
■ wiij».ip«rai'i.i i ii   immmmmmmmmm"'*™™ "— " 

05 

CO 

E 
N 
G 
I 
N 
E 
E 
R 
I 

N 
G 

USCIPI Report 630 

UNIVERSITY OF SOUTHERN CALIFORNIA 

DIGITAL COLOR IMAGE RESTORATION 

by 

Clanton E.  Mane.11 

August 1975 

Image Processing Institute 

^<?^ .A   ^§niversify of Southern California 

1> 
V 

O 

University Park 

Los Ai-geles,   California 90007 

Sponsored by 

Advanced Research Projects Agency 

Contract No.  F08606-72-C-0008 

ARPA Order No.   1706 

IMAGE PROCESSING INSTITUTE 







r ^^m^mmmmmmmmmmmimmmmimmmmmmmm M I I I   I ,1      ! II Mill «- 1    '   «   ' 

j!-iirity rtai^ilicatioii 

Kcr   WORD* 

R O l. I- */ 

J'^curity Cljss,hcation 

MliMliMiMM^ail^Mai^HUHlMiiklli li-_-____^__-_ 



„»...U..».,....!. ..„ I.l..,.,  ,,. I..,,..).,        ,. , ""•  "     "■ «"W«««!»«!!» 

ABSTRACT 

mmm 

The restoration of color errors in diqitally recorded 

color imaqes is considered in this dissertation. A vector 

space model of a qeneral digital color imaqe recordinq 

system is derived and the eauations representing the model 

and the eauations of colorimetry are expressed in matrix 

form. Computer algorithms are derived which correct color 

errors introduced by imoertections in the color recorJinq 

system. The sources of color error which are considered 

include sensor spectral responses which depart from ideal 

color matchinq curves, crosstalk between color signal 

channels, a^d system nonlinearities. The special case of a 

color film-digital scanner system is examined in detail, 

although the methods derived apply to a wider class of 

color or multispectral sensing and recording systems. The 

success of the correction algorithms is demonstrated using 

a computer simulation of the film-scanner system. The 

algorithms for correction of spectrally imperfect sensors 

are also tested using a specially created six band 

multispectral test imaqe. 

The qeneralized matrix inverse is used extensively in 

this report. Least souares, minimum norm, and Wiener 

estimation alqorithms, in the form of qeneralized inverses, 

are applied to the correction of sensor imperfections.  The 
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utility of the generalized inverse in the spectral domain 

is also demonstrated bv applvinq it to some related color 

problems. These .nclud* the estimation of the spectral 

response of a sensor from sample readings, and computer 

generation of spectral waveforms with desired  color Metric 

prooerties 
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1.  Introduction 

This report concerns the application of sampled data 

processing and estimation methods to the restoration of 

digitally recorded color images. The restoration of color 

values which have been degraded by sensor and storage 

imperfections is an objective which has been pursued since 

color image recording systerus were invented. The methods 

of color restoration which have been heretofore explored 

have varied with each method of color image recording. The 

first, and by far the most common, medium of color image 

recording is color photographic film. Most color film 

images do not undergo any post-development restoration at 

all. Those film images which are restored a^e usually 

modified only by photographic masking, which attempts to 

provide pleasingly saturated colors and a proper white 

balance. Masking and other photographic restoration 

methods are extremely limited in their ability to correct 

color errors. They are slow, inflexible and usually apply 

the same correction to all points in the image. When color 

values are converted to electrical signals, as in color 

television and in color scanning devices, much more can be 

done to correct color errors, often in a real-time 

interactive mode. Here again, the object is most commonly 

the production of a pleasing saturated picture, not the 

increase  of  color  fidelity as measured by a quantitative 

criterion. 
1 
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With the comparatively recent development of digital 

image recording, it becomes possible to extend further the 

capabilities of color image rastoration. All the power and 

flexibility of the stored program digital computer, which 

have been proved as successful in the restoration and 

enhancement of digital monochrome imagery, can be applied 

to color image restoration. The digital computer can be 

utilized in the optimization and testing of restoration 

algorithms as well as in the execution of these algorithms 

to restore large quantities of digital color imagery. 

This report will examine the computer  application  of 

some standard mathematical tools and operations to the task 

of  restoring  errors  introduced by  sensor  and  storage 

imperfections  in  a  general color image recording system. 

The  system  imperfections  which are  considered  include 

non-ideal  sensor  spectral  responses,  crosstalk  between 

color signal channels,  and  errors  introduced  by  system 

nc-.linearities.   A color  film-electronic  scanner  color 

system  is analyzed  in  some detail,  but  the  methods 

developed can  be  applied  to a wider  class  of  color 

analyzing and recording systems.  In addition, some of  the 

mathematical   restoration   tools  utilizing generalized 

inverses are applied to other color problems  such  as  the 

spectral  calibration  of  color  scanners and the computer 

generation of spectral waveforms with desired  colorimetric 

properties. 
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The dissertation consists of seven chapters. Chapter 

2 presents a short tutorial on colorimetry, color 

reproduction and restoration. Chapter 3 discusses the 

advantages of digital color restoration and vector space 

modelling of color systems. Tristimulus estimation using 

linear estimation methods is treated in Chapter 4. Chapter 

5 discusses methods of inverting the nonlinear film-scanner 

equations in order to estimate film exposure values. Some 

related applications of digital color methods are treated 

in Chapter 6 and some conclusions and general remarks about 

the dissertation are presented in Chapter 7. 

  - - 
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2.     Color   Reproducti on 

The  long  established  field  of  color   science 

historically has  consisted of two branches: colorimetry, 

which is the measurement of color, Cild color  reproduction. 

These  two  areas  of study have been related only slightly 

and, for two reasons, have not been put on a rigorous basis 

until  recent  years.   First,  established color standards 

came into use only after the formation  of  the  Commission 

Internationale  d'Eclairage  (CIE)  in  the  early  1930's. 

Secondly, until the development cf color television in  the 

1950'8f  color  reproduction  was  achieved by photographic 

methods.  Because of the complexity of  subtractive color 

Photography,  its  capabilities were advanced primarily by 

empirical means, and not through the  use  of  colorimetry, 

which  is  based on the simpler theory of additive primary 

colors.   m  the  last  two decades,  color  reproduction 

technology  has  adopted  the  terminology  and methods of 

colorimetry, and the two branches  of color  science have 

be ;ome more unified. 

in Chapter 2  which  follows,  three  topics will  be 

discussed.  First, the basics of colorimetry will be given. 

including a brief  discussi 
on  of  color  error  formulas. 

Second, the principles of color reproduction and the 

important sources of reproduction errors will be described. 

Finally,   some  of   the  standard  techniques  of color 

■ - .■. -"■*—-----  - — 
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restoration, both photographic and electronic,  will be 

discussed. 

2.1 Colorimetry 

Colorimetry, the science of color measurement, is 

based on the experimental observation tnat, over some range 

of colors and observing conditions, any •olor stimulus 

(defined as radiant flux detected by an obseLver's visual 

system and evoking a sensation of color [1]) can be matched 

by an additive mixture of three fixed primary coloi 

stimuli. 

The experimental laws governing the relations between 

the spectral intensity distribution of a color stimulus and 

the amounts of each primary color stimulus reguired to 

match it form the basis of colorimetry. The fundamental 

color matching equations are 

, 

/c(x) sR(x) dx = fcp(\) SR(X) dX 

JCM SG(X) dx =y cp(x) sG(x) dX (2-1) 

Jc(\) sB(x) dx = fc?a) sp(x) dX 

where C(x) is the spectral intensity distribution of the 

color to be matched and C^, (X) is the spectral intensity 

distribution of   the weighted  sum of    primary    colors    which 

^  -  ■      -.—^^— mmm 
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matches  C(x).  The characteristics of the standard average 

observer with normal color vision are given by the spectral 

sensitivity curves SR(X), 8G (X) , and SB (x ) and the spectral 

intensity of the matching primaries are P^A),  P^X),  and 
K.       G 

PB(X).     The primary colors  are  usually suitably chosen  red, 

green,   and  blue   lights. 

If the weights or amounts of each primary which 

together match C(x) are given by AR(C) , AG(C) and AB(C) , 

then 

Cp(X) = yc) PR(X) + AG(C) PG(X) + Ap(C) PB(X)       (2-2) 

Then if IR, iG, iB are defined  as  below,  a  color  match 

requires 

iR4/c(x)sR(x)dx=y[AR(c)pR(x)+AG(c)PG(x)+AB(c)PB(x)]sR(x)dx   {2-3a) 

iGryccosG(x)jx=/[AR(c)pR(x)+AG(c)PG(x)+ABrc)PB(x)]sG(x)dx   (2-3b) 

IB^C(X)SB(X)dX=y[AR(C)PR(X)+AG(C)PG(X)+AB(C)PB(X)]SB(X)dX    (2-3c) 

where A (C), A (C), A (C) are called the primary matching 

values of the color C. When these primary matching values 

are normalized by the primary matching values of a 

reference white color W, the resulting normalized values 

are called the tristimulus values of C 

■ - ■ ■ ■  -   
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T^C) 

T2(C) 

13(0 

A^C) 

A2(C) 

A2(W) 

A3(C) 

A3(W) 

(2-4a) 

{2-4b) 

(2-4c) 

Equations (2-3) and (2-4) can be combined in matrix form to 

give the following equation of color matching 

V 
lG - 

h 

11 

21 

31 

12 

22 

32 

13 

23 

33 

(w) 0       0 T^C) 

0 A2(W)   0 T2(C) 

Ü 0    A3(W) T3(C) 

(2-5) 

where 

d^ = P (X) 81(X) dX 

and in the subscripts i,j R=l, G=2, B=3 

(2-6) 

The color matching equations, expressed above in 

different but equivalent eauations (2-1), (2-3), and (2-5), 

illustrate the main objective of colorimetry: to determine 

whether or not two given stimuli, C(X) and Cp(X), match in 

color. The two colors match, colorimetrically, when their 

tristimulus values are equal. 

It is important to observe that colorimetry does  not 

 ,ii.uM|^a>i>MIMt<iaM|aii^ 1    ,- 1 -—■...^...... -,. -..   - 
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attempt to characterize the sensation which an observer 

perceives when he receives a color stimulus. To do this 

would require a much more complex model involving spatial 

and temporal parameters relating to state adaption, stimuli 

surrounding the test stimuli and other parameters 

Colorimetry is not designed to provide a general color 

perception model, only to answer the simpler but still 

important question of whether two colors match or not. 

The presence of a linear integration of spectral 

intensity over wavelength in the color matching equations 

is a reflection of the underlying assumptions of linearity 

and additivity in color matching. Linearity and 

additivity, which hold accurately over a wide range of 

observing conditions [1], require: 

(1) that the match between any two colors continues to 

hold when the spectral distributions of the two colors are 

each scaled up or down by the same constant factor; and, 

(2) that if colors A and B match, and if colors C and 

D match then the additive color mixtures (A+C) and (B+D) 

also match. 

Under these assumptions, it is easily seen that any 

color C{X) may be thought of as a weighted sum of spectral, 

i.e.. monochromatic, colors. Because of linearity and 

additivity,   the  triPtimulus  values of  the  spectral 

^^M^^k^^^a^^^l^^^^y^^^M^^^H^^^^^^   IMtÜüi m   
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distribution C(X) can be obtained by integrating the 

tristimulus values o' the spectral components of C(X) over 

all wavelengths. Combining eqs. (2-1), (2-3) and (2-5) 

gives 

T^c) = c(X) i^CX) dx 

T2(C) = c(x) T2(X) dx (2-7) 

T3(C)   =  C(X)   T3(X)   dX 

where 

^(X) '^(X) Ü 0 
-l V>] 

T2(X) - 0 1/A2(W) 0 diJ 
sG(x) 

T3(X) 0 0 1/A3(W) LSB(X) (2-8) 

The functions T^X), T2(X),  T3(X)  are called the color 

matching  curves of  the  set  of primaries P_,(M , P (X) , 
R.     G 

PB(X).  These curves completely describe human visual colcr 

response  under  the colorimetric model by determining 

through eq.(2-7)  the  tristimulus values,  or   primary 

weights,  needed  to match any color.  It will subsequently 

be shown that Tj (A) , T2(\), T3(X) are the optimum spectral 

sensitivities for a color  sensor whose outputs directly 

drive display primaries PJX) , P_(\) , PT,(X) .  Figure  (2-1) 
RGB 

contains    a plot of the color  matching  curves  corresponding 

to  equal   radiance  narrowband  primaries at  700.0,   546.1,   and 

   -■— -■■—          ■■ - ------ 
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Figure (2-1) Color matching curves or narrowband 
primaries 

400 500 600 700^r 
WAVELENGTH,   \ 

Figure   (2-2)  CIE XYZ color matching curves 

10 
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435.8 nanometers, with a reference white whose power 

spectral density is constant with wavelength (equal energy 

white). 

The color matching curves of eg. (2-8) depend on the 

matching primaries PD(X), P (X) , PT,(X) only through the 

matrix D=( d.. ] of eg. (2-6). Therefore, the three color 

matching curves corresponding to a particular primary set 

may be derived from those corresponding to another primary 

set by a 3x3 matrix multiplication, so that each new curve 

is a weighted sum of the three original color matching 

curves. It follows from eg. (2-7) that the tristimulus 

values of a color with respect to the new primaries are 

equal to the old tristimulus values multiplied by the same 

3x3 matrix. 

It is of interest to note that color  matching curves 

T (X), T2(X), T3(X) are obtained directly by means of color 

matching experiments with test  subjects,  rather  than  by 

calculating them from the visual sensitivity curves S , S , 
R  G 

SBthrough eg. (2-8). The visual sensitivity curves are, 

even today, known with less accuracy than are the color 

matching curves, since it is difficult to measure them 

directly. The responses SD, S„, and S„ cannot be 

determined from the color matching curves via eg. (2-8) 

since SR, SG, SB are contained in each element d.. of _D. 

For this reason, color matching is nearly always done by 

11 
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comparing  the  tristimulu.  values of two colors obtained 

from equations of the form of eq. (2-7)  rather  than  by 

using the spectral sensitivities of the eye directly, as in 

eqs.  (2-1). 

The determination of t.istimulus values of eqs. (2-7) 

requires that -^ (X) , T,, (A) , T3 (A) represent a par ticular 

set of "standard observer" color matching curves such as 

the CIE 1931 standard observer curves X(X), Y(X), z(x) 

shown in figure (2-2). in this case, the tristimulus 

equations become 

X - R^CCX) X(X) dA 

Y = Rß(\)   Y(A) dX (2-9) 

Z = R^ca) Z(X) dA 

where R may be chosen arbitrarily when only the relative 

tristimulus values are of interest, when R is chosen to be 

R-KM680 lumens/watt, the value of y is then the luminous 

flux, in lumens, of the color C(X). 

When a color consists of radiant flux reflected (or 

transmitted) by a nonradiating object, it is called an 

object-color stimulus. A reflected object color is 

specified by the spectral distribution P(X) i(X) where P(x) 

is the spectral reflectivity and i(X) is the spectral 

intensity  (power)  distribution  of the light source.  The 
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tristimulus equations are then 

X = R/P(X) I(X) X(X) dA 

Y = R^P(A) I(X) Y(X) dA (2-10) 

z = RYPCA) 1(A) Z(A) dA 

where  R  is  usually  chosen  so  that  for  a   perfectly 

reflecting  and perfectly diffusing object (P(X)=1.0 at all 

wavelengths), the luminance Y has a value of 100.  This may 

be ensured by defining R as 

R A 
100 

(2-11) 
~/l(X) Y(A) dA 

The spectral  distribution  of  the  illuminant,  1(A),  is 

usually assumed to be one of the CIE standard illuminants: 

CIE illuminant A represents a  black-body emitter  at 

2856 K  (approximates  the spectral distribution of an 

incandescent light bulb). 

CIE illuminant C represents average daylight with a 

correlated color temperature of approximately 6770 K. 

CIE illuminant D65 represents a phase of daylight with 

a correlated color temperature of approximately 6500 K 

(using more recent measurements than those of 

illuminant C). 

CIE  illuminant  D55 and  D75 represent  phases   of 

daylight  with  correlated  color temperatures of 5500 

and 7500 K, respectively. 

The spectral distributions of these illuminants  are  shown 

13 
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400 500    600 
WAVELENGTH, 

700 nm 

Figure (2-3a) CIE standard lllumlnants A, B, C 

300 400  500  600  700 
WAVELENGTH, 

800  900 nm 

Figure   (2-3b)  CIE standard  llluminants D  r.  D        D 
55'  u65'     75 
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in figure (4-3). 

Although any color stimulus is uniquely specified 

colorimetrically by giving its tristimulus values in any of 

the standard observer coordinate systems, it is more 

convenient for plotting purposes to reduce the 

dimensionality of a color from three to two by normalizing 

each tristimulus value by the sum of the three tristimulus 

values. These normalized values are called chromaticity 

values and are represented by the lower case symbol of the 

corresponding tristimulus symbol.  For example, 

tl  T, + Tn + T. (2-12) 

for i=l,2,3 or 

x = 

y = 

z = 

X + Y + Z 

Y 
X + Y + Z 

Z 
X + Y + Z 

(2-13) 

Sincj x+y+z=l, only two chromaticities, usually x and y, 

need be specified. When a third number is required to 

complete the specification of the color, the luminance 

value Y is often given also. The complete color 

specification is then x,y,Y. 

Two chromaticity values may be  used  as  rectangular 
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coordinates  in a chromaticity diagram.  The CIE 1931 (x,y) 

chromaticity diagram is shown  in  figure  (2-4)  with the 

locus  of  spectral  (monochromatic)  colors  from \ =380 

nanometers toX=780 nanometers included.  it may be shown 

easily that  the location on a chromaticity diagram of a 

positively weighted sum of two color stimuli must  lie on 

the straight  line connecting the chromaticity coordinates 

of the two color stimuli.  it follows that  any realizable 

color,  i.e., a positively weighted sum of spectral colors, 

must  lie within  the  locus  of  spectral  colors  on  a 

chromaticity  diagram.   when  tristimulus  values  are 

normalized so  that  (1,1,1)  corresponds  to  a  reference 

white,  the reference white is then located at (1/3,1/3) on 

the chromaticity diagram. 

Color Difference Formulas 

It was previously stated that colorimetry attempts  to 

answer the question of whtcher two colors appear to a human 

observer   to  match  or  not.   Two   colors   match 

colorimetricallv when  their tristimulus values are equal. 

The definition of colorimetry can be broadened  to  include 

the  measurements  of  the color  difference when  the 

tristimulus values of two colors are not equal.  A  formula 

is desired which operates on the tristimulus values of two 

colors and produces a number which is proportional  to  the 

perceived  difference between  the  colors  for an average 

16 
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Figure (2-4) CIE x-y chromaticity diagram 
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observer with normal color vision. Obtaining such a 

formula is difficult since the subjective estimation cf 

color differences by an observer is far less accurate than 

is strict color matching, and the influence of viewing 

conditions is very strong [2]. 

Still, there are several useful color difference 

formulas based on the 1931 CIE standard observer (XYZ) 

system. One system which attempts to provice a 

chromaticity diagram in which equal distances correspond 

approximately to equal visual differences is the 1960 CIE 

uniform chromaticity scale (UCS) diagram. This system is 

derived from a projective transformation of the 1931 CIE 

chromaticity diagram [3].  The transformation equations are 

4X 
X + 15Y + 3Z 

v = 6Y 
(2-14) 

X + 15Y + 3Z 

where u,v are UCS chromaticities and the UCS tristimulus 

values are called U,V and W. The UCS c .romaticity diagram 

showing the locus of spectral colors is given in figure 

(2-5). The 1960 CIE-UCS system has been extended to 

include luminance differences in the U*,V*,W* system [4], 

defined by 

18 
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Figure (2-5) CIE UCS chromaticity diagram 
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W* =  25Y1/3 -  17 

U*  =  13W(u -  u ) 
o (2-15) 

V* =  13W(v - v  ) 
o 

for 1<Y<100,where u0,vo are the UCS chromaticities of the 

reference white. The resulting color difference formula 

for colors U *,V *,W * and U *,V *,W * is given by 

AE = [(U* - U*)  I- (V* - V*)  + (W* - W*)2] 2,1/2 (2-16) 

Another widely used uniform color coordinate system is 

.he cube root system [5]. The formulas for the cube root 

coordinates L,  a,   b are given  by 

L -  25.29G1/3 -  18.38 

a =  106.0  (R1/3 - G
1/3

) 

b  = 42.34   (G1/3 -  B1/3) 

where  R-1.82  X,   G=Y,  and  B=0.847     Z.       The    color     distance 

formula  is  then  the  Euclidean distance  in  L,   a,   b  space 

AE =   [(AL)2 +  (Aa)2  +  (Ab)2]1'2 
(2-17) 

in each of the two systems described above, the U*V*W* 

and the L a b systems, one coordinate (w* or L) corresponds 

to the perceived brightness of the color, while the other 

two coordinates form a plane in which the origin 

corresponds to an achromatic grey,  m each system,  color 

20 
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Saturation increases with distance from the origin, while 

hue or dominant wavelength varies with angle about the 

origin. In all f.uch perceptually uniform systems, the 

coordinates are nonlinear functions of the tristimulus 

values, while the tristimulus values are always linear 

functions of the color spectral distribution C{X). 

2.2 Color Reproduction 

In this section, additive and subtractive color 

reproduction will be described using the methods and 

expressions of colorimetry. Colorimetry possesses serious 

limitations as a basis for the reproduction of color images 

which are large, spatially complex, and possibly time 

varying. Color matching curves, the basic functions of 

colorimetry, are obtained by the matching of two small, 

uniform patches of color which are of three to ten degrees 

in angular size, seen against a black surround. It is well 

known that perceived color sensations, and, to a lesser 

extent, color matches, change when the surrounding area of 

the test colors is changed visually [6]. Still, 

colorimetry has served as the foundation of color 

television design, in the absence of a better visual model, 

and the results have been quite satisfactory [7]. 

Color reproduction methods which are  based on  the 

rules of  colorimetry attempt to satisfy the following two 
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conditions: 

(1) The spectral sensitivities of the color sensors 

are a set of color matching curves. 

(2) The sensor outputs drive display primaries which 

are the primaries corresponding to the sensor color 

matching curves (or the sensor outputs have been 

transformed to correspond to the display primaries). 

The two most important sources of color reproduction 

errors occur when the two above conditions are not met. 

Imperfect spectral sensitivities and deficiencies of the 

primaries are present, to some extent, in all color 

reproduction systems, whether photographic, television, or 

lithographic. 

Iirnerfect spectral  sensitivities  occur   for   two 

reasons.   First,   real   sensors  such  as photographic 

emulsions and vidicon tubes do not have sensitivities which 

are color  matching curves,  though  appropriate optical 

filtering may allow an  arbitrarily close  fit  to  color 

matching  curves,  at  the  cost  of  some  loss  of system 

sensitivity and signal-to-noise ratio.  A second reason  is 

that  spectral  sensitivities may be intentionally degraded 

in order to compensate partially for errors  introduced  in 

other  parts of the system.  An example of this is the wide 

spectral spacing of the peak  sensitivities of  the  three 

layers  of   some   color   films.    The   widely  spaced 
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sensitivities introduce an exaggerated saturation of colors 

which helps to compensate for loss of saturation in the 

developed transparency caused by undesired layer 

absorptions. Undesired absorptions will be treated at 

greater length later. 

A quantitative figure of merit for color sensors is 

the colorimetric quality factor q defined by Neugebauer 

[8). The quality factor of a spectral sensitivity curve is 

unity wh>n the curve is any color matching curve. The 

quality factor diminishes as the sensitivity curve departs 

more and more from its nearest (in the least squares sense) 

color matching curve. Tne quality factor q is obtained by 

forming a collection of functions from three color matching 

curves and any complete orthonormal set, such as the usual 

set of sine and cosine functions. This collection is 

orthonormalized by the Gram-Schmitt process giving an 

orthonormal function set 

UjU), u2(x), u3(x) un(x)  

the first three of which are color matching curves. Such 

an orthonormal set is shown in figure (2-6) . Figure (2-6a) 

shows the first three functions, all color matching curves. 

The first (and only nonnegative) member of the set is the 

luminous efficiency curve. The second three functions of 

the set, derived using sine and cosine functions, are shown 

in figure (2-6b). 
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400 500 6Ü0 700 

WAVELENGTH, nm 

Figure (2-6a) Orthononnal color matching curves 

500 600 700 

WAVELtNGTH. nm 

Figure  (2-6b)   Second  three orthonormal  functions 
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The given   filter  or   sensor   function   f(X)     is     expanded 

in  this  orthonormal   set,   so  that 

1=1 
(2-18) 

where 

f1 = <f U^ 4Jf(X) U^X) dx (2-19) 

the quality factor q is then defined to be the ratio of the 

energy of f in the first three coefficients of (2-18) to 

the total energy of f as given by 

Q A 

3 

I V 1=1 1 

00 

1=1 1 

2    2    2 
fl +f2 ^3 

<f2> 
(2-20) 

A useful property of the representation of eg. (2-18) is 

that the least-squares nearest color matching curve to f(X) 

may be obtained by summing the first three components of 

the expansion 

CMC I     flUl 1=1 
(2-21) 

The value of the quality factor q required for a color 

sensor depends on the application of the sensor.  The 
25 
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sensors in colorimeters usually have q  factor  values of 

0.99 or  higher,  achieved by careful adjust: ent of filter 

characteristics.   m color  television  cameras,  the  q 

factors of  the three color sensors are also high, perhaps 

0.90 or better.  The sensor curves are usually chosen to be 

close  to  the  color  matching curves corresponding to the 

standard NTSC display primaries, where the negative lobes 

of  the  ideal  curves are neglected  [9].   m color 

photography, the film layer sensitivities may have q factor 

values as small as 0.6, or even less, because colorimetric 

accuracy may have  been  sacrificed  in  favor  of other 

properties, as mentioned earlier. 

The second major  source  of  errors  in  color 

reproduction is  the problem of cross-talk or undesired 

absorptions,  m color television, this might be caused by 

imperfect signal  decoding, so that the signal driving the 

red display primary might be contaminated by the blue and 

green display signals.  Misalignment in a  shadow mask 

Picture tube, allowing the electron beam of one primary gun 

to illuminate phosphors of the other two primaries, is 

another example of crosst^k in color television,  m color 

photography and color lithography the equivalent problem is 

called undesired absorption. A color film transparency has 

a cyan  (red-absorbing) layer which should control the red 

transmission of the transparency, with the other two layers 

(magenta and yellow)  absorbing no red light at all.  m 
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reality, red light is absorbed to some extent by the 

magenta and yellow layers. Figure (2-7) shows the 

spectrophotometric absorption curves of a typical set of 

photographic dyes. The cyan and magenta layers absorb 

strongly in the blue (400-460 nm) region, where ideally 

their optical densities should be zero. The cyan dye also 

exhibits unwanted absorption in the green portion of the 

spectrum. In each case, one of the color signals, red, 

green, or blue, is contaminated by one or both of the other 

two color signals. An ideal set of color reproduction dyes 

would be similar to those illustrated in figure (2-8). The 

rectangular spectral passband maximizes energy 

transmittance for a given dye saturation purity, while the 

non-overlapping stopbands remove the undesired absorption. 

Each dye affects one and only one spectral region and the 

resulting ideal subtractive color system is equivalent to 

an additive color system. Since unity spectral 

transmittance or reflectance is not achieved by real dyes 

at any wavelength, ur^.esired absorption is always present 

in any real subtractive color reproduction system. 

The result of crosstalk or undesired absorption is 

color error, usually a loss of saturation as a strong 

signal in one color channel excites the other two channels 

to some extent, tending to neutralize the saturation of the 

color at the display. 
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400 S00 600 700 
WAVELENGTH (nm) 

Figure   (2-7)  Photographic dye spectral  absorption 

1.2 
T 

Yellow      Mögen to        Cyan 

400 500 600 700 
WAVELENGTH  (nm) 

Figure   (2-8)   Ideal  dye spectral absorption 
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In addition to  sensor  imperfections  and  crosstalk, 

there are  several other sources of color errors which are 

of lesser importance, but which cannot be neglected in a 

general  discussion  of  color  errors.  One such source of 

errors is the limiting of color  signals by one or more 

components  in  the color system.  Examples include dynamic 

range limitations in a  color  television  camera  tube or 

display and the limited range of film densities in a color 

photographic system.  The effects of limiting may be seen 

by  examining  the density versus log exposure curve 

(sometimes called the Hurter and Driffield curve or H and D 

curve)  of  a typical reversal color film, shown in figure 

(2-9).  When the exposure values of the  three  layers all 

lie to left of the upper bend in the H and D curve, the 

densities limit at "black" and all color  information  is 

lost  (Case A),  when all three exposure values lie to the 

right of the right bend in the D log E curve, the densities 

limit at  "white"  (Case B).  When at least one exposure 

value limits while one or two exposure values  lie on  the 

linear  portion of the D log E curve, the output color will 

not be neutral and its hue and saturation will  in general 

exhibit  large errors  (Case C).  Only when  all  three 

exposure values at an image point lie on the linear portion 

of  their  respective  curves  is  it  possible to maintain 

accurate brightness, hue and saturation values relative  to 

other properly exposed points in the image (Case D) . 
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Figure   (2-9)  Limiting  in photographic  film 
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Another source of color error is gamut limitations in 

the display. It was previously stated that the position on 

a chromaticity diagram of a weighted sum of two primary 

lights lies on the line connecting the position of the 

primaries. It follows that the reproducible gamut of a 

three primary display must lie within the triangle on the 

chromaticity diagram defined by the positions of the three 

primaries. In additive displays such as television 

monitors, the color gamut is great enough to include all 

but a few relatively infreguent highly saturated colors. 

Subtractive photographic systems are further restricted in 

gamut by the undesired dye absorptions with a resulting 

inability to reproduce saturated colors at high lightness 

levels [10]. 

2.3 Restoration of Color Errors 

• 

Rfc?toration of color errors caused by system 

imperfections of the types discussed in tne previous 

section is conventionally done in one of two ways, 

depending on whether the color reproduction system is 

additive or subtractive. Color television is the only 

widely used additive color imaging system. In color 

television, undesired spectral absorption cannot take 

place, and its additive equivalent, crosstalk among the 

three color signals, is negligible when the signal decoding 
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and shadow mask alignment  in the receiver  are correct, 

imperfect spectral  sensitivities of the camera tube are 

always present, however, and some kind of signal matrixing 

[11,12,13]  is usuaUy, but not always, provided to correct 

the errors. The sensor errors arise because the color 

matching curves corresponding to the picture tube phosphor 

primaries always have negative values over some portion of 

the wavelength spectrum, while real sensor characteristics 

have only nonnegative values.   In theory,  ideal  sensors 

could  be made  by  providing a real sensor of the correct 

spectral shape for each negative lobe in the color matching 

curves,  and  subtracting  its output from  that of the 

appropriate positive lobe sensor of each curve.  This would 

require eight or  nine  sensors  and  is  never  done  in 

practice.  Instead, three sensors are used  whose  spectral 

chaÄcterlitic curves approximate the main positive lobes 

of the color matching  curves  of  the  rec-iver  primaries 

[11].   In many cases, no further restoration is done, and 

color errors are  present owing  to  the  absence of  the 

negative sensor  lobes.  These errors usually appear as a 

loss of color  saturation at  the receiver.     m some 

television cameras, a linear matrix operation is applied to 

the three color signals  in order  to better  approximate 

receiver  tristimulus  values.   The matrix  typically has 

negative off-diagonal  elements,  which approximate  the 

action of the missing negative lobes by subtracting a 
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fraction of each of the other signal values from each 

signal. The exact values of the matrix elements are 

typically chosen by minimizing the average color error, as 

measured by one of the "uniform" color difference formulas, 

over some ten or twenty test color samples [12]. Signal 

matrixing can reduce television color errors due to 

imperfect sensor characteristics to a very small average 

level [11,12]. 

In  the case of  subtractive color  imaging,   i.e. 

photography,   the  most  common  restoration  method  is 

photographic masking.  Masking can be described as  the 

modification of one image by the information contained in 

anotner  [14,15].    Photographic  masking   is   intended 

primarily to  correct for undesired absorption of dyes.  A 

negative image, or mask, is generated for  each case of 

significant cross-talk among the three-color images.  When 

these masks, up to six  in  number,  are placed  in  exact 

registration with  the  three  superimposed original cyan, 

magenta, and yellow images, the cross-talk components of 

tne original dye images are largely cancelled by the masks 

[14].  Masking  is  therefore a similai.-  operation  to 

matrixing  in color television, even though the sources of 

the errors are different in the two cases.   In the 

television  case,  a  natrix with negative off-diagona] 

elements operates on the three exposure signals in order to 

correct for imperfect sensor characteristics.  Photographic 
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masking applies a matrix with negative off-diagonal 

elements to the vector of film layer densities (which vary 

as the log of the exposures) 

undesired dye absorptions. 

in  order  to  correct  for 

Because of the  effort  required  in  preparing  and 

registering  the masks,  masking  is mainly used in cases 

where many  reproductions  are  required  from  a  single 

original.  Masking is widely used in photo-mechanical color 

reproduction   (for   example,  photo-lithography).    In 

Photo-mechanical reproduction, masking is incorporated into 

the process of preparing separation negatives for  each of 

the printing dyes[16].  since the separations are often 

produced by a color  scanner,  the masking  operation  is 

readily achieved by mr^ipulation of the scanner electrical 

signals [15,16]. 
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3.  Digital Color Restorati on 

Color errors which are generated by an imperfect color 

reproduction  system can be corrected digitally. A sampled 

color image  is described by a 3-dimensional array of 

numbers,  usually nxnxB, where there are n samples in each 

of two spatial dimensions, with 3 color  values stored at 

each spatial  image point.  When a color image exists in 

such a sampled form, or can be put into sampled form,  the 

great  speed and  flexibility of a digital coaputtr can be 

put to use in correcting the color  errors introduced by 

imperfections  in  the sensors and  storage devices which 

recorded tiie original image.  In contrast,  correction of 

color  errors  by photographic means,  for example by 

photographic masking, is a slow and complex process.  The 

production of  several masking transparencies and their 

exact registration is required for each image which is to 

be corrected.  The correcting power of masking is limited 

to altering the density of each  transparency layer  by a 

weighted sum of  the two other  layer densities at that 

point,  as was  described  in  Chapter  2.    in  digital 

restoration,  however,  the correcting  algorithms may be 

complex, nonlinear, spatially varying, and may have spatial 

memory.   The  speed of a digital computer when used along 

with  a  television display also allows  a  degree  of 

interactive  processing  which  is  not possible with 

photographic restoration.  The penalties  incurred  in 
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digital image restoration include the requirement for the 

necessary equipment and loss of accuracy associated with 

sampled data processing. 

3.1 Vector Space Formulation of Color Analysis 

In order to perform color restoration in a digital 

computer, the necessar- functions and equations must be 

converted to discrete, sampled-data form. In this form, 

the common linear operations of color measurement and color 

reproduction become matrix-vector operations instead of 

integral operations. For example, an integral operation on 

a spectral waveform C(A) of the form 

v I   SA\)  C(A) dX, (3-1) 

for i=l,2,3 can be discretized by replacing the continuous 

variable X with a finite set of points \tX7,...\ and 

forming the approximate discrete equation 

11 

J-l J 1 J  J 
(3-2) 

where w^w^^.w^ a»- the weighting coefficients of the 

quadrature integration formula used [1]. By defining a 

vector c whcse i th component is CfXJ, and a matrix whose 

ij th component is w.S.(A.),eq. (3-2) car be compactly 

stated in matrix form by 
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x = S c (3-3) 

where 

-.'.(Xj) 

c(X2) 

• 

Lc(in) 

(3-4) 

and 

s = 

w1 S^)    w2 S^Xj)  wn S^X^' 

w1 S2(X1) 

Wl S3iXl>     wn S3(Xn) 

(3-5) 

Since many of the important equations of colorimetry and 

color reproduction are of the form of eq. (3-1) , matrix 

operators and equations are very usefi'l in the analysis of 

sampled data models of color imaging systems and in 

colorimetry [2]. The equations of colorimetry are strictly 

sampled data equations in any case, since color matching 

curves are obtained by experiments with human observers at 

a finite number of optical wavelengths [3]. The continuous 

color matching curves which are sometimes published are 

obtained by interpolation of the original sample values. 

The utility of matrix notation can be demonstrated by 

examining color matching and metamerism [4], Two 

spectrophotometric distributions of light are said to be 

color  matched  if  they cannot be distinguished from each 
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other by a human observer. Two such colors are called a 

metameric pair. The tristinmlus values are the same for 

each member of a metameric pair (or set) of colors [31. 

In the vector space formulation, let 

2 
(3-6) 

and 

T = 

u^X^    u^Xj)  ^(X^ 

u^X^     u2(A2)  u2(^n) 

u3(X1)    u3(X2)  
u3(Xn)J 

(3-7) 

where t is ca 

U (X)  are  co 

[ 
lied the tristimulus vector, U^X), J2{X), and 

lor  mixture  functions for a standard set of 

are observing conditions, and  the  set  (Xi,X2,...,X^) 

uniformly spaced set of wavelengths covering (as a minimum) 

the domain over  which  the color  mixture  functions  are 

significantly different from zero.  The value of n usually 

lies in the range of 15 to 80.  Also let 

ECX^  0 

0 . . . E(X2) 

Lo... 

...  0 

... o 

.. E(X 

(3-8) 

»'J 
re E(X) is the spectral energy distribution of the light 

whe 

source and 
40 
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r = 

R(x1) 
R(A2) 

R(Xn>j 

(3-9) 

mce    of    a with  R(X)  representing  the  spectral  reflectai 

reflective sample.   if the color  is  from a reflective 

sample, then 

c = Er (3-10) 

The tristimulus values t for a reflective sample are given 

by 

t = TEr (3-11) 

If r  and r  represent  the spectral reflectances of a m 

sample and a matching sample respectively, then 

t ■ TEr  = TEr (3-12) 

or 

SIi.-£j = i (3-13) 

Two reflectivities are thus said to be metameric with 

respect to an illuminant E and a standard observer T when 

their difference vector lies in the null space of the 

matrix TE. 
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3.2 Modelling Color Imaging Systems 

In  order  to achieve  accurate  color   restoration 

digitally,  an  accurate vector model of the color imaging 

system is necessary.  A general model of an imaging  system 

which senses and stores color values is shown schematically 

in figure (3-1).  At each image  point,  a  spectral  power 

distribution, represented in sample form by the vector c of 

dimension n, serves as the input to a  set  of  sensitivity 

functions   represented  by  the matrix  S,  with  outputs 

consisting of the three components of the vector  x.   The 

elements  S,  C,  and  x  are defined  and related by eqs. 

(3-3), (3-4), and (3-5).  As an  example,  the  rows  of  s 

might  be  samples of  the  three layer sensitivities of a 

color photographic film.  In general, the linear  operation 

modeled by the matrix S is followed by a nonlinear function 

of x which results in another 3-vector  w.  The  nonlinear 

operation  F might represent limiting of signals in a color 

television system, or the nonlinear  relationship between 

layer  exposure  and  layer  density  in color photographic 

film.  The three components of w are stored and are at some 

later  time used as input signals to a process G, generally 

nonlinear, which displays the signals as an output spectral 

distribution c , again represented by n samples. 

The functional relationship between the input nput spectral 
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distribution  c  and the displayed distribution c  for this 

model can be written as 

co = GFSc (3-15) 

where G and F are general vector operations of appropriate 

dimensionality and are nonlinear, in general. It is 

clearly impossible for the modeled system to generate a c 

vector equal to the input vector c. The S operation has 

reduced the dimensionality of c from n (usually 30, 40, or 

80) to 3, with an irreversible loss of information. It is 

possible, in theory, to generate a c0 which is metameric to 

c, since each color is colorimetrically specified by three 

tristimulus values. For a colorimetrically perfect color 

reproduction system, the input and output tristimulus 

vectors, t and t, are equal at each image point, or 

lo = l£o " TGFSc = Tc = t (3-16) 

This relation holds if the  following  two  statements  are 

true: 

1) The rows of S are color matching curves. if this 

is true, then x=Sc is a tristimulus vector of c and 

may be easily converted to the tristimulus vector 

corresponding to any other set of color matching 

curves (for example the rows of T). 

2) The operator G F is an  inverse  tristimulus 
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n 

1 

operator; that is, it takes a tristimulus vector x and 

generates a waveform c which is a solution of the 

linear equation x=Sc . This implies that G F is a 

linear operator even thouqh F is generally nonlinear. 

When these two conditions are met, the color at each 

pixel in the reproduced image will match colorimetrically 

the corresponding point in the input image. As stated in 

Chapter 2, real color reproduction systems do not meet 

these conditions exactly. Sensor spectral characteristics 

are usually only approximations to a set of color matching 

curves, and the subsequent recording display sequence 

operation G F is always nonlinear owing to the limiting of 

signals and other no:ilinearities in the storage medium or 

the display [5, 6]. 

In order to perform digital restoration on a digitized 

color image, the foregoing model must be extended to 

include the color scanner which digitized the displayed 

image. In subsequent sections, the special case of 

reversal color film as an image storage medium will be 

examined. To perform digital processing on a 

photographically recorded transparency, the transparency 

must be scanned by a color analyzing system which outputs 

three color signal values at each point of a chosen spatial 

grid array. The completely general color analyzing system 

model including a scanner is shown in  figure  (3-2) ,  with 
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the film-scanner special case specified beneath the general 

system component blocks, it should be noted that while all 

of the component blocks shown are present in a digitized 

film color system, they may not all be present in other 

digital image color systems. A digital television system, 

for example, might not display and/or store the images 

before digitization. 

For the digital color analyzing system of figure 

(3-2), the relation between the input color vector c and 

the stored observable v is given by 

v = HGFSc (3-17) 

I 

where H, the characteristic function of the scanner, is a 

nonlinear function of c , but may be linear to a good 

approximation over a wide range of signal levels [7]. If 

the signal v were used to drive a display television 

monitor, a colorimetric match between the displayed color 

and the input color c will be obtained if v is' the 

tristimulus vector of c in the system defined by the 

television display primaries. If T is the matrix of color 

matching curves in that system, then 

v = Tc (3-18) 

or 
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HGFS   =   T (3-19) 

for a  colorimetrically ideal digital color system. 

3.3 The Color Estimation Probl em 

The problem to be solved can be stated as follows: How 

can  the tristimulus values of an input color to the system 

of figure (3-2) be most accurately determined when the  two 

conditions of the ideal colorimetric reproduction system do 

not hold? Ey observing the  digitized  signal  v(x,y)  over 

some discrete array of image points in the x and y spatial 

dimensions,  it  is desired  to  estimate  t(x,y),   the 

tristimulus  vector  at  each  image  point,  where  t  is 

derivable from the input spectral distribution  c  by  the 

relation t=Tc. 

The estimation problem may be broken into two parts, 

each corresponding to one of the conditions of ideal 

reproduction which are violated by real color reproduction 

systems. Correspondingly, eq. (3-17), which describes the 

whole system sequence, may be broken into two serial 

operations 

x = Sc (3-20) 

and 
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v   =   HGFx (3-21) 

The estimation process proceeds in two steps. First, an 

estimate of x is determined from the observable v by 

inverting eq. (3-21). Second the estimated x is used to 

estimate  c by  inverting  eq.   (3-20) .  It will be shown 
A 

later that the desired tristimulus estimate t is best 

estimated by taking the estimated c and letting t=Tc. The 

two requirements of ideal colorimetric reproduction may be 

related to the above equations as follows: 

1) The matrix  S  in eq.   (3-20)  must  have  rows 

consisting of color matching curves. 

2) The operation HGF in eg.  (3-21) must be linear and 

invertible. 

In an idealized case where condition (2) is true, x is 

obtained from eq.  (3-16) by simple matrix inversion 

x = (HGF)'1 v (3-22) 

If condition (1) is also true,  then x  is a tristimulus 

vector of c and there exists a 3x3 matrix A such that 

T = AS (3-23) 

and, therefore 
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t  =   Tc   =  ASc   =   Ax (3-24) 

For a real, non-ideal system, no matrix A satisfying eg. 

(3-23) exists and HGF is usually invertible only over some 

range of signal values. 

In summary,  it  is desir 

eguations 

ed  to  invert  the  set  of 

x = Sc 
(3-25) 

v = HGFx 
(3-26) 

in order to obtain an estimate of the tristimulus vector  t 

which  is optimal in some as yet undefined sense.  Equation 

(3-26) is non-linear, deterministic (if  observation  noise 

can  be  neglected) and is exactly determined (x and v each 

are  three dimensional).   Equation  (3-25)   is  Unear, 

stochastic  (because of observation noise on x and possibly 

because of statistical assumptions which may be made  about 

£)  and  is  underdetermined (c is of higher dimension than 

x.) .  The two step estimation method is diagrammed in figure 

(3-3). 

on  of  eq. Chapter 4 will examine methods of  soluti 

(3-25).   chapter  5 will examine solution methods for eq. 

(3-26), with emphasis on the  film-scanner  color  analysis 
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system. 

References 

1.  Lewis, T.O., and  P.L. Odell,  Estimation  in Linear 

M2dels,   Prentice-Hall,  Englewood Cliffs,  New Jersey, 

(1971). 

2. Miller,  C.W.,   "The  Matrix  Algebra  and  Color 

Reproduction," j.  opt.  Soc.  Am., 31, pp.477-482 (19a) 

3. Wyszecki, G., and W.S.   Stiles,  Color  Science,  John 

Wiley, New York (1967). 

4. Allen, E.( "Basic  Equations  Used  in  Computer  Co:or 

Matching," j.  opt.  Soc.  Am.,56, 9, p.  1256,(1966). 

5. Evans, R.M. ,  w.T.  Hanson,  Jr.,  and w.L.  Brewer, 

-■inCip1^ ^ Color  Photography,  John  Wiley,  New York 

(1953). 

6-  Yule, J.A.C, Principles of Color  Reproduction.  John 

Wiley, New York (1967) . 

7.  Hunt, R.w.C, The Renroduction of Colour, 2nd  edition, 

John Wiley, London (1967). 

52 

— -■■ ■ -  

'■   ■     .     ^   - 

 — -JA 



^^«^ 
mmmmtm 

T^«l      .       I     11«     I   I   WXMV   I lllll   IHlJIMIJI|P»IW!"lWMPiPliJ.U.LllW«.l»l..MUl   ... HI    1   I»!     l     . I..   1.   .   .!  

4.  Tristimulus Estimation 

The final step in the color restoration process is the 

estimation of the tristimulus values at each imaqe point in 

the oriqinal scene. This estimate must use as its inout 

Quantities signals which are outputs of imperfect spectral 

sensors, and which are usually themselves indirectly 

obtained from other observable quantities. This chapter is 

concerned with the estimation of tristimulus values from 

spectral sensor outputs which are assumed to he directly 

observable. 

In vector notation, the equations to be solved are 

x = Sc+e (4-1) 

and 

t=Tc (4-2) 

where 

S: 3xn array of sensor spectral sensitivities 

T: 3xn array of color matchinq curves 

c: nxl spectral distribution vector of input color 

x: 3x1 vector of sensor outputs 

e: 3x1 vector of observation errors 

t: 3x1 vector of tristimulus values of c 

The problem is to estimate t when 3 and T are known, c  and 
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e are unknown, and x is observed. 

4.1 Linear Estimation Methods 

Since ea. (4-1) is a linear eauation and since the 

techniques of linear estimation are well developed (1,2,3), 

it is natural to attempt to estimate t from x usinq linear 

estimation methods. m order to optimize any estimator, 

however, it is necessary to choose a fidelity criterion, an 

expression which quantifies the color difference between 

any two sets of tristimulus values, t 1 and 12. Such a 

fidelity criterion should ideally satisfy two conflicting 

conditions: 

1) The fidelity criterion should be perceptually 

uniform, i.e., the error value qiven by the fidelity 

criterion should be proportional to the perceived 

color error over the entire tristimulus space. 

2) Maximization of the fidelity criterion should lead 

to estimator equations which are solvable in closed 

form and with a high degree of generality. 

There are several existing color distance formulas 

which are perceptually uniform to a good approximation 

(7,81. These color distance formulas (see Section 2.1) are 

complicated functions of the tristimulus values of the 

colors, and, when used as color fidelity criteria, do not 

satisfy  the  solvability condition stated above.  in order 
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to obtain solvable equations, it is necessary to -jse a 

Quadratic error criterion, a type of error criterion whose 

use is almost universal in linear estimation theory. 

Hence, let the error criteria in the tristimulus and 

spectral distribution spaces be the quadratic forms 

e
t = Ktj - t^MCtj -t2)]

1/2 
(4-3) 

and 

e
c " f^! -£2

)T^1 -£2)]1/2 (4-4) 

where M and N are 3x3 and nxn positive definite matrices, 

respectively. Then the many techniques of linear 

estimation which have been developed over the years may be 

directly applied to the tristimulus estimation problem. 

These error criteria, or color distance formulas, are not 

perceptually uniform, but they do satisfy two important 

conditions which a usrful color distance formula should 

obey: 

1) Heducinq the color distance between two colors as 

determined by either of these two formulas will, in 

qeneral, provide an improved color match between the 

two colors. 

2) When the color distance e  or e  is equal to  zero 
t     c ' 

the two colors are perceptually eauivalent under a 

colorimetric model.  The converse is true for  e  but 
I- 

not for e . 
c 
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In the remainder of this chapter, several widely used 

linear  estimation  methods  will   be  applied  to the 

tristimuius estimation problem.  The problem will first be 

approached  under  a  linear  regression model.  Under this 

model,  the spectral distribution c  is assumed  to be 

nonrandom  but unknown.  No statistical information on c is 

assumed available, but a priori knowledge in the form of a 

smoothness  constraint is utilized to improve the estimate. 

Least souares estimation and minimum norm methods are amonq 

the  technioues  employed  to  solv 

under the regression  model. 

e  eas.  (4-1) and (4-2) 

The tristimuius estimation 

problem will also be approached using a stochastic color 

model. Under this model, c is assumed to be a random 

vector whose first two moments either are known or can be 

approximated. The problem can then be solved using well 

known Wiener estimation methods. 

4.2 Estimation Under a Linear Regression Model 

In Chanter 3 it was shown that if sensor spectral 

sensitivities can be expressed as linear weighted sums of 

color matching curves, then tristimuius valu. 

directlv obtained from th 

ies  can  be 

e sensor outputs when there is no 

observation noise.  For cases in which this condition does 

not hold, a matrix B can be found which anproximates the 

eclor matching matrix T by BS in the least  squares  sense. 
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Then a tristimulus estimator 02.. be obtained by letti nq 

t = BSc = Bx (4-7) 

In order to find the least squares approximation or 

fit of T by S it is necessary to find the best least 

squares fit of each row of T by a weighted sum of the rows 

of S.  Let 

and 

^1 

Hj = i (4-8) 

-1 

k2 

.-3. 

(4-9) 

Then it is desired to find the vectors b. for i=l,2,i which 

minimize [{u -S hi] where the n-dimensional Euclidean vector 
—i 

norm is defined by 

X  = (x x) (4-10) 

Using the well known least squares estimation theorem  (4), 

the desired vectors are 

bj = (SS1)"1 S ^    1 = 1, 2, 3 (4-11) 
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Taking the transpose of each sid 

symmetric, 

e and observing that SS  is 

.T   T T   T -1 

(4-12) 

Using (4-12), (4-8), and (4-9), 

T   T —1 
B = T S (SS1) i 

Substituting this expression for B into  eq, 

the least squares tristimuKis estimator 

*      T   T -1 1 = T S'CSS1) 1 x 

(4-13) 

(4-7)  gives 

(4-14) 

The  matrix   product   sW)"1  is   defined   as   the 

pseudo-inverse  matrix  s+ of the 3xn matrix S, when S has 

linearly independent  ro ws   [2).    The   least   sauar es 
estimator, eq.  (4-14) is theretoro of the form 

t = T c = T S {4-11) 

where c=S j is an estimator of the unk 

obtained by solving the (underdetermined) equation x=Sc for 

nown color vector  c. 

c using S , the pseudo-inverse of S. 

form 
Any vector c of  the 

c = s+ x + (I - S+s) v 

where v is any n vector, is also a solution of x=Sc. 

may be seen by multiplying each side of (4-18) by S, 

(4-18) 

This 

58 

-   -    -■ - MM „..«^^j. IMIIiilMMflMillMM«! 



""" ■■l   

Sc = SS+ x + (S - SS+S) ^ = x (4-19) 

since SS+"I. Of all the solutions given by eq. (4-18), 

the vector c=S x, obtained by settinq v=0 in (4-18) is the 

solution of minimum Euclidean norm. This becomes evident 

by observing that the oarticular solution £ x is orthoqonal 

to the homogeneous solution (I-S S)v.  For any v 

[<1 - i+s) v]T S+x = vT(I - :+s)  S x = 0 (4-20) 

Since the length (norm) of the sum of a fixed vector S x 

and a vector orthoqonal to S x is minimized when the 

orthogonal vector is of zero length, c=S x is the minimum 

(Euclidean) norm solution of x=Sc. 

The particular estimate of c given by c=S x is only 

one of the many solutions to the underdetermined equation 

x=3c. Minimum norm estimation provides other solutions 

which may be better in the sense of minimizing a quadratic 

nor^i given by 

ll£llN = (£T Nc.) 
1/2 

(4-21) 

The nxn matrix N must be positive definite and symmetric 

end is chosen so that ||c H is a measure of a property of c 

which is to be minimized. Particular choice, of N, such as 

those leading to minimal energy or maximal smoothness of c, 

will be discussed after deriving the general minimum norm 

estimator. 
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The task is to choose a c which minimizes cTNc while 

satisfying Sc=x. This can be accomplished using Laqrange 

mulvipliecs.  Let 

J(£> 4 £T N£ + AT(Sc - x) (4-22) 

where A is a 3-vector of LaGrange multioliers.  The  scalar 

term J(c) is minimized when its first derivative is zero 

3J  „     T 
j^- =  2Nc H- S A_ = 0 

which  yields 

1     -1     T 
£=-2li      SX (4-23) 

Solvinc-  Pq.(4-23)   and   x=Sc   for  A   as  a   function  of  x  gives 

x  =  Sc  = - i sif1   STA 

or 

A = - 2(sir1 s1)-1 x 

Substituting   (4-24)   into   (4-23)   gives  the solution 

£ = a'1  ^(SN-1 sV1 x 

Again forming the tristimulus estimate t«Tc, 

A      -1  T   -1  T _i 
1 = TN 1 S^SN i S ) ^ x 

This is the minii 

(4-24) 

(4-25) 

(4-25) 

•mum N norm estimate of t.  By letting  N=I, 

the  identity matrix,  the  least souares estimator of eq. 
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(4-14) is obtained. The relationshio between the least 

squares and minimum norm solutions for general N is qiven 

in the following theorem [5], which is given without proof: 

Theorem - Let N be positive definite and S be 

real. Let ^MN
be the M-least squares minimum N-norm 

inverse of A.  Then, 

((S1)^!!)1-/ IN (4-27) 

The theorem states that the minimum N norm  estimator  is 

equivalent  to the N  least squares estimator.  This means 

that if tne least squares estimator eq.(4-14) used (cV^) 
T 

as  its  n-space  norm  instead  of  (c c) ,  it  would  be 

identical to the expression of ea.(4-26). 

The choice of the nxn matrix N in the N-normis 

determined bv the particular solution which is to be chosen 

from the many solutions of x=Sc. If N=i, the identity 

matrix, the norm becomes 

I|c|I  = c c 

which is equivalent to the energy of c. Another approach 

in restricting the estimate of c is to try to choose N so 

as to incorporate a priori knowledge of c into the 

estimate. One such piece of a priori knowledge is that the 

spectral intensity curve which c represents is "smooth" in 

some sense. A useful smoothness criterion is that of the 

average squared  second  difference of  c  (6].   If  this 
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smoothness    criterion     is     used,   the  solution  to  x=Sc which 

minimizes  the quantity  cTNc   is  sought,   where 

T n-1 
£     Nc   =     I      [(c 

1=2 1+1  - Ci)  -   (ci  - ci.i)]2 = 1     ( I     (c1+i   - 2c     + c.   .) 

If   a  vector  y=Dc  is defined  by 

rv, 

y = 

Ly n-2' 

rl     -2     l     0     ,-) 

T 

•• oirci] 
0        1     -2       1      0       ...       0 

0        0       1     -2       1       ...       o 

Ö        ..01-2        i 

= Dc    (4-28) 

c    J n 

then  y y  is   the desired  average  squared   second     difference. 

Thus, 

T n-2 9 
£    N£ =    I    y.     =  VTV = cT DTDc 

1=3    1  

and the nxn matrix N is then 

„1 

N = D D = 

2 1 0 0 

5 -4 1 0 

4 6 -4 i 0 #... 

1 -4 6 -4 1 0.. 
• 

(4-29) 

The matrix N thus derived cannot be directlv substituted 

into eq.(4-26), the minimum norm estimator, since it is 

singular (each row and column sum to zero). This obstacle 

can be removed by reolacinq N by N + ei where e is a 

positive constant, small compared to unity. 
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The least squares and ;ninimuni norm solutions treated 

thus far are deterministic solutions co eqs. (4-1) and 

(4-2). The observation noise e in eo. (4-)) was assumed 

to be negligible. Tristimulus estimation urder a 

regression model -;ill now be extended to include additive 

observation noise whose first two moments are assumed 

known. The regression model is given by the set of 

eouations 

x = Sc + e (4-30a) 

E(e) = 0 (4-30b) 

E(ee ) = R (4-30C) 

where E denotes the ensemble expectation operator, and  R 
-ee 

is   therefore  the  3x3   symmetric,  positive definite 

covariance matrix of the observation  error  e.   Equations 

(4-30)  are a special case of the general linear regression 

problem.  What is found is a set of three 3-vectors 1   for 
—i 

T 
1 = 1,2,3  such  that  1.x  is  an  estimator of t. , the i th 

element of t.  Thus, 

T     T 
t. = «,. x ~ II  c = t. 
i  —1 —  —i —   i 

where u  is the i   th  row of  the  tristimulus matrix  T. 

Clearly it would be desirable that 

E(t) 
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If t   satisfies this relationship for all true values of  t, 

the estimator is said to be unbiased.  For an unbiased t 

B(lJ x) = u^ c 

Now, 

E(lJ x) = £j E(x) = j,^ Sc 

So, for an unbiased estimator 

T      T 11 Sc = uJ c 

for all c, or 

^ *l = ^ 

If  this  condition  holds,  then  t. =uTc  i 

unbiasedly estimable. 
-i - 

(4-31) 

s  said  to be 

Unfortunately,  the quantity t.  is not unbiaaedly 

estimable  in  the  case of  tristxmulus  estimation.  The 

condition of eq. (4-31) does not hold in general, since it 

requires that the color-matching curve u, be expressible as 

a weiqhted sum of the three rows of S (which are the three 

sensor soectral sensitivities). Note that this condition 

is equivalent to the condition of eo. (3-23). since the 

dimensionality n of the rows of s is far greater than 

three, eq.(4-31) cannot hold for general S. An equivalent 

description is that unbiased estimation is not possible 

when the regression model is underdetermined. 
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Although an unbiased estimator is not obtainable,  it 

is  possible  to  seek  a minimum bias estimator.  A linear 

T T 
function 1 x is said to be a minimum bias estimator of  u c 

-i — -i - 

if 

\\i LA - ill = lnf 1111! -üjl 
I 

Minimum bias estimators are not unique, in general.  It  is 

desired,  then,  to  find  an estimator  which has  least 

variance in the class of linear minimum  bias estimators. 

This  estimator  is called  the  best  linear minimum bias 

estimator  (BLMBE).  The variance  of  a  scalar   random 

variable a is defined to ne 

V(a) = E(a - E(a))2 

T T 
Let 1.x be an estimator of u.c.  Then, -i— —I— 

T      T        T      T 
(4-32) 

■ 

is the bias and the variance is 

. 
v(i: x) = dT R «.. 
—i —   —i -ee —i 

(4-33) 

The problem is to minimize 1. R Ij in the class of  1  for 

T which  IS 1 -u   is a minimum.   The  norm  in the three 

dimensional space is defined to be the Euclidean norm 

I 111 I = (iV/2 

T  1/2 
Let the norm in Rn be defined by  !|x||=(x Mx)   where  M  is 

positive definite.  The answer  is given by the minimum 
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I-norm  M-least  sauares solution of   the   inconsistent 

equation S i=u 

h ■  </>Hl H, 

The estimatoi of u c is 
—i — 

t = £Tx = „Trr<;T^+ iT   T o+ ci L*    ^Ks )MI] x = ^ s^! x (4-34) 

using the duality result of eq.(4-271.  The variance of the 

estimator, assuming uncorrelated observation error, is 

VUTx) = A
T Ree ^ = a2 ^ __ a2  „J^f^j ^ 

(4-35) 

where 

R 
—ee a2! 

An explicit expression for the BLMBE for  un-orrelated 

observation noise is given by 
A     T  T     T -1 
tl = li  Ma (SMS )  x 

The best linear minimum bias tristimulu 

is then 

s  vector  estimator 

where 

t_ -  TMST   (SMS1)"1  x (4-36) 
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HHHBBB^HHI 1 

t = 

It can be seen that, if M*I, the BLMBE is eruivalent 

to the least squares estimator of eq. (4-14). If M=N" , 

the BLMBE is eauivalent to the minimum norm estimator of 

eq.  (4-26). 

In the event that the observation noise is correlated, 

the regression model can be extended to account for it. 

Let 

E(f ) = 0 (4-37a) 

T    2 
E(ee ) = a W (4-37b) 

where W is non-sinqular and positive definite and a is 

unknown. Since W is non-sinqular and positive definite, H 

exists  such  that 

-1       T 2 W       =  H H =  H (4-38) 

Let 

z = Hx 

e     =  He 

S1   =  HS 
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Then 

1 - Ijc + ^ (4-39a) 

and 

Ee = o 
(4-39b) 

ü   T   2 
(4-40) 

The model defined by eas.(4-39) and (4-40) has uncorrelated 

noise, and can be solved as before. The estimator of t is 

given again by eq. (4-36) where S is replaced by Sit and x 

is replaced by z.  Thus, 

Tx-1 i ■ u«; (Sj M sj)-1 z 

or 

1 ■  ™S     HT(HSMST  H1)"1  Hx = TMST   (SMS1)"1 

(4-41) 

The resulting estimator of eq.(4-41) is identical to the 

uncorrelated noise estimator of «0.(4-36). The estimator's 

independence of ^ noise correlation is a result of the 

fact that the equation being solved is underdetermined. it 

is of interest to look at the overdetermined and exactly 

determined cases. if M=I, the general solution to the 

correlated noise problem eq.  (4-37) and (4-33) is given by 
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c  =   (HS:     Hx (4-42) 

where, again, (HS) is the Moore-Penrose pseudo-inverse of 

HS [3]. For the overdetermined case, the pseudo-inverse is 

defined by 

A+ = (A'V1 AT (4-43) 

where  A  is  mxn with m>n  and  rank  (A)=n.    In  the 

underdetermined case, the pseudo-inverse is defined by 

+   T   T -1 
A+ = A^AA1) i 

(4-44) 

where A is mxn with m<n and rank (A)=m. In the exactly 

determined case, r n and /+»A . Substituting these 

expressions into eq.(4-42) in turn gives for the 

overdetermined case 

c = (J W"^) 1 ST W"1 x (4-45) 

In the underdetermined case 

c  = ST(SST)~1 x (4-46) 

In the exactly determined case 

?  Q-1 c = S  x (4-47) 

The best linear estimator is independent of the correlation 

properties ot the noise when the system to be solved is 

underdetermined or exactly determined. 
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In  the  tristimulus  estimation  problem, which   is 

underdetermined,  the  linear  estimators  which have been 

discussed thus far (least squares, minimum norm, and BLMBE) 

are ail of the general forni 

Tc = TS x (4-48) 

where S xs a generalized inverse of  s.   when  the vector 
3     n 

norms  in  R  and R are taken to be Euclidean norms (i.e., 

M=N=I), the different generalized inverses all  become  the 

pseudo-inverse, and all three estimators are identical 

■+    -,T,_.,T\-1 £ = Tc = TS x = TS (SS1)"1 x (4-49) 

4.3 Stochastic Color Estimation 

The regression model of the previous section included 

additive observation noise whose first two statistical 

moments were assumed known. The soectral distribution 

vector c of the input color was assumed to be unknown but 

nonrandom; no statistical assumptions on c were included in 

the estimation model. In the following discussion, the 

model is altered to include a random c vector. The rand 

color model is given by 

om 

x = Sc + e (4-50) 

and 

t = Tc (4-51) 
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where, again, S and T are known 3xn matrices, x is the 

observable 3-vector and t is the tristimulus 3-vector which 

is to be estimated. The statistical properties of the 

unknown n-vector c and 3-vector e are given by 

Ec = m {4-52a) 

E[(c - in ) (c - m )T]- R (4-52b) 

Ee = 0 (4-53a) 

ECee') = R 
—    —ee (4-53b) 

E(ei c.) = 0 (4-53C) 

for i=l,2,3 and i=l,2,...,n.  A linear estimator  of  c of 

the form 

, 

c = a + Ax (4-54) 

will now be sought for which a is a real vector and A is  a 

real matrix chosen so that 

^ A E[(c - c) (c - c)T] (4-55) 

is minimized.  The minimization of 0  is  defined  to  mf»an 
~ c 

that   for   any  other   linear   estimator  c'  and  its 

corresponding  0'»   the  matrix  n'-Q   is   positive —c - c — c 
semi-definite.       When 0     is miniuiized,   the  expected  sauared — c 
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errors of the components of c (the diaqonal elements of Q ) 

are each minimized.  This insures that 

e  A E[(c - c)T (c - c)] 
(4-57) 

the sum of the squared component  errors of cr  is also 

minimized.  Most  importantly, the minimization of o ^iso 
- c 

results in the minimization of the matrix of tristinulus 

errors 0t when a tristimulus estimator t is derived from c 

by letting t=Tc.  Let 

T 
St 4 Et(t-i)(t-e)T] = E[T(c-a)(c-c)T T

T
] = ISCT     (4.58) 

If 5'c~ 5C 
is positive semi-definite, then 

n; - <2t = 1% - o.) I1 

is also positive semi-definite since  the  rows  of T are 

linearly independent, and Qt is therefore minimized when 0 

is minimized.  The spectral distribution estimator which i 

sought  has  the  form of eq.   (4-54)  and minimizes eq. 

(4-55).  The solution is the well  known discrete Wiener 

estimator (see reference [31 for a derivation), given by 

-c 

s 

a = m - Am 

and 

(4-59) 

A = R  R-1 
—  —ex —xx (4-fitf) 
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where 

R., =  E[(c  - i^)^ - n^)1] (4-61a) 

R       =  E[(x - m  )(x - ra  )   ] (4-61b) 

and 

m    =  Sm 
-^x      —c (4-61c) 

Substituting  eqs.      (4-59)   and   (4-60)   into  eq.     (4-54)   gives 

c=m+R       R       (x-m) 
—     —c      -ex —xx    —     —x (4-62) 

By manipulating  eas.(4-50)   and   (4-61) rthe 

correlation matrices are found to be 

R  = E[(c - ra )(x - m )T] = R  ST 
—c.x     —  —c —  —x     —cc — 

necessary 

and 

R  = E[(x - ra )(x - m )T] = S R  ST + R 
—xx     —  —x—  -x      cc—   —ee 

Substituting these last two relations into (4-62) gives 
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~     -c      -cc -    ^ iVc -    + SLJ       (x - m.) 

The corresponding Wiener tristimulu 

given by 

—  —x 

■  estimator,  t=Tc,  is 

^I^Kcc^SRS^R  )^ (x-m) —ee (4-63) 

The color  covariance matri x  5CC might  reasonably  be 

approximated by a first order Mar 

the form 
kov covariance matrix of 

R 
—cc 

2 
P  P 

n-1 

L n-1 

(4-64) 

where  p ,  the  cr.relation 

constant less than unity. 

coefficient,  is  a  positi ve 

4.4 Tristimulus Estimation Results 

The tristimulus estimators which have  been discussed 

in  the  foregoing  sections have been tested by means of a 

computer simulation which uses ten test colors and also  by 

"sing  a  computer  simulation which  incorporates  real 

multispectral images.  The set of ten test colors consisted 

of measured  reflectivities (reference 4-9) of natural and 

■nan-made objects which are typical  of  those which might 

occur  in  a  scene  to be  reproduced.   The ten spectral 

reflectivities are shown in figure (4-1).  They correspond 

74 



r—' ■    yiivviBm^'^w«^«iMinw«Bwp^^wvw»>>»-v«VH<«n^^^vmOTwviHHMMMMaBiBMPa«iNMPManiPMi«a^i^«^wW'i> i UJI« 

0.0 
400 500 600 

Figure (4-1) First five test spectral reflectivities 

700 
WAVELENGTH.nm 

400 500 600 700 

WAVELENGTH,   nm 

Figure  (4-2)   Second  five  test  spectral reflectivities 
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tc the following objects: 

1) flesh 

2) grass 

3) sky blue 

4) red brick 

5) purple flower 

6) blue dye 

7) green dye 

8) yellow dye 

9) red dye 

10) flat neutral gray 

These reflectivities were multiplied at each wavelength by 

a daylight illuminant function (CIE Illuminant C) to 

generate the ten input test colors. Each reflectivity 

curve represents a measured reflectivity, except (3) and 

(4). Number (3) is a curve which, when multiplied by 

Illuminant C, gives a typical spectral energy curve of 

light from the sky. Number (4) is a hypothetical neutral 

reflector whose reflectivity is 0.5 at all wavelengths. 

The spectral energy curve of CIE Illuminant C is shown in 

figure (2-3). 

The spectral sensitivity characteristics which were 

incorporated into the model were of several kind«. An 

important set, representing a typical reversal color film 

and lens combination, is shown in figure (4-3). These 

curves are the spectral products of the film  layer  caking 
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sensitivities,  fiqure   M-ia»   anH  »■>,«  i ,   ix^ute   i« »a;   and   the  lens  optics 

transmissivity, fiqure (4-4b).  The 80 samples of  each of 

the  3  curves of  fiqure (4-3) become the elements of the 

3x80  sensitivity matrix  s.   The  colorimetric  quality 

factors  0  for the red, green, and blue sensor curves of S 

are, respectively, 0.414, 0.822, and 0.983.  The green  and 

especially,  the  blue  sensors of this sensor set are very 

good approximations to  color  matching  curves.   The  red 

sensor,  by contrast,  is  not close to any color matching 

curve primarily oecause it peaKS at about 650 nanometers, a 

wavelength  which  is  about  50  nm.  longer than the oeak 

wavelength of any ideal color  matching  red  sensor.   The 

difference  can  be  seen  by  comoaring   the  sensor 

characteristics S, figure (4-3),  with  the  sot  of color 

matching curves which are nearest to S in the least squares 

sense, shown in figure (4-5).  The green  sensor  of  s  is 

also   shifted  slightly  toward  the  longer  wavelengths 

relative to its ideal colorimetric  position,  but  not  so 

much  as  the  rec  sensor.  The reason for the exaggerated 

spread of peak sensitivities  in  the  color  film  is,  as 

described  in Chapter 2, to incre.se color saturation for a 

more pleasing (but less accurate) color rendition. 

The linear estimators of the input waveform c can t. 

graphically compared using the film sensor S. The 

estimators are of the form 
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in 
z 
UJ 
CO 

400 500 600 700 

WAVELENGTH,nm 

Figure  (4-4a)   Color film layer spectral sensitivities 

400 500 600 700 
WAVELENGTH, nm 

Figure   (4-4b)   Lens absorption characteristic 
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c  =  c    + S    x 
—       —o       —    — 

where S is a qeneraliz^H inverse of S and c0 is the zero 

vector except in the Wiener case. The qeneralized inverses 

are one of the following: 

1) pseudo-inverse: 

+   T   T -1 
S = S (SS ) 

2) constrained inverse: 

3) Wiener inverse: 

-1  ^   -1  T -1 
S  = N i S (SN   S ) l 

T    T -1 
ST = MS (SMS ) 

where N is the smoothing matrix defined in eo. (4-29), and 

M is the Markov covariance matrix given by ea. (4-64) . 

Since S is a 3x80 matr.x, each S is an 80x3 matrix whose 

columns may be graphed as the rows of S were graphed in 

figure (4-3) . The columns of S , the pseudo-inverse of S, 

are shown in figure (4-6) . The columns of S~ and S~ are 

shown in figures (4-7) and (4-8). Figure (4-3a) shows the 

Wiener inverse using a correlation coefficient p=0.S and 

figure (4-8b) shows the Wiener inverse with P=0.9. The 

estimate c of the input spectral waveform are weighted sums 

of the columns of the appropriate S (summed with n mean 

vector in the Wiener case). 
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400 500 600 700 

WAVELENGTH,   nm 

Figure   (A-6)   Columns of pseudo-Inverse operator 

500 600 700 
WAVELENGTH, nm 

Figure  (A-7)  Colutons of smoothing Inverse operator 
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400 500 600 700 
WAVELENGTH, nm 

Figure (4-8a) Columns of Wiener Inverse operator, p » 0.5 

400 500 600 700 
WAVELENGTH,  nm 

Figure   (4-8b)   Columns of Wiener  Inverse operator,  p - 0.9 
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Examples of the waveforms qenerated by the estimators 

are shown in figures (4-9), (4-10), and (4-11). The solid 

curve of figure (4-0) shows a test color (sky blue) 

obtained as the product of the illuminant of figure (4-2) 

and a "reflectivity" given by curve number 3 of figure 

(4-la). The dotted line in the figure is the 

pseudo-inverse estimator of c given by c=s',"x where, as 

usual, x=Sc. Figure (4-10) shows the constrained smoothing 

estimate c^x compared with the same input test color. 

Figure (4-11) shows the corresponding estimate of c for the 

case of the Wiener estimate (P»0.9).  The estimator is 

c = n^ + MST(SMST)"1 (x - Sm ) 

where the mean vector m was taken to be 0.3 i(X,. The 

function i(X) is the illuminant, figure (2-3), and 0.3 

corresponds to a somewhat arbitrary average reflectivity. 

Of these three solutions, the one which imposes the most 

smoothing on the solution, the Wiener estimate with p=0.9, 

is clearly closest to the original waveform. 

The performance of the tristimulus estimators is shown 

in Table (4-1) for each of the ten test colors. These 

results are summarized in Table (4-2) by averaging the data 

over the ten test colors. Color errors are described three 

ways: luminance error (where luminance = 1.0 corresponds to 

the illuminant against unit reflectivity), chrominance 

error (Euclidean distance in UCS chromaticity  space),  and 
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500 600 700 
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Figure   (4-9)  Pseudo-inverse reconstruction of color 3 

400 

RECONSTRUCTION 

500 600 700 

WAVELENGTH, nm 

Figure (4-10) Smoothing inverse reconstruction of color 3 
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400 500 600 700 
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Figure (4-11) Wiener inverse reconstruction of color 3 

• 

0.05- 

600 700 

WAVELENGTH, nm 

Figure (4-12) Colorimetric quality factor vs wavelength, 
narrowband sensor 
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Table (4-1) 

Tristimulus Estimator Performance Aqainst Ten Test Colors 

Film Sensitivity Characteristics 

Color Numbe;: 

True Luminance 

Chromaticity u 

Chromaticity v 

Pseudo-inverse 

Luminance Error 

123456789 

.33 .12 .47 .14 .18 .09 .23 .44 .11 

.24 .19 .18 .28 .25 .15 .14 .21 .38 

.32   .33   .29   .34   .27   .23   .35   .36   .32 

-.05-.02-.07-.02-.02-.01-.04-.07-.02- 

Chrominance  Error     .01   .01   .02   .01   .02   .04   .03   .01   .04 

Cube  Root  Error 4.7  3.3   7.4  3.0  3.7   9.2   5.7   5.0  4.8 

Smoothed  Pseudo-inverse 

Luminance  Error       -.02-.01-.03-.00-.00-.01-^l-^-^l- 

Chrominance  Error     .01   .01   .01   .00   .02   .03   .03   .02   .03 

Cube  Root   Error 2.1  1.3   3.3  0.6  2.2   5.4  3.8   2.6  2.7 

Wiener,   p =0.9,c=0.3l 

Luminance  Error       -.01-.01-.00-.00-.01-.00-,00-.01-.01- 

Chrominance  Error     .01   .00   .00   .01   .01   .01   .02   .01   .03 

Cube  Root   Error 1.0   0.3   0.4   0.6   1.7   0.9   2.1   1.8   2.7 

10 

.50 

.20 

.31 

.07 

.01 

5.8 

.02 

.01 

2.3 

.00 

.00 

0.2 
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Table   (4-2) 

Tristimulus Estimator Performance Averaged Over Ten Test 
Colors, Film Sensitivity Characteristics 

Estimator 
Type 

Pseudo-inverse 

Smoothed 
Pseudo-inverse 

RMS Error 
Luminance 

0.044 

0.014 

RMS Error 
Chrominance 

0.022 

0.019 

RMS Error 
Cube Root 
Space 

5.29 

2.78 

Wiener 0.005 0.011 1.35 

Table (4-3) 

Tristimulus Estimator Performance Averaged Over Ten Test 
Colors, Narrowband Sensitivity Characteristics 

Estimator 
Type 

Pseudo-inverse 

Smoothed 
Pseudo-inverse 

RMS Error 
Luminance 

0.272 

0.211 

RMS Error    RMS Error 
Chrominance  Cube Root 

Space 

0.056 

0.054 

39.82 

28.37 

Wiener 0.037 0.040 10.67 
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cube  root  uniform  perceived error (Euclidean distance in 

Lab cube root coordinate space). 

From Table (4-2) , it is apparent that smoothinq of c 

reduces the color estimation errors, especially the 

luminance errors. The minimum norm property of the 

pseudo-inverse generates a waveform possessing the least 

energy (sum of the squared waveform samples) of all 

solutions to x=Sc. Therefore, positive weighted summations 

over the estimated waveform tend to be smaller than 

equivalent summations over the "true" input waveform. For 

this reason, pseudo-inverse estimates of tristimulus values 

tend to be on the low side. Note in Table (4-1) that 

Juminanre errors using the pseudo-inverse esLimator are 

uniformly negative for all ten test colors. Imposing 

smoothing on c by using Wiener estimation generates 

waveforms whose luminance errors are still more negative 

than positive (Table 4-1) , but whose RMS average luminance 

error is reduced over the pseudo-inverse RMS luminance 

error by a factor of nine (Table 4-2) and whose RMS 

chrominances error is also improved by a factor of two. 

The net error improvement in the perceptually uniform cube 

root space is by a factor of about four. 

The tristimulus estimators were also tested usinq the 

same test color set, but using sets of sensor 

characteristics which are poorer  approximations  to color 
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matching  curves  than  are  the  film  sensitivities  just 

discussed.  A  set  of  narrowband  sensitivities  of  unit 

amplitude  peakinq  at  wavelengths of  450,  550  and 650 

nanometers were tested.  The colorinetric Quality  factors 

of  these  sensors are  0.114,  0.079  and  0.008.   These 

arbitrarily chosen sensors  are  not  the  best  narrowband 

sensors  colorimetrically.   Figure (4-12) shows a graph of 

the colorimetric quality q for a narrow band  filter  as  a 

function of its center wavelenqth.  The optimal narrowband 

wavelenqths are approximately 445, 540 and 605  nanometers. 

The  averaqe color errors resultinq from application of the 

tristimulus estimators usinq the narrowband sensors at 450, 

550  and  650  nanometers  are  summarized  in Table (4-3). 

Aqain, the Wiener estimator provides the  best  tristimulus 

estimation  accuracy,  althouqh  the  errors are larqer for 

each  estimator  type  than  they were  usinq   the   film 

sensitivities.   The improvement provided by smoothing when 

narrowband  sensors are  used   is  apparent  when   the 

pseudo-inverse  and wiener estimates of color number three 

are compared.   Figure  (4-13)  shows  the  pseudo-inverse 

reconstruction of color three using the narrowband filters. 

It consists of samples of  the  input waveform at  the 

narrowband   wavelengths.   Figure   (4-14)   shows  the 

corresponding Wiener estimate (P=0.9).  The waveform values 

at  the  filter wavelengths are again correct (as they have 

to be if x=sc and  the  f:Iters are narrowband)  but  the 
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400 500 600 

1 
700 

WAVELENGTH.nm 

Figure (4-13) Pseudo-inverse reconstruction of color 3, 
narrowband sensors 

TRUE 

RECONSTRUCTION 

700 

WAVELENGTH,  nm 

Figure  (4-14)  Wiener  inverse reconstruction of color 3, 
narrowband sensors 
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values at other wavelengths are much more accurate because 

of smoothing. Although tristimulus errors are much 

improved because of smoothing (see luminance error in Table 

(4-3)), chrominance errors are improved by a smaller 

factor. This is because chromaticities are ratios of 

tristimulus values, and the negative tristimulus errors 

tend to cancel. 

The tristimulus estimators were tested  using  a  real 

six  band  multispectral  image.   The  six Samples at each 

image point constituted the elements of c, the "true" input 

spectral waveform.  The elements of the 3 x 6 array S could 

then be selected to simulate any  arbitrary  set  of  three 

taking sensitivities.  The x vector generated at each image 

point by x=Sc served as an  input  vector  to one  of  the 

estimator  algorithms, generating  an  estimated image to be 

displayed. 

The  input  multispectral  i mage was  generated  by 

Photographing a table top still life of colored objects 

through six narrowband interference filters. The filter 

center wavelengths were 440, 480, 520, 560, 600 and 640 

nanometers and their half nower bandwidths were about 10 

nanometers. Each filter was an element of a sixteen filter 

set made by Oriel corporation. The spectral passbands of 

the set are shown in figure (6-2).  The exnosures were made 

using Kodak Tri-x film in a 35 mm camera with  incandescent 
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illumination. Exoosure times were of the order of ten 

seconds in lenqth, established by trial and error. Care 

was taken that the field of view of interest was less than 

twenty degrees in order that the interference filters were 

not detuned significantly by off-axis rays at the edge of 

the field. The six negatives were digitized using a 

flatbed microdensitometer and digitally converted to 

positive images. Photographs of the six digital images, 

displayed on a cathode ray tube, are shown in figure 

(4-15) . 

After scaling to corresp)nd to the spectral weighting 

of the illumination, the six imaaes were weiqhted and 

summed according to the color matching curves of a set of 

television display primaries. A photograph of the 

resulting "true color" image is shown in figure (4-16)(see 

color plate). The six images were also weighted by factors 

simulatinq sets of sensors far removed from ideal color 

matching curves. One such set consisted of narrowband 

sensors at 440, b20, and 600 nanometers, weighted by 0.25, 

1.0, and 0.5, respectively. The tesulting green biased 

image is shown in figure (4-17). Opeiating on this image 

vith the pseudo-inverse tristimulus estimator gives the 

image shown in figure (4-18). The green bias is removed, 

but the image is dark owing to the tendencv of the 

pseudo-inverse estimator to g nerate low tristimulus values 

when  the  sensors are narrowband.  The result of smoothing 
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440 480  nm 

600 nm 640 nra 

Figure   (4-15)   Six multispectral   images 
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is shown in the Wiene: estimated imaqe of figure (4-19). 

The imaqe is briqht and color balanced. The main color 

error with respect to the true color imaqe is a 

desaturation of the briqht reds, possiby because of the 

absence of the deep red 640 nm. component in the input 

imaqe. 

The Wiener estimator performs well with sensors  which 

may  not be  color  balanced  and which may  be  eithei 

narrowband or broadband, as lonq as the three  sensors are 

near  the  ideal  values  of  445,  540 and 605 nm.  A more 

severe test takes place when larqe portions of the  visible 

reqion  are not  covered.   Fiqure (4-20) shows the result 

when the blue, qreen and red display primaries  are  driven 

by  eoual  amplitude  narrowband  sensors at  three  lonq 

wavelenqths, 560, 600 and 640 nm.  Since only the qreen  to 

red  components  are  present  at  the  input,  the  color 

distortion is qreat.  Reds map into oranqe,  qreens  become 

blue, blues become black, 2r.d yellows are white.  With this 

as an input, the Wiener estimated  imaqe  is  as  shown  in 

fiqure (4-21).  The primary improvement is in the rendition 

of th» reds.  Blues also are now no lonqer  black,  because 

of  the smoothinq  induced  olue content in the estimated 

spectra.  On the debit side, oranqes and yellows are  still 

rendered  as white, and there is a iliqht overall pink bias 

to the imaqe.  The overall color  improvement  achieved  by 

usinq  the Wiener estimator can be judqed by examininq the 
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color wheel on the book cover of each of  fiqures  (4-19), 

(4-20) , and (4-21) . 
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5.  Digital Correction of Color Nonlinearities 

In Chapter . it was stated that an ideal  colorimetric 

reproduction  system  should  have  sensor  characteristics 

which are  color  matching  functions,  thereby generating 

signals  at  each image point which are tristimulus values. 

It was further stated that the ideal color system should be 

linear  between  the  sensor  outputs  and the input to the 

final display primaries,  and  should  convert  the  sensor 

outputs  to  tristimulus  values  in  the color coordinate 

system  defined  by the display primaries.   when  these 

conditions  fail,  as they always do to some extent in real 

color systems, color errors will be seen in  the  displayed 

image.   This chapter  will  examine methods of correcting 

color  errors  introduced  bv  the  presence  of  system 

nonlinearities which  cause  the  second condition stated 

above to fail. 

5.: Color Imaging System Nonlinearities 

Nonlinearities in imaging systems, whether the system 

is ohotographic or electronic, can be olaced in one of two 

major categories: invertible or non-invertible. 

1) Invertible nonlinearities - m imaging svstems, 

tnese are usually operations which alter signal values in a 

smooth, mathematically simple way. An example is the 

power-law or  "gamma"  nonlinearity characteristic of some 
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television camera tubes and cathode ray tubes (!]. If 

input and output signals are called vi and v., 

respectively, the functional relationshio is aiven by 

7 
V.  = V i 

where the constant 7 typically has a value between 0.5  and 

2.0.   When  the  value of 7 is known, and other operations 

have not also taken place, the qamma  nonlinearity  can  be 

corrected  by  raising  v.  to  the power l/7.  This may be 

easily accomplished when signals are digitally stored in a 

computer.  Another important invertible nonlinearity is the 

density vs.  exposure relationship  in photographic  film. 

Over  some  range of exposure (radiant energy per unit area 

at  the  film plane,  spectrally weighted  by  the  film 

sensitivity characteristic),  the  relation  between  film 

layer density and exposure is very nearly logarithmic.   As 

will  be  shown  in  a  later  section of this chapter, the 

relations among exposure x, density d, and transmissivity r 

for  a  layer  of  reversal  color transparency film can be 

expressed in approximate form as 

d = b - Y log x (5-1) 

and 

T = 10 
-d (5-2) 

where b and 7 are constants.  Substituting (5-2) into (5-1) 

99 

    mmt^ _. m 



mmmmmmmmmmmmmmmmmmmmmmmmmmmm m^ 

gives 

10-(b-Y   log  x)   m   ^-h  xY 
(5-3) 

From this result, it is clear that when y differs from 

unity, there is a oower law nonlinearity bet-.ven the input 

exposure x and the output transmissivity. 

2) Non-invertible nonlinearities -  Nonlinearities  in 

imaging systems which cannot be inverted are usually caused 

by signal limiting.  Signals whose values are too large  or 

too  small  for  the dynamic range of the system are mapped 

into the upper or lower  cliooing  levels  of  one  of  the 

system    components.     Examples   of   non-invertible 

nonlinearities  include  the   clipping   action   of   the 

density-vs-log   exposure   curve  which  takes  place  in 

Photographic film and the limiting of signa." s in 3lectronic 

devices.   The film density-vs-log exposure of fiqure (2-8) 

is a typical example of the limiting functions  present  in 

all image transmission and storage systems. 

In Chafer 3, a general digital color analyzing system 

model was described. The operation of the model on an 

input color c was described by eq.  (3-17), repeated below 

V = HGFc 

where the model components are defined and related  on  the 

block  diagram of figure (3-2).  The special case of a film 
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and scanner color system is also indicated in figure (3-2). 

The film-scanner color analyzing system will be examined in 

the remainder of this section, in order to qive a concrete 

and important example of a real system containing 

nonlinearicies. The concepts developed are applicable to a 

much wider class of color imaging systems. In the section 

whi:h follows the film-scanner discussion, some methods of 

correcting invertible nonlinearities will be discusseo. 

The type of color photographic film which will be 

examined is reversal color film (2), which produces a three 

layer positive transparencv. In a reversal color film, 

three light-sensitive layers absorb incident light at a 

point in the film plane. The spectral irradiance at the 

object point being imaged is c(Ä). The spectral 

sensitivity curves of the layers of a typical reversal 

color film are shown in figure (5-1). The sensitivities 

SR( X) , SG(Ä), SBU) of the three layers are defined by 

si(x) =¥Äx) (5-4) 

for i = R,G,B where E (\) :' the energy per unit area at the 

film plane at waveJength which is necessary to generate 

some fixed density value after development. The integrated 

exposure values of the f'lm layers are given by 

101 

g^Mi^i^^^^^^      ,mt^ VWMilMM   



mmim mi   u» 11 ■ .. i    iiinii «lll-l  H 

>-     1.0 

> 

I   0.0 

3  T.o 

2.0 
300 400 500        600 700 

WAVELENGTH, nm 

Figure (5-1) Film spectral sensitivities 
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Figure (5-2) Film density vs log exposur e curves 
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r xR(c) = dR j       c(x) sR(x) TO(X) dx 

r XG(C) = dG /    C(X) SG(X) To(X) dX        (5.5b) 

XB(C) " dB 
/ 

C(X) S_(X) T (X) dX 
B     o (5-5C) 

where T0 is the spectral transmissivity of the camera 

optics and d
R'dQ'dB 

are Proportionality constants which 

contain the physical parameters which qovern the 

relationship between the spectral power at a point in the 

scene beinq photographed and the spectral energy at the 

film plane. These parameters include the F number of the 

camera lens and the duration of the exposure. This allows 

the exposure values to be defined in terms of the spectral 

irradiance c(X) at points in the scene rather than in terms 

of the spectral radiant energy at the film plane. In 

practice, the values of d^d^d are usually adjusted so 

that the exposure values X ,X ,X are equal when the input 

color is a chosen reference white. Converting eas. (5-5) 

to a matrix eouation, (see Chapter 2) yields 

x=Sc (5-6) 

where  the  3xn  matrix  S contains dp,dr,dRand   ^(X)   as     well 'R'UG'UB 
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as SR(X)f SG(X), and SB(X) . The vector x is then the 

exposure vector corresponding to the color vector c and the 

sensitivity matrix s. 

In the development of the film,  the  layer  exoosures 

are  converted  to dye densities  c, m, or y accordinq to 

relationships such as those shown in fiqure  (5-2).   These 

density vs.   loq  exposure curves are approximate in that 

the density of a developed layer is dependent not  only on 

its own layer exposure as shown by fiqure (5-2), but, to a 

much lesser extent, on  the exposures  of  the other  two 

layers.  This phenomenon  is called the interimage effect 

13).  The densities c, m, y are the dye  concentrations  of 

the  three dye  layers of the developed transparency.  The 

spectral densities Dc(X), Dm(X),  Dy(X)  (sometimes  called 

spectral  analytical  densities)  of  unit concentration of 

each layer dye of a typical  reversal  film  are  shown  in 

fiqure (2-7).  The dye layers are cyan, maqenta, and yellow 

in color and are intended to control  the  transmission  of 

red, qreen,  and blue light, respectively.  The spectral 

analytical densities of the three  superimposed  layers  is 

cDc(X) + mDJX) + yDy(X).  The spectral transmittance  r(X) 

of the transparency is 

-cD (X) - mD (X) - yD (\) 
TT = 10 m 

(5-7) 

When dye  concentrations of c=m=v=l  are  present,   the 

transparency spectral analytical density is the upper curve 
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of fiqure (5-3) and the resulting transparency appears to 

be a neutral gray under iUuminjtion by a reference4white 

liqht. 

Equation (5-7) can be converted to vector  form  usinq 

the followinq definitions: 

T = 

LTTan)j 

D = 

w = 

VV    ^^i)   Dv(Ai) 

D (X )   D (X )   D (X ) 
_ c  n    m n    y n 

d1 
—Tl 

(5-8) 

Equation (5-7) can then be written as 

Ti=10 

- d, w 

(5-9) 

or, with sliqhtly irreqular matrix notation, 

T = 10   (5-10) 

In order  to  digitize  the  transparency,  a  scanner 

samples  it?  transmissivity  at  each  point  of  some two 
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dimensional array. Three sensors are used to measure the 

ted, green and blue regions. if the scanner spectral 

sensitivities are HR(X) , HG(X) , and HG(X), and VR, V^ and 

VBare scanner output signals at each image point, then 

(A) d\ 
(5-lla) 

VG - j        HG(X) T. (X) dA 
(5-llb) 

VB= /   H B(x) TT(X) dX (5-llc) 

The H  characteristics  are  obtained  by multiplying  the 

spectral  characteristics  of the scanner light source, the 

photosensor, the scanner optics and the red, green, or blue 

filter used for color separation. Substituting from ea. 

(5-7) gives the scanner signals 

(A) 10 
- [cD (X) + mD (A) + yD (A)] 

c        in      ' v 
.P {5-12a) 

(A) 10 
- [cD (A) + mD (A) + yD (A)] n 

d) (5-12b) 
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(X)   10 
[cD   (A)   + mD   (X)   + yD   (X)] 

n 
d) (5-12c) 

as a function of the dye weiqhts c, m, and y. 

It is desired, then, to solve ea.  (5-12)  for  c,  m, 

and  y after observinq VR, VQ, and VB, where D , D^ and D 

are  known.   The  solution   is  difficult   because  of 

nonlinearities   and  undesired  absorptions,  two  of  the 

possible sources of color error  which  were described  in 

Chapter  2.   The nonlinear relationships amonq c, m, y and 

V ,  V ,  and  V  are  apparent  from  ea.   (5-12).   The 
RGB 

undesired  absorptions  occur  because  the  D.D. and D 
cm      y 

functions are nonzero over the whole spectral  reqion,  not 

just  over  the  appropriate third of the reqion.  If D (X) 
m 

and D (\) were zero value over  the  red  spectral  reqion, 

where  H (X)  is nonzero, then ea.  (5-12a) could be solved 
R 

for c independently of the other two eauations. In 

qeneral, each dye absorbs to some extent over the whole 

spectral reqion, and the inree eauations mu«?t be solved 

simultaneously. Equation (5-12) can be converted to vector 

form 

v = HT (5-13) 

where 
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V = 

H = 

and 

~HR(Ai)     H
R<V w    w 

W         «B<V 
Summarizino, the  complete  input  color-to-scanner  output 

chain in vector notation can be stated as 

v = HT = HG(w) = HCF(x) = HGFSc (5-14) 

where H and S are linear operations which can be  described 

by matrices and G and F are nonlinear vector operators. 

5.2 Exposure Estimation Methods 

Thö equations relatinq the layer exposures of a  color 

Photographic  film to the corresponding output signals of a 

film scanner can be solved exactly, in principle.   if  the 

film dye  characteristics  V  ^  Dy  and  the  scanner 

spectral responses HR, HG, HB are  known,  then  the  '.hree 

film  layer  densities c, m, y can be obtained by inverting 

eq.   (5-12).   These  are  three  simultaneous   nonlinear 

eouations  in  three  unknowns  c,  m, and y.  if the three 

D log E curves of the film are known, then they,  in  turn, 

can  be  used to obtain the layer exposures XD, JU, X  fr 

c, mr and y. 
om 
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In practice, there are two reasons why an exact 

solution cannot be obtained. First, the film and scanner 

characteristics described above are not known exactly; they 

are derived from exoeriments which are subject to some 

degree of measurement error. Secondly, inversion of a set 

of nonlinear eouations such as eq. (5-12) generally 

requires iterative solution. Solution algorithms may 

converge raoidly to the solution of the eouations, but 

there will generally be some residual error remaining after 

any finite number of iterations. About the first source of 

error, little can be don-i except to obtain the best 

information available on tne film and scanner 

characteristics. The second type of error, computational 

error in the solution algorithm, can be made almost 

arbitrarily small at the cost of complexity of the 

algorithm. However, since the inversion algorithm must be 

executed at each point of an image array which may contain 

tens or hundreds of thousands of points, the computer time 

required for its execution is of great importance. 

Choosing the optimal inversion algorithm requires a 

tradeoff between signal error and computation time. 

In the follc -'ng material, a typical set of film dye 

transmissivity and density vs. log exposure curves and a 

set of color scanner response curves are substituted into 

eo. (5-12), and several solution methods of various kinds 

are employed in or^.er to compare their relative accuracies 
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and degrees of complexity. 

The solution methods which have been investigated can 

be assigned to one of three general types: 

1) An "exact" solution - Equation (5-12) can be solved 

with arbitrarily small error bv employing a Newton-Raphson 

iteration algorithm which converges to a solution of any 

desired accuracy in a finite number of steps. 

ons 2) Solution by approximation of the origin?! equati 

- Equation (5-12) can be simplified by making 

approximations which convert the three nonlinear integral 

equations to three algebraic equations which may be linear 

or quadratic, and which may be solved analytically. 

3) Solution by table look-up or  interpolation  - The 

equations  may  be  solved  by  substituting values of film 

density or exposure over some range of oossible values into 

the  film-scanner  equations,  and tabulatinq the resulting 

scanner vo-ages.  To keep the number  of  entries  in  the 

three dimensional  table within reasonable bounds, coarse 

quantization of the tabulated values can be  combined  with 

linear   interpolation  between   the   tabulated values. 

Alternatively, the whole  table  can  be  curve  fitted  by 

simple  interpolating  functions  such as polynomials.  The 

exposure values are then obtained,  within  certain  error 

limits,  by  inserting  the  scanner signal values into the 
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interpolating fun.tions and calculatinq the result. 

The Newton-Raphson algorithm used to give an 

arbitrarily exact solution of eq. (5-12) is a standard 

iterative algorithm for solving nonlinear eauations (4). 

In this algorithm, an approximate solution for c, mr y is 

substituted into eq. (5-12) to obtain a corresponding set 

of approximate scanner signals V, • 7„,  'V_.  The differences 
H.        Li        ii 

between the observed V . V , V  and the approximate signals 
RGB 

are  then  used  to generate correction terms Ac, Am, Ay to 

the initial approximate values of c, m, y.  Thus, 

Ac 

Am 

Av 

;3V 
R 

3c 

3c 

9 V B 
3c 

9m 

9m 

dV B 
^m 

9y 

US 
3y 

ÜB 
9y 

VR- -\ 

VG- -\ 

VB- -\ 

(5-15) 

The process can be iterated until the desired solution 

accuracy is achieved. The initial approximate solution can 

be obtainef* using any of the algorithms to be described in 

the following material on approximate solutions of ea. 

(5-12) . 

Single pass solutions of eo. (5-12) can be obtained 

in several ways by imposing conditions on the properties of 

the scanner or photographic film which render  eq.   (5-12) 
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directly solvable. One such approximate solution is 

obtained by assuming that the spectral response curves of 

the scanner are narrowband and that the density-log 

exposure curves of the film are linear over all density 

values of interest.  The last condition implies 

ac + \  loS h (5-16a) 

m = a + y     log X^ 
m   m  '^ G (5-16b) 

y = ay + 7y log xB {5-16c) 

Substituting—these approximations into eqs.  (5-12) relat 

the exposures to the scanner signals V , V . V 
R'  G' B 

es 

\i *.(M   ♦.(A)   0, (X) 
R = kR    K(X)HR(X)XR

C
  xG

m  x "  dx     (5-17a) 

i 
u        *M    * (x)    * (x) 

VG = kG |   K(X) H,(X) X,, C   X„ m   X    y h XB '   dX      {5-17b) 

V  = k 
B  '"B k   

K (x) Vx) xR 
L  x, 
♦(X)  * (X)  * (X) 

d\ (5-17C) 

where 

vj/ (X) 
c y  D (x) c  c  ' 

m T D (x) m m 
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*yW = yy 
D/A) 

- [a D (X) + o D (X) + a D (X)] 
K(X) = 10  cc    mm    yyJ 

The narrowband assumption imolies that the scanner 

characteristic HR, HG, H are nonzero over spectral regions 

which are so narrow that the other functions of I are 

approximately constant. This assumption is very qood for 

laser scanners but less good for broadbanded scanner 

characteristics. Under the narrowband assumption, eq. 

(5-17) becomes 

VJK)      *_(*„)      »-(XJ 
r     i "G "B V,.   = A„  X„  C     R    X. '^    R    X    y    R (5-18a) 

W      *m(V)      ,,'v(Xr) 
(5-18b) 

where 

VJK)     VJK)     v..iK) 
V„  =  A„  X„   C     B     X„ m     B     X     y     B 

AR=kR K^ fy \M dX 

A,,  =  k     K(X^.    . 
G G     v   G     / 

(X)   dX 

(5-18c) 
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AB-kB «v/"«, (X) dX 

and XR,AG fXB are the centroid wavelenqths of the scanner 

functions HR, HG, HB, respectively. Taking the logarithm 

of each side of eq.  (5-18) gives the matrix eouation 

f                      m 

inVR 

In Vr = 

tn VB_ 

w m    R w m    G 
Vc<V m    B 

vv in\ ÄnAR 

v^ ln*G + In AG 

%aB)J LÄn M en AB_ 
(5-19) 

Inverting     this    equation     and     exponentiatin 

estimated  exposures  xD,   i,   x„. 
K   Lr   B 

g gives the 

Another approximation can be made in eos. (5-12) 

which renders the equations solvable in closed form. The 

necessary ■»prOXImation is that the film dyes are ideal 

block dyes; that is, the three layer absorption curves ar€ 

spertrally nonoverlapping and are constant with wavelength 

over their absorption regions as shown in figure (2-8). 

Under this assumption, eo. (5-12) reduce to the following 

equations 

-CD        -mD        _vn 
vR = bii10     +b

l2
10   ■ + »>., 10   ? 

^HHiMilHMHiHliHdHj^ittMli^^ 

(5-20a) 
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-cD -inD -VD 
VG = b21 10 + b22 10 + b23 10 (5-20b) 

-cD -mD -VD 
VB = b31 10 + i)32 10 + b33 10 (5-20C) 

where D , D , D  are the  constant  ideal  dye  absorptions 
c  m  y 

over their absorption regions and where 

ij 
(X) dX 

for i=R,G,B;j=cfmfy and where X,  and \       define the  lower ic      uc 

and upper spectral limits of the cyan dye absorption 

region, with similar definition for the maqenta and vellow 

absorption region.  In matrix form, ea.  (5-20) becomes 

-cD 

L B-l 

10 c _ 

-mD 
10 m 

-yD, 
10 

(5-21) 

Inverting  this  matrix  eauation,  taking  the   base  10 

logarithm  of  the  components of the resulting vector, and 

dividing by the appropriate constants  -D ,  -D ,  or  -D r cm        y 

gives the approximate values of c, m, and y under the ideal 

dye  approximation.   The  accuracy of   the  answer   is 

determined  by  the  closeness of the actual dye absorption 
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curves to the nearest set of ideal dye curves. As was 

stated in Chapter 2, real dyes have some deqree of 

absorption in undesired spectral reqions, and do not have 

constant absorption over the desired absorption reqion. 

Inversion of the system of equations denned by the 

de-sity-log exposure curves and eq. (5-12) car. be 

accomplished in other approximate ways by first 

substituting a ranqe of exoosure values x into the 

equations and tabulating the resultinq scanner signals y. 

Determination of x from v can then be accomplished by any 

of the following: 

1) choosing the tabulated y nearest to the observed y 

and lookino up the corresponding x in the table. 

2) curve fitting the x values to the v values using a 

set of algebraic interpolating functions, thus 

obtaining estimated values of x. from observed values 

of V by inserting the observed v into the 

interpolating function and calculating the 

corresponding valut of x. 

3) using a combination of the above. 

For example, a coarsely quantized table of x vs. v 

might be used along with a simple, perhaps linear, 

interpolation algorithm for obtaining values when y is not 

equal to one of the relatively small number of v's in the 

coarse lookup table. 
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The curv? fitting and interpolation algorithms can be 

simplified by using the logarithms of the variables rather 

than i-he variables themselves, since the logarithms of the 

components of x and v^ are very nearly linearly related. 

This mey be inferred by observing that under the narrowband 

scanner assumption, eqs. (5-12) simplify to eos. (5-19) 

which are exactly linear in the logarithms of x and v. 

5.3  Exposure Estimation Results 

In this section, the exposure estimation algorithms 

which have been described are compared by testing them with 

exposure and scanner signal values obtained using a 

computer simulation of a typical film-scanner color 

analyzing system. The film properties are those of a 

tyoical reversal color film (Kodak Ektachrome-X). The 

density vs. log exposure and layer dye spectral densities 

of the film are shown in figures (5-2) and (2-7). The 

scanner simulation represented a flying spot scanning 

system consisting of a cathode ray tube light source, a 

photomultiplier tube sensor with an S20 sensitivity 

characteristic, and color filters which are Kodak Wratten 

filters number 25 (red), 5R (qreen) and 47B (blue). In 

addition, the spectral absorption of a typical set of 

lenses was incorporated. The overall spectral responses of 

the simulated scanner in its red, green, and blue channels 

are shown in figure (5-3). 
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The algorithms  which  were  tested  as  exposure 

estimators were the following: 

1) Newton-Raphson 

2) Narrowband 

3) Ideal Dye 

4) Quadratic Curve Fit 

5) Table Look-up with Iterative Correction 

The parameters of the algorithms were adjusted to the 

particular film-scanner system being considered in the 

following ways: 

1) Newton-Raphson - The Newton-Raphson solution method 

was carried out for each input color until the change in 

estimated exposure values for iteration was sufficiently 

small. The iterations were stopped when the RMS fractional 

change in the estimated exposures averaged over the three 

exposure values, was less than 0.01. This was achieved, on 

the average, after about six iterations. 

2) Narrowband - The narrowband spectral sensitivities 

were placed at the centroids of the three scanner response 

curves, which are at wavelengths of 610, 535, and 440 

nanometers for the red, green and blue scanner channels, 

respectively. 

3) Ideal Dye - The dye spectral density functions 

which  were  assumed  under the ideal dye model were of the 
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ideal rectangular shape as shown in fiqure (2-1) where the 

wavelengths seoarating the three dye absorption curves Were 

chosen to be the intersection wavelengths of the actual 

dyes, and the constant densities of the ideal dyes were 

selected so that their densities integrated over all 

wavelengths equalled the integrated densities of the actual 

dyes. 

4;  Quadratic  C:rve  Fit  - A  ouadratic  oolynomial 

exposure estimator was derived by obtaining a least soua.es 

curve fit between a set  of exposure  vectors x  and  the 

corresponding scanner signal vectors v, obtained bv 

substituting the x vectors into the equations which model 

the film and scanner oroperties 

v = HGF(x) 

The polynomial expression which approximates the components 

of x from the components of v was selected to be a 

quadratic exoression in the logarithms of the components 

(log kj   = l  a^ log Vj + £ bijk log V1 log 
J j k 

V, + r k   1 

where i^k = R,G or B. This was done since it was known 

that the relationship between the log v and log x 

ouantities is exactly linear in the narrowband scanner case 

(equation 5-19), and it was hoped that many of the 

quadratic coefficients could be neglected in the general 

scanner  aoproximation.   This  indeed turned out to be the 
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case, and it was  found  that the quadratic coefficients 

which were the  larqest were those correspondinq to the 

channel being approximated.  That is, in approximatinq  log 
2 

XR,  the  coefficient of the (log vR)  term was much larger 

than that of the (log VRlog VG) term or the (log Vr)2 term. 

This allows the approximation to take the simple form 

(log Ä1) = I  a... log V + bi (log V^
2 + c1 

Expressed in matrix form, this becomes 

IOR X 
K 

log Xr 

log X 
B 

in  a12  a13  b1  0  0 

l21  a22  a23  0  b2  0 

l31  a32  a33  0   0 b3 

log V 

log V 

R 

G 

log V 
B 

(log VR)' 

(log VG)' 

dog VB)
: 

(5-22) 

I 

The a, b, and  c  coefficients were determined  by least 

squares  curve fitting over 125 points, 5 in each dimension 

of x.  The five values each of log X_,, log X_ and  log  X 
KG B 

were chosen to cover in eaual increments most of the linear 

region of the density-log exposure curves of the film. 

5) Linear Correction Schemp using  Table  Look-up  for 

Initialization  - An efficient iterative method for solvinq 
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tor the layer dye weights c, m, y was derived from a method 

of  Eugene Allen (5) for solving a related oroblem, that of 

determining the dye weights which give a colorimetric match 

to  a given sample.  Details of the method can be found in 

reference  (5).   The  only  change  required   for   the 

film-scanner  problem  is  the  substitution of the scanner 

characteristics for  the  color  matching  curves  used by 

Allen.  The  method  essentially linearizes the relations 

between c,m,y and the scanner  signals  about  the  initial 

values of cfm,y and  generates a linear corrective term 

which is added to the initial values. 

The method was tested using as Initial estimates 

values obtained from a coarse three-dimensional (5x5x5) 

look-up table,followed by one step of linear correction 

using the Allen method. The table was obtained by 

inputting a range of 125 density vectors w, SDaCed 

uniformlv. into the film-scanner simulation and forming a 

three-dimensional table of the output vectors v and the 

input  w's.  Given  an  observed v , the nearest smaller v 

components  in  the  table 
were  selected,   and   the 

corresponding w was used as an initial point. 

The results of a computer simulation  testing  of  the 

various  exoosure  estimation  algorithm  are summarized in 

Table (5-1), along with the results of using no  correction 

film and  scanner  nonlinearities.   The  simulation 
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Table (5-1) 

Exposure Estimator Error Performance 

Exposure 
Estimation 
Alqorithm 

Normalized 
Exposure 
Error 

Narrowband 
Approximation 

0.0392 

Ideal Dye 
Approximation 

Quadratic 
Curve Fit 

0.0662 

0.0110 

Table Lookup 
With Linear 
Correction 

0.0213 

Newton-Raphson 
Iterative Metnod 

0.0061 

No Correction 
(Scanner Signals 
Treated as 
Exposures) 

0.1045 
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modelled the whole  photographic  fil "i  and  colo r  scanner 
system  whose  characteristi cs are qiven by the curves of 
figures (2-7,. ,5-1,, (5-2) and  ,5.,,,  Th6 lnput ^^ 

were  the ten reflectivities of fiqure ,4-!, llluminated bv 

CIE Illuminant C. 

The results  indicate,  as  expected,  that  the more 

complex  .ethods were more accurate.  Of the two simplest 

methods, the narrowband  approximation was  more  accurate 

than  the  ideal dye approximation, although both were much 

better than  no correction  at  all.   The  slightly more 

complex  quadratic  curve fit was better than either of the 

simpler methods, bv a factor of four or more, and was  also 

more  accurate  than  the more complex  table lookup with 

linear correction.  The  table  lookup with  one  step of 

correction  was far surpassed by the Newton-Raohson method, 

which executed six iterative steps per solution. 
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6.  Related Applications of Digital Color Methods 

The vector space description of color  analysis which 

was described  in  Chapter  3  and the generalized inverse 

methods which were  used  for  tristimulus estimation  in 

Chapter  4  can be  applied  to  a wide variety of color 

problems.  m this chapter, two problems will be discussed. 

The  first, spectral calibration of an optical sense, using 

readings from test samples, is a  practical  problem which 

arises  when direct  spectrophotometric measurement of the 

sensor spectral characteristic is impossible.   The  secend 

problem,  that of computer generation of spectral waveforms 

with desired properties, arises in the simulation of  color 

or multi-spectral sensing and recording systems. 

6.1 Estimation of Color Scanner Spectral Characteristi cs 

The spectral response of an optical sensing  system, 

such as a color image scanner or a densitometer, is often 

difficult to measure directly.  The  spectral  response is 

typically  the  product  of  a  series  of  spectral 

characteristics of the system's component parts,  such as 

the  emission  characteristic  of  the  light  source,  the 

transmissivity of  the  system optics and  the  response 

characteristic of the sensor.  The spectral response of the 

system as a whole can be measured directly only by placing 

a  wavelength  variable narrowband device,  such as a 

calibrated monochromator, in the system light path.  This 
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may be impossible because of physical size limitations, 

accuracy requirements, or other reasons. An alternative 

approach is to take readings with the scanner using a 

series of test color samples whote spectral characteristics 

are known, and to reconstruct the scanner spectral response 

from these readings. The vector equation relating the 

scanner characteristic h, the i th color sample 

transmissivity c. and the corresponding scanner oi'tput x. 

is given by 

x = £  ]l + nj (6-1) 

where c. and h are Qxl vectors of quadrature samples of the 

test color sample transmissivity curve and the scanner 

response curve, respectively. The observation noise error 

on the i th observation is given by n. . By cor bining the P 

observations x. (i=l,...,P) into a Pxl vector x, eq. (6-1) 

becomes the matrix equation 

x = C h + n (6-2) 

where c. is the i th row of the PxQ matrix C. Since the 

number of quadrature mesh points 0 is usually much larger 

than the number of test samples P, eq. (6-2) is 

underdetermined, and the tools which were used to solve the 

same equation (eq.4-1) in Chapter 4 can be again applied. 

The mathematical solution for h in eq. (6-2) is equivalent 

to solving for c in eq.   (4-1)  because of  the  symmetry 
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between c and h in eq. (6-1). m the tristimulus problem 

the sensor response was known and the input color was being 

estimated. Now, the input color is known and the sensor 

characteristic is being estinated. 

The three types of solutions developed in Chapter 4 

are the pseudo-inverse solution, the generalized inverse 

with a smoothness constraint, and the Wiener solution. All 

three are applicable to the scanner spectral characteristic 

problem. The smoothness constraints imposed on the 

estimated characteristic by the constrained generalized 

inverse solution and the Wiener solution are desirable 

since the spectral response of a broad banded color sensor 

can be assumed a priori to be a smooth function. The three 

solutions to eq.  (6-2) are 

(1) pseudo-inverse solution 

T     T -1 
h = C1 (C C1)  x (6-3) 

(2)     generalized     inverse     solution    with       smoothness 

constraint 

ils = N 1 cT (c N"1 CV
1
 x (6-4) 

where N is a suitably chosen smoothing matrix such as 

that of equation (4-29), which minimizes the average 

squared difference over all solutions to x=Ch. 

(3) Wiener solution 
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fi = m, + M C  (C M C + K)'1 (x - C ■• ) 
—w  —11            —    — h (6-5) 

where m^ is the mean vector and M is the covariance 

matrix  of  the vector random process from which h is 

assumed to be a sample, and K is the covariance of 

the observation noise. 

The three solutions were used in the spectral 

calibration of an Optronics Model S2000 flat bed scanning 

microdensitometer. The test samples were two sets of 

spectrally selective filters, each set covering the 

spectral region of interest, roughly 400 to 700 nanometers 

in wavelength. The first set consisted of nine absorption 

filters, foui gelatin (Kodak Wratten) filters and five 

glass absorption filters. Their transmissivities are shown 

in figure (6-1). These were obtained by sampling the 

continuous transmissivities at 80 points at 5 nm. 

intervals. The resulting C matrix was therefore 9x80. The 

second set of filters consisted of 16 Oriel narrowband 

interference filters, shown in figure (6-2). These are 

spectrally spaced from 400 to 700 nanometers in increments 

of 20 nanometers and have half power bandwiachs of 10 

nanometers. The transmissivities were sampled at 160 

points in steps of 2.5 nm. (380 to 777.5 nm.), giving a 

16x160 C matrix. 

The N matrix  used  in  the constrained generalized 
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400 500 600 
WAVELENGTH,   n.m. 

700 

Figure (6-1) Absorpcijn filter characteristics 

400 500       600 
WAVELENGTH, n.m. 

700 

Figure (6-2) Interference filter characteristi cs 
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inverse solution was the smoothing matrix of equation 

(4-29) and the Wiener solution assumed a zero mean vector, 

a first ordei Markov covariance matrix, and negligible 

observation noise. 

Figure (6-3) shows the estimated response for the 

three types of estimator using the measurements taken with 

the absorption filters. Figure (6-3a) shows the 

pseudo-inverse estimate, figure (6-3b) shows the 

constrained generalized inverse estimate and figure (6-3c) 

shows the Wiener solution with three different values of 

assumed interelement correlation. Figure (6-4) gives the 

estimates obtained using the same types of estimators but 

with data obtained using the narrowband interference 

filters. The Wiener estimates with the highest correlation 

values (0.9 or 0.95) give the smoothest curves obtained 

with both the absorption and interference filter data, and 

may be presumed to be the best estimates of the true 

response. The interference filter estimate might be 

expected to be more accurate than the absorption filter 

estimates, since there were more of the interference 

filters and since their passbands do not overlap 

significantly, making eq. (6-2) extremely well 

conditioned. The "true" spectral response curve is not 

available, however, but since the Wiener estimates with the 

two filter sets are in fairly good agreement, it may be 

concluded  that  both estimated responses are a good 
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400 500 700 600 
WAVELENGTH, n.m. 

Figure  (6-3a)   Estimated scanner r .sponse.  pseudo-inverse. 
absorption fillers 

500 6oo 
WAVELENGTH, n.m. 

700 

Figure  (6-3b)   Estimated scanner response,   smoothing  inverse 
absorption filters 
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Figure  (6-4.)   Eatimated scanner response,   pseudo-inverse 
i' • ti.ference filters 

400 500 600 
WAVELENGTH, n.m. 

700 

Figure  (6-4b)   Estimated scanner response,   smoothing  inverse 
interference fi.ters * 
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approximation to the actual spectral response, 

6.2 Computer Generation of Spectral Wavefor ms 

The computer simulation of  color  and multispectral 

sensing and recording systems often requires the generation 

of spectral waveforms which  simulate  the  spectral  power 

distributions  existing  at  points  in the sensor field of 

view.  it may be desired that the n-vector which represents 

the  sampled  spectral waveform possess certain properties 

expressible as linear equality constraints.   For  example, 

it might  be  desired  to generate a spectral waveform, or 

color,  whose  tristimulus  values   are  specified.    m 

addition,  the generated waveform should exhibit properties 

which are characteristic of spectral waveforms existing  in 

nature,  such  as smoothness and non-negativity.  These 

requirements are nearly identical to those of the waveforms 

generated  in the tristimulus estimation methods of Chapter 

4.  The difference is that the matrix S in the constraining 

equation  x=Sc  need  not  represent  a  set of real sensor 

characteristics,  but  instead may  represent any  linear 

operation  on  the waveform c,  such  as  a  tristimulus 

constraint of the form t=Tc. 

The generation of spectral waveforms metameric to a 

given color is a special case of waveform generation which 

has been the subject of some study. This is equivalent to 

generating  waveforms with desired tristimulus values.  The 
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methods which have been derived usually construct the 

waveform as weighted sums of three or four simple functions 

such as narrowband functions (see reference [1], 

p. 344-357) for a summary of methods to 1967). A recent 

method developed by Takahama and Nayatani [2] is derived 

using calculus of variations, and constructs the function c 

as a weighted sum of color matching curves. The Takahama 

algorithm expressed  in sampled data form is equivalent to 

the pseudo-inverse solution of the  constraining  equation, 
+ 

c=T t.  To generate many metameric waveforms satisfying the 

constraint, c  is varied and the solution c=c +T+(t-Tc ) is — o _ _o —  — —o 

the solution of t=Tc which is nearest in the least squares 

sense to c . 

The Wiener and smoothing inverses described in Chapter 

4 can be applied to the generation of metameric waveforms 

with some advantages. The imposition of smoothing can, for 

example, generate waveforms which are very broad and smooth 

while still, satisfying t=Tc. The general waveform 

expression is given by 

c = c + MTT(TMTT) 1 (t - T c ) (6-6) 

where t is the desired tristimulus vector, T is the matrix 

whose rows are color matching curves, c  is an arbitrary 

waveform, and M is a smoothing matrix.  Waveforms generated 

by this algorithm are shown in Figure (6-5).  A test co.Tor 

is shown as a dotted line, with waveforms metameric to  the 
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test color (with respect uO illuminant C) shown as solid 

lines. The metameric waveforms were generated using 

eq.(6-6) with c =0 and the Markov matrix of eq.(4-64) 

replacing M.  The values of /' were 0.0, 0.8, and 0.95. 
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7.  Conclusions and Topics for Further Study 

This dissertation has presented a variety of 

techniques for digitally restoring digital color images. 

The methods which were treated included ways of correcting 

for colorimetrically imperfect sensors and correcting 

errors introduced by color system nonlinearities and 

undesired film absorption. In addition, methods for 

estimating the spectral response of a broadband sensor fro 

sample readings and for computer generation of wavefor 

with desired colormetric properties were treated. 

m 

ms 

The correction for sensor spectral  imperfections,  or 

tristimulus  estimation,  was  best  accomplished  using  a 

«iener estimation algorithm which imposed a large smoothing 

effect  on the spectral waveforms generated as intermediate 

steps in the estimation of  tristimulus  values.   The  RMS 

error in UCS chromaticity space was 0.011 averaged over ten 

test colors using color  film  taking  sensitivities.   The 

method  has   the advantages  of  simplicity,  linearity, 

optimality  (under  a mean  squared  tristimulus  error 

criterion)  and  generality.   The  property of generality 

assures that the estimator can easily be re-optimized  when 

the  taking  sensitivities or  the assumed  statistical 

properties of the input colors are changed.  Although the 

method was  restricted in this report to the estimation of 

three tristimulus values from three outputs of  imperfect 
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spectral sensors, it is easily generalized to other 

dimensionalities. The outputs of m sensors of arbitrary 

spectral response could be used to estimate the outputs of 

n other arbitrary sensors, where m is greater than, equal 

to, or less than n. Applications of the method might 

include the filling of spectral gaps in multi-spectral 

sensor data, or the generation of "true color" imagery from 

multi-spectral data. All that is reauired is that the 

spectral correlation properties of the incoming radiation 

are known with some degree of accuracy, and that there is 

significant correlation between the observed spectral 

regions and those being estimated. 

The material dealing wich correction of color system 

nonlinearities and undesired absorption showed that the 

resulting color errors can be greatly reduced, for a 

typical film-scanner system, by using relatively simple 

computer algorithms. Simple linear and quadratic 

approximations to an exact solution proved capable of 

reducing errors in estimated film exposures by a factor of 

about ten, for the system which was simulated. 

The chapter on applications related to digital color 

restoration used as its primary mathematical tool the 

generalized matrix inverse, used previously in the chapter 

on tristimulus estimation. in fact, the most important 

single result of this report may be  the demonstration of 
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the great utility of the generalized inverse as applied to 

color  systems.   The  applications  treated   in   this 

dissertation  included tristimulus estmation, estimation of 

sensor  spectral  responses,  and  computer  generation of 

spectral  waveforms.   The generalized matrix  inverse is 

applicable to a great many other  problems connected  with 

color  and multi-spectral  analyzing  and imaging systems. 

Any problem requiring the solution or inversion of a set r. f 

linear  vector  equations, subject to the minimization of a 

vector quadratic  form,  is  a  candidate  for  generalized 

inverse methods.   This  is true whether the equations are 

deterministic     or     stochastic,     overdetermined, 

underdetermined or  exactly determined.  Typical problems 

might include the estimation of the spectral properties of 

sample  reflectivities,  sensors,  illuminants, atmospheric 

transmissivity, lens or filter absorption  characteristics, 

etc. 

A fruitful area for further study is in determining 

the best quadratic forms for use as error criteria with 

linear estimation techniques. A quadratic form which best 

measures the departure of a spectral waveform from the 

smoothness or correlation properties of natural object 

colors would be useful. The optimal quadratic forms for 

converting the vector of tristimulus errors or the vector 

of spectral distribution errors to a number measuring the 

total perceived color error would also be of some benefit 
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in color estimation problems. 

;w^« 

In conclusion, it is hoped that the contents of this 

dissertation are of some value in advancing the science and 

art of digital color image processing. The field of 

digital color image processing is in its infancy, and will 

doubtless evolve far beyond its current state. The uneasy 

marriage of colorimetry and linear system theory, 

characteristic of the methods described here, will someday 

be supplanted as newer, more complex and more accurate 

mathematical models of the human visual systems are 

created. Still, in spite of the obvious limitations of 

linear estimation, quadratic error criteria, and present 

day colorimetry, methods such as those described here are 

effective. With the increasing power of digital 

computation the digital processing of color imagery will 

become even more effective and more widespread. 
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