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treface

This thesis is my meager attempt to add to the body of
knowledge of satellite attitude stability. Due to the immense
cost of launching satellites, and having absolutely no place on
earth to test stability prior to launch, only satellites which
can be analyzed for stability can be built. I hope that perhaps

this study may be of use to those who design satellites. If not,

at least, I have learned a great deal about satellite stability
and its problems.
I would like to express my thanks to my advisor, Dr; Robert
A. Calico, without whose help and advice I would not have been
able to complete this study. ‘
Finally, I would like to express my very sincere gratitude
and appreciation to my wife, Masge. and my éon. Michael, for

putting up with me during the past eighteen months.
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Abstract

This study considers the attitude stability of a gyrostat
satellite containing flexible antennas, in which any, or all,
of the rotors or antennas may be misaligned with the main body
principal axes. The problem is formulated in general for any
number of rigid, symmetrical, spinning rotors which are fixed
relative to the body and for any number of antennas, modeled
as rigid rods connected by torsional springs. The stability
analysis is based on the Liapunov direct method, using the
Hamiltonian as the Liapunov function. Examples are presented
for a gravity-stabilized.satellite containing one constant-
speed rotor and two antennas of two rods each. The antenna
misalignment and motion is restricted to the xz plane. Results
show that for a rotor misalignment, the largest deviation from
the position defined by the body principal axes aligning with
the orbital axes occurs when the misalignment is toward the
orbit tangent. Misalignment of the antennas had no effect on
the body equilibrium position except when the rotor was also
misaligned. In that case, the body equilibrium angles were

reduced.




ATTITUDE STABILITY OF AN ORBITING SATELLITE
CONTAINING FLEXIBLE ANTENNAS AND SPINNING ROTORS

I. Introduction

Background

The increasingly complex configurations of the earth-
orbiting satellites have generated substantial investigation
of satellite attitude stability. Results of this research
provide several useful analytical methods and several dif-
ferent models which may be used to determine stability.
Pringle (ref 1) applied Liapunov's direct method to determine
the stability of a satellite with connected moving parts.
Meirovitch and Nelson (ref 2) used an infinitesmal analysis
on a satellite containing elastic parts by assuming normal
modes of elastic displacement. Nelson and Meirovitch (ref 3)
also applied Liapunov's direct method to a satellite with
elastically connected moving parts by assuming a lumped-para-
meter representation of the distributed elastic system.

Likins (ref 4) made a study of "dual-spin" satellites con-
taining a spring-mass-damper system in the despun portion of
the satellite. Crespo da Silva (ref 5) and Rumiantsev (ref 6)
studied satellites containing internal rotors. Rumiantsev;s
study was slightly more general; however, Crespo da Silva
presented results which were both more extensive and in a more
useful form. More recently, Meirovitch and Calico (ref 7)

presented an elerant method to determine stability of a satellite




containing flexible appendages. They uzed Liapuncv's direct
method, used the Hamiltonian as a Liapunov functional, and
defined integral coordinates to evaluate the Hamiltonian.
Calico (ref 8,9) extended this study to include that of Crespo
da Silva to determine stability of a satellite containing both
flexible appendages and internal rotors. These references are
but a few of the numerous studies of satellite attitude stabi-
lity which are pertinant to this study.

Each of these studies has one common characteristic;
the stability was investigated about a nominal equilibrium
position defined by the orbit normal and the body angular
momentum vectors being aligned with a body principal moment-
of-inertia axis. That is not so surprising, for generally,
that particular position is the one of primary importance, and
if it is not stable, the satellite is considered unstable. In
these studies it was generally assumed that small misalignment
errors in the rotors or aﬁtennas do not affect stability.
However, what would happen to stability if misalignment were
substantial, e.g., an extendable antenna failed to extend

causing a rotation of the principal moments of inertia?

The Problem
The problem, then, and the purpose of this thesis is to

determine the stability of a satellite containing both flexible

antennas and spinning rotors, any, or all, of which could be

misaligned with the body principal axes.

The_General Approach
The method used by Calico will be used here, i.e.,




LLiapunov's direct method with the Hamiltonian serving as the
Liapunov function. The potential and kinetic energies were
determined in general for any number of rotors and antennas,

and the Hamiltonian was formulated and evaluated for sign
definiteness about an equilibrium position. For the specific
example presented, the equilibrium positions were found by
setting the partial derivatives of the dynamic potential with
respect to the generalized coordinates equal to zero. The actual
calculations of the  equilibrium positions and the evaluations

of the Hamiltonian were done numerically.

Organization

This thesis is organized so that long mathematical deriva-
tions are not presented in the text but are included as an
appendix. Also when a large set of equations exists, the

entire set is included as an appendix.




I1. HLathematical Formulation of the I'roblem

Model and Basic Assumptions

The satellite under consideration consists of a rigid body

containing m rigid, spinning, symmetrical rotors and has attached

to it n flexible antennas. The spin axes of the rotors are fixed

relative to the main body. The antennas are modeled as a number

rigid rods connected by torsional springs. Damping in the

satellite is not modeled explicitly; however, pervasive damping

Figure 1. The Satellite Model
will be assumed for those configurations which are otherwise
stable, thereby insuring assymptotic stability.
The earth is modeled as the central body of mass M
producing a spher;cally symmetric gravitational force field.
The total mass m of the éatellite is small compared to M.

The lact important basic assumption is that the motion

of the center of mans of the catellite is unaffected by the

h
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attitude motion or the elastic motion. This assumption is
reasonable if the dimensions of the satellite are small com-
pared to the orbit radius, and the elastic motion is either
small or symmetrical about the center of mass C. This assump-
tion allows the motion of C to be calculated independently from
the attitude motion; therefore, the orbital motion is assumed
to be known. For this study, the satellite is in a circular

orbit.

% =—gE

Figure 2. Coordinate Systems
Fig. 2 depicts the coordinate systems used in this thesis
The center of the earth is.assumed as the origin 0 of an
inertial reference frame XYZ. The center of mass of the satel-
lite in its undeformed state is the origin of a set of orbital
axes ala2a3, as well as the origin of the body fixed axes xyz.

, i alirned along the position vector of C in XYZ: a., is the
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orbit tangent vector in the direction of the velocity vector;
and a, is the orbit normal vector. When the satellite is
undeformed, xyz represents the principal moment-of-inertia axes.
X;¥324 define the axes for the ith antenna and are fixes with
respect to xyz. They are defined such that when the antenna

is undeformed it lies along one of the axes. x.y.z. define

JJJ

the nodal axes of the jth rotor such that z. is both the sym-

J
metry axis and the spin axis. Because x.y.z. and xjyjzj are

g T §

fixed in xyz. they have the same angular velocity as xyz.
Al though Fié. 2 shows xyz aligned with a,aa3, Xyz is free to
rotate. oi denotes the origin of X;¥5240 and oj denotes the
origin of xjyjzj. (Throughout this thesis the subscripts "i*
denote quantities referred to the antennas, and "j" denote
quantities referred to the rotors. The subscript "o" refers
to the main body. "i" numbers from 1 to n, and "j" numbers
from n+l to n+m.)

Fig. 3 depicts the position vectors and their components.
Vector quantities are indicated by an underline, and their

magnitudes are denoted by the same symbol without the under-

line, e.g+, R

R, is the position vector of C in XYZ, and Rc is

its magnitude. Time derivatives in inertial space are denoted
by a dot above the quantity, e.g., r is the time derivative of
r in inertial space. Time derivatives in the xyz frame are

denoted by a dot above the quantity quantity and a prime super-

seript, e.g., r' is the time derivative of r in the xyz frame.

The System Hamiltonian

To formulate the Hamiltonian of a dynamic system, the




Figure 3. Position Vectors

potential and kinetic energies must be determined. The poten-
tial energy will be determined first. Meirovitch (ref 10:435)
developes the gravitational potential for a non-uniform body

in a central force field. To a second order approximation

Vg = - _G_%Lr_» - % [(302-1)Iy + T2z - Txx)

#(3m2 =N Ixx + I2a = Iyy )+ (3n*-D{(Ixx + Iyy - Ina)

+12(¢mIxy +enIxe + waJya)

(1)
: where 1, m, and n are direction cosines between xyz and gc.
¥ yx' lyyt Ipge +++ are moments and products of inertia of the
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of the catellite, and G is the universal gfravitational constant.
The total gravitational potential of the satellite is the sum of
the potential of each part. Summing over the body and rewriting

eqn (1) in matrix form

: - - e 2T
ot e

o {1 (L lelalenfs)

where [l&] is the direction cosine matrix between X;¥3524 and
Xyz, [J ] is the inertia matrix of the ith antenna in its
deformed state, and Qm} is the direction cosine matrix

between 30 and xyz. The elastic potential is somewhat easier

to write:
Ve = ‘é‘ i i. Kie 143.‘ (3)

&yl Ksl
where Kik is the spring constant of the kth spring of the ith
antenna, and u&k is the angle through which the spring is
displaced from its undeformed position. Thus the total

potential is
Ve Vg + Ve ()
The kinetic energy can be written as

T= %[ (R{Ridn (s

where {ﬁ} is the inertial velocity of an elemental mass dm,

and m is the mass of the body. When {R is written in its

R ey .
PG .‘ o ,‘ u.»-l_q‘ vy -
‘_ ‘3,, Ko 3 "?«%?M‘ & g 2




component terms, and the integral 1is divided into 1

domains Do. Di' and Dj the kinetic energy becomes

T g 3T + 4 0 LTI 6]0
'35 Lol lsliade 4§ [ {6 fecdaon

Jzne (6)

: {wlf)f [ o ¥ L1163 d 0

I

.
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where {L} is the velocity of C; 4; is the mass density of
the ith antenna; {ﬂ;} is the angular velocity of the jth
rotor relative to xyz; [(f:i.TPL)] is the skew-symmetric matrix
which yields the vector cross product (£°i+ei)xé{; and [Jj'] is
the inertia matrix of the jth rotor relative to X;¥;z;+ Eqn
(6) is derived in Appendix A.

Since the orbit is circular, Rc is constant, and

% = we (7)

C
where Wy is the orbital angular velocity. The angular velocity

{w] of the xyz frame with respect to ir rtia is

{wl= we {0,] + {w)] (8)

where [fqu} is the direction cosine matrix between a3 and xyz,

and {w.} is the angular velocity between xyz and a1a2a3.'
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Because T and V are expressed in a rotating reference Irame
and the orbital velocity is constant, the system is considered
non-natural, and it is explicitly independent of time. For this

system the Hamiltonian assumes the form

He T, =T, +V (9)

where T, represents the terms in T which are quadratic in the

. generalized veloxities, and T° represents the terms in T which

are independent of the generalized velocities. Substituting
eqn (8) into eqn (6) and grouping terms

To= 4 (' L LAYTIRI00] {an] w

{20

and

Tas iwsf‘}__; L IR L1{wd
vi 1 tadTadiaded § [ w e 3a0
+{ w.rg [a M [Crec o)LL {6 ] do:

Hlwd S (61 3]{a

(11)

Substituting eqns (4), (10), and (11) into egn (9) yields

the Hamiltonian for any number of rotors or antennas.

He 3 fwl ) [L1T TR0 fwd

(=0

o4 5 falnlad AT [ ) idan
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Equilibrium Position

For the satellite to be stable about an equilibrium
position, H, evaluated at that position, must be positive
definite. In this study, because the rotors, antennas, or
both are assumed to be misaligned, the nominal equilibrium
position, discussed in Chapter I, generally does not exist.
Therefore, an equilibrium position, hopefully, one near the
nominal position, must be found and H evaluated for sign

definiteness. The Hamiltonian may be expressed as

H=T3+U | (13)

where.l). the dynamic potential, is defined as

U= V-To i3]
Equilibrium positions are defined by the set of equations
b’xi,g 0 (L=, n) (15)
where Y are the generalized coordinates and n is the
number of coordinates. In general, this set of equations
is non-linear, and a numerical soluticn is required. Once
the equilibrium position is found, H may be evaluated for
positive definiteness to determine stability.

Evaluation of the H to
For H to be positive definite, onlyl] need be evaluated
because by definition Tz is positive definite; therefore,

12
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H is greater that U. 35im definiteness of igs determined by
forming the matrix [uij]’ where
)

Ui = o3 [equilibrium 16
and applying Sylvester's criterion, i.e., for positive definite-
ness the determinant of each of the leading principal minors
of [Uijl must be greéter than zero. If U is positive definite,

then the equilibrium position is stable, and, moreover, it is

assymptotically stable when pervasive damping exists.




RS

SRR SO TR g SR e

IV. Stability of Specific Examples

Constant Sveed Rotor

In each of the specific examples, the rotor is assumed to
be driven at a constant speed. Since )(jyjz:j are nodal axes,
[fh}={b 0 sj}? where sj is the constant spin rate of the rotor.
When this is the case, the last term in T, reduces to a T, term
and a To term. Since neither T1 nor T2 appear in U, only the

To term will be considered. The additional To term becomes

o ()" 5 11151 {0)

Therefore, To for a constant speed rotor becomes

Toe = To vaso {tadl, 3_;"" (615 (o) (17)

For all calculations T, will be used for T  in egn (14).

Examples

Three specific examples are considered. The first is a
satellite containing one constant speed rotor whose spin axis is
nominally aligned with the z-axis, but misalignment is allowed.
The second ex;mple contains one constant speed rotor aligned with
the z-axis, but it has two antennas restricted to symmetrical
motion but which may be misaligned. The last example is a com-
bination of the first two. Each antenna is modeled by two rods
of length L, mass m/2, and is connected by two springs of stiff-
ness K. The antennas are attached to the main body at a distance
1h, in the x-direction and h, in the z-direction. The antennas
are further restricted to motion only in the xz-plane. The

model is shown in Fig. B-1 in Appendix B.

14
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For convenience of calculation, the fJi] matrices will be
redefined as [Jilr and [3{]e. where r denotes the undeformed
state, and e denotes the change due to elastic displacements.
rJi]r and [J,;]  are developed in Appendix B. [Ji]r will then
be summed with [J] to form [J]., the inertia matrix of the

entire undeformed body.

[, = [3 +Z§"; [ 237030, L2:) (18)

By appropriately defining the principal moments-of-inertia

- o R (19)
LTO] AT OB. o

and

Lie
f LAY Lol [4]= ml? I;,.O (20)

ik O Ise

where

I = ;Z(!%F)z
Iar =2(hl.‘)z+4bf \ -§ (21)
Iar = Iie + Lar

The inertia matrix of the undeformed body becomes

Ao+ mUI,e O A
[3],. 3 Bo+ MLEIar 1 O O
(:) C¢D+ W“}Ilar (:) C.'
(22)




Also

| Tie ,
[J]le=ml? Izeo (23)

O Iz

where

Jie = ‘53%94“$|*'5}5%¢|*T§Sz¢h" Q?Uﬁtg-*JWLSG;
Tse=3 DECQ"’ %C‘@**Cvz* {‘CQ“‘@:C@’ g'“’f (24)

Tae = Iie + Ize
For the single rotor, define [J3] and {Q;}. ;

I .
[T:] = OI? (25)

{037 = {00 s}

With the inertia matrices defined, and the rotor speed defined,

(26)

the direction cosine matrices must be expressed explicitly
to enable U to be calculated.
For a set of Euler angles defined by a 62 rotation about

yo a -8 rotation about x, and a 93 rotation about z, iQo..} and

{ﬂa;} become

€0:cO; - 56,56,56;
{ Qa.} = |- (ceise3+56.581¢03) (27)
g €6\ S6a.

r
-($6.C0; + $6,C0,50,

{Qasz‘ ‘ se; S@J g Selcel C@J
. €0:COa

16
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Also

TARRTAPRNN
e
[ez] . [O-l ‘]

(28)
Cda SKy, : (o]
[I3]= - Ca, o Cl\Cdy -~ &)
- S $ka S4, Coly, e,

where “2 is a rotation about z3 and -4(1 is a rotation about

Xoe
3

Substituting egns (2),(3),(7),(10), and (17) *nto eqn (14),
dividing by ng'. and performing the indicated matrix operations

Yields the scalar equation for Uc'

Ue = - -’2‘ -( /%'Béﬁ) + % L(ceace; - §6.56,58,)}(A+ mtT e)

+(€0:50,+ 56,50,00,)% BemliTze) + (Co, sea)’( c_zm%-:-‘_l}e )]

+ % [~ (seaces + s0,c0,50,)%¢ A_L%,I.'_‘Iac)

-' (s6250; - 56 Co.Cez)’( e_-v_%ﬂ:c) (29)

- (ce,cen)*(¢ _4%1;_1_«.)]- Bl(seice; + so.co1 502 & 54k,

+ (50,58, - $6,C6.00;) SX,Caa + €O, 00, Coly)
+ nan l (052- ' + 'y
,é-é?.—a-é! ! ¢ .¢& _gl- )

17
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mﬁxwwerJh/Cui and A°=,.6BK/mL".  With :c determined, a ccmputer
program was designed to evaluate the equilibrium equations and
to test the sign definiteness of [Ui.]. The equilibrium equa-
tions and Uij are listed in Appendix C.

In addition to @, Az/wcz,. & ,» and X,, the following para-
meters were defined.

K1=(C-B)/A

K2=(C-A)/B

Hx=hx/L

HZ=h, /L

BREL'Y -
RA=mL IBr/Ao

Stability was tested for various values of o(l. 0(2. e, /\2/4'95,
HX, HZ, RA, Kl' and KZ' K1 and Kz were varied throughout the
region indicated in Fig. 4 by the diagonal lines. Crespo da
Silva and Calico found the regions of stability for the nominal

equilibrium position to lie within this area.

Fifure 4. Kle Search Region




V. Results and Conclusions

Results

Obviously there are numerous solutions to the equilibrium
equations; however, only the stable equilibrium positions near
the nominal position are considered.

Example I. For the first example RA=0; therefore, the
only parameters which were varied were Kl' K2. e, dl, and aé.
When d1=q2=0.~i.e., when there is no misalignment of the rotor,
the results duplicate those of Crespo da Silva for the deriva-
tion is identical. However, whentx1 does not equal zero, the
nominal equilibrium position no longer exists. It is interesting
to note that the stable equilibrium is still defined by the
angular momentum veétor and the orbit normal vector alignings
however, they are no longer aligned with a body principal axis.
This is easily demonstrated for the simple case where dz=-90°.

For this case the equilibrium equation reduces to

(C’eﬂ) §€1¢0x + B(cBr 5%, + S61CX,\) = O (30)

where 61=63=O. The momentum is defined by

{1} = L) {tJwo + LA [3:) {024} (31)

which reduces to

(- WeAsOLOL » L Cs62C6; + Js S%, 02+ Js €, $82)
(L} 0

(UJo Aste; - UJoCCle.L + Js Cx,C0s +Js JNSOA) (32)
19



ihe first term in egqn (32) is exaclily eqn (30), & 111 angulaz

momentum of the equilibrium position is aligned with the orbit
normal.

Fig. 5, 6, 7, and 8 show stability regions and equilibrium
angle curves in the K1K2 plane for various values of xl. «, and
@. For given values of “1 and @, equilibrium angles furthest
from the nominal were found to occur when aZFO, or the misalign-
ment of the rotor was toward the a, axis. When misalignment
was toward the ay axis, the equilibrium position is very near
the nominal. Fig. 5, 6, and 8 also show that 82e=-ag and 91e=0
when K1=0 or Ké=1. Fig 7 shows that 91e=-a& and 62e=0 when
K,=0. In both cases 93e=0. In fig. 5, 6, 7, and 8 the region
above the solid line K1=K2 in the first quadrant and above the
solid curve in the second quadrant is the stability region for
the nominal equilibrium position. In fig. 5 and 6, the region
below the solid curve in the second quadrant is still stable
about an equilibrium position, but the equilibrium angles be-
come too large to be of interest. A comparison of fig. 5 and
¢ shows that there is essentially no difference between the two
for areas I and II; however for¢K1=IO°. area III is very slightly
larger than that for d1=1°. The boundary curve of area III in
fir. € crosses the K1 axis and K1=—1 line at nearly the same
place as in fig. 5; however the curve is slightly flatter.
This difference is a little more obvious in fig. 9 where 61e
is plotted vs. -oq for a.give value of K, e, and &,, and four

different values of K2. e.f., for K2=.2. -“1=1°. <] =4°. and

le

) g i) . e, - - i
ele-zQ + For small values of a&. ele is nearly a

W
-d1-1o

20




;l o ” -
II ’
P 3
/
/
/
/
/
/
/
-
 § Ll | l L} L L J L]
o5 1.
13 ele>-n%1 J aze—o
II: -.5a1>61e>-0(1 : 63e=0
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Figure 5. Stabilitx Region and Equilibrium Angle

Curves: 0(1 L B

a(2=0, @=.2, RA=0

I 01e>-.5d1 # 62e=0
I11: -.5&1)91e>-dl - 939‘0
I11: -0(1>91e)-2d1 =
Figure 6. Stability Region and Equilibrium Angle

Curves: a1=10°. o(2=0. @=.2, RA=0
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Figure 7. Stability Region and Equilibrium Angle

Curves: c(1=10°, a(2=-90°. @=.2,RA=0

I ele>-.8‘t1

II: -.8«1>91e>-«1

ITI: -39, >-1.54

Fipure . Stabilit%
Curves: - L

Region and Equilibrium Angle

,» K, 0, B=1., RA=0
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linear function of -y 1er any ‘:;2. For @1, the region of
stability is considerably larger than for 8=.2. With muéh more
angular momentum in the rotor, the equilibrium angles are very
much closer to the misalignment angle, -O&.

Presentation of data for misalignment whenfx2 is different
from zero or -90° is difficult because, in this case, all
three Euler angles are different from zero. However._fo: all
stable equilibrium positions which were found, eBe)yaé,a!wuyq
less than .01°. Analysis of the numerical data~sbé§§éi.#hat
ele is approximately equal to -alcos?f2 when‘31=0 6r1K251: aﬁq
95 is approximately equal to a'.lsind2 when K,=0. To ¢onfirm
this observation, it is useful to consider two other relation-

ships between K, and K,, and the equilibrium equations.

CA = Kal(ky-D ‘ (33)

C K\Kl"
C-8 = KilKa-I)
C KiKa=| (34)

(aée)tce.sze.sze; - .%e. (4s*e.-1) 5%0;)

- (gém 520,(4s%02-1) = BLCO.COLSOs X\ Sco (35)

~- €6, C02CO; S&, Cala -~ S8, Ce.Cd] = O

2(%&) [56,€282 526, + 5202(C"3- 5@, 5%,

+z(_c_c-:_e) C'%0,5202 —BL(CO.CO5 -~ 50,56, 58;) X, 54,

(CO,5603+ 56,56, S6;) 5, CAy ~ 6,562 Ca\] =0
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Let @, =0 and (C-B)/C=0, then eqn (35) becomes

3e
€O, COa SK, Caly + SOICO2CA, = O (37)

which, for small d1 and °1e reduces to

Qe = —o,CAs (38)

Also, letting 63e=0. (C-A)/C=0, and 8, be small, eqn (36)

becomes

CBa SAiSdr- CO, S62C, =0 . (39)

which reduces to

GZG = “u SXa. (40)

Therefore, when X, is different from zero or -90° and 8=.2,
Ole is determined from fig. 5 or 6, and 8,5, is determined
from fig. 7; 63e is assumed approximately equal to zero. To
determine 91e from fig. 5 or 6, replaceu(1 by o, cosaly in the
lecend for I, I1II, and III. To determine 85e from fig. 7,
replace &, by ’“1Sin“2' These approximations are within
five percent of the numerical data.

Example II. The second case considered a satellite with
no rotor misalirmment but a misalignment HZ in the z-direction.
The specific purpose of this example was to determine if a
misalignment out of the xy-plane could cause instability.

For this example HZ was varied from zero to one for HX=.2,
8-.2, RA-.25, and A?/wl=.1133. Caues for Hi-.5, RA-.5, and

Aﬁ/bir.226? were also studied. Table I shows that for HZ=0

25
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the satellite was stable about the nominal position where all
angles were equal to zero. As HZ was increased to one, 01 and
¢2 increased significantly; however, ele, 628. and 93e did not
change from zero, i.e., the body orientation remained the same,
but the antennas are no longer stable in an equilibrium posi-
tion of zero energy in the springs. For HZ70, ¢, and ¢, are
found in Table I, and the stability region for the body is
found in fig. 5 (the nominal stability region).

Table I. Ranges of ¢H and ¢%ki
2,2

o |, | HX| HZ| RA A /o3 ‘3 1 2

0 0 .2 O 25| .1133 0 0

0 0 2] 1] .25{.1133 4,74 1.09

o] o .2l .5 .25/.1133 | 23.74 5.99

0 0 .2/1.0| .25|.1133 | 46.88 16.13

0 0 2] «5] 5 1.1133 ] 23.75 6.00

5 0 .2 0 .25| .1133 0 0

5 0 02 01 -25 01133 4.7“"-“‘.53. 1.08--1019
5 0 .2l .5 .25/.1133| 23.74-23.08 6.00--6.42
5 O 12 1.0 025 -1133 L"6087"’+5-13 16013‘160“’6
5 0 -2 05 15 01133 23.?4-22-90 6.00-‘6-“0
5 0 2| 5| .5 |.2267 | 21.90-21.00 8.18--8.47
5 5 .2 O .25 .1133 0 0

5 5 o2f +1] +25] .1133 4.75--4.53 1.09--1.19
5 5 .2l .5| .25/ .1133| 23.74-22.78 5,99--6.42
5 5 .2]/1.0| .25|.1133 | 46.87-45.17 1€.13-16.46
5 5 -2 05 05 01133 23.“?'22.?0 6.00--6.51
10 0 2l 5| .5 |.2267 | 21.90-20.70 8.18--8.54

@-.2 for all values in this table

Example III. As shown in Table I, when HZ=0, ¢a=¢%=0

is still a stable equilibrium position. The numerical data
also showed that the body equilibrium angles did not change from

those without the antennas. Therefore, fig. 5, 6, 7, and 8

cen be used to determine stability rerions and equilibrium
le curves for the satellite with or without antennas
vt
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provided HZ=0. When HZ70, the body equilibrium angles were
reduced. AsAHZ was increased the stable equilibrium angle
curves shifted to the left as indicated in fig. 10. Also as
RA was increased to .5, the equilibrium angle curves again
shifted slightly to the left as indicated in fig. 11. Doubling
the value of Xzﬁog did not have significant effect on the

body equilibrium angles, but ¢1 was reduced by about 8%, and
@, was increased by about 30%. @, and @, were very weak func-
tions of K1 and Kz' and Table I shows the range through which
dﬁ and @, varied as K, and K, were varied.

Conclusions

Fig. 5, 6, and 8 clearly indicate that if the satellite is
designed for stability about the major principal axis, rotor
misalignment has much less effect on the equilibrium angle than
if designed for the region where K1 is less than zero. In this
case, the equilibrium angle is always less than the misalignment
anzle. If stability is designed for the region between the
nominal equilibrium curve and region III, very minor misalign-
ment of the rotor can cause significant changes in the equil-
ibrium angles. For misalignment in the antennas, the conclu-
sions are not so clearly defined because the specific model was
very restricted. For this model, the misalignment actually
reduced the body equilibrium angles if there was a rotor
misalignment, and had no effect if there was no rotor misalign-
ment. It was tacitly assumed that the antenna equilibrium

an.les were not important to the actual use of the antenna.
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03§=0

Figure 10. Body Equilibrium Angle Comparison for

Changes in HZ

*,=5%, ®,=0, @=.2, HX=.5, RA=.25, AZf2=.1133

I:
II:
III:

1
0 | | S | ; a5 S s s
| : 3
e >-c% : —RA=025
-1?5 PR [ ---RA=.5
$20%y >0 2 =% 0,,=0
K128, @ —244 054=0

igure IT. Body Lquillibrium Angle Comparison for

Changes in R

& gt &,=0, 8=.2, HX-.2, Hi:=.5, Az/w§*-1133
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The theory presented is valid for more general, less restricted
antenna models. For instance, misalignments other than HZ,
asymmetric motion, or motion in the xy-plane could be allowed.
To do this, one would only have to redefine tbe inertia matrices

of the antennas.
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Appendix A

Kinetic Energy Derivation

The kinetic energy of a body may be written as

T= %[ {RIT{} dm (s)
If {R}’ {RJ*' if}. then eqn (5) becomes

T= 4 QRITAS+ 3 (AT dm + (R3] {Adm )

By definition of the center of mass L{r}dm’a, and the last
term in eqn (41) is identically zero. There are several

distinct domains in the body, and the second term in egqn (41)
is more easily calculated by integrating over each domain and

summing over the entire body.

Considering the rigid portion first, r = w x ko because
i:) = 0. Therefore

[ (i T (¥ dm = 30T (el 0] dm fud i

= '5 {w}.r[Jo]{w}

For the ith antenna, _r"_ =wxr; ¢ i‘_i. however £y = Loy @5

So i £ ;
Y= @x(fe +20) 4+ 2 (43)

a

¥ é.fm; (el {eddm = 4 {“’}1:[»\‘. [&]'[(r.?: ?;)]T[(v‘.?:ea)][f Jdm {wj

e[ LonvoolL g (o ddm + 4, (6360 dm;

31
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The first term on the right of the equal sign in eqn (44)
reduces to i{h\]?[QJ’[JL]lL]{“)}

Similarly for the jth rotor, i = wxrt

_3. and

L} =:_xj X @5 So

3 [ {37 {¥3dm; = $ (0T IRI0AN L TATIZICL] L) (45)

The pért of the kinetic energy of the rotor which does not
arise from its spin has been included in [J_].
Combining eqns (5), (42), (44), and (45) yields the total

kinetic energy for the system (eqn (6)).
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Appendix B

Formulation of (Ji]r and [Ji]e'

Fig. B-1 shows the model used for the antennas. Since they
are symmetrical about the z-axis, and are restricted to motion

in the xz-plane, all products of inertia vanish, and Iyy is the

sum of Ixx and Izz‘ Since the antennas are symmetrical, only one

Figure B-~1. Antenna model

is shown. From the definition of moments-of-inertia

Ixx=215ﬂ22dD; therefore,
L A
PR Zlﬂ(h;—?w.)‘dt + 2}; ulhe-250, - Lse,) d2

=ML=(HZI|'$1¢, +§¥L”ZH25¢I—HZ’¢I *'S¢c$¢l) (46 )



o = 2 .
Also, Izz" )ﬂfx dD; therefore,
N e

L
I;1=?‘£A(h‘+2'6¢,)1d2‘+ 2) wulhg + Ze@a+ Leg)d?
i (47)

= mIE(Hx? + ¢¥g, + ‘%‘h +2HXe @, + HXC B2 + CECO2

[Ji]r consists of those values of Ixx' Iyy' and Izz evaluated
for @, = ¢, = 0. [Ui]e consists of the complete matrix [Iij]
less [Jé]r. which yields eqns (21) and (24). It should be noted

this inertia matrix for the antennas is valid only for symmetri-

cal motion.




Aprendix C

Equilibrium Equations and Dynamic Potential

Fquilibrium Equations

The following equations were used to determine the

equilibrium angles.

QU = (2-4') [¢8,s20:520;- s_%e.ume,-o s*0;1]
e, c
-(c"-8') :%_e. (4503 ~1) = Bl ¢©,CL2L56s S, &, (48)

- €0,€0,C0; SACalz - S8, COLC]1 =0

g% 2 zc_%_c‘;A')[se,czeasze“ 520, (C9s -5%0,5%,)]
5
4 ZCQ_‘ép_') %, 5282 - BL(COL003~ 50,5602 563)54, s (49)

1 (€63 583 + 56,5€2C65) 54,04 - €8, 50; Cx,] = O

U = (8-a) [256,528,C203 4 s2e; (4cte,-1)
06, c
- s_;_e. 5203 (4s%ea-1)] - pL(- 561 56, + 56, C&i CO;z) S\ A2

+ (56.C03 + 56,00, 56 )Sd. Cd;] =0 (50)




aed

where

and

QU = 3 LA (CO.cos-50150:50) + 2B' (CoL S0,
2C @, AP,

+ 50,50.¢03)" + ﬁ‘ (cesen)’} L (sence;

+56,00.50,)% 24" + B’ (50,58 - 56,c0100)°
a¢c aaa

[ £ 8 £ -
+ gg (co.cexnt] +-§_( 24,-¢) = O

{
QU = % [ 24' (Coica;- 50, 56050,) + 20’ (CO.56;
¢, C 2¢2. o

2z [ 21 . !
r 56, 56:C6;) +%%; (ce,50)%] if. %‘ (Se.C63

+ 56,00130;)" + 23’ (56256, - 58, co, cO;)’
&,

toc' (co,coN']lr K(di-d) =0
¢ c

2

A'=A+mL'Tie , B'r B+ml'Ize, C'=B+ml'Ise

gg' = mL*( 2528, + C@ 5@ - 2HZ CQ, )

3_%' = mL'(-HZ e, + c@, 5@, ~ 3@, OB - 2HX 50,)

3_3' : mLY - 2528, = 20X 3@, - 50, cds)
/

36

AT Y AT T TR,

(51)

(52)

(53)

(54)




TR Ry 2

L

%‘ = mbl( 25201 - KZCOs + S0, CB2)

>
a&‘ = mL*(-HZCed: + SOCPa ~HXCP: - CFSBa)
BT Y (55)
3¢’ = ml*(-2528; ~C@, 542~ HACPa)

@, 3

Dynamic Potential

The following equations are the dynamic potential used to

formulate [Uij] and determine its sign definiteness.
Un = (8-4") [- 56,526,520, - c26,( 45%4 -1)5%6,]
c
-<%B')1626u(qs‘e;-n)l - BL-56,00256; 5% S«2 (56)

+ 56,002 CO;3 SK, CKy - €6, CO, Ca,]

Ua = (0-4)(2C0,0202520; - 2520, 520, 5%@3)
c

- (¢/-4)(2520, $2€3) ~ §L - €650, 563 S, Sk (57)
Q

t €6, 56, C6; S Cola + §6, §6a ¢, ]

Via = (QLCLA')L 2Ce, s26.C28; - 3_%9: (¥4st@a-1)s6s]

- B(COCOLCO S, Sdv + €8,C8 56, S Cdly) (58)




Uy = g&" e Lce, 52852, - s_%e (Ystea.-1) 5%;] |
(59)

-1 24' [s2e, (4s*0,-1)]
g §1 RgR AT
Uis= L 3¢’ [Ce, 520,520, ~ 520, (45%.-1) s %85)
C 3, a (60)

& %3 L s_%e. (Ys'e.-1)]

Uaz = é‘ (3'-4')[-56, 520 $28; + C20,(C%;-5%, $265)]
+y (c’-A')cte,c20;, - @ [-56.¢C6; - 56,C0.50;) A, 5K

(61)
+ (~501 56; + 56,061 06;) 54,Cay = CO, COs Calr)

Uas = %_ (8-4') L25e,caenCae, - $20; $26; (14 5%,))
~0l(-Co150:- 50,56:1C0;)54, 84, + (€04C6n (62)

= 86. §é& Sel) 'Sdl cdl]

Uay = az 2¢' [ 56,20, 526, + 520, (¢'0;- s%a,5%,)]

o9,
+2 A4' cl6, 520, (63)
¢,
38
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Uzg = % as%‘ [ se,ca0.526; + §20. (¢, - 50, 5%0,)

i (64)
".2. aﬁ' C 6.829:.
C ot

Vi = Z" (8-4')[-4Y50,520, 520; + C20,(NC%Sa-1)

= 5%, (45%0a-1)€26;] = BL(~ 502CQ; -56/C61 56 A, S,

+(- 561565 + 56,6, COy) 5K, CA ) (63
Uav = L 2¢'[256,520.026; + 5203 (Ycroa-1)
< 3, 2
i s,;e 5205 (45%,-1)) (66)
Uss = L o¢' L2 56,520.220; * .%_94 (4¢*@.-1)
C o2,
6
- s%. 520, (45%a-1) 1
&
Uy = 2:3 [ 24’ (ce.Cey- 56,56.56,) + 2*p' (Co. 503
o/ et
+ 56,50:C8;)* + 93¢’ (co,58.)'] - & (2%’ (se;ces
a¢z Cc Ml
+ 56,c0:36;)* + a‘_a: (501 56; - 6,86, COD  (68)
3¢,
+%' (ce,ce.)t] ma(_
oY}
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C Uss = 2 La_ew (C0.CO3- 50,560,560 + 2B’ (couses

6¢,&¢3
+ Se,secopt + A’ (Cosen)] L LA’ (sorce,
M:M& 2 a¢w‘
+ 56,c0150,)" 4+ 23" (56.50;- 50,C0:C0;)°
29,34, s
+ %! (coco)? - K
333, C

Uss = 3 [ 3%'(co1C0;3- 50,56:50;) + 2B’ (€O, 56;
2C Ry odt

+ 56,56.¢0,) 4 §:Cz (ce, 50 -4, [QZ; (se.ce;

+ 56,001 56:)% 4 '8’ (56 563-56,corCO)*®

C 0}
+ %' (cocou)?t + E. (70)
EY Xy
vvhere

'A' = ML Heag, - 5@, 5P + AHZ 5@,)

odt

328" = mL'( HZ2s@, - 5¢,5¢: - CPiCPy ~ 2HX Cg,)

a9,

(71)
as‘s' = mLA(-402g, - 2HXCE, - CF Cp.) '

‘

& 3¢4”& J
28" = mh¥cd.cq, + 5g,56,)
(: 26,20,
- g AR A
Keny y* 2 S R T




2

¢ a%c_a‘a 2-mL* 5@ 5@,
(] L 8

2!
T

2%’
24!

m L¥( g,czas; + HZ 5@, - 5@, 5@2)

ML H2Z5@, ~ 5@ 8§32 + HX SEz - €&, ¢, ) (70)

¢!

;qz ML"(-%C1¢; "cdt CPs + HX Saz)
>
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