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The subject of this thesis was chosen out of an interest in the
United States Air Force space effort. It was my desire to learn more
about the Space Transportation System and to investigate the subject
of trajectory optimization as it applied to payload maximization.

The ultimate objective was to analyze an upper stage vehicle to
determine its operational limitations. .This thesis is a modification
of a number of previous theses and an application of principles that
were motivated by the work of Escobal (Ref 4). Basine (Ref 11),
Saxon (Ref 12), Tubbs (Ref 9), and Rapp (Ref 13) completed work
dealing with the time optimality of both impulsive and finite burn
orbital transfers.

I would like to acknowledge my thesis advisor, Major Gerald M.
Anderson, for the help and guidance he extended me. I would also like
to recognize the loving support and encouragement I_received from my
wife, Linda, and my two sons, Jeffrey and Gregory, throughout the

duration of this project.

Rodney A. Connell
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GA/MC/76D~6

Abstract

Payload capabilities were calculated for an expendable upper

stage vehicle compatible with the Space Shuttle Vehicle. Analysis

was performed for a four-stage vehicle that was modeled with impulsive

thrust and transfer trajectories which obey restricted two-body

equations of motion.

The magnitude of the maximum payload deployed into one of two
specified orbits when the other payload is known is solved by
breaking the four-impulse transfer into two dual-impulse transfer

trajectories. The maximum payload solution for one transfer depends

upon the specified payload of the other transfer. Each of the dual-

impulse transfer trajectories is determined by solving a quartic
\ equation in the square rdot of the semi-latus rectum of the traasfer
orbit. Maximum payload capability was dependent upon the available
impulse, the angle between terminal orbit planes, the difference in

the radii of the terminal orbits, the plane changes at departure and

arrival points, and the transfer angle. Transfer solutions were

programmed on a CDC 6600 digital computer.
Computed results indicate that the model vehicle is capable of
many non-coplanar orbit-to~orbit transfers that still yield practical

payloads. As the transfer angle deviates from the neighborhood

around 180° and the other geometrical parameters increase, the !
(

payload decreases.
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MAXIMUM PAYLOAD, FOUR-IMPULSE, NON-COPLANAR,
ORBITAL TRANSFERS FOR AN UPPER STAGE VEHICLE

OF THE SPACE TRANSPORTATION SYSTEM

I. Introduction

Background

The Space Transportation System is composed of a Space Shuttle
Vehicle, a propulsive upper stage, and numerous ground systems
necessary for support functions. The Space shuttle Vehicle,
illustrated in Fig. 1, consists of a payload-carrying Orbiter and
three external propellant tanks. The Space Shuttle Vehicle will take
off vertically from a launch pad, powered by the three main engines
of the Orbiter and the two solid rocket boosters. The solid rocket
boosters are jettisoned after their expiration. Still powered by its
main engines, the Orbiter continues ascent into earth orbit. The
external tank is jettisoned just prior to orbital insertion (Ref 2:419).
Payloads of up to 65,000 pounds can be carried in the cargo bay, which
is 15 feet in diameter by 60 feet in length. The onboard maneuvering
system of the Orbiter makes it possible to climb to an orbital
altitude of up to 250 nautical miles (Ref 1:2.5.1).

The propulsive upper stage will be carried into low earth orbit
in the paylaod bay of the Orbiter. Once on station, the bay doors
will open and the upper stage vehicle will be positioned for launch
(see Fig. 2). DOD has selected Burner II, an expendable interim upper
stage (IUS) vehicle, to perform shuttle missions until approximately

1984, at which time NASA plans completion of a fully reusable upper

. A ——p— .8 (i
Gl o et
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PAYLOAD BAY
15 FT. DIA. x 60 FT. LONG

© 3 MAIN ENGINES
470K LBS. VAC. THRUST EACN

® 2 OMS ENGINES
§000 LBS. VAC. THRUST EACH

SHUTTLE VEHICLE

® DESIGN LAUNCH
WEIGHT 4163% LBS.
© PAYLOAD
DUE EAST 65K LBS.
DESICN {104°) 32K L8S.

SOLID RNCKET BOOSTER

5 ”%gsl:g‘a? THRUST EACM i o : e
. VAC. ® DIAMETER 148 '~
® § RCS VERNIER ERCINES © WEIGHT ® LENGTN 153.9 FT.
25 LBS. VAC. THRUST EACH LAUNCH 183K LBS. ¢A © DIAMETER 330.1 IN.
© WEIGKT RECOVERY 154K LBS. cAuH © WEIGHT
DRY 150K LBS. ® THRUST LAUNCH 161K L8S.
DESIGN LANDING 187K LBS. LAUNCH  2.5M LBS. EACN USABLE PROP  1550KLBS
Fig. 1. Space Shuttle Vehicle

(From Ref 14:35)
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stage vehicle.

During a typical miésion. the Space Shuttle Vehicle delivers the
propulsive upper stage and satellite into orbit around the earth. The
Space Shuttle Vehicle releases the upper stage and satellite, as a
unit, while in this orbit. The propulsive upper stage then expends
its energy to maneuver the satellite into a different orbit around
the earth. Eventually, the Space Transportation System will allow for
placement, retrieval, and repair of orbiting satellite systems
anywhere around the earth (Ref 7:14-17).

Using Burner II design philosophy, the Boeing Aerospace Company,
Space Systems Division, has developed a family of solid rocket motor
stages, based upon a two-stage model, that meets the requirements for
a low-cost, expendable interim upper stage. Since the Burner II two-
stage vehicle model is a short, compact unit, two will fit in the
Orbiter payload bay. With a four-stage tandem vehicle configuration,
it is possible to deploy two satellites and only use one IUS vehicle.
As a result, the shuttle flights needed to launch spacecraft that use

the IUS can be greatly reduced. For this reason, this thesis analyzes
a four-stage tandem vehicle configuration. Details of the vehicle are
shown in Fig. 3. The weights and propulsion summary of the four-stage
tandem vehicle configuration under analysis appear in Table I.

Statement of the Problem

The problem is to calculate the maximum transferrable payload
capability of a four-stage solid rocket vehicle that is capable of
deploying two payload packages into two different, non~coplanar orbits
around the earth. The méss of one payload will be specified so that

with the given fixed-fuel loading the unknown payload can be maximized

A
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Table I. Model Vehicle Weights and Propulsion Summary

Total Orbiter Payload Capacity

Total IUS Weight

Stage 1

Stage Weight
Propellant Weight
Total Inert Weight
Average Thrust
Average Burn Time

Stage 2

Stage Weight
Propellant Weight
Total Inert Weight
Average Thrust
Average Burn Time

Stage 3

Stage Weight
Propellant Weight
Total Inert Weight
Average Thrust
Average Burn Time

Stage 4

Stage Weight
Propellant Weight
Total Inert Weight
Average Thrust
Average Burn Time

65,000 LB

54,700 LB

20,400 LB
18,000 LB
2,400 LB
40,000 LB
135 SEC

16,200 LB
14,000 LB
2,200 LB
40,000 LB
100 SEC

12,000 LB
10,000 LB
2,000 LB
29,000 LB

100 SEC

6,100 LB

4,700 LB

1,400 LB

14,700 LB
80 SEC
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with respect to the following parameters:
1. The total impulse available,
2. The angle between the planes in which the terminal orbits lie,
3. The orbital radius,
4. The inclination angles required to transfer from the initial
orbit into the transfer orbit and from the transfer orbit

into the target orbit, and

5. The transfer angle between the point of departure and the
point of arrival as measured between the radius vectors.

Only trajectories corresponding to the shortest transfer arc are
considered because of their faster transfer times and usefulness in
orbital rendezvous missions. The satellite or other payload weight
which is delivered by the propulsive upper stage can vary for any
particular mission as long as the combined upper stage plus payload
does not exceed 65,000 pounds.

The purpose of this study is to investigate the maximum payload
capability for a proposed tandem configuration of a propulsive upper
stage. Specifications of the vehicle being analyzed resemble the
Boeing Company's proposal that resulted in the selection of Burner II
for the IUS (Ref 10). The fundamental assumption was that the vehicle
employed impulsive thrust. Other assumptions include the following:

1. The vehicle remains in orbits about a spherical earth,

2. The vehicle is free from perturbations due to other masses,

3. The vehicle is free from drag,

4. The vehicle is moving under the influence of an inverse
square gravitational field,

5. No gravitational losses occur, and

6. All transfers are non-coplanar.

e T
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General Approach

The approach taken to solve the orbit-to-orbit transfer problem
was to determine the maximum payload mass for which a transfer
trajectory existed between points in two terminal orbits. The object
was then to define the boundaries of the vehicle's payload capability
by extending each parameter of the problem.

The four-impulse trajectory profile is a discontinuous set of
two dual-impulse transfers from a known point in the initial orbit to
a specified point in the target orbit. An additional constraint
imposed upon the problem is that each dual-impulse trajectory use all
of the total impulse available from the two solid rocket motors required
to make the transfer.

Each dual-impulse solution is in the form of a quartic equation
in the square root of the semi-latus rectum of their respective transfer
orbit. The coefficients of the quartic equation are functions of the
geometry of the transfer, the total impulse available, and the velocity
components required to maintain the specified terminal orbits.

Upon factoring the quartic equation, candidate values for the
semi-latus rectum of the transfer trajectory result. Maximum payload
is defined as that payload mass just before the condition that no
candidate values for the transfer trajectory exist. No candidate
values corresponds to the point where the total system mass is

increased until all roots of the quartic equation become complex.

Options for fixing the mass of the first payload deployed or
fixing the mass of the second payload deployed are incorporated into
the computer program. The maximum payload solution then depends

upon the value of the mass specified for one of the payloads. The

T NN TR

e




major resource required for this thesis is the CDC 6600 digital

computer.

Sequence of Presentation

The results of this thesis are presented as follows: In Chapter
11, the two-impulse transfer is analyzed. A summary of the development
of the two-impulse solution is presented. Geometry of the non-coplanar
transfer is defined. In Chapter III, the results of this thesis are
presented. Some operational limitations for the model analyzed are

defined. The thesis is concluded with a summary of conclusions and

recommendations for further study in Chapter IV.

[ e
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II. Calculation of Impulsive Transfers

Impulsive Thrust

One advantage of the impulsive thrust approximation is that it
simplifies what might otherwise have been a complicated analysis.
However, a disadvanta;e is that it is not extremely accurate. For an
impulsive thrust, the magnitude of the thrust is assumed to be
infinite and applied over an infinitesimally small time period. The
impulsive thrust assumption, therefore, is only an approximation of
the more realistic program of finite thrust. However, application of
the calculus of variations method to optimize finite thrust trajectories
generally results in a nonlinear two-point boundary value problem.
Closed form solutions of this nonlinear two-point boundary value
problem are generally not available. The numerical techniques used
to solve the two-point boundary value problem often require
considerable computer resources, time, and expense. The effect of an
impulse is an instantaneous change in velocity without a corresponding
change in position. The entire transfer trajectory is a conic section
which obeys the restricted two-body equations of motion.

In Referencel3, Rapp has shown that the impulsive solution is a
good first approximation to the finite thrust solution. In
Reference 8, Robbins presents formulas for estimating the performance
penalties arising from the ;se of impulses instead of finite thrust
for orbit transfer maneuvers. Finally, in Reference 5, Handelsman
demonstrates how gﬁessing the Lagrangian multiplier functions Ai(t)

may be eliminated by use of the 1;(0) from impulsive trajectories

10
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to initiate iteration fér nonimpulsive fixed-thrust, fixed-exhaust
velocity propulsion. The impulsive approximation becomes less severe
as the value of the thrust increases and the thrusting periods
decrease with respect to the coasting period along a thrust-coast-
thrust trajectory profile.

Maximum Payload Problem

The maximum payload is constrained by the total amount of fuel
available for the transfer. The use or ejection of fuel mass, dm,
results in an increase of velocity, dv. If the velocity and initial
mass of the propulsive upper stage at some time t is given as v, and
m,, tespect;vely, and the exhaust velocity (measured with respect to
the IUS vehicle) is given as Ves then the expression for the change

in velocity in an inverse square gravitational field is
t
AV =« ¥V - v, = -veln(mo/nﬂ - IO g(r)dt (1
If the exhaust velocity is defined as

v_ = - thrust (2)

3 Am/ bt
and gravity losses are assumed negligible, then the change in velocity

due to an impulsive thrust becomes

AV = thrust 1n(my/m) 3
Am/At

If, now, a constraint is jmposced which states that all the available
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fuel be used in the performance of cach orbital transter, then the

total change in velocity or impulse becomes

] avy =1, (4)

where AV, = the individual impulses used for transfer and

Ip = the total impulse available.
Analytical expressions for the calculation of the change in velocity
at each of the four impulsive thrusts appear in Appendix A.

Coordinate Frame

In order to generate a solution for the four-impulse problem, a
suitable coordinate system must first be selected to describe the
initial and final position and velocity components at the specified
end points. In this non-coplanar case, a rotating spherical coordinate
system, illustrated in Fig. 4, was used. The symbol 8 is a unit vector
in the radial direction, parallel to radius vector, R. The symbol v
is a tangential unit vector normal to ﬁ and in the direction of the
orbital motion. The symbol ﬁ is the out of the plane component of
the mutually orthogonal set of unit vectors that is defined by the
cross product of f) and {V

Geometry of Impulsive Transfer

The geometry for the non-coplanar two-impulse transfer is
illustrated in Fig. 5. The vehicle is orbiting the earth in an
initial parking orbit, as designated by orbit 1. There is one
instantaneous thrust from the initial orbit 1 into the transfer orbit,
occurring at the designated initial point. The change in velocity

at this point is given by.




TR e
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earth centered
inertial frame

Fig. 4. Rotating Spherical Coordinate System

13
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Direction'
of

Transfer

/////’ Orbit

Intersection of
Orbital Planes

el

1
Initial Attracting
Point Body
Orbit 1 Orbit 2
Fig. 5. Geometry of Impulsive Transfer
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-y (5)

There is a second instantaneous thrust required to transfer into the
final orbit 2, occurring at the designated target point. The change

in velocity at this point is given by
AV, =V, - (6)

The third instantaneous thrust is identical to the first thrust,
except it transfers the vehicle from orbit 2 into the second transfer
orbit. The fourth instantaneous thrust is identical to the second
thrust, except it transfers the vehicle into the final orbit 3. The

expressions for the third and fourth impulses are

v, = vT2 -V, @))
and

AV, =V, = Vo (8)

respectively. The four-impulse trajectory profile is a combination
of two dual-impulse trajectory profiles. For example, the two-
impulse trajectory profile is a direct transfer from a known point,
designated by El , to a specified point in the target orbit,
designated by ié . Another direct transfer occurs from orbit 2 to
orbit 3. The vehicle must deploy the first payload into orbit 2, so

this intermediate orbit is also the orbit in which any necessary

phasing is accomplished between maximum payload transfer trajectories.
15
W = "‘ W‘.l oy - 4 d ' 3 b o
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This would scem to he a relatively simple problem.  However, when
dealing with non-coplanar orbits and when not transferring from an
initial position along the intersection of the orbit planes, each
target position dictates a different total amount of plane change.
This plane change represents a use of the total impulse available.

Geometry of Non-Coplanar Transfer

Other geometry for the non-coplanar, orbit-to-orbit transfer is
illustrated in Fig. 6. The arrows designate the direction of orbital
motion. The parameters pictured and investigated in this study are
defined as follows:

1. A, the angle between the planes in which the terminal
orbits lie,

2. R, the radius to the target orbit,

3. 1i,, the inclination angle measured from the initial
orbit to the transfer orbit,

4. 1i,, the inclination angle measured from the transfer
orbit to the final orbit, and

5. 8, the transfer angle between the point of departure
and point of arrival.

The symbols ¢ and Yy are used to define the initial position and
target position, respectively. The initial and target positions are
referenced to the line of intersection of the orbit planes and are
positive in a direction opposing the direction of the orbital motion.
The definitions of geometrical parameters in this problem are
important in the development which follows in the next section.

Development of a Two-Impulse Solution

The solution of the four-impulse, maximum payload problem involves
the determination of two transfer conics which satisfy the position

and velocity boundary conditions of the terminal orbits and maximize




Intersection of
Orbital Planes

¢ 6

Orbit 1
(Initial)

Transf;;

e

Orbit 2
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Fig. 6. Geometry of Non-Coplanar Transfer




the payload for each dual-impulse transfer. The two-impulse transfer
conic solution follows the same development as that used by Saxon
(Ref 12). Saxon used the work of Escobal (Ref 4) as a guideline in
his development. The solution to the two-impulse transfer conic is
in the form of a fourth order polynomial in the square root of the
semi-latus rectum of the transfer orbit. A summary of the
development of the pblynomial is given in this section. A complete
development of the polynomial may be found in Appendix A of Reference
12.

The derivation of the polynomial is based on relating the
transfer velbcity vectors at the initial and target points to the
semi-latus rectum of the transfer orbit while meeting end conditions
with a given change in velocity. Using the coordinate system and
geometry defined in the previous sections, the position vectors for

the initial and target points are

R, = R, U, 9)
R, = RyU, (10)
Ry = RyU, (11)

Similarly, the velocity vectors for the initial and target points are

v, = Vxlul + v“vl (12)

Vy = Vy,U, + vyzv2 (13)

Vg = vx3u3 + vyav3 (14)
18




In the formulation of this problem, the eccentricity and distance from
the surface of the earth to orbit perigee are known. Using basic two-
body orbital mechanics, the vector quantities in Egqs. (12), (13), and
(14) are calculated directly.

In the plane of the transfer conic, the equation for the transfer
velocity vector at the initial point is

Tl = RIU.I.1 + le.rlv.rl

v (15)

where U = radial unit vector

T

« ik

VTl = tangential unit vector in the direction of orbit motion
R1 = radius to initial point

le = angle between Rl and the perigee of the transfer orbit

The general conic equation in polar form yields

R, = b (16)
1 + e, cosf
T
and s 1
R, = Ly (17)
1 + eTcos(fTl + 0)

where lT = transfer arc semi-latus rectum

er transfer arc eccentricity

6 = angle between,ii and iz

R2 radius to target point

Solving for zT from Eqs. (16) and (17); and after some other

(;? manipulations we arrive at the tangential velocity component

19




o { e (18)

where u = the gravitational constant.

The radial velocity component is

. v u/lT (1 - cosb) % ML (chose - Rl)
R, = +

1
sinb lezsine

(19)

Substituting the radial and tangential velocity components into

Eq. (15) provides the transfer velocity vector, VTI, at the initial

point as
l { % g
Vu(l - cos@)t v u(R,cos® - R )2 ™
; T + 2 1°7% U
T sind R R,sind =
L
Y u te | -
+ VT (20)
Rl 1

In a similar manner, the transfer velocity vector

. -~

T s80. »8.0 %
% " N T N

takes the following form:

;
2 | 20




~ls %
YV u(cosd - Dty .";.'(n2 - R

% cosbf) 2 &
Vp = * : ; Up
2 siné R)R,s1in0 2
Y
" te | -
+ v,r (21)
R, 2 :

Vector addition on the geometry as illustrated in Fig. 5 gives

and

AV, =V, -V

(23)
2 2 T,

By definition, since we are restricted to the plane of the transfer
conic,
v, - (vxl)u1 + (vyl)v1 (24)
and
V. o= (V. )0, + (V. )V 25
2 = W)U, + (¥ )0, (25)
The constraint that the total impulse available be entirely used can

be written

2% 2 %

(av,)  + (sz) b (26)

Squaring Eq. (26) twice and simplifying terms yields

21
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PR, r—

2 2 2 2 4
(av, - av) - 21, (av, + &V,) + I, = 0 (27
2 2
Expressions for Avl and sz are obtained by taking the dot products
2 —_ —
AVl = AV1 . AV1 (28)
AV, = AV, - AV, (29)
2 2
Substituting for av, and AV2 from Eqs. (28) and (29) into Eq. (27),

multiplying by ET , and redefining the coefficients of powers of lT
yields

4 3 2
Ay +By +Cy +Dy+E=0 (30)

i

where y = lT .

The coefficients of Eq. (30) are defined as follows:

2 2
A = Bl - ZITB[.
2
2 2 4
2
2 2

Expressions for the £ values appear in Appendix B and are functions

22




S S, e

Tk -

of the following:
1. The velocity components necessary to maintain the initial
and target orbits,
2. The plane change angles,
3. The transfer angle, and
4. The radius of both the initial and target orbit.

Solutions to thé transfer from the initial orbit to the
intermediate orbit are computed using one polynomial. Transfer from
the intermediate orbit to the final orbit simply requires reimplemen-
tation of thg polynomial expression whose derivation is summarized
above. The fourth order polynomials in the form of Eq. (30) are
factored using a FORTRAN extended subroutine called DMULR. DMULR
finds all the complex roots of a polynomial with real coefficients
and uses double precision arguments. Upon factoring the quartic
equation, four values for the semi-latus rectum of candidate
trajectories resulted. Normally two values were complex while the
other two values were real. If too much impulse was available, then
all four roots of Eq. (30) could be real and all four transfer
trajectories were possible candidates. If insufficient impulse was
available, then all four roots became complex and no candidate was
assumed to exist for the transfer trajectory.

Having completed the transfer solution to a given orbit, the.
total vehicle mass was thén increased and the procedure repeated.
The maximum payload mass was defined as the mass just before all the
roots became complex. This condition corresponded to no possible

trajectory for the increased payload mass or, equivalently, no
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possible trajectory for the available impulse.
k
With a value of the square root of the semi-latus rectum, L »
of the transfer trajectory, a transfer velocity vector could be

evaluated. Knowing the transfer velocity and corresponding position

allowed the determination of all the classical elements of the transfer

arc by means of the equations of two-body orbital mechanics. If the

coplanar case were of interest, the angles il and 12 ,» which

define the plane changes required at the initial and target points,

are set equal to zero.
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IIT. Results

Normalized System of Units

To simplify the computer programming and the input and output

data, a standard set of geocentric units were used. The unit of

distance, 1 DU, is defined as the earth's mean equatorial radius. The

unit of velocity, 1 DU/TU, is defined by the velocity of an object in

a circular orbit of radius 1 DU. For this set of units, the value of

the gravitational constant, u , is 1 DU3/TU2 . The conversion from

English units to canonical units are given by

-4

l1 nmi. = 2.903656x10 DU
-3

1 sec = 1,239444x10 TU
-5

1 ft/sec = 3.855604x10 DU/TU

This set of values was extracted from Appendix A of Reference 3.

Comments on the Computer Program

To perform the four-impulse transfer, maximum payload transfers

were computed in two steps. The first transfer was from the initial

to the intermediate orbit. The second transfer was from the

intermediate orbit to the final orbit. The weight of the vehicle

before departing from the initial orbit included four solid rocket

motors and two separate payloads. At the intermediate orbit, the

first payload was deployed. The first and second solid rocket motors

were assumed to be jettisoned after their use. The weight of the
vehicle before departing from the intermediate orbit, therefore,

included the remaining twp solid rocket motors plus the remaining
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payload.

Between each orbit éhange there occurs two impulses and two plane
changes. The plane change at the initial point of each orbit change
was through an angle 11 and at the final point was through an angle
12 (see Fig. 6). Because the spherical trigonometric relationships
held true only for orbits of the same altitude, departure and arrival
points on terminal orbits of different altitude were specified by the
transfer angle only.

Data read into the main computer program included:

1. The eccentricities (e = 0) of the initial, intermediate,
and final orbits,

2. The radial distance above the earth's surface of each
orbit,

3. The average thrust for each of the four solid rocket
motor stages,

4. The average burn time for each of the four solid rocket
motors, and

5. The stage weight (propellant, structure, and motors)
for each of the four solid rocket motor stages.

In addition, one payload weight and the orbit in which it was to be
deployed was specified.

In subroutine TRAJ, the eccentricity and semi~-major axis of the
transfer trajectory were computed. Also, the total impulse available
was checked for each possible trajectory to insure that impulse
constraints were satisfied.

Payload Definition

In this thesis, the payload weight is defined to be the useful
payload unloaded at the destination plus any weight due to supporting

structures, such as a housing container. One exception is made to
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this attempt to standardize the detinition of pavioad throughout the
thesis. This exceptionAoccurs whenever the solution to the maximum
payload is sought for the first orbit transfer from the initial orbit
to the intermediate orbit and the payload into the intermediate orbit
has been specified. In this case, the payload weight includes the
third and fourth stage weights plus the weight of the payload being
carried into the finzl orbit. Consequently, this defines the entire
useful payload unloaded at the intermediate destination and, in a way,
is consistent with the original definition.

Maximum Payload Capabilities

The figures and tables presented in this section are all obtained
using the model vehicle weights and propulsion specifications that are
listed in Table I. Results for a vehicle with different weights and
propulsion specifications are presented in Appendix C.

Payload values presented in the figures and tables that follow
apply to the capability of the four stage IUS after it has been
released from the Orbiter. If the IUS and the two payload packages
must be delivered by only one Space Shuttle Vehicle, then the total
payload values plus IUS weight could realistically not exceed about
62,500 pounds. (A remote manipulator arm system that prepares the
1US for launch from the Orbiter is assumed to weigh 2,500 pounds.)

Of course, larger payloads can be realized for some transfers if the
IUS and the two payload packages are delivered to the initial orbit
by more than one Space Shuttle Vehicle. In the computation of
maximum payloads, five parameters were considered because they affect

payload.
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Angle Between Orbit Planes. The maximum payload trend that

results when the angle between the planes of the terminal orbits
increases is illustrated in Fig. 7. The maximum deliverable payload
into the final orbit decreased steadily as the angle between the orbit
planes increased. For example, a payload of 4000 1lbs can be transferred
to a final orbit within a 55° plane separation of the intermediate
orbit. Parameter v#lues for a 10° inclination angle from intermediate
orbit to final orbit appear in Table II.

It is of interest at this point to mention the results that have
been recorded by Porter (Ref 6:640). Porter concludes that the fixed
two-impulse'system can deliver the design payload mass to a final
orbit within a 30° plane separation of the intermediate orbit.

Radius to Target Orbit. The radius of the intermediate and final

orbits were varied. For a range of inclination angles, Fig. 8
demonstrates that payloads, for example, of approximately 4000 lbs
can be placed into synchronous orbit. But, as the radius to the
target orbit increases, the maximum payload decreases. Also, the
maximum payload will decrease as the inclination angles increase.
Table III shows a decrease in the maximum payload also occurs when
there is a decrease in the transfer angle.

Inclination Angles. The determination of the maximum payload is

dependent upon the total plane change required at the terminal points
of the initial and target orbits. The relationship between the
angles of these plane changes and payload are illustrated in Figs. 9
and 10. Again, payloads-of 4000 1bs can be transferred to synchronous

orbit if the required plane change, jl' from the intermediate orbit to
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the plane of the transfer trajectory is within approximately 26

For a range of values of i,, Fig. 10, for example, shows that for a
plane change, 12, within approximately 400. tke model vehicle can
deliver a 4000 1b payload.

Transfer Angle. The transfer angle between departure and arrival
points, as illustrated in Fig. 11, is another factor in the analysis
of maximum payload capabilities. As the magnitude of the transfer
angle departs from 180°, the payload decreases rapidly. The maximum
payload also decreases when the vehicle must transfer between orbits
requiring increased plane changes. In addition, Table IV demonstrates
that, again, the maximum payload is found to decrease as the radius of
the target orbit increases. A 5000 1b payload, for instance, can be
delivered to synchronous orbit if the transfer angle is within +10°
of 1800. But, the maximum payload decreases to 3000 1lbs if the

transfer angle falls within +40°.
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V. Conclusions and Recommendations

Summary of Conclusions

Utilizing an expendable, four-stage vehicle, this thesis has
explored the maximum payload capabilities of one possible
configuration of a Burner II type vehicle to perform non-coplanar
orbit-to-orbit transfers. The maximum payload values for transport
from a low earth orbit to orbits at approximately geosynchronous
altitude are included. This range includes a majority of missions
planned for utilization of the Space Transportation System during the
decade of the 1980s.

An impulsive thrust assumption allowed calculation of maximum
payload weights to be obtained for a range of geometrical parameters
within the performance capabilities of a four-stage solid propellant
propulsive upper stage. This impulsive thrust assumption allowed the
four-impulse, maximum payload problem to be considered as two duval~
impulse problems, whose solutions were in the form of two quartic
equations in the square root of the semi-latus rectum of the transfer

orbit. Geometry considerations and constraints on the available

impulse permitted investigation of maximum payload transfer trajectories

in light of the following parameters:
1. The angle between the planes in which the terminal
orbits lie,
2. The radii of the terminal orbits,
3. The inclination angle from the initial orbit into the
transfer orbit,
4. The inclination angle from the transfer orbit into

38




the target orbit, and

5. The transfer angle between the radius vector to the point

of departure in the initial orbit and the radius vector

to the point of arrival in the target orbit.

Results of the parameter study reveal an additional mission

flexibility beyond that of a Hohmann-type transfer for a solid rocket

motor IUS vehicle. Many non-Hohmann orbit transfers are within the
capabilities of vehicles like the Boeing Burner II. They offer
considerable savings in mission time. Through some of these non-
Hohmann transfers sufficient payload mass can be delivered to make
this vehicle a worthy choice for earth orbital missions using the
Space Transportation System.

Recommendations for Further Study

The results obtained in this study can be extended in the
following manner:

1. Use the more realistic theory for finite thrust to set up a
nonlinear two-point boundary value problem. By numerical methods,
the solution will result in more realistic values of the maximum
transferrable payload.

2. Investigate both impulsive and finite thrust solutions for

orbits that are not circular but exhibit some eccentricity.
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Expressions for the Calculation of Impulses

1f the total vehicle system mass, M, is defined as

M = M1 + M2 + PAYLOAD #1 + M3 + M4 + PAYLOAD #2

where
Ml = (Ml)propellant + (Ml)inert
M2 = (M2)propellant + (M2)inert
M3 = (M3)propellant + (M3)inert
M4 = (M4)propellant + (M4)inert

then, the impulses for each stage are given by the following:

(Thrust) ; (Burn Time); 1ln M
AV1 = (Ml}prop M - (Ml)prop
(Thrust) ,(Burn Time), 1ln M - Ml
av, = (M2)prop . M - Ml - (M2)prop
(Thrust) ,(Burn Time)3 1n [- M - Ml - M2 - Pay#l
AV, = (M3Yprop | M - MI - M2 - Pay#1 - (M3)prop
(Thrust), (Burn Time), 1ln M - Ml - M2 - Payffl - M3
AVA = (M4) prop & M - Ml - M2 - Pay#l - M3 - (M4)prop

4?2
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Appendix B

Expressions for Coefficients of the Quartic Equation

2

Aya + By3 +Cy“"+Ddy+E=0

Y
where y = lT .

A = 8] - 2158,

B = 28,8, - 2128,

C = 28,8, + 85 - 21285 + It
D = 28,85 ~ 2178

2
E = 85 - 218

7

L a, = ag
By~ 8y =4
iy = Ay =y
By = 20

85 =a, + %
86 - g + ay
By = 20,

88 - ag + ag

2 2

ay = wy + w3
ap = '2(“’2‘]"1 + w3vylcos11)
(!3 3 -Zwlvxl
%wrh

= v2 + 2
- SR e
116 = —2(w4vx2 + (.)SVYZCOSiZ)
u7 = Qm]Vx

gy = VZ - Bmlmh
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v ;x. (1 - cosf)

siné

 u (Rycos8 - Rl)

lezsine
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Appendix C

Plots of Computer Results for a Second Vehicle

Table V. Another Model Vehicle's Weights and Propulsion Summary

Total Orbiter Payload Capacity

Total IUS Weight

Stage 1

Stage Weight
Propellant Weight
- Total Inert Weight
Average Thrust
Average Burn Time

Stage 2

Stage Weight
Propellant Weight
Total Inert Weight
Average Thrust
Average Burn Time

Stage 3

Stage Weight
Propellant Weight
Total Inert Weight
Average Thrust
Average Burn Time

Stage 4

Stage Weight
Propellant Weight
Total Inert Weight
Average Thrust
Average Burn Time

65,000

51,000

24,000
20,000
4,000
42,000
140

12,000
9,500
2,500

14,000

100

12,000
9,500
2,500

14,000

100

3,000
2,300

700
6,000

LB

LB

LB
LB
LB
LB
SEC

LB
LB
LB
LB
SEC

LB
LB
LB
LB
SEC

LB
LB
LB
LB
SEC
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Appendix D

Listing of Computer Program

In the pages of this appendix appear the computer program that

was used to obtain data for this thesis.

In order that readiag these

pages might be alittle easier the following synonyms are defined:

Ml
M2
M3
M4

M
LOAD

PAY

TH3
TH4
BT1
BT2
BT3
BT4
PDAES1
PDAES2
PDAES3
EX1
EX2
EX3

XINC1
XINC2
THETA
SMAXIS
TIMP
XIMP/SIMP
MI1P
MII
M2P
M21
M3P
M31
M4P
M4I

stage weight
stage weight
stage weight
stage weight

of SRM #1 (1bs)
of SRM #2 (1bs)
of SRM #3 (1bs)
of SRM #4 (1bs)

total upper stage vehicle weight

1 means payload to be unloaded into intermediate orbit
2 means payload to be unloaded into final orbit
‘designated payload mass

average
average
average
average
average
average
average
average
parking

total impulse used

thrust of
thrust of
thrvst of
thrust of
burn time
burn time
burn time
burn time

SRM #1
SRM #2
SRM #3
SRM 4
of SRM
of SRM
of SRM
of SRM

(1bs)
(1bs)
(1bs)
(1bs)
#1 (sec)
#2 (sec)
#3 (sec)
#4 (sec)

orbit distance above earth's surface (DU)
intermediate orbit distance above earth's surface (DU)
final orbit distance above earth's surface (DU)
eccentricity of parking orbit

eccentricity of intermediate orbit

eccentricity of final orbit

eccentricity of transfer orbit

inclination angle between initial orbit and transfer arc
inclination angle between transfer arc and target orbit
angle between position vectors

semi-major axis

total impulse available
propellant weight of SRM #1 (1bs)
inert weight of SRM #1 (1bs)
propellant weight of SRM #2 (1lbs)
inert weight of SRM #2 (1bs)
propellant weight of SRM #3 (1bs)
inert weight of SRM #3 (lbs)
propellant weight of SRM #4 (1bs)
inert weight of SRM #4 (1bs)
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