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ABSTRACT

This technical teport summarizes the image processing research
activities performed by the University of Southern California during
the period of 1 March 1975 to 31 August 1975 under Coatract No.
FC86C6-72-C-0CCE vith the Advanced Research Projects Ageacy,

Information Processing Techniques Office.

The research proyram, entitled, "Image Processing Research,® bhas
as its primary purpose the analysis and development of techniques and
systeas for efficiently generating, procdssing, transmitting, and
displaying visual images and two dimensional data arrays. Rese¢arch is
oriented toward digital prccessing and transmissicn systeas. Five
task areas are reported on: (1) Image Coding Projects: the
investigation of digjtal bandwidth reductijon coding methods; (2) Image
Restoration and Ephancemant Projects: the improvement of image
fidelity and presentation format; (3) Image Data BExtraction Projects:
the recognition of okjects within pictures and guantitative
measuresent of jimage features; (4) 1Imay2 Analysis Projects: the
development of gquantitative measures of image quality and analytic
representation; (5) Imaje Processing Systems Projects: the development

of image processiny hardvware and software support systeas.
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'« Research Project Overview

This report describes the progress and results of the University
of Southern California imaye processing research study for the pgeriod
of 1 Macch 1975 to 31 August 1975. The 1imaye processing research
study has been subdivided into five projects:

Image Coding Projects

Image Restoration and Enhancament Projects

Image Data Extraction Projects

Imaje Analysis Projects

Image Processiny Systems Projects
In image coding the orjentation of the research 1is toward the
development of digital image coding systems that represent monochrome
and color isages wvith a minimal number of code bits. Inage
restoration is the task of improving the fidelity of an isage in the
sense of compensating for imaje degradation. In image enhanceament,
picture wmanipulaticn processes are performed tc provide a amore
sutjectively pleasing image, or to convert the image to a form more
amenable to humsan or machine analysis. The objectives of the image
data extracticn prcjects are the registration of images, detection of
otjects within pictures and measurenents of image features. The image
analysis projects comprise the background research effort into the
tasic structure of images in order to develop meaningful guantitative
characterizations of an imaye. Finally, the image processing systeas
projects 1include research on image fprocessing computer languages and

the development of experimental equipment for the sensing, processiung,

and display of images.




The next section of this repcrt summarizes some of the research
project activities during the past six months. Section 2 is a2 list of
putlications by gfrcject =@members. Sections 3 to 6 describe the
research effort on the projects listed above during the regorting

period.




2. Publications

The following is a list of papers, articles, and reforts of
research staff members of the USC Image Processing Institute which
have been published or accepted for publication during the past six

months, and which have resulted from ARPA sponsored research.

H.C. Andrews, "Numerical Analysis Techniques in Digital Inge
Restoration," Proceedings 1975 Sysposium on Circuits and Systenms,

April, 1975.

H.C. Andrews, "NTF Bestoration by Pseudoinversion,®™ Proceedings of

the International Optical Conputing Conference, April, 1975,

Washington, D.C.

3 H.C. Andrews, Chapter 4, “Two Dimensional Traunsforms," Picture
Processing and Digjital Filtering, F.S. Huang, ed., Springer Verlag,

May, 1975,

H. C. Andrews and C. L. Patterson "Outer Product Expansions and
Their Uses in Digital 1Image Processinj," IEEE Transactions on

Computers, (accepted for publication).

H. C. Andrews and C. L. Patterson, "Digital Interpolation of
Discrete Images," IFEE Transactions on Computers (accepted for

putlication).

H. C. Andrevs and C. L. Patterson, "Sinjular Value Decomposjitions

and Digital Image Processing," IEEE Transactions on Audio, Speech, and

Gy ¥ g
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Signal Processing,

3-5, 1975,

Output,” presented

Pattern Analysis, March 3-%, 1975.

E. L. Hall, W, O. Cravford,

Measurements for Ccmputer Texture

IEEE Transactions

E‘ L. Hall' z. H. ChO. J. K.

McCaughey, L Comparative Study

Algorithas,” IEEE Trans.

E. L. Hall, R. P. Krugjer and
Yeasurements frcm Chest X-Rays for
USA-Japan Computer Ccnference, Auygust,
>, E. L. Hall, R. ©P. Krujer and
£
!5
¥
-4.
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W. Frei, "Accuracy Considerations for Digitized Images

And P, E.

Bicmedical Engineering,

Chan' R. P.

on Nuclear Scianca,

(accepted for publication).

H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice
Hall (accepted for publicaton).

S. R. Dashiell and A, A. Sawchuk, "Optical Synthesis of HNonlineac
Nonaonotonic Functions," accepted for publication in Optics
Ccemunicatons.

W. Frei, "The Need for a Minimum Picture Data Basis," presented at

1575 IEEE Computer Society Workshop on Machine Pattern Analysis, March

and Hasdcopy

at 1975 IEEE Computer Society Workshop on Machine

Roberts, "Homent

Discrimination in Chest X-Rays,"

Novenmber, 1975.

Kruger and D. G.
of 3-D Image Receonstruction
March, 1975.
A. F. Turner, "Automated
Lunj Disease Classification,"
1975.
A. P. Turner, "Automated




~”

Pl ]

L. 2 A A

S e

o AN Sy WY, T

Measureaents froem Chest X-Rays," Proceelings of the Cosputer

Applicatons in Radiclogy Ccnference, March, 197S.

E. L. Hall, %, B. Thcegson, G. Varsi and R. Gaulden, "Compater
Measuremnent of Farticle Sizes in Electron Microscope Images,®™ IEEE

Trans on Systeams, Man and Cybernetics, to b2 published, 197S.

G. C. Huth and E. L. Hall, "Coaputer Tomography and its
Application to Nuclear Madical 1Imayiny," Computers 3jn Nuclear

Medicine, to be published.

N. D. A. Mascarenhas and ®W. K. Pratt, "Digital Image Hestocation
Onder a Regression Model," IEEE Transactions on Circuits and Systenms,

March, 1975,

N. E. Nahi and M. VNaraghi, "A General Image Estimation Algoritha
Applicable to Multiglicative and Non-Gaussian Noise," Proceedings of
18th Midvest Symposium on Circuits and Systems, August 11-12, 1975,

Concorshia Univ., Momtreal P.Q., Canada.

N. E. Nahi and A. Habibi, "Nonlinear Recursive Isage Enhancement,"%

IEFE Traasactiones on Circuits and Systems, March, 1975.

R. Nevatia, T. O. Binford, "Recognition and Description of Coaglex

Curved dbjects," Fifth Annual Symposium on Imagery Pattern

Recognition, University of Maryland, April 17-18, 1975,

R. Nevatia and 1. 0. Binford, "Recognition and Descgiption of
Complex Curvedi Objects", Pifth Annual Symposium on Automasic Imagery

fattern Recognition, Univ. of Maryland, April 1975,

-5~
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R. Nevatia, "0bject Boundary Determination in a Teytured
Environment,® (Tc be presented) Annual ACM Conference, Minneagolis,

October 1975,

B. Nevatia, “Lepth Measurement by Motion Stereo," Accepted for

publication in Ccmputer Graphics and Image Processing.

B. Nevatia, "Structured Descriptions cf Coamplex Curved Objects for
Recognition and Visual Memory," Accepted for publication as a bpok by

Birkhauser-verlag, Easle, Svitzerland.

W. K. Pratt and M. Huhns, "DPCM Quantization Error Redsction for
Image Coding," Society of Photo-Optical Instrumentation Engineers,

19th Annual Technjcal Symgosium, San Diego, August, 1975.

¥. K. Pratt and C. E. Mancill, "Spectral Estimation Technigues for
the Spectral Calibration of a Color Image Scanner," Applied Cptics,

November, 1975.

W. K. Pratt, "Vector Space Formulation of Two Dimensional Signal
Processing Operations, Journal Computer Graphics and Image Processing,

Academic Press, March, 167¢%.

J. A, Roese, VW. K. Pratt, G. S. Robinson, A. Habibi,
"Interframe Transform Codiny and Predictive Coding Metods," IEEE

Internatonal Communicatons Conference, San Prancisco, June, 1975.

J. A. Roese, G. S. Robinson, "Combined Spatial and Temporal Codiny
of Iaage Sequences"”, 19th Annual SPEI Symposium on Efficient

Transmission of Pictorial Information, San Diego, Calif., August

-6~
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21-22, 1975.

A. A. Sawchuk and M. J. Peyrovian, "Restoration of Astigmatiss and
Curvature of Field", Journal of the Optical Society of Aserica, vol.

65, 1975.

A. A. Sawvwchuk and S. R. Dashiell, "Nonmonotonic Nonlinearities 1in
Optical Processing"”, Proc. IEEE 1Internatiomal Optical Ccmputing

Conference, Washingtom, D.C., April 23-25, 197S.

W. B. Thomgson, A. F. Turner, and R. P. Kruger, "Autosated Chest
Radographic piaynosis,” accepted for publication, Investigative

Radiology.

W. E. Thompson, A. L. 2obrist, "Buildiny a Distance Function for
Gestalt Grouping," accepted for publication IEEE Transactions on

Cceputers.

-7-
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3. 1Image Coding Prcjects

The effort in image codiny is directed toward the research and
development of isagye coding systems providing a transmission bit rate
reduction and tolerance to chaanel errors. Coding systems are under
investijation for: monochrome and color imagery; slow scan and real
time television; and inforsation preserving and controlled fidelity
operation. Results of this research study during the past six months

are summarized here and presented in detajl in subseguent secticas,

3.1 Singular Value Decomposition Image Coding

Harry C. Andrews

The singuylar value decomposition algorithm (also referred ¢to as
sSVD) is a computational algoritha developed for a varjety of
applications includjing wmatrix diagonalization, regjression, and
pseudoinversion [1,2]. The algoritha has also been suggested for
isage coding [3,4]. By approaching the image coding task froa a
viewgpoint of nemerical analysis, it is possible to forsulate a
solution in terms of least squares aethods which results in
deterministically best truncation errors over all other unitary
transforas [6]. A discrete image may be considered to be am array of
nonnegative scalar entries formed into a matrix. Llet such an image
matrix be designated as G. Without 1lcss of generality, let G be

square with a quadratic form given by
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G= AgB (M

where the A and B matrices are assumed unitary. Solvimg for o it is

observel that

IR
]
S
10
1t

(2)

The g matrix is seen to be the "transfora® of the image satrix where

A transforms the columns of the image and B transforms the rows of

the image. A list of traditional transform techniques is presented in
Tatle 1 indicating some of the properties of the individual traasfora
methods, The entries are 1listed in terms of general decreasing

usefulness as decorrelation devices as well as decreasing complexity.

The first entry in the table is the one of interest here and has
decidedly Jdifferent transform properties from the remajning. The
singular value deccmpositicn (SVD) method has the unigue property that
the coefficient wmatrix A, is diagonal vwith at most only N nonzero

entries, The definition of this transform is given by

a=A*=UGYV (3)

where

-9.
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cg’ -y’ | (ba)
and
cg =vav" (uk)

The A matrix is diagonal and comprises the singular values of the
picture matrix G, while U, and V are the respective singular vector
matrices of Eg?‘and é?g, and are orthogonal as a result of the
nonnegative definiteness cf gg?land g?é. Because of these prcperties

of U and V it is possible to solve for the image matrix such that

1
Gg=upry’ (5a)
or equivalently
R 3
5 T
- 2
G2 my (5b)
1=

Where R < N and represents the rank or number of nonzerc singular
values Xi . The coling implications are that one must trausmit the 2N
singular vectors as well as N singular values for image reconstruction
at the receiver. Figure 1 presents a pictorial representation of the

sinjular value decompositicn. Traditional image transform wmethods

-11-
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usually break ap image up into subblocks for ease in bhardware
isplementations. This technique is devaloped here because the
computdational expemnses for large image singular value decoapositions
is great. Specifijcally, if an M x ¥ image is broken into N x N
sutblocks, then each subblock takes on the order of N3 computations to
get to the SVD domaim. Since there are (a/u)2 such subblocks, a total
of 52N computaticas are required as ccampared to H3 cosputatjons if the
entire image were decomposed. A similar comparison exists for fast
computational transforms vhich requirge Hzlog N total subblock
operations for the ® x M image. Thus the numsber of computations for
SVD ccapared to fast transforms is HZN vs Hzlog N. The ratio of N/log
N increase to isplement the SVD transform on 16 x 16 subblock sizes is

only a factor of 4 for SVD versus Fourier, cosine, Walsh, or the like.

Figure 2 contains a block diagram of the SVD ccding scheme. The
major components at the transmitter consist of the SVD domain
transformer, a fpossible truncator, and parallel singular value and
singular vector coders. The SVD transformer, as discussed above,
would reguire on the order of four times the nuamber of real
ccmputations ccmpared to a real Nzlog N transfors algorithm. The
truncator is included in th2 diagram to enmphasize the tcemendously
large energy compaction property of the SVD technique. From eq. (6)

the truncated imagye G may contain an extremely large amount of

K
otiginal image energy in a very few nusbar of singular values.

The two remaining blocks in the coder concern themselves with the

singular value codiny and singular vector coding. In the former the

-13-
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large dynamic range of the sinjular values indicates a certain amount

of care ne2ded for codinj, but because there are so few large dynamic
ranged coefficients, (N vs.NZ) the total bit requirement still reemains
low. The singular vector coding algorithm is broken into two
cogsponents, that associated with the first singular GElane (or
eigenimagye) and that associated with tha2 remaining eijenimage planes.
Because each of these planes (actually two vectors which when, outer
frocduvcted, produce a plane) is orthonormal, the scalar entries in the
singular vectors are quite well behaved, and lend themselves to easy

requantization.

Using the basic configuration of figure 2, the number of bits
nacaessary for +transmission of a subblock then becomes a function of
the truncation, if amy, the bit distribution over the singular values,
and the bit distributicn over the singular vectors. 1ypical
distributions on the singular values track the variance of these
values, and, in fact, tend to be proportional to the value itself.
For the singular vectors, two wmore Lits are provided for scalar
entries of the first eigenimage than for subseguent eigenimages. 1In
addition, because the singular vectors are orthonorsal, one need not
transmit ¥ scalar values per vector but only N-i-1 such valuwes for the
i-th vector. (Orthcnormality reduces the degrees of freedcm cn the

vectors such that the vectors can be ccmpleted at the receiver.)

In order to develop efficient quantizers and coders for the SVD
dcwmain, a test image (512 x 512) was broken into 16 x 16 subblocks and

data was gathered over 2ach subblock of the entire franme. Statistics

-15-
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describing the sinjular values and vectors were then gathered and are

Jescribed here, For 16 x 16 subblocks, one obtains 16 singular walues

and monotonic decreasingyly ordered means and variances of -each

‘singular value can be computed. The exceedingly large dynamic range

of between 4 and £ orders cf magnitude indicates the need for variable
bit coding as a functicn of the singular value index. The
distribution of the singular values naturally is one sided (no
negative entries) and appears as a curve intermediate between a broad

Gaussian and uniform density.

The statistics describing the singular vectors are much better
behaved. FigJure 3 presents two specific singular vectors from a
particular sutktlock as an 1illustration of the shape of these
parameters. The sinjular vectors tend to be well behaved in their
range and tend tc have an increasing nuaber of zero crossings as a
function of increasing index. In fact it is known that the first
singular vector never exhilkits zero crossings wvhen the subblock is
ncnnegative (as it always is for imagery) [7]. Thus the lower indexed

vectors tend to have a great deal of adjacent sample correlaticn.

Since the first vector for both § and Y are guaranteed to have no
zero crossings (sisilar to the dc vectors of Fourier, Walsh, cosine,
etc. transfcrms), these vectors form a separate set of statistical
parameters fros the zemaining set. The mean vector over all subblocks
in the test image becomes a constant value of 0.25 with a vwvery tight
variation provided by a variance of 10-3. Naturally a given first

singular vector will not, in fact, be a constant of value 0.25 (the

-16-
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Figure 3,1-3. Typical singular vectors.
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appropriate norpmalized value ¢to guarantee orthonormality), but will

have variations which wvben wveighted by the corresponding large
singular wvalue will appear yuite different from a constaant. Imo fact
the distribution of the scalar values defining the entries in the
first singular vector are very close to Gaussian vith parameters

-3
N(0.25,10 ).

The remaining ejgenvectors are also quite vell behaved with the
average or aean of each cf these vectors being the zero vector. The
variance of these singular vectors is on the order of ‘IO-l and the
scalar entries which comprise these vectors are also close to ncrmally
distributed with N(O,10_1). Because of the difference in the
statistics of the first singular vector with those of the remaining
singular vectors, they are codad separately as indicated in the block

diagras of figure 2.

One image is used fcr experimental purposes here. Its SVD
structure is revealed in figure 4. 1In figure § the image is broken
into 16 x 16 suktblocks and each subblock is decompcsed into iss 16
singular values and associated 32 singular vectors. The first,
second, third, and fourth eigenimages cbtained frca the corresponding
singular vectors are displayed in the figure. The first plane has no
zero crossings and consaquently the display of negative daka is not
necessary. Iin the three remaining pldanes, a linear dislay is
presented with negatjve values being dark and positive values being
light. Notice that consjderable recognition of the original scene is

available in the first eigenimage and subseguent eigenimages tead to

Lo TN L i ._..-J
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c) 3F Eigenimege d) yth Eigenimge

Figure 3.1-4, "Baboon" image with SVD on 16x16 subblocks
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provide wmore and more zero crossing inforsation which can te likened

to higher freguency iuformation,

A complete SVD coding system has been simulated according to the
block diagram <c¢f figure 2. The ccding strategy used a linear PCHM

guantizer with variable bit assignment on the singular valwes and a

it bk e e oo idee ¢ e

Max quantizer [S] with variable bit assignament on the PCN values of
the entries in the singular vectors. A variety of bit assignaents
were investigated, and an optiaization routine in terms of sean sguare
error measured tke Lest Lit assignment. Figure 5 provides some
performance curves developed during the optimizaticn process. The two
lower curves indicate thke truncation effects as the nusrber of
equivalent bits per pixel are increased. The uppermost curve
illustrates the sean sguare error using a linear quantizer on the
singular values. The Max quantizer curve indicates about a 0.20% mean

square error improvement over the linear curve and is only akbtout J.20%

vorse (or introduces 0.20% mor2 mean square error) than the truncated
but uncoded curves. Pictorial results, from which the wupper two
curves are derived, are presented in figure 6. Here the percentage
mean square errors and bit rates per pix:1 are listed under the
respective coded images for both linear and Max guantization on the

singular vectors.

In concluding this section it is important to emphasize a few
points. First, the work is incomplets, and it is premature to base

any conclusions cn the viatility of SVD coling in competition with

cther existing technigues, It is fair to say that if as much effort

P O S

v
.

-20-

IRREA

-ﬁw'




‘1dx1d 139d 85314 SN3I3A J0IX3 axenbs uvsw sFwjusdrag ‘g-[°g dandiy

(dda) 3axid ¥3d Sl118

¢ 2 l
| | l
4520
P
—~0S°0 =
m
2
4620
43ZILNVNOD ¥V3NIT 4
.Noogvs, @3d0d =
,Noosva, 001 %
3ANND m
NOILVONNML |, m
| d3ZILNVND XVW 3
i .Noosgvsg, 03009 o




sonsnes uooqeq, Buisn Bulpod gAS Y adewg ,uocoqeq, °9-1°¢ Indig

(9su fn9°T) ddq £56°0 (3
e Y "

Aoms %02°1T) ddq .wm..a,?

i g ﬁ. 3

L4

e
-

PM

.

b

HAZIINWN® X
(@sw ¢9eg*0) ddg LS°T (@ asu )60€°0) ddg g2 Am
31.. O ot ).3 i P s

.Aoms $606°0) &p $.~. 3 Awme %wmm 0) &p »m m.?




is put into investigatiny the potantial for SVD coding as has been put
into traditional transform methods, then considerable improvement over
the results presented here can be expected. However, algorithaic
isplementation might beccme quite complex. On the other hand five
years ago realtise (video bandwidth rate) FPT transform ceoders were
thought to be too comglex, and yet they exist today. Censeguently
only time and future study will tell whether SVD coding becomes a

practical reality.
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3.z Restoration for Binary Symametric Channel Errors

Michael N. Huhns

A previous repost (1] has presented and analyzed a technique for
restoring the output of a quantizer so that the result more accurately

matches the quantizex's input with respect to a mean-square error

criterion. The xestoration is obtained by the use of

x plx)dx

R
jr p(x)dx

R

|
2
b
i

E{x|xeR} = (1)

TR TR ST ETENEE AT T T oeme
i

vh2re R is a region in N-space to which an N x 1 vector x is assigned
during quantization, and p(x) is the multidimensional protability
density function of x. The restoraticn is based essentially ugon

exact knowledge of the guantizer output. A similar, but more

difficult problem results when the quantizer output is not known
exactly. This could occur, for examgle, when the quantizer output is
transaitted over a npisy channel. The first section in this report
explores the effect of channel ertors on the restoraticns obtained

using eq.(1). The naxt section examines a technjque that




r""“—'ww " e e ekl e

statistically comgensates for the effect of channel errors.

Effects of Chanunel Errors on Quantized Signals: In this analysis,

channel errors are assumed to be modelled Ly a binary syammetric
channel (BSC) [2]). The characteristics of this type of channel are
shown in figure 1. The channel is discrete and memoryless and can be
specified by a transition probability assiynment F(jlk), for 3j,k=0,1,

as

p = (2)

Since the channel is memoryless, the probability of am output sequence
gf(zl,zz,...,zbﬁ, given an input sequence £=(x1,x2,...,xb3, is given

by

N
p(zlx) =TT p(z |x,) (3)
i=1 1 1

Based on this definition, a BSC was computer simulated with the
channel error [probability, p, chosen to be 0.01., The simulated
channel was then applied tc transform coded images. Three images were
zonal transfcre coded in 16 x 16 blocks ani their quantized traansforn
domain components were enccdel by assigning each a tinary code word.

The resulting seyuence cf binary digits was cperated on by the

-25-
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Figure 3,2-1, Transition probabilities for a binary symmetric channel.




simulated channel. The erior-corrupted bit stream vas then either

decoded directly, as shown in figures 2a, 2c, and 2e, or restored by
the use of eq. (1) to reduce the effects of the quantization process.
Figure 3 contajns a schematic of this procedure. The decoded jmages
with the quantization effects reduced are shown in figqures 2b, 24, and

2f.

Bit errors ian transform coding that arise due to a binary
syssetric channel are seen to result in an emphasis of the hlock
structure and a subjective error that extends over the entire block.
This latter effect occurs because inverse ¢transforming a block
containing an error distritutes this error over all the resultant
image domain components. The reconstruction technique implied by egq.
(1) is thus insensitjve to channel errors. Since it provides vwisual
and mean-square erxor improvements in noise-free cases, it can be

utilized equally well in noisy enviconments.

Reconstructjon of Quantized and Transmitted Signals: The previous

section demonstrated that channel errors do not adversely affect the

performance of the restoration technique derived previously. However,
this technique does nothing to ameliorate the effects of the channel
errors. This is because thke fundamental restoration formula presented
in eq. (1) wvas derived vithout any consideration of channel structure.
By including the chaanel structure in the derivation, the resultant
restoration technique can simultaneously reduce the effects of the

quantization process and mitigate the effects of channel errors.

27~
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(b) Restored 0.5 bit/pixel

P =0.01 P =0,01
e e

(c) Quantized 0.5 bit/pixel (d) Restored 0.5 bit/pixel
Pe=0'01 Pe=0.01

(e) Quantized 0.5 bit/pixel

(f) Restored 0.5 bit/pixel
P, =0.01 )

P =0.01
e

Figure 3.2-2. Minimum mean square error restoration of Hadamard
transformed zonal quantized images.
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Figure 3.2-3,

Data system used to model the effects of channel
errors on the quantization restoration process,
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Let the output cf a data source (this output could consist of
DPCM samples, PCM samples, or transform domain saamples) be denoted by

Ef(xl,x ,...,xbﬁ and described by a probability density function p(x).

2
The reconstructicn of x, after x has been guantized to one of M
regions and chanmel-error corrupted, is denoted by g;(zl,zz..;.,zN)
for k=1,2,...,M (refer to figure 13). The mean-square error that

results from this process is

M M

¢ = Z Z P(mlk)f (x-2,) (5—gk)Tp(§)g§ (4)
k=1 m=1 R
- - m

This error can te wminimized by proper choice of the restoration

points, Z)e Setting the partial derjvatives of this errog with

respect to z; eyual to zero yields

M

=

p(m|k) xp(x)dx
'/‘;m
g =

k M

2 p(mlk)L plx)dx
m

m=1

1 (5)

for k=1,2,...,M. This expression is the noisy channel version of

eq. (1) and provides a minimum mean-square 2rror estioate of the input
to a quantizer Ltased on the ocutput of a noisy channel, the
characteristics of the guantizer, and the a priori statistics of the
- input., This equation is also a multidimensional version of a sesult
first derived 1in [3]). Por a noiseless channel, the channel magrix P

becomes the identity matrix and eq. (5) reduces to eq.(1). Whem ¢the

-30-
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probability vcluse integrals in the denominator of 29.(5) are all

equal, which is agproximately true for Max guantization, the

restoration equatjon simplifies to

4 xp(x)dx
M m
z =), pmlk) (6)
=1 [ pax
R
m
or
M
Z =-§:,1 pm|k)y (7)

where ynlis given by eg.(1). This result holds for maxisum output
entropy quantizers and two-level symmetrical gquantizers, amd is

approximately correct for mpany other types.

A signal that has been quantized and then transmitted over a
noisy channel can thus be cptimally restored by utilizing eg.(5). The
restoration scluticns found earlier for Gaussian and Laplacian
probability density functions (see [4] anl [5], respectively) can be
substituted directly into eg. (5) once the transition matrix £for the
channel has been determined. The resultant estimator can then be used
to restore the cutputs of transform and DPCM coders that have been

degradel by channel errors.
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3.3 Interframe Image Coding

Gunar S. Robinsco and John A. Roese

Interframe coding of digital image sejuences encompasses those

technijues which make use of the high correlation that exists between

pixel amplitudes in successive frames. Intraframe coding techaniques

that exploit =spatial correlations can, in princigle, be extended to

#This research is partially supportad by the Naval Undersea Center,

San Ciejo, Califcrnia.
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include correlations in the temporal domain. Previous research in the
area of three-dimensional Pourier and Hadaamard transformatioas has
indicated that bit rates can be reduced by a factor of five by
incorporating ccrrelations in the temporal direction [1). However,
three-dimensional transform systems are unattractive sjince they

require large amounts of data storage and excessive computation.

To alleviate the problems associated wvwith three-disensional
transform systens, nev hybrid (two-dimensional transform)/DPCM image
coding systems have been developed [2]. These systems utilize both
spatial and temsporal coirelations while Jreatly reducing sesory
storaye and computatjonal requirements. N\ block diagram for a hybrid
{two-dimensional transfora)/DPCM system is shown as figure 1. 1In
present implementaticns of this system, either a two-dimensiocnal
cosine or Fourier transformation is performed on 16 x 16 sukblocks.
DECM linear predictive codiny in the temporal domain is then applied
to the transfckms coefficients of each subblock. For notational
convenience, the hybrid interframe coders employing two-dimensional
Fourier transforms will be denoted as FFD and those usiny
two-dimensicnal cosine transforms as CCD, The FFD and CCD coders are
adaptive in the sense that statistics of the transform coeffijcient
differences of each subblcck are ccmputed prior to encoding the
transform coeffjcients in the temporal directicn by parallel LPCM
coders. At the receiver, the transmitted transform coefficients are
decodead and a replica of saach frame 1is reconstructed by the
appropriate inverse two-dimensional transformation. These systeas

require only a einjle frame of storaye and involve significantly less
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sesory and fewer ccamputations than three-dimensional transform coding

techniques.

Operational Modes: At least three operational amodes have been

identified for the hybrid interframe coding systeas. These
operational modes depend on tha initial conditions assumed for the
previous coder. The initial conditions are:
a. No apriori information available at the receiver;
b. Limited informaticn (such as mean, variance and tesporal
correlations based on a statistical model)
available at the recaiver; and

c. Pirst frame available at the receiver.

In the no agriori information available case, several frames are
required for the hybrid coder to sattle, However, it has bheen
experimentally verified that in the remaining two cases, nearly stable
coder performance is ackieved within the first 4 to 6 frames. Froa
operational considerations, the third set of initial conditions is the
most r=2alistic as periodic full frame updating will be required to

eliminate the curmulative effects of channel noise.

Mathematical Formulation; Let f({x,y) denote a tvo-dimensional
array of intersity values on an N x N subblock of a digital telewision
image of size M x M. Typical values for M and N are 256 and 16,
respectively. Let F(u,v) be the two-dimensional array okbtained by
taking the two-1imensional transform of f(x,y). In the case of the
two-dimansional discrete Pourier transform, the expressions celatiny

f(x,y) and F{u,v) are

-34.
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FYu.V)='l§ ﬁx.v)exP[J%?%ux + vyﬂ (1)
N x=0 y= 0
and
N-1 N-1 o
fix,y) = Z E F(u, v) exp [+ —Nu {ux + vy)] {(2)
u=0v=0

for u,v,x,y=0,1,...,8-1. Por isage procassing applications, f(x,y) is
a positive real function ruepresentiny brijhtness of the sfpatial
sample. The tvo-dimensicnal Pourier transfors of a real-walued
function has the conjujate sysaetry property. Also, the Pourijer
transform consists of 2!2 coaponents, i.e., the real and isaginacry or
maynitude and phase component3 of each spatial frequency. Hovever, as

2

a result of the ccnjugyate sysmetry properties mentioned above, only N

ccsponents are reqguired to cospletely define the Fourier traosfors

{3l

In the case cf the Fourier transform, a shift in the
spatial-domain variables results in a sultiplication of the.F;ﬂtiet
transforn of the un-shifted image by a phase factor. If the input
imge £(x,y,t1) is shifted by the amount X, in the x-direction and Yo

in the y-direction Letveen times t_  and tz, then the Pourier traasfora

1
of the shifted image is given by

21 i
F(u, v,tz) = F(u,v,tl) exp [-ﬁl (ux, + vyo)] (3
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This shifting property is expected to be useful in detecting and :
compensating for effects cf motion between frames since many types of
motion, such as panned moticn, produce significant changes 1in phase
components but small chanyjes in amplitude coamgonents. Thus,
compensation for camera platform moticn could be implemented directly
in the array of phase cosgonents by application of appropriate phase

correction factors.

The tvo-disensicnal Pouriar transfora ¥(u,v) of a spatial signal :
function f£(x,y) is separatle, i.e., it can be computed as two

sequential one-dimensjonal transforms since the Pourier kermel, is

Mk

sepatable and syemetric. Thus, the basic one-dimensional discrete 1

Pourier kernel transform that must be performed is

N-1 . '
Fu) = -11\-1-2 £(x) exp (—% ) (4)
x=0 ;

fOI u=0'1'.|.,N-1-

In the case of the discrete Cosine transform, the one-dimensional

transform is

N-1
F(u) =—1{-I Z f(x) cos (E%—-—DEL) (5)
x=0

for u=0,1,...,N-1. The cosine transform is also separable and a

¢ tvo-dimensional djscrete cosine transform of an N x N subblcck results

2
in N real coefficients.
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Experimsental evidence derived from transmission of a typical
"head and shoulders" picture telephone scene has shown that the frame
difference signal has a protability demsity clcsely approximated by a
double sided exgonential function [4]. The optiaums minimum amean
square error quantizer for this distribution has been found tc be a
uniform gquantizer coabined with a ccmpamding of the frame difference

signal [5].

Since the variances of the transfornm domain coeffjcient
differences are different, it is necessary to use different quamtizer
parameters for each coefficient.. Each coefficient difference 6ignal
is allocated a number of bits proportional to the estimated variance

in accordance with an optimuam bit assignment algoritha.

Pidelity Criteria: In figure 1, differences between the input

signal f(x,y,t) and output signal E(x,y,t) are due to two sources:
guantization errors and channel anoise errors. To evaluate <¢oding
efficiency of the bybrid enqode:s, tvo objective criteria vere used.
The first criterian, NMSE, is a measure of the =mean square error
between £ (x,y,t) and ?(x,y,t) averaged over an entire frame of size M
x P. Normalization is achieved by dividing the mean square ecrror by

the mean signal enerygy within the frame to give

M-1 M-1 2
1 A
42 LY [y - fxy]
M =0 y=0
i} x 6
nusE = M=t 5 (6)

o [f(x, v, t) ]
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The second criterion, SNR, measures the ratio of peak-to-peak signal

to RMS noise as defined by

M-1M-1 2
"~
L ¥ [wenn- fxyo]
M” x=0x=0
SNR = -10 1og10 5 (7
255

Figures 2a and 2b are graphs illustratiny the coding efficiency
of the hybrid FED and CCD coders at various bit rates in the interval
0.1 to 1.0 bits/pixel/frame. To perform this series of experimeamts, a
25€ x 256 resoluticn data base consisting of 16 consecutive frames of
a 24 frames per second (fps) motion picture was digitized. Aaitial
conditions assumed wvere that the first frame wvas available at the

receiver.

Photographs of frame nuaber 16 after coding by the FFD and CCD
coders at average fixel bit rates of 1.0, 0.5, 0.25, and 0.1 are shown
as figures 3 and 4. The results shown in figure 3 for the FFD coder
wvere obtained by c¢oding the real and imaginary coaponents @f the
Pourier coefficiemts by assigning half of the available bits to each

component,

Noise Imaunity: Performance of the FFD and CCD hybrid interframe

coders was investigated in the presence of channel noise. In order to
study the effect of channel noise, a binary symmetric channel was
simulated. The channel is assumed to operate on each binary digit

independently, changing each digit frcm 0 to 1 or from 1 to O with
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(a) 1.0 bits/pixel/frame (b) 0. 5 bits/pixel/frame ]

(c) 0. 25 bits/pixel/frame (d) 0.1 bits/pixel/frame

Figure 3,3-3. FFD coder for frame 16.
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(a) 1.0 bits/pixel/frame

(c) 0. 25 bits/pixel/frame

Figure 3.3-4 ,

(d) 0.1 bits/pixel/frame

CCD coder for frame 16,
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protability p and leaving the digit unchanged with probability 1-p.
At the receiver, the encoded picture is reconstructed from the string

of binary digits, including errors, transamitted across the channel,

-3
Degradations due to channel noise probabilities, p of zero, 10

and 10-2 for the FFD and CCD coders at average bit rates of 1,0 and
0.25 bits/pixel/frame are shown in figures 5 and 6, The generally
monotonically increasiny character cf these curves illustrates the

fact that once an error has occurred, it tends to propagate in the

temporal direction until corrected by a frame refresh.

Resulting fpictures shcw that, fcr Dboth coder implementations
studied, minimal image degyradaticn occurred for channel error

probability cf 10—3 cr less.

Photographs ccrresponding to average bit rates of 1.0 and 0.25
bits/pixel/frame for the FFD and CCD coders with <channel error

-3 -2
probabilities of 10 and 1C are shown in figures 7T and 8.

Bit Transfer Rate: 1In keeping with the previously nmentioned

objective of minimizing the number of bits transmitted while retaining
image fidelity, a series of experiments was performed in which certain
bit <¢transfer rates (BTR) across the channel were fixed. The ETR is
defined as the prcduct of average pixel bit rate per frame and franme

rate and has units of bits/pix21/sac.

The availakle 16 frames test data base was extracted frcm a 24 fps

motion picture sej]unence. 3y emplcying frame skipping techniques,
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Figure 3.3-.5, E'fects of Channel Noise For Fourier/Fourier/DPCM Coder
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(a) 1.0 bits/pixel/frame (b) 1.0 bits/pixel/frame
p= 1073 ' p= 1072

(c) 0, 25 bits pixel /frame (d) 0. 25 bits/pixel/frame
p= 1073 p= 1072

Figure 3.3-7. FFD coder with channel noise.

-46-




(a) 1.0 bits/pixel/frame (b) 1.0 bits/pixel/frame

p=10'3 p=10"2

(c) 0. 25 bits/pixel/frame
P= 10-‘3

Figure 3.3-8. CCD coder with channel noise,

-d7a

B Aabhe 2 e BCESE




™~
”

ah 3 Rl

. ”"‘.é

tesporal subsampling was used to siamulate short 12, 8 and 6 fps

sequences frcm the 16 frame test data base.

Average bit rates in the interval 0.083 to 1.333 bits/pixel/frame
were used in ccajunction with the four frame rates mentioned above to
pecfcrms siaulaticns with BIR values of 8, 6, 4 and 2 bits/pixel/sec.
Results of these experiments for 4 bits/pixel/sec are shown in figure
9. For all cases exaamined, the graphs show that reduced frame rates
prcduce sasaller NMSE values for the indivilual frames coded, This
indicates that reductions experienced in frame-to-frame correlaticns
due to temporal subsampling are completely ccmpensated for by the
increased aumber of bits available for coding. However, subjectively,
reduced frame rates tend to result in jerky subject motion. This is
most apparent for rapidly mcving objects in the field of view and is

of lesser consejuence for slowly changing scenes.

Conclusicns: Based c¢n theoretical and experimental resualts

obtained to date, two main conclusions have been reached. The first
is that exploitation of temporal correlations in additicn to spatial
correlations has been demonstrated to te a viable technique for coding
sequences of digital images. This fact is demonstrated by a
ccmparison cf the avarage bit rates requirel for the interframe
cosine/cosine/CFCM and the existing intraframe cosine/DPCM coders to
achieve the same 1level of NMSE performance. The sixteenth frame of
the tast data base was chosen for comparison and wvas coded at an
average 0.25 tLtits/pixel by the interframe cosine/cosine/DPCM coder.

When using the intraframe cosine/DPCM coder, it was necessary to code
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this frame at a bit rate of more than 2 bits/pixel to achieve the sase

NMSE.

The second conclusion is that the perfcrmance of tbke hykrid i
interframe codexs imvestigated are heavily dependent upon the type of
motion. In the case of the 16 frame head andl shoulders test data
base, good coding performance wvas achieved since subject movement vas
restricted tc a relatively small portion of the image. However, l
coding performance with a different aerial data base was degraded froa
the previous case due principally to camera platform motion which
caused frame-tc-frame pixel aaplitude variations across the entire

image. Since the pexformance of ¢the hybrid interframe coders is

A AL A Vol o a AT A e omiii A

dependent on temporal correlation, a reduced level of performance is

to be anticipated for image seguences distorted by motion.

References

1. A.G., Tescher, "The Role of Phase in Adaptive Image Coding," Ph.D.
Thesis, University of Southern California, Electrical Engineering
Departaen, January 1974, Publisbed as QReport 510, University of

Southern California, Image Processing Imstitute.

2. J.A. Rcese, W.K. Pratt, G.S. Robinson and A. Habibi,
"Interframe Transform Coding and Predictive Coding Methods,"
Proceedings of 1575 International Conference on Communications (ICC

75), Vol. II, Baper 23, pg. 17-21, June 16-18, 1975.

3. G.S. Raotinscm, "Orthogcnal Transform Feasibility Study,” NASA




' ....... e —Te rr— " " T ™ S e "_m—”j

Final Report NASA-CR-11S314, N72-13143 (176 pages) (sutmitted by
CCPSAT Laboratories to NASA Manned Spacacraft Center, Houston, fexas)

November 1971,

4. A.J. Seyler, "Probability distributions c¢f television trame

differences," Proceedinys IREE, Australia, pp. 355-366, Novemker

1c€c.

5. B. Smith, "Instantaneous coampanding of quantized signals," Eell

System Technical Jouznal, Vol, 36, pp. 653-709, Mmay 1957.

basiitiniai S i

I

-50-

]
MA;@:»-M.“M‘ . e e e,

»
I 3

ey "k




4. Imayge Restoration and Enhancement Pro jects

Imaje raestoration and imaje enhancement are two classificaticns
of 1image improvement methods. Image restoration technigues seek to
reccnstruct or recreate an imagye to the form it would have had if it
had not been degraded by some physical imaging systesn. Image
enhancement technjjues have two major purposes: isprovemeant ia the
visual gquality of a picture to a human viewer: and manipulation of a
picture for wore efficient processing and data extraction by a
machine, Research in bcth areas durinjy the past six months is

descrited below.

4.1 Eigenvectors of Space-Variant Foint Spread FPunction Systeas

Harry C. Andrews

In image restoration systems a linear model results in an object
f being magpad into an imaga g by a point spread function matrix H.

Thus with noise

The simplest linear models for imaying systems are given by space
invariant [foint =spread functions (SIPSF) in which case H is block
circulant. If the linear model is not space invariant, H then
represents a space variant point spread function (SVPSF). In the case

of separable systems ey, (1) becomes

24




- I .

G=AEB+N (2)

—y

wvhere A represents the column blur anad B represents row blur omn  the
object P. In the SIPSF cise A and B are circulants, but for the SVPSF
3 case A and E may have very general structurs. It is interestiny to
investigate tle eigenvectors of such systems to get a better teel for
the underlying eigenspace of the distorticns representing such
systeas. In the case of SIPSF systems, the eigenvectors are sine and
ccsine waveforms and the eigenspace of such distortions are given by

the Fourier transform. In the SVPSP situation, the eigenvectors often

turn out to be variations on sines and cosines depending on how

variant the blur actually is. i

To illustrate this point a separable (SVPSF) system has tLeen
sisulated for two degrees of blur (moderate and severe). Figure 1

illustrates this situation in which 16 point sources experience

] spatially varjant dagradaticns. The iraging systems are separable and
E are in better focus in the center and jat wmore blurred toward the

edges. Figures 2 and 3 present selected eigenvectors fcr both the

moderate and severe distortion cases. As the eigenvecgtor index
increases, the eigenvectors experiemce an increasing numter of zero
crcssings similar to sine and cosine functions. Also note that the
first eigenvectcr has no zero crossings ani is not a constant. These
SVPSF eigenvectcrs appear to ba FM modulatel trigonometric waveforas.
. It is interesting to conjecture that as a function of *the decreasing

variant nature of the blur involved, these eigenvectors will converye

-~y

;A to unmodulated trigonometzic functions. In examining figures 2 and 3,
[
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it is interesting to nota the effort each eigenvector goes to in order
to resolve finer detail at certain points along the axis ccagared to
othor positions. Also note the eigenvectors effectively go to zerc at
higher indices in the center of the axis indicating they have no

effect on the restoration Lkere.

4.2 Least Squares Restoration for the Continuous-Discrete Model

Steve Hou

For image restoration purposes, a realistic model is that given

by the continucus-discrete model defined by

§=J’Sll(e,'ﬂ)f(e,'ﬂ)ded'ﬂ )]

vhere a discrete image g is obtained from a possibly space variant
imaging system, described by h(e,1), abserving a continuous object
f(¢,N). In digitally restcrinj such a model only a finite number of
csamples are available for description of the estimate f(e,n) of the

oktject. Using cubic splinme intergclation

e, M =chij 5(€)S,(M) (2)
i

vhere Si(l) is the i th cutic spline centered at € - An objective

function for restoration with 1 smoothness constraint is given hy
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wh = [ g-gl +YS (£ (e,n)]%dedm

where
§=Ifb_(e,ﬂ)f(e,n)dedn

By lifferentiaticm and subsejuent manipulation,

equation result js

(PTp+vBlc-P'g

Here

P= J‘j_}l(e,“)g'r(e,ﬂ) ded

gT( e, M = g_T(e)@iT(n)

9-’-91@_@]
[ 4
- " T
B = s (e,M)s" " (e, MdedT
-0

Equation (5) is known as the noraal eguatijon.

The method of ccnjugate yradients has been
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(3)

(4)

the systemization

(5)

(6a)

(6b)

(6c)

(6d)




.

search for the sclution in ey.(5). Because of computer limitations, a

separable pcint sgread function has been assumed, for Loth space |

variant and invariant systeas. For the separable formulation, th2 ?
normal aequation Lteccaes
[aTa+yB ®B Jc-a"g )
1 where
A =ffl_ldj(€,ﬂ)sk(e)sl('ﬂ)de dmn {Ra)
and
-]
B = |spe)srTierde
x -k " '=m (8b)
© )
B = s (M) s"T('Tl)d'ﬂ (Bc) :
- 0 .
t ravlaticn, the generalized extrapolated Jacobi iterative ;
t* . 1t jiven by i
H
i
At (r)g'l®%'l:] ATg ATawB ®B)c? 9
' - x C2y JI7 B2 2R, PSS (%)

U
vhere B is defined as B except that no derivatives are taken of the

¢ 8 SR IR
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spline functicns 1in egs. (8b) and (8c). The advantage of the

formulation in ey.(9) is that no larye matrix ioverses need be taken.

A conjugate gradient algorithm has been igplemented fcr both

space variant and invariant cases. The blur impulse response is given
by
r ’ﬂi).( e,ﬂ):hi(e)hj(ﬂ) {10a)
where
(e -x,)
h.(e) = kexp -7;—1——- (10b)

andcﬁ =|kxﬁ such that X gcverns the amount of blur or spread as a
function of pcsition (x;) in the imaging plane. A similar egwation
results for hj(ﬂ). For the space invariant case 0, was set equal to k

without x, contributing to the spread ofoi .

The sipulated results by using the conjugate gradient algoritha
are shown in figures 1 throujh 6. For both restorations frcm moderate

SIPSF blur (figure 1) and frcm moderate SVPSP blur (fijure 2), the

results are strikingly gJood for Y =0. The justification for such
results is that the PSP is fairly localized (i.e. nparrow), and thus,
the matrix A is well conditioned. 1In other words, the eigenvalues of

-_—

A are clustere1 together sc that A is far fro2 singularity.

On th2 other hand, as the PSF spreads out and the image becoaes v

more tlurred, the restored objects for both SIPSF and SVPSF are far

from perfect. For x=0 ringiny in separable form shows up in the SVPSF

Y o SERL JE Rt
Nty
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(b) Restored é for 5=10"8 (c) Restored Z‘l;‘ for 8=10'8

Figure 4,2-1. Restoration from moderate SIPSF blur (k = 1),
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(a) Blurred image
G (k=1)

4

(e) Restored £ for 6=0

84

* Figure 4.2-2, Restoration from moderate SIPSF blur (k = 1).
¢
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(a) Blurred image
G(k=4)

2___ . e ‘

(b) Restored & for 6=10"% (c) Restored F for 6= 10

(d) Restored 6 for §=0 (e) Restored i‘\ for 6=0

Figure 4,2-3 . Restoration from severe SIPSF blur (k =4).
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(a) Blurred image
G(k=0.1)

-

(d) Restored € for §5=0 (e) Restored f for =0

Figure 4,2-4, Restoration from moderate SVPSF blur (k =0, 1).
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(a) Blurred image
G (k =0.5)

4

(d) Restored € for 5=0 (e) Restored ﬁ for 6=0

Figure 4,2-5, Restoration from severe SVPSF blur (k =0. 5).
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(a) Blurred image
G(k=1)

(b) Restored C for 5=0 (c) Restored F for 5=0

Figure 4.2-6 . Restoration from very severe SVPSF blur (k=1),
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case; and1 the norm of the error wmatrix in the gradient algoritun
oscillates. This is because the matrix A novw is badly conditionmned and
approaches singularity. Theoretically, as Y=0, the conjugate giadient
algorithm is the same as the pseudoinverse of A. Under this
condition, the ellipsoidal contour surface jin the direction
correspondingy to zero eigenvalues shrinks, thus residual errors cam no
lcnjer maintain orthogonality, and the computing time to convergence

JICWs encrmously.

As shown in fijures 1 and 2, the tradeoff between the pictur=2
smoothuess and sharpness which may be accompanied by oscillations
beccmes evident frcas the results for‘Y=1dﬂgnd'Y=o in both SIESP and
SVPSF cases. The price paid for sharp pictures is a long iteration
+ime. Notice that ir the SIPSF case, the restored cbject for‘Y=10-8is
almost identical with that for Y=0. Hence, it is suspected that in
the SVPSF case, the oscillation could be supressed by using Y =1()-6 or

-7
19 without wmuch impairzent of the picture sharpness, but with the

additional advantage of faster ccnvergence.

Tt2 white spcts appearing im all the ﬁ pictures are the negative
cocfficients in the é matrix. Because of the positive nature of the
spline basis functior the coefficients must have negative values in
order to reconstruct E(e,ﬂ) properly. As expected, the white sgots
appear at the high ccntrast areas of the GIRL picture, suchk as alony
the edgyes of ber scarf, or the flowers and in her eyes. As Y
iecreases, the nember of white spots increases because the restored

picture b2ccwes sharper. For severely blurred images, the white sgpots
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are scarce and hence, the cbject is no longer sharply reconstructed.

4.3 A General Image Estimation Algorithm Applicable to Multiplicative

and Non-Gaussiab Noise

Nasser E. Nahi and Mohammed Naraghi

In statistical jmage enhancement, an image is described by a
two-disensional random process (field). These processes acre often
characterized by their mean and autocorrelaticn [3]. Denoting the
image brightess function by b(i,J), with i and j as the horizontal and

vertical variables, the twc moments are defined as

M(i, j) = E{b(i, j)} (1)

R(i, j, k, £) = E{[b(, j))-M(i, j) ]Tb(k, £)-M(k, £) ]} (2)
vhere E is the mathematical expectaticn operator. The degraded image
(ccumonly referred to as the observaticn) is denoted by y(i,j) and

specifies the functional relatioaship between sigjnal, b(i,j), and

noise (i, Jj) given Ly
y(i, j)=f {bli,j), Y, )} (3)
vhere f may be ncnlinear andY (i, j) may be vector valued.

Optimum filtering of images under the general conditica of eg. (3)
has received little attention. However, a variety of procedures have

been developed for the special linear case, where
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y(i, j) = b(i, j)+ Y(, j) (4)

where Y (i, j) is white and Gaussian {11 to 17]. Although, ey.(H4)
describes many natural forms of degradations [12 to 16], there are
conceivably as many situations where this wmodel does not apply.
Examples are isages with film grain noise and pictures ckserved
through non-hcmogenecus clcud layers, where the noise 1is a random

attenuation factor. In these examples, the observations take the fornm

y(i, ) = Y (i, )b (i,])) (5)

The majorxity of the existing linear estimation procedures reguire
the correlaticn function R(i,j,k,Z) ¢to be specified as an analytic
function of a particular form [12 to 17). This limits the generality
of these methods since they cannot be applied to practical cases
wvhere, the functjon R(i,j,k,£) is often specified numerically at only

a small nunter of argument indices.

The purpose of this wcrtk is to develop a general estimation
sethod which requjres numerical values of the autocorrelaticn function
R(i,j,k,£) only, and is applicable to nonlinear (as wvwell as 1linear)
observation systems. Furthermore, the estipmation technique will be of

recursive nature, and hence, computationally efficient.

Notation: Amp image is vieved as an a x n matrix vwith eclements
b(i,j), vhere b(i,j) is the intensity cf the image at pixel (i,3). To
reduce notaticnal ccaplexity the fpixels are indexed by 1,2,...,n

consecutively fxcm 1l2ft to right and top to bottom. This ccnvention
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enables roference to the doubly jindexed image b({i,j) as b(k),

symbolically. Hence eqs. {1) to (3}) can be written as

M(k) = E {b(k)} (6)
R(k,£)= E{[b(k) - M(k)] {b(£}- M)} (7)
y(k) = £{b (k), Y (k)} (8)

Let the process x(k) be defined as
x(k) = b(k) -M(k) (9)

for k=1,25.+.,0 . Thus, the problem of estimating b(k) reduces to

estimating x (k).

Estimation Method: The minimum mean sqguare (MMS) estimate xg(k),
of a process x(i) at time (pixel) k and for a given set of c¢kserwation

y(l) ,oee,y (k) is given by [23)
x2(k)= E {x(k)] y(1), «. ., y(K)} (10)
Letting

Y(k) = {y(1),...,y(k-1)} (1

2
then it can be shown {23,25] that xo(k) and its error variance o° (k)

are functionally related to Y(k) and y(k) by

-69-




IR AR v & ghs KU

jx(k)p(y(k) [ x(kNp(x(k) | Y (k))dx(k)

x%(k) =
j p(y(k) | x(k))p(x(k) | Y (k))dx(k)

(12)

2
2 J[x(k)-x“(k)] Py () |x(1))p(x(k) | Y (1)) dxe()
o (k) = < - (13)

jp(y(k) | x(k))p(x(k) | Y (k) dx(k)

where p desiynates appropriate density functions. Equations (12) and
(13), in turn sugyest that the optimal estimation at k is achiewed by
first finding p(xék)!!(k)) and then using it alonyg with y(k)y to arrive
at xo(k) ani o (k). The mean of p(x(k)\Y(k)) is the MMS one step
prediction of the random variable x(k) and its variance is the error
variance of the prelicted value. Thus, the optimal estimation at time
k can be thought of as a two step procelure depicted in €figure 1a,
where blocks P and F may be identified as the prediction and filtering
steps, respectively. In this system structure, y(k) is isolated fron
other randon variables and, assuming p(x(k)l!(k)) is kncwn,
conceptually one can 3deal with its ncnlinearities in block F, i.e. if
p(x(k)‘Y(k)) is Jiven,then derivation of xo(k) and o” {(ky 1is
accomplished by carrying out the integratjons in egs. (12) and (13).
dowever, for the ygeneral observation of e{. (3), darivation of this
protakbility density does not lend itself ¢to apalytic methods and
available numerical approaches are computationally unfeasible [ 23,

Chapter 71.

In this ceport an alternate procedure is considered, vwhereby an

approximaticn to tke protatility density p(x(k)|Y(k)) is deriveds The
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mathed is ccmpatible with tha logic of the estimator in figure 1a.
This loyic censists cf representing past irformaticn (i.ae.
information dwe to a pricri statistic and cbservations y{(1),.e..,p(k-1)
in the form of a protability density to be combined with y(k) im block
P. Based on this premise and the goal of algorjthnic
isplementability, the estimator is constructed accordiny to the
fcllowing restricticns.
| a). Only the first two nmoments of any random variable are
computed.
b). The prediction process is chosen to be linear.
C). The prediction is to be based on a selected small number of
past astiasates. This will impose a desired 1limited memory

requirement for the estimator.

Letting ;(i) and32 (i) represent the estimate and its error
variance, respectively, at time i, then the block diagram im figwre 1b
represents the structure of the proposed estimator. In this figure
blocks LP, F and L signify linear prediction, filtering and cne unit
tise delay, resgpectively. The subscript 8 is an indication of the
size of memory and x*(k) and 02 (k) ara the one-step predicted value
and its error variance. The set {k-Ij,...,k-Ip} is a set of two

disensional indices each distinct and prior to k.

Modeling Procedere: To derive the limear predictor (block LP of

figJure 1'b), the a priori correlation information is first imcorporated

into a linear fimite order model of the process x{k) in the fors of
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Figure 4, 3-1, Estimator Configurations
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x(k) :ﬁaix(k—li) + B u(k) (14)
1=

vhere %_,...,Bhddre constants and {u(k),n(k—1),...} is a set of

independent identjcally distributed random variates with

Efuk)} =0 4 irmén

E{u(m)u(n)} = (15)
] ifm=n

Conseyguently, ey.(14) is an autoregressive model [12], {18 to 20].

The problem of modeling consists of determining the order M, the
coefficients By ,...,Bp the sat  of two dimensional indices
k=Ij,...,k-Ipg and the variance of the white noise term B u(k) 1ip egq.
(14). In ¢this work, first a gprocedure is developed to derive an
autoregressive model for a yiven M followed by a discussion cn the
best choice of M. The modeling criterion is chosen to be minizization
of E{B u(k)}. The procedure uses the numerical values of the

correlation function and does not require analytic representatior of

R(m,n). The results are illustrated by the following example.

Consider the stationary two-dimensional correlation function

R(i, j, k,£) = R(|i-k|, |j-£ |)= E{x(, ) x(k,£)} = exp [ ~/<i-k>2+ (j-z)z]

Apglication cf above procedure provides the following:

a). Best 2Znd order modal is
x(i, ) = 0.3 x(i, j=1)}+ 0.3 x(i-1, j) + 0.883 u(l,j)

b). Best 3rd crder mcdel is

x(i, j) = 0.29 x(i, j-1) + 0,25 x(i-1,j) + 0.12 x(i-1,j+1) +0.877 u(i, ))
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C). Best Uth crder model is

x(i, j) = 0.28 x (i, j-1) + 0,24 x(i-1,j) +0.12 x(i-1, j+1)
+0.03 x(i-1, j-1) + 0.8769 u(i, j)

d) . PBest Sth order model is

x(i,j) = 0.28 x(i,j-1) + 0.24 x(i-1,j) + 0. 11 x(i-1, j+1)

+ 0,03 x(i-1,j-1) + 0,02 x(i=1, j+2) + 0,8768 u(i, j)

Hence, for exasple, to a third decimal place accuracy, the 3rd order
model is a sufficient apgroximaticn, Note that, for example, the
derivation of the 3rd order model reguires the nueerical values of

R(C,C), R(C,1), R(1,0) and R(1,1).

Linear Prediction: Let the model of the random process x(k)

{cttained in thke previous section) be

M

x(k) :.Zsi x(k-1,) + Bu(k) (16)
o1

Given the estimate x (i), i=1,2,...,k-1 the linear predictiom x (k), in

general, is given Ly

" (k) Z ) (17)

wherecl ,...,GK_lare to be chosen such that

Elx(k) - x (k)T (18)




is aminimized. Thjis sinimization is to be carried out subjedt ta the

systea structure of figure 1b and is based on available information to

the predictor. This information consists of the values of x(i) and

(i), i<k-1, Since each f(i) andez (i} is the mean and varjance,
respectively, of a pcsterior density on x({i) at time 1 (having wused
oktservations through y(i)), then the expectation in egq. (13) is well

defined and operates on each random variable x{i) such that

E {x(i)} = %(i)

(19)
E([x() - 21)]%) = 6%4)

Theorem 1: When the randcm process x(k) satisfies eq.(16), then the
{optimal) <choice of 31,02,...,aK‘1iu eq. (17) which minimizes eg.{19)

is given by

Bi if k-j = k-Ii

0 otherwise

The proof is given in [26].

This thecremw states that the best linear predictor is given as

M
x (k) = Z B, x(k-1,) (20)
. i:l
;
>
Y
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The implementation of eq. (20) is very simple. This simglicity,
alony with the effectiveness of the result as illustrated in the next

sections, are the justification behind the necessary approximaticns,

Filtering Step: Refaerring to figure 1b, the computaticnal 1logic

of block F 1is now Aeveloped. The f[fredicted value x*(k) and its
variance %f(k), obtained frcm the linear predictor, represent the mean
and variance of tke a frosteriori density on x(k). This density
represents the available kncwledge on the random variable «x{k) prior
to reception of y(k). Since, for a given mean and variance the oormal
distribution represants the maximum uncectainty (entropy) [24., p.
132), this Jdensity function is assumed to be normal. Further
uncertainty is assocjated with x(k) if 0*2 {k) is wused in [place of
Gs(k). Consequently, an approximate and a rather conservative choice

of the probabkility Jdensity for x(k) is

5 (21)

[x (k)-x*(k)lzi
26 2(k)

plx)] = o) JZ7]} expg_

Cbservatjcn y(k) and p(x{k)) in eq. (21) are combined to derive

the Bayes 2stimate, ;(k)

(22)
i P(Yl(k)) jx(k) ply(k) | x(k))p(x(k)) dx(k)
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But
ply(k)) = f p(x(K), y(K)) dx(k) = J' p(y(k) |x(K)) p(x(k)) dx(k)
Hence, [25]
Sx(k) p(y(k) | x(k)) plx(k)) dx(k)

x(k) = — (23)
jp(y(k) | x(k)) plx(k)) dx(k)

sigilarly,

5(x(k)-§<(kn2 ply(k) | (1)) p(x(k))dx(k)
(24)

5% (1) = E{lx(k) -x(1)]° |y(0)}=
5 ply(k) | x(k))pixik)) dx(k)
where p(x(k)} in egs. {23) and (24) are given by egq.(<1) and

p(y(k)lx(k)) is obtained frcm the observation system structure.

In general, evaluation of x(.) and 82(.) in eqgqs. (23) and (24)
will te perfcrsed numerically. 1This in turn, allows the procedure to
be applicable to a broad class of observation systems including
nonlinear forms of the observation y(k). The feasibility of this
estimator is due to the structure of figure 1b which 1leads to egs.

(23) and (24).

Multiplicative Noise Term in Observation: Consider oltservations

containing uniform multiplicative noise. 1In this case the obsersation

is given by
y(k) = y(k) [x(k) + M(k)] (25)

with
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—(ﬁ i 0< v (k) = v(k) <y,
Yo - Yy
0

(26)
p(y(k)) =

otherwise

With x(k) ¢+ M(k) as the image intensity at pixal k, egs. (23) and
(24) become [2%)]

b P 2
- (x(k) - x (k))
1 x(k)
x(k) = 5 S 0 M P - %2 dx(k) (27
) 26 %(k)
A P Ix(k) - x(k) 1% (k) - x (k)%
o0 ’165 WrME - P |- PR 28)
A x( 20" “(k)
where
b 1 x(k) -x" (k)
c:j ————— exp|- — dx(k) (29)
x(k) + M(k) 20 % (k)
and
a= XKL M)
Y, (k)
(30)
b= Xk _ M(k)
Yl(k)

Since eys. (27)tc (29) are definite integrals, they can be evaluated
nugerically. All noisy imajes contain uniform multiplicative noise
with noise bounds as inlicated in these figures. The estimated images
of fiqure 2 to U4 provide 5.48, 7.58 and 7.7 db. isprovesment,

respectively. Agide frcwm this guantitative iaprovement, the
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(a) Original

(b) Noisy, noise=0,7-1 (c) Estimate

Figure 4,3-2, Uniform multiplicative noise
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(a)

(b) Noisy, noise=0,7-1

Figure 4. 3-3,

".. » 11!..7'

L ol

Vo :“",L’:‘

Original

{¢) Estimate

Uniform multiplicative noisge
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(a) Original

(b) Noisy, noise=0,7-1 (c) Estimate

Figure 4.3-4. Uniform multiplicative noise :




preservation of edges 1in the estimated images should be noted.

changes is due to the estimator structure of figure 1b.

The estimaticn procedure can also be applied to

observation systems. As an example consider the case where

y(k) = v (k) [x(k) + M(k)] + v(k)

P given by ey. (25) and that cf v(k) be

1 .
————-—-———vz(k)_vl(k) if vl(k) < v(k) s vz(k)

p(v(k)) =

0 otherwise

then p(y(k)\x(k)) can be oktained 1in teraes of the
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responsiveness of the estimator to abrupt pixel ¢tc pixel intensity

where Y (k) and v (k) are both uniform. Letting the density of ¥Y(R)
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eys. (23) and (24) to obtain pertinent filtering equations [25].
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4.4 Image Restoration by Smoothing Spline Functions

Mohammad J. Peyrovian and Alexander A. Sawchuk

In a linear space-invariant imaging system with fpoint-spread

function h(x), the image g(x) is given by

g(x) = J.h(x-u) f(u)du+ n(x) )

where n(x) represents measurement Noise. In order to estimate the

obtject function f({u) from image g(x) by a digital computer, the above

continuous model must be Jdiscretized. A common method is to Frample

the functions h and g at a finite pumber of points, Spline functions,

tecause of their highly desirably interpolatiny and approximating

characteristics, are an intarestiny alternative to the above methodi.

For uniformly spaced knots, a class of spline functiocus, célled

B-splines, has the following properties

13

respectively

{i) shift jnvariance

(ii) strictly gositive
(iii) convolutional froperty

{iv) local basis property

Using B-sgplines for intarpolatiom or approximation, the functions 1

and h can be represented by B-splines of degrees a and n,




fx) =) £y B (x-x)) (2)
s

h(x) = Z h, B, (x-x) (3)
e

Substituting eqgs. (2} and (3) in the convolution integral of eq. (1)

gives

g(x) =Z Zfi hyB, (x-x,) *B, (x-x,) +n(x) (4)

jze® joao

From the convclutjcnal property of B-srlines

- LS - =
Bm(x xi) Bn(x xj) Bm+n

(x-xi-xj) (5)

and representing g(x) by B-spline,s of 4degree m ¢+ n aud assuming

A x=x;,)-x; gives

-]

ng B_, (x-kAx) =Z Zfihj B_, (x-(i+j)bxhn(x) (6]
k=-= jze® jz-o

Equations (4), (5) and (6) show that the B-spline, which is
interpolating the deterministic part of the degraded image, must be of
higher degree than the B-srlines interpolating object and point-spread

function. In cther words, since the blurred image is always samootaer
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than the object, a hjgher deyree spline can follow the image function
better than the one approximating the object function. This can be
axplained in the PFourizr domain by observing that the Fourier
transform of an s-th deyree B-spline is a Sinc function te the power
. As m increases the amplitude of highar frequencies decreases.
Since a blurred isage has less higher frequency content than the
okject, a higher B-spline can represent the image better than the one

representing the object.

In a noiseless imaging system, ey.(6) may be written in the

matrix form

g=Hf )]

If the point spread function is of finite width, the matrix H is
banded. Figure fa is a rectanqular object which is blurred

analytically by a 4tk order polynorial

15 X 2,2
h(x) =51-(1 - (TS)) -3.5 sx<3,5 )

0 , elsewhere

The object is a stop function, therefore it is interpolated ty a zero
order B-spline. The second derivative of h at points x=-3.5 and x=3.5
is a step functicm and it is intergolated by a second order B-spline,
Since the convclution of a zero and second order B-spline is a cubic
B-spline, the isage is interpolated by a cubic B-spline, Pigure 1b,

the restored image with and without splines, shows that the spline
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restores the edges much sharper than the coamon pulse approxisation
method. Figure 2 is another example of spline restoration applied to

a twc dimensional blur with point spread function
H(x, y) = h(x) h(y) (9)
where h is defined in eg. (8).

For a noisy image, the image data is first ssoothed by pinimizing

j\'g”(X)]z dx

2
asong all functicas g€c such that

2

z :(_gg’_‘_l_)'_yl.) sS (10)
C.
1

Here y; is the noisy image measured at point x;...s>0 and 0;>0 are
given aumbers. Sekting S=0 leads tc an interpolation prctlem. The
factor o contrcl the smoothing window at point x, and s controls the
extent of smcothing. If the standard deviation of Y; is available, it

may be used aso, . In this case, natural values of S lie within the

confidence interval of the left hand side of eq. (10) as given by

1 1
N - (2N)2 < S £ N + (2N)?

vhere ¥ is the number of data points. Reinsch [3] has shown that the

solution to egs.(9) and (1C) is a cubic spline, and more generally, is

-90-
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E
5
: (a) Original image
1
‘i
1
(b) Blurred image (c) Restored image using
spline functions
Figure 4.4-2., Examples of spline restoration
3
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a spline functicn of degre2 2K-1 for least square minimization of the
K-th derivative instead of the second derivative. 1In smoothing (S>0),
the shape of the function is much, more influenced by the ajinimum

princijle of eq.(9) than in interpolation (S=0).

The above smoothingy criterion will be subject of further research
on noisy blurred jmages, particularly the case K=2 because it leads to

cubtic splines which read simpler alyorithes and less coaputation.
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4.5 Detection and Estimatiocn of Image Degradedby Fila-Grain Noise

Firouz Naderi and Alexander A. Sauwchuk

L T ol

The gyoal c¢f this research has been to analyze the problem of

film-gyrain noise in the context of detection and estimation theory.

The first step is the development of a mathematical =mcdel that
reflects some of the complexities of image formaticn process, and yet

is tractablae in the subseguent restoration of the image.
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Denoting by y(i,j) the obsarved optical density of photoggsaphic

fila as measured by a micrc densitcmeter let

yli, j) = S(i, j) + n(i, j) (L)

vhere S(i,j) denotes the density that would have been registered in
tﬁe absence of grain noise and n(i,j) is the noise. Experiseats by
researchers in the field of Photoyraphic Science have indicated that
ni{i,j) 1is apfroximately Gaussian distributed with zero mean and a
variance that is dependent on the type of the films used, the sigze of
the scanner apertwre and the value of S(i,j). Clearly the gkservation
model described in egq. (1) is additive with signal-dependent noise.
BEquivalently, thke additivity of this wmodell may be sacrificed to
obtain a signal-independent noise model. The result of doing 8o is

the nonlinear observation sodsl

v, j) = S(, i) + g[Sy, )] n(, j) (2)

where the noise n{i,j) is zero mean and unit variance Gaussian. The
forn of the function g(.) has been subject cf some discussion. The

experimental fora

glsi, ] = ks, )P (3)
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has been found to be in ayreement vwith many different theoretical and

experimental results. Siaglified photcgraphic emulsion models such as
Nottings, result in a value of 1,2 for the exponent b in the above
equation. Data taken by Hijgens and Stultz [ 1] suggest values of b in
the range 0.3 to C.4 if the scanning aperture is allowed to vary

within a reasonatle ranyge.

With this model the restoration p[problem is considered in two
different contexts: detection and estimaticn. In sany image
processing probleas, it is necessary to use a high magnification to
extract image informaticn out of a phctographic recording. A digital
image of size 25€ x 256 can be obtained by scanning a square region of
side approxisately 1.25 mm using a 5 micron aperture. Measuking
opfical density in such a small region of a photographic films resualts
in such a high level of grain npoise that distinquishing between
adjacent areas of small contrast with the naked eye becomes
impossible. Recently Zueng and Barrett considered image detection by
a method called the "Noise cheating algorithm." References [2,3] show
that this equivalent to method is sub optimal maximua 1liklilhood

detection.

To set up the problem in the framework of detection theory
suppose that the portion of the photo;raphic film which is to be
scanned can be segmented into M spatially uniform or near unifora
density rejions RisecerRyp Let a square aperture of size a x a be

used to measur2 the optical density of the film. It is thea [fossible

to formulate an M ¢ 1 hypothesis problem. The first M hypotheses, H;




N e e e

B

e 3

e e

are the hypotheses that a given densitometer reading was obtained when
the aperture was entirely in one of the M regions Ri. The last
hypothesis Hy4] COIresponds to a reading ¢taken wvhen the aperture
overlapped on two or more reygyions siaultaneously as shown in figure 1.
Conventional maxisur likelihood or Bayesian detectors can nov be

utilized for optimal detaction of the M + 1 hypotheses.

A simple suboptimal method to accomplish this procedwre ijs to
perform the M + 1 hypothesis detection in twvo different steps. In
sStep one the hygcthesas ﬁw+lis ignored and the other M hypothesis are
optimally detected. Therefore, in the first step the possikbility that
some readinys aight have been taken when the aperture overlapped more
than one region 1is ignored. In the second step, in regions vhen
hypothesis Hyt,1 3FE€ATS to be highly probable (i.e. the edges), the
image is re-examined with a finer aperture to recover details.
Figures 2c to 2e contain simulation results of this restoration

prccedure for the three detection strategies described belovw.

Maximum liklihcod detection Eex signal-independent noise:

Referring to figure 1 assume that the mean density in region R ,
called the background, is L% and the variance of the readings taken
with an aperture of size a x a in this region is Gi. The scanned
image is of size 256 x 256. A two by two spatial averaging is first
performed on the scanned jimage (Note that in effect the averaged image
is what we would have obtained had ve scanned the film with a 2a x 2a
apreture to begin with.) In the averaged image, pixels in the region

~ ~2
Ry ¥ill now have amean LN and variance G§= Gb/u. Each pixel im the
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Photographic negative

Scanning
aperture on film

N
L —

: v aperture position
1 oJ corresponding to
hypothesis HM +1

Aperture position
corresponding to
hypothesis H3

: Figure 4.5-1. Image regions and aperture positions.

”» g S

-96-

A" 2
:
5




(a) Ideal image

i u
.
-
.
1

(b) Image with film-grain (c) Maximum likelihood detected image
noise added assuming signal independent noise

(d) Maximum likelihood detected (e) Bayesian detected image
image assuming signal
dependent noise

Figure 4.5-2, Image detection in the presence of film-grain noise.
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averaged imaye is nce quartized to one of % levels. These lewvels are
chosen such that one of them will coincid2 with the mean of the
backyround, By e and the others will be & G, apart from each gpther.
Since the distribuwtion of the ncise is Gaussian, if theé decision
levels for the quantization are set exactly at the mid-point between
each guantization levael then it is easy to demonstrate that the

quantization is in fact maximuam liklihood detection.

Since the levels are taken to be four standard deviations apart,
all the image regicns which happen to have a mean demsity equal 8o one
of the quantization levels will almost always be restored to their
correct mean density following the quantizaton. Regions having mean
densities that fall ketwveen two quantization levels will te "coded"®

into a percentace of these two levels.

The second step in the maximum liklihood detection process is to
revork the edges 3§n the quantized image by comparing the guamtized
image with the oriyinal scanned image which was scanned with the finer

a x a aperture. Figure 2c is the detected image using this procedare.

Maximug liklihood detection for sijnal-dependent noise: The

perfcrmance of the previous detector is Jlependent upon the distanqe
between the guantization levels. If the 1levels are four standard
1evi§tions apart, it 1is certain that ragions vhose mean densities
coincide with c¢ne c¢f the guantization 1level will be <clear of the
noise. As seen in egj. 3, the standard deviation of the noise is a
function of the sjynal. Therafore for an image wjith high dynanmic

ranje it 1is necessary to 1increase the distance between the higher
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quantization level so as to keep the listance always four G .
Purthermore, since the standard deviation varies, the decision level
of the gquantization vwhich corresponds to the paximum 1likelihood
detection, will no lponger Le at the mid-point between the gwantization
levels. Pigure 2 shows the improvement ovar the previous detector
vhen the signal dependence of the noice is taken into account with the

proper quantization.

Bayesian Cetection: As previously mentioned, guantizaticn is, in

effect, wmaxiaus 1likelihocd detecticn. To take advantage of any a
priori knowvledge that might be available about the image, it is
advantageous ¢to perform Bayesian detecticn. Corresgonding to the M
hyrothesis detection in the first step of the above two detectors, the
mean densities of the M region may assume a distribution ower a small
range. Using the distributicn as agriori statistics, the result of

tayesian detection is shown in figure Ze.

Suamary: Estjmation algorithss are presently being applied to
film—-grain npoise, Both Wiener filter and a nonlinear filtering
reported in USC image processing institute report 5S80 [4], 1will Dbe

applied, and their pexformances will be compared and reported.
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L.6 vignetting and Density Correction for CRT Film Recording

Werner Frei

The acquisitjon of digitized image data and the restitution of
prccessed pictures are generally costly, time-consuming, and yet
essential stegs of digital image processing. ELrors and
noh-linearities introduced by the scanning and display equipment or
the photographic process can add a surprising amount of wunwanted and
uncontrolled "“image processing.™ These parasitic effects are by no
means always readily visible in tbhe finished groduct, but they may
well invalidate the results of ccamputer image manipulations. A
careful contrcl of the electro-optical machinery, the phctcgraghic
process, as well as an understanding of husan visual factors is
therefore essential to instre the success and credibility of digital

image processing.
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Visual Factors: Optimum reflection prints, transpacencjes and

television images practically never replicate the brightness
distribution cf original scenses, in the sense that color images do not
reproduce the spectral energy distribution of colored 1lights.
Although comprehensive fidelity criteria for images are yjyet to be
discovered, a few simple rules have been found wuseful in the

optimization cf image acjuisitiorn and reproduction technigques.

Consider fcr 2xample a black and white reflection print, which
consists of a reflective backing coated with an esulsipn of
microscopic grains of silver. The image is formed by controlling the
amount of silver in the enulsion and thas varying the relative light
atsorption of the print, within a tygical dynamic range of 50 to
1C0: 1. Such a fphotograph conveys its pictorial information to an
observer irrespective of illumination variations aover perhaps fowr to
five orders of magnitude. This rather surprising phenomenon is caused
by the ability of the visual system to *adapt” to aambient levels of
lighting and _thns to extract the reflection properties of objects
[1,2]. Studies cf the reproduction characteristics of optimal jmages
[3] indicate indeed that althouyh absclute brightness inflwences
petceived quality, the gquality criterion within the physical
limitations of any given reproduction situation is greatly dependent
upon its ability to reproduce relative brightness ratios. This fact
is intuitively satisfying noting that pixel brightness ratics are a
property of the scene reflectances that is invariant to the absolute

intensity cf a unifora illumination.
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The implicaticns of the above visual phenosenon are that the

digital representation of 1light intensities sensed by a scanninjy
device should ideally be a measure of image brightness ratios rather
than arhitrary abtsolute intensity values. This is easily isplesented
in practice by rtecording the 1logarithm of the npeasured image
intensities. Many commercially availaktle scanners provide for such an
option, wusually «<alled density (as opposed to transmittande or
reflectance) scannirnj. On the reproduction side, care has then to be
taken to preserve the recorded brightmess ratios, a process that is
facilitated by the inherent characteristics c¢f the photographic

process to he discussed in the next section.

The Photographic Process: Exposure of a black and white enmulsion

to 1light and subsequent davelopment produces a light absocrbing layer
characterized by its optical density D which is defined as the
logarithm of the ratio of transmitted to incident light. With all
other parameters fixel, the optical density is ideally related to the

intensity of the expcsing light I by the function [4)]

D=y log [1t] (1)

vhere t is the duratjon of the exposure. This function, well knpwn in
ghetcyraphy, is the Hurter-dDriffield or D-log E curve. dctual
photographic materials depart from this idealized law at both ends of
their wuseful dycasic range. The factor describes the "contrast" of
the emulsion and is positive for an ordinary negative material, and

pegativa for a reversal frocess. Because the unexposed esulsign and




its substrate are not perfectly transparent, an additional "foy" level

Dy is incorporated into the above equation yielding

S ek ek s B k£ G 2

D = Dy + Y log [1t] (2)

The light reflected from a print or transmitted through a slide is

related to the incident ljght I by [4]
_ -D
I1=1,10 (3)
The reproduced ljght intemsity I* is given by
I - 1, 107P(1¢) (4)

Note that if Y = -1, the conditions for an optisum reproduction as

discussed in the prewvious section are net. 1

It is not easy to meet the relationship cf eq.{(4) with actual
image processing aquipment, Film is typically exposed by a CET, LED

or laser as a sesjes of discrete dots wvhich partly overlap; the

exposure may not Le uniform over the area of the image, etc. It is
possible though to corrxect for such defects with a numerical
pre-distortion of the digital image data. A siaple model, appropriate

for the correcticn of a CRT scanner, is discussed next.

Calibraticn of 1I/0 Devices: Actual image acjuisiticn and

reproduction devjces have a nuaber of inherent imperfectiouns which
distort the final prclduct. For example, the nmeasurement of pixel
intensity in scanners is usually not perfectly logarithsic (often

linear); the pixel intensjties displayed on television amonitors are a
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pover functicn of the image signals; the light sensitive or liyht

epitting surfaces of electron beam devices are not perfectly
homogeneous; optical systemas may introduce significant vignetting,
etc. A nuaber cf procedures have been devised to cope with such
imperfections [S¢6]. Por example, table 1look-up or fgolyamosial
approximations may be used to correct for the average deviaticas of
the electro-optical transfer function from the desired behaviowr. A
mote refin2d (and exgensive) soluticn is to vary the coefficients of

the correction as a function of the gecmetric image coordinates.

A true assessmeat of I/0 device performane and the .gatherinjy of
physical data for the design c¢f correction schemes is best done by
procducing test patterns such as step tablets and measuring the ogtical

density functions obtained on hardcopy or transparency.

To illustrate thke above, a new software correction technigue for
CRT scanners is presented. It is of mwmediua complexity, but
ccmputationally wery fast and has given excellent results with a CRT
scanner. The major sources of distortions in this case are
schematized in figure 1. The CRT light emission I as a functicn of

the drive and bias voltayes U0 and U, respectively [7], as approximated

by

1=fu+u+ UI]"CRT ()

0

vhere Ul represents the cut-off voltage of the CRT. Ooptical

vignetting produces a darkening towards the image corners (figure 2),
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Optical
y -CRT Vignetting Film
[D
log E

I

a) Distortions in CRT film recording

U - . .l 4] U
——={(DlogE) }—={(Vignetting) —={(y -CRT) -———’to CRT
line and
column
indices

b) Numerical pre-distortion for recording correction

Figure 4, 6-1, Distortions in CRT film recording and numerical
pre-distortion for correction,




T

(a) Constant brightness values photographed with a

polaroid camera. The darkening of the corners
is evidenced by the small cut-off pasted in the ]
middle of the photograph. »

f A

Ay

(b) The effect of vignetting on a mosaique

Figure 4.6-2, Demonstration of the vignetting effect.
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(partticularly annoying if cne atteapts tc produce a mosaiqgue, see

figure 2b. Assuming that the vignettiny is the only space-variant
distortion, a fast table lcok-up algorithm has been jimplemented, such
that each source of distortion mentioned above is corrected for in the
agpropriate order. Thevééqrand D-log E correction of figure 1b are
straight fovard look-up tables based upom measured data. Perhaps the
most interesting pre-distortion step is the vignetting correction.

Assusing circulax sysmetry, a second order polynomial of the form
I'=I [A+ B(x2+ yz)] ‘ (7)

has been used to boost the light intenities towards the image cornecs

wvhere x and y are the 1image coordinates referenced to the screen

. center. The values A/2+¢Bx ara stored in a one dimeusional array C and

the correction js made by looking up this array twice given the pixel
line and coluan jmdicies x; and y; . The results from this fast
correction technique are shown in figure 5. The variations in density
across a unifcrm surface are less than 0.1 density units, wshereas the

uncorrected image had corners darkened by as much as 0.35 density

units.
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4.7 Spectral Sensitivity Estimation of a Color Image Scanner ]

Clanton 8. Mancill and William K. Pratt

The spectral sensitivity of a color scanner must be determined in

o=

order to calibrate its response. Direct spectral measurements cver
the continuum cf the spectral band are often difficult to obtain.

However, responsivity nseasurements can be made through spectrally

e i i

selective filtere to estimate the continuous spectral sensitivity of

Rl N

the color scanner.

S

Spectral Radiamce Estimation: Many tasks in color and

nultispectral image restoration involve the estimation of the spectral

1

E;

radiance functicn c()) fiom a series of obsarvations of the form
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xi=Jc(X)si(X)dX+ni (1)

where si(l) is the sgectral sensitivity of the spectral @=measurement
filter for i=1,2,...,P observations. The tera n, represents additive
noise or uncertainty in the wmeasurement. Discrete estimsation
technigques <can be applied to this problem solution <1>. The first
step is to discretize the continuous intejral ¢to form the vector

equation
T +
X.= 8. ¢c+n, (2)

uhere_gi and ¢ are Q x 1 vectors of guadrature samples of si(l) ani

c{r), respactively. Then, the set of P observations may te arranged

into the P x 1 vector
x=8c+n (3)

T .
where the vector g occupies the i th row of the wpatriy S. The
system of eguaticns represented by ej.(3) is normally bighly
underdeterained if snfficient jJuadrature m2sh pcints are taken to

reduce the guadrature error to reasonable bounds.

An estinmate é of the true spectral energy distribution ¢ can be

ottained by the generalized inverse estimate <2>

=5 x=8TsD ' x ()

)02

Although the generalized inverse provides a ainimum mean square error,

minisuma noram estimate of ¢, ill-ccnditioning of S coupled with
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okservational errcrs can lead to oscillatory estimates. Since ¢ is
generally quite smooth, it is reasonable to impose some swmopthing
constraints on the sclution. A ccmmon tyge of smoothing estimate is
given by <3

=M sTsm s (5)

10>

vhere M is a smoothiny matrix of the typical form

1 210000 ......0] :
‘ -2 5-4 1 0 0 0 . :
1 -4 6-4 1 0 0 . |
0 1-4 6-4 1 0 . 5'

M=| 0 0 1-4 6-4 1 .

° (6)
1 -4 6 -4 1
0 1 -4 6-4 1
0 0 1-4 5 -2

0 L] L] L L] L 0 0 0 l -2 1
L. -

[~

A third alternative js to apply Wiener estimation methods <Uu>. With
Wiener estisaticn, the vector ¢ to be estimated is assumed to be a
sasple of a vector randcm process with known mean and covagiance

matrix K.. The Wjener estisate is given by

T

sTisk sT+k ) !x (7)
= '==c= "=n =

~
¥ c =K
— — n

where En is the covariance matrix of the adiitive observational noise ﬂ

assuged independent of c. As a convenient approximaticn the

covariance matrix can be modell2d as a first order Markov process

-
’
\
o
;
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covariance matrix of the fcra

2 l 0 02 L] * . OQ-I
0. 0 D . e oQ'2
_C:T Y . (8)
onl A |
- -

vhere 0 < p < 1 is the aljacent element correlation facter and
represents the energy of c. Observaticn noise is commonly modelled as

a white noise process with covariance equal to

2
g

=
K.=58 1 (9)

vhere oi is the noise energy and I is an identity matrix.

Color 1Imaje Scanner Calibration: A commcn problea in the

evaluation and calibration of color image scanners is to deteraine the
total spectral respcnse cf the scanner taking into account the
spectral radiance of the illumination source, spectral absorpticn and
scattering of the optics, and spectral sensitivity of the
photodetector. [Pjrect measurements are often not feasible. Referring
to eq.{1), let c(\) be redefined to represent the spectral sensitivity
respons2? ot the scanner and si(l) be one of P spectral test functions.
Th2 measurement procedure then proceeds as follows. An optical filter
of known spectral characteristics, such as an absorptioa filter or
narctowband interference filter is introducel into the scanner amd an

output reading 1is obtained. The process is repeated for a number of
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filters whose [feak transeissivities span the spectral region of
interest. The a@=2asurements form the vector of observaticns, and an
estimation operation is then invoked to obtain an estimate of the

scanner spectral resgonse.

In order to evaluate the estimation procedure, a coaputer
sisulation experiment wa: performed in which simulated measuresents
vere taken of a Gaussian shaped spectral function through simulated
absorption filters. Pigure 1 contains a plot of the spectral shapes
of the filters. The simulated measurements were then utilized as
spectral observaticns for estimation of c{)). Figure 2 illustrates
the performance of the three estimaticn wmethods for simulated
measurements through the filters. In these experiments the mean
square fit between thae actual spectral function and its estisate was

least for the simulated interference filter measurements using a

WHiener estimate with P = 0.9 and a signal-to-noise ratio of 1000.

The spectral estimaticn procedures hava also been applied to the
estimation of the spectral response of an Optronics Model S 2000 flat
bed scanning microdensitometer. Figure 3 shows the estimate obtained
with absorption and interference filters for the three estimation
methods. No direct measurements are available for the scanmer so that
no "ground truth" can Lte established. But, on the Ltasis of the
sisulation experiments, it is concluded that the Viener estimate

ottained vith the set of interference filters is a reasonable estimate

of the actual spectral resgonse,
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Figure 4.7-2, Comparison of actual and estimated spectral response
for absorption filters obtained by computer simulation.
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Figure 4.7-3, Estimated spectral response for absorption filters for

microdensitometer color scanner,
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4.8 rFedian Filterijing

William K. Pratt

The median fjlter is a nonlinear signal processing technigue

developed by Tukey <1> which is useful for noise supgressijcn in

images. 1In one dimensional form, the median filter consists of a

sliding vindow enccmpassing an odd number of pixels. The center pixel
in the window is reglaced by the median of the windcw pizxels. The
median of a discrete sequence a ,a ,...,3 , for N odd is that member
of the sejuence for which (N-1)/2 elements are spaller or egual in
value, and (N-1),/2 elements are larger or egqual in value. For
exanmple, if the values of the pixels within a window are
80,9¢,200,110,120, tke center pixel wculd b2 replaced by the value 110

vhich is the sedian value cf the sorted sequence 80,90,110,12C,200.
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In this example, if the value 200 was a noise spike in a monotcnjcally

increasing sequence, the median filter would result in considerable
improvement. On the other hand, the value 200 might represent a valid
signal pulse for a wide kandwidth sensor, and the resultant image
vould suffer scme lecss of resolution. Thus, in some cases the -edian
filter will provide moise suppression, and .in other cases it will

cause signal supgression.

Figure 1 illustrates scme examples of the operation of a wmedian
filter and a mean (smocthing) filter for a discrete step function,
ramp function, pulse functicn, and triangle function with a windov of
five pixels. It is seen from these examples that the median filter
has the usually desirxabtle froperty of not affecting step functioms or
ramp functions. Pulse functions whose periods are less than one-half
the vindov width are suppressed. Also, the peak of the trianygle

function is flattened.

Operation of the median filtered can be analyzed to a 1limjited
extent. It can ke shown that the median of the prcduct of a comstant

K and a sequence f(j) is

med { K £(j)} = K med {£(j)} (M
Purtherasore,

med {K + £(j)} = K + med { £(j) } : (2)

Hovever, for two arbitrary sequences f(j) and g(j) it does not follow

that the nmedian of the sums of the seguences is equal to the suam of
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their m2dians. That is, ir jenaral
med { f(j) + g(j)} # med {f (j)} + med{g(j)} ‘ (3)

The sequences 80,90,100,11C,120 and 80,90,100,90,80 are exasples for

which the acdditive linearity property does not hold.

There are various strategies for application of the median filter
for noise sufpfression. Cne method woull be to try a median filter
with a winlow cf length 3. 1If there is no significant signal 1lcss,
the window 1lengtk could te increased to five for gedian fjltering of
the original. The process would be terminated when the median filter
bejins to do wmore harm than good. It is also possible to perforas
cascaded median filtering cn a signal usiamg fixed or variable 1length

wvindow.

The concept of the median filter can be easily extended to two
dimensions by utilizing a two dimensicnal window cf scme desired shape
such as a rectarnjle or a discrete approximation to a circle. It is
obvious that a twc dimensional L x L median filter will prcwide a
greater deyree of rcise sugpression than sequential horizontad and
vertical processing with L x 1 median filters. But, twvo dimensional
prccessing algo xesults in gJgreater signal supgression. Figure 2
illustrates the effect c¢f tvwo dimensjonal namedian filtering of a
spatial pulse signal with a2 3 x 3 square filter and a 5 x 5 plus sign
shaped filter. In this example, the square median has deleted the

ccrners, wvhile the plus median filter has not affected the signal
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function.

Figures 3 and U4 contain examples of the application of median
filtering for isage noise suppression. 1In figure 3 impulse ncise vas
added to an isage. One dizensicnal madiam filtering of lenjth L=5
removed most of the noise impulses with only a small loss in é
resclution. Almost all errors were removed for a median filter with
L=€, but edge distortion is noticeable. In figure 4 continuous
Gaussian noise was added to an image. Median filtering resulting in a

slight visual improvement.

For image enbhancement applications, the median filter should
simply be consjdered as an ad hoc tool for noise or interference }

suppression. It should not be used blindly, but rather its

performance should be acnitored to determine if its application is
beneficial.
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(a) Image with impulse noise (b) Median filtering of (a)
15 errors/line with L= 3

-, -
d -

(c) Median filtering of (a) (d) Median filtering of (a)
with L = 5 with L = 7

Figure 4, 8-3, Examples of one dimensional median filtering for
images corrupted by impulse noise,
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(a) Image with Gaussian noise (b) Median filtering of (a)
o, = 25 with L = 3

L ~—

(c) Median filtering of (a) (d) Median filtering of (a)
with L, =5 with L =7

Ry

Figure 4,8-4. Examples of one dimensional median filtering for
images corrupted by Gaussian noise
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S. 1Image Data Extraction Projects

Image data extraction activities jnclude the extracticn and
measurement of jmage features, the detection cf objects within
pictures, the spatial registration of images, and the generaticn of
images from one dimensional projecticns. Another facet of the effort
covers image pre-processing operations which enable nmore cfficient

machine data extraction.

®.1 1lextural Boupdary Analysis

William B, Thcrgson

Previous regorts have described the developsent of a textural
distance function which accurately astimates the perceived
1issimilarity between two textural regions. The textural distance
function wmodel allows the incorporation of textural cues into many of
the existing approaches to scene segmentation. Texture may then be
used, along vith brightness, colcer, and any desired <cemantic
processing in determining ckject boundaries. The utility of textural

boundary detectior will be demonstrated in an edje criented systea.

Many authors hawe developed edge findiny systems which searc¢h for
major discontinuities in the brightness function of the image [ 1].
This is normally dcne by ccmputing an estimite of the derivative or
jradient of the imag2 and then findinj the [reaks in deriwative
function. Many functions tave been suggested for this [urpose, A

ccnmcn and often successful functicn is called the modified Roberts
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cross operator [2) and is defined as

R(i,j) = | pli,j) - pl+l, j+1) | + |pG+1, ) - pG, j+1) | (n

The Roberts "gradient™ is found by sumsing brightness differenes in
twc orthogcnal directions. Many more sophisticated operators are
possible. In particular, an operator which returns edge crientation

may be quite useful.

A procedure has been developed to search for edges Jefined by
textural properties in a manner similar to the Rokerts operatox. At
specified intervals in the scene tc be processed, four image regions
arranged in 4 square were considered (see figure 1). The sum of the
estimated perceived textural differances between regions a and 4 and
betwean regicns b and ¢ was found. As vith conventional gradient
operations, 1i* was postulated that larger values of this sum
correspond:d tc textural 2dges running approximately thrcugh the
intersection of the four regions. In addition, an edge direction wvas
calculated. Let d(i,j) be the ccmputed dissimilarity measure betueen
two reyions i and j (1(i,3j)>0 for any two 1image regions). Then a
textural boundary operator at the point in the scene shown in tigure 1

may te defineé as
T = d(a,d) + d(b,c) (2)

To determine the orientation of the edge, observe that

ang = + arctan [%%'—(3-] (3)
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Migure 5.1-1.
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Template for textural edge operator

i




x3
&
-
&

where ang = 0 isplies an edge with naegative slope at 45 degrees to the
x-axis. Two anyles are possible since d(a,d)=d4(b,c) aay corresgcnd to
either a vertical or horizcntal edge. This ambiguity 1is straight

forwardly resolved by considering d(a,c), A(b,d), dta,b), and d{c,d).

In the current system, an edge map is first produced by applyiny
the textural bcandary operator at selected points in an image. A
second edge map is produced by smearing each point in the first map
along the direction of edge orientation. This is done to emphasize
collinear edges. Fipally, actual edge points are isolated by lacating
"ridge points" in the edge map. A ridge point is defined as an image
point sufficiently greater than its neighbors alcng some direction.
Much of the code to process the edge maps was adapted with little
modification frce a system originally designed to operate «cply on

intensity infcrsaticn [4].

While most analysis systems designed to operate ¢n natural
imagery will wuse texture as only one of a set of multiple cues to
determine image organizaticnp, some way is needed to evaluate the
utility of the textural boundary ofperator on its own. As a result,
this operator was appliad to pictures in which the edges could be
described as ‘"purely textural." These test images were created as
mosaics of textural fpatterns taken frcr pictures of natural scenes,
Each ccmpcnent cf the mosaic was normalized in the same manner as the
patterns used in the resclution experiments. Thus, it was impossitle
to distinguish ratterns based c¢n averaje brightmess or contrast

criteria.
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Figure 2 shows a representative mosaic pattern. Note that to a
human observer, there are several quite prominent edges. Thus, it is
clear that human perception can identify boundaries on criteria other
than differences in averaye brightness. Figure 2a is another sosaic
pattern. Pigure 3b indicates the different textural regioas pgesent
in figure 3a. In fjgure 34, a very prosinent boundary exists between
patterns a and b. The Loundary between b and 4 is relatively
noticeable while the edge batween a and 4 is hardly detectable.

Region c may be vieved at cne level as a uniform textural region. On

anothar level, however, the region may be thought of as being ccmposel
of many smaller reyicns corresponding to the predomimantly 1lighs and

predcminantly dack acreas in the pattern.

The textural edge operator vas applied to these and several other
mosaic patterns using several different sizes for the basic bloéks in
the operator (i.e. the blccks in figure 1). The original ampsaics
wer2 256 by 2%€ picture elements in size. Pigure 4 is an edge map for
figure 3a using a tasic blcck size of 16 by 16 picture elements. No
post-processing other than the oriented samearing (e.g. edge linking,

noise cleaning, etc.) was arplied. An effective jobt has been dope at

identifying the visually prosinent boundaries in the mgsaici The
textural rescluticn experiments would indicate, however, that it
shculd be fpossiktle to achieve higher resclution. Thus, it is possible
; to use block sizes as small as 6 or 8 pixels on a side. Figqure 2b is

an edyge map for figera 2 using an 8 by 8 basic block size, all of the
» perceived boundarjes have teen well lccated. Pigure4a is an edge wmap

for the mcsaic in figure 3a using the same 8 by 8 basic block size.
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(a) Textural mosaic #1

(b) Edge map for (a) using 8 x 8 regions

Figure 5.1-2. Examples of textural mosaics with
edge map.
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(a) Textural mosaic #2

(b) Identification of regions in (a)

Figure 5.1-3, Textural mosaic with region identification
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(b) Edge map for figure -3a using 16 x 16 regions.
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Figure 5.1-4, Edge map differentiation using 8 and 16
block regions
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Again, the boundaries are well identified. The ofperator ccmpletely
degenerates in regionm ¢, however. A lcok at the original fpictuire will
show that many of the e€lementary 1lijht and dark areas are of
ccrparable size to the 8 ty 8 basic block. Thus, at this rescluticn,

the micro-:4dges are a dominant 2ffect. This is another example cf the

imgortance of realizinj that perceived edges have a "size" associated

with them that is a function of the size of the objects being searched
for. Comparable results were obtained on the other mosaic test

patterns,

A difficulty with many of the problems in automated imaye
description is that it is often almost impossible to quaantify the
success of any given agjiroach. For example, the utility of a
particular object isclaticm procedure is really cnly meaningful jn the
context of the prccessing to follow. Unfortunately, the nature of the
problemas are so coamplax as to make development of completed systems

most difficult. As much of automated scene analysis involves the

sisulation of perceptual eoffects, the 1levelopment of lower level
operators described jn this report has used human visual percepticn as

a performance ycal.

The existence of readily perceived textural edges should be
apparent. In many cases, existing autcomated systems which Jdegend on

identifying brightpess discontinuities will fail to find these edges.

This report has deamonstrated a way in which measures cf textural
dissimilarity may be incorporated into scene segmentation systeas. A

textural edge opexator is devaloped which is able to accurately locata
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boundaries of a purely t2atural nature.

The size of the reyion over which a textural pattern is measured
has a significant effect on how well that texture can be
characterized. Experimental rasults show that a dosinant influence on
human textural =resplution is the nature of the patterns surctounding
the region of interest. There is a well defined trade off Dbetveen
spatial resolution of a textural boundary and the ability to
‘distinguish between visually similar textures, The structural
interpretation of textural patterns suggests several additional
methods for estimating ninimal resclution regions. Unfortunately, at
lcast one of these measures (an auto-correlation ratio) is not
supported experisentally. The performance of the textural edge
operator for varying region sizes corresponds closely to the predicted

visual response frcm the rescluticn experiments.
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5.2 Image Seymentation by Boundary Determinaticn

Ram Nevatia

Findiny boundaries of objects in an image is a major concegn of
scene analysis. The boundaries ccnsititute a segmentation of the
scene. Conversely, the toundaries may be derived fros a given
segmentation. A number of sejmentaticn technigues have beea suggested
in the pas%t, differing in their assumgptions about the contents of the

scene and in thkeir ccntrol structure. 3

Usiny detailed specific knowledge of the objects 1likely &o be
present in an j}mage sisplifies the segmentaticn process [1-2], but
these technigues suffer frcm loss of geuerality. Another distinction
between various technigues is in their control structures, such as
"tcp-down" vs. “"bottcm-up." The former treat an entire image as one
otject and successively suk-divide it intc more parts as needed [3-4);
the latter start frcm small atomic regions (as small as a single

pixel) or local edyes and build larger parts from thea.

The bottca-wp techniques are usually referred to as being %“edge®
oriented or tased on "regiom growing." The edge based techmiques
deprend on detecting a disccntinuity between some prcperties, such as

brightness or coloe, of parts of an image and connecting these
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discontinuities to fora boundaries., Region yrcwing proceeds by
clustering isage goints of "similar™ properties in regions and furthar
merging of reyiong of similar ©properties until a satisfactory
segmentation has Leen ottained. Knowlelge of isage properties has

been used tc guide the merging of regicns [5].

The edge based approachas wer2 initially used for analysis df the
seenes o0f [fpolybedral objects, ¢the so-called "blccks world." The
individual objects were of uniform, hcsogeneous surfaces and vere seen
ajainst a  unifcrely 1light or dark background. Here, the edges
detected by a 1lccal edge ofperator usually correspond to the desired
object edges only. Hovever, for more complex scenes, the local
discontinuities dc not necessarily correspond to the object boundaries
only; shadows, surface imperfections and texture, and noise in the

imaging devices being some cf the causes.

Consider the picture in figure 1a showing a toy tank against a
background of grass. Note the wheels of the tank are not visible in
figure 1a Dbecause of display limitatioans. Figure 1b shows the
intensity edges detected frcm figure 1a, by the application of a local
edge detector, known as a Hueckel edge operator [6], at every second
pixel in every cther «rcw of the image. This ofperator detects the
presence of an edge in a circular neighborhood and retucrns the
position as wvell as a direction for the edge. Figure 1b contaims a
large number of edges, most of which dc 1mot belong to the desired
boundary of the tank. Hovever, humans presented with this edge

picture have no difficulty in perceiving the tank. The edges along
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(b) Edges detected in (a)

Edge detection for a picture of a toy tank.
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the tank boundary ccnnect in a cobherent way, whereas the edges in the

grass regyion are seen as being randomly distributed.

An alyoriths to find groups of elges that connect in an
approximate straight 1line, to be described later, is very successful
in separating the tank boundary from the background for the above
€éxample. This @method of segmentation has the advantage cf beiny
general, as no specific obijects in the scene are assuned. Also, the
schemes usiny texture properties defined over a regicn are sentgitive
to the choice of the regicn size, and it is difficult to locate the

boundary accurately within a region.

The choice cf limking edges into straijht lines was based cn the
computational efficiency of this prccess. Many man-made and natural
objects have boundaries with elongated segmants. Further, any curve
can be represented by piecewise linear segmants; the linking algeorithm
only imposes a ccastraint cn the maximum curvature of the segments

linked.

Linking Algcrithm: Much work in the past has been concerned with
linking 1local edce elements into straight line segments. Two broad
class2s of technifgques are Lasel on the use of the Hough transfora
[7-1C], or the use of graph theoretic methods [11-12]. However, these
techniques have been us2d in situations where the number of edje

elements is spall and wmost of these elements belcng to the desired

boundaries. Their effectiveness for the problems considered hetre is

unclear, and in some cases the ccmputational costs are likely to be

unacceptable (e€.g. the aljorithms wusing minimal spanning trees,
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require computational times proportiocnal to the cube of the number of
€dye elements to be linked). A detailed review may be found in [ 13].

A descripticn of tke alyoritha developed follows.

Por this discussion, each edge element, e;, is considered to have

a position P, anil an associatad directionai. Two oppositely directed

edge elements are considered to have different directions (differing
by 180 Jegrees). Length of an edge element, determined by the size of i

the local edge cperator, is unimportant.

The ehtire 360 degrees range of directions is divided in a number
of eguiangular intervals (say 12). Linking of edge elements along
diractions in each interval is 2xamined. Linking in a chosen interval
is constrained to edge elewgents having directions approximately within

this interval. The fcllowing are the steps, in detail, for linking in

an interval whose median angle is, say g, .
J

). Exapine each edge element and put in a set Ej if the
lirection cf the edge, ai is within a fixed, chosen range, A6 of
the directicn Bj. Note that A8 need not be the same as the width
of the angular interval. Figure 2a shows the edye elements for

the tank frca figure 1b, which are within a 60 degree range of

horizontal direction |Bj = 0 degrees).

2. Transforam the co-ordinates so that the new x-axis, lies along

ej. Let (xi',yi') be the transformed co-ordinates ¢of the i-th

¢dge elesent in set E

jo
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(a) Edges pointing nearly horizontally
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(b) Linked segments from (a) (c) Linked segments from all directions E

Figure 5,2-2, Linking of edges




3. Divide the jmage plane in parallel strips (buckets) of a
fixed size (say 3 pixels wide), normal to X* (figere 3 shows
schematically scme buckets, with the rotated X-axis disglayed
horizontally). Fach edje element ei in Bj will fall intc one of
the buckets, determined by the co-ordinate xi'. Store the edge
elements in each bucket in a list ordered by the value of the y'

co-ordinate.

4. Link edges jin each bucket: If two ccnsecutive edge elements
in the edge list for a bucket ditfer in their y' co-ordinates by
a distance ssaller than a threshcld TY, say 2 pixels, then the
two elesents belony to a common segment. e.dg., Lucket Z in

figure 3 is divided into segments Sl' SZ' 53.

5. Link seygments in neijhboring tuckets: If the end ¢fpoints of
two segments in adjacent buckets are within a distance c¢f TY in
their y* co-ordnates and also within a distance of TX in their x'
co-ordinates, then the two segmeats are merged into cne. Also,
the merging must not result in a change of orientation of the
segment, e€.g. in fiqure 3, S4 and 344 OC Sg and Sg are perqged

but not 56 and 39.

6. Retain only sejments of a length exceeding a fixed number

(say 7).

FigJure 2b shows the 1linked segments resulting from the edge
elements of figure 2a, wusing the tbhresholds indicated in the

jescription of the alyorithm above. Figure 2c shows 1linked segments
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Figure 5.2-3, Schematic display of some buckets and segments,




from 12 intervals covering the entire 36) degrees range. Note that
segments from Jifferent intervals are not linked though they appear so
in the figqure, and some €dge =lements are connected to more than one

segment. Rescluticn of such overlaps and 1linking of interseécting

inter-interval segqgrents is straight-forward.

1 The above described algorithm uses wmany thresholds at various
steps. However, the algcrithme is relatively robust to these choices

and the programs vork well on widely different scenes without changing

these thresholds. The same program, without change of threshclds has '
been tried cn different images, including the problem of rit detection
in a chest X-ray, with encouraging results. The details of the Lkasis

of choice of threshclds are found in [13].

Computational Complexity: The various steps of this algorithm
cequire tke processing of an edge element either in isolaticn cr in
comparison vwith its immediate neighbors im an crdered list. Thus all

computiny costs are linearly proportional to the number of edges

processed, except for the fossible costs of sorting the edge lists in

step 3 above,

The number of edges in any single bucket is normally a swmall
propcrtion of the total number of 2dges. Taking advantage gf the
initial raster order of the edjes, the sorting time can be limited to

. increase only 1linearly with the nusber of pixels in the image. The

sorting details ar2 not discussed here.

For the exasple of the tank, the total time to 1link in 12
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directions was 20 seconds on a PDP-KI10 processor. The programs are

written in the SAIL lanjuace. The total nusber of edyes detected was
about 5009. The wsaximum memory requirements were about 50K, 36 bit

Words.

The technigues described are 1limited ¢to discovering eloagated
segments of edge boundaries. These segaents have to be cpnnectel to
form complete cbject boundaries. There is sufficient informaticn to
connect these segments as evidenced by our ability, as husans, to do
g0 (in fiJjure 1t for example) without recourse to the original grey
level picture. The 3eyments cannot be simply ccnnected to their
nearest neighbors; some notion of prefarred configuraticns is
required. Twc long parallel segments are often boundaries of opposite
sides of a part cf an object; e.g., see the boundaries of ¢the Larrel
of the tank in figure 1b., Information cbtained by other fcgams of
analysis of the image, such as texture or color analysis, will aid in
the connection of these segments. Alternatively, these segments aay

be used to aid in such analysis.
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R.3 Cclor Edge Detection

Ram Nevatia and William D. Miller

A digital isage may be represented as a matrix of values of a
function I(x,y), defined at Qdigitized f[foints in the imaye. For a
black and white imaye, I is a scalar valued function, correspondinyg to
the brightness of the 1imaje at the djgitized points. For a color
image, I is a vector valu2d function having three componants, say Ige
IG and IB'
respectively.

the intensity values in the red, green and blue color bands

In a black and white imaga, an edge is defined by a discontinuity
in the scalar valued functicn I(x,y). An elge in a colcr image may be

defined in several ways. If a metric were lefined on the vector space
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spanned by I, edges could be detected in the nev scalar space. Note,
this is similar to reducing the color inaqé to an equivalent grey
level image, Altexnatively, edges may be detected 1iam the three
R’ IG and IB» of I independently amd a single edge
determined frcm their ccatination. A schemse fcr color =2dge detection

cosponents I

is developed in the fcllowing.

First ccnsider the letails of edge detection in a single grey
level image. It is useful to consider an edge as having a position
and also a direction (a magnitude reflecting the discontinuity may
also be included). A simple gradjent operation followed by
thresholding prcvides such edge output. An edge is often limited to
belong to certain classes of discontinuities, e.g. a step-like cr a
line-like discontinujty. Consider step edges only. Edge detection
may then be viewed as the test fit of a meighborhood of an image by a
step functicn, and reguires determination of the position, orientation
and the magnitude of the step. Decisicn cf the presence of an edge is

based on the size of the step (and perhaps the gquality of the fit).

It was suggested by Binford [ 1], that a color edge be determined
by wmaking best fits to the three functions Ip, I and g separately,
but constraining the orientation of the step to be the same for all
three components, and the decision of the presence of an edge based on

the magnitudes cf the three steps.

A popular edge detactor for black and white image has bLeen
developed by Hueckel [2]., This operatcr determines the presence of an

edge in a circular neighborhood and prcvides the position, erientation
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and th2 magnitude cf the edge. Briefly, it proceeds by approxisating

the circular neigbtorhood Lty expansicn in a finite number of terss of
an orthogonal series of functions. Hueck2l claims the chosen series
to be optimal under certain assumptions. Lat a; be the ceoefficients

of the expansion for a given neighborhcod (i ranges from 0 to 7).

A best step function is fit to the approximated function neyt. A
step functicn, fparametarized by a tupl2, is expanded in the same
series to yield coefficients si(tuple). Tha parameters of the step

are chosen to ginimize the function

2 L 2
N =Z[ai- si(tuple)] (1)
i=0

An attractive part cf Hueckel's approach is that analytic
sélutions to this minisization problem can be found, aveiding
expensive searches. In particular, the orientation of the optimal

step can be deterrined inderendently of other parameters.

To extend this concept to a color elye, the function to be

ginigized may be fcrzulated as
2
N =N_+ N_.+ N (2)

The functions N N.and N_ are as lefined in eq. (1) for the three

R" 'G B
compponents of the image I, i.e.
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NPZ{ =Z:[ai - si(tuple)J (3)

where the subscxipt R refers to the red cosponent and sinmilar

expressions exist for N and Np.

The minisization process nov reguires determination of three
tuples of parameters, with the constraint that all three have the sanme
orientation parameters. Again, it tacns out that the ptientation
parameter can te determined independent of the other garameters.
Further, once the crientation has been determined, the paraseters in
one tuple can he detersined independently of parameters im the other

tugles.

The algebraic details of the derivation are not presented here.
A black and white, Hueckel edge operator program, coded in assembly
language, has teen in use at USC since last year. It is fossible to
use many parts of this program, as they are, in the develg¢pment of a
color edge operator. This new program is now - being developed and

debugged.

Other interesting considerations for color edgye detection are in
the weightings cf the steps obtained for the thre2 color components.
It is expected that transformaticns of the R-G-B space to another
three dimensiopal =space, which is claimed to be Euclidean, based on
models of human fperception developed at USC [3], should aid in this

task.

~148-

!
i
{
‘

RS

e e A gt




TR

Y. 2L PP

References

1. T.0. Binford, Private Communicaticn.

2. M.H. Hueckel, "A Local Visual Cperator which Recognizes Edges and
Lines,” Journal of the ACM, Vol. 20, No. U4, October, 1973, pp.

€34-647.

3. W. Frei, "A Quantitative Model of Color Vision," USCIFI Feport

540, September, 1974, pp. 69-83,

5.4 Isaje Boundary Estimation#*

Nasser E. Nahi and Mochammad Jahanshahi

In visual percepticn, among the most effective stimulus
configurations are the "edges® outlining objects within an image, [ 1].
This has motivated many researchers in the area of automated image
processing, specifically scene analysis, to develop various techniques
of edqge detecticn and boundary estimation. An incentive for research
in scene analysis 1is the study of robotics [2]. The available
information about the shapes and sizes of physical objects ccnstitute
and total visual intelligence required by a robot. Such information

canp be provided through kancwledge of object boundaries.

The ollest method known for boundary datermination 1is that of

thresholding [3]. This method, along with the later procedures of

*This research was partially supported by National Science Foundation

ENG 75-034213.

-149-




lccating the maxisuw jradients, are well known to be highly

sensitive

to the sources of degradaticn phenomenon [4]. Various refinements of

the above methcds, which tc some extent account for the presence

ncise, have been recently introduced [5]).

In this repott, a boundary estimator is introduced for a

class of noisy 1images. The ipages considered contain ap object of

interest within a backyround. Defining the set of points

separate the object and the background as "object begundary,” a

recursive estimatcr is desiynaed to yield an estimate of

R it et

applications to a few images.

boundary. Extensicns cf the estimator to multi-object images are

discussed. The perfcrmance of the estimator is 1illustrated

Prohlem Statement: Consider the class of images which

partitioned into tvo reygions: backyround and foreground.

fcreqround is aseumed to form a "horizontally convezx'" object.

ncisy version of such an image, the ais is to obtain an estimate of

the object boundary.

Modeling cf Images Ly Replacement Processes: An image whoce

leval values, denoted by a two~-disensional function

k{n,n), are

unknown is ccmnmonly modelad by the given first and second

statistics of b(m,n). Literature in the area of digital image

restoration includes use of this information, along with

oktservations, to derive a set of estimates (often a minisua mean

square estimate) for b{(m,n) [6,7 ] However, consistent in the results

o has been the [fresence <¢f blurry edges. Intuitively,
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ccucludad that an image model based solely on the first two morents of
t(m,n) might Lte =sujtable for reccnstruction of image grey level
values, but it dces not carry sufficient information to adeywvately J

reconstruct tte cktject boundary.

A mod-=1 for the image signal b(m,n) which explicitly regpresents
the object boundary alony with the background and object internal

details is giver by

b(m, n) = y(m, n)bo (m,n) + [1-vy(m, n)]bb(m, n), (1)

where b and b, represent the intansity values of the object and the

b
background, respectively, and Yy carries the boundary information of
the object withir the imaje. The two-dimensional functions bo(n,n)
and bb(m,n) are assumed to be sample functions of two statistically
independent, wide sense stationary random processes whose first two

mcoents are given. The mean values of b, and bb are indicative of the

okject and the tackground brightness sjmilarities, wvwhereas, their

respective autccorrelation functions are measures of the object and

E the tackground textural information.

The binary walued function Y(ma,n), another random process, takes
values of 1 or C corrssponding to the points in the image belonging to
the object or the backyround, respectively. In the literature, this
f function is usually known as the image “characteristic function® [8].

The statistical properties of y will be described shortly.
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The image mcdel mathezatically rerresented by eq. (1), is tased on
a concept called a "regplacement frocess" where, by definition, a
segaent of a functicn or a random process is replaced by another
function or randcm prccess according to a certain rule [9].
Considering that for typical images the object signal, in fact,
"replaces" a particn of the background signal, the structure of this
model is justified. In the model of eg. (1), replacement of the object

process b with the kackgrcund process b, takes place according to the

b
values of vy.

For future reference, note that tha domains of the sample
functions ho(n,n) and bb(m,n) are defined *o be the entire jimage.
This is, in fact, the rain motivation behinl iantroducing the concept

of replacement frocessaes in the image modeling.
A sequence of clservations ccnstructed as
y(m,n) = b(m,n) + V(m, n) (2)

are assumed available for neasurement, where b(m,n) is as defined by
eq. ¢1), and v(m,n) denotes an uncorrelated process representing the

observation noise.

An image scanner will nov be considered which transforms the
tvo-disensicnal data reprasenting the noisy image, y(m,n), into
one-disensiocnal data. The scanner output, in the aktsence of

observation noise, is denoted by s(k), where

a(k) = Mk)so(k) + [1-2(k)] sb(k) (3)
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models the image in terms cf its grey level values and object boundary

as viewed by the cutput of a line by line scanner.

The structure of the one-dimensicnal model of eq.(3) preserves
the replacement processing concept. The functions so(k) and sb(k) are
associated with to(m,n) and bb(u,n), respectively. That is, so(i) and
sb(k) 1enote thke grey 1lev2l values of the scanned ¢bject and
background, and are assumed to Dbe sample functions cf tvo
statistically independent, cyclo-stationary randca frocesses [10],
whose first twc Ecments are obtainable directly in terms of the first
and second-order statistics of bo(n,n) and bb(m,n) [6f]. A= in the
case of bo(n,n) and bb(m,n), the dcmains of the sample functions so(k)

and sb(k) are the entire scanned image.

The binary valued process ) (k) is the one dimensional counterpart
of Y(m,n). Its statistics will be described below. Note that the

statistics of )\ ccepletely define those of Y.

Let m; and m, indicate the first and the last lines of the cobject
as viewed Lty the scanner, anla{’, B& represent the beyinning and end
pcints of the ob‘ect cn line 4, respectively. In general, ll, n2,<1{.

B{’for m1<l;<m2 are random.

The function X(k), appearing in eg. (3), is now defined in terms

of a{)and E&

m
2
Mi) = 3 ulk- o, (2-1)3] - ulk-8,- (4-1)37) (4)
&=rnl
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where u[ ] is the unit step function, J denotes the number of picture
alements in one line of the imaje, and 8£>a£. The statistics cf the
process )\(k) can now be jiven in terms of the statistics of -1, .2'
and the sequence

_ 5
W,= (opB) )

Assume that W forms a first-order Markov process. This
assumption is made for the sake of computational simplicity, and it
enphasizes the dependence of the object boundary pcints on line 4 apon
the points lccated on the previous line, £-1. It is further assumed

that the requirel density functions are given, and that

p(W, | W, j,m,my) =p(W, ,m) (6)

Notice also that

p(W, | W, ,m)=pla,B8 la, ,8 ,,m)
(M

1

P“’Ll%-l'BL-r m,) P‘B&I CpCyrr P ™

The two disensicnal observation sequence y(m,n) in eg.(2) will

also te replaced ty its scanned version given by
y(k) =s(k) + v(k) (8)

where s{k) is as defined in ej. (3), and v(k) is a zero mean Gaussian

white~-noise process with variance o .
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To locate the cbject boundary, estimates cf the first and last
lines (m1 and Izl and estimates of the startinyg and ending points (aL
and BL) of the ckject are soujht. The estinmation procedure developed
here, as will Le shown, rejuires the values of so(k), and sb(k),
1<k<N, where N is the totail number of pixels (picture elements) in the
image. Since, in general, these valuas age not known (cases of jmages
with known yrey levels are excegptional), the estimates of so(k) and
sb(k) vill be uwsed in their place. Such 2stimates can, for example,
be ottained by implegentaticn of the results in [11) wvhere only
two-dimensional statistical informaticn on s(k), or y(k) is used.
Notice that the concept of replacement processes assures the existence
of the estimatee of so(k) and sb(k) for all 1<k«<N. Since the aim of
this paper is estimation of the object boundary, it will te assumed

that the values S, and Sy (cr their estimates) are given.

The boundary estimaticn problam, as evident from egs.(3) and (8),
is a nonlinear estimaticn problem. Furthermore, due to the type of
nonlinearities invclvel (such as the binary nature of 3{k)), the
available estimators based cn linearizaticn concepts (such as extended

Kalman filters) do not yield satisfactcry results.

In this work, a set of maximum a posteriori (MAP) estjsates for
the unknowns By, Byy Oy oy and B& are obtained. It is shown that the

MAE estimates will ninimize the following expression

nﬁn{-Zczlmxphnzlnﬁ)- ZOZ&n phnﬂ
m, w (9)

m
a
+ Z [T(WL)-ZGZLn p(wLI w, )]
L:nﬁ




Numerical Dexivation c¢f Estimates: Acjuisition of a numerical

sclution for the winimization process of eg.(9) is an integral part of
this presentation. Since a rigjorous sclution of eg.(9), resulting in

a set of oftimal estimates for ﬂ o, , and BL' is computationally

'(IL
unacceptable, appxcximate solutions are soujht. 1Two approaches, shown

later to yield satisfactory results, are described in the following.

Cne approach is to obtain the estimates of o, and BL over the
range n1<L<n2, with the assumption that values of my and m, are given.

For exaaple, values cf ml and m, may be chosen as m1=1 and mz=ﬂ,
implying that the object boundary points lie on every line of the
image. Then, if necessary, one may utilize additional structural
properties of the chject to eliminate those boundary point estimates

incompatible with the given structural infcrmation.

An alternative approach is to consider the problem in two steps;
namely, solve fc:‘gL and 5£, n1<L<m2, for a selected set of m1 and nz;

then solve for the estimates of LY and m, by replacing the estimates

a_  and a& for o, and SL' A recursive procedure will result if these

1 L
two steps dare performed at each scan line raesulting in an algorithm

which yields a set of estimates for M) o0y, and B&, concurrently.

The former approach is computationally more attractive. However,
it requires additicnal information, of a nonstatistical gecmetric
nature, on the otject, beyond the jiven statistical information, to

ccagletely specify the object boundary.

Computation: Assume that the first and the last 1lines of the
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object, i.e., m anld my, are given. Then, 2q.(9) can be reduced to

m
a
min 2
w {Z [T(w{‘)— 20 tn p(w}(/ I w&—lrnl)] 1 (10)
&:nﬁ
Now, from eq. (6)
my
min
. 2
- {Z [T(w&)-Zo an(al{,la{—lel;-l’nﬁ) (11)
L:nﬁ
2
-20“tnp(8,l o0, 1,8, 1 m)]]
Furthermore, since
(L-I)J+QL (L-I)J+a{71
Tiw ) = Z K (k) - Z K(k) (12) _
k=(£-1)T+1 k=(4£-1)J+1 1

where

K(k) = Koﬂd -Ing) (13)

then eg.(11) can te writter as

m
min A
2

w {Z [-20"4n p(%[%_l, By y)

&=nﬁ

(14)

2

-20“2np(8,la,,a, 1,8, ,m)

(1-1)3+8, (4-1)T+ a1
+ Z K(k) _Z K(k)1}.
K= (L-1)T+1 k= (£-1)T+1

»
»
A

Exhibit 5,5-2
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A recursive, easily isplementable solution of ey.(14) is possible
if the density functicns of eg.(13) are approximated. Hence, the

sininization in eyq.(13) is replaced by

m
min a
g W LD hey + gl (15)
4 — L=m
1
:
] where
(L-l)J+-a{:1
glay) = -202tnp@,lo B, m)- D K(k) (16)
k= (4-1)J+1
% (1-1)J+8,
_ 2 A ~ A 17
5 h(B,) = -20" tnp(8,Ja,%, B, Lm)+ D KK (17)
k= (£-1)J+1

Examples: Several images have been considered to illustrate the
1 results of this section. Figure 1 depicts three such examples. All

the pictures have grid size of 256 by 256. 1In each case the mc¢ao and

g variance of the pgjctures are determined, and then a white Gaussian
noise of specified variance is added to each picture (figure 2),

An artitrary segmentation procedure was performed to groducde the

. tackground, sb(k), andl foregyround, so(x), 1<k<25€%25¢€, sample

functions for each picture. The segtentation procedure was based on

reglacing the object intensity values by the saximum background

brightness value (forming the background sample) and the kackgrcund j
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(a) Original Square (b) Original Diamond

(c) Original "Girl"

Figure 5,4-1. Original images
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(a) Noisy Square
(S/N =1.0) (S/N = .6)

1
e S T
(c) Noisy Diamond (d) Noisy Diamond
(S/N= 100) (S/N= .6) .
i

(e) Noisy Girl (f) Noisy Girl
(S/N =10.0) (S/N=.9)

Figure 5.4-2, Images with additive noise
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intensity values by the minimum cbject brightness value (forming the
object saamgle). In Jeneral an estimator is needed to perfogm the
segmentation; however, since the original images were available hecre
(pot usually the case), the above technijue was a more convenient
procedure. With values of L and a, givem as 1 and 256, respectjvely,
the outputs of the boundary estimator are shown in figure 3

The signal to noise ratio (S/N=signal variance/noise variance) of the
observed imaje and the conjectured values of the object maximum w»idth,

L, are indicated ip each figure.

£.% Principal Comronents and Ratioinj for Multispectral Image Analysis

Guner S. Rolinscn and Werner Frei

Manual or machine classification of wmulti-spectral images is, in
general, made AJdifficult by the dimensionality of the problem and hy
the fact that the information of interest nmay reside in suttle

differences between the spectral bands, However, the redunlancy

between multispectral imagjes provides poten*iality for a reduction in
dirensionality withcut an appreciable information loss. Both linear
and nonlinear transfcrms have peen studied to achiseve such a reduction
and to enhance sgectral dissimilarities for terrain classification of

the four spectral bands of Earth Resources Satellite (ERTS) imagery.

The principal component transformation is a well-known 1linear
methol by which a linearly independent (uncorrelated) set of images is

obtained. The enerqgy compaction property of this transfocmation makes

-161-

‘
1
»
5
&
»
2




TR

y - L

L

. *‘t.lv

(a) Square Boundary (b) Square Boundary
SN =1.0 L= 100 S/N = 0.6

(c) Diamond Boundary (d) Diamond Boundary
SN=1.0 L =140 SN = 0.6

(e} Girl Boundary (f) Girl Boundary
S/N = 10 L =250 S/IN = 0.9

Figure 5,4-3, Boundary estimates
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it particularly attractive for the reduction of dimensionality, but

the ccmputational load may be considered excessive in some cases.

Another popular technigjue is to generate ratio 1images in which

each pixal value is e;jual to the rescaled ratio of the amplitudes of

R .

two spectral bands. The aédvantage of this ncnlinear transfcrmation is
that ratios are invariant to illumination variations and
corputationally fast., The disalvantage is that theras are six rossible

ratio images (disrejarding inverses) with rather similar energy

contents.

Principal Ccaponent Analysis of Multispectral Images: Principal

comgonents analysis of ERTS bands is motivated by the desire to
extract the most significant spectral ccmponents from the available
four. This digensionality reduction also results in preserving most

of the ERTS infcrsation in a smaller number of compcnents.

The princigpal coaponent analysis of ERTS data involves finding a
unitary transforeation wmatrix which, vhen applied to the four tands,
results in a new set of bands (principal components) having several
desirable characteristics: the principal components are uncorrelated

and each compcnent has a variance less than the previocus ccagoneat.

The principal comgonents are obtained from the original four

spectral bands by the matrix multiglication

y= Ax ™

vhere x is the vector of spectral intersities cn four ERTS tands, y is

/

v B S Bl

o S
c
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the vector of principal components and A is the 4 x 4 Karhunen-Loeve

transformation matrix. This matrix is derived by diayonalizing the

spectral covariamce wmatrix C of the spectral bands. The rows of A
-X

are the normsalized 2igenvectors of C . The covariance matrix of the
-X

principal ccmgonents is then

[— -
A1) 0 0 0
T 0 A(2) 0 0
C =AC A = (2)
Y 0 0 A(3) o
Lg 0 0 A(3)
vhere xl,xz R 13, and (the variances of the principal ccagonents)

are tke eigenvalues of €, crdered such that N>R,

It should be notad that, since A is a unitary transformatico, the

total data energy is invariant. That is

4
DI =Exi (3)

vhere the o, , are the variances of the original ERTS bands. As an
example, figure 1 ehows four ERTS images, and figure 2 presenis the
principal <ccagcpents planes. All images have been enhanced by
histogram manipulation before display. The spectral covariance matrix
-Ex of the four ERTS bands 1is obtained by computing the spectral
covariance wmatrix oo 64 x €4 blocks of EBTS pictures, (each 512 x 512

pixels) anl then averaging over all the blocks. Exhibit 1 contains
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(a) Band 4 (Green
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(c) Band 6 (Infared 1) (d) Band 7 (Infared 2)

Figure 5.5-1.

Enhanced ERTS images
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(c)

images

Principal Components of ERTS

igure 5.5-2.

F

o MR
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Exhibit 5. 5-1

Statistical Data on Principal Components of ERTS Planes

spectral covariance matrix

57. 16 75. 80 39.23 18. 46

75.80 113,69 53,76 24,50
39.23 53,76 68.97 . 64.78
18.40 24. 50 64,78 85.53

normalized spectral covariance matrix

1. 000 LA17 .078 .033
LA17 1. 000 . 075 .031
.078 . 075 1. 000 . 105
. 033 .031 .105 1. 000

Karhunen-Loeve transform eigenmatrix

0. 44465 0.63040 0.49520 0.39958
-0.32653 -0.49866 0.34168 0.72662
0. 32957 -0.45586 0.67249 -0.48097
0.76619 -0. 38227 -0.43103 0. 28469

Karhunen-Loeve transform eigenvalues

A
<___L_) .100%
4 2

i N ¥

1 224,92 69.14
2 90. 78 27.91
3 5.42 1.66
4 4,13 1.27
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the measured ERTIS covariance matrix, the computed covariance matrix of
the principal cosponents planaes, and the <corresgonding eigenvalues.
It should b2 noted that the first two principal components represent

97% of the total eneryy.

Band Ratios: Ratioingy of ERTS pictures is a useful pre-prccessing
technique for multispectral racogynition and classifjcation,
Signatures obtained frcm a training sample under one set of condjtions
may not have a gJood discriminaticn capability for a given
classification scheme if the same area is observed unler a different
set of conditions. 1I1f the chanjes vesult from simple multiplicative
factors such as the brightress level, then the ratic of the bands will

be invariant.

Takingy varicus ratios of the green, red and the two infrared
tands (bands 4, 5, 6, and 7, respectively) of the ERTS data results in
elimination of trightness variations due to torographic relief. Such
ratio 1imajes have been shown to Dbe nmore useful for determininjy
boundaries betweer lithclogjic units and vegatation grcups [1]. Ratios
may be takenr to eamphasize variations due to color also. Such raticing
processes produce a cclor display whose «color variations are more
indicative of material variations than the siample pseudocolor

disglays.

Ordinarily, ratio images are obtained by formirg a scaled ratio
>t two bands, (direct ratio). Loyarithmic ratio images are produced

ty spplyrny 3 lcgarithmic stretch to a ratio image. The advantage of

l,jsrithaic ratio is a jreater toleranc? to quantizaticn erxror.




In the cases studied, it has afppeared that logarithmic ratio
images contain more visual infcrmation than direct ratio images. It
is felt that exgeriments with more images are necessary to confirm the

atove conclusicn.

As an example, figure 3 shows the logarithmic ratios of the ERTS
pictures shown in figure 1. These ratio images have been enhanced
using the same histojram manipulaticn algorithm as the original
images. The <chcice of ratio imaces for a certain classification

scheme depends on the data and the application.

The covariance matrix of various ratios could give some insight
in choosing a s=et cf ratics for a classification scheme: ratios that
are uncorrelated are likely to produce better results than those that
are highly correlated. This idea suggests the use of the principal
ccepcnents of ratios instead of ratios theamselves. Exhibit 2 ccntains
the normalized covariance matrix and eigenvalues of the lcgarithmic
ratios. It is <cbserved that the first two or three principal
coeponents contain wmost of the relevant information in ratic images.
This can also be verified Lty studying the grincipal components shown

in fijuce 4.

Referance
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Figure 5.5-3.
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Logarithmic Ratios of ERTS bands
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Exhibit 5,5-2

normalized covariance matrix

Ratios 4:5 4:6 4:7
4:5 1.0 -0.297 -0.390
4:6 -0.297 1.0 0.910
4:7 -0. 390 0.910 1.0
5:6 -0. 746 0.837 0. 840
5:7 -0.714 0.812 0.912
6:7 -0.399 0. 486 0.771

eigenvalues

e N

1 35,495
2 3.270
3 1.592
4 0.084
5 0.082

Statistical Data on Principal Components of ERTS
Logarithmic Ratio Planes

5:6 5:7 6:7
-0.746  -0.714  -0.399
0.837  0.812  0.486
0.840  0.912  0.771
1.0 0.955  0.554
0.955 1.0 0. 751
0.554  9.751 1.0
( L ) .100%
6
&4
86.0
8.0
3.9
0.2
0.2
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Figure 5.5-4, The first three principal components of

logarithmic ratio images.
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6. 1Image Processjnj Systems Projects

The following describes the image processing systess projects
which are ccncetned with the develcpment of image frocessing hardware

and software systens.
6.1 Hardware Prciects

Toyone Mayeda

A real time cclor imace magnetic tape recorder/playback system is
under develofpment. The recorder 1is to be used to record real time
digitized television signals at a 600 ips rate and played back at a
1-7/8 1ips rate to transfaer the data to the PDF-10 computer. The
inverse process is performed to produce real time televisi¢n signals

frcm coled ccmputer r=cords.

Delivery of the Emerson (Ocion) digital magnetic tape
recorder/playktack unit bhas been delayed due to difficulty in meeting
the bit error rate and raximum skew specifications. Emerson 1is
presently redesigniry the tape transport wmechanism to reduce the
problam. It is also glanned to increase the deskew buffer capacity in
the interface bhardvware which was developad at USC. Delivery is now

planned for 1 January 1576.

A second digjtal imaye televisicn display system, whick is being
devaloped, is presently in the check out and testing phase. This unit

receives digital picturs data £rom the ARPANET, acting as a wvirtual




——

e 4 Rl

TIP terainal, and produces a modulated television signal for
connection to the antenna terminals of any comgercial television

receiver.

6.2 Software Prcjects

Dennis Smith

The software effort c¢f the 1Image Processing Institute (IPI)
procyrameing grcup has been centered on twc projects. The fjirst has
been the implementation of a network of sini-computers, and the second

the augmentation of the library of imagye processing user pragrams.

The purpcses cf the network of mini-computers are to bhandle
cosmunicaticn amcny the larger computers of the Engineering Ccaputer
Latoratory and the Imaje Frocessinyg Laboratory, and between these
computers and machjnes at other sites, and to handle lcwest level

Frotocols with image processing devices.

The primary advantage of this netwoxk 1is the freeing of the
larger conmputers from the task of weinutely supervising comglex
devices, many of which cause freguent interrupts that are demandiny
upon a processor'!s tiase. All ccmmunications among the larger’
computers, and between thenm and the specialized devices are carried on
in message packets which ar2 blocks of data that can be passed about

vith a minimsum cf interrupts.

A second advantage of the natwork is one of reliability. Should
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the PDP-11 mini which is controllingy a key device beconme
ncn-operaticnal, the software for that dewice can be easily wmoved to
another mini, the device plugged into that wmachine, anil service
restored, Should the PCP-10, the principal ccmputer for user
software, be unavailable, the UP-2100 cr tha IBM 36C/4U4 can ke used in

this capacity, as the user software is written in portable FCRTRAN.

To date, the two progyrams which will run on all the 11's, the
supervisor prcyram, and the netwcrk ccntrcl program (NCP), which
manages the routing of message packets from the source tao the
destination ccmputer, ace both completed. Remaining to ke fimished
are the service proyrams to handle each of the 1image [processing

devices on the 11's, and the NCPs for each of the larger coaputers.

The seco&d area of concentraticn is user software. Several
personal prograss of the IPI faculty and staff were obtained frem the
individiuals who wrote them and were added to ¢the IPI library after
modification to wake thes more useful to the general community. All
of the fcllowing were standardized tc conform to parameter input
conventions of the other library programs, and generalized to process
images which are any power-of-two size smaller than or equal to 1024,
All programs rumn jn an interactive mode, asking the users questicns as

to what he wvants done. These programs are described below.

CONVOL - a frogram fcr performing two limensional convolution was
generalized to provide a choice of impulse response arrays (or allow

the user to enter his own) in sizes 3x3, 5x5, or 7x7.

.
-
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HSTMOD - a progjram to perform modification of histograuws, which
does egualizaticn, exponentiation, c¢r a "gamma" function ugon the

histoyram of a picturxe.

PICOUT - a projeam for contrast manipulation was expanded to
perform the follcwinj: clippingy, 1labeling, reformatting (packing,
unpacking, integer-real, real-integer), and application of one of a
variety of transfer <functions: positive 1linear, nejative ljnear, %
sawtooth, slicer, eye, half power, third power, log, or a user-defined |

step function (256 steps) with autcmatic scaling,

MEDIAN - a median filterinyg program which offers three chcices of !

filtering: M1S, which ccmputes the median for each positica of a
rectangular window as it scans the picture file; MEDX, vhick computes
the wmedian for each position of a cross window; and MOVAVG, which
computes the sear for each positon of a rectangular window. All of

the above may be used with any window size 1 x 1 to 11 x 11.

CFIL - a program to dc image restoration and Wiener filtering.
It allows specification of a blur, correlation coefficient, and
signal-to-noise ratio, and an inplulse response matrix up to 31 x 31.
€.2 A Synthesis Procedure for Optical Nonlinearities
Stephen R. Dashiell and Alexander A. Sawschuk

A general technijue for isplesenting nonlinear nonmcnotonic

function incoberent optical parallel sijnal processing systems has




teen described in recent publications [1-4). The technique <cperates
by wusingy special halftone screens and high contrast (binary) optical
input devices to effectively pulse-width modulate the input. The
selection cf diffraction orders in a Fourier transform produces a

desampled output which is a point nonlinear function of the input.

A very ccmplete analysis of the entire process has been perforzed
[4]. One generalization that has been found is that the halftone
prcfiles (cells) thesselves which determinel the dot size b need not
be wmonotonic. Thus, the effective periolicity of the pregrocessing
can be changed. The effect is to reduce the diffraction order
necessary to achieva ncamcnotonic operation. So many desiga varjables
are now available that the class of mathematical operations [ossible

and ease of iaplementaticn has been greatly extended.

An exact synthesis procedure for nonlinearities wusing ordinary
mcnotonic cells has been made and is suararized here for the case of
linear on -dimensicnal scenes. Omitting wavelength and geometrical
factors for «clarity, the gen2ral expression for the amplitude in the
transform plane resulting from an infinite grating of opague tacs of
width, b, and period, a, with unit amplitud2 illumination is

@

Fit(x)} = 8(tyx) - E S5(f_-

T ®

LAY ]

b . bn
)+ sinc (T7) a}
vhere the y dimensicn is suppressed. By selecting these diffraction

orders with simple spatial filters, the sinc terms in eq. (1) indicate

that ncnmonotcnic bahavior can be expected. 1In the special case of a
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zero order (n=0) selection, an intensity output

I QA - bla)® (2)

out(0) -
is expected frcm eyg.(1) after inverse Fourier transferesing and

squaring. Por a first order (n=1) selection, the output intensity

D B3 3
Lout) ~ 2 sin” () (3)

a function which is ncnmcnctonic in b.

Because of the halftone process, the value of b in these
exgressions is a functicn of the continuous input intensity I ., A
one-dimensional halftone screen can be described as periodic
sysmetrical cells centered on x=0 and extending from -a/2 to as/2, each
with a density function f{x). The intensity I transmitted by the

input-screan ccakination in each cell is

1= 1_107f® (4)

t in
and this functicn is imaged or contact printed onto a binary clipping
medium with effective cutcff 1*', Since there is no exposure if Itsl'
and full exposure if % >I', opaque bars result where x is such that
f(x)

I =21I'10
in

(5)
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Taking logarithes yields

I
-1 i
x s f [logm (T‘n—)] (6)

vhere f-lis the jnverse of f. The cell siza b is simply twice x for

halftone cells sywmetrical about tte spacing a.

Combining e€q.(6) with egs. {2) or (3) for the agpproprijate order

gives the overall mapping

I .
-1 in 2
_ _ _ An 7
I = &Ly = (1 - 2f [1og10( T )1/a) (7

for the zero (n=0) crder, and

2
I
_ . 2n -1 in
Iout = gl(Iin) = (- sin <_a f I:log‘10 _I' ])/TT) (8)

for the first order (n=1). Similatz expressions can be obtained for

two-Jdimensicnal cells and various selecticns of diffraction crders.

These expressions for transforms and dot sizes are valid cnly in
local regions of constant input values. Input informaticn produces
low spatial frequency modulation, and the camplete exgressicn for the
transform 1is much more <ccmplicated. The halftcne process assumes
input samplinjy at a rate sufficient to avoid aliasing, and thesa

results describe the 1local ncnlinear effects if desampling filters

chocse the lcw frequeacy input informaticn.




-
j ¢

The follcwiny procedure can be used to obtain the cell profile
f(x) and diffraction crder for one-dimensional screens given a desired

Iou§h(1in):

I. Deterpine the minimum diffraction order n to be used by
counting the number of sign chanjes, q, in the slope of the transfer
function. If ¢ is zero and the initial slcpe of h is negative, the
n=C order can be used directly. 1If g is zero with positive initial
slope, the n=1 crder must be used. For y greater than zero, add on2
to q if the ipitial slcre is negative to obtain g'. If q is greater
than z2ro and the initial slope is positive, then g'=q. The number of

slope <changes 1in the Jjeneral Iou versus b curve is given by 2n-1

t(n)
for h>0, thus n is selected so that g' is 1l2ss than or ejual to 2n-1.
This proca2dure detersines the minimum n, so that a larger order can be

usel if dasired.

II. Norwmalize the desired4 function by scaling so the larjest

L equals the maximunm Io

out for the particular crder used. Focr n=0,

ut

I <1; .
out ; for n>¢C, Iout <l/n

ITI. Equate h(Ihu) with the appropriate general expression
gn(Iin) of the form eg.(10) or eg.(11) for the particular order n

-1
used., Solve this eguvation for f tloglo(Iin/I')).

IV. Solve for £(x) by selecting a solution such *hat f£(x) |is
mcnctonic and the initial slopes of h(Iin) and gn(Iin) have the sanme
sign. Whenever the slope of h(Iin) changes sign, the halftore cell

size must atruptly increase so that the diffracticn output remains tha
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sase while jumping tc a region of ¢ (I_n) cf opposite slope.
n 1

An example of this procedure is the synthesis of an optical level
slicer, or intensity bandpass, with the characteristics shown in

figure 1. This function is

= = < < 9
Iout h(Iin) K, Icl Iin Ic2 )
o, otherwise
and it has one sign change in slope, so q 2quals one, The initial

slope 1is positive, so 4' is one and the tirst (n=1) diffracticn order
can be use21., Ncrmalizin) the function h(Iin) . gives K equal to 1/n2,

and ejuating h(Iin) vith gl(I in) gives

1
f-l(loglolin) = (a/Zn)sin-l(n[ h(Iin)] 2) (10)

where the clip level I' is assumed unity for simplicity. For I «I

(M

) (1)

f'l(logloxin) (7"";) sin~L(rm0]

0 or a/2

i

Selecting the zero scluticn to satisfy the azonotonic cell condition,

results in

£(0) = log oI, (12)
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(a) Characteristic curve

D=1(x)
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a, (o] ay, a, 3a,

(b) Halftone cell profile

Figure 6, 3-1. Level slicer function.
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For I, <I, <T , |

-1 P YR VP I SO (13) :
f (logmlin) = (211 )sin “(m( TTz) ) = al4 |
and sclving gives i
f(2) = log,.I (14)
4 107c2

as a point of discontinuity of f. For ICZ<Iin

1
f'l(logloxin) = (&) sin"}(r[01%) = 0 or a/2 (15)

Here the a/2 sclution is selectead tb satisfy the monotcnic cell
condition. This is the end point of the profile having period a.
This function f(x), 0<x<a/2 shovn in figure 2, has been experimentally
desonstrated [2-3). The width of the level is controlled by the step
size in f(x), and the 1level 1lccation is controlled by the
preprocassing step. 1In general, the halftone cell rrofile may cembine
sacoth and discontinwous functions, 1leading to transfer functions

b‘lhx) vith both smooth and limiting ncnlinear characteristics.

The analysis of system effects due to low contrast (finite gamma)
input media is sell uwnderway. In the zero order the sajor effect is a
change in the transfer function; in the fjirst crder, this effect |is

combined with a lcss of diffraction efficjency. These effects are not

setrious in fractice, and scme technigues of pre-compensating halftone
cells to correct for low gamma have been developed. These appear very
promising for gractical isglesenation, particularly with real-tiae

input devices. A series of computer rcutines have been written to
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iteratively synthesize cell profiles, produce input/output curves and

study effects of parameter variaticn on the results.

A number of experimental halftone screens have bLeen wmade and
testel. A computer-contrclled optromics flatbed microdensitometer has
been used, and direct glots on highly resolution fila have been

adequate to make good juality screens. Most of the screens have been

one-dimensional line ygratings, and plotting aperture sizes doun to
10 m. have been used, Kodak 50-427 sheet film is used for the screens
F because of its high resolution (>250 lines/mm.) and good line holding
iﬁ ability. Scme cof the functions which have plottad and tested with
good results so far jinclude: intensity lewel slicers, intensity notch
filters, logarithms, and exponentials. Experimental verification of ]

cther functions is underwvay.

References

1. S.R. Pashjell and A.A. Sawchuk, "Nonlinear Optical Image
Processing with Halftone Screens," USCIPI Semiannual Progress Report

S4C, 1 March 1574 - 31 August 1974, pp. 65-68,

2. S.R. Dashiell and A.A. Sawchuk, "Nonmonotonic Nonlinear Pjcture
Cperations," USCIPI Semiannual Progress Report 560, 1 Septeaber 1974 -

3. A.A. Savwchuk and S.R. Dashiell, "Nonmonotonic Nonlinearities in
Optical Processing," Proceedings of the IEEE International Ogtical

Ccsputing Conference, Washinygton D.C., April 23-25, 1975, pp. 73-76.

-184-




4. S.R. Dashiell and A.A. Sawchuk, n"Optical Synthesis of Nonlinear

Nonmcnotonic Functions,” accepted for publication in oOptics

Communications.

-185-




