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ABSTRACT 

A fast minimum mean-square error technique for 

restorinq images degraded by blur is presented in this 

dissertation. 

V 
,1 

The phenomenon of linear shift-invariant degradation 

in an incoherent optical system can be described by means 

of a convolution integral. Since digital processing of 

pictorial data requires discretization of this integral by 

means of a quadrature technique, a theoretical study of a 

broad class of quadrature formulae is first presented. 

The discrete image degradation phenomenon is modelled 

by two distinct vector opace formulations: dark background 

objects correspond to a model possessing an overdetermined 

blur matrix; objects with unknown background, however, 

result in a system that is underdetermined. It is shown 

that these models become equivalent if the background of 

the object is artificially set to zero by processing the 

observed image. This fact results in introduction of a 

fast restoration technique in the absence of noise. 

The noisy restoration problem is resolved by employing 

Wiener estimation.  It is shown that with proper arrangement 

of the observed image data, the covariance matrix  of  the 

object  becomes a circulant  matrix.   Hence, the Fourier 

domain  properties of  circulants  gives  rise  to  a 

ill 
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computationally efficient Wiener restora«-^.. technique. A 

certain approximation imposed 01. this technique results in 

a suboptimal, but faster, restoration filter. It is shown 

that the computational saving gained by this approximation 

is significant, while the increase in the error variance is 

quite small. 
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I. INTRODUCTION 

The concept of digital restoration in this text is 

interpreted as the reconstruction of an image to an 

original object by the removal of degradation phenomenon 

known a priori, possibly in the presence of noise [1-1]. 

Thus, restoration techniques require some form of knowledge 

concerning the degradation phenomenon, and this knowledge 

either comes from a deterministic assumption about the 

phenomenon or statistical models. Degradation systems are 

often quite complex in general. However, in many cases of 

practical importance, the degrading systems can be 

presented by a linear smoothing operation followed by the 

addition of -soise known only in a statistical sense [1-2], 

Early image restoration techniques, which were 

introduced by the pioneers of this field [1-3] [1-4], did 

not prove very successful because the proposed techniques 

did not acknowledge the existence of noise in the imaging 

systems. To be more specitic, the failure of the early 

restoration methods was caused because of the amplification 

of a high frequency noise component by the inversion of 

some degri'.ding process. Tsujiuchi [1-5] , Harris [1-6] , 

McGlamery [1-7] , and Mueller [1-8] have all tried to 

overcome this hindrance by modifying the inversion 

technique. For example, Harris [1-6] has replaced the 

inverse filter by zero for the range of spatial frequencies 

1 
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tor which the noise power exceeds the powec o£ the  sighal. 

Latet.  researchers  in  this  fieid  realized  thata^ore 

successtu! recovery of the L..«. could be achieved with a 

„re realistic approach which utilized the characteristics 

ot the noise in the imagim, systems.  Consequently,  an 

optU» anear  shift-invariant filter was introduced by 

„eistro. [1-91 which, when applied on a noisy degraded 

image, gives an estimate of the ideal image with the least 

mean-square error. This filter is indeed the same as the 

classical Wiener  filter.  Slepian 11-101 has also solved 

the same problem when the smoothing function itself is 

stochastic.  It has later b«n illustrated that the minimum 

mean-square error  technique gives better  reconstructed 

images than the simple inversion method 11-111. 

The Wiener  filter  technique unfortunately has the 

limitations  of  large storage requirements along with 

inefficient computational methods.  Pratt  11-121  has 

intrcduced  generalized  wiener  filtering  computation 

techniques which, by utilizing transform properties of 

imaging   systems,   have  improved  the  computatical 

efficiency.  Furthermore, Pratt illustrated that a specific 

computational procedure could result  in a significant 

reduction of the computational load, with only a small 

increase  in estimation error.  It has also been shown that 

lower-triangular  transformations can give rise to 

efficient suboptimal wiener filter 11-131. 

an 
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Constrained restoration is an alternative solution for 

the problem of noisy  image  reconstruction.   Here  the 

mean-square error is not necessarily minimized,  but  high 

frequency noise oscillations are dampened by observing the 

constraints governing  the  image  forming  systems.   Hunt 

[1-14] has employed special properties of linear systems to 

introduce fast constrained image estimation techniques.   A 

constrained restoration technique introduced by Mascarenhas 

[1-15] utilizes linear equality and inequality constraints. 

Linear   inequality  constraints  involve  solution of  a 

quadratic  programming  problem,  and  require  extensive 

computing  when  images of  reasonable  size are  to be 

processed.  A specific case of inequality constrained image 

restoration  is when positiveness of image intensities is 

utilized  for better  image reconstruction purposes.  A 

survey of positive image restoration techniques is given in 

reference [1-16] . 

Blind deconvolution, in which the point-spread 

function is assumed unknown [1-17], has attracted some 

attention. Ekstrom [1-18] has suggested means of 

estimating the unknown point-spread function by processing 

the blurred and noisy observe', ion. Cole [1-19] has 

introduced the homomorphic filter which is the geometrical 

mean between the Wiener filter and the inverse tUter. 

Similar methods have been applied to the problem of 

restoring old acoustic recordings as well as reconstruction 

3 
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•  ^^o  ii-iQi   (For a comparison of different of blurry images  11-1^1 •  ir<Jl a ^     ^ 

CtOt.tion techniques, the readec is referred to reference 

11-201)• 

The fundamental purpose of  this dissertation  is  to 

explore  restoration  techniques which are computationally 

fast and efficient, but c.n be applied to  the  restoration 

of larqe size imaqes. This work starts with a brief, but 

sufficiency broad, discussion of  the  discretization 

„ethods  of  continuous  linear shift-inyariant degradation 

systems.   Next,  the  problem of a  fast  pseudoinverse 

technique which can  be  applied  to a qeneral noise-free 

image is resolved; this part can be  considered  to  be an 

application  and  extension  of  the  Fourier  transform 

properties of circulant matrices 11-211,  11-221.   In  the 

presence of noise,  a fast «iener filterinq technique is 

developed which overcomes many of  the  computational 

obstacles of the conventional wiener filter.  Finally, the 

problem of fast constrained filter in, of deqraded imaqes is 

considered. 

* 

h 

r 
■ 

REFERENCES 

1.  B. Hunt, "Digital Image 

1975, pp. 693-708. 

Processing," Proc.  IEEE, April 

1 -'*'■' 



  

2.  H. Andrews, "Diqital  Images  Restoration:  A  Survey," 

IEEE Computer, May 1974, pp. 36-45. 

3.  A.  Marechal, P. Croce, and K.  Dietzel,  "Amelioration 

du Contraste des  Details des Images Photographiques par 

Filtrage  des  Frequencies Spatiales"  Opt. Acta,  Vol. 5, 

1958, pp. 256-262. 

4. L. Cutrona et al., "Optical Data Processing and 

Filtering Systems," IRE Trans. Inform. Theory, June 1960, 

pp. 386-400. 

5.   J. Tsujiuchi, "Correction of  Optical   Images  by 

Compensation  of Aberrations and  Spatial   Frequency 

Fitering," Progress in Optics, Vol. 2,  New York:  Wiely, 

1963, np. 131-180. 

6.   J. Harris,   "Image  Evaluation  and  Restoration,' 

J. Opt. Soc. Amer., May 1966, pp. 569-574. 

7. B. McGlamery, "Restoration of Turbulece-Degraded 

Images," J. Opt. Soc. Amer., March 1967, pp. 293-297. 

8. P. Muellei" and G. Reynolds, "Image Restoration by 

Removal of Random Media Degradations," J. Opt. Soc. Amer., 

November 1967, pp. 1338-1344. 



n*'^mmmmm**~~m • "m ■■■|     ■ ' «"  ■« ^ 

9. C. Helstrom, "Image Restoration by the Method of Least 

Squares," J. Opt. Soc. Amer., March 1967, pp. 297-303. 

10. D. Slepian, "Linear Least Squares Filtering of 

Distorted Images," J. Opt. Soc. Amer., July 1967, 

pp. 916-922. 

11. M. Sondhi, "Image Restoration: The Removal of 

Spatially Invariant Degradations," Proc. IEEE, July 1972, 

pp. 842-853. 

12. W. Pr:tt, "Generalized Wiener Filter Computation 

Techniques," IEEE Trans. Comp., July 1972, pp. 636-641. 

13. A. Habibi, "Fast Suboptimal Wiener Filtering of Markov 

Sequences," to appear in IEEE Trans. Comp. 

14. B. Hunt "The Application of Constrained Least Squares 

Estimation to Image Restoration by Digital Computer," IEEE 

Trans. Comp., September 1973, pp. 805-812. 

15. N. Mascarenhas, Digital Image Restoration Under a 

J*gc[Lgssion Model- Linear equality and Ine quality 

Constrained Approaches, Ph. D. Dissertation, University of 

Southern California, January 1974. 

*..r 

mmHmm 



mw^^i^mm II •■ ■ 'r^mmimmimmm^ii^'mmm^miimmimmfi «i ip i  ^m^^mmm I      II ^^^^^V1 

16. H. Andrews, "Positive Digital image Restoration 

Techniques: A Survey," MR-73 (8139)-2, Aerospace 

Corporation Technical Report, February 1973. 

17. T. Stjckham, T. Cannon, and R. Ingebretsen, "Blind 

Deconvolution Through Digital Signal Processing," 

Proc. IEEE, April 1975, pp. 678-692. 

18. M. Ekstrom, "A Numerical Algorithm for Identifying 

Spread Functions of Shift-Invariant Imaging Systems," IEEE 

Trans. Comp^, April 1973, pp. 322-328. 

19. E. Cole, The_Removal of Unknown Blur by Homomorphic 

Filtering, Ph. D. Dissertation, University of Utah, June 

1973. 

20. B. Hunt and H. Andrews, "Comparision of Different 

Filter Structures for Image Restoration," Proc. 6th Annual 

Hawaii int. Conf. on Systems Sciences, January 1973. 

21. B. Hunt. "A Matrix Theory Proof of the Discrete 

Convolution Theorem," IEEE_j^ns_^i_o_Electroacoust, 

December 1971, pp. 285-288. 

22. N. Pratt, "Vector Space Formulation of Two Dimensional 

:. 

J.m**.**.'»*' >rL^ i. 



 "^■■■■i w**^mm***~*m**mm**m^mmirmmimmmmmmmmimmmimmmmi^emim^^^w*m* 

Signal Processing Operations," Journal of Computer Graphics 

and Image^ Processing^ Academic Press, March 1975. 

t 

wmamabiamL. 



11" v»i'"r*m'^mmmm* m mmm |M|■"" mmm 
■iiiinin i ■■■■-■■i»  

2. THE RESTORATION PROBLEM IN ITS CONTINUOUS FORM 

2. 1  The Image 

»* •' 

*. 

< 

Every visible  object  can  be characterized  by  its 

radiant  energy distribution which commonly is described by 

a two-Umensional function of  spatial  variables,  f{xfy). 

The  two-dimensional  radiant energy distribution wn.ch 

enters the human eye is often referred  to  as  the  image. 

Even  in  the  case of an observer with perfect vision, the 

image itself might be a distorted replica of the object 

function.   This,  inevitably,  will  cause  an  imperfect 

comprehension of the scene by the brain.  A degraded  image 

can  result  from many different  phenomena.  A turbulent 

atmosphere, for example, deforms the phase  function while 

the  light travels tnrough the air.  When collected by this 

optical system aperture,  a blurred  image  results.  A 

photographic camera with a poor lens produces a low quality 

picture.  Also a misfocused  lens and movements  of  the 

objects  in a  scene both generate errors in recording the 

scene, and thus the image often differs from  the  original 

object  in one way or  another.   The  following section 

studies the mathematical model of  the  image-forming and 

image-degrading processes.  Since tMs dissertation deals 

exclusively with linear phenomena, only degradations  which 

can be represented by a linear system have been considered. 
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2. 2  Convolution as a Model for Linear Systems 

A continuous space invariant (stationary) linear 

system is interpreted to be a convolution of two functions: 

a fixed function h, commonly referred to as the impulse 

response or the point spread function, and a function f 

which is the input to the system. The mathematical 

expression for convolution is 

g(x) 
■/ 

Oo 

f (s)h(x-s)ds (2-1) 

where g is the output of the system.   In a more  compact 

notation, eq. (2-1) can be written as 

g(x)=f(x)»h(x) (2-2) 

The output of a linear  system  is equal  to  the  impulse 

response, h, when the input to the system is en impulse. 

.r 

In  two dimensions  the  signals  f,  h,  and g  are 

functions of two variables as modelled by the relation 

Oo oo 

g(x 
■"■// 

f(r,s)h(x-r ,y-s)drds (2-3) 

-OO -OO 

The two dimensional convolution integral is the proper 

model for a spatially invariant degradation occurring under 

incoherent illumination [2-1], [2-2]. 

^3 
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A linear system is fully defined by its impulse 

response. And, this is also true for a linear degradation 

where the impulse response of a particular process 

completely characterizes the degradation phenomenon. 

A diffraction-limited rectangular optical system is 

characterized by a separable impulse response of the form 

[2-3J 

h(r,s)= 

2       2 
sin (r)j (sin( s) i 

(2-4) 

Blurring due to atmospheric turbulence has been modelled by 

a linear operator of the form [2-4] 

2  2 "7i 
h(rfs)=exp[-(r +s )  1 (2-5) 

Motion blur has a one dimensional point spread  function 

defined as [2-5] 

h's)=l if  -1/2^ s <l/2 

otherwise 

(2-6) 

f 

Although the above is not an exhaustive list of sources of 

linear image degradation, the list provides a general 

intuition for some cf the problems faced in image 

restoration.   The  next  section  describes the use of the 

11 
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Fourier  transform of  linear  systems  for   removal   of 

spatially invariant degradations. 

2. 3  Inverse Filtering 

To av.id notational complexity and unnecessary 

formulations, only one-dimensional degradation is discussed 

at this point. This approach will be followed in most 

remaining sections of this dissertation, and except for the 

examples explicitly discussed, the extension of a 

one-dimensional problem to higher dimensions is assumed to 

be straight forward. Considering the model for image 

degradation formulated by eg. (2-1), the restoration task 

is phrased as follows: assuming the observation, g, and the 

point spread function, h, are both given, attempt to 

recover or estimate the image, f. 

It has been shown that Fourier techniaues can play an 

important role in attempting to obtain the object from the 

observation g(x) through the inversion of h(.) [2-6], 

[2-7]. For a function f(x) the Fourier transform, F(w), of 

f(x) is defined as 

F( w)= / 

00 

f(x)exp[-iwxldx (2-7) 

The above integral  does  not,  however,  exist  for  everv 

function f(x) [2-8], but the existence of this integral for 

12 
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the class of functions encountered in this dissertation  is 

certain. 

An interesting utilization of the Courier transform is 

its application to linear systems. Let G(w), F(w), and 

H(w) denote the Fourier transforms of g(x), f{x), and h(x), 

respectively. Then from eouation (2-1) it is easily shown 

that 

G(w)=F(w)H(w) (2-8) 

Observing the above equality, the concept of inverse 

filtering becomes clear. Inverse filtering simply consist 

of dividing both sides of ea. (2-8) by the blur transfer 

function H(w). If H(w) does not vanish at any point, the 

object, f(x), can be completely recovered by the operation 

f( x)=r 
G(w) 

-1 
where  the operation ff-      denotes  the 

transform 

(2-9) 

inverse  Fourier 

f 

t{ 

co 

1   f 
x) = ( ) / F(w )exp[iwx]dw (2-10) 

Equation (2-10)  is  the  inverse of  eq. (2-7;,  and  the 

notation is the same in both equations. 

13 
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Although the problem of  noisy observations will  be 

studied  in  later  chapters,  a brief comment on eg. (2-9) 

seems essential at this point.  The impulse  response  H(w) 

almost  always  decreases rapidly with growth of w.  On the 

other hand, any small amount of noise or uncertainty in the 

observation  has a relatively flat spectral distribution. 

This means that the inverse  filtering  technique  enhances 

high  frequency  noise  so  strongly that even for a small 

amount of noise the technioue could  not be  applied,  and 

thus must be modified. 
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3.   DISCRETIZATION   OF   THE   CONTINUOUS   MODEL 

To treat degraded imaqes by means of digital 

computers, the continuous model of eq. (2-1) must be 

discretized. The discretization process will, naturally, 

replace the Integra; by a discrete summation which takes 

advantage  of  values  of  the  signals  only  at discrete  points. 

\ ft 

3.   1     Practical  Considerations 

In most    practical     situations,     the    physical     sample 

image     g(x)     of    eq.   (2-1)   is  not  available over   the entire 

real   line,   and  axso  the whole   infinite extent of  the    object 

is       not       usually    of     particular     interest    to     the     image 

processer.     In  fact,     in     practice,     only     finite     size     of 

objects     are     to    be     restored  by processing  of  finite  size 

observations.     The preceeding     argument     implies     that,     in 

reality,     the     limits on  the definite  integral  of  eq.   (2-1) 

are  not   infinite.     Another   important  feature   in     the    model 

of     eq.   (2-1)     is     that     the    degrading     function  h  usually 

vanishes  beyond  some  point,   and   consequently  the   region   for 

which     h     is    nonzero     has     a  finite  length.     In  theory,   of 

course,  most  point  spread  functions  have     infinite     length, 

but     invariably,     h decreases  rapidly  for   large  values  of  x 

(the     examples     in    Sec.   (2-2),     for     instance,     have     this 

property).     Considering   this  characteristic,   a  point  spread 

function  can  be  truncated  to   some   lengh    L    without     severe 

16 
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.odellin, error providin, that the length L is selected 

uiselY. Figure (3-11 shows a truncated two-di.ensional 

Gaussian  point   spread  function. 

m  view  of  the above  argument,   eq.   (2-1)     is    modified 

to  the   form 

g( 

v=xH 

u=x- 

.L 

f (s)h(x-s)ds 

L 

whe re [u,vl is the region of integration. 

(3-1) 

I; 
A' 

3. 2 Quadrature formulae 

BY definition, a quadrature formula Iq.f.) I» an 

approximation to a definite integral; the approximation is 

a linear combination of values of the integrand and its 

derivatives at certain points of the interval of 

integration called the nodes of the o.f. [3-11. When the 

derivatives of the integrand are unknown, then the general 

form of a q.£.  is expressed as 

V n 

f  f {x)dx=>c f (x. )+Rf 
(3-2) 

where C  and x. are the coefficients and nodes of the o.f., 

^  .^y  <x    ..  <x <v.  The term Rf is a respectively,  and  u<x1 ^x2    n 

functional which, for any given function f(*),  eouals  the 

difference  between the exact value of the integral and its 

17 
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Figure   (3-1) A Gaussian   Point   Spread Function 
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approximation, and Rf may vanish for some class of 

functions. If the nodes of the q.f. are selected in 

advance, the only available parameters to be treated are 

the coefficients c. . Examples of this type (fixed node) 

are the method called pulse approximation (equal 

coefficient), Newton-Cotes, and the best q.f. in the sense 

of Sard. If the nodes of a q.f. are free, the best 

location of the nodes, in a certain sense, can be 

determined, and the q.f. is called optimal. Examples of 

the optimal type are Gauss-Leqendre and the optimal q.f. in 

the sense of Sard. In imaqe restoration the nodes x. are 

usually preassigned, therefore, only fixed node quadrature 

formulae are discussed here. 

3. 3  Spline Functions and Sard's Best Quadrature Formulae 

Given a set of real numbers 

X =U <X,<X-<....  <x <v = x ,, 
0     12        n   n+l (3-3) 

a spline S(x) of degree m with the nodes x ,x ,...,x  is  a 

function defined on the real line so that in each interval 

(x. ,x. , ),  for  i=0,l,...,n,  S(x)  is  represented  by a 
i  i+l 

polynomial of degree m or less, and the function and its 

derivatives of order m-1 or less are continuous on (u,v] , 

thus S(x) is m-1 times continuously differentiable [3-2]. 

19 
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To represent splines, truncated power functions can be 

employed to construct a set of basis functions for the 

spline space.  A truncated power function is defined as 

m 
X
+ = 

x 

0 

m x>0 

x<0 

(3-4) 

A  spline  function  of    degree     n     and     number     of    nodes     n, 

S     (x),   has  a  unique  representation   [3-2]   of  the  form 
m, n 

n m " 

S     (x) = >   a x +  {ml)/ A c   (x-x. ) 

i = 0 i=l 

(3-5) 

where a  and c  are unknown coefficients to be determined, 
i     i 

To develop Sard's best q.f., let K(x) be a monospline 

of degree m [3-3] with n preassigned nodes. By definition, 

a monospline of degree m is a spline of degree m-1 plus a 

polynomial of degree m thus, K(x) can be formulated as 

m 

K(x)=—'S   (x) 
ml  m-l,n 

(3-6) 

It   is  known that   an  arbitrary monospline  can  give  rise  to  a 

q.f.    [3-4].     To  achieve  this,   set 

(i) (« 
K   (u)=K   (v)=0 (3-7) 

for i=0,l m-1, and using K(x) as the kernel [3-4], then 

20 
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c{  flx^+Rf 
(3-8) 

where 

/• (m) 
Rf= I f (x)K(x)dx 

w   it 

(3-9) 

)lvnomial of degree m-1 or Note that Rf vanishes if f is a polynomi 

less. If K(x) has the least square deviation (minimum 

norm) among all kernels of the form (3-6), then the 

q.f. (3-8) is called best in the sense of Sard.  Thus, 

V 

[K(x)] dx=minim urn 
(3-lf)) 

Schoenberg [3-3], (3-51  has  shown  that  there exists  a 

unique monospline H(x) of degree 2m 

2m 

H(x)= + S    (x) 
(2m)!   2m-l,n 

with nodes x1,X2,...  »xn' 

three conditions: 

(3-11) 

that  satisfies the  following 

H(xi)=0 i=l,2,... ,n 
(3-12a) 

9, 

(m+i) 
H  (u)=0 i=0,l,... »»-1 

(3-12b) 

21 
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(m+l)    „ 
H      (V)=0 i = 0 ,1, • • •   »«-1 

(3-12c) 

in   terms  of   H(x),   the   kernel  K(x)   of   Sard's  best     q.f.        is 

given by 

(m) 
K(x)=H   (x) 

(3-13) 

and the minimum norm of K(x) is obtained as 

)l2dx=(-l)m lj  H(x)dx (3-14) 

By normalizinq  [u,vl  to  [-1,11  and  applying condition 

(3-12b), H(x) simplifies to 

(X4I) 
H(x)=- 

2m 

2 m m-1     S  IV-Y   V 

-Va. .' S\ --^- 
/. i   ^j1  (2m-l) ! 

2m-1 
(3-15) 

Conditions (3-12a) and (3-120 produce m+n independent 

eouations, whose solution gives the coefficients a. and c. . 

An upper bound can be derived for the error ter.n Rf using 

ea. (3-9).  Thus, 

1 
(m) 

Rf= I  K(x)f ( 

■/, 

x)dx<| K| 
(m) (3-16) 

or 

22 
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Rf<(-iy \mr   H(x)dx 
(m) 

(3-17) 

The q.f. of  form eq. (3-8)  with  coefficients  c 

obtained  from  eq. (3-12) has some interesting properties. 

By varyinq m from 1 to n, eq. (3-8) presents a large family 

of quadrature  formulae.  The case m=lf if x  are placed 

uniformly, is  sometimes called  tne  pulse  approximation 

method.   An  upper  bound  for  the  error  term Rf can be 

derived when  m<n.  This property  is  an  important one 

because  it  makes  study of the error possible even in the 

simple case of pulse approximation.  When m=n the technique 

is called  Newton-Cotes method.  Newton-Cotes q.f. results 

in zero error for the class of polynomials of degree n-1 or 

less,  but no explicit error term is given if the integrand 

does not belong to this class.  The  following  example  is 

designed  to  aid the reader in better understanding of the 

best q.f.  in the sense of Sard. 

Let m=l and assume x, are uniformly placed on [-1,1]. 

Figure (3-2) illustrates the location of the nodes for the 

case of n=5. When the nodes are placed uniformly on 

[-1,1], the location of the nodes is obtained from 

1  i 
x. =-1 +2- 

1     n n 
(3-18) 

r 
23 
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Figure (3-2)   Uniform    spacing    of  the  nodes 
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Here the expression for H(x) is given by 

2    n 
(x + 1)    V^ 

H(x)=     ^0-2^ci(x"xi) + 

Equation (3-12b) then reduces to 

(3-19) 

n 

i=i 

c; =2 
(3-20) 

and eq. (3-12a) becomes 

n 

I> 
(Xi+1) 

(Xi-x; ) -ao=- 
(3-21) 

For i=l,2,...,n.  From eq 

Ci are obtained as 

uations (3-20) and (3-21), ao and 

ao ■JL 2n 

2 

n 

(3-22a) 

(3-22b) 

for 1-1,2 n.  Substituting (3-22b) in (3-8), the latter 

equation becomes 

1        n 

| f(x)dx=^-y^f(xi)+Rf 

M    ' i=i 

(3-23) 

To es timate Rf, the  norm of K(x)  must be  established. 

25 
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Thorefore, 

/ 

1 

H(x)dx=- 

1 

(x + l)3 

-1 
2n 

n 
I«     2 

1   i = l 

(3-24) 

4   1   (4n-l)    2 

3  n   3n      3n 

Thus the norm of K(x) can be obtained as 

1 

II   f 2 
K  =- / H(x)dx=— (3-25) 

Using the inequality of form eq. (3-16), the upper bound of 

Rf is then established as 

Rf< f  =( ) 
"  3n 

(3-26) 

And, as one would expect 

Lim Rf=0 (3-27) 

In the process of determining a o.f.,  one  is  faced 

with  the task of  selecting parameter m.  Equation (3-9) 
(ml 

requires that, for a given m,  f  must  exist,  and  this 

condition  is met  by most  functions dealt with in this 

dissertation for any value of m.  The  stability of  the 

26 



discrete system as well as the error term Rf are affected 

by the choice of m. Reference [3-61 studies the behavior 

of Rf for different classes of functions regarding specific 

values of m. In view of the conclusion at [3-öl, m=l, 2, 

and 3 are considered to be good choices for the problems 

discussed in this dissertation. 

3. 4  The Overdetermined Model 

A discrete image degradation system which is of full 

column rank is characterized as overdetermined. In 

practice this situation arises from either a dark 

background in the object scene, o.' over-sampling of the 

observation [3-7]. Assuming that the object exists only on 

some given interval la,bl, the observation at a given point 

x is formulated as 

•'a 

g(xi )= I f(s)h(xi-s)ds 

where x- is in [a ,b+—] and h{x) 
1 2    2 

function.  Thus, 

(3-28) 

is  a  space limited 

h(x.-s)=0 if 
L 

x. -s > — (3-29) 

i • 

Considering the above condition, eg. (3-28) becomes 

27 
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x+L/2 
9(1. ) = f lt{*) 

1  Jx.-L/2 
h(x .-s) ds 

i 

(1-30) 

Using a q.f. on the integral of ea. (3-30) and taking the 

nodes at a discrete set of points, the above model is 

discretized as 

*'. 
'■ 

*• 

g(xi)=Z/j f(>j)h(,ii-j 
(3-31) 

If the nodes s are placed uniformly (a valid assumption in 
j 

regard to image restoration problems), s . can be assumed to 

coincide with the integers on the real line without loss of 

generality.  Thus 

f 

» 

g(xi)=2^c •   f(J)h(xi-3) 
J 

(3-32) 

Equation     (3-32)     formulates     a    general      discrete       image 

degradation    process.       If    the observation g(x)   is  sampled 

uniformly at  points  x.=i,   then 

.  L-l 

g (i) ■/_jc •   f(j)h(i-j) (3-33) 

.xL-l 

Employing vector space notation, eg. (3-33) can be 

presented in a more compact form. To construct the vector 

space model, assume the object is defined with N samples on 

[a,bl.  Thus an object vector, f, can be constructed as 

28 
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l^fli) 
(3-34) 

for i-l,2,...,N.  Assuming  that  the  number  of observed 

samples is M, an M-dimensional vector, 2, can be defined as 

S =g(i) (3-35) 

for i-l,2,...,M.  The relationship between M and N is  then 

qiven by 

M=N+L-1 
(3-36) 

The vector space formulation of eq. (3-33) !< 

ä = Df 
(3-37) 

Where D is the overdetermined blur matrix, defined by 

A. 29 
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D   = 

Clhl        0 0 0 

c^     c1h1      0 

CLhL    l-^L-0! 

0 CLhL 

0 0 

c1h1 

0 c  h 
L L 

(3-38) 
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where 

h=[h1,h2,   ...,hL] (3-39) 

is the impulse response vector. 

* 

Equation (3-37) states the fundamental relationship 

which exists between an object vector and the corresponding 

observation. Under the present model there are more- 

observed samples than unknown parameters, which is a direct 

consequence of the condition imposed on the object scene. 

This condition (a scene with dark setting) is equivalent to 

knowledge that the object is in the window. Figure (3-3) 

illustrates that equal rate sampling of the observation and 

the object results in more observed quantities than the 

unknown parameters. The stability of the system of 

equations defined by eq. (3-37) can be examined by studying 

the condition number of D. This number depends on the 

shape and the variance of the blur function as well as the 

choice of the q.f. coefficients c. . Reference [3-8] 

contains a study of the condition number of overdetermined 

systems versus the degrading function h. 

3. 5  The Underdetermined Model 

Continuing on the discussion of the previous  section, 

a more  realistic  model  evolves  if no restrictions are 

31 
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— f(x)    (object) 

H^h 

r 

Figure (3-3)   Imaging  witu  dark background. 
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imposed upon  the  background of  the  scene.   The model 

developed  in section (3.4) is rarely very accurate because 

most scenes are not necessarily placed in a  setting  which 

has zero  intensity,  or even satisfy the less restrictive 

condition of constant intensity.  Often, in the process of 

restoring an object, the observed image is partitioned into 

many smaller  portions,  and these small  sections  are 

processed  separately.   This partitioning process,  by 

itself, contradicts any assumption made on  the  setting 

which  surrounds the image because different portions of an 

image do not share the same background as the whole  image 

does. 

*i 

Assuming lack of information about the background of a 

scene, the object is assumed to extend very far in both 

directions, and consequently, so does the image. But, 

being able to handle only finite segments, one should be 

able to construct a model which relates portions of the 

object to corresponding segments of the observation. 

Figure (3-4) illustrates the concept. 

Since the physical extent of the observation q(x) is 

smaller than the physical extent of the object f(x), the 

discrete observation S is represented by a smaller number 

of samples than the discrete object f. This, of course, 

holds true when the sampling rate is kept the same for both 

the object and  tne observation.  Thus,  for  an equal 

33 
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f(x) (object) 

»< w w w im w » 

— g(x)   (image) 

H^K 

Figure (3-4)   Imaging  with  unknown background. 
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samplinq rate, the system defining the degradation 

Phenomenon is equivalent to a set of linear equations which 

contains a greater number of unknown parameters than the 

number of equations available for solving for these 

parameters.  The i-th equation is given by 

g(x. )= > c. f (s)h(x -s) 1  * i J        i 
j 

(3-40) 

where x.  is  in  [a+L/2,b-L/2].   Following  the approach 

adopted in section (3-4), an N-dimensional object vector f, 

and an M-dimensional vector c| are defined.  Using notation 

B for the blur matrix, the model is expressed as 

£=Bf (3-41) 

where B is an MxN matrix, and 

M=N-L+1 (3-42) 

Since M< N, the blur matrix is not of full column rank, and 

for this reason B ;s called an underdetermined matrix. The 

blur matrix B is defined as 

P 

I P 
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B= 

CLhL    CL^1 

0 cLhL 

C1h1 

C  Ji, 

cLhL 

0 cLhU 

cjhj 0 

(3-43) 

Unlike the blur matrix D of the previous  section,  B does 

not  possess  a  finite condition number.  Thus, as will be 

discussed in the next chapter, the degradations  introduced 

under  the model  of  eq. (3-41)  are impossible to remove 

completely.   Another  major  difference between  the  two 

models  is  that  although  eq. (3-41)  is a more realistic 

model for image degradation phenomena, it does not possess 

a  structure which leads to the computational simplicity of 

the overdetermined model  of  ea. (3-37)  for  purposes  of 

image restoration. 

3(. 
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4.  NOISE FREE RESTORATION 

For the sake of simplicity, let H represent a general 

blur matrix of size M by N. The mathematical expression 

qoverninq the discrete degradation phenomenon, with H as 

the degrading matrix, is given by 

g=Hf (4-1) 

The above expression is a vector space equality, and in 

essence, it is a set of M linear equations with N unknown 

parameters. The most straightforward approach for 

recovering f, is to effectively invert H. If H is square 

and nonsingular, the estimate f is obtained as 

*  -1 
f=H g (^-2) 

where H"lli the inverse of H. unfortunately, H is seldom a 

square matrix, and even if so, H may not be invertible. To 

define an inverse process for the system eq. (4-1) which 

will work in all circumstances, a different inverse for H 

is defined as 

+        T    2 -1 T 
H = lim (H H +d I) H 

d-»- 0 

for rank N or 

(4-3a) 
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T  T 2 -1 
H = lim H (HH +d I) 
-  d-0 " 

:or rank H, where H  is  ca 
Ued  the  pseudoinverse 

C4-3b) 

of  H 

-t-r { v       T t has been 
,<.!,.  and  I  denotes  the  ld.ntlty »."Ix. 

that H
7 as defined by ea. ,4-3, , a^ays exists and 

proven that H, ^s uc u  ^f H  is 
v ^n-rart-ive property ot H  is iA 91   The most attractive F<. V 

is  unique  [4-21.   *"«» 

statea as toiiows.  Civen the observation a, th. ..tU.t. 

A  + 
f=H g 

(4-4) 

is the vector of minimum no 
rm among those which minimize 

(4-5) 

i- a-si 

The above prope 

restoration technique 

+ ^ t-hp kev approach to the roperty of H  introduces the key app 

s a adopted for nany imag 
e restoration 

appl 

com 

ications.     If    H    possesses     some 
specific    structure, 

station     o,  ^ .ay  be  .i.pUM-a .eatiy.     -   .X«P •. 

lf B u . s^e and sin^at ..trl. -hose Mtst < d.a^ona! 

en tries are  .ionzero 
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H= 

H(l)      0 0 

0 H(2)      0 

H(r) (4-6) 

:he  pseudoinverse  of  H becomes 

r 

+ 
H   = 

-1 
H(l)      0 0 

-1 
0 H(2)      0 

H{r) 

0 

0 

(4-7) 
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If H is of full column rank or U 1 row rank (two 

frequently encountered situations in image restoration 

tasks), simple forms for .H+ can be obtained. The next 

section deals with the problem when the rank of a matrix is 

equal to its row size. 

4. 1  Blur Matrix with Full Row Rank 

ssessing full row rank. Let B denote the blur matrix pos 

Then, the image degradation model is described by 

c[=Bf 
(3-41) 

The minimum norm estimate of an object blurred under 

eq. (3-41) is given as 

A  + 
f=B g 

(4-8) 

where B can be computed from 

+      T  T 2 -1 
B = lim B (BB +d I) 
"  d^O" "■" 

(4-9) 

Since B has full row rank, BB is nonsingular, and the 

li.lt on the right hand side of ec. (4-9) can be carried 

out yielding 

-42 
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+  T        T  2   1 
B =B { lim (BB +d I)} 

4-10a) 

or [4-3] 

+  T  T -1 
B =B CBB ) 

(4-10b) 

: 

Although eq. |4-lfb) suggests a much simpler method for 

computing B+ than eq. (4-9), an N by N matrix BB ^ ^ 

still be inverted. 

There are  two drawbacks  to  the estimation  method 

described  in this section.  The first stems from the fact 

that the model does not allow full recovery of the object 

vector  f since there are  fewer  equations than unknown 

parameters in the system of eq. (3-41).  The  second 

drawback is in the need for inverting a matrix of size N by 

N.  For moderate sizes of the object, the ill  conditioning 

of the matrix BBT could cause difficulties [4-4].  when 

relatively large images are to be  processed,  the  limited 

size of available computers  could put an intolerable 

restriction on the size of the object. Often in situations 

like  this,  the observation must be broken into smaller 

segments,  each of which is  used  to  estimate  the 

corresponding object  section.   Notice that although the 
A 

estimate, f, is not in general equal to the object, f,  the 

follow.-ng equality always holds 
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(4-11) 
Bf=Bf=ä 

4.   2     Blur   Matrix  wi th Full column  Rank 

Equation  (3-37)  describes  the model, where 

overdeternuned hlur matrix of form given hy ec   (3-38, 

D  is the 

(3-37) 

ä=Df 

nTn is always  invertible. 
Since D has full column rank,  D D is 

~ . ^f n ran be obtained as 
M  fi ^a^  the pseudoinverse of D can oe Using eq. (4-ja) , t"« v=> 

[4-3] 

+   T -I T 
D =(D D) D 

(4-12) 

Thus, the minimum norm es 
timate is given by 

+ 
f=D g 

(4-13) 

.re observed parameters than 
Since system eg. (4-9) has mo, 

^ obiect f can be recovered with no error, 
unknowns,  the oD^ect  s 

Thus, 

A + 
f = D 3 

(4-14a) 
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A   T -1 T 
f=(D D) D Df (4-14b) 

or 

A 
f=f (4-15) 

The above equality states the basic characteristic of 

overdetermined systems. Full recovery of the objecc is an 

advantage which only systems of full column rar* enjoy. 

Another superiority of these systems is in the possiblity 

of introducing efficient methods which drastically reduce 

the computational complexity of the associated filters. 

The next section introduces a technique in which the 

overdetermined model is modified to pave the road for 

constructing computationally simple filters. 

4. 3  A Circulant Model 

The objective in this section is to establish an image 

degradation vector space model equivalent to the one stated 

by eq.(3-37), in which the blur matrix D is replaced by a 

circulant blur matrix C. A circulant matrix can best be 

explained by illustration: a K by K circulant matrix has 

the following particular structure. 
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C    C 
I  2 

CK Cl 

K 

*   <k- 

(4-16 ) 

Each row, or column, of the above matrix is a circular 

right shift of the row, or column, immediately preceedinq. 

This property extends from the last row (column) to the 

first row (column) since the first row is a circulant shift 

of the i.ast row (column) . 

To set up a degradation model with a blur matrix of 

structure defined by eq. (4-15), two auxiliary vectors are 

defined as follows. Let K be an integer, where K>M and 

define an extended object vector of size K, f , where 

f (l)-f(i) —c for  i=l,2,..   ,N 

for  i=N+l,.. ,K 

(4-17) 

Likewise form an extended observation vector g of size K 
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3 {i)=3(i) 
c 

=0 

for  i = l,2,. • fM 

for  i^M+1,.. ,K 

(4-18) 

Next, placing the impulse  response vector  in  the  first 

column, construct a circulant matrix 

h(l)  0 

C = h(L) 

h(L-l) .   h{2) 

\ 

0    h{L) 

0   h(L-l) 

h(l) 

(4-19) 

The discrete convolution  summation of  eq. (3-30)   is 

equivalent to the vector space equality [4-5] 

* 

g   =  Cf 
c c 

(4-20) 

Eq uation     (4-20)     which     presents     the    desired    model,     is 

imilar     to    eq.   (3-37),     where g,   D,   and  f are  replaced by 
47 
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g , C, and f . 
*c  -      ~c 

It is known that a K by K matrix  whi-h possesses  K 

independent eigenvectors can be diagonalized through a 

similarity transformation (4-6].  Hunt  [4-7]  demonstrates 

that  matrices of the form of eq. (4-15) have K independent 

eigenvectors, and that the Fourier  transform diagonalizes 

circulant  matrices.   In   fact,   the  eigenvectors of 

circulants are the Fourier basis vectors.  Let A represent 

the Fourier transform matrix, thus 

2nj 
A(i,k)=exp{-(—£-)ikl (4-21) 

The similarity transform which diagonalizes the blur matrix 

C of eq. (4-19) is 

C=A"1A A (4-22) 

whe re A is the diagonal matrix of the eigenvalues of C 

* 

A 

L 

(4-23) 

•KJ 

The X. are obtained by Fourier  transforming the  first 

column of C.  Thus, 
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L-l 
2n,i 

Xi =y  iexp{-(i-l)k—-}h(k+l) (4-24) 

for i-l,...,K.   To  study eq. (4-20)  in  Fourier  space, 

substitute eq. (4-22) in eq. (4-20) to obtain 

g =A A Af 
•*c c (4--25) 

Next, eq. (4-27) is rearranged as the followi ng 

Ag  = AAf 
—c       c (4-26) 

By    definition    Ac^    and    Af      are     the    discrete      Fourier 

transforms of  the vectors 3    and   f   ,   respectively. 

F =Af 
~c —c (4-27a) 

G   =Ag 
~c —^c (4-27b) 

where 

F   (i) = 
c "■•^Sc"-1 

k=0 
K-l 

G   (i) = 
c 

i.) = (^)ggc (k+i 

,   .      2nJ )exp{-(i-l)k—} 

znj 
)exp{-(i-l)k-ii-} 

K 

(4-28) 

t 
for   i=l,...,K.     Thus,   in  the  transform    domain. eq.   (4-20) 
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simplifies  to 

(4-29) 
G  = AF 
— c    —» 

i     m=.vriv       ea     (4-29)     is     actually     a ;ince A  is  a diagonal    matrix,     eq.   ^ 

scalar   equation 

G   (i) = X. F   U) 
(4-30) 

fo 

eq 

r   i=l,...,K.    To    restore    lc .     mu 

-1 
. (4-29) by A . Thus, 

Itiply both sides of 

A  -1 
F = AG 

(4-31) 

)r   in  the  scalar  form 

F   (i)=-1-G   (i) 
c X .   c 

i=l,..   fK 
(4-32) 

Invecfee   Fou 
rier  transforming  of i   results  in the estimate 

A ^A 

Srftc 
(4-33) 

The object estimate, i.  can be obtalnea by extracting out 
A 

the first N entries of fc.  That is. 

A     TM A (4-34) 
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N , 
where 81  is a selection matrix of the following for m 

SI N _ I   0 (4-35) 

Figure (4-1) illustrates the relationship between the 

models expressed by eq. (3-38) and eq. (4-20). 

As noted earlier, the model developed in this section 

is equivalent  to the overdetermined model established in 

section (3. 4); thus, the restriction of objects with dark 

background still exists.  The incentive for taking a detour 

by introducing  the  circulant model  is  in  the present 

system's computational superiority over the previous model. 

The inverse filter, A , used in estimating  f  does not 
—c 

require a matrix inversion. Thus, the ill-conditioning, or 

the large size of the system is not a major obstacle in the 

process of computing the circulant filter. 

4. 4  Experimental Results 

Figure  (4-2)  illustrates  an  object  with  zer( 
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a)   yc= C f 

0 

ic   r ic 

0 

b)    fc-= C'1!« 

13 

Figure (4-1)   The   relationship between the  overdetermined 

model  and the  circulant   model. 
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Figure (4-2)   The test object. 

h 

i 
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background. The object in this case is a set of bars of 

constant intensity separated from each other by a set of 

bars with zero intensity. The object and its background 

form a square picture which is sampled at 256x256 uniformly 

spaced points. Figure (4-3a) shows this object after 

undergoing a one-dimensional blur degradation of Gaussian 

shape with standard deviation of 2.5 pixels. Figure {4-3b) 

shows the estimate. This estimate has been obtained using 

the method explained in section 4. 3. Since the 

restoration has been performed in the Fourier domain (a 

sclar operation) , the relatively large size of the image 

is of no concern. The estimate is identical to the object 

itself. This interesting achievement holds for all 

examples in which the object possesses a black background, 

and the environment is noise free. Figure (4-4a) 

illustrates the object after undergoing an extreme amount 

of blur. The degradation models a motion blur for which 

L=15.  Figure (4-4b; is the estimate which is error free. 

* 

If the images discussed above were to be restored 

using an underdetermined model (section 4. 1), the large 

size of the image would require that the observation be 

partitioned into smaller segments. Note that an estimate 

of thfl form given by eq. (4-8) cannot be obtained by direct 

Fourier techniques [4-5], [4-8]. Figure (4-5) plots the 

error for the underdetermined model estimate. Each 

observed  segment  has 25 pixels and is assumed to estimate 
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17 pixels of the object. The error is plotted for two 

different blur models: a Gaussian shaped blur of standard 

deviation 2.5; and motion blur. In both cases L is assumed 

to be 9. 
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5.  WINDOWING OPERATOR 

The  previous  section  introduced  a circular  image 

degradation model  which  resulted  in  a  computationally 

efficient  restoration  technique.   Unfortunately,   this 

technique can only be applied to a scene which possesses a 

dark background.  Hence, portions of a given image,  or  an 

object  placed  in  a  nonzero  intensity setting cannot be 

recovered by brute forcing  the  circulant  filter  on  the 

observed  image.   in fact, since this kind of imaging can 

not be expressed by an overdetermined model, employment of 

a system of  the  form of eq. (4-20) for representing the 

degradation phenomenon, when objects of unknown  background 

are involved, can cause a modelling error at the boundaries 

of the image.  This error can be looked  at as signal 

correlated noise;  hence, considering the ill-conditioning 

inherent in imaging models,  the implementation of the 

circulant  filter becomes catastrophic.  To illustrate this 

claim, figure (5-1«) is selected as  a  test  image.   This 

image is obtained by slightly blurring the original object. 

Figure (5-lb) shows the same image after an attempt is made 

to restore the center portion of the object by utilizing 

the fast Fourier technique of eq. (4-31).   Observing  the 

high frequency noise component in figure (5-lb), it is 

evident that an unwise choice of a degradation model not 

only  does not  improve the observation,  but,  on the 

contrary, it could be quite destructive.  To approach this 
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problem in a more systematic manner, th* relationship 

between the background of the object, the system model, and 

the observed image must be studied. The next section 

discusses this subject and suggests means of treating a 

given observation in order to modify the physical samples 

to suit a desired model. 

5. 1  Overdetermined System with Unrestricted Observation 

The primary difference between the two sets  of 

equations  (3-41)  and  (3-37) is stated as follows.  There 

are only M equations (or observed parameters) in the system 

of eq. (3-41) to solve for M+L-l unknown parameters, thus, 

since L>1,  an exact restoration of  the  object  is 

impossible.   On  the other  hand, the system described by 

eq. (3-37) has M  observations  for  only M-L+1  unknowns. 

This means that number of equations is actually larger than 

the minimum number necessary for a complete restoration of 

the object.   NOW,  considering the assumption made on the 

data of the  latter  model,   it  appears  that  the 

overdetermined model  is in essence equivalent to its 

underdetermined counterpart if some  of  the  unknown 

parameters of the underdetermined system are set to be 

equal to  zero.  An M by N underdetermined system is 

represented by 
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2=Bf 
(3-41) 

The following lenu.a states the compatiblity of system 

eq. (3-41) with an overdetermined system of form 

eq. (3-37), where the corresponding blur matrix is of si 

M by M-L+l. 
ze 

Lemma 5-1. The underdetermined system of eq. (3-41) 

becomes equivalent to an overdetermined system of the form 

eq. (3-37) if the first and the last L-l entries of the 

object vector f are set equal to zero. 

Proof. Let e represent the object vector after the first 

and the last L-l entries are set to zero. 

e(i)=f(i) 

e(i)=0 

if L<i<N-L+l 

otherwise 

(5-1) 

and assume d,  a vector of  si 
ze M-L+l,  represents  the 

nonzero center portion of e.  The observati 

to object e is given as follows 
on corresponding 

£=Be 
(5-2) 

Notice that 

h 

'■ 
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Be=Dd (5-3) 

where D is the overdetermined matrix  of dimensions M by 

M-L+l  and  is given by eq. (3-34).  Equality (5-3) holds 

because of the particular structure that both D and B have. 

If eq. (5-3) is substituted in eq. (5-2) then 

3=Dd (5-4) 

Equation (5-4) is the desired result. To find 3,  subtract 

eq. (3-41) from eq. (5-2) giving 

q-g=B(e-f) (5-5) 

or 

3=ä-B(f-e) (5-6) 

Introducing an N by N selection matrix sH 
-N 

S1^ 
-N 

(5-7) 
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eq. (5-6) simplifies to 

=q-BSLf U=q-BS (5-8) 
N- 

Equation (5-8) holds true since 

f-e=SLf 
 N- 

(5-9) 

The role of S  is to select the first and the  last L-l 
-N 

entries of f. Vector f-e, in fact, represents the 

background of the object, and vector B(f-e) in eq.(5-6) 

represents the contribution of this background to the 

image. 

What lemma (5-1) suggests is restated as follows. Any 

observed image can be suitably processed for an 

overdetermined modex provided that the intensity function 

describing the setting of the object is obtainable. The 

major drawback of the above statement is that the intensity 

function of the surrounding of the object is not usually 

known a priori. But often this function can be estimated 

with an acceptable accuracy. This is the subject of tne 

following section 

5. 2 Windowing of the observation 

Since  the only available  source  of   information 
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concerning the scene is the observed vector, the estimator 

which estimates the object background must take use of the 

the physical sample vector 3. Assume that matrix W 

represents the combination of a background estimator plus 

the system which removes the effect of the estimated 

background from the observation. The product of the image 

vector, £, by matrix W results in the desired observation, 

g, which can, successfully, be used in an overdetermined 

system. The structure of matrix W (the windowing matrix) 

is explained in the following paragraph. 

Let 2 represent the observation vector if the first 

and the last L-l entries of f are zero. The objective here 

is to express 3 in terms of the elements of the observation 

£ according to the relation 

q(i) = 

g(i)-2_/(L+l-j)f (j + i-1) 

9^)  L-l-M+i 

g(i)-V\(j)f (N+l-j + i-M) 

if i<L 

L<i<M-L     (5-10) 

if i>M-L+l 

j = l 

Since the entries of f are not known, the correspondence of 

eq. (5-11) cannot be made directly. However by making an 

assumption on the continuity of the original image vector 

that 

f(i)=f(L) for i<L 

and 

(5-11 ) 
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f(N-i+l)=f(N-L) i>N-L (5-12   ) 

then  the  vector  3 can  be estimated as 

a=W2 (5-13) 

where W is an M by M matrix of the  form given by 

eg. (5-14). 

A zero order predictor is inherent in the structure of 

matrix W expressed by eq. (5-14). The prediction of the 

image background is the main idea in expression (5-13). 

Therefore, the success of the operation defined by matrix W 

depends on the validity of the prediction method used to 

obtain W. There are, of course, other prediction methods 

which can be employed. For example a first order predictor 

results in a smaller (overall) mean square error.  Figure 

r 
9t 
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f 

f. 
4 

if 

w= 

h(l) 
L 

i=3 

• • 

(i)  1 

L 
-£h,i, 
i=L 

0 

L1 

-^h(i) 

i=l 

L-2 

1=1 

0   h{l) 

(5-14) 

(5-2) illustrates the expected mean square restoration 

error of the object-estimate for two prediction alqorithms, 

as a function of element correlation p. Fortunately the 

zero order predictor, in practice, produces sufficiently 

accurate results. Since this predictor has a simple form, 

it has been employed in the remaining material of this 

text. 
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It is interesting to note that the physical 

contribution of multiplying an image vector by W is an 

attenuation of the first and the last L-l entries of the 

corresponding vector. This is expected since the 

observation resulting from the class of objects encircled 

by a dark region illustrates dim object boundaries 

(boundary of the object with its background). Figure 

(5-3a) represents the general form of a typical observed 

image line while figure (5-3b) shows the same image 

function after undergoing a windowing operation. 

5. 3  Error Analysis 

Assume x, a vector of size N, represents the object, 

and let 

g=Bx (5-15) 

symbolize the observed image after x has undergone a 

degradation of known impulse response. The size of g is 

given by 

M=N-L+1 (3-38) 

The objective hare is to estimate the center elements of x 

using the overdetermined system model. Since the physical 

sample vector g. and the system equation  (3-41)  are not 
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Figure (5-3)   A blurred  image   line. 
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compatible, the observed vector 2 must undergo the 

windowing operation described in the previous section. The 

modified observation, q, is obtained as 

3=W2 
(5-16) 

or 

g=WBx 
(5-17) 

At this stage, the filter derived for the overdetermined 

system. Sec. 4-2, can be employed to estimate the center 

part  of x.     Tiierefore, 

A  + 
f=D q 

Where, D+is given by eq. (4-12), and  f is  th 

(5-18) 

e estimated 

center part of x.  The length of f, K, is given by 

K=M-L+1 
(5-19) 

If    expression     (5-17)     is     used     to    substitute       for 

eq.    (5-18)   becomes 

A    -f 
f=D  WBx 

(5-2«) 

(*. 
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Let *i a vector of Si2e -  , olze K, denot 
ldeal  image vector 

•   the center 

using  the  select! 
*•     This 

on matrix 

Portion  of  th< 
vector  can  be extr 

acted  from  x 

K 
S2    = 
— N 

Thus 

N 

(5-21) 

f! 
'- 

if-saj x •- —N ~ 

(5-22) 
Figure   (5-4)    ni 

>3 «J   illustrates    the    ™ 

The estimation  err 0r'  e  is dei-ne d  as 

A 
e=f-f 

(5-23) 

To  analvzp   ^^.ö 

^ the error vector  from    , ,,,,.   ^ 

""■     the error  vector e ,. . 'Uti'"<*    Point    of 

- ~d to   he  mean   „„_ 
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assumption is merely made for the sake of convenience. It 

is always possible to subtract the mean value of the object 

from x. This will automatically modify all the 

corresponding vectors to become mean zero. The error 

covariance matrix, R , is defined by 

R =E{eeT} (5-24) 

Where, the notation E denotes the ensemble average.  Using 

the expression for e from eq. (5-23), R becomes 
- —e 

A     AT 
R =E{f-f )(f-f ) } (5-25) 

or 

R  =E{ffT}+E{fJr}-E{ffT}-E{ffT} (5-26) 

Let 

R =E{xxT} 
~x   — 

(5-27) 

represent the correlation matrix of the object. The right 

hand side of eq. (5-26) can then be evaluated element by 

element as 

Elff7}^^ E{xxT} fS2^ )T (5-28) 
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or 

AAT       K K   1 

E{ff   }=S2     R   (S2      ) 
~       —N     x   —\ 

(5-29) 

The  second   term  can be evaluated as 

AAT       + T     T   T    +T 
E{ff   }}=D  WB[E{xx   }]B  W   (D   ) (5-30) 

or 

AAT  +    T T ., T 
E{ff }^D WBR B W (D ) (5-31) 

The expected value of fjf  can be obtained as 

AT  +      T    K T 
E{ff }--D WB[E{xx }] (S2  ) (5-32) 

or 

r 
E{ff }=D WBR (S2^ ) x  N 

Likewise E{ff } can be derived as 

(5-33) 

AT K      TT    +T 
E{ff   }=S2^ RxB W   (D   ) (5-34) 

Now the  total  error  covariance can be expressed  as 
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Re=D+WBRxBTWTDis2K  «x ( S2 ^)-D+WB^ ( S2^  ) 

-S2l<RxBTWT(D+)T (5-35) 

It is possible to process the physical samples of the 

blurred image, g, with the filter derived under the 

underdetermined system model assumption.  In this case the 
A 

„lit« is given by eq. (3-41).  Therefore, the estimate, x, 

is given by 

A + (5-36) 

And the center portion of the estimate,  f,  is simply 

obtained by premultiplying eq. (5-36) by S^ to yield 

A   KA (5-37) 

or 

ik^ä (5-38) 

The error term 

A 
e=f-f 

has the following covariance 

(5-39) 
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A    AT 
R =E{(f-f)(f-f)l 

(5-40) 

ibed  in  the Going through the steps similar to those descr 

evious case, the error covariance can be derived as pr 

R=S2K [I-B'BIR [1-^81(82) 
-e—N - - - -x 

: T (5-41) 

where, I is the M by M identity matrix.   Figure  (5-2)  of 

the previous section illustrates the expected mean square 

restoration error of f as a function of the correlation of 

elements  in £ under the assumption that f is a sample of a 

Markov process with correlation factor p. 

? 
^ 

I 
Ik 

Figu.e (5-2) illustrates that, except when the object 

element correlation coefficient is near unity, the error 

resulting from the estimate given by eq. (5-20)  is  larger 

than the one resulting from ecj. (5-38) .  But, considering 

that most images observed by a human viewer possess  strong 

correlation  among  their  sampled pixels,  this extra 

contribution of error is not, usually, unreasonably high in 

practice.   Also,  with the D operator, contained  in 

eg. (5-20), it is possible to perform the restoration by 

Fourier domain processing quite efficiently. 
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5. 4  Experimental results 

Figure (5-5a) illustrates an  image  com-pted  by a 

Gaussian blur  modelling  a blur  degradation  caused by 

imaging through a turbulent atmosphere.  The center portion 

of the image has been filtered to produce the corresponding 

section of the object.  A zero order predictor was employed 

for estimating  the object background, and the restoration 

is performed  in  tho Fourier  domain  as  indicated  in 

Sec. 5. 3.  Figure (5-5b) shows the image after the central 

portion of the object hcs been restored.  Unfortunately, 

since the background predictor  Is not error free, the 

filter is not applicable for severe amounts of blur.  Since 

the system modelling the degradation process is basically 

ill-conditioned,   the   restoration   technique   greatly 

amplifies any  uncertainty in the observation.  Figure 

(5-6a) illustrates a test object after undergoing a severe 

amount of blur.  Figure {5-6b) is an attempt to restore the 

object,  which clearly has been unsuccessful.   If the 

background of the object  is of constant intensity, the 

zero-order predictor inherent in the windowing matrix can 

make an exact estimate of the background.  This would 

insure an  error  free  observation.   Figure   (5-7a) 

illustrates this case.  The center part of the object has 

been processed  to artificially  generate  a  constant 

intensity  background.   Figure  (5-7b)  is the restored 

version of fig. (5-7a).  As before, only the center part of 

78 









T r*^*^mmmi**> >'** •'"U" 

the object is restored. 
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6. NOISY RESTORATION 

The models formulating the image degradation 

phenomenon in the preceeding chapters have ignored the 

presence of noise. In practice, however, imaging systems 

are seldom totally noise free. In image forming systems, 

noise or uncertainty may arise from a variety of sources; 

probably the most common sources of noise are measurement 

and recording errors. Scanners, the devices which measure 

images, invariably add an element of uncertainty to the 

measured (or scanned) signal [6-1]. Usually, after an 

image is scanned, it is operated upon in a computer of 

finite precision, creating truncation errors. Coding and 

channel errors are caused if the particular image is to be 

transmitted through a noisy channel [6-1]. Lastly, film 

noise may be added to the image when the signal is recorded 

[6-2]. It is, of course, impractical to make an exhaustive 

list of all noise producing elements in an image forming 

process, but the noise sources listed above are the most 

significant. 

The next section studies the continuous image 

degradation problem in the presence of additive white 

noise. 

6. 1  The Continuous Model 

8 3 
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The continuous image deqr?.( ..tion model of eq. (2-1) is 

modified in the presence of additive white noise to 

aC 

g(x)=/ f(s)h(y-s)ds  +n{x) (6-1) 

where n(x) represents the noise component. As a result of 

the existence of noise in the system, the inverse filtering 

technique cannot be employed to recover the object. If any 

attempt is made to force the inverse filter to process the 

physical sample image g(x), the high frequency component of 

the noise will be greatly amplified ruinin' the 

restoration. To avoid high frequency amplification of the 

noise, the inverse filter can be truncated at a certain 

point. The point can be selected so that bayond this point 

the noise power exceeds the signal energy [6-3). Figure 

(6-1) illustrates tnis method. 

A more intelligent technique to recover the object in 

the presence of noise is the classical Wiener filter. This 

filter controls the noise component by keeping into account 

the ratio between the signal power and the noise variance 

at each point of the Fourier space. The Wiener filter 

output is a minimum mean-square error estimate of the 

original object, provided that the statistics used in the 

filter ato carefully obtaineo. 

»• 
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Figure (6-1)    Truncated   inverse  filter. 
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6. 2  The Discrete Wiener Filter 

in the presence of noise,  the  system qoverning  the 

image degradation phenomeno n is formulated a^; [6-3] 

2=Hf+n 
(6-2) 

where H is a blur matrix and n is the noise component 

vector. Tc derive the minimum mean-square error filter for 

the system described by eq. (6-2) the well known 

orthogonality principle [6-4], [5-6] can be employed. 

Letting U represent the desired filter; the estimate f is 

obtained as 

A (6-3) 

According to  the orthogonality principle the  following 

equality must hold 

A T 
E(f-f)ä =i 

(6-4) 

After substituting for f from eq. (6-3)  and carrying out 

the appropriate steps, the solution is given as [6-3] 

U=R HT(HR HT+Vf 1 
 f - —f -  " 

(6-5) 

where R is the correlation matrix of the object and V is 
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the noise correlation matrix. The object and the noise are 

assumed to be uncorrelated. The following matrix identity 

[6-6] 

AB 1T(C+BABT)"1=(A ^B1^ ^ ^BFC'1 (6-6) 

can be used to obtain a different formulation for filter  U 

given by 

-1 _ -1 -1 T -I 
U=(R +^7 H) H V - _f _ _ _ _ _ (6-7) 

The error variance matrix C  is given as [6-7] —e 

-1   T - 1 
C ^-(R HT) (HR HT+V)' (R H ) -e -f  -f-  —f-  -'  -f- (6-8) 

And by using the matrix identity (6-6; 

-1 T -1     T   T -1 
(£ +^ AB) =£"£§ (BCB +A) BC (6-9) 

the- error term simplifies to 

C =(R"1+HTV'H)' (6-10) 

: 

For a white noise  process,  the  noise correlation 

matrix has the following simple form 
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V=# I 
(6-11) 

where d2 is the noise power, and  I denotes  the  identity 

trix.   Representing  the  image power by i .   expression ma 

(b-7) becomes 

U=(z  C +d  HlH) H d (6-12) 

or 

-1   T -1 T 
U=(S C +H H) H (6-13) 

where C  represents  the normalized object  covanance 

ma trix,  and  S  represents  the  signal  to  noiFe  ratio 

z (6-14) 

Likewie, expression (6-5) simplifies to 

1 -1 
U=C HT(HCf H

T+S I) 
 f - —f - 

(6-15) 

Although expressions (6-13) and (6-15) are equivalent, the 

first expression is employed when blur matrix H is of full 

column rank (type D), and the second one is used if H has 

full row rank (type B) . The reason for this is simply 

because of computational  savings.   Note that  for  an 
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overdetermined matrix  the  number of columns is less than 

the number of rows (Sec. 3.4).  Hence,  the dimensionality 
T 

of  HTH (NxN) is less than the dimensionality of HH  (MxM). 

And, for an underdeternr ned matrix, the order is reversed; 

the dimensionality of HTH (NxN) is less than the 

dimensionality of HHT (MxM). Thus, for the case of 

overdetermined matrices an N by N matrix (N<M) has to be 

averted, and in the other case (underdetermined blur 

matrix) the inversion of an M by M matrix (M<N) is 

required. 

The necessity of inverting matrices of relatively 

large size is an unattractive property of the discrete 

Wiener filter. To prevent this, the next section 

introduces a technique which eliminates the matrix 

inversion requirement. 

6. 3  The Fast Wiener Filter 

Section (4. 3) introduced an image degradation model 

which, by utilizing the Fourier domain properties of 

circulant matrices, successfully eliminated the matrix 

inversion requirement of the pseudoinverse filter. 

Although the circular model provides attractive 

computational savings in a noise-free environment, i- 

cannot be applied to a noisy observation. In fact, since 

the windowing operation of Sec. (5.2) introduces an element 
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of uncertainty in the observation space, the fast 

pseudoinverse technique is. unable to recover the object 

after it has undtvgone a severe amount of degradation. To 

overcome this shortcoming, it is necessary to consider the 

existence of noise in the system. Thus, this section is 

devoteu to the derivation of a system model which retains 

computational simplicity and, at the same time, tolerates 

noise-corrupted observation samples. 

In the presence of additive noise, the image 

degradation model with a circulant blur matrix C is 

formulated as 

c  c 
(6-16) 

According to the developments and the definitions 

established in Sec. (4. 3), both vectors £ and f are of 

size K (K>M), and represent the hypothetical observation 

and object, respectively. Since the actual physical sample 

image, 3, is of size M and the actual object vector, f, is 

^f size N, the lost K-M entries of g are oure noise, and 

the last K-N entries of fc are deterministic and equal to 

zero. In searching for a minimum mean-square error filter 

corresponding to the observation in eq. (6-16), the Wiener 

filter may seem the logical candidate; however, this is not 

true. To illustrate this fact, consider the Wiener filter 

solution for the white noise case as given by 
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-1-1    T   -1   T y=(s c +c c) c 
»e 16-17) 

where  C    is  the covariance matrix  of  the object.     Since  the 
c 

covariance matrix Cf is not circulant, the undesirable KxK 

matrix inverse operation cannot be avoided by simply 

Fourier transforming the filter. Furthermore, since some 

of the entries of f are deterministic, C. is a singular 

matrix, and thus Cf does not exist. The preceeding 

argument implies that a circulant Wiener filter is not 

achieveable because of the particular statistical 

properties of the vector f . It is conceivable that a 

circulant and nonsingular covariance matrix could be 

obtained if the postulated object vector, f , had a proper 

statistical background. To obtain a nonsingular covariance 

matrix, none of the entries of f can be deterministic. To 

achieve this result, form a new vector f by augmenting the 

actual object f with a vector ^ which has certain desired 

statistical properties to be described later. The 

augmented vector is 

f = 
~c (6-18) 

i 

The covariance matrix of the above vector ii 
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T 
E(f   f   )= 

~c —c 

-f     -fy 

C   ,   C -yf   ^y 

where 

C =E(ff     ) 

(6-19) 

(6-20) 

is  the actual  object  NxN covariance matrix,   and 

H 

A 

■ 

Cr =E(fi
i) 

and 

C =E(Y^1) 
-y 

(6-21) 

(6-22) 

is the (K-N)x(K-N) dimensional covariance matrix of j. At 

this stage, the aim is to illustrate that a certain 

statistical assumption on ^ plus a specific value of K can 

result in a circulant and positive definite matrix C,. 

As an example let the object vector, i,     consist  of 

exactly four samples given by 

f^fj ,f, ,f3,f4 ] (6-23) 
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i 

Assuming that f arises from a Markovian random process, the 

covariarce matrix of f has the following form 

C = 

2  3 
P  P  P^ 

P 1 P P 

p2 p 1 p 

3 2 
P P P 1 

(6-24) 

where p is the element correlation coefficient. Since the 

size of f, N, is four, C is of size 4x4. Selecting K to 

be equal to 6, a 6 by 6 circulant matrix is introduced 

Ic 

1   p   p2 p3 p? p 

p     1     p     F?   P3   P2 

P2   P P     P2   P3 

p3   F?   p     1     p    p2 

P2   P3   ^    P     1     P 

p     p2  p3   p2   p     1 

(6-25) 

f 
ä 

Since the matrix in eq. (6-25) is symmetric, it must be 

proven that it is positive definite in order to conclude 

that C   is  indeed a covariance matrix.  Since  C  is 
ic -f 

circulant, Fourier transformation of the first column can 

generate the eigenvalues of this matrix [6-8]. Figure 

(6-2) lists all the eigenvalues of C according to their 

number.  Since the element correlation is always less  than 
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1 

2 

3 

4 

5 

(l+p)(l+p+p   ) 

(Up)2 (1-p) 

(1-P)2(1+P) 

(l.p)(l-p+p  ' 

(1-P)2(1*P) 

(1+P)2(1-P) 

(a)   List of eigenvalues 

k Xk 

1 5.5623 

2 .1901 

3 .0048 

4 .0476 

5 .0048 

6 .1901 

(b) List of eigenvalues for the case of p=.95 

Figure (6-2)   Eigenvalues of a 6  by 6 extended 
object covariance matrix. 
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unity,     all     the     eigenvalues    are  positive.     Thus,   Cf   is  a 
c 

positive definite and circulant matrix.  Since K=6 in  this 

example, vector ^ is exactly of size 2 

l=(Yry2 (6-26) 

According     to    eq.   (6-25),     ^    must    have       the       following 

statistics   (^  is  mean-zero) 

C  = 

and 

C-<y 

l    P 

P    l 

P2P 
3 2 

P P 
2 3 

P P 

2 
P     P 

(6-27) 

(6-28) 

Equations (6-27) and (6-28) can be used  to  generate the 

random process samples ^. 

To generalize the above example, the case of an 

N-dimensional object is considered here. Parameter K is 

selected according to the following rule 

K=N+N-2 (6-29) 

95 



' 
mmmm mmm'^mmm «^'"        in ij iiiii III.II.I ii«»«^»«»^ "i \i m^arm*mmmi'^^^m^mmimmm^**mmmmiimm^*^^*~ 

And similer to the covariance matrix of eq. (6-25^,  a KxK 

covariance matrix  is  constructed using the NxN Markovian 

matrix.  To acheive this, N-2 center entries of the  first 

row are folded over and attached to the first row itself to 

produce the first line of  the  KxK circulant covariance 

matrix.   Since the resulting matrix is circulant, only the 

first row is needed  to construct  the  remainder  of  the 

matrix.   Figure (6-3a) illustrates the first row of an NxN 

Markovian matrix, and fig. (6-3b) shows the resulting first 

line of the circulant matrix.  Figurt (6-4) illustrates the 

resulting KxK circulant matrix.  The eigenvalues of  this 

matrix can be obtained by Fourier transforming the first 

row of the matrix itself. 

Let a K-dimensional vector  r,  which  represents  the 

first row of the circulant matrix, be defined as 

r=[ 1  p  p2 ...  f^-V1 PN-*..  P2  Pi (6-30) 

The Fourier transform of r, R, is a vector of size K which 

is obtained from 

R=Ar (6-31) 

where A represents the discrete Fourier  transform matrix. 

The vector R contains the eigenvalues of the matrix in 

fig. (6-4).  Since r has a particular  structure,  it  is 
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(      1 P P ?       ... ^^P^] 

a) First line of an N by N Markovian covariance matrix 

I 1 P P f 3 N-2 N-l N-2 N-3     2   . 
P   P    P   P  • ' '  P  P J 

*: 

b)  First row of the resulting Markovian circulant matrix 

Figure (6-3)  The first line of an NxN Markovian matrix 

qiveo rise to the first line of a circulant matrix. 
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1       P 

P      1 

2 
P       P 

2 
P 

P 

1 

2       3 4 
P        P P 

2 3 
P       P P 

N-3  N-2   N-l     N-2  N-3 
P        P        P P        P 

N-4  N-3   N-2 N-l    N-2 
P        P        P p        p        , 

N-5  N-4   N-3 N-2   N-l 
P        P        P pp. 

N-3  N-4  N-5 
P       P       P        . 1 P 

2 
P 

3 
P 

4 
P 

N-2  N-3 N-4 
P       P       P        . P 1 P 

2 
P 

3 
P 

N-l   N-2   N-3 
P        P        P        . 

2 
P P 1 P 

2 
P 

N-2  N-l   N-2 
P       P       P        . 

3 
P 

2 
P P 1 P 

N-3   N-2   N-l 
P        P        P        . 

4 
P 

3 
P 

2 
P P 1 

N-l   N-2   N-3    N-2   N-3 
P        P        P P        P 

N-2  N-l   N-2     N-3  N-2 
P       P        P P       P 

2 
P        P 

P        P 

4        3 
P        P 

N-l   N-2 
P        P 

N-2     N-l 
P        P 

N-3  N-2 
P       P 

N-2  N-3 
P       P 

N-3  N-2 
P       P 

1        P 

P        1 

Figure   (6-4) Circulant  covariance matri; 
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possible  to find a closed form solution for the entries of 

R.  By definition of the Fourier  transform,  the  (k+l)th 

entry of R, R(k+1),   ^  given as 

2N-3 

P. (k + l)=I}^ + 1)eXP{-l^^1Jk} (6-32) 

where k varies from zero to K=2N-3, and  i  is the square 

root of unity.  Equation (6-31) can be partitioned as 

N-l 
T"^ 2ni   1 IWIJ. 

R(k+1)=> r(j + l)exp{-l-(2i^2r1:i * 
i=0 

r(j+l)exp(-[ (2N.2)ljk} 
(6-33) 

The exact value of r(j+l) can be obtained from eq. (6-30). 

If eq. (6-30)  is used in eq. (6-33), then along with 

further  simplifications the  followinq equation  can  be 

obtained 

k N-1 
R(k+l)=l+(-l) P 

+N p^ {exp[-   +exp[ J—1 ) 
2N-2 2N-2 

or 

N-2 
k N-i ^r-nj    2njk 

R(k+l) = l+(-l) P +2ff  Cos[-2N.2" 

Obcer^'inq the followinq identity [6-9] 

(6-34) 

(6-35) 
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N-l; 
N N+l 

VP Cos(jt) = 

or 

[l-pCos(t)] [l-p^Cos(Nt)l+p    Sin(t)Sin(Nt) 

l-2pCos(t)+F? 

l-pCos(t)+pN+Cos(N-l)t-p Cos(Nt) 

1  
l-2pCos{t)+p 

(6-36) 

(6-37) 

eq.      (6-35)   further   simplifies  to 

k   N-l 
R(k+l)=-l-(-l)   P    + 

N + l N„     ,„.., 
l-pCos(t)+p      Cos(N-l)t-p Cos(Nt) 

2 2 
l-2pCos(t)+p 

(6-38) 

where t=-—k. Equation (6-38) is the desired result which 

provides a closed form solution for the eigenvalues of the 

matrix in fig. (6-4). In order to use the matrix in 

fig. (6-4) in the fast Weiner filter equation, fig. (6-4) 

must represent a covariance matrix for real data. Thus, 

the matrix of fig. (6-4) is required to have nonnegative 

eigenvalues, which is the subject of the following lemma. 

s 

Lemma (6-1). Figure (6-4) illustrates a nonnegative 

definite matrix which becomes singular only when p=l. 

Hence, this matrix is positive definite for all the values 

of p such that 0<p<l. 

Proof.   It  must be  illustrated  here  that  R(k+1)   of 
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eq. (6-38)  is  nonnegative  for  all  the increments of k. 
n Since t--—-k, then 

t 

(N-i)t= nk (6-39) 

and 

Cos[(N-l)t] = {-l), (6-40) 

Also 

Nt=nk+l^Tk (6-41) 

thus 

Cos(Nt)=(-l) Cos(t) (6-42) 

Equations  (6-40)  and  (6-42)  can  be  substituted   in 

eq. (6-38) to give 

kN-1 l-pCos(t) + (-l)
kpN+1-(-1)

kpN
Cos(t) 

-1+ -1  p  +2 .  R(k+l)=-l+(-i) p +2 

l-2p+Cos(t)+pi: 

or (6-43) 

K(k+i)= 
(i-p2)ii-(-i)kpN-Ii 

l-2pCos(t)+p T (6-44) 
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Since p<lf the numerator of the above equation is always 

positive, and also since C01(t)<l the denominator is also 

always positive, thus R{k+1) is larger than zero for all 

values of k and 0<P<1. If P-l. »(^D beco^s ze<0 with 

the exception of the case when t is the zero  angle  (k=0) . 

If t=0, then Cos{t)=l, and 

(1-p) (1+pMl-P  ) 
R(l) = 

(6-45) 

or 

R(l) = 

(1-P) 

N-l 
(l+p)(l-P  ) 

1-P 

(6-46) 

Now if P approaches unity, then the following nonzero valu 

for R(l) is obtained 

N-2 
N-l V^ 

R(l) = l+P +2/^P =2N"2 
(6-47) 

Since the assumption of p<l is always valid, lemma (6-1) 

has illustrated that matrix of fig. (6-4) is a nonsingular 

covariance matrix. 

The developments of  the  fast Wiener  estimator  are 

summarized in the following steps 
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1. The circular image degradation model is 

defined by equation (6-16). 

''. An extended object vector is defined by 

augmenting a vector ^ of certain statistical 

characteristics to the actual object vector f. 

Equation (6-18) illustrates this vector. 

3. A circulant nonsingular covariance matrix of 

form fig. (6-4) is constructed to be used in the 

Fast Weiner filter of eq. (6-17) 

4. The augmented vector y is generated - this 

step is yet to be established. 

5. The observation £ is modified to correspond 

to the extended object f -this step is yet to be 

established. 

Continuing from step 4 of above,  the mean  zero  random 

process vector ^ has the following statistics 

E(XZT)=C (6-48) 

and 

E(fx )=C 
fy 

(6-49) 

where C  is the lower right (N-2)x(N-2) portion of matrix 

-fy fig.   (6-4)     and    Cfv     is the upper   right Nx(N-2)   portion of 
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the same matrix.  Thus, C    is a Markovian covariance matrix 
-y 

of size (N-2)x(N-2), and Cf  is given as fy 

c = 

N-2 N-3 
pP.. 
N-l N-2 
P   P  •• 
N-2 N-l 
P   P  •• 

2 
P P 

3   2 
P P 
4   3 
P P 

3   4 
P   P 
2   3 

P   P 
2 

P   P 

N- 1  N- 2 
P P 
N- 2  N- 1 

P P 
N- •3  N- ■1 

? P 

(6-50) 

The statistical information on 1 can be employed to 

generate this vector. To proceed, let the entries of X be 

equal to a linear combination of the entries of the 

observed physical image samples, g, plus a noise term. 

Assuming Q represents the linear operation, vector y can be 

expressed as 

rfla+H 
(6-51) 

i 
i 

where u is an  independent noise term.  The observation 

vector g is given by eq. (3-41).  Thus, 

Y=QBf+0n+u (6-52) 
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The desired covariance of £, C » is known.  Hence, 

E[(QBf+Qn+u)(QBf+Qn+u)|»C 

1 "■"■ "■—• 

(6-53) 

or 

T T    T* 
QBC B'Q +0V0 +C = C (6-54) 

where V represents the covariance of n, and Cu represents 

the (unknown) covariance of u. Cross correlation of f with 

y gives rise to 

E[f(QBf+Qn+u)]=C 
fy 

6-55) 

or 

T T 
C B Q =Cf (6-56) 

Equation (6-56) can be solved for  matrix  Q to give  the 

following result 

h 

T -IT  T - A 
Q=C  Cr B (BB ) 
 fy-f -  — 

(6-57) 

And the above equation can be ised in eq. (6-54)  to  solve 

for C —u 
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IT T 

(6-58) 

Equation (6-58) is used to generate the mean-zero 

independent noise term u. The numerical value of u must be 

summed with vector Qcj to generate vector y in order to 

complete step 4. In the last step, the extended 

observation vector o[ must be established. To proceed at 

this point, two hypothetical K-dimensional observation 

vectors jj and g2are defined as follows: let g be formed 

by augmenting ^ with a vector of zeros. The resulting 

vector is 

3i = (6-59) 

And j2 is formed by artificially degrading (blurring) a 

vector of zeros augmented by y. Vector 3 has the 

following form 

32=C (6-60) 

- 

The vector g  is found as the sum of g, and g. 
c — 1      ^l 
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—c  i c. 
(6-61a) 

Hence, 

Sc-S 

r- ■"          — 

f 

+C 

0 

0 1 

+n (6-61b) 

or 

g =Cf +n (6-61c) 

where n is a noise term which  incorporates  the original 

observed  noise plus  the  uncertainty  introduced  by a 

possible windowing operation applied on  the observation. 

Equation   (6-61c)   represents  a  circular  degradation 

phenomenon,  whose object  vector  f  has  a  circulant 

nonsingular  covariance matrix.  The minimum mean-square 

error estimate of the object, f , is given as 
—c 

A   -1-1  T -1 T 
f =(S C  +C C) C g —c    ~f^    *"  ~  ( 

(6-62) 

where S is the signal to noise ratio.   Extraction  of  the 
A 

first  N  entries of f  results in the true object estimate 
~c 

A 
f.  Thus 
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A  N 
(6-63) 

where SI' is the proper selection matrix, 

J. 4  A Comment on the Optimality of the Fast Filter 

The previous section developed a fast image 

restoration technique which is optimal in a minimum 

mean-square error sense. It should be noted, however, that 

the optimality of this filter depends qreatly on the 

validity of the statistical assumptions imposed upon the 

hypothetical object vector f . Althouqh the proper 

selection of the physical samples of the auxiliary random 

process vector y is essential for recovery of the object 

with the least mean-square error, the error analysis of the 

next section illustrates that the increase in the error can 

be extremely small. 

Because of the circularity of the covariance matrix 

Cr , the few end pixels of the true object f happen to be 

highly correlated with certain entries of y. To illustrate 

this claim, fig. (6-5a) shows the pixels of f arranged 

around a circle. Under a Markovian assumption, it is noted 

that 
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Figure (6-5.-')C'   cular statistical property of 

the vector  y   . •*c 
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E[f     Y 1= P 
N+l-i 1 

is    N 

i> N 
(6-64) 

Equation (6 64) illustrat-s that the central pixels of f, 

where the subscript i is not close to either one er N, are 

just slightly correlated with any pixel in y. On the other 

hand, the pixels of £ lying close to the two ends, where i 

is either close to one or N, are strongly correlated with 

y or y y I    N-2 

In view of the above argument, a  poor  estimation  of 

the physical  samples of y would mostly affect the few 

pixels of the object estimate at its two ends.  Therefore, 

it can be expected that a reasonably small amount of error 

in the vector ^ would not influence the center portion of 

the object estimate f.  Thus it appears that computation of 

the physical samples of the random process v can be avoided 

if  this  vector  is  replaced by its uean.  In this case, 

since £ is mean zero, the hypothetical object vector fc has 

the following form 

ic 
f 

0 

n 

{6-65a) 

and  the  observation   is  given  by 

110 

^mmmm 



~~~mmmmmmmmmm wmm-mim^m^^mw** 
1    '        '          

Ic    = 

0 
(6-65b) 

Representing the fast filter by U, the object estimate f is 
~ -c 

obtained as 

f = Ug 
~c   —'c (6-66) 

The first N  entries  of  f  result  in the  true object 
A C 

estimate  f.     Thus, 

A NAN 
f  =   SI      f   =S1     Uq 

—K "c    ~K -i( 
(6-67) 

It should be noted that the above equation represents a 

suboptimal estimate of the object f, but the estimation 

technique associated with eq. (6-67) illustrates extreme 

amount of computational efficiency. The efficiency of this 

technique is due to the fact that only Fourier transform 

operation is employed for obtaining the estimate f of 

eq. (6-67). The next section illustrates that replacing 

vector ^ by its mean results only in an slight increase of 

the error in the estimation of the few pixels lying at the 

two ends of the object vector. 

6. 5  Error Analysis 

r 
In order   to  analyze  the error   for   both     ovardetermined 
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and  underdetermined  systens using a uniform terminology, 

the following approach has been adopted.  Assume  x  is an 

object  of  size Q  and  that  the N middle pixels of this 

object, f, are to be estimated.  Vector  x_  is  blurred  to 

generate  the observation g.   In fact, g consists of the 

blurred object plus an additive noise term n.   Next,  the 

observation g  undergoes  the windowing operation W.  This 

modified observation is referred to  as 3.   Figure  (6-5.) 

illustrates  the vectors and the corresponding operations. 

Both a and 3 are of size M, where 

M=Q-L+1 
(6-68a) 

and 

N=M-L+1 
((-68b) 

The observation g is obtained from the following expression 

(see Sec. 3. 5) 

2=Bx+n 
(6-69) 

where B is an M by Q blur matrix (underdetermined), and n 

is the white noise term. The output of the windowing 

operation is given by 
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(NXI)=I29 
—  f  

B(MXQ) 

i 
W 

g = MXl 

gw=MXi 

1 t-NXI 

x = QXI 

S2 N 

t'NXI 

Figure (6-5b)   Vectors   and  matrices  used  for  error  analysis 
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2=WBx+n (6-70) 

To estimate the object f,  by means  of  the  fast Wiener 

technique and by use of  the observation q, the random 

process vector  y must  be obtained.   For  the  sake of 

computational  simplicity,  this vector can be replaced by 

its mean value which is zero.  It must  be  realized  that 

this  approximation  and application of  the windowing 

operator are the only approximations made in computing  the 

classical Wiener  filter.  In other words, if the vector y 

is generated by executing  the  process  explained  in 

Sec. (6. 3),  the error  term  for the fast filter must be 

identical to the error function derived for  the  classical 

Wiener  filter  (assuming a black background for the scene, 

or absence of blur).  As will be  illustrated later,  the 

approximation  of 1  by its mean results in a small increase 

in the variance of the error.  Nevertheless,  considering 

the computational  savings the assumption yields,  this 

approximation  is worthwhile.  Thus  the estimate f is 

obtained by 

f 
=u 

3 

0 0 
—      _ _    _ 

(6-71a) 

h 
■ 

or 
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A  N    NT 
(6-71b) 

where U represents  the  fast  filter.   For  the  sake of 

shortening the length of the preceeding equations, let 

N   NT 
T=S1 U(S1 ) 
 K- —K 

(6-72) 

where T is an N by M matrix (filter).  Using eq. (6-72)  in 

eq. (6-71b) results in 

A 
(6-73) 

Next, 2 can be substituted for as follows 

A 
f=TWBx+TWn (6-74) 

The error covariance matrix is defined as 

A A T 
C  =El(f-f)(f-f)^ (6-75a) 

or 

A An AT AT rp /\/\rp 

Ce=   E(ff   )+   E(ff   )-   E(ff   )-   E(ff   ) (6-75b) 

9*. 

" 

I- 

To  obtain C   ,   the   four   individual  terms  in  the     riqht     hand 

side    of    eq.   (6-75b)     must  be  obtained.     Starting   from  the 
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simplest term E{ffT), and assuming that the object  is a 

sample  from a Markov process, this term can be represented 
r AT 

by an N by N Markovian covariance matrix.  The term  E(ff ) 

is obtained as 

AT T 
E(ff )=E[(TWBx+TWn)f 1 (6-76a) 

or 

AT T 
E(ff )=TWB[E(xf ) (6-76b) 

where E(xfT) is the cross covariance of a Q dimensional 

object with its own N middle p.xels. Presenting this term 

bY Cxf 

E(ffT)=TWBC 
(6-77) 

where Cvfis the Q by N center portion of a Q by Q Markovian 

trix.  The term E(xfT) is simply obtained by co/ariance ma 

transposing E{fx ). Thus, 

E(xf )=(TWBC J 
—     xf 

(6-73) 

AAT 
And the term E(ff ) is obtained as 

r 

it 

AAT 
E(ff )=E(TWBx+T^) (TWBx+TWn) (6-79) 
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or 

AAT     T T T    T T 
E(ff )=TWBC ß W T +TWVW T (6-80) 

where C is a Q by Q Markovian covariance matrix and V is 

the noise covariancj. Finally, the error covariance is 

given by the following equation 

rri  ryi  rri np  rr^ ■ i' 

C   =TWBC   B  W  T   +Q+TWVW  T   -[TWBC   t(TWBC   r)] -e  x-   -  -      -f        -         xf xf (6-81) 

Figure (6-6) illustrates the error variance for an object 

estimate containing 129 pixels. The error is plotted for 

two different blurring effects. Plot (a) represents the 

error for Gaussian-shape blur of standard deviation 2. 

Plot (b) shows the error for motion blur. In both cases L 

is 15, the signal-to-noise ratio is 10, and the element 

correlation coefficient is 0.95. Notice that the error for 

the first and the last few pixels is considerably higher 

than the remainder. This can be explained by the 

approximation made on vector y. The circularity property 

of the current model assumes a strong correlation between y 

and the first and the last few pixels of the object. As < 

consequence of approximating ^ by a vector of zeros, these 

pixels become correlated with the wrong data —the zerop-- 

which results in a higher  error  variance.   Figure  (6-7) 
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IK 

illustrates the error for a higher element correlation of 

0.99. As expected, both error curves decrease 

considerably. Figure (6-8) contains two plots for a 

Gaussian-shape blur of the same standard deviation but 

having different element correlations. Plot (a) is 

obtained for a correlation coefficient of 0.95, and (b) is 

obtained by assuming the coefficient is 0.99. Figure (6-9) 

is the counterpart of the previous figure for motion blur. 

If an underdetermined system  is  used  to model  the 

A 
degradation  process, the object estimate x can be obtained 

using the classical Wiener filter.  The estimate x is given 

by 

A 
x = Ug (6-82) 

where U  represents  the Wiener   filter.     The    error     term    is 

defined  as 

A 
e=x-x (6-83) 

and the error vector for the N middle pixels of x is given 

by 

Q       N 
(6-84) 

N 
where S20 is the appropriate selection matrix. The 
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covariance matrix  of e  is obtained as follows.  Let C 

represent this covariance matrix, so that 

A   AT 

C =E((x-x)(x-x)] 
"B     — —  — — (6-35) 

or 

T    AAT     AT    A T 
C =E{xx )+E(xx )-E(xx )-E{xx ) (6-86) 

AAT 

wnere E(xx ) is a Q by Q Markovian matrix,  and  E(xx )  is 

obtained from 

AAT       T  T 
E(xx )-y(l(S2 ))U (6-87) 

Recall that 

T T 
E(23 )=E(Bx+n)(Bx+n) (6-88) 

or 

T     T 
E(23 )=I£x5 +V (6-89) 

Equation (6-89) can then be used  in equation  (6-87) 

yield the following equation 

AAT     T T   T 
E(xx )=UBC B U -t-uyu (6-90) 
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in a similar manner, E(xx ) can be derived as 

AT    T T 
(xx )=CxB U 

(6-91) 

and 

E(xx )=UBC (6-92) 

Equations (6-90), (6-91), and (6-92) can be used in 

eq. (6-86) to give the final expression for the error 

variance 

C =C +UBC B 0 +yVU -CxB U -UBC]c 
(6-93) 

The error  covariance matrix  for   the N middle  pixels of    the 

object can be  obtained  by observing eq.   (6-84) 

E(f-f)(f-f)   =32^(32^ (6-94) 

Equation (6-94) is the error equation for the N-dimensional 

that,   unlike  the  previous case object  f. Notice 

(overdetermined system), the whole object, x, is estimated 
N 

first  and  then,  using  a selection matrix,  S2Q,  the 

N-dimensional object  estimate,  f,  li  obtained.  Figure 

(6-10)  illustrates  the error for the case when N is 17, L 
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equals 9, and the number of observed pixels, q, is 25. 

Plot (a) shows the error for the classical Wiener filter, 

and (b) is the error plot for the fast filter. in this 

figure, except for the first and the last few pixels, the 

error is the same for both the Wiener and the fast Wiener 

filters. As was pointed out earlier, this phenomenon is 

caused by the approximation made on the vector y. In both 

plots the blur is of Gaussian shape with a standard 

deviation of 1, and the correlation coefficient is assumed 

to be 0.7. The signal-to-noise ratio is 5. Figure (6-11) 

illustrates the error when there is no blur and the image 

degradation is due only to additive white noise. The 

signal-to-noise ratio is assumed to be 10, and the element 

correlation to be zero. In this example, both error 

functions are equal. Since no correlation between the 

elements is assumed, the approximation made on vector y 

does not affect the error plots. Also, in the absence of 

any blur, the windowing operation does not introduce any 

uncertainty. Figure (6-12) illustrates the error curves 

for a Gaussian-shape blur having standard deviation of 2, 

and an element correlation of 0.95. The signal-to-noise 

ratio is assumed to be 100. 

6. 6 Experimental Results 

To  illustrate the  function  of the  fast   filter, 

Fig. (6-13a)  is selected as a test scene. This scene is 
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represented by an array of 256 by  256  pixels,  with  each 

pixel  value uniformly quantized to 256 levels.  This image 

was displayed on a flying spot  scanner  cathode  ray  tube 

display  and  photographed with polaroid  type  52  film. 

Figure (6-13b) represents the image after it undergoesing a 

motion-blur  degradation  having an impulse response length 

of 15 pixels (L=15).  To observe the work of the filter  on 

an object  with  unknown  background,  only the middle N 

( N <256 ) pixels have been restored.  The restored object, 

in  this  example,  contains  129 (N-129) pixels, ard it is 

placed in the blurred background  to  make  the  «mparUon 

between  the observation and the restored image simple, as 

fig. (6-13c) shows.  in this figure, the background of  the 

restored  object  is obtained  by carefully extracting the 

appropriate section of the blurry observation.  This  kind 

of object and background combination enables the observer 

to easily view the improvement made on the center region of 

the scene.   Hence,  the  image  in  fig. (6-13c)  can be 

interpreted as the blurry observation with an enhancing 

aperture placed in front of the scene.  In this particular 

example the hypothetical aperture contains 256 by 129 

pixels.   Since  motion  blur   is  a one dimensional 

degradation, each line of the observed  image has been 

processed   separately.    At  the  first  step,  143 

(143=129+15-1) pixels of a line of the observed image have 

been extracted.  Next,  these pixels, after undergoing a 
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windowing operation, have been augmented by a vector of 

zeros to form a hypothetical observation vector of size 256 

(Note that the size of the hypothetical observed vector g 

is determined by eq. (6-29). After the hypothetical 

observation is formed, it is Fourier transformed, and then 

this transformed vector is multiplied by the corresponding 

filter coefficients in the Fourier domain (a scalar 

operation). Inverse Fourier transforming the filtered 

vector generates the hypothetical object vector f . The 

first 129 (N=129) pixels of this vector form the true 

object vector f. 

r 

6. 7  The Problem of Unknown Point Spread Function 

The process of restoring images when the point spread 

function of the degrading phenomenon is not k lown a priori 

is usually referred to as blind deconvolution [6-10]. 

This kind of problem arises when the characteristics of the 

imaging system are not known to the observer, and thus the 

impulse response must be directly measured from the 

observed image. In theory, the point spread function can 

be simply obtained by a direct measurement of the image 

that resuls from a point source of light. Such an 

experimental computation of the point spread function is 

severely limited in practice because of the lack of real 

point sources in the original scene. A similar technique 

known as edge measurement is an alternative choice when the 
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point spread function is isotropic. Unlike isolated point 

sources of light which rarely occur in a scene, edqes are 

abundant in most images. To illustrate how an edge 

measurement can help to determine the point spread 

function, assume U(x) represents an object function of the 

following form 

U(x) = 

1 x>0 

0 x=0 

-1 x<0 

(6-95) 

The function U(x) is known as the unit step function. It 

is a widely accepted discipline to represent a point object 

by the derivative of the unit step function [6-11], [6-12]. 

Thus 

Mx) = -äUtiI 
dx 

(6-96) 

where ^(x) is now the mathematical notation for a point 

object. Assume that the object U(x) has undergone a 

degradation with impulse response h(x). Note that this 

function, h(x), is yet to be determined, of course. The 

observation g(x) is given by the following equation 

g( x)= I U(x-t)h (t)dt (6-97) 
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The limits of the above definite integral are omitted since 

they play no rule in this analysis. Differentiating the 

above equation gives rise to the interesting resultation 

dg(x) 

dx 

f       d -= / I U{x- 
J        dx 

t)]h(t)dt {f-98) 

or 

dg(x)    r 
dx -j 

A(x-t)h{t)dt (6-99) 

notice that the right hand side of the above equation  (by 

definition) equals the impulse response h(x).  Hence 

h(x)=- 
dg(x) 

dx 

(6-100) 

Equation (6-100) implies that differentiating the image 

pattern associated with an edge is equivalent to 

determination of the impulse response of a linear 

shift-invariant optical system. Figure (6-14a) contains an 

image photographed by a SEM Cambridge stereo scan type 

S4-10 electron microscope. The image represents a Ferrite 

(iron) particle taken from the record side of an audio 

magnetic tape. The magnification ratio is 130,000 to 1. 

Since this amount of magnification equals the limiting 

power of the system, the resulting image is blurry. To 

assure a nondegraded image, it has been experienced  that 
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(a)   Observed 

(b)   Restored (c)   Restored 

Figure (6-14)   Image restoration when the point spread 
function is not known a priori. 
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the magnification ratio on this system must stay below 

100,000. Fortunately the image contains many edges which 

can help to determine tne impulse response of the electron 

microscope. The estimated impulse response in chis example 

was approximated by a separable two-dimensional Gaussian 

function of standard deviation 2. Figure (6--14b) 

illustrates the same image after the center section has 

been restored. The size of the restored region is 129x129, 

and the observed image, fig. (6-14a), contains 256x256 

pixels which have been uniformely quantized to 8 bits. The 

restoration technique was the fast Wiener filtering of 

Sec. (6. 3). Figure (6-14c) shows the crystal after its 

upper left corner was filtered using the fast filter. 
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7. THE PROBLEM OF POSITIVE RESTORATION, SUGGESTIONS 

PVR FURTHER RESEARCH, AND CONCLUSIONS 

The Wiener restoration approach introduced in the 

previous chapter neglects certain a priori information 

concerning the pictorial data which, if utilized properly, 

could improve the quality of the restored images. 

Non-negativeness of an optical scene, for instance, is a 

restriction which can be utilized to reduce the estimation 

error variance. Also, it has been shown that .he visual 

quality of a restored image can be enhanced if the human 

visual system response is utilized in the restoration 

process [7-1]. The following section summarizes certain 

non-negative restoration approaches which are adaptable to 

the fast restoration technique. 

7. 1  Constrained Restoration 

Positive restoration refers to image filtering 

techniques which employ a positiveness constraint to 

improve the restoration of degraded images. It has been 

illustrated that, in general, linear inequality constraints 

reduce the error covariance of the object estimate, and 

also improve the stablity of the system representing the 

degradation phenomenon. Reference [7-2] illustrates this 

claim by adopting a numerical analysis approach to the 

problem, although the increased computational  requirements 
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of   this  approach  impose  a  severe  limitation on  the 

allowable si^e of the imaqe. 

An alternative approach to this problem is to utilize 

the Fourier domain properties of positive signals. Lukosz 

[7-3] has determined upper bounds on the Fourier pattern of 

a non-negative signal and has shown that the amplitude of 

the Fourier transform of a non negative, band-limited 

signal satisfies the constraint 

I   luh i   Ivl I 

iG(u,v)l<G{0,0) 1 ( j I" —j 
(7-1) 

where  G(u,v)  represents  the  Fourier  transform of  the 

non-negative  signal g(x,y),  and  U  and V are the cutoff 

frequencies.  Figure (7-la)  illustrates this bound.   It 

should  be  noted  that eq. (7-1) is a necessary condition, 

but not necessarily a sufficient restriction.  Tn other 

words,  there  are many signals which satisfy ineouality 

(7-1), but are not necessarily non-negative.   The  Lukosz 

bound  in  its present  form does not apply to discrete 

signals, and the only constraint which appears to hold  for 

discrete signals can be expressed as 

G(i,j)I<G(0,0) 
(7-2) 

* 

where the G(i,j) are the discrete values  of  the  Fourier 
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b)   Discrete bound 

Figure (7-1)   Fourier domain bounds. 
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transform of  the discrete  signal q(1 ,m).  Figure (7-lb) 

illustrates this bound. 

Constraints having the  form shown  in eg. (7-1)  or 

eq. (7-2) are very simple to implement, particularly, if in 

the  filtering  process,  the  Fourier  transforms  can be 

computed  in  advance.   For example, implementation of the 

inequality in eg. (7-2), for images restored  by  the  fast 

Wiener filter of Sec. (6-3), is trivial in nature.  This is 

because the Wiener filtering takes place  in  the  Fourier 

domain,  and all that remains is to check every coefficient 

of this domain against  the d.c.  value of  the object, 

G(0,0).   If any coefficient violates this  bound,  the 

coefficient will be automatically decreased until the bound 

is satisfied. 

The major shortcoming of the Fourier domain inequality 

restrictions for positive image restoration stems from the 

fact that most images contain small quantities of high 

frequency components, and thus rarely violate an inequality 

of the form of eq. (7-2). For instance, although the 

restored object of fig. (6-14b) occasionally contains 

negative quantities, it never violates the bound described 

by eq. (7-2). hence, before displaying the image, the 

negative entries were cliped to zero. 

A brute force approach for assuring  the  positiveness 

of  the  images  restored  by the  fast  filter  can  be 
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implemented  as  follows.   Considering  a one-dimensional 

case,  let F(i) -epresent the ith Fourier coefficient of a 

K-dimensional  image  estimate  f.   Starting   from  the 

coefficient associated with the lowest freauency, F(0), an 

image is constructed  using  the  Fourier  basis  function 

corresponding  to  the  selected coefficient,  its complex 

conjugate, and all the lower  order  basis vectors.  Note 

that since  the  image  is  real,  every Fourier entry is 

accompanied by another coefficient which  is  its complex 

conjugate,  and that the d.c. term F(0) is always positive. 

Thus, at the very first stage, the image is represented by 

a gray level which has a numerical value equal to F(0); at 

the second step, the two next lowest frequency vectors are 

added.  This process is continued until a negative quantity 

is detected in the constructed image when,  in  this case, 

the  two coefficients  corresponding  to the very last two 

vectors added to the image are modified to retain the image 

positiveness.   Then, the procedure is carried on until all 

the coefficients are exhausted and  the  image  is  totally 

created.   In  some cases, however, the reconstructed image 

may never  become  negative.   To  avoid  the  lengthy 

requirements of  positive  restoration in such a case, the 

image can be first constructed by simply  inverse  Fourier 

transforming,  and  then  if negative quantities are found, 

the positive restoration technique described above can be 

applied.  The only drawback of the brute force method is in 
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its computational inefficiency. It takes a considerable 

amount of computing time to check if every single Fourier 

coefficient retains the image positiveness. One suggestion 

requiring further research in this area is to attempt to 

establish methods to predict the coefficients which are 

likely to produce negative quantities. This type of 

coefficient selection is likely to be a function of the 

size of the quantity itself. For instance, the quantities 

which are very small need not be checked out, for they 

usually cannot give rise to negative entries in the image 

vector; even if they produce negative quantities, their 

modification cannot improvv. the pictorial data 

substantially. 

7. 2 The Fast Wiener Filter and the Eye Model 

It is known that a subjectively optimal image estimate 

can be obtained if the human visual system characteristics 

are employed  to  constrain  the  restoration   technique. 

Unfortunately, because of the inaccessiblity and complexity 

of the visual system, the true nature of this system is not 

fully known.  However, indirect measurements and repetitive 

experiments have unveiled some of  the mysteries  of  the 

process of vision.  For instance, for low contrast images, 

the frequency response of the visual system is believed  to 

be of  form of fig. (7-2), and, it is known that the human 

visual  system  responds nonlinearly  to  incident  light 
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Figure (7-2)   Frequency  response  of the  eye, 
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intensity [7-4]. 

To simplify the notation let S* denote an operation 

modelling the human visual system. For instance S* can 

represent a simple logarithm operation, although, in 

reality S* can only be expressed by much more complicated 

functions. The complexity of the eye model makes it 

impractical to design a minimum mean-square restoration 

technique which satisfies the constraint defined by S*. A 

good approach for avoiding this hindrance is to process the 

image signal output of the visual system. Let g represent 

the observed signal, and let q denote the same observation 

after going through the system S*. It should be noted that 

q is actually the image which is perceived by the brain. 

To improve q, the Wiener filter technique can be applied to 

minimize the observation error in the mean-square sense. 

Figure (7-3) illustrates this approach. Figure (7-3a) 

represents the eye model, where f denotes the object signal 

and d represents the signal observed by the brain. Figure 

(7-3b) illustrates the filtering process. In this figure 

S* denotes the inverse function of the visual system. It 

should "be noted that S* is followed immediately by the 

observers eye system S*. Thus, the final result is shown 

in fig. (7-3c). This figure illustrates that, by Wiener 

filtering the signal entering the brain q, the complicated 

eye model constrait can be avoided. 

144 

—m 



«mmmmmm I»I^:  ii IIII,W)PI«P^F»^I   i iiiiiii. i .invw^mnaOT^mvMi i imi i m **^~^mm^m^^*mm*^^mmi^mm' 

Q 

cornea 

-> 
S* 

S* 

Q—► e - minimized in a 
mean-square sense 

3" 

-t 
eye 

g 
s* 

s 
w 

a 

t 

Figure (7-3)   Wiener  filter  and the  eye  model. 
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To  summarize this dissertation, the  next  section 

briefly  reviews this  work  and suggests  means  of 

generalizing some of  the  techniques introduced  in  the 

previous chapters. 

7. 3  Extensions to the fast Wiener filter 

It was shown earlier in this dissertation that the 

fast Wiener filter in the frequency domain can be described 

by the following scalar equation 

a(n) 
W(n) = 

a(n)|2 +ä"%1{n) 
(7-3) 

where a(n) represents the n-th eigenvalue of the 

corresponding blur matrix, b(n) represents the n-th 

eigenvalue of the circulant covariance matrix, and S is the 

signal-to-noise ratio. If the noise power approaches zero, 

eq. (7-3) represents the inverse filter 

I(n) = 
a(n) 

(7-4) 

where I(n) represents the n-th entry of the inverse  filter 

in the frequency domain. 

r 

It has been shown that the minimum mean-square  filter 

is not  usually the  best technique for imaqe restoration 
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applications. This is merely because this filter does not 

emphasize high frequency components of an image, and these 

components are very important for visual perception [7-4]. 

Figure (7-2) shows the frequency response of the human 

visual system, illustrating the importance of high 

frequency pictorial information for a human observer. 

Since the human visual system attenuates lower ,spatial 

frequencies, the higher frequency components must be of 

greater utility. Considering this argument, it may seem 

that the inverse filter approximates the human visual 

system closer than the Wiener filter. Unfortunately, in 

the presence of noise, the inverse filter is not feasible. 

However, a compromise can be achieved if the two filters 

are averaged in a geometrical sense [7-5]. A Geometrical 

Mean filter is formulated as 

1-s 

G(n)= ( ) ( z-^n ) 
\a(n)/ \|a(n) l+S b (n)/ 

(7-5) 

where 0< s <1, and G(n) is the n-th entry of the filter  in 

the  frequency domain.  Clearly, the Wiener and the inverse 

filters are both special  cases  of  the Geometrical  Mean 

filter  for  s=0 and  s=l,  respectively.  Since eq. (7-5) 

defines a scalar operation, this filter  is already in a 

computationally efficient  (fast)  form.  This holds true 

since b(n) is an eigenvalue of  the circulant covariance 

matrix.  To apply a  fast Geometrical Mean filter to a 
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blurry observation, the same steps which are  involved  in 

the application of the fast Wiener filter must be observed. 

For instance, here too the M-dimensional observation ^  is 

operated  upon by the  windowing matrix  to  reduce  the 

wrap-around error and then is placed in a longer vector  of 

zeros of  size K,  where  K is given by eq. (6-29).  And, 

after the K-dimensional observation  is processed by the 

fast  flter,  a K-dimensional object estimate resulvs in 

which the first N entries  of  this vector  are  the  true 

object  estimate  f.   Since  the Geometrical  Mean filter 

represents a class of restoration techniques to which  the 

Wiener  and the Inverse filters are special cases, only one 

general software (filter) is necessary to be designed  to 

give a wide selection of restoration techniques. 

7. 4  Summary and Conclus ons 

This dissertation has developed computationally 

efficient image restoration techniques, and pictorial 

examples have been presented to illustrate the efficiency 

of these techniques. 

The continuous convolution integral has been utilized 

to represent linear shift-invariant degradation phenomena. 

It has been shown that the discrete image degradation 

problem can be modelled by an overdetermined system, if the 

object background is not known.  To avoid this dual model, 
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a simple operation has been introduced which, by predicting 

the object background, almost eliminates the contribution 

of the background to the pictorial data. Hence, only the 

overdetermined model is employed to describe the 

degradation problem. This operation is, in essence, 

designed to control the modelling error. In the absence of 

noise, the inverse filter for the continuous case or the 

matrix pseudoinverse for the discrete data can be emp.1 «yed 

to restore degraded images. The computational shortcomings 

of the pseudoinverse techniques can be overcome oy 

utilizing the Fourier domain properties of circulant 

matrices. Simulated pictorial examples were used to 

illustrate this point. 

In a noisy environment, the statistics of the image 

and the noise can be employed to control high frequency 

noise oscillation in the restored data. Based on this 

fact, a minimum mean-square error filter can be constructed 

for image restoration. Since a filter of this kind is 

computationally unattractive, a fast Wiener filter was 

introduced for noisy image restoration. This filter was 

obtained by imposing certain modifications on the observed 

image. It was shown that the observed image can be 

operated upon to modify its statistical characteristics. 

Thus, certain operations were introduced which, when 

applied rn pictorial data, allow the modified data to be 

characterized  statistically by a  circulant  covariance 
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matrix. Later, these operations were approximated to gain 

more computational speed at the cost of a slight increase 

in the mean-sguare error. An error study then illustrated 

that for most of the length of the object vector, the error 

variance associated to the fast Wiener filter is equal to 

the one associated with the Wiener filter itself. The 

slight error increase occurs only at the beginning and the 

end of the object vector, and almost vanishes when the 

element correlation becomes small. Unlike the classical 

Wiener filter, it was shown that the fast filter is capable 

of operating upon large images without the need to break 

down the observation into small blocks. 

Statistically speaking, it was assumed that a scene is 

a sample of a Markovian random process. This, of course, 

is not an essential restriction, and can be removed. It 

appears that the fast filter can be constructed for any 

image which possesses a monotonically decreasing 

correlation function. In fact, any covariance matrix which 

can be extended into a larger, circulant, and positive 

definite matrix characterizes a random image that can be 

operated by the fast filter. Thus, lemma (6-1) can be 

n:oved for certain non-Markovian sources as well. 

Since the main objective in this dissertation has been 

to present computationally efficient restoration 

techniques, it seems proper at this stage to point out that 
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the classical  Wiener aporoach is not the only restoration 

technique  which  can  be  modified   for   computational 

efficiency.  In fact, as previously shown, there is a class 

of filters which can be efficiently computed through a 

technique similar to the Wiener approach.  Notice that the 

phrase "computational efficiency" corresponds to both  the 

time and  storage  requirements of  a certain restoration 

technique.  Hence, a  fast counterpart  of  a  restoration 

technique  is computationally advantageous,  in the sense 

that the fast filter permits processing of large images  in 

a relatively small amount of time. 
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