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PROBABILITY DISTRIBUTION OF SPECTRAL ESTIMATES
OBTAINED VIA OVERLAPPED FFT PROCESSING
OF WINDOWED DATA

INTRODUCTION

Estimation of the autospectrum of a stationary random process by
means of overlapped FFT processing of windowed data (the so-called
direct method) is a popular and efficient method, especially for data
with pure tones present. Stable spectral estimates, as measured by
the equivalent degrees of freedom of the spectral estimate, result
when the product of the available record length and the desired

frequency resolution (the time-bandwidth product) is large in com-

parison with unity. (See, for example, references 1 and 2 and the

references listed therein.)

The equivalent degrees of freedom of the spectral estimate is an
incomplete probabilistic descriptor, because it depends only on the
mean and variance of the random variable. In this report, we address
the problem of obtaining the characteristic function of the spectral
estimate with overlap processing,of a signal tone present in Gaussian
noise, and thence the cumulative probability distribution (perhaps by
numerical means as given in references 3 and 4). For the case of
signal-absent also, we will compare the exact probability distribution
with an approximate distribution that uses only the first two moments

of the spectral estimate, to see when the approximate distribution can
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be used as a valid probabilistic description. Some rclated work is
available in refercnce 5 and the papers cited therein,

A discussion of the relative stability of the spectral estimates
with signal tones bresent, and of a crosé-spcctral estimate, completes

the presentation.

CHARACTERISTIC FUNCTION FOR SIGNAL PLUS NOISE

The method and conditions of processing are described fully in
reference 1 and, for sake of brevity, will not be repeated here. The
,power spectral estimate at analySis frequency, f, is given by

'(rcfcrcnce 1, pp. 2-4)

p
G(f) = - z ]Yp(f)lz, (1)
p=1

where P is the total number of weighted data segments, Here*
: 1 (2)
Yp(f) = f dt exp(-i2mft) x(t) w]t - E-L - (p-1)S},

where x(t) is the available (complex) data process, w(t) is the data
window of length L, and S is the amount of shift cach adjacent data

window undergocs. The fractional overlap is therefore 1 - S/L.

*Integrals without limits are over the range of non-zero integrand:

Best Available Cor
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: If we let x(t) be composed of a pure signal tone*

s(t) = A exp(i2mf,t+ib) 3)
;‘ and zero-mean Gaussian noise n(t), (2) can be expressed as

|

| Yp = Yps + an . (4)

where the variable f is suppressed for notational convenicnce and

complex (non-random) constant
L; Yps = A W(E-f) expl}6~12w(f—fo)(% L+ (p-l)S] s (5)
where

W(f) E/dt exp(-i2mft) w(t), (6)

L' |[W(£)|? is called the spectral window (sce equation (5), reference 1),

and has analysis bandwidth B. Now if analysis frequency, f, is not

within a bandwidth, B, of tone frequency, fo, (5) will be zero; there-

fore,wc limit consideration to |f~f0|<B. The remaining term in (4),

Yon =fdt exp(-i2mtt) n(t) w[t - % L - (p~135] , (7)

is complex Gaussian since n(t) is Gaussian,

Substituting (4) in (1), the spectral estimate is given by

p |

A . l.:E : 2 8 :

G(f) - P |YpS + an| ) ( ) i
p=1

"#The generalization to several separated tones will be obvious,
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where {Yps} are complex constants and [an} are complex correlated
Gaussian zero-mean random variables,and the correlation is fue to the
overlapped processing.

In appendix A, the characteristic function of forms like (8) is

cvaluated; it specializes here to the form

1%
' o ilu | %A £/p .
CE) = | | (1-ix &/P) "exp { —E—B— ) 3, (9)
P ; )
bal 1-i X6 /1

where [Ap} arc the eigenvalues of P x P matrix

P
e Pl
phoany |, (o)

and
H, -4
b=Q K ‘m, (1)
where @ ts the normalized modal matrix of K, and
T
m=1{Y ...Y
[ Is Ps] i (12)

The evaluation of W in (10} is considered in appendix B It is
given by

K=[K ]=G(f)¢> ()R, (13)
q-p n w

whoroe (}"(f) is the noise spectral density at analysis frequency, f;

¢ (1) =fdt wlit)wr(t-1); (1)
W




- *More generally, the cumulants are given by (A-7).
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and
1 .
( rl T rp_1
. = lr ] =4 T '. 15
[q-P St (%)
. "
r
[ 1-P k
where
. ¢, (mS) (16)
m
9,(0)

A Fourier transformation of (9) would yield the probability
density function of the spectral estimate (8), for a tone present.

This would have to be done numerically, but has not been pursued here.

MEAN AND VARIANCE FOR SIGNAL PLUS NOISE

By means of (A-16), the mean and variance* of spectral estimate,

a(f), in (8) can be expressed as

p
Mean {&(f)} =K+ %z :|mk|z , (17)

k=1
p-1 | .‘
var {G(f)} = 5 Z (I‘LI;;J‘)IKkla . %zmHl(m , (18) 1
. k=1-P |

in terms of the quantities in (12) and (13). BEmploying the explicit

relationships in (12) and (13), there follows

Mean {8(5)} = 6,(5¢,(0) + A2[WCE-£) ]2, (19)
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and
pa1 |k|
A . e 2] [r |2
] = ) -— l-‘ e
Var {t(r)} [\n(tmw(m] pz ( p) k
k=1-p
-]
*zAzlw(f—fo)lan(f)¢w(O)%' E (1~ L;%)rk oxp(ian(f—fo)S) , (20
k=1~P

where we have employed (15) and (5).

At this point, it is convenient to define the output signal power

of u window filter with transfer function, W, centered at f as

Q (f) = A*[W(F-f )%, (21)
S 0

and the output noisc power of the same filter as

Q,(f) =[du Gn(u)IW(u-f)lz = Un(f)./.duIW(u~f)|” = G (£)9,(0). (22)

Then (19) and {20) take the forms

Mean {ﬁ(f)}
and P-1
. k
Var {a(f)} Q*(r) L E ( "L*L) [r |?
n P P k

k=1-P

P-1
[k . .
+2Q5(f)Qn(1)%_:E : (1_ - ) " exp(ik2n(f-£)S), (21

k=1-p

From (24), we see that the presence of signal (A # 0) always increases

1

Q,(f) + Q(f) (23)

|

the absolute level of the variance of the spectral estimate over that

for noisec-alone, If the noisc is absent, the variance of the estimate

is zero, If the signal is absent, the equivalent degrees of frecdom,

defined as
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2 (Mean) 2 2
EDF = —_—= » 25
n  Variance P-1 (25)
1 - lEL |x, |2
P P k
k=1-P

is identical‘ﬁo equation (8), reference 1, as it should be,

On the other hand, for Qg (f) >> Q,(f),

_ 2(Mean)? Qs(f) _
EDF_ = Variance = P-1 K| . (26)
1 — e—— -
Q, () 5 E (1 5 )rk exp (ik2n(f fo)S)
k=1-P

When a strong signal is present, EDFg isllarger than EDF,, by approxi-
mately the 'ratio-% Qs(f)/Qn(f) >> 1, since the ratio of sums in (25)
and (26) is approximately unity for £ & £ and reasonable overlaps
(see (27) below). That is, the relative fluctuation in the spectral
estimate is reduced by the addition of signal, even though the absolute
variance increases,

For Hanning weighting and 50% overlap (S = L/2), we find ro = 1,
Ty = 1/6, r, = 0 for k22, Then the two sums in (25) and (26) take on
t;e values

1 ] e '
1+ (1-B)gg » 1+ (1) cos [2n(t-fo)s] , (27)

respectively, The former value is slightly larger than unity, whereas
the latter value varies between approximately 2/3 and 4/3, depending on

the exact location of the signal tone frequency, fo, with respect to

the analysis frequency, f. VYor an FFT approach, at least one bin has
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!_v.
e
{R its frequency location, f, such that |f~f0|$ (ZL)'I; thus, at least )
;} one frequency bin is located such that the latter value in (27) is
| .
%J larger than unity.
i
?Li Figure 1A represents the power spectral estimate, (1), plotted on
| : i
;gs 4 linear scale proportional to watts, The "ribbon width'" in the region
¥ of noise-alone is denoted by a. The amount of fluctuation of the
':l cstimate at £ is denoted by b and is larger than a. (The quantity b
-'| is obsorvuble only by rerunning the spoctral cstimation procedurc for
l independent noise segments.,)
| |
1{ '
1 " 1
! G(f) 10 log G(1) {
i 4 :
s ‘\“ d<c )
$
F | c f
] |
i |

Figure 1. Spectral Estimates for Signal Plus Noise

[f, instead, the power spectral estimate is plotted on a dB scale

{sce Tigure 1B), the noisc-alone ribhon width, ¢, is larger than the

fluctuation, d, of the estimate at fo' The mathematics behind this ’
i
]
8 [
{
\

i

o
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conclusion follows. Let the spectral estimate at frequency f be

)
|
} . expressed as

s , Bey = mx, (28)
i

I

! where m is non-random and x has zero-mean and variance 6%, Then
dB = 10 1og G(f) = 10 log m + 10 log(1+£9. (29)

Now suppose that o/m<<l, which could be realized by means of a large

number of pieces, P, or a high signal to noise ratio; then

310 10 x
10 log m + TR (30)

The last term in (30) is proportional to the relative stability of the k

spectral estimate (28); in fact

2
. 0 2
] ' Var {é‘a} = <T?11“1—6) C_’_z_ > (31)
m
which can be made arbitrarily small. Thus a plot like figure 1 is i
’ easily achievable and should be anticipated for a pure tone in Gaussian i
noise,

¥ PROBABILITY DISTRIBUTION FOR NOTSE-~ALONE
For noise-alone, the mean and variance of spcctral estimate, a(f),

are available from (19), (20), and (16) as

Mean {6(f)} = G, (£)9,,(0),
" Re N
A 2 } 2
Var {c(f)} - 626 L (1 _[3._) ERCOIE (32)
k=1-P
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which agree with equations (5) and (6), reference 1, respectively.
More generally, the characteristic function follows from (9) as

-1

p
cr=| JT - el (33)

p=1
Now let us define a normalized random variable
g = e (34)
¢, (5o, (0)

notice that the scale factor is independent of P and the amount of

overlap., Thus the mean E{§)} = 1, and the characteristic function of
fis
p -1
. _ A R
C,(8) = [ | {1-iA ) embl (35)

p-l

where {A(S)} are the eigenvalues of matrix R in (15). Then by 4

partial fraction expansion, the probability that random variable g
remains below a threshold value,v, is found to be
P
Prob (f<v) = 1 M (30)
ob (g~ = 1= Bk exp v-”‘(‘l"{—)“*"“ y V20, 20
A P
k=1t k /
wheroe
[)\(R)J P-1l \
Bk = hd ) 1sksp, (37)

II {A(R) ) Auz)}
kT p

p=1
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We have assumed all the eigenvalues of R to be unequal; this is the
case if the overlap is greater thanTO, which is the case of most
practical interest. The eigenvalueé are all non-1 -..ative since R is

% a non-negative definite matrix (see appendix B),

| Equation (36) is an exact expression for the cumulative probability
- distribution in terms of the eigenvalues of matrix R, If we consider

another random variable, t, with the same mean and variance as §, a

candidate approximate characteristic function is (guided by form (35))

. c (B)= (L-1&/0)™ (38)
fg where, in order to maintain the same variance, we choose

J% ' P ) P P-1

' . b Ila_zz A(g) ‘;1:?2 I7pql® = %—Z (1" '—xli‘l") g2 O
g p=1 p,q=1 k=1-P

¥ Equatior (8), reference 1, shows that b = K/2, i,e., half of the
. equivalent degrees of freedom, Then the approximate probability

density function is

Bl
B! 1 -
51 p(t) = — bbtb 1 e bt , t>0, (40)
i I'(b)
1 and the approximate cumulative probability distribution is (equations
¥ 6,5.2 and 6,5.12, reference 6):
- v 1 -
;. dt p(t) = —— (bv) e Y JF; (13L+b5bv), v>0, (41)

" P(b+1) 1

0 0

it :
y 11
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(A further simpler approximation, not pursued here, would he to set
bl = integer part of b, b, = by + 1, and bracket the results above by
two simpler sums.)

We shall now make quantitative comparisons between cxdct result

(36) and approximation (41J'which hits the same meun and variance. ‘The
question is: is b in (39) and (41) n sufficient statistic to accurately
guantitatively describe the exact cumulative probability distribution
(36), for representutive data windows, overlap, number of pieces, and
time-bandwidth products, over the runge of probabilities of interest

to wmost uscrs? [If so, then attention can be confined to the equivalent
degrees of freedom and its maximization alone, as was done in reference
1; this simplification would he most worthwhile and of obvious impor-
tance.

The actual numerical computation of the cumulative probability
distribution Prob(gv), is considered in appendix C. In figurc 2, the
exact cumulative probability distribution for flanning windowing is
presented for time-bandwidth product BT = 8, 16, 32, 04, where T is
the available record length und B is the desired resolution bandwidth,
In cach plot, the overlap is varied from 0 to approximately 75%, and
the distribution plotted on a normal probability ordinate covering the
range (.0001, .9999). The fact that the curves are not straight lines
over this runge means that a Gaussian approximation to the power
spectral estimate would not suffiice. llowever, the Gaussian approxima-
tion would be a fairly good onc for larger BT and P (see figure 2D, Ffor

cxample).

12

Aatih, i

TP SRS Y
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The fact that the curves in figure 2 are-virtually identical for

overlaps greater than 50% means that there is little point in choosing

I

overlaps greater than this amount. This confirms the choices of over-
lap made in reference 1, where attention was confined to the equivalent
degrees of freedom, The ideal distribution would be a vertical line

at v = 13 the closeness of these curves to the ideal is a measure of

the spread of the spectral es.imate,

:w The corresponding results for the approximation (41) are presented
t; in figure 3. The curves are virtually identical to those of figure 2
over the complete range of probabilities considered, for various values

of BT and overlap. ]

. For a cubic window, the exact results and the approximation are

given in figures 4 and 5, respectively, The conclusions are identical

to those made for the Hanning window.

]
i

i
--.1
4
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FLUCTUATIONS OF CROSS SPECTRAL ESTIMATE

This topic 1s not direcctly related to the earlier naterial on
autospectral estimation; however, it is an important observation and
merits a comment, For two uncorrelated processes, x and y, the cross

A
speetrun ny(f) = (), However, the cross spectral cstimuto,GXY(f),

satisfles the equations (reference 2):

E {6 (f)} = 0,
Xy v

B {? 2§ } 0
: ‘X)’( yp o Q,

R R SO Y S R . (42)
I3 G t ',}—- - O £)6 f) = 2o%,
{I 2 = 56 ) oy )

and

A . g *
where K is the equivalent degrees of freedom,  Now it Ke>1, ny(t) is
approximately complex Gaussian, Therefore, if we define the amplitude
cstimate

=16 (r (43)
Az I(xy(f)l,

it has probability density function

FA
p(x) = X CxXp - -~}7- , X>0, {44)
o? 20°

Then the mean of A Is

' SEWE} i i,
b ofuNe L Gxad DGy (PN (45)
) 2 2
K
which is a rather slow decay with K. Then the ratio of the mean

amplitude, (45), to the square root of the product of the auto-spectra

h
15 ! *




TR 5529

- E{A' o =(_ﬂ_')k= 1.253 | (46)
[cxx(f)cyy(f)]ls 2K K%

If, for example, K = 32, this ratio is ,222 which is ~6,55 dB; this is

e not very far down relative to unity coherence, though the two processes
4

& are uncorrelated.

0

i Also

' | ’
i G..(F)G._(f)

d = T)o? of2- ) XX yy  °

:,'. Var {A* = (2-2)0 —(2 2) " » (47)
&

o and, thereforo,

. . 5

3 Standard deviation §Ab _ f4-mY% - o 52

3 Mean }K‘ "\ ' (48)
)

jj independent of K (or P)}). So for a zero cross~spectrum value, A =

:ﬁ ]exy(f)l will always have the same amount of relative variation,

¥ —

1ﬁ regardless of the number of pieces P (for large P); thus, on a dB

:j scale, the "ribbon width" of the cross-spectral estimate is indepen-

dent of P, when the two processes are uncorrelated.

Reverse Blank
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DISCUSSION

An exact expression for the characteristic function of the power
spectral estimate of a pure tone in Gaussian noise has been attained,
and then specialized to noise-~alone, In the noise-alone case, a
numerical computation of the cumulative distribution function has been
conducted, Comparison of the latter with an approximation utilizing
only the mean and variance shows excellent agreement over a wide range
of probabilities, regardless of the exact window, overlap, or the time-
bandwidth product. This means that concentration on the equivalent
degrees of freedom, particularly on its maximization, is sufficient
for a probabilistic description of the auto-spectral estimate,
Maximizing the equivalent degrees of freedom results in a narrower
probability density function, as witnessed by the increased steepness
of the cumulative probability distributions presented,

An entirely different method of auto- and cross-spectral cstimation
has been presented in references 7 and 8, and is mentioned here as a
viable, attractive alternative, particularly for short data segments.
Since only a few parumeters are estimated, the estimates are potentially
more stable, whereas the technique considered here (and in reference 1)
assigns independent degrees of freedom to each and every frequency

cell of interest and, therefore, requires the estimation of many more

parametoers.

25/26
Reverse Blank
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Appendix A

} DERIVATION OF CHARACTERISTIC FUNCTION
{

!

i

l

‘ The first half of appendix C of refercnce 9 considers the Hermitian
|
form

. H
P =‘x 'x’ (A'l)
with mean and covariance of the complex random variuble matrix X,

E{X}=m, cov{X} = {(X-m)(X-m)"} =K, (A-2)

where matrix Xis P x 1, and matrix B is Hermitian and P x P. Defining

i . P x P matrix
A= K'iBKY, (A-3)

with corresponding normalized modal mutrix @ and (diagonal) eigenvalue

i matrix N, we can express (A-1) as

p
. | (A-4)
v=vihy E : Adv 12,
‘ k=1

where matrix VW is P x 1 with mean and covariance

HV}=G“K%mEp,mﬁV}H.

(A-5)

!

{

' Then a slight genoralization®of the second half of appendix C
3
'; of reference 9 (sce also reference 10) yields the characteristic

t

function of random variable F in (A-4) as

P *We must also have ‘3{(x'm)(x'm)l'} =Q, in addition to (A-2).
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ifu, |22, &

C(&) H ‘(1 A€ OXP ST (A-0)

1- 1X £ ’

where {Ak} and {uk} are the clements of matrices N and . The cumulants

of F follow easily from (A-6) as

l)
:E:: n . .
Cn = (n—l)! Ak (]_+n|ukl") . (A 7)
k=1
In particular, the first two cumulants arc
P
3 - - 2
Mean ’F} =¢o® E Ak (1*|Nk| )
l) k=l
o= c AL (a2 [2)
Var {F} = ¢, = K My . (A-8)

k=1

For the case of zero-mean variables, i.c.,lﬂ::(’, (A-5) yields

p= 0, and the characteristic function becomes
p
C(E) = I | {(l-ikkﬁ)‘l} for zero-mean variables. (A-9)

k=1
The cumulants are then

E : n
= (n-1)! Ak for zero-mean variables. (A-10)

2
(It is not necessary to evaluate W for eigenvalue purposes alone,
because the eigenvalues {Ak} of matrix Adefined in (A-3) arc the same

as the cigenvalues of KBor BK.)
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As a specific application of the general results above, we consider

B=1, m= ...y, K= [Kp-q] - (A-11)

Then from (A-3), we see that A = K. In order to cvaluate (A-8), we

notice that

P P
! A = - (A-12)
z : k 2 :App "o
S
| k=1 p=1
1 L I Hyp ' Hy -4
n E Akh—‘kl?’:” Ap-mK Q\Q K m
| k=1 P
e Hu -4 J H 2
e =mIK-2AK"‘m=m m= Imkl , (A-13)
! -
- P p P pP-1
| AR = A A= K [?= -k |k |2, (A-14)
k pq qp Z | p-ql E p-| Dl kl »
k=1 p,4=1 p,q=1 k=1-P
P
) , _l.i H . »
i z:xilukl2=unxxu=mnk Q\N\Q 'K ‘m
) k=1
; ' 1 oL N _L '
p -m'KPAQr@"K Fm - m'KIKKK i m - miKm, (-15)
R
R Then (A-8) yiclds
I)
. 2
i = = m
Mean {F} c, = PK_+ E l k| ,
‘ Var {F} = c, = :>: -k K |7+ 2mKm (A-16)
i
! k=1-p
K | The specialization to czero-mean variables is obtained by dropping the
L _

“ﬁ . last terms in (A-106),

A-3
Reverse Blank
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Appendix B
DERIVATION OF COVARIANCE MATRIX

We are intcrested in deriving the two averages

rfy Y *| and E{Y Y } (B-1)
pn qn pn gn

because they ure needed for appendix A and to see if the conditions

required there are satisfied, We have, from (7),

. _ . 1
l', Y Y * = . - . : A ; ‘
{ on qn} J(y”dt du exp(-i2nf(t u))L{n(t)n*(u)} w[t zl (v l)S]

w*[u--é—l.-(q-l)s] . (B~2)

Letting the nolse correlation in (B-2) be denoted hy R,(t-u), and its

spectrum by Gn' (B-2) becomes

N * = . . e —N];‘- )
E {anan} fdu Gn(u)’/-dt exp(L2m(u-£)t) w[t 21 (p 1)5],
{[du exp(12n (u-£f)u) w[u'%‘l“(Q"l)S]}

=fdu G, () |W(E-1) | 2 exp[izn(f-u) (q-p)S] , (B-3)

This quantity is a function only of the difference of indices q and p.
If spectrul window |W|? is narrower than the detail in noise

spectrum Gn in the neighborhood of analysis frequency f, (B-3) simplifies

to




e - 2 Y

el
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E {Y Y *
pn gn

where

Now let

Then

and from (10),

where P x P matrix

is Hermitian, Toeplitz, and non-negative definitc.*

w, Ris a roal symmetric Toeplitz matrix.

i

}

E{Y

6, 6) ffaulwe-w) | expl 12m e (a-p) ]

= G (£)¢,((q-p)$),

¢,,(m5)
9, (0)

pn gn

K= G (D9, (OR

1 Ty
r_l o'
R: ‘
| "1

one required in (A-11) end (10).

r ]
m

¢, (T) EJ/ndt w(t)w* (t~T)

is the autocorrelation function of data window w,

Yab e 6 Be,@r

(B-4)

(B-6)

(B-7)

(B-8)

(B-9)

For rcal weighting

The matrix in (B-8) is the

*This property is easily proven by use of definitions (B-5) and

(B-6).

B-2
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4 amnt g famem 2 Ve

The second quantity we desire is, by use of (7),

: . : N L
’ . K {anan} —/fdt du exp(-i2mf(t+u)) l‘.{n(t)n(u)} w[t-E,L (p l)S] .
W [u--;—L- (q—l)S] . (B-10)

? Letting the noise correlation in (B-10) be denotecd by(ﬂn(t-u), and its
‘\l

spectrum (Fourier transform) by Qn, (B-10) hecomes
E{anan} =-/duQn(u1/dt exp(i2m{u-f)t) w[t--é—[,-(p—l)s]

fdu exp(-i12m(u+f)t) w[u-%-;;(q—l)s]

Y
ki . ijlz“JQn(“)w(f'“)w(f+“) exp[~i2ﬂf(L-ZS+pS+qS)—iZwu(q—p)S] . (B-11)

If analysis frequency f is greater than the bandwidth B of spectral

\3

b window W, then W(f-u) and W(f+u) do not overlap on the u-axis, and

§ (B-11) yields

lﬂ_‘ cfy Y } = 0 if £B. (B-12)
X pn qn|

Thus, the property desired in appendix A (footnote to equatjon (A-6))

holds true if f>B.

B-3
Raverse Blank
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+‘ Appendix C

NUMERICAL COMPUTATION OF CUMULATIVE PROBABILITY DISTRIBUTION ;1

‘The numerical computation of the cumulative probability distribution

: Prob(£<v) is not accomplished here directly via the sum in (36). The

PR

rcason is that, for large P, (36) is an alternating sum of terms of

i

]

1
i large magnitude, and accuracy is lost in the final result. Instoad,
- {

i the methods in references 3 and 4 are utilized on characteristic

function (35): for a rundom variable limited to positive values, the

. cumulative probability distribution can be expressed as (reference 4)

Q0 f.
P(v) = 1 - ;2, Re{f dg —‘ég) exp(~i£v)} , v>0, (C-1)
0

where fi(C) is the imaginary part of the characteristic function f(£).

[EPRP S,

-] We have f,(£)/E~E {f} = 1 as £ + 0. We approximate (C-1) according to

where L AE = £;, and {wk} are Trapezoidal weights of integrution. We

3 \ o~ 2 & £. (¢ .

¥ Pvig 1 - % Re{f 2 g Lil8) exp(—.iav)}, (€-2)
i 13

) 0

‘1 and then sample and approximate this cxpression according to

")

g L .

| , £,k AE)

‘ P(n Av) & ] - = Re AEE wk [ cxp[—ik/\(, n Av] , (C-3)
0 k AE

! k=0

[

choose sampling increment

2n
) AE = — (C-4
3 5 N av '’ )

‘
w where N 1s chosen large enough that Fi(g)/ﬁ does not change much in

T s i i bt b . L

i 41000 gy i b i o AR, S Wt MM <, AV e et

TN

O S ——
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h

§ Af,.  Then :

b :2 : £,(k A

s P(n &v) =1 - = Re {AE ( &) [dZHkn/N]} :

! Ckag .1

E N-1 :

A 2 : g

v =1 - = Re expj-i2mwkn N] (C-5) ~

ﬁ 1 - =A¢ C{Z g P[ / } |

E k=0

¥ where )

' ) %

8 =Z W £{ ((k+jN) AE) , i

‘ KeIN (ke jN) AE :
J= =() ;

! +1 141 gy

3 <L < __._, <] ] (C~06) ‘

] CSksN-1, ~§ 1=y N

L liquat ion (C-5) is an N-point FFI'; therefore, we choose N as a power of 2 .

[ for speed purposes.

! The only remaining question is the choice of limit &, in (C-2). -

From (35), we know that

If. @l < el < (Cn7)

where r = A(R)/P. Therefore
P p

[£.@®)] < 5 , (C-8)

ITow frd

p=1P

- — o - —— R

B ATl ot 2 W o 4t e s ot
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where IP cun be 1 or 2 or ... or . Therefore the c¢rror, E, in using
(C-2) rather than (C-1) is bounded according to

o p -1 -p+IP-1

T I e D O O e
£y H {rp} p=1P

p=1IP

This cquation cun be solved for

2 BT

g, =P wEIPI {A“;)}(PH-IP) , (¢-10)

p=1P

with the guarantee that the error will be less thun E if we choose &2
according to (C-10). Since IP is not unique, we choose E2 to he the
minimum value over the range of IP=1, 2,..., P, for then the integration

range in (C-2) can be kept to a minimum.

In summary, we:
specify Av, E, P, BT
compute {A(g)} and &,
choose N = 1024 (say)

20
compute AE = N AV
compute L = &/ Af
let J = (L+1)/N

compute (C-6)

compute FET {gk} and printout (C-5)

choose N = 2048, go back to step 4, and observe change in printout.
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[ AU

A program for this procedure for the Hanmning window follows. The .
subroutines TRIMXD and EIGVLD are presented in reference 11, and sub-
routines DPMCOS and DPMFFT are given in reference 12,

In order to execute the approximation (41), the line under state-
ment number 2 is changed to CALL PROBA(BT, P, Y). This subroutine for

the Cubic window is also presented below.

ek P

b DIMENSL0N £(91) e Y (3109 2(200) o YI.ORM(2%)

JATA YHORM/«3071902v=3,290529=3,090239)=2,870161=2,57583)=2,32635,
=250 e =] oUuBE =], 28155 =, 00162052040, ~25335,049,25335145204
Dretdnlngyl e 415501 ,644B592,05375+2,32635,2.%57583,2,87816,3,.09023,
2S¢ 030580 3,4719027

C=l.440582% 1 v HANNING

CALL NWDESG (L)

CALL LUHJEG (ZrU e YHORM (L) 0 3,9 YNORM(25))

CALL WUJCTu £rl150,9335,0205049¢2735,)

GO 11 1pT=30

BTxad, *x» [BT

i CALL SETSHL (300 24)

! CALL LINESu(drdr0n YNORI'(1))

T

P

y Che LINESu(Lrde D, s YHORMY(25)) .
& CALL LINESG(<rlr3, s YNORM(259))
¥ CALL LiMHEau(eslr 3. e YNORM(1))

. CALL LINESO (Lol v Qv YNORI (L))
CALL SETSMO(Zr3001)
vl 21 Juzleld
CALL LUINELO(/Z 02 rdna P8y YILIORM( 1))
L CALL LIMESU(LrlrdwesBo YHORM(25))
DO L2 JzZigy
CALL LINESG(Zr 000, s YHORY (U))
o CALL LINESG(Lrled, e YHORN (J))
CALL SLTSHG(r300e,)
JO 23 [=1,5)
&J All)Ze0h®(1=1)
5O L IPzaley
P2(UT/Cy*1p
SLE(BT/C=1, )/ k=1)
PRILT <4 4T, e50

“ FOumal{////70 BT Sy 134800 P Stk S/L 2'E13,8)
Cae PROEUE (aTePaY)
PRILT 3, v

3 FORMAT { /b2y ,.8)

GO 4 I=z1+by
A=MINCY (1), ,9999499)
Q=MAX(Wy 4000001}

4 YCI)=TINORM(wr$l) ,
CALL LINESG(ZrELexnY)
l CONTINUE

CALL PAGEG(/ +00141)

c-4




AT LD R A U

s

i1

TR 5529

CONTIWVE

CALL EXITu(,)

END

SUBROUTINE PROBOP(BT¢PyANS)

PARAMETER M=3100 @ MAXINUM NUMBER OF PIECLS
PARAMETER Nz=204B8sNUI=N/4+])

hOQUBLE PRECISION HIMrM) gD (M) pBIM) pE(M) W (M) #F (V) o GHIND pGI (1) o LU (NG
51)oCoERRORoUELVvPloSLoTPE;XIZOPR|ATrDELXI!SoUoWFIDXI
INTEGER PrPL

DIMENSION ANS(1)

C21,4408825800 ® HANNING

IF(P.LE,M) 6O TO L

e

PRINT &0 Pyu

FORMAT (/' P ='1l4s* IS GREATER THAN V =¢13/)
D0 3 J=1r51

ANS(J)S=1,

RETURN

ERR°R=1.D-13

DELV:-U&UO

PI=3,1415926535897932400

Pizp=}

Sk.=(BT/C=1,00)/F1

DO 4 K=0.P1

D(K+1)aU(K#SL)

DO 5 J=1P

DO 8§ K=1,P

LSABS (U=K) ¢}

R{JeKI=D(L)

CALL TRIMXL (PeMoRyU»B)

CALL EIGVLU(PrErDedsWoF)
TPE=2,.00/ (P [ #ERROR)

XI221,0100

PR=0,00

00 6 JaPriy=1

PR2PR+LOG (L (J))

AT=1,00/7(P=3+1,00)

S=PaEXP (AT (LOG(TPE®AT) =PR))

X12=MIN(XLZ,5)

NF=N/2

ULLAIZE, L 0un ]/ (NFrULLV)
S=Xi2/70ELAL

YO (54),00) /1IF

Ni=NF=1

00 ¢ K=sQenvl

520,00

DO 8 JaQedl

STS+WF LDX L ( (IK+URNF ) wDELXT)
GR(K+1)=S

Gl(K+1)=0,00

CALL DPMCUS(CO/NF)
UE1,4H2THLOG(NE ) +.5

CALL UPMFFT(GR,G1sCOrdp-1)
S=2.00eNELKI/PIT

WOOL) Wzl
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ANS (J)Z1,D0=S86R(U)

IF(WFoeEGov) RETURNN

VO 11 J=1lr4605

PRINT 12¢ ANS(U) rANS(J+1) g ANS(UR2) s ANS (U 3) ) ANS (J+l4)
PRINT 12¢ ANS(51)

FORMAT (/5E£20.8)

NF =N

G0 TO 7

FUNCTIUN U(T) & HANNING

DOUBLE PRECISIUN TeSI

IF(T4GELoili0) GO YO I

SI:Z.DO‘PI wl
Us2,00/3.00(1,00=T)#(1.00+,52C#COSISI) I+ S00/PT)wGIN(ST)
RETURN

VU=0,00

RETURN

FUNCTION WFIDX1(X)

DOUBLE PRECISION XoXTOPsALPREPBI» TEVPSG

IF(X,6T,0,00) 6O TO 1
XTOoP=1,0100

WFIDXI=,500

RETURN

IF(Xo6T ,XTyP) 60 TO 3
Al=1,00

HEz=E(P)~X/p

00 ¢ Ji=lypy

BIE(JY)eX/p

TEMP=AL+BL & 31

BEzBE=AL™YL

AL=TEMP

SQAzALRAL +J3E 4 BE
IF(SQ®(XAERQOR) #5624 GT o 10,00) ATOPSMIN(XTOP,R)
AFTUXIz=fit / (5Q%X)

RETUR

AFIUXI=0.U9

RETURN

ENO

SUBROUTINE PROBA(BT Py ANS)
QOUBLE PRECISION GD+OsbViFLLIL
INTEGER PypP}
DINMENSION ANS(1)
C=1,82009566 B cuBlc
Pizp=y

SL:(BT/C-l.)/Pl

-2

DO 1 K=1.P}

BIB+24# (Lo=FLOAT(K) /P ) wU (K*5L) %2
CAPK=2 ,wP/B

PRINT 101, CAPK

FCRMAT (/' CAPK 1S 'E15,8)
BzF/B

IBsb

FBak«~18

CALL GAMMA (1, 4FD,yGr52:%2)
GDzLOG(DBLE (6) )

DO 5 Kz1s1B

DeFB+K




EN 5 O

UNCLASSIFIED

GD=GD+LD6G (D)

00 3 K=315}
V=,06%(K=1)
IF(V,GY,04) GO TO 6

ANS(K)=0.

GO TO 3

BVz=BaV

ANS (K)SEXP (B#LOG(BV)=By+F 1L (DBLE (B+1,),BV)=GD)
CONTINUE

RETURN

PRINT 4, B

FORMAT (/' PROBLEM AT B = ‘EL5,8)
RETURN

FUNCTION F1iL(ArXD)

DOUBLE PRECISION SDyTO)AD,XDvA
S0=1,D0

TD=4,D0

ADsA=1,00

00 ) K=1,1000

TO=TDRXD/ (AD+K)

SD=SN+TD

IF(ABS(TU) ,LE,1.0=8%ABS(SD)) R0 TO 2
PRINT 3,

FORMAT (/' 1000 TERMS'/)
F1liL=LOG(SD)

RETURN

FUNCTION V(T) W CUBIC
IF(T,6E,14) GO YO 1
US10244/7851 w(1e=T)%%?
IF(T,6E,0,75) RETURN
UZUmB1524/151 4%, 75=T)un?
IF(T,6E,0,5) RETURN
USU+286724/ 151 e % (¢ 5=T)un7
IF(T,6E,0,25) RETURN
U=U‘573““|/151.“.25-7)“7
RETURN

u=0,

RETURN

END

UNCLASSIFIED
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