
F l y — --
A O—A03’e 756 NEw YORK UNIV N Y COURANT INST OF MATHEMATICAL SCIENCES Pfl 5/7

MAKING COMPUTATIONAL SFNSE 0’ MONTAGUE’S INTESIONAL LOflC.(U)
CCC 76 .i * HOleS. S J ROSfl,SCHEIN N000l%—75—C—05 71

UNCLASSIFI CO ISO—fl It
I or I

AD
A034155

1r~j~ flL--M

Courant Computer Science Report #1 1
~3. January 1977

~Jq)

Making Computatio nal Sense of
Montag ue’s Intension a l Logic

Jerry R. Hobbs and Stanleyj. Rosenschein

• ~~p

I ’ Approved for public releais~Distxibution UnlimitedCourant Inst itute OT
_ _ _ _

Mathematical Sciences D D C
Computer Science Department

1U~
JAN 25 1977

_ _ _ New York University ~ [jjj
~~L~u LI

_ _ _ _

Report No. NSO-1 1 prepared under Contract No.
N00014-75-C-0571 with the Office of Naval Research

~~~nr ~~~~~~ 
-

~~~~~ r 
-

-

COURANT COMPUTER SCIENCE PUBLICATIONS
Price

4
COURANT COMPUTER SCIENCE NOTES

Programm ing Languages and Their Compilers , J. Cocke and $23.00
J. T. Schwartz , 2nd Rev i sed Vers ion , Apri’ 1970 , iii+?5 ? pp.

On Programm ing : An Interim Report on the SElL Project. 20.50
Part I: Generalities
Par t II: The SETL Language and Examples of Its Use
(Parts I and II are consolidated in this volume.)
J. T. Schwartz , Rev i sed J une 1975 , xii#675 pp. t

A SETLB Primer. H. Mullish and N. Goldstein , 1973, v#201 pp. 6.25
Combinatorial Al gorithms. E. G. Whitehead , Jr. , 1973, vi#104 pp . 3.25

COURANT COMPUTER SCIENCE REPORTS
No. 1 ASL: A Proposed Variant of SElL

Henry Warren , Jr., 2973, 326 pp.
No. 2 A Metalan guage for Expressing Grammatical Restrictions

in Nodal Spans Parsing of Natural Language.
Jerry R. Hobbs , 1974, 268 pp.

No. 3 Type Determination for Very High Level Languages
Aaron N. renenbaum , 2974, 171 pp.

No. 4 A Comprehensive Survey of Parsing Algorithms for Programming
Languages. Phil lip Owens. Forthcoming.

No. 5 Investigat Ions in the Theory of Descriptive Complexity .
W Illiam 1. Gewlrtz, 1974, 60 pp.

No. 6 Operating System Specification Using Very High Level Dictions.
Peter Marksteln , 1975, 152 pp.

No. 7 Directions In Artificial Intelligence: Natural Language
Processing . Ed. Ralph Grlshman , 29 75, 10? pp.

No. 8 A Survey of Syntactic Anal ysis Procedures for Natural Language.
Ralph Grishman , 1975, 94 pp.

No. 9 Scene Analy sis: A Survey . Carl Welma n , 1975, 82 pp.
No. 10 A Hierarchi cal Technique for Mechanical Theorem Proving

and Its Application to Programming Language Desigj~.Norman Rub In , 1976, 272 pp.
No. 11 MakIng Computational Sense of Montague ’s Intens ional Logic.

Jerry R. Hobbs and Stanley J. Rosenscheln , 19?? 41 pp.

A catalo g of SElL Newsletters and other SElL-related
mater ial Is also available. Courant Computer Science
Reports are available upon request. Prepayment Is
requ ired for Courant Computer Science Notes. Please
address all communications to

COURANI INSTITUTE OF MATHEMATICAL SCIENCES
251 Mercei Street

New Yor k , N. Y. 10012

--.-

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ _ _ _ _ _ _  

___________________
_ _ _ _ _ _ _  - - -~~~~~~ _ _ _ _



—

-

COUR~NT INSTITUTE OF MATHEMATICAL SCIENCES

t

Computer Science NSO-l1

MAKING COMPUTATIONAL SENSE OF

MONTAGUE ‘ S INTENSIONAL LOGIC ~~~~~~~ f~
Wlhte $ect~~DOC ~~~~~ ~~Jerry R. Hobbs ci

Department of Computer Sciences 
____

City College, CUNY 
p 

—

and

Stanley J. Rosenschein

Courant Institute of Mathematical Sciences *

New York University

*Present address:
Department of Computer Science
Technion - Israel Institute of Technology
Technion City, Haifa, Israel

Report No. NSO-ll pr.pared under
L Contract Number N00014—75—C—0571

with the Office of Naval Research

— -, .,— .—- —~~~~— — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~ 

—— -5-

:r~

I’—. ~~~~~~~~~~ -
- -

Table of Contents

Chapter Page

1 . Introduction . 1

2. Montague’s Formalism...... 6
3. Exam ples. .13
4. Correspondences with LlSP......................24

5. Context and Expectation......32
Footnotes. 38
References. 39

t

I
I -

~~~

(.

I ~

- —l ii-
i .-

I _ _
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ________


— - - --- — - -~-~~~~~ —~~~~ -— - ~~ ~~~~~~~~~~~~~~~~ —•~~--~~ • — -.

ACKNOWLEDGEMENTS

We are indebted to Ralph Grishman and Richard Smaby

for their valuable suggestions. This work was partially

supported by ONR Grant N00014-75—C-0571 and CUNY Faculty

Research Award Program Grant No. 11233.

- .
. .

~~- ~~~~~~~~~~~~~

-

- —5— - _ _ _ _ _ _ _ _ _ _________
_ _ _ _ _ _ _

MAKING COMPUTATIONAL SENSE OF

MONTAGUE ‘ S INTENS IONAL LOGIC

ABSTRACT

Montague ’s difficult notation and complex model theory

have tended to obscure potential insights for the computer

scientist studying Natural Language. Despite his strict

insistence on an abstract model-theoretic interpretation

for his formalism, we feel that Montague’s work can be related

to procedural semantics in a fairly direct way. A simplified

version of Montague’s formalism is presented, and its key
concepts are explicated in terms of computational analogues.

Several examples are presented within Montague’s formalism

but with a view toward developing a procedural interpretation.

We provide a natural translation from intensional logic into

LISP. This allows one to express the composition of meaning

in much the way Montague does, using subtle patterns of

functional application to distribute the meanings of individual

words throughout a sentence. The paper discusses some of the

insights this research has yielded on knowledge representation

and suggests some new ways of looking at intensionality,

context , and expectation .

_ _

_____-

~~~~~~

r

~ 

_ _ _ _

‘lx. .x~’- .~ ~~~~~

—5:



1. INTRODUCTION

A worker in natural language is likely to find his

first encounter with Montague granunar and intensional logic

a rather unsatisfying experience. He finds that English

sentences are supposed to acquire meaning by being mapped

into a universe of possible worlds, of infinite Bets and

functionals of functions on these sets. He finds, for

example, the word “be” defined as a functional mapping a

function from possible worlds and points in time into entities

and a function from possible worlds and points in time into

functions from possible worlds and points in time into func-

tionals from functions from possible worlds and points in

time into entities into truth values into truth values into

truth values) It is difficult for him to see how such a

representation can help with any of the problems he faces,

either linguistic problems, such as devising representations

for context and expectation and algorithms for finding ante-

cedents of pronouns and resolving ambiguities, or task problems,

such as question-answering and converting natural language

input into the directed behavior of some device. In short,

he questions its relevance to someone whose work and theory

must be grounded in the need to produce working computer

programs.

In this paper, we suggest that despite Montague’s

difficult notation and the complex model-theoretic interpre-

tation for his formalism, there are many potential insights

—1•-

— . U-. - — — 5— ~ — 
~~ 

—:~ ~~~ 
— .~ T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

‘C 

~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ‘~~~~~ ~~ 
_•1~

.
-5- —------ --—-—-- —-— —-5—- - - ------5-—

in Montague for the computer linguist. Montague’s method

involving subtle patterns of functional application, repre-

sents an interesting way of distributing meanings of individual

words throughout a sentence. We show how this method can be

used ccmtputationally by relating Montague’s work to procedural

semantics in a fairly direct way. In addition, we indicate

how the method might be extended to handle certain aspects

of context.

Much work has been done on Montague grammar and on

relating intensional logic to the semantics of English. We

will not review this literature here. Rather, we will take

Montague (8) as the key paper and representative of the

approach. Additional material can be found in (9] and (11).

Montague’s method for assigning meanings to English

sentences involves three distinct phases. An English string

is assigned a syntactic analysis with respect to a categorial

grammar. This is translated into an expression in the

language of intensional logic. Finally, this expression

undergoes model—theoretic interpretation.

Montague ’s language of intensional logic is a typed

lambda calculus . In this l anguage he constructs a generally

complex formula representing a pattern of composition and

application of functions, ultimately derived from the basic

terms of the language, such terms as man, seek, run, etc.

The meanings of surface words are taken to be very abstract

functions, which take as arguments other such functions.

—2—

Things “work out” , so that the function assigned as the

meaning of a declarative sentence evaluates at a possible

world and point in t ime to true or false . Part of the

attraction of Montague ’s treatment lies in the way he

manages to mesh a complex system of meaning assignments in

a mathematically precise way so that the meanings do work

out , with the exact details illuminating some classic

problems of semantics , including intensional predicates and

referential and nonreferential terms .

The goal of any semantic theory is to express English

strings in terms of an “antecedently understood” metalanguage

[11]. The metalanguage of set theory has been a favorite

choice this century . Meanings for Montague are ultimately

abstract set-theoretic constructs, in the tradition of

Tarskian model-theoretic semantics (131. But while these

constructs may be antecedently understood by humans, they

certainly are not antecedently understood by computers, and

Montague makes no claim for their being computable in any

sense.

To make sense to the computer linguist, something

must be reduced to implementable procedures. The meaning of

an expression is then the behavior of the procedure it is

transformed into. Thus, while he often uses formalisms that

look very much l ike those of the logician, the computer

linguist is after a quite different type of semantic theory,

one which is ultimately machine-theoretic rather than rodel-

theoretic in its orientation (see also Davies and Isard [1),

—3—

Isard [3] and Joshi and Weischedel (5]),

What guidelines, then, can Mongatue, the model-theorist,

give the computer linguist in the task of working out the

details of a procedural semantics for natural language? While

it is true that Montague’s semantic constructs generally

in;olve infinite sets and functions on them, failing compu-

tability on most counts, Montague has made a significant contri-

bution to the computational semanticist by showing possible

formats for the representation of meanings of individual

words and mechanisms for the combination of meanings which

are considerably more elegant than most computational alterna-

tives now in use. By replaciig the bottom layer of Montague’s

model-theoretic edifice with an appropriate set of procedures,

we hope to preserve computability while still maintaining the

basic framework of Montague gr~~m%Ar. We hope to convey those

aspects of Montague grammar which should be of interest to

the artificial intelligence researcher working on knowledge

representation, and to the computer linguist in particular.

In Section 2 we give an outline of the main features

of Montague’s formalism. In addition we suggest ways in which

a computer scientist might think of its key concepts.

Section 3 gives several Montague-style examples together with

simple procedural, or machine—theoretic, interpretations.

Section 4 describes the very little that needs to be done to

Montague ’s expressions in intensional logic in order that

they be directly interpretable as expressions in an existing

programming language, LISP, augmented by a small suitable set

—4—

_ _ _ _

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_ _ _ _ _  - - ~~~~~~~~



of primitive functions. This result then demonstrates that

4 the rather extensive research in M ntague grammar is quite

compatible with research in procedural semantics (e.g. [15],

(14)). Furthermore, Montague’s very fruitful approach to

the problem of structuring functional -- and by extension,
procedural -- knowledge indicates how the method of procedural
semantics can be sharpened in just that respect which has

caused it most to come under attack: the ad hoc character

of its definitions. In Section 5 we speculate on what light

this approach may throw onto the nature of context and

expectation.

-5-

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ - - —  
~~~~~~~~~~~~~ , Z ; ~ -~~~~~~~-~~W------ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~ ~~~~~~ - ~~~~~~ ~~~~~~~~ 


2. MONTAGUE’S FORMALISM

This exposition will follow that of Montague (8] and

use the more standard features of his notation, but will

give only those rules necessary for the examples in this

paper. A few rules are added to handle one example.

The categorial grammar used for syntactic analysis of

English strings consists of categories into which English

words and phrases may fall and rules for combining words and

pharses of various categories into larger phrases and sentences.

The categories, with examples of words (or basic expressions)

that belong to them, are as follows:

Truth values: t (no basic expressions)

Entities: e (no basic expressions)

Intransitive verbs: XV: rise, trot

Terms: T: ninety, he0
Transitive verbs: TV: seek

Common noun phrases: CN: man, frog, horse,

temperature

Adverbials: IAV : rapidly

Attributive adjectives: Adj: slow. 2

Phrases of the various categories may be built up out of

basic expressions by the following rules (morphological

fineries are ignored):

(1) (Article + Common Noun Phrase) . If ~ is in category CN,

then P0(ç), F1(~), F2(c) are in category T, where F0(c)

— every C , F1(C) the C, F2(C) — a C.

—6—

(2) (Subject + Verb Phrase) If a is in category T and

~5 is in category IV, then F4(a,6) is in category t,

where F4(a ,6) = a6 .

(3) (Transitive Verb + Object) If 6 is of category TV

and B of category T, then F5(6,B) is of category IV,
where F5(6 ,B) 68.

(4) (Verb Phrase + Adverbial) If 6 is of category IAV and

B of category IV , then F7(6 ,8) is of category IV,

where F7(6,~) = 86. (Note: This is the only syntactic

rule which reverses the order of the elements.)

(5) (Attributive Adjective + Common Noun) If 6 is of

category Adj and B of category CM, then F.,(6,B) is of

category CN, where F. (’5,B) = ‘58.

(6) (Conjunction) If ~~ are of category t, then so is

F8(+,4,) where F8($,4~) • and p .

(7) (Quantification) If a is of category T and not

and • is of category t or IV and contains ~~~ , then

F,0 (a,~) is of the same category as •, where-~~

F10 ,~~(a~ +) = 4 ’ , where ~~~‘ is like • except that the
first occurrence of has been replaced by a.

This completes our discussion of the syntactic rules. We now

present the language of intensional logic.

The basic types of Montague’s intensiona]. logic are

as follows:
t = truth values;
e — entities;
s possible world — point in time pairs.

—7—

• - - - * •— - .*.__s_..r_* * .. 5 ... ~. ~~~~~~~~~~~~~~~~~~~~~~~~ __ - -~ - -

r ~~~~~~
- - ---•5-------- ------—--

-- -

A possible world - point in time pair will be called a point

of reference.

Higher types are built up as follows: If a and b are

types, then <a,b> is the type consisting of all functions

from a to b. Expressions in intensional logic may be built

up from constants and variables of each type and from other

expressions by means of logical connectives, ç uantification,

temporal and modal operators, functional application, and

lambda abstraction. For example, if u is a variable and a and

B are expressions of the appropriate type, then

a V 8 (Yu)a , 0 a , Aua , a(8)

are also expressions. In addition, if a is an expression of

type a, then ‘~a (called the intension of a) is an expression

of type <s,a> . If a is an expression of type <s,a> then ‘a

(called the extension of a) is an expression of type a. The

extension operator ’ applies a function whose domain is

points of reference to the current point of reference. The

intension operator A applied to an expression creates a

function whose domain is points of reference and whose value

at each point of reference is the expression. (To reduce

parenthesizing, we assume A and ‘ apply to the smallest

meaningful expression to their immediate right.)

The types do not occur arbitrarily in the analysis of

English . Certain types turn out to be the most useful , and

for these key types it is worthwhile developing our intuitions

by describing computational analogues. For this purpose, let

—8—

- -

~
-
~~,

-:-
~~~~

-- ,:--:-
~

-‘ 
~~~~~~~~~~~~~ 

•——--

~
:——--

~ ~~~~~~~~~~~~~~~~~~~

~~~~~ 
‘
~~~-~

•
~~ ~ ~~:~ •~~-4

- - - - -

us assume that a point of reference corresponds to a possible

state of the machine at a particular moment in time. Then

the extension of an expression a, ‘a , may be viewed as the

evaluation of that expression with respect to the current

state of the machine. The intension of a, ~a , on the other
hand, represents an object which when evaluated with respect

to any state of the machine will return the value of a in

the current state. In Section 4 these notions will be refined,

and some necessary elaboration will be presented.

The type e may be viewed as the set of constants of the

“data type” available in a computer program, e.g. numbers.

Type <s,e> is the set of functions from points of reference to

entities. When evaluated, they give an object of type a,

a constant. Thus, as a first approximation, we may view an

object of type <~ ,e> as a simple variable. It associates a

constant with any current state of the machine. In particular,

the parameter of a procedure which evaluates to a constant

is of type <s,e>. This initial intuition is useful, but it

will have to be modified somewhat in Section 4 below. In

addition the first example of Section 3 views objects of

type <s,e> in a slightly different light.

An object of type <Cs,e),t> maps a variable into a

truth value and thus may be thought of as a call-by-name

procedure of one argument which returns a truth value. (This

will hereafter be called simply “a procedure”.) An object of

type s,<<a,e>,t)), for any current state of the machine

—9—

—•.~ -
- : ~~ ~~~

-
~: - •

- ~~~~
-
~

-•-
‘~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~

evaluates to a procedure, and thus may be thought of as a

procedure name. Such a name may be attached to the same

procedure throughout the operation of a program, or it may

change. An object of type <<s,<<.,e),t)),t> maps procedure

nanes into truth values and thus may be thought of as a

call—by—name functional. Objects of type <e,<<s,<Cs ,e),t>>,t)>

arc variables ranging over functionals, hence functional names.

Predicate modifiers like the English word “rapidly” are

realized as higher functionals of type <<s,<<s,e),t>),<<e,e),t)’>,

which maps, procedure names (e.g. the procGdural interpretation

of “walks”) into procedures (e.g. the -procedure for “walks

rapidly”). Transitive verbs such as “seek” and “be” are

realized as objects of type <<s,<<s,<cs,e>,t>> ,t>>,<<s,e>,t>> .

This is a higher functional taking two arguments -- the first
a functional name representing the direct object of the verb,

the second a simple variable representing the subject of the

verb.

In what follows, x, y, z will be used as variables ranging

over objects of type <s,e , simple variables; P, Q, R over

objects of type ca ,<cs,e>,t>>, proct dure names; and P over

functional names of type <s,<<s,<<s,e>,t>> ,t>>.

The rules for translation from syntactic representations

to expressions in intensional logic are as follows:

(1) The English words “man”, “frog”, “horse”, “temperature”,

“rise ” , and “trot” are mapped into MAN, FROG, HORSE,

TEMPERATURE, RISE, and TROT, respectively, where these

—10—

1-
are objects of type c<s,e>,t>. For Montague they are

functions, i.e. sets of ordered pairs; we may view them

as the procedures in a computer program which recognize

or define the properties of “man ”, “frog”, etc. “Slow”

and “rapidly” map into SLOW and RAPID, respectively,

which are of type <<s,c’s,e> ,t>),<<s,e> ,t>>. “Seek” maps

into SEEK , of type ccs ,<cs,<<s,e>,t>> ,t>> ,<<s,e>,t>> .

(2) “Be” maps into the expression AP Ax [’P (’A y (’x =

(3) “Ni nety ” is mapped into XP [’P(” n)] where n is an

entity of type e.

(4) “bet” is mapped into XP(’P(xj)l where Xj is the j~th

variable of type <s,e>.

In the remaining rules, a’ signifie8 the translation

of a under the rules.

(5) Every C : F0
(C) is mapped into XPUVx) (C ’(x) ~

the C: P1(ç) is mapped into)iP[E3y)((Vx)(C ’(x) x—y) & ‘P(y))J

a C: F2(C) is mapped into XPI(3x)(C ’(x) & ‘P(x))]

(6) F4(6,8) is mapped into 6’(’~B’)

F5(6,B) is mapped into ‘5’(’B’)

F7 (6 , 8) is mapped into 6 ’ (A B ’)

is mapped into 6’(’~~’)

(7) F 8 (a,8) is mapped into a S B -

(8) F10 (a,$) is mapped into a’(”Ax $‘) if a is ofn
category T and $ of category t.

F1o,n(a,ô) is mapped into Ab ’ (”Ax [6’(y)))) if a is

of category T and 6 of category IV.

—11—

_________ —

-

~

—
- -

~~
-

~~~
- —v- -- -r — —

~

——-

~

--- 



Thus, most concatenations of words in English are translated
into functional applications in intensional logic.

Montague presents a standard model-theoretic interpre-

tation for the expressions of intensional logic. We will

not outline the details, for our interpretations will be

quite different. Objects in intensional logic will be

interpreted as constants, procedures, and functionals in a
computer program.

t
-ì

-12- —

- ____

~ 

~~~

-—---- — - - -
~~~
----- -

~~~~•


—

3. EXAMPLES

3.1. Consider th~ sentence

The temperature is ninety and the temperature rises. (1)

This sentence has been of interest (8] because if “be” is

viewed as equality and therefore as a symmetric and transi-

tive relation,

Ninety rises

follows.

The syntactic representation is

F8 (F4 (F1 (temperature) ,F5(be,
ninety)) ,F4(F1(temperature) ,rise))

(2)

The translation rules map this into the expression

XPE (3y1)((Yx1)(TEMPERATURE(x1
) x1—y1) S

(“APAx 2 (’PrXy 2 [’x2=
’y2]))

(_xQrQ (A n)]))

&AR((3y3)((Vx3)(TEMPERATURE(x 3) x3—y3) S ‘R(y 3))] (’ RISE)

(3)

__This asprassion - can be simplified by symbolically. applying

functions to their arguments in the order indicated by (2)

and using the equivalence ‘“a a • In the first conjunct,

replacing P by its value yields

-13-

A

—____

_*~~~___

__
— - -

~~
~~~~~~~~~~~~~~~~~~~~ 

- -

~ 

~~~~~~~~ U~~~~~~~~rr ~~~~

-

.

-~~~

AP ((3y1) ((Y x1) (TEMpERATURE(x1) ~ x1—y1) &

(A A x
2

(XQ(I 1 Q(”n)] (AAY 2 (~ x2 ~ ~~~ ~

Replacing Q by its value gives

AP ((3y1) ((Y x1) (TEMPERATURE(x1) * x1—y1) S

(A A X
2 ~~~

‘ x2 —
, y2]

(A n)])

Replacing y2 by its value yields

AP ((3y1) ((Vx 1) (TEMPERATURE(x 1) 4’ x1—y1) S

(Axx rx — n])

Replacing P by its value yields

(]y1)((Vx1)(TEMPERATURE (x1) x1—y1) S Xx2 rx 2— n) (y1))

Replacing x2 by its value results in

(3y1) ((Yx1) (TEMPERATURE(x 1) ~“ x1—y~) & ‘y1 n) (4)

(5) results from function application in the second conjunct:

(3y3)((Yx3)(TEMPERATURE(x 3) “ x3—y~) S RI SE(y 3)) (5)

—- - —- - - — - ——
~~~~~~ —--- The conjunvtion of (4) and (5) reduces (because of the unique-

ness of y) to

(3y)((Yx)(TEI4PERATURE(x) * x—y) & ‘y — n S RISE(y))

— (6)

/
- i 

—

—14—

_  I



For our interpretation of (6) we will imagine a system

in which the temperature is measured and recorded on a graph

whose horizontal axis is time. The set of possible worlds is

the set of all possible graphs. Here it is most convenient

to think of y not as a one-argument function from points of

reference to numbers but as a two-argument function from

possible worlds and points in time into numbers. Particular-

ized to one possible world, it is then a function from points

of time into numbers. The part of (6),

(3y) ( (Yx ) (TE~1PERATURE ( x) * x y) ... )

simply accesses the unique temperature checking function . The

expression

= n

evaluates the function at the current time and returns TRUE

if and only if the value is 90. The predicate RISE computes

the left derivative of the function y at the current time;

it returns TRUE if that value is positive, FALSE otherwise.

In a sense, this example runs counter to the intuition

devclo~ed in the previous section about the nature of objects

of type <s,e> , such an y, as simple variables, for here it is

used as a function from times into numbers. However, a simple

variable itself iray be viewed as a function from points in

time into the set of values it takes on at those given times.

The difference is that in a computer program, one is not able

to access previous values of a variable once the value has

—15—

______ — L~ ‘
~~~~ ~~~~~~~~~~~~~~~-: ~~~~~~~~~~~~~ 

-- _------ - - - - - - - .--—-

bcen changed, as we would have to access previous values of

y in this example to compute its left derivative.

3.2. Consider the Bentence

Every man seeks a frog.

By usual accounts it is three—ways ambiguous -- there are the
intensional reading in which every man is seeking something

which satisfies his own image of “frog” (reading 1), and the

two extensional readings in which each man is seeking his own

particular real frog (reading 2) and all men are looking for

the same real frog treading 3) .

Montague gives the following syntactic representations:

F4(F0(man) , F5(seek, F2(frog))) (reading 1)

(7)

F4 (F~ (man) ,F10 0(F,(frog),F~ (seek ,he0))) (reading 2)
S ~

(8)

F10 ~(F~(frog) ,F4 (F0 (man) ,F5(seek,he0))) (reading 3)

(9)

(7) translates into

A P I (V x1) (MAN(x1) D ~P(x1))](SEEK (AXQ ((3y1)(FROG (y1)

S

which simplifies to

(Yx 1) (MAN(x 1) ~ SEEK(AAQ((3Y1) (FROG (y1)&’Q(y 1)) J) (x1))

(10)

—16—

____—
—

~~~~~~~~~~~ ~~~~~~~~~ 

- ~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

- ~i~~~~~~~~T:~~ ~~~~~~~~~~~~~~~~~~~~~~

—

~~~

—- --- --

Thus the existence of the frog y1 is within the
scope of SEEK.

The function AOl (]y1) (FROG(y1) & ‘Q(y 1
))] will be applied

to its argument within the function SEEK . y1 stands for the

object and 0 will ultimately be replaced by the function

which expresses the core of the meaning of “seek”, in the

same way as in the previous example containing the transitive

verb “be” , Q was replaced by A y2 [’x 2 ‘y 2 1

(8) translates into

AP((Vx1)(MZ -N(x1
) D ‘P(x1))](”Ax2

(AQ [(3y 1)(FROG(y1)&’Q(y1))]

(A X X (SEEk(”AR(’R(x0)1) (x2)J)])

which reduces to

(Yx1) (MAN (x1) D (3y1)(FROG(y1)

& Ax0(SEEK (~’AR[’R(x0)])(x1)](y1
))) (11)

(9, translates into

AQ ((3y1) (FROG(y 1) S ~Q(y1))] (
AAx

0(AP((Vx,1) (MAN (x1)Y’P(x1))]

(A SEEK (AAR [~ R(x0) 1))))

which simplifies tó —~~~~~~~~~~~

(3y 1) (FROG(y1) & (Vx 1) (MAN (x1) D

(12)

In Montague’s treatment, sentences like “John is a man”

are also syntactically three—ways ambiguous, the three readings

paralleling (7), (8), and (9). This is because in the syntactic

—17—

- ~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •

~~~~ . ~~~~~~~~~~~ ~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~ 
-
~-

analysis, common nouns (category CN), verb phrases (IV), and

sentences (t) can all be quantified into. But semantically

they all collapse to the same expression in Intensional logic.

“Be” is defined in such a way as to allow the existential

quantifier to pass beyond its scope.4 Also “John” introduces

no universal quantifier to block the existential’s passage

to the outside. The sentence “Every man is a king” has two

readings in the semantics of Montague grammar -- one in which
every man is a different king and one in which every man is

the same king.

Nc difference shows up in Montague ’s exposition between

intensiona]. verbs like “seek” and nonintensional verbs like

“see”. It is the responsibility of the one who defines these

verbs to construct them in such a way that “see” allows the

existential to pass out of its scope and “seek” does not.

Montague has given no guidance in the latter task. We will

offer a suggestion as to how this might be done.

A reasonable intuitive operational paraphrase of

“A seeks a frog” is “If a frog is near A , then A takes the frog ” .

This does not exhaust the meaning of “seek”, which also has a

mental component : the seeker ’s intention as he begins to seek .

We will confine ourselves to the oversimplified operational

decomposition of “seek”. This will have the shortcomings

noted below, but it can be used to distinguish between the

- - - - - tb~ee readings and has the ad~antage of relieving us, in this

example, of the necessity of modeling mental states. The

—18—

opacity of the verb “seek” is transformed into the opacity

of the conditional -- ultimately into the opacity of negation.
This definition of “seek” can be captured within Montague’s

framework by adding to the translation rules, paralleling rule 2

which defines “be ” , the rule

(2 ’) “seek” maps into the expression

A PAx 2[~~P(’Ay2(NEAR(x 2,y2) & TAKE(x2,y2)))] . (13)

The expression for the object of “seek” , which in the inten—

sional reading contains an existential quantifier, replaces P.

The negation will then be outside and the propositions

NEAR (x2,y2) and TAKE (x2,y2) within the scope of the existential

quantifier. The negation sign to the left of P in (13)

prevents the passage of the existential quantifier to the left.

It is one of the beauties of Montague’s approach that the

meaning of a word can be distributed in this fashion. (10)

becomes

(Vx 1)(I’IA}T(x1) ~ APEA x 2
[_~ P(AAy 2 (NEAR(x 2,y2) S - TAKE(x21y2)J)]]

C’AQ ((3y1) (FROG(y1) & Q(y1))]) (x1))

or

(Yx1)(MAN(x 1) ~ (Yy 1) (FROG (y 1) D (NEAR(x11y1) ~ TAKE (x1,y 1))))

(14)

Applying (13) to (11) yields

(Vx 1)(MAN (x 1) D (3y 1)(PR0G(y1) & (NE AR(x 1,y 1) ~ TAKE (x1,y 1))))

—19—

~~~~~~~~~~ ~~~~
‘

‘

~~~$~~~
— ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -- _---.-- —---——---- _ - - -

Applying (13) to (12) yields

~ .1
(3y1)(FROG(y 1) & (Yx 1) (MAN (x1) ~ (NEAR(~ 15y1) ~ TAKE (x 1,y 1))))

The three readings are then distinguished by three different

quantifier structures.

For our model we can now imagine a data base which

contains a number of entities and a number of properties

associated with these entities. In particular , it records

the species of each entity and for each relevant moment in

time, the locations of the entities and the facts about

possession of one entity by another. Typical items in the

data base might be

(MAN Xl) (FROG X2)

(AT Xl (54 40) 1846) (AT Yl (55 39) 1846)

(RAVE Xl ‘11 1847)

A possible world for this example is a possible set of such

entities and properties. The most naive interpretation of

the existential quantifier is a procedure which searches

through the entities until it finds one with the required

properties. The corresponding interpretation of the universal

quantifier is a procedure which searches through all the

entities to verify that all have the required properties.

NEAR is defined in terms of distance. TAKE checks for a

change from nonpossession to possession.

Although definition (13) distinguishes between the

several readings, it has the disadvantage that in our model

—20—

- — - _ - - — _ - ~———— -..——.——— ,.
-

_
~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 

- -
_ . -  

--_-——---—---- --- -



we cannot determine the truth or falsity of “Every man seeks

a frog” except after the fact, and then (unreliably) only if

the seeking was successful. For example, if several men took

their frog after being near another, it must be reading 2,

in which each man is looking for a different real frog.

However, if only one man came near a frog and he took it,

any of the three readings may apply. Moreover, if there were

no such thing as frogs, the expression (14) would always be

vacuously true. We cannot hope to resolve these difficulties

in general without modeling mental states.

In addition , expression (14) suffers somewhat in that

it does not distinguish between “Every man seeks a frog” and

“Every man seeks frogs”. This however is due to the fact

that a simple existential quantifier does not model the meaning

of “a” precisely. The intensional reading of the former

sentence implies linguistically that a man will stop after

finding one frog. But the logical expression

(3x) FROG(x)

does not preclude many frogs.

Definition (13) could profit from the nicety of a time

condition stating that the nearness was true just before the

taking occurred. But these changes would greatly complicate

the exposition at the expense of clarity.

—21—

_____ 
~ :- ; - -- -

~~~~~~~~~
1_.

~~~ - 

- - .



3.3 Let us now consider the sentence

“A slow horse trots rapidly.”

with the syntactic structure

F4 (F1 (F;cslow ,horse)) ,F7(rapidly,trot))

This translates into

[A P( 3x) ( SLO W ( ’ HOPSE) (x) & “ P ( x ) ) ] ( ’RAPID ( TROT) )

which simplifies to

(3 x) (SLOW (A HORSE) (x) & RAPID (” TROT) (x))

Suppose we are given an entity called a “scale” which,

for simplicity, we can think of as an ordered pair

<lo-point,hi-point>. Assume in addition that we are given

two function names, LO and HI, which are initially bound to

the functions which map a scale into its b —point and hi-point

respectively.5 We may then visualize the outlines of a

HORSE function as

HORSE = A x [ A (... gallopspeed...)
(speed(x) > LO(gallopspeed))

& (speed(x) < HI(gallopspeed))

...J (...<20,35>...)]

Gallopspeed may be taken to be the default speed scale for

HOPSE. A lambda application within the definition of HORSE

binds gallopspeed to a particular scale to which the functions

LO and HI are applied. The verb TROT is handled similarly:

—22—

- - - _ 
—~--~~-~ ~~ — - n -  ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



TROT = A x [ A (...speedscabe...)
I ...(speedCx) ) LO(speedsca].e))

& (speed(x) < H (speedscale) )

...] ( . . . <14,26> . . .) ]

Now we can examine the roles of SLOW and RAPID as

mappings from intensions of objects like HORSE and TROT

to objects representing a slow horse and a rapid trotting

respectively. SLOW can be defined as follows:

SLOW = A P 1 A HI(A x

(A scale [LO(scabe) + (HI(scale)—LO (scale) )/3])J

Similarly:

RAPID = A P 1 A LOlA x [~P(x)]J

(A scale(HI(scale) — (HI(scale)—LO(scale))/3J)]

That is, SLOW redefines HI to return a lower upper limit on a

speed scale, and RAPID redefines LO to return a higher lower

limit. Now the meaning of “The slow horse trots rapidly”

can be seen to reduce to

(3x) ( . . .( sp eed 1 (x) > 20) & . (speed 1(x) < 25)
(15)

...(speed2(x) > 22) & (speed2 ( x) < 26) ...]

The subscripted function names, speed1 and speed2, had their

origin within the scope of HORSE and TROT respectively and

hence may refer to the same or different speed functions.

It is seen from the final reduction that although SLOW and

RAPID have opposite effects, the local nature of the scopes of

HI and LO allow the correct meaning composition to be obtained.

—23—

— 
- -  

- - -
~~~,;~~~

‘ .~~*~~~~~~~~~ _ _ . _ _ •
~- • •

~i~~
_
~ ~~~~~~~~~~~~~~~~~~~~~~~

-“._
~

._ - - -..-
~

- - -._

4. CORRESPONDENCES WITH LISP

4.1. The fact that Montague chose a lambda calculus for the

language of his intensional logic immediately suggests the

programming language LISP as the computational analogue . In

this section we show how Montague’s intensional logic expres-

sions can be translated almost directly into LISP expressions

which can be evaluated, or executed, in some environment to

yield a result. Our analogue of intension will be the procedures.

Points of reference will be incorporated within the environ-

ment in which the procedures are executed, and the results

will correspond to extensions. Some difficulties naturally

arise in precisely those places where an infinite computation

seems to be implied by Montague’s formalism, as in the inter-

pretation of the universal quantifier over all possible

worlds, a clearly infinite set in most models. Our approach

has been to replace infinite constructions, usually “sets”,

by finite ones, such as “procedures”, without destroying the

overall framework of functional composition and application

as the basic method for building up the meaning of a sentence.

Before proceeding, we would like to stress the distinction

between intension and description. “Description” refers to

a linguistic object, while “intension” refers to a function.

Different descriptions may have the same intension. Likewise

we distinguish between a LISP function, which is only applied,

and its various symbolic representations as s-expressions.

There has been confusion on this point in the natural language

—24—

_ - -~~~-.. c -

processing literature.

In the next few paragraphs we present a brief discussion

of the relevant features of LISP. Those who find the treat-

ment inadequate way consult McCarthy et al. (61.

Following Mccarthy et a].. [6] we view the LISP interpre-

ter as consisting of two mutually recursive meta-functions:

apply and eval. The function apply [f;x;a]returns the

result of applying function f to arguments x in environment a;

eva1(e;a~ evaluates expression e in environment a. The notion

of an environment was originaUy realized concretely as the

a-list, which pairs variables with their values. The substitu-

tion semantics of the lambda calculus are captured in LISP

not by direct substitution into evaluated expressions but

rather by the creation of a new environment which differs

from that specified by a in precisely those bindings which

define the substitution.

This method of “deferred” substitution gives rise to

anomalies in the case of functional arguments containing free

variables. If the same variables are rebound within the

function calling the functional argument, the initial binding

of the free variable may be overridden. These anomalies are

corrected by allowing for closures, i.e. functions with frozen

environments, to be created by ev~ i and applied by apply. This

is done classically through the us~ of the operator FUNCTION

which creates a closure or FUNARC [61, 1101.. Furthermore,

it is convenient to assume that the interpreter is such that

—25—

- . ~~~ ~
‘
~~~ • - - - ~~~~~~~ ~~~~~~——— ~~~~~~~~~~~

-
~--——.

~~~~~~~~~ 
.

~~~~~~~~~~~ ‘ ‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.,‘- 



eva]. ((LAMBDA...) ;a] is equivalent to eva]. [(FUNCTION (LAMBDA...)) ;al;

that is , a LAMBDA expression evaluates to its closure (see

also [121).

The simplest way to exhibit Montague’s formalism in LISP

is to identify a point of reference with a binding environment,

or a—list, with respect to which an expression is evaluated .

Then we let eval[e;a] correspond to the model-theoretic inter-

pretation of an expression e with respect to a point of

reference. In this view, the expression “a corresponds to

(LIST(QUOTE QUOTE) a). It gives an object to which can be

applied the operator ‘ (corresponding to EVAL, the object

language invocation of the meta-functicn eval) w!~ich in

turn yields an object of the same type as cx.

The first few translation rules are:

(1) cx , a constant -‘(QUOTE a)

(2) cx , a variable of type <s,b> for any b -‘(QUOTE a)

(3) ‘cx -‘ (LIST (QUOTE QUOTE ) a)

(4) ‘ t -.. ( EVAL a)

In rule (2) the variable must be quoted if the calling

function is to be given the option of evaluating or not

evaluating the variable. As a first approximation it is

useful to look at intension and extension as “QUOTE the value”

and “EVAL”, respectively, to make firm some of our intuitions

about these concepts, which behave formally in much the same

way. For example, the identity

Interpretation-of (‘‘a] — Interpretation of [a]

—26— 

T — :- ---



is preserved in the translation:

éval ((EVAL(LIST (QUOTE QUOTE)a)) ;a] = eval [a;aI

for all u and for all a.

As appealing as this analogy is, however , it is desirable

to treat intension and extension in another way, relating

reference points to environment indirectly. We may assume

there is a variable named * to the value of which intensions

are applied to produce the corresponding extensions. We need

place no restrictions on what * can be bound to. For example it

could be an arbitrarily complex object corresposponding to a

model of a possible world, implemented as a data base, a list

of functions, or any other suitable structure. For brevity

we will call the data type of * “s-list”, after the “s” in

Montague ’s hierarchy of types .

Now rules ( l ) - ( 4 )  are replaced by rules ( l a )— (4a ) :

(l a) a , a constant + (QUOTE a)

(2 a) a , a var-~ab1e -‘ a

(3a) “cx 
-
. • ( INT* a) , where

- 

INT* — ( LAMBDA(G)
(LAMBDA( *) G ) )

(4a) ‘a • (a *)

Note that here too “‘a has the same interpretation as a, i.e.

eval(((INT* a) *);a] — eval((((LAMBDA(G)(LAMBDA(*)G))cz) *);a]

• eval [a;a]

The remaining translation rules are the same for either approach:

—27—



(5) Auu + (LAMBDA (U) a) -

(6) a(8) + (cx 8)

(7) a — 8  -‘ ( E Q U A La 8 )

(8) $ • (NOT •)

(9) $ + (AND+*)

(10) $ v~~p + (OR $ *)
(11) $ ~ + (IMPLIES $
(12) $*$  + (IFF$4)

(13) 3u$ -‘ (FORSOME <range of u>

(LAMBDA(U) $))

(14) Yu$ (FORALL <range of u>

( LAMBDA(U) $) )

(15) o~ • (NEC (QUOTE $))

(16) W~ • (FUTURE (QUOTE •))

(17) B$ + (PAST (QUOTE 4) ))

In rule (7) we have replaced true set—theoretic equality

by the function EQUAL which tests for the equality of symbolic

expressions. It therefore captures equality of entities and

truth values. In the approach using rules (1)-(4)

(EQUAL (QUOTE a) (QUOTE B))

is true if f a and 8 are identical. This comes very close to

capturing equality of simple variables (the highest type of

object checked for equality in Montague [81). Two objects

of type <s e, are equal if f they always evaluate to the same

entity. For simpi. variables this could only happen if they

—28—

______• ______ 
~~~~~

r--
~ ~~~ -

were identical. For the approach using rules (la)-(4a),

and for objects of higher type using either approach, EQUAL

is not adequate . This highlights the need for a deeper

treatment of infinite objects.

The functions NOT, AND, OR, IMPLIES , and 1FF are self—

explanatory.

In rules (13) and (14), a naive extensional reduction

of FORSOME and FORALL would be a procedure in which the

expression used for the range of u would actually evaluate

to a list. The predicate which is the second argument would

be applied to the members of the list. In a more sophisticated

definition of FORALL and FORSOME, the range and predicate

arguments would be “models” or “descriptors”. FORALL, for

example, would then seek to prove that if an element is in the

range , the predicate is true for that element .

In rules (15)—(l7), the reason that the proposition $

is quoted is that Montague’s formal statement of the inter-

pretation of the nodal and tense operators does not call for

the application of a function to an evaluated proposition,

but rather it directs a different evaluation to take place.

In LISP, evaluation must be explicitly blocked, hence the

QUOTE. Note that rule (6) does call for evaluation.

The procedure NEC must show that the proposition $ is

true for all possible worlds. A naive extensional reduction

like that for FORALL, is not available for NEC -- we cannot
cycle through all possible a—lists or s—list.. Therefore we

—29—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~ ~~~~~~~
_

w
_

_~~~~~~~~~~~

_ _
~ “- -

~ 
,~

-t;: .
~~~


must use the second method: NEC must show that the set of

constraints which define the possible worlds under considera-

tion imply the truth of the proposition 4). For the operators

FUTURE and PAST one could imagine interpretations based on

both proof-theoretic methods and on extensional reduction.

4.2. In this section we shall re—do the example of Section

3.1, show its translation into a LISP program, and present

a possible, though oversimplified, computational interpre-

tation.

Let us suppose the translation of “temperature” is the

function TEMP defined as f ollows:

(LAZ4BDA(X) (MEMBER X (QUOTE (TEMP-CHECKER 1

THERM-READER . . .)))) .

That is, TEMP takes a procedure name as its argument and

checks whether it is one of the known “temperature-checking”

procedures. By the rules given in Section 4.1 for trans-

lating into LISP, “the tmperature” becomes:

(LAMBDA (P)

(FORSONE entity—concepts

(LAMBDA(Y)

(FORALL entity-concepts

(LAMBDA (X)

(AND (1FF (TEMP X) (EQUAL X 1))

((p *) y))flfl)

— 30—

j -... ~ , - . - - -- . ~,- . -~~—- - --— ---~~~~

(Note that we have dodged the problem of checking equality of

functions by checking EQtALity of function names.)

“Be ninety” becomes

((LAMBDA(P)

(LAMBDA(X)((P *)(INT* (LANBDA(Y) (EQUAL (X *)(y *)))))))

(INT * (LAMBDA (Q) ((Q *) (INT* 9 0)))))

= (FUNARG

(LANBDA(X) ((P *) (INT * (LAMBDA(Y) (EQUAL CX *) (Y *))))))

((P . (FUNARG

(LAMBDA(*) G)

((G ... (FUNARG

(LAMBI~~(Q) ((Q *) (INT * 9 0)))

N I L)))))))

The result of applying the translation of “the temperature”

to the intension of the translation of “be ninety” (as required

by the semantic rules) will be P just in case there is one

temperature-checking function and that function applied to

the current * returns 90; otherwise the result will be NIL.

Assuming appropriate definitions, the cumbersome lambda expres-

sions can be replaced by atomic designators. In this case, the

form actually eval—ed is:

((THE (FUNCTION TEMP)) (INT* (BE (FUNCTION NINETY))))

— 31—

-
.

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-



5. CONTEXT AND EXPECTATION

Much has been written about the role of context in the

interpretation of words and sentences. Frequently the context

is specified by a natural language description of any circum-

stances, whether mental, textual, or environmental, which

impinge upon the meaning of the item in question in any way.

However, it is desirable to replace this by something more

precise. One possibility is to view context as the state

which the initial conditions and previous text have left

the text processor in. Thus a text would serve as a context

for a sentence exactly to the extent that the state of the

processor was altered during the interpretation of the

previous text.

Section 4 suggests a very concise description of the

state of a processor in which the a—list plays a prominent

role. A complete state description would contain control

iniformation as well, but for simplicity we will concentrate

on the a-list. By employing techniques of dynamically bind-

ing variables to valid function specifications, we can

circumvent the use of special , very complex data structures

and still satisfy the dictum that knowledge “comes in large

chunks”.

Among the proposals for handling contextual effects is

Minsky ’s (7] notion of “frames”. A frame is a large, complex

data structure, possibly with procedures attached, which

—32— 

I’ - - - . —-



expresses the normally true general knowledge about stereo-

typed situations. When a frame is accessed , subsequent

processing becomes a matter of filling the slots and noting

the exceptions. The claimed strengths of the frames approach

include the existence of default values for unspecified

arguments and the view of expectation as the ability to

access pre-stored relevant pieces of knowledge efficiently.

However, since frames as they have been used are amalgams of

data structures and arbitrary procedures, the problems of

representation become heavily involved with issues of encoding.

Furthermore, it is unclear how one gets into a frame, whether

one car. be in more than one frame at a time, how one gets out

of a frame, how two or more frames can be merged to under-

stand novel texts and situations, etc. In short, these are

structures for which there is no well understood interpreter.

By using Montague ’s functional approach to full advanta~~
one can preserve the spirit of “frames” while overcoming these

deficiencies. The key is to think of knowledge as residing in

functions, each of which embodies a “core meaning” of a word

(or concept) embedded in a meaningful pattern of function

applications, both referring to the surrounding binding

environment. In this view, the “large chunks of knowledge”

are accessed because when a function is applied, it in turn

calls other functions. The way that functions communicate is

by binding and evaluating variables. Context is the set of

active bindings, and the contextual effects of one function

—33—

• 

•

~~~ ~- • . •.- - - - ~~~
• -

-

-

.

- . . . -- - -

on another ate expressed in the ways variables are shared

by the functions. Context is changed when the bindings are

updated by the application of a lambda expression to its

arguments. The effect of updating the binding of a function

on the interpretation of another function may be great or

small, depending on how central or pervasive the first i nction

is in the body of the second. This appears to us as plausible

and as rich a method for context switching with selective

override and default as any that have been proposed. The

method is both subtle and fluid. The effects can be made

abrupt or slight. The creation of new context goes on all

the time without the need for any special context-switching

mechanism.

In order to be more concrete, let us consider the

following sentences:

John approached Minneapolis. (16)

John approached maturity. (17)

In (16) “approach” is to be interpreted as motion along a

scale of physical distances, in (17) a scale of development

toward realization of some set of properties. In Jackendoff’s

[4] formalism “approach” in (16) is in the positional mode,

in (17) in the identificational mode. Which scale or mode

is relevant depends on the rest of the sentence, in particular

on the direct object.

With Montague—style patterns of functional application,

we can define the words “approach”, “maturity”, and “Minneapolis”

in the following way:
—34—

approach = A P[Ax [’P (’~A z [(3w1) ~~~~
(go(x,w1,w2, Scale)

& exceed (w2,w1,Scale) & HI(Scale)=~z) J)J J

maturity = AQEAScale [‘Q(’HI (Scale))] (growth—scale)]

Minneapolis = AQ (I.OC(Q(~Minn))
(A Minn) (18)

In the definition for “approach” , “go(x ,v1,w2,Scale)” says

that x goes from w1 to w2 on Scale; “exceed (w2,w1,Scale)”

says that w2 is closer to the high end of Scale than w1 is;

“HI(Scale) = ~‘ z” says that the high end of Scale is
T z.

In the definition for “maturity” , “AScale [. .)(growth—scale)”

will bind Scale to growth-scale within “approach” when

“approach” is applied to “maturity” . The core of “maturity”

is HI(Scale); it seems appropriate to define maturity as

the final point along a scale of maturation rather than as

an arbitrary individual representing “perfect maturity”.

The expression “approach maturity ” reduces to

AxU3w1) (3w 2) (go(x ,w11w2,growth—scale) & exceed (w21w1,growth—scale)

& HI (growth—scale) HI(growth—scale))]

In the definition of “Minneapolis” , “Minn ” is an entity

corresponding to the individual Minneapolis. “LOC” is an

operator whose effect is to bring in bindings which are

appropriate by virtue of Minneapolis being a location. It is

one device for encoding the “is-a” or superset relation within

the functional approach. LOC is defined

—35—

a’

LOC— Xcore [Az [Ascaie[’core3 (distance—scale—toward(z))]].

When it is applied within (18),

Minneapolis = XQ[AScale [’ Q(”Minn)] (distance~scale~toward(AMinn))]

results. Thus, Scale is bound to distance—scale—toward (’~Minn).

“Approach Minneapolis” reduces to

Ax [(~~1) ~~~~
(go (x ,w1,w2, distance—scale-toward(” Minn))

& exceed (w2 ,w1 ,distance—scale-toward (*Minn))

& HI(distance—scale-toward(”Mjnn)) = Minn)]

Here contextual knowledge is brought to bear indirectly by

the binding patterns, and the verb “approach” need not even

check whether its object is a physical location or an

attributed state.

The frames approach is oriented toward using knowledge

of the situation described in the text, and it seems to be

rather weak in utilizing the structure of the text itself.

This may be remedied by adopting an approach closer to the

one we have described.

One of the strengths of Montague’s approach is his way

of attaching meaning to the intermediate results, to sentence

fragments. For example,

The old overstuffed chair in a dark corner of the room (19)

at the same time creates an image and leaves the reader with

a sense of expectation . In Montague’s approach , the image

—36—

--— - -

-~?-~
-

~~~~~~ 
- -

~.
-;

~~ 
-

~~~~
.
~~~~~~~~~~~ .- -.

~ , ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~- .,~ , • — - - . ,c. •. 
~~~• •. •.4~.V

a’

is captured by the “core meaning” of the function corres-

ponding to (19), and the sense of expectation lies in the

fact that the function has not yet been applied to its

argument.

This view of expectation as a function waiting for

its argument is adequate within the boundaries of a sentence.

But since each sentence is of type t, there is no function

which is still waiting for its argument intersententially.

We might postulate that an effect of a sentence with respect

to the entire text is to set up a “megafunction” which gets

applied to the similar megastructures resulting from other

sentences in the text in much the same way as an English word

sets up a function which gets applied to the other words in

the sentence. For example, a sentence which describes a

change of state might be viewed as a function which takes

sentence arguments of a certain type. Sentences are of this

type if they presuppose or assert the final state of the

change. This is a very suggestive way of looking at the notion

of expectation. Whether it is a fruitful way remains to be

seen.

— 37—

• •
~~

—
~~~

—
~~~~~

— —-———- -

•
~~~~ •~~~~—~



-

FOOTNOTES

~This sentence parses unambiguously.

category is not in Montague (8].

3This rule is not in Montague [8].

4This passage is equivalent to the operation “plunking”

defined in Hobbs [2].

5In this example we take liberty with Montague’s formalism

by using certain variables in a manner for which Montague

gives no form~1 interpretation. This could be remedied by

extending the definition of the interpretation, but this is

beyond our present scope. In effect, this section anticipates

the treatment given to such variables in LISP examples to

be presented below.

I
—38—

V • -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V

V 

. - . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -- . _______________________



V 

-

REFERENCES

I.. Davies, D. J. M. and Isard, S. D., Utterances as

programs, Machine Intelligence 7, B. Meltzer and

D. Michie, eds., New York (1972).

2. Hobbs, Jerry, A model for natural language semantics,

part I: the model, Yale University Department of

Computer Science Research Report No. 36, (November 1974).

3. Isard, Stephan, D., What would you have done if ...?,

Theoretical Linguistics ]. (3) (1974).

4. Jackendoff, Ray , Toward an explanatory semantic

representation , Linguistic Inquiry 7 (1) (Winter 1976),

89—150.

5. Joshi, A. K. and Weischedel, R. M., Some frills for

the modal tic—tac—toe of Davies and Isard: semantics

of predicate complement constructions, Proc. Third

International Joint Conference on Artificial Intelligence,

Stanford, California (1973).

6. McCarthy, John, et al., LISP 1.5 Programmer ’s Manual,

M.I.T. Press, Cambridge, Massachusetts (1965).

7. Minsky , Marvin, A framework for representing knowledge,

The Ps~choloqy of Computer Vision, Patrick H. Winston,

ed., McGraw-Hill, New York (1975).

8. Montague, Richard, The proper treatment of quantification

in ordinary English, Approaches to Natural Language:

Proceedings of the 1970 Stanford Workshop on Gram mar and

Semantics, Dordrecht, D. Reidel Publishing Company (1973).

—3 9—

____________ • V •VV_ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . • •
.

• V
,
.
•~

_ :.V ~~~~ ~—— ‘—— 
~~~~~~~~~~~~~~~~~~~~~~~ V

a’
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~



9. Montague, Richard, Formal Philosophy (Selected.Papers

of Richard Montague, ed. and with an introduction

by Richmon Thomason), Yale University Press, New Haven

and London (1974).

10. Moses, Joel, The function of FUNCTION in LISP,

Al Memo No. 199, M.I.T. Al Lab., Cambridge, Massachusetts

(July 1970).

11. Partee, Barbara Hall, Montague Grammar, Academic Press,

New York (1976).

12. Susaman, Gerald, and Steele, Guy, SCHEME: An interpreter

for extended lambda calcult~s, Al Memo No. 349,

M.I.T. Al Lab., Cambridge, Massachusetts (December 1975)

13. Tarski, Alfred, Der Wahrheitsbegriff in dem formalisierten

Sprachen, Studia Philosophica I (1936) ,261—405.

Translated as: The concept of truth in formalized languages,

Logic, Semantics, Metamathematics, Oxford (1956)

14. Winograd, Terry, Understanding Natural Language,

Academic Press, New York (1972).

15. Woods, William, Procedural semantics for a question—

answering machine, Proc. AFIPS 1968 Fall Joint

Computer Conference 33 (1968), 457-71,

Thompson Book Company, Washington, D. C.

/
ii

—40—

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

• V t . ~’~~~~~~~
- V

a’ - ~- - -~~- _ _ _ _ _ _ _ _ _ _ _ _ _

UNCLASSIFIED
SECURITY CL ASSI P ICA T ION OP THIS PAGE (W~ ... D.ea EnI.’.d)

~ E~”~
1

~~~~~~~~ 
OAI E 

READ INSTRUCTIONS
‘~ ,~~~~, V’J~.u. ,~~I~~~ u ,UT’ ‘~~~ ‘J BEFORE COMPLETING FORM

f l/A 4_ ~~&~~~ RT MIAMI7R 2 GOVT ACCESSIO N NO. 3 RECIPI ENT’S CA TALOG NUMSER

‘.c~ r 
NSd—ll .1 ________________________

4 TITI.E (aid &.bISeI.) 5 TYPE OP REPORT & WEa n tRIO

~~~ iaking Computational Sen~~~~~
’1 ~~~ Technical ~~~ i. —

Montague’s Intensional Logic. j i~~~~~~~~FORMINO ORG. REPORT NUMSER

~~~~~~~ ~./Ro:ensch~~n\ ~~2~j  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

S PERPORMING ORGAN IZATION NAM E AND ADDRESS 10 PROGRAM ELEMENT. PROJECT . TASK

Courant Institute of Mathematical Scienc ~~~~~~~~~~~
WORK U N I T N U Mb E R S

New York University, 251 Mercer Street
New York, N. Y. 10012

fl CONTROLLING OFFICE NAME AND ADDRESS • Vr _
Off ice of Naval Research)J Dec - 76 /
Department of the Navy , . H U M S E R OF PA~~ e~~Arlington , Virginia 22217 40

iS. MONITORING AGENCY AM A AODRIS$OI rntI .,..t ft ... Conerol’Ing OtUc.) iS. SECURITY CLASS. (ci IhS• r.port)

c21 _____

1$.. CAflON/DOWNGRADING

IS. D,51 RISUTION STATEMENT (.~ eAt. kU~~OVI)

Distribution of this report is unlimited.

17 DISTRISUTION STATEM ENT (of CA. ab.ftoct .,,t.,.d Sn hock 20. ii d~~.r.n s ‘rca. R.po,t)

IS SUPPL EMENTARY NOTES

IS K EY WORDS (Cinttnu. 0 c.r.c.. .id. IV ..c.a..cy a.d id.ntIIy by block n.a.b.r)

computational linguistic . , natural language processing,
intensio .al logic , representation of knowledge

S AbSTRACT (C.ntVma. a, ,.v. ,•. aid. IV n.c.•r.,y aid l*nUSy by block numb.,)

A simplified version of Montague’s intensional logic i. presented
and explicated in terms of computational analogue.. Several exam-
ples are presented in which Montague ’s formalism is coupled with
a proc.dural interpretation. A natural translation is given from
intensional logic into LISP. The relevance of this research to
composition of meaning, knowledge representation , context and
expectation is discusud.

DO ,
~~~~~~~~~~ 

1413 IOITION OP I Nov 45 I5 OS LEit UNCLASSIFIED
—41 S(CURI?Y CLASSI FICATION OF THIS PAGE (14110 Data Inelc.d)

_ _ _  

9 5 *0
• V 

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • ‘ V ‘
~

‘~~~~~~ V~ -
,~~~~~~~ . . ~•V ~ ~~~~ -

