t,€) = 2(t,€) + N(1,€)

where Z and I have asymptotic power series expansions in € and the
terms of NI all tend to zero as the stretched variable

(6) T = /€

tends to infinity. Since Z(t,€) provides the asymptotic solution for

t > 0, 1t is called the outer solution, while IN(t,€) 1s called the
boundary layer correction since it is asymptotically negligible away from
the initial region of nonuniform convergence. Simple examples show that
the form of solution (5) would differ if there were a deficiency of eigen-
0z (cf. Butuzov and Vasil'eva (1970)).

To proceed, it is helpful to realize that the matrix fOZ(z,t) can

vectors in the null space of f

be put into its row-reduced echelon form by an orthogonal matrix E(z,t).
Thus, we have '

_|u
(7) By ™ [0]

row-reduced with U being a k x M matrix of rank k. (Ever since Levin
(1957), it has been common in the singular perturbations literature to use
block diagonalization in such situatlons. It seems more convenient, how-
ever, to instead reduce to triangular form. For purposes of efficient
computation, we note that it is important to use iterative procedures to
compute E (ef. Golub (1965)). Defining

(8) A= (QIy J)E and B = (I, OE,

the matrix A(z,t) annihilates f and B(z,t) 1s its orthogonal

complement, i.e.,

0z

(9) ArOz = 0, AB' =0, AA' =]
BB' = Ik and A'A + B'B =1

Such matrices are convenlient since they allow us to represent any M vecto:
w 4in the form w = A'u + B'v and separately examine u = Aw and v = Bw.
(We note that Clasen et al. (1976) used such matrices to develop numerical
schemes for solving stiff differential equations.) It is important to




realize that our assumptions on fOz imply that the matrix

(10) S = Bf B!
0z

is stable, hence nonsingular, because

BfOZB' BfOZA’

! =
Ef ZE

0
0 0

has k eigenvalues with negative real parts. The stability condition (10)
will be especially critical in obtaining the boundary layer behavior
needed at t = 0.

We will completely solve several large classes of problems, but the
original problem must be studied further. We shall show how the outer
solution and the boundary layer correction can be generally obtained, but
our matching procedure for determining Z(0,€) 1is not yet satisfactory.

The OQuter Solution
Since the boundary layer correction I 1s asymptotically negligible
for t > 0, the representation (5) implies that the outer solution

(-]
J w
(11) 2(t,€) v [ Z5(t)€ ACCESSION for
3=0 = |
ms White Section q
must asymptotically satisfy the system | 0% Butl Section [
| bomcen o
3 JUSUFIGATION..........
(12) ez - f(Z,t,e) " z fJ(Z,t)eJ ...............
J=0 Iy

OISTRIGUTION, AVAILABILITY Go0e8
for t > 0. When € = 0, then, we have the reduced system i uiw vl

A ‘ >

This falls to determine ZO because foz is singular. However, (9) and
(13) imply that

(13) £0(Zgst) = 0,

(14) B(Z,t)F(A" (Z4,8)A(20,8)20 + B'(Z4,t)B(Z4,t)24,t) = O,

and since the Jacoblan S with respect to BZ0 is nonsingular, we can
determine B(Zo,t)z0 in terms of the many remaining variables. We shall
assume that the system (13) 1s consistent. (An example where the reduced



system 1s inconsistent 1s provided by 'gél = -z, + b, €22 = by, by, # 0,
Then, the solution 15 0(Z).)
We shall obtaln differential equations for Z0 and later terms ZJ
in a termwise fashion. Rewriting (12), we have
= ' —
(15) €2 = B'(Z,t)B(Z,t)f,(2,,8)(Z - Z()

+ (I‘(Z,t,E) 55 roz(zost)(z = zo))’

since fOz = B‘BrOZ by (9). Differentiating (12) with respect to t,

however, provides the Lagrangian derivative
fz(z,t,E)Z + £,.(2,t,€) = €2,
Thus, multiplicaticn by B 1implies that
(16) B(Zo,t)fOZ(Zo,t)Z = -B(Zo,t)ft(z,t,G) + B(Zo,t)(fOZ(Zo,t)
- rz(z,t,e))z + €B(Z,t)2.

Using (15), (16), and the invertibility of S, then, implies that

1

= SN2, 8)B(24, ) (£, (2,,€) + €2 + (£, (Zg,t) = £ (Z,8,€))%

= &0, (ZE) (£(Z,8,€) = £ (24,8)(2Z = 2D}
Finally substituting into (15), we have
(18) b= A2y, t)[-T(2,8,€) + €2 + (£ (Z,8) - £,(2,t,€))Z)

1
+ €B(Zogt)[f(zst)e) S fOZ(ZO’t)(z P Zo)]

where




ct
~
I

= ] -1 y
B (Zo,t)S (ZO,L)B(ZO,t)
(19) and
B(Zo’t) L I » A(zo,t)fOZ(Zo,t)-

We note that the projection B = 82 satisfies BB' = 0 and BfOZB = 0.
When € = 0, then we find that Z0 must satisfy the nonlinear
equation

(20) 2(t) = - A(2,8)80,(Zgst) + B(Zg,t)1,(24,t).

Likewise, the coefficient of € 1in (18) implies that Z, must satisfy
the nonlinear equation

(21) Zl(t) = A(Zo3t)[-f0tz(Zo’t)zl s flt(ZO’t) + ZO

- (f (Zo,t)Z1 + flz(Zo,t))Zo]

0zz

1 2
+ B(Zg,t)[500,, (30,802 + £,(20,t)2) + £,(Z,t)]

where the quadratic term must be interpreted appropriately. Succeeding
terms ZJ will satisfy linear equations obtalned as the coefficient of

eJ in (18). Using the resulting differential equations (20), (21), etc.,

it follows that Zo, Zl, «v. wWilll be uniquely obtained on some subinterval
of t > 0 once their initial values are specified. These inltial values

by (12), must necessarily satisfy

(22) €2(0,€) = r(2(0,€)0,€).

Since the prescribed initial value zO(O) will generally not satisfy (22)
at € = 0, the need for an initial boundary layer 1is obvious.
Expanding (22) and introducing IM = A'A + B'B, we have

(23) £4(24(0),0) = 0
and
-1 0 ' ”
(24) BO(Z(O,G) - 20(0)) = - So,Bo[foonAo(Z(O,E) - 90(0))

+ (£(2(0,€),0,€) = £3 (2(0,€) = 2,(0)) - €2(0,€)]




vhere

0 &
(25) (BO’SO’rOZ’AO) o (B’s’fOﬂA)!(ZO(O)’O).

Equating coefficlents of €, J > 0, 1in (24) implies that

s -1
BOZ (0) = =S_“B.f. A Aéz

0
0 2ofozfo {0} + o

J

J J-1

where ay_1 is known in terms of the initial values zz(o) of earlier
terms. Thus, (9) and (19) imply that

(26) Z,(0) = BoAAyZ;(0) + Bhay 4, 3 > O,
where BO = B(ZO(O),O), so only the initial values
(27) BOAéAOZJ(O)

need be specified for each Jj > 0. The equation (23) for ZO(O) also re-
mains. (Equation (14) implies that BOZO(O) can be uniquely obtained 1n
terms of SO’ BO’ and AéAOZO(O)’ but the relationship will generally
be much more complicated than the linear relationship (26).)

The Boundary Layer Correction and Matching
Since the outer solution 2 satisfies (12), (5) implies that the
boundary layer correction T(t,€) must be a decaying solution of the

boundary layer equation

(28) T - £(z + N,€1,€) - £(2,€1,€).

Further, since NN + 0 as 1 + «, we must have

(-]

(29) H(Tae) e ‘I [f(z(es,é) + H(S,E),ES,E) S f(Z(€S,E),ES,e)]dS.
1

Before reconsidering the general problem, we consider scme special cases,

a. The quasilinear problem

We'll consider the quasilinear problem with
(30) fo(z,t) = Folt)z + Gy(t)

(ef., also, Butuzov and Vasil'eva (1970)). Here, f, , E, A, B, 3,




A, and B are all independent of =z, so
(31) Z(t,€) = A'(t)A(L)Z(t,€) + B'(t)B(t)Z(t,€)

(ef. (9), noting that A and B are now completely specified). Further,
£,(25:t) = 0 implies that

(32) B(£)Zy(t) = -S™H(6)[B(L)F (£)AT(£)A(E)ZG(E) + Gy(t)]

and there remains a nonlinear initial value broblem for A(t)zo(t) (cf,
(31) and (20)). For higher order terms Z‘j we'll now obtain BZJ as a

b

linear function of AZ‘j and a linear differential equation for AZJ will
remain with nonhomogeneous terms being functions of the preceding Zz's.
Here, the boundary layer correction NI will satisfy

(33) Q= FLETIN + (£(Z + M,€1,€) - £(2,€T,€) - £(Z + T,€1)
+ fO(Z,ET)}.

Thus, when € = 0, (9) implies that

an

(34) S = F(0) (A" (0)A(0) + B'(0)B(0))M

and A(0)F,(0) = A(O)rOZ(o,O) = 0 implies that

(35) A(O)HO(T) =0

since no + 0 as T+ o, From (34), it follows that
d
E?(B(O)HO) = S(O)B(O)Ho,

hence

S(0)t

B(O)N, (1) = e B(0)n,(0)

and, by (5), (9), and (35),

S(0)t

(36) o) = B'(0)e> P TB(0)z%0) - z(0)).




We note that (35) implies that
(37) A(0)2,(0) = A(0)z°(0),

so we can now lntegrate the initial value problem for AZO. Then, (32)
will provide BZO which by (31) and (36) imply the leading terms ZO
and Ho of both the outer soluticn and the boundary layer correction.
We note, 1in particular, that our formulas imply that

(38) 2,(0) = B(0)A'(0)A(0)2°(0) - B'(o)s'l(o)co(o).

Higher order terms follow analogously. Thus, we have

an,
T = FolOdmy + v, (1)

where Yl(T) is known and exponentially decaying. Clearly, A(O)FO(O) =0
Implies that

(-]

(39) AT (1) = A0 v (s)as

T

and this provides the initial value A(O)Zl(O) = A(O)(zol - Hl(O)) needed
to completely determine A(t)Zl(t) and Zl(t). Continulng, we have

S(0)t

(40) B(O)I, (1) = "9 B(0) (20, - 2,(0))

T 8(0)(x-s) \ %
+ Ioe B(0) [Fy(0)A (O)A(O)JsYl(r)dr by (s)ds

and
(41) My(r) = A'(0)A(0)N, (1) + B'(O)B(O)Hl(r)

is completely specified. 1In this way, all terms of the asymptotic solution
to the quasilinear problem (30) are completely and uniquely determined.

b. The classic problem
A much-studied nonlinear initial value problem




eg% = v(x,y,t,€), y(0,6) = y°(€)
(42)
g%(}_ = U(X>y:t:€)’ X(O,e) ¥ xo(e)

can be analyzed under the principal assumption that the reduced problem

0 = vyx,y,t)

(43)

X = uy(x,y,t), x(0) = x%(0)
has a unique solution (Xo(t), Yo(t)) along which voy(XO(t), Yo(t),t)
<0 for t >0 (cf., e.g., O'Malley (1974)). For simplicity, we'll as-
sume that x and y are scalars and that

(44) voy(x,y,t) ¢ 0

everywhere. The problem (42) can be put into the form (1)-(2) by intro-
ducing . 2z = (1), so that we have

v(x,y,t,€)
(45) €2 = £(z,t,€) = 1, z00,6) = 2%,
. €u(x,y,t,€)

The limiting system f(Zo,t,O) = 0 reduces to
(46) vo(Xo,Yo,t) =0

and the Jacobian matrix
Yoy Vox
(47) fog ®

has rank one under hypothesis (44). (Here, there cannot be a deficiency
of eigenvectors, since the null space of fOz and its transpose are both
one-dimensional.)

Because fOZ is already row~reduced, we can take E = (% 2),
A= (0 1), and B= (1 0), so that y = Bz and x = Az. The reduced

problem (46) can be solved for Yo = ¢(x0,t) since v is nonsingular,

Oy




but (46) fails to determine Xy« The critical assumptlon (4%) corresponds
to the earlier hypothesis (10), since S = Voy < 0.
For this problem, the leading term Z0 of the outer solution satis-

fles the equations
(48) ¥ = v itv., + v.u i . e w
0 Oy 0t Ox 0 ? g 0

(a speclalization of (20)). Indeed, we can rewrite this system as
vy (Xgs¥pst) = 0 with Xy = ug, SO the initial condition vy(Xy(0),
YO(O),O) = 0 reduces the system to the familiar reduced problem (43)
provided XO(O) = xO(O).

If we further set the boundary layer correction I = (2], the limitin
form of the boundary layer system (28) reduces to the pair of equations

dng ag
(49) > * Y (X500} # €. 0,000 # 0,00, = = 0.

Moreover, the decay required as 1 + « implies that go(t) = 0, so we
must have XO(O) = xO(O) and the limiting outer solution (Xo(t),Yo(t))
1s uniquely specified. Thus, there remains the problem

dn
(50) 52 = vo(x%(0),6(x%(0),0) + ng,0), ng0) = y%0) - 6(x%(0),0).

The Dini-Hukahara theorem (cf. Hille (1969)) and the negativity of voy,
imply the existence of a unlque decaying solution no(t). Thus, the
leading boundary layer correction term HO is completely determined.
Succeeding terms follow a4 a straightforward manner.

We note that a considerably more complicated vector problem would

result if vOy had zero eigenvalues.

¢. The original problem
For the problem (1)-(2), the initial value BOZO(O) of the BO

portion of the leading term of the outer solution is restricted by (14).
It restricts the leading boundary layer term HO since 1t must satilsfy
BOHO(O) = Bo(zo(O) - ZO(O)) (ef. (5)). Alternatively the initial value
AOZO(O) is free as far as the outer solution 1is concerned, though it would
be determined through Agly(0) = A (z2(0) = 2,(0)).

Multiplying (28) by BO and integrating from 0 to <t 1implles that

S i § SO(T"S)

T
(51) BYB,(1,€) = Ble ° @ °(€) - 2(0,€)) + BéJOe By




e

[£(Z(Cs,€) + ARRT(s,€) + BIB N(5,€),€5,6)

0
g = - =1 o o~ o]
- £(Z2(€s,€),€5,€) - £, BB 1(5,€)]ds
while (29) implies that
t = A : 1 2 )
(52) AJAT(T,€) MOAOJ{T(Z(Er,&) + AJALT(r,€) + BIB.I(r,€),

T

€r,€) - f(Z(€r,€),€r,€)]ldr.

Putting these together, we get the new integral equation

(53) M(t,€) = n1°(x) + F(I)
where
ST
1%<) = Ble 0 B (2%¢€) - 2(0,€))
o} 0
and
1 So(t-s)
F() = Béj e Bo[f(Z(ES,E) * [I(8,6),€8.€) - £(Z(€8,€),€5,€)

0

0

_f‘o

o
ZBbBOH(s,ﬁ)]ds - AbAOJT[f(Z(ér,E) + O{r.C) €r,C)

fl{Z(er,c),€r,€)jdr.

We recall that for any initial value Z(0,€), consistent with (12),
Z(t,€) 1s completely determined. Likewise, the exponential decay cf
5.8

e 0 implies that for any arbitrary initial vector Bon(o,é) a k-di-

mensional manifold of exponentially decaying solutions of (53) is ob-
tainable by successive approximations. We simply define

1 ,e) =% + Fa), 550
(54) and
N(t,€) = 1im n(J)(r,e)
J-»oo
(cf. Erdelyi (1964)). As for the quasilinear and classic problems, we
are prescribing the vector BéBdI(O,E) (of rank < k) and letting the



vector O H(O €) (of rank < M - ¥) be determined by the exponentially
decaying uolut¢on constructed (cf. (51) and (52)). Vasil'eva (1975)
expresses this relationship by writing an expression like 0 F(O €)
= ¢(BbBon(O,t),Z(O,G)). This actually relates initial values of the

outer solution since 1t implies that
(55) AyAo(z0(€) - 7(0,€)) = a(ByB(22(€) - 2(0,€)), 2(0,€)).

It 1s instructive to further consider the asymptotic expansion

(56) Bt 85 a1 n, (1)ed
J= O
for the boundary layer correction. Clearly, HO must satisfy the
nonlinear system
dHO
(5T7) T;F.= fO(ZO(O) & HO,O)
and we have
0 T So(r—s)
- 1
(58) Molr) = 10¢x) + JOBOe B,[£(Zo(0) + N (s),0)
0
- f BéB Il (s) ds

(o]
‘ AOAOJ £4(2,(0) + My(r),0)dr.
We note, in particular, that we'll generally have Aoﬂo(r) # 0, unlike
for the quasilinear or classic problems where AOfOZ = 0. Moreover, Hl
will satisfy a linear system

dnl

(59) v e foz(zo(o) + no,O)n1 + ao(r)ﬂo

where

ao(r)n = 1im {- —{f(7 + 1, JET,€) - f(Z (0) + 1
€+0

030,0) iy f(Z,GT,E)},

Since the coefficient matrix P07 has k stable elgenvalues, we
can anticipate a k-dimensional manifold of initial values Hl(O) cor-
responding to decaying solutions as 1 + =, This allows us to prescribe

B'B (O) while the remaining components AéAoﬂl(o) of the initial




.

vector become specified, (We recall that Vasil'eva (1975) seems to re-
late these initial values in terms of the M - k elgenvectors spanning
the null space of féz.) Analogous conslderations apply for higher order
terms.
A further problem remains; namely, the initial value Z(0,€) of

the outer solution is still imbedded in the nonlinear equations for the
outer solution and for the boundary layer correction (cf. (12) and (14)
with t = 0 and (55)). We shall, for the time being, simply assume that
the resulting nonlinear equations have a unigue solution 2(0,€) as they
do in the special cases already considered (éf. also Vasil'eva (1975)).
More critically, it is important to develop numerical methods for stiff

systems based on this analysis. Such work is in progress.
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