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NOTE ON PRODUCTION CORRESPONDENCES WITH RAY-
HOMOTHETIC INPUT AND OUTPUT STRUCTURE

by
Rolf Fdre and Ronald W. Shephard
An output correspondence x -+ P(x) , respectively input correspondence
m

u + L(u) , that is mappings P : x ¢ R: + K(x) € 2 , respectively

RG

L:ue R: + L(u) € 2 , under weak axioms (see [4]) were defined in [3]

to be Ray-Homothetic if

P(Ax) = %—%;‘)- « P(x) » A e (0,4=) , P(x) # {0}

respectively

L(6u) = -gi(%‘l “ L(u) , 0 ¢ (0,4=) , L(u) # 0

hold. These relations are equivalent to
P(Ax) = A(A,x) * P(x) , X € (0,+) , P(x) ¢ {0}
L(6u) = 6(6,u) * L(u) , 6 € (0,+=) , L(u) #90
with

a:R, xR:" R, » ACL,x) = 8(2,0) = 1

§: R, x n:»x# , 6(1,u) = §(6,0) =1 ,




A R T

&
4
i
v
g
'v

If both output and input correspondence for the same production structure
are ray-homothetic, and 6 » 6(8,u) and X - §(A\,x) are strictly
increasing, it is implied that the production structure has both semi-
homogeneous input and output structure (see [4]).

This result was not shown in [3] and is proven here in this note.

Let x and u be a feasible pair of vectors, i.e. x € L(u) . By
the weak axiom L.4 of the correspondences x > P(x) , u > L(u) , it follows
that for all 6 ¢ (0,+~) there exists a positive scalar )\ such that

(*]
(Xe'x) € L(6u) . Using the ray-homotheticity of u » L(u) and x -+ P(x) :

AX

6
(Agx) € 8(6,u) * L(u) = s

€ L(u) o=

Aex 1
u e P(ETETET) = A(Etajcy,xex) . P(Aex) o

u

A( 1 ) € P(Aex) =

6(6,u)’A6x

u 1 .
Aex e L > 1 o 8 " 1 g ,u L(u) .
§(6,u)’" @ §(6,u)’"0

Thus,

Fa

1 sul = §(6,u)
\A(a ®,un’ Ae")

%- A(G—-(e-t;-)-.xex) s 8 € (0,4=)




and

(1) A’l(%.xex) cAlou) * 1 . 6 ¢ (0,48) .

By repeating the same argument starting with u ¢ P(x) , noting that for

all 06 ¢ (0,+) there exists a positive scalar oe such that

(oeu) ¢ P(6x) , one obtains

(2) 6-1(%,oeu) « B(6,2) = 1 , 8 ¢ (0,4=) .

Equations (1) and (2) can be written

' c(e -;—,u) = §(0,6) * A-l(%,kex) S8t (0,
@' c(e -;'-,u) - A8.x) 6-1(%.oeu) , 8¢ (0,4)

to observe that they are functional equations of the form f(w ¢ z) =

f(w) * g(z) , the general solutions of which are: (see [1])

e 6(8,u) = g% (W) s a(u) >0 , L(u) #0 , 8 € (C,+=)

2G0,x) = 08 | g(x) >0, P(x) # (0} , 0 ¢ (0,4) .
But, since

a(u)

L(6ou) = (60) * L(u)

e 02099 | Liou) = 009 . W L 1y,
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it follows that

ec:z(cm) & em(u)

for all o ¢ (0,+) , implying

a 2)
(3) 6(0;0) = 0 (IUI ) a(]%l) >0 ’ L(u) * ﬂ ’ 6 ¢ (0)"“) .
Similarly
8(5
) A(A,x) = A I"'), s(|§|)> 0, P(x) # {0}, A e (0,4) .

Consequently the input and output correspondences of the given production
structure are semi-homogeneous (see [4]). By substituting (3) and (4)

into (1) and (2) respectively, one observes that

& (IEI) Pt T
u X
*(1%)
for every feasible pair u e P(x) @ x € L(u) . Along a ray segment
{xx | A >0}, B(IEI) is constant for all x € L(u) . Thus for connected
input sets LW N L(v) ¢ @ , both a((%l) and 8(|§|) are reciprocal

constants. However, under the weak axioms for the correspondence u ¢ R:

R®
+ L(u) ¢ 2 b4 » not all input sets need be connected.
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It is of interest to consider a second proof of the problem, utilizing

the functional equation

(o o) clot) - <(2)

where o, B ¢(0,+°) and z ¢ RI . The solution of this equation is shown

by Eichhorn [2] to be

o) -1

where h(*) is positive finite and scalar valued. To pursue the issue note
that from the assumption of weak disposability i.e., L(u + u) C L(u) for
u e (1,+) or equivalently L(u) C L(68°+ u) for 6 ¢ (0,1) , it follows that

there exists a scalar Ae such that

Ae'xeL(6°u)CL(u'0'u).ur:(O.ll-

As above one obtains
-1/1
(5) A (E:Ae b x) * 6(B,u cu) =1 s 0 € (0’4-«) s U E (0’1]

Thus by (1) and (5),

(6) §(0,u) = §(B,u * u) , 6 € (0,+) , ue (0,1] .

1f Ju] > 1 take u = '%1 in (6) thus

(7) §(6,u) = 6( 0.|§1) s 0 € (0,4) , I“I 4 T




Now if ]uI e (0,1] , take A > 1 such that ]A . uI 21, and it

follows from (6) that
(8) §(6,A * u) = 8(O,A * u*u) , u and Iul £ (0,1)] , x>1.

Now take u = 1 IX C u] in (8) where lul e (0,1] , and
(9)  8(8,A ¢+ u) = 5(9,@) » 0 € (0,+), [u] € (0,1] , x> 1.

Thus by (6), (7) and (9),

A0)  6(Ou - W = 86w = 6(6,() for 8 and ue (04 .

Moreover, consider L(u * 6 * u) , 4 and 6¢ (0,+°) , then by
ray-homotheticity of the input correspondence it follows that the scaling

function 6(8,u) obeys the functional equation
(11) 6(9 s u’u) - 6(9.u 4 u) o 6(“,“) .

Now it is clear from expressions (10) and (11) that the scaling function

§(8,u) obeys the functional equation
o oo i) - oford) - ofori)
with the solution
a 2)
G(G.I%I) =6 (|u]

i.e., the input structure is semi-homogeneous.




"‘”‘& Similar arguments apply to show that the output correspondence x + P(x)

i is also semi-homogeneous i.e.,
X
B -_—
P(A + x) =) (]"')- P (x)

and as pointed out above, « (I%J) B (]fl) =1.
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