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CHAPTER 1 

INTRODUCTION 

Quantization is a process inherent in all digital 

systems. Basically, quantization occurs whenever 

continuous physical properties are represented numerically. 

When this representation takes place in a digital computer, 

the quantization effect is called round-off, or truncation. 

As a mathematical operation, quantization is the processing 

of continuous functions to give a stepwise output, or the 

processing of sampled functions to give a sampled output. 

Even the value obtc'ined in measuring a continuous quantity 

is the consequence of quantization. But wherever "-.he 

occurrence, a fundamental aspect of quancization is that it 

results in an indeterminacy and a lack of complete 

information about the particular property under 

consideration. 

In this report quantization is assumed to be a 

nonlinear operation which occurs within a cuantizer—a 

zero-memory device that assigns an input to one of a 

countable number of possible output regions. This defines 

a broad class of devices that includes coders, digital 

transducers, and analog-to-digital converters. For many of 

these quantizing devices the input is a continuous 

variable;  restricting  a continuous input to a particular 

^* 
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region destroys some of the information about that input. 

For discrete inputs, combininq their input regions into 

larger, and hence fewer allowable, output regions also 

decreases the amount of information available. These are 

both irreversible operations and the lost information 

cannot be recovered. It is thus important to optimize the 

quantizing process so that this lost information is held to 

a minimum. 

fr. 

The lost information can be minimized by decreasing 

the size of the output regions wnile simultaneously 

increasing their number. Unfortunately, this is not always 

possible or practical. It would also oppose one of the 

benefits of Quantisation: a smaller number of output 

regions requires less processing and less storage. A 

balance thus must be attained between accuracy and economy. 

This balance can be determined by an analysis of the 

quantization process. 

Most analyses of Quantization to date have focused on 

just one aspect of the problem, i.e., findinq the best 

quantizing device to minimize the information lost, 

however, the eventual use of any quantized output is to 

accur ■«ly represent a continuous siqnal input. The output 

reqions are ultimately utilized to estimate and restore the 

oriqinal quantizer input. It is this quantization 

restoration  problem that has heretofore been neglected and 

_ 
-^- ■ - 
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is the subject of this dissertation. 

The simolest restoration procedure is to choose the 

midpoint of each quantization interval as tne estimated 

value of the original input. However, this estimate can be 

improved, since it is based only on the output reqions of 

the quantizer. The restoration to be described herein is 

based also un a priori knowledge of the statistics of the 

quantizer input. The input is assumed to consist of 

samples from a continuous random process. (The samplinq 

presents few, if any, restrictions because digital systems 

reauire sampled and quantized signals, and the operations 

of sampling and quantizing are commutable.) The necessary 

statistics are the amplitude probability density function 

of the input samples. Where the complete statistics are 

unknown, a functional form for them is developed from known 

correlation functions and one-dimensional distributions. 

This statistical information is then combined with 

knowledge of the quantizer output to provide an optimum 

restoration. The restoration is optimum with respect to a 

desired error criterion. 

A second problem requiring a similar solution occurs 

when quantized signals are transmitted through a noisy 

channel. Because of the errors that accrue during 

transmission, what is received does not exactly correspond 

to  the  quantizer  output  regions.   The  channel  output 
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instead equals the quantizer output only within a specified 

probability. To achieve an optimum restoration the 

following available information must be utilized: 

1. the a priori distribution of the quantizer input 

2. the structure of the quantizer 

3. the transmitted quantizer output region (which may 

be in error) 

4. the channel error structure 

The existence of the last constituent induces a 

modification in the solution discussed previously. The 

modification is also considered in this dissertation. 

In this dissertation, solutions are presented for the 

restoration of quantized samples based on a priori 

knowledge of the multivariate probability density function 

of the quantizer input. The two cases considered are: 

(1), the quantizer output region is known exactly; and (2), 

the quantizer output is transmitted over a noisy channel 

and hence not known exactly. 

I 
n 

• 
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These two situations arise in the coding and 

transmission of images. Quantizers are an integral part of 

all image coding systems. The go^l of these systems is to 

make a coded image as similar as possible to an original 

image. Unfortunately cost, complexity, and hardware 

constraints often force a suboptimal coding scheme which 

results in  a  degraded  image.   The  application  of  the 
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quantization restoration techniques discussed above can 

improve these degraded images. Experimental verification 

of this improvement is obtained by restoring images which 

have been coded and quantized. 
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CHAPTER 2 

HISTORY OF QUANTIZATION AND SIGNAL RECONSTRUCTION 

Developments in quantization have closely paralleled 

advances in diqital systems. Although research had been 

:onducted into areas such as uniform statistical grouping 

(which may be considered quantization) as early as 1898 

ll], it is only since 1947 that deliberate attempts have 

been made to understand the process of quantization. By 

1947 vacuum-tube technology had reached the stage for which 

digital systems were both possible and practicol. At that 

time the concepts and the value of PCM (pulse code 

modulation—the first major application of both 

ounatization and digital hardware) were just being 

discovered and made known [2,3,4]. Bennett [5] then 

undertook an intensive investigation of the spectra of 

quantized signals. Bennett analyzed uniform quantizers, 

such as those uitlized in PCM systems, and found the 

characteristics of their output spectra for a white noise 

input spectrum. Since Bennett's initial work, developments 

in quantization have proceeded along three basic lines: 

1. analyzing  the  results  and   the  process  of 

quantization 

2. optimizing the quantization process  with  respect 

to various criteria and goals 

3. reconstructing quantized signals to minimize  the 
6 
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degradation incurred through quantization 

Each of these categories will be considered  separately  in 

the following paragraphs, and significant developments will 

be discussed in roughly chronological order. 

2.1  Analysis of Quantization 

One of Bennett's conclusions was that quantization 

uncertainty or noise, for a quantizer with many levels, is 

uniformly distributed throughout the signal band. This 

result was supported by Widrow in 1956 [6] in studies of 

the probability density functions of quantized signals and 

quantization noise. Widrow concluded that a quantizer 

could be modelled as a source of uniform, independent 

noise. In a later paper [7], Widrow attempted to define 

the limits of the region over which his additive noise 

conclusion would be valid, and then extended the 

statistical results to two dimensions (i.e., the 

quantization of two correlated samples). Myers [8] 

extended Bennett's analysis to the case of the uniform 

quantization of a signal corrupted by gaussian noise and 

derived the resultant noise distribution, which is no 

longer uniform. Velichkin [9] , calculated the correlation 

function and output spectrum of a quantizer. In addition, 

Velichkin considered the more general cases of nonuniform 

Quantization levels and arbitrarv input signal spectrum?. 

Velichkin's  results,  for  the gaussian case, were in the 

; 

M^^^ildtLaÜJÜmi^^inininini 1 \\iiam*amm^iän*k*i*»miii^**t**Ammmti^i±*^&iä 



I 

IP 

form of an ini.inite summahion of Hermite polynomials of 

increasing order which, unfortunately, cannot be evaluated 

without simplifying assumptions. 

Robertson [10] surmounted this difficulty by 

evaluating combinations of the terms of the summation such 

that the combinations tend to zero and hence obtained 

output spectrums for nonlinear and nonsymmetrical 

luantizers and for arbitrary input spectrum shapes. Chan 

and Donaldson [11] obtained a further generaiij'ition by 

finding the correlation function and spectrum of a 

quantized gaussian signal transmitted over a discrete 

memoryless channel. Their results reduce to those obtained 

by Velichkin when the channel is noiseless. For very 

coarse quantization. Curry and Vander Velde [12] suggested 

modelling the quantizer as a gain element, whose value is 

equal to the random-input describing function, plus an 

additive noise source. The inclusion of a gain element 

causes the noise source to appear more nearly white. The 

quantization process can then be analyzed more easily. 

2.2  Optimum Quantizers 

The analyses of c, ^ntization described above were all 

based on the Concept that quantization introduces a noise 

or distortion. A number of reserrchers have attacked the 

fundamental  problem of minimizing  a measure of  this 

B 
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distortion by varying the location of N quantizing levels, 

given the characteristics of the quantizer input. They 

attempted to do this in an optimal fashion under different 

assumptions and conditions, and according to various 

criteria. 

In 1951 Panter and Dite [13] tried to minimize the 

mean-square quantization error by utilizing statistical 

properties of the signal. They developed an optimum 

nonuniform quantizer based on the following assumptions: 

1. the quantizer is symmetrical about zero 

2. the probability density function, p(x), is an even 

function and is constant over each quantization 

interval 

3. the signal is limited to the range l-VfV] 

4. a signal quantized to a particular int rval is 

restored to the midpoint of that interval 

The resultant quantizer restoration levels, rk, can then be 

calculated from 

•/ 

v 

2kV/N -1/3 
[pun     dx 

0 

/     [P(x 
J   B 

-1/3 
)1 dx 

(2.1) 

; for k=l,2,...,n and where N=2n+1 is  the  total  number  of 

levels.   The  total  distortion  power  for this choice of 

' '-•- -*-w^ *m*t m *t .:-.■■-.■-- 
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1/3   3 
[p(x)l   dx} (2.2) 

Panter and Dite also suggested that this nonuniform level 

spacing could be realized by "companding"—compressing the 

original signal by a nonlinear function such as a 

logarithm, performing a uniform quantization, and then 

expanding the result by means of the inverse of the 

nonlinear function. This type of system was later analyzed 

by Smith [14] who provided a method for choosing the 

parameters of the nonlinearity with respect to a 

mean-square error criterion. 

In a fundamental paper in 1960, Max [15] derived the 

necessary equations for finding the parameters of a 

quantizer having minimum distortion with respect to a 

convex error criterion. For a fixed number of quantization 

intervals, N, the decision levels, d. , and the restoration 

levels, r , are obtained by a recursive solution of 

dk=(rk + rk-l)/2 k-2,3,...,N (2.3a) 

/ 

dk+l  ^
e(X-rk) 

d,     ox 
p(x)dx=0 1^ L    f   4L.    f    • • • flN (2.3b) 

r* 10 
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where p(x) is the distribution function of the quantizer 

input and e(-) is a convex error function. (Note that 

these equations do not require o(x) to be constant over the 

range of the quantizer.) In this notation, a signal 

quantized to the interval (d. ,d, , ) would be restored to 

the point r . Thp set of simultaneous equations contained 

in eq. 2.3, except for trivial cases, cannot be solved 

explicitly and so must be evaluated numerically. Max also 

derived the equation which provides the optimum quantizer 

parameters for a uniform spacing of levels, and tabulated 

both the optimum uniform and optimum nonuniform 

quantization levels for a gaussian probability density 

function and a mean-square error criterion. 

The difficulty in solving eq. 2.3 explicitly has led ? 

number of researchers to consider various approximations. 

Garmash [16] simplified the integrals in eq. 2.3b by the 

trapezoidal rule and reduced the number of equations by 

choosing the size of the smallest interval. His results 

are valid only for a finite signal range. Roe [17] 

approximated the probability density function, p(x), by the 

first two terms of its Taylor series expansion about the 

midpoint of each quatization interval to obtain 

/; 
[P(x) 

l/(t+l) 
dx w 2ak+b (2.4) 

11 
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tor k = l,":,... ,N-1 where b is the order of the error 

criterion (t=2 for a mean-souare error) and a and b are 

constants. This relation approximately provides the 

decision levels (and restoration levels for k'=k+l/2) for 

differentiable probability density functions, but the 

resultant quantizer is identical to that obtained by Panter 

and Dite (13). Algazi (18), In attempting to find some 

simpler suboptimal algorithms, also rederived eg. 2.2. 

Williams [19] published a closed-form solution to eg. 2.3 

for the special case of a laplacian distribution, but erred 

in assuming the restoration point to be the median, rather 

than the centroid, of the quantization interval. The 

correct quantization levels for a laplacian (and also a 

gamma) distribution were later calculated numerically [20]. 

*. 

^V 

No matter which method is utilized to calculate the 

quantization parameters, however, it will fail if the 

probability distribution is such that a unique minimum 

distortion point does not exist. For a mean-square 

distortion measure, Fleischer [21] derived the sufficient 

conditions under which a unique optimum quantizer can be 

found. To this end also, Bruce [22] used dynamic 

programming to find optimum quantizers for a variety of 

convex error criteria, and checked their uniqueness by 

locating and comparing all other extrema of the error 

surfaces. 

12 
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Since quantizers usually operate on sampled signals, 

Velichkin [231 and Goodman (24) considered the joint 

optimization of both sampling and quantizing. Velichkin 

calculated the optimum parameters to achieve a minimum 

mean-square error, and Goodman compared this result to a 

lower bound obtained from rare distortion theory. 

It has been found [25] that uniform quantizers 

approach this lower bound, i.e., uniform quantizers 

asymptotically have the lowest output entropy. Wood [26] 

and O'Neal (27) have taken advantage of this fact to derive 

(approximately) minimum entropy quantizers. Wood has shown 

that for a fixed output entropy, uniform quantizers have 

lower mean-square error than nonuniform (Max) quantizers. 

However, to achieve this error reduction, the quantizer 

output must be optimally coded (i.e., with a Huffman 

variable-length code) and this causes buffering problems. 

This difficulty may be partially overcome by permutation 

encoding [28], but this coding technique has the limitation 

of requiring very long block-lengths. For a non-buffered 

coding scheme, a quantizer having maximum output entropy 

could be considered to be optimum. It has been shown that 

the quantizers with minimum average error (such as Max's) 

are the same as those with maximum entropy, within a 

multiplicative constant [29]. 

Maximum entropy, or minimum error, quantizers must be 

13 
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modified when their output is transmitted over a noisy 

channel [30]. For a mean-square error criterion, the 

decision and reconstruction levels for a noisy-channel 

quantizer   can  be   found   from 

N 

.Vi^ki-Vi,!* i = l 
dk=- 

2 Y] r. (P, • -Pu   ,    • A<,   i     ki     k-l,i 

K — Äfjf • • • fN (2.5a) 

X; P        /    1+ixp(x)d: 
i=l  " J  dj  

EPik   /    1+1P(x)dx 
l-l   1K J   d. 

k = lf2,.. . ,N (2.5b) 

where P, .   is  an  element  of  the channel  matrix,     P.       For     a 
ki - 

noiseless channel (P=l) f ecJ« 2.5 reduces to eq. 2.3. 

Minimum error quantizers also must be modified for 

nonstationary inputs or for correlated input samples. 

Golding and Schultheiss [31] and Stroh and Boorstyn [32] 

presented ad hoc adaptive quantizers designed to handle 

this situation. An optimum adaptive quantizer has not yet 

been successfully derived, nor has an optimum quantizer for 

correlated  signals. 

*■ 
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2.3  Quantized Siqnal Reconstruction 

. ■ 

An important area of research in recent years has been 

the  reconstruction o£ quantized sisals.  Some researchers 

have attempted to restore the input  s'.qnal  samples  which 

were  degraded by a quantizer, while others, realizing that 

many quantizers  operate  on  sampled  versions of  analog 

signals,   have  tried  to  restore directly the  analog 

waveform.  In this latter category are  the  techniques  of 

Ruchkin  [33],  Katzenelson  [341,  Steiglitz [35], Goblick 

[36], Kellogg [37], Hayes  [38],  and  Chan  and  Donaldson 

[39].  Each of their approaches differed in the assumptions 

they made ibout the effect of the quantizer.  Ruchkin found 

the  best (with respect to mean-square error) linear filter 

to restore a quantized and sampled gaussian  signal,  under 

the  assumption that a quantizer adds white gaussian noise. 

Katzenelson also found the best linear filter, but  assumed 

the  signal  is  a  sample  from a Markov process and the 

quantizer noise is colored.  The same assumption about  the 

quantizer  was made by  Steiglitz who analyzed specific, 

ncnoptimum, reconstruction filters for special input  power 

spectra and compared  the  results  to  a rate distortion 

bound.  Steiglitz provided  a  trade-off  betveen  sampling 

rate and number of uniform quantization levels for the case 

of  a minimum mean-square  error  and   fixed   capacity. 

Goblick,  on  the other hand, considered entropy coding and 

provided a trade-off between mean-square error  and  output 
15 
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entropy. A prefilter was derived by Kellogg for the same 

case that Ruchkin considered, under the premise that a 

designer can tailor input and output signals to a fixed 

quantizer by means of prefixters and postfilters. Kellogg 

used an optimum, nonuniform quantizer for his simulations, 

and presented a numerical solution for the linear filters. 

Hayes added a constraint on the signal-to-noise ratio for 

his solutions, but otherwise numerically analyzed the same 

case as Kellogg. An exact analytical method for jointly 

optimizing the prefilter, postfilter, quantizer, and 

sampling rate was presented by Chan and Donaldson. Their 

optimum orefilter "whitens" the signal and removes the 

redundancy from the resultant signal samples. After 

quantization and transmission occur, a postfilter restores 

the continuous signal and removes the distortion added by 

both the quantizer and the channel. This method was 

general in that it considered the correlation between the 

signal and noise, included the effect of channel errors, 

and placed no restrictions on either the signal and noise 

spectra or the filter passbands <*>. 

Curry [41] considered the problem of  finding  linear 

estimates based on quantized samples.  He showed that these 

<*> It should be mentioned that an excellent general 
treatment of quantizers, receivers, and noisy channels is 
available in Fine [40]. 
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estimates can be computed in two steps: (1) find the 

conditional mean of the quantizer output, and (2) pass this 

mean throuqh the linear filter that would have been used 

had the quantizer not existed. For a minimum mean-square 

error criterion this linear filter was found to be the 

Kaiman or Wiener filter. The conditional mean for a 

qaussian process was found to be approximately 

r=(I-DC 1)(b+a)/2 (2.6) 

where I is the identity matrix, C is the covariance matrix 

of the quantizer input x, x is quantized to the interval 

[a,b] by an arbitrary quantizer, and D is the diaqfnal 

matrix having elements 

(b.-a. ) 
im{     1  1 6. 

12 
lJ 

i2.7) 

Equation 2.6 provides a minimum mean-squa e error estimate 

of a vantizer's input, based only on its output, that is 

valid whenever the quantization is very fine. Clements and 

Haddad [42] derived a recursive techinque for finding this 

same result that is also applicable to the problem of 

nonlinear estimation using quantized data. 

$■•. 
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CHAPTER 3 

NONLINEAR ESTIMATION WITH QUANTIZCD MEASUREMENTS 

As the previous chapter has shown, most analyses of 

quantization have focused on the quantizing process itself 

and on the determination of an optimum quantizer for each 

input sample. Unfortunately, little effort has been 

expended towards undoing the effects of quantization and 

recovering the original input. The core of the problem is 

that quantizers treat each signal individually and neglect 

the random process which models the signals. As the 

anai/sis below shows, an optimum restoration of quantized 

signals must utilize the joint probability density of the 

original input signals. 

* 

3.1    Vector  Quantization 

The input to a quantizer may be either a continuous 

function or discrete samples. A quantizer processes a 

continuous function to give a stepwise continuous output or 

processes a sampled function Lo give a sampled output. All 

digital systems require signals which are both sampled and 

quantized. Sampling and quantizing are mathematically 

commuta'-jle operations, i.e., the result is the same whether 

a signal is first quantized and the resultant stepfunction 

is  sampled,   or   if   the  signal   is   first   sampled  and then     the 
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samples are quantized.     Hence  in  this analysis   the   input  to 

a quantizer   is  assumed   to  be a  sampled   random   process. 

A quantizer assiqns each sample to a particular 

interval according to its amplitude (quantization is 

sometimes considered to be sampling in amplitude) . For an 

individual sample, the interval is a portion of the real 

line (see fig. 3-la) . However if two samples at a time are 

considered, then a quantizer assigns pairs of samples to 

regions in two-space, as shown in fig. 3-lb. Similarly, a 

quantizer assigns vectors of N samples to reqionc in 

N-space, R . If the vector components are quantized 

independently, the resultant region in R is rectangular. 

An estimate of the quantizer input based on its 

corresponding output region would be one of the points 

within that region. The goal in this chapter is to find 

the estimation point which is most similar to the quantizer 

input, with respect to a given error criterion. It should 

be mentioned that no attempt is made to find optimum 

quantization regions. Rather, a method is derived for 

finding the optimum restoration point within an arbitrary, 

given region. The restoration concepts can beot be 

understood   in  the context  of  the  following  simple  example. 

3.2    Vector   Restoration   Example 

I ^;- Consider   a   two     level      (one     bit)      quantization     of     a 

*J-. 
27 

■MM ^^^Jiyteifail^i^fcimlfrnMrtMaiMMa^iiii^Mi^^^ti ' ! 



— I  mm 

0 

R m 
-9* 

Q m "m 

(a)  One-dimensional 

b. t___ 
^m 

a2m 

Rm 

. 
a 

'm         'm 

(b)  Two-dimensional 

(c)   Three-dimensional 
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sampled signal limited in amplitude to a finite ranqe. 

Specifically» for a signal limited to the ranqe [-1,1], let 

the output of a quantizer be the information that the 

siqnal is either in [0,1] or in (-1,0). Next assume that 

two successive outputs at times tl and t2 are as rhown in 

fiq. 3-2a. 

xCt.) e [0,1] 

x(t2) e i-i,0) 

If nothinq else is known about these siqnals, then the best 

restoration, as fiq. 3-2b shows, would be 

Y(t1)=l/2 

Y(t2)=-l/2 

fc. 

0i 

However, if the siqnals are samples from a  random process 

with a  known probability distribution, p(x), such as the 

one in fiq. 3-2c, then a better restoration would  be  the 

mean values of each interval accordinq to this distribution 

(see  fiq. 3-2d).   (The  restoration  in  fiq. 3-2b would 

correspond  to a uniform distribution.)  Finally, if the 

siqnals at t  and t  are known  o be correlated,  then  the 
^        12 

restoration can be further improved by utilizinq this 

correlation. Fiqures 3-2e and 3-2f show the restoration 

points  for  positive correlation and neqative correlation, 
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Figure 3-2.  Vector restoration example. 
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respectively. 

3.3  Nonlinear Estimator 

To characterize the above concepts mathematically, an 

expression   for  the quantization  error  must  first be 

derived.  Let a vector of N samples of a random process be 

denoted as x, where 

X ( x i , x2 / • • . » X-,) (3.1) 

and assume that this vector is statistically described  by 

its probability density furction, p(x).  If this vector is 

quantized, according to the techniques of Sec. 3.1, then it 

is assigned  to one of M regions in R , denoted as R. for 

m=l,2,...,M.  Next assume  that  the quantizer's desired 

output   is  its  input signal.   This  is  a reasonable 

assumption, for in most communication systems the quantized 

signal  is  intended  to be an instantaneous replica of the 

input signal.  Thus, it can also be assumed  that x € R , 
—   m 

i.e., that the input vector x is assigned to the region in 

which it is contained. Note that these assumptions are 

made for convenience only and place no restrictions 

whatsoever on the subsequent solution. 

1 

■ 

< 

» 

The point within R that is chosen  as  the  restored m 

value of the quantizer input is denoted as y , where v  is 
-m 
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a vector since it represents a point in N-space. The 

instantaneous error caused by restoring a quantized signal 

to the point v^ is then x-£n* The restoration performance 

is to be determined by evaluating a function of this error, 

e(')« The goal is to minimize the mean value of this error 

function, for all possible quantizer inputs, by the proper 

choice of restoration points, y . The expression for the 

total error which must be minimized is then 

M f 
£=E  / e(x-y )p{x)dx 

m=l /    ^B  ~ " 
(3.2) 

R m 

The error weighting function, e, is arbitrary, but it is 

usually a nonnegative function because instantaneous errors 

of opposite sign should not cancel each other. 

k 

•-' 

Many researchers have proposed solutions which 

minimize eq. 3.2 for different choices of the error 

weighting function, but all of their results are predicated 

on x being a one-dimensional or scalar input. Of these 

results, the most significant ones have been obtained by 

Bruce [1] who used dynamic programing techniques to find 

the optimum regions, R , and restoration points, v , for 

arbitrary error weighting functions. His results 

generalized those obtained earlier by Max [2] for a squared 

error weighting. 
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A mean-square error criterion 

The functional form of this error weighting is 

»(x-S,)-«H«-3!m'(i"S«'Tl 

is also utilized here. 

(3.3) 

„here TrCi denotes the trace of a matrix. The error 

function e.x-^, is now a monotonic function. Then, under 

a simple assumption on PU, (that POO is not entirely 

discrete,, the error expression in eq. 3.2 can be minimized 

by the techniques of differential calculus. By making ttus 

u *     r.^^   the relative extrema of the error assumption  about  p(X),  tne reidu 

surface ^ can be found from 

1L = 0 
(3.4) 

form=lr2 M.     Substituting  equations  3.2  and     3.3     into 

eq.   3.4  yields 

be -- J   -2(x-Ym 
)p(x)dx  =  0 

m 

for m=lr2,...,M.  This equation can be rearranq 

restoration point, ^ solved for to obtain 

(3.5) 

ed  and  the 

Itf 
! 

-■.. 
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I  xp(x)dx 

m  

/p(x)dx 
R m 

(3.6) 

for m=l,2,...,M. Equation 3.6 is thus a minimum 

mean-square error estimate of the input to a quantizer, 

based on the quantizer output and the a priori statistics 

of the input. Closer inspection of this equation reveals 

that 

Y =E{x | x € R } 
-m  —  —   m 

(3.7) 

fc. 

'^ . 

for m=l,2,....M.  That  is,  y  is  the conditional  mean 

estimate of x conditioned on the nonlinear information that 

x has been quantized to the region R . Because of this 
— m 

conditioning, v represents a nonlinear res oration of the 

quantized signal. The restoration is optimum only with 

respect to a mean-square error criterion, but it is 

completely independent of the specific form of the 

quantizer. 

Note that eq. 3.6 requires that a multidimensional 

density function, p(x)f be provided in order to solve for 

the optimal restoration. Since a gaussian density is the 

only known multidimensional density for correlated signals, 

only quantized gaussian random processes might be optimally 
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restored. If other multidimensional densities can be 

derived, then systems which are based on these densities 

miqht also be optimized. The subsequent chapter considers 

this derivation possibility and presents a technique for 

generating correlated n.-iltidimensional densities. The 

results are then utilized in succeeding chapters to analyze 

several common communication systems. 

3.4  Estimation Covariance 

The performance of the estimator derived in the 

previous section can be determined by computing the 

estimation error covariance matrix. The covariance of the 

estimator, based on the quantized measurement information, 

can be found from 

cov(x | x € Rm)=E{(x-^n) (x-iin)
T| x 6 Rm}    (3.8) 

By comparison with  equations  3.6  and  3.7  this, can  be 

expressed as 

cov(x | x 6 R ) =- 
—  —   m 

m 
(£"V {^~^n

)   P(x)dx. 

m 

p(x)dx 

(3.9) 

fc. 

r^* • 

The numerator  can  then  be expanded  and  the  resulting 

equation  simplified  to  obtain  the  final  form  for the 
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estimation covariance 

cov(x | x 6 R )=- -  -   m 

xx p(x)dx 

/ p(x)dx 
JR 

T 
(3.10) 

m 

Using this result, the average quanti/.'.cion error remaining 

after the minimum mean-square error restoration of Sec. 3.3 

is 

M 
{? = y" Tr{cov(x | x e R )}Pr(x € R ) 

m=l      -  -   m m (3.11) 

where Pr(A) denotes the probability of  occurrence of  the 

event A ano 

Pr(x 6 R )= / p(x)dx m     JR   -   - 
m 

(3.12) 

- 
- 

Then using eq. 3.10, the error becomes 

(?=Ti 
M 

E 
m=l 

f ■ 
7R 

L  m 

p(/)dx - y_yiPr(x e R ) 

which  simplifies  to 

M 
£=Tr{C  -Z^vltrix  G  R^)} 

m=l 

(3.13) 

(3.14) 

36 

ill  fciiTfii II llliTllii ■ .tmm^iämtMmmmtmm m n, 



i      ^H^-^^^MHP^^^.- ■.iiiiwi M  jiii.jiHwiii. IIIIRIII m^^^^^ 

■ 

fr. 

where the matrix C is the covariance of the input vector 

x. Alternatively, this same result could have been derived 

by substituting equations 3.6 and 3.3 into eq. 3.2 and then 

simplifying the result. The error expression in eq. 3.13 

is used later to evaluate the performances of various 

optimal restoration techniques that are based on quantized 

measurements. 
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CHAPTER 4 

MULTIVARIATE PROBABILITY DENSITY FUNCTIONS 

4.1  Introriuction 

Multivariate distributions of dependent random 

variables are often required in communications problems for 

the analysis of stationary random processes. The 

distributions arise whenever a continuous random process is 

sampled—a fundamental characteristic of all digital 

systems. The probability density function of N samples of 

a random process X(t) is usually denoted as 

P(x rx0,. .. ,x ) 
L       Z N 

This expression is very general and represents an infinite 

number of possible density functions, only a few of which 

have ever been found. In fact, for N>2 and correlated 

variables, there is only the familiar multivariate gaussian 

distribution. Fortunately the gaussian is the most useful 

distribution (by virtue of the Central Limit Theorem making 

it the limiting distribution for many additive processes). 

There are, however, many processes which it does not model 

well. For tnese, the lack of other known distributions 

often means that a multivariate gaussian is used by 

default, or that the dependence between the variables is 

ignored and  the density  is  written  as  the product of 

38 
H 

i 

mmtmm • ' — ^^ »^MMrtHMiM^ iiiaiMiiiuii   ■ ■^—^•~ 

m   ■  >*■.::■ 



MH I IWW««^ -—^WPIBI ■" '     '   

independent marqinal densities. In either case 

inaccuracies result. Thus, this chapter addresses the 

problem of finding the multivariate densities of 

non-qaussian variables whose marqinal densities and 

correlation function are known. 

4.2 Characteristics of Multivariate Distributions 

The probability density function of a singli random 

variable is uniquely determined by specifyinq all M+l of 

its moments, l<M<oo , denoted by [1] 

E{xm} 

for m=0,1,2,...,M. Uniqueness holds under the followinq 

easily satisfied conditions: when all of the moments are 

finite and when a power series with the moments as its 

coefficients converqes. To uniquely specify the 

multivariate density of N random variables requires (M+l) 

joint moments, similarly denoted as 

E{A  x^ ...x> } 
1 Z N 

■jfv. 

for m ,m_,...,m =0,1,...,M. For a g.ven random process it 

is usually possible to determine the distribution, p(x-), 

of a single random variable (a marginal density function of 

the multivariate density), and to measure its correlation 
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with the other similarly distributed variables.   If  there 

are  N variables,  then  the N marginal densities provide 

2 
N(M+1) moments and the correlations provide N -N more.  The 

remaining  mixeo moments  are  undetermined.  If these are 

chosen arbitrarily, then there are an  infinite number  of 

2 
possible multivariate densities which have the same NM+N 

moments specified above.  However, these  densities differ 

from each other only in their higher moments, and thus are 

very similar. 

A valid probability density function must satisfy the 

following six conditions [2]: 

Property 1. p^ ,x2 ,. .. ,xN) >0 (4.1) 

• 
1 

fc. 

» 

Iv 

I 

• 

Property 2.    / ... / p(x ,x ,...,x )dx dx-.. .dx =1   (4.2) 

Property 3.  / P^j^'X2 ' • • •'XN) 
dx
i
=P(x1' • • •'xi_X

Xi+I * * • ^N) 

(4.3) 

for i = l ,2,...,N. 

Property 4.  To accurately represent a given random process 

with  correlation matrix  C,  the density function must be 
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able to generate the elements of C from the equation 

ii-j-JH». p(x1,x2l...,xN)dx1dx2 ...dxN     (4.4) 

Property 5. When a stationary random process X(t) is 

sampled, the samples, in general, are correlated with a 

correlation matrix C. If the sample spacing becomes so 

large, however, that the samples are uncorrelated and C is 

a diagonal matrix (assuming X(t) has no strictly periodical 

components), then the samples are also independent. Then 

the density function should be factorable into a product of 

independent density functions, as 

p (x1 , x2 ,.. . , xN) =p (x1) p (x2 ) ... p (xN) (4.*) 

Property 6.  If two of the random variables are  identical, 

e.g.  x.=x., then the density must become 
i  j 

p(xl ,x2 ,...,xN) = ö(xi-x )p(x1,..,'
x
i_f

x
i+j---'

X
N) (4-6) 

4.3  Prior Multivariate Density Research 

fß ■ 

A few specialized  multivariate densities  have  been 

found   in  the  past.   In  1945  S. 0. Rice  [3]  derived 
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two-dimensional   Rayleigh  and  sine-cosine  densities. 

Subsequent  researchers,, such as Gumbel [4] and Parzen [5], 

found multivariate densities based on known marginals,  but 

their densities failed to satisfy Properties 4 and 6 and so 

could not represent  a  given  random process.   The most 

significant  results  to date were obtained by Beckmann (6) 

who developed  a  general  technique  for  constructing  a 

two-dimensional  density from its marginals and correlation 

coefficient.   Beckmann's method  required  each marginal 

density to be  the  weighting  function  of  a  system of 

orthogonal polynomials.  Unfortunately this resulted  in a 

joint density containing an infinite series that often did 

not have a closed form solution.  Also,  by  the  inherent 

nature of orthogonal  polynomials,  the  results were not 

extendable to more than two dimensions. 

4.4 Derivation of Multidimensional Densities 

To derive densities in higher dimensions, consider 

first an N-dimensional gaussian density. Assume, without 

loss of generality, that its mean is zero and its 

covariance is C.  Then this density can be written 

p(x)=(27r)"N/fcr1/2exp(-|xTC 1x) (4.7) 

■ 

It is possible, by a  suitable  linear  transformation,  to 

express this density  in a new coordinate system in which 
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the  components  are  statistically   independent.     The     density 

transformation  is effected   through 

PY(y)=Px(x) 
dx 

dX 

(4.8) 

Let 

Y=ETx (4.9) 

where E is the solution to the eigenvalue equation 

EA=CE (4.10) 

with A a diagonal matrix of eigenvalues. Since C u 

symmetric and a covariance matrix, the eigenvalues are real 

and nonnegative. Also the eigenvectors which comprise the 

columns of  E can  be  chosen  to  be  orthonormal,   i.e. 

ETE=I (4.11) 

Now  substituting   eq.   4.9   into  equations   4,8   and   4.7   yields 

p   (Y)=p   (Ey) |E-1| = (27r)-N/2|Er1|Cr1/2exp(-iyTETC  1EY) 

or 
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^(y) = (2.rN/2|Ar1/2exp(AI
T
iX-1y) (4.12) 

Notice that if A in this last equation is an identity 

matrix, then the original covariance matrix C must also be 

an identity matrix, for 

T    T 
C = EAE  = EE  = I (4.13) 

The diagonal elements of A are just the variances of 

the components in the new coordinate system. If the 

components are scaled by the square root of these 

variances, i.e. zi
=Yiv^~r 

then each new component has 

unit variance. Hence rotating these scaled coordinates by 

the inverse of the original transformation 

w=Ez (4.14) 

yields an uncorrelated unit variance probability density 

function 

p(w) = (2.)-N/2exp(-1-wTEA1/2A-1A1/2E-1w) 

= (27r)"N/2exp(4wTw) (4.15) 

MQ^ 
■•.- 

i 

Reversing the above procedure thus leads to  a  method  for 

generating  a correlated multidimensional density function 
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from an uncorrelated one. 

Reiterating the steps above in proper order yields the 

following general technique: 

(1)   Write an  uncorrelated N-dimensional  density  as  a 

product of its known marginals 

p(x)=p(x1)p(x2) ...p(xN) (4.16) 

(2)   Define E such that E is orthonormal and 

EiCE=A (4.17) 

where A is diagonal and C is the desired covariance matrix. 

The matrices E and A are respectively the matrix of 

eigenvectors and the matrix of eigenvalues of C. 

.-1 t -I..  -T. 
(3)   Transform x by E  , i.e., ^=1 *=l: »» so that 

P (X)=lElpx(Ey)=Px(Ex) 
(4.18) 

*K 

fe 

(4)   Scale the components of y by the square roots of  the 

eigenvalues; then 

*=A1/2* 
(4.19) 

- 
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and 

Pz(z) = |A|   1/2FV(A1/2z) = |Ar1/2px(EA"1/2z) (4.20! 

(5)        Inverse   transform   z   by  w=Ez  to  obtain 

^(w) = |E|Tpz(ETw) = |A|   1/2px(EA"1/2§rw) 

or 

t 
■ 

W  . 
| 

t 

E^ (w) = | A|px (Aw) 

where 

A=EA-1/2ET 

(4.21) 

(4.22) 

To illustrate the effect of each step of the procedure, 

fig. 4-1 shows contour plots of two-dimensional gaussian 

and   laplacian densities. 

4.5     Proof of  Density Properties 

The function Pw (w) in eq. 4.21 has correlation matrix 

C and satisfies the conditions for a valid probability 

density  function  as   is  next  shown. 
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GAUSSIAN   DENSITY LAPLACIAN  DENSITY 

Uncorrelated   Density Contours 

Coordinate   Rotation 

Eigenvalue  Scaling 

- 
i 

te 

Inverse   Coordinate   Rotation 
Figure 4-1.  Contour plots of the two-dimensional density 
transformations used to generate correlated densities. 

tor 
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Property 1.  Pw(w) is clearly nonneqative because  PxU)>0 

for all x G RN and Aw G RN. 

Pr operty 2.  / Pw(w)dw= / lA|pw(Aw)dw 

/p (x)dx = 1 

Property 3.  I ^(^dw^pC*^,... »W^JW^J. .. ,i»N) 

(4.23) 

(4.24) 

Property 4.  E{wiw^}=E{(A~ x)i(A x)^} 

-1    T  -1 

(EA172^.172^)^ 

= (C) . 
- ij 

(4.25) 

Pioperty 5.  C=j: implies that A=^; then 

»i 

Pw(w) = |A|px(Aw)=Px(w)=p(w1)p(w2) ...p(wN)        (4.26) 

Property  6.       If x
i
=xj '       then       aii="aij =aj j ="aji * 

lim     a..=a.. = oo. Hence       lim     |A| = oo   and 
x.-» x .             JJ x.--» x. 
iD 1       3 

Now 
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. Px ( oo ; ; 

N 

i       i k=l 

Thus 

X. >x. 
1 j 

Px.^E^i^k)' «i^j 

xi 

0; X.>x. 

lim F^{w)= j oo ; xi=x. 
X . —* X .  ' 

3       1 0; X <x 

X. <x. 
1 j 

(4.27) 

= 6 (x,-x.) (4.28) 

- 

*" 

r** -. 

Unfortunately, Property 3 is not satisfied, i.e., the 

correlated density function no longer has the desired 

marginal distributions. In fact, its marginal 

distributions are a function of the correlation matrix C. 

However, as is shown in more detail later, the correlated 

density function found above remains a good representation 

for a given random process, and is a good approximation to 

the exact (but unknown) probability density function. 

4.6  Examples of Multidimensional Densities 

To demonstrate the   utility  of  the  derivation 

procedure, some examples are now presented. 
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A.  Gaussian probability density 

= (^)-N/2 1..T Px(x) = (j7r) ""'•Kp(-Jx*E) (4.29) 

^(w) = |Ar1/2 (27r)"N/2exp(-|-wTATAw) 

= |Cr1/2(2Jr)-
N/2exp(AwTEA-V2ET^-l/2§T^) 

|£|-l/2(27r)-N/2exp(_l^-l^ (4.30) 

B.  Laplacian probability density 

^(i'-^72«,[«,<^l
l,'i1' (4.:i) 

[W(H''|£rl/2?7ä",,,,^1 

N 

k=l ik k 
)       (4.32) 

C.  Rayleigh probability density 

Px(K,- 
r N i 

.i-l 1  1 J 
exp{-l-xTx) (4.33) 

fc 

Pw(w) = |C| -1/2 

1=1 k=l 1K K   k=l 1K K J    ^ 
) (4.34) 

, 
Wir- > 
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D.  Maxwell probability density 

px(x)=(2/ir) 
N/2 

1=1 

1 T expi-jx x) (4.35) 

Pwiw) 
(2/ir) 

N/2r 

ICI 1/2 

N   N N 

H'&^v "'^^ exp(4wTr1^) (4.36) 

Figures 4-2 through 4-9 contain plots of two-dimensional 

gaussian, laplacian, and Rayleigh densities for both 

uncorrelated and correlated variables. 

4.7  Marginal Densities and Randon. Process Simulations 

As stated previously (see Section 4.5), the correlated 

multidimensional density function in eq. 4.21 and the 

uncorrelated density in eq. 4.16 have different marginal 

density functions. In generating the correlated density by 

steps (1) through (5), the marginal density becomes a 

function of the correlation matrix C. For example, a 

two-dimensional correlated laplacian density can be written 

* 

I 

r** ' 

p(x,y)= 

where 

2s sVl-^i x y 

:exp 
\/2(l-r2) 

ax  by ax 
s 

ay _ bx (4.37) 
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FIGURE 4-2.     TWO-DIMENSIONAL GAUSSIAN   DENSITY 
Correlation  -   0. 0 

te 

. 
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FIGURE 4-3.      TWO-DIMENSIONAL GAUSSIAN   DENSITY 
Correlation  -   0. 8 

53 

Ü^lMiÜfiBft raimniiM liiiMü^rtiiaTiiin mimi^tlmmtmltmäumä^ 



•»-   iiiiliwiiiiaia 

^ 

p(X.Y) 

FIGURE 4-4.      TWO-DIMENSIONAL GAUSSIAN   DENSITY 
Correlation  -  -0. 8 
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FIGURE 4-5.     TWO-DIMENSIONAL  LAPLACIAN  DENSITY 
Correlation  -0.0 
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FIGURE 4-6.     TWO-DIMENSIONAL   LAPLACIAN   DENSITY 
Correlation   -   0. 8 
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FIGURE 4-7.      TWO-DIMENSIONAL   LAPLACIAN   DENSITY 
Correlation  -   -0. 8 
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FIGURE 4-8.     TWO-DIMENSIONAL  RAYLEIGH  DENSITY 
Correlation  =  0.0 
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p(X(Y) 

FIGURE 4-9.      TWO-DIMENSIONAL  RAYLEICH  DENSITY 
Correla ion   -   0. 8 
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2 ? 
s   =E{x   } x      l       ' (4.38) 

Sy=E{y2} (4.39) 

Kixy} 
r = - 

sxsy 
(4.40) 

a=viTr  + Vl-r (4.41) 

b=Vi+r  - VlTr (4.42) 

Its marginal  distribution   is 

p(x) = 
2s V2(l-r2) 

a|exp(-2^" ^-|)-|b|eXp(-^" 
b 

(4.43) 

which is a function of the correlation, r. It becomes the 

classical laplacian distribution only when the correlation 

is zero, i.e. 

P(x) 
x/2s 

r=0 V x 

1      V5|x| 
exp( ) (4.44) 

i 

However, non-zero correlations in eq. 4.43  result  in 

marginal  distributions  that  are  very similar to the one 
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described by eq. 4.44.   Pig. 4-10  shows  these marginal 

distributions  for  various  correlation  coef f icients —the 

differences are minimal for even  a  larqe change  in  the 

correlation.  Thus either function could adequately model a 

random process such as the one characterized by  fig. 4-11. 

This  figure  represents  the measured distribution at the 

output of a DPCM coder having a sampled inage as an  input. 

This particular image has a measured average correlation of 

0.4 between  successive  DPCM  samples,  resulting  in  the 

experimental   two-dimensional  distribution  shown  in 

fig. 4-12.  Using r=0.4 in eq. 4.37, this distribution  can 

be modeled  as  a two-dimensional laplacian density.  This 

density is plotted in fig. 4-13. 

Similarly, fig. 4-14 shows the marginal distributions 

of a two-dimensional Rayleigh density for several different 

correlations.  The curves are plotted fror 

p(x)=-jL-exp 
2s 

x 
ks. 

—exp s  r 

X 

2,3   .2 
x (B-r) 
—2 T" i-\tT: 

+—exp 
sx 

2^   ,2 
x (-—r) 

ci  

2    2 2s£(l-r ) 
(1+Vl-r2) 

_ 

+r 
1       s 

X 

erf 
«(g-t) 

T 1< sx\2(l-r ) 
-erf 

x(--r) 

^(l-r2) 
U(x) (4.45) 
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p(x) 

f 

Figure 4-10.  Marginal distributions of a correlated 
two-dimensional laplacian density function for various 
correlation coefficients (r). 
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Figure 4-11.      Histogr'm of the DPCM   signal   for the "girl" 
picture 
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FIGURE 4-12.      TWO-DIMENSIONAL HISTOGRAM OF THE 
DPCM  CODED "GIRL"   PICTURE 
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FIGURE 4-13.     TWO-DIMENSIONAL LAPLACIAN  DENSITY 
FUNCTION  USED TO MODEL THE TWO-DIMENSIONAL  DPCM 
SIGNAL SHOWN  IN   FIG.   4-12;    CORRELATION  =0.4 

< 
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p(x) 

fr. 

Figure 4-14.  Marginal distributions of a correlated 
two-dimensional Rayleigh density function with correlation 
coefficient r. 
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which is found by Integrating the two-dimensional  Rayleiqh 

density 

P(x,y) 
4ss (1-r2)3/2 ^sy)(sysx, sxsy  sysx 

x y 

2tx\ 
2 

2 v  2 2' 2(l-r ) s    s s    s ^v   ' x    x y   y 

1 ,x •exp -  T~ v (4.46) 

The parameters s , s ,  r,  a,  and b  are  the  same  as 

previously defined in equations 4.38 to 4.42. As expected, 

when the correlation between x and y becomes zero, the 

marginal density reduces to 

P(x) 

r=0 

:-^rexp(- -2--)U(x) 
s ^     2s z 
X x 

(4.47) 

Iff 

the familiar one-dimensional Rayleigh density. However the 

figure shows that the shape of the marginal density 

function is insensitive to changes in the correlation. 

Hence a random variable approximately described by eq. 4.47 

could be characterized equally well (though not as 

concisely) by eq. 4.45. Similar results are obtained for 

marginal distributions of the higher dimensional densities 

described by eq. 4.34. This equation therefore provides an 

effective model for a multidimensional correlated  Rayleigh 

random process. 
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Thus, the technique developed above generates, from a 

given one-dimensional density, a multidimensional density 

that possesses a desired correlation function. Because the 

one-dimensional density function and correlation properties 

of a random process are usually measurable and known, the 

multidimensional density can be derived from this 

information and utilized to model the random process. This 

model can then be employed in the analysis and simulation 

of digital systems which operate on the random process. 

The potential applications for this modeling are widespread 

and several are analyzed in subsequent chapters. 
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CHAPTER 5 

QUANTIZATION AND RESTORATION OF GAU ^IAN SAMPLES 

In Chapter 3, an estimation equation was derived for 

the minimum mean-square error restoration of quantized 

samples from a random process. Solution of the estimation 

equation is dependent upon knowledge of both the structure 

of the quantizer and the multidimensional probability 

density function of the sampled random process. For many 

communication systems, the underlying random process can be 

described by a gaussian probability density function. A 

gaussian density arises naturally in many applications 

because it is the limiting distribution for all additive 

random processes, ^nd the addition of random variables 

occurs often in communication systems. A gaussian random 

process \s thus assumed to be the input to a quantizer and 

an optimal restoration is then derived based on this 

assumption. 

5.1  Estimation of Quantized Gaussian Samples 

Is 

{ 

Repeating one of the major results of Chapter 3, the 

restoration of a vector of samples x, which has been 

quantized  to one  of  M  regions,   R   ,   can  be  found   from 

■ 
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\- 

/xp(x 
R 
m 

)dx 

I     D(x)dx 

(3.6) 

for m=l,2,...,M, where p(x) is the probability deneity 

function of the sampled random process. For a gaussian 

random process, p(x) can be written 

p(x) = (2ir)"N/2|Cr1/2exp(-2XTC 1x) (5.1) 

where C is the covariance matrix of x and the mean is 

assumed to be zero. If the region R is rectangular, i.e., 

if each component of x is quantized individually, then the 

region can be expressed as 

R ={x I x.e [a .,b .], i=l,2,...,N} 
m -   i   mi mi 

(5.2) 

for m=l,2,...,M. For notational simplicity only a single 

region is henceforth considered and the subscript m is 

dropped,   leaving 

■» 
R={x I x € [a.bll (5.3) 

« 

| 

Substituting eq. 5.1 into ea. 3.6 yields 
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I ■'x(27r)"N/2|cr1/2exp(-ixTC"1x)dx 

j  ~{2rr) "N/2 | C I" 1/2exp ( -^C'1«) dx 

(5.4) 

Unfortunately, no known analytical solution exists tor 

either of the integrals in this eauation. Curry [11 has 

obtained an approximate solution for finely quantized 

values of x., i.e., for 

b.-a. < s. 
11   i 

(5.5) 

for i=l,2,...,N, where s. is the standard deviation of the 

(i)th component of x. His approach is to approximate the 

gaussian density by the first three terms of its Taylor 

series expansion about the midpoint of the region R. The 

integrations can then be performed, with the result that 

-1, E{x | x € R} = {I-DC ■L)(b+a)/2 (5.6) 

where the diagonal matrix 

(b -a r 

12   ^ 
(5.7) 

«. 

fc 

for i,j=l,2,...,N. 
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An exact solution to eq. 5.4 can be obtained when the 

components of x are uncorrelated. In this case the 

covariance matrix of x can be expressed as 

C={s,z 5. . } 
-  i ij 

(5.8) 

for i , j = l,2,...,N, so that the restoration equation can  be 

rewritten as 

/   xexp(4i;x2/s2)dx 
Ja-       V2Ä 1     V   - 

y=~  

/a  "K"2!!^75^- 
(5.9) 

Each multidimensional integral can then be separated into a 

product of one-dimensional integrals, so that common 

factors  can  be  cancelled,   leaving 

j 
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v= 

/ 

/ 

2^2 

\,e"Xl/^d 

h 
2        2 

b. -jC/2aJ 
dx. 

ai 

/ N 

/ 

bN -XN/2SN, e      dx 

% 
N 

(5.10) 

Considering the (i)th component of this vector, since all 

of the components are identical in form, the integrals can 

be evaluated, as <*> 

<*>  In accordance with the usual convention, 

2 •x     -t 
erf(x)=7^/      e       dt 

0 

r**' 

t 
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expl- 

\=4 si 
(~hi'i 
[fisj'^^sj 

(5.11) 

erf 

A similar  computation  without  the  zero-mean  assumption 

shows that, if E{x}=u, then 

^=^^ 

I     p (vv^i      r (vv!] 

erf 

L 
/!k^-erffclj\ 

(5.12) 

Gaussian variables which have been decorrelated by means of 

a Karhunon-Loeve transformation [2] and i;hen quantized can 

be restored, according to a minimum mean-square error 

criterion, by utilizing these last two equations. 
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An exact analytical solution to eq. 5.4 also exists 

when an estimate of a single vector component, x , is 

desired based upon two types of information: 

1. the other components, «i»^'* *''"H-I* which are 

known completely (quantized with an infinite 

number of bits) 

2. the quantizer output, which nonlinearly specifies 

the interval containing x„ 
N 

To derive this solution, consider 

i:=E{x | x1=a1,x2=a2,...,xN_1=aN_1;aN<xN<bN}     (5.13) 

The vector t is defined such that 

t= 

N-l 

N 

(5.14) 

Then, using eq. 5.4, 
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f. t exp(-itTC  1t)dx 

1=  

/. 
exp(-^tTC  1t)dx 

or 

or 

/; y =  

Nt exp(-itTC'1t)dx 
Z—   —     —        N 

lN ___ 

/' 

Nexp(-itTC":Lt)dxM 
i 2- -    -       N 
N 

/: 

N-l 

Nx exp(-1tTC~1t)dx 
,     N     ^     2        N 
U  

/; 

Nexp(-1tTC"1t)dx 
2       N 

N 

(5.15) 

k 

i« 

• 

Denoting the elements of C~  by 
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c"1» 

rll   r12    *    •    •   rlN 

r21   r22    "    *    •   ^N 

(5.16) 

rNl   rN2    *    *    '    ! 
NN 

the exponential term  in  the Nth  component of  eq. 5.15 

becomes 

r 

exp<-±t 

N-l 

N-l 

:)?i
r2jaj+r2NXN 

N-l 

J~»   N]   ]     NN  N 

> 

) 

-xp-l|a1(gr1.aj+r1NxN)+a2(,|:\2jajtr2NxfJ) 

N-l „-! 

^•^VI'^/N-I.J^^N-I.NV^N'Z/N jaj+tNNXN> 
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♦v 

=ex 

(5.17) 

The first exponential in eq. 5.17  is  a  constant and  is 

common  to both  the numerator and denominator of the Nth 

component of y in eq. 5.15.   Hence  this  factor can  be 

cancelled, leaving 

y =_!sä — !— 
N     ,w -   M_1 .-I 

f  NexP -ik^/j^jN^Nj^'NN^N
2] 

^ aN     L  D-i 

(5.18) 

,XN 

Completing     the     square    within       the       exponential,       each 

exponential becomes 

1 
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/ 1   N-l v 2 

•e 

rNN r    i    v^1 i 

IrMMr i  N"1        n' 
(5.19) 

Again, the last exponential is constant and is common to 

both the 'lumerator and denominator. Hence it can be 

cancelled.  Ne>.t, performing the substitutions 

"■vjfcüvvv ■ Vv 
NN   ] = .l 

(5.20a) 

du=dx 
N 

(5.20b) 

<i 

fc. 

then 
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/ 
YN=-- 

^+V(u-v)exp(-^-)du 

I 
f-^j+V i, i 

^ 
+v 

NN      .   , 
exp( 2—^du 

/ 

^    u exp(_JiN_)du 

-  v 

/ 

N      exp(__NN_)du 

^N 
+v 

-r-j-U[-!f%«>2]-«p[-!^,8«+v,2]l 
-  v     (5.21) 

^ eC{V¥'V"'MV¥'V^ 

Since the covariance matrix C is  symmetric,  then C   is 

also s/mmetric.  Hence 

r . =r . 
jN  Nj 

(5.22) 

] 

^/' 

and therefore 
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Y= 
V] 

2 

V'rNN 
erf[^S(bN.w)].erf^(^.w)] 

[r»x, 21 r r 21 
~f (bN + ^)     -exp  ~f (aN+w) 

-  w 

(5.23) 

where 

N-l 

rNN   j-1   3   N] 
(5.24) 

If  XN   is quantized     to    an     infinite     number     of    bits 

U =b   ),   then 
N     N 

Y  =a 
N     N (5.25) 

as is expected.  If XN is quantized  to  zero  bits,  its 

quantization  interval is the  real line (-? =b =Q0), and 

then its estimate, y , is 
N 

: 
i 

*- 

,   N-l 
Y =-i— ^a.r . (3.26) 
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components are transmitted with zero bits.) The low 

frequency components are retained because they contain more 

energy than the high frequency components. If the low and 

high frequency components ara correlated, then an estimate 

of the high frequency components can be obtained by 

utilizing this correlation. Since higher frequencies are 

being estimated, the estimation technique is equivalent to 

a spectrum extrapolation. If the transform components are 

also samples from a gaussian random process, they can be 

estimated by a Wiener extrapolation technique developed by 

Pratt [3] who has derived the following linear 

extrapolation operator 

T    T -1 
W=CS (SCS ) (5.27) 

based on a minimun mean-square error criterion. In which C 

is the NxN covariance matrix of the samples and the 

sampling matrix S has the form 

S= ' iN-k h (5.28) 

where L. . is  the  (N-k)x(N-k)  identity matrix,  and  0, 

represents  k  columns of zeros.  The operator provides an 

estimate of k truncated samples based on N-k known samples. 

pfl',. 
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Equation 5.26, developed in the last section, provides 

an estimate, yN, of a single vector component based on the 

known samples a^^ ,a2 r.. • ,3^-1 • Note that this also is a 

linear estimation of a sample from a gaussian random 

process. The estimate obtained by this method is identical 

to that obtained from eq. 5.^.7 for the special case k=l. 

To demonstrate this equivalence, consider the 

following partition of the symmetric covariance matrix 

(5.29) 

Note that D and F are also symmetric matrices. For the 

present case, let D be (N-l)x(N-l) so E is Nxl and F is 

1x1. Now the inverse of C can be found in terms of these 

sub-matrices from [4] 

--!_ 

D 1+D"1E(F-ETD"1E)":1ETD"1 

-(F-ETD"1E11ETD"1 

-D 1E(F-ETD 1E)"1N» 

(F-ETD"1E)"1 

(5.30) 

In the notation of the previous section. 

T -1 -1 rNN=(^5  I) (5.31) 

^> . 
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Next define  the   (N-l)   vector  A  such  that 

A-(a1  a2   .   .   .   a^^ 
(5.32) 

Equation 5.26 can now be rewritten as 

yN -     ^ .  -^f-^-pTn-l.-l.T,-!, 
(F-E D  E) 

^—^[-(F-E^n ^F-EV^A - EV'A   (5.33 

üf r.q eq. 5.28 with k = l, it can be seen that 

D=SCS 
(5.34) 

Next let WN be an (N-l) vector representing the Nth row of 

W, which was previously defined in eq. 5.27. Then the 

estimate, yN, using this vector is 

^N = WN1^ = (C_ST).j(SCST)"1A = iV1^ (5.35) 

which is identical to  eq. 5.33.   Therefor e     eq.   5.26     can 

provide    a     linear,     mini 

extrapolation. 

mum    mean-square     error,     spectr urn 

5.7  Covariance of Gaussian Estimator 

te. 

#v» - . 

The conditional covariance of the  estimate  found  in 

eq. 5.23 can be used as a measure of the performance of the 
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estimate.   This  covariance can  be  found  by  utilizing 

eq. 3.10 (without the subscript m) as follows: 

cov(x   I   x €  R)=- 
/ 

NttTp(t)dxN 

% 

/; 

N p(t)dxN 

N 

Vl 
'N 

[ai"-   Vl   yN   1 

'0     0 

0     0 

/: 

N 
V{^dXN 

(5.36) 

N 

\0      0 

/; 

-y N 
N p(t)dxN 

N 

Next, denoting the (N,N)th comoonent of this matrix c.s  e 

and performing  he integrations reveals 

NN 

eNN ' 1     NN 

:bN+w) exp--™(bN+w)2 - (aN+w) exo —^ (aN+w)2 

erf [#'V«']-«{# (aN+w) 

+-i- -(y+w)2 
rNN    N 

(5.37) 

IK N. 
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with r   and w as  defined  in  oauations  5.16  and  5.24, 
NN 

respectively.   The  quantity  e   represents  the averaqe 
NN 

squared error that results when  x_  is  quantized  to  the 
N 

reqion [a ,b ) and an estimate of x  is obtained based on: 
N  N N 

1. the quantization reqion [a ,b ) 
N  N 

2. the correlation matrix, C, of the variables 

3. the previous N-l variables 

The information from these last two factors is contained in 

w,  which  is  itself a random variable.  To compare e%TiT to 
NN 

the error that would  have  resulted  had  the correlation 

information been unavailable, it is necessary to remove the 

conditioninq on w.  This can be done by averaqinq e   over 
NN 

all  values  of w.  Because w is a weiqhted sum of qaussian 

random variables (a x  to a  =x  ,),  w has  a qaussian 
11     N-l  N-l 

distribution.   The  parameters of  this distribution are 

determined next. 

The mean value of w can be found from 

E{w} = E{-1- Eral = -i- .ZrN.E{a } - 0   (5.38) 
rNN j = l ^ 3    rNN j = l NJ   J 

The variance of w is then 

N      2 
E{w2} = E{(-*- r r  a ) } 

rNN j = l N=> ^ 
-^ E{(rTA) } 
r 
NN 

(5.39) 

0* 
where 
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r = 

Nl 

UN2 

N,N-1 

(5.40) 

and 

A= 

N-l. 

(5.41) 

Hence 

;{w2}   = ^LVE{hAT}L = -Hl^t 

NN 'NN 

(5.42) 

where C  is the submatrix of C formed by deletinq the Nth 
-NN 

row and the Nth column of C.  In the notation of Sec. 5.2, 

however, C!  =D.  Also, 
—NN — 

-1      T -1   -1 
r = -D ■1-E(F-EiD  E) (5.43) 

s 
and 

r  =(F-ETD-1E)-:L 

NN ~ 
(5.44) 

, i 

: 
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Then 

?       T  -1 (5.45) 

so  that 

p(w) = 
1 e*p{'W/{£!ü~lE)) 

\/27(ETD"1E) 
(5.46) 

The average error that results from restoring to yN a 

sample that has been quantized to the interval 5aN'
b

Nl 
is 

thus 

e  = 
y 

•'-oo 

e     p (w) dw (5.47) 

Unfortunately, a closed form  solution for  this  integral 

does not exist  when  the expression for ^N has the form 

given by eq. 5.37.   Equation  5.47 therefore  must  be 

evaluated numerically. 

m 

The results from one  such numerical evaluation  are 

shown  in table 5-1.  The integrations, needed to calculate 

the errors listed in this table,  have  been performed  by 

means of  a  16-point gaussian-Hermite quadrature formula 

'5].  The quantization  regions are  the  same  as  those 

calculated  by  Max  for  a  unit variance,  gaussian 
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TABLE 5-1 

NORMALIZED MEAN-SQUARE RESTORATION ERROR FOR 
A MAX-QUANTIZED, GAUSSIAN-MARKOV PROCESS 

CORRELATION =0.9 
FILTERING CASE 

Normaliz ed Mean- 

Bits Quantization 
Probability 

n f 
Square Restoration Error 

O I 

Interval Occurrence Not Using 
Correlation 

Using 
Correlation 

0 { -TO  ,+ oc  ) 1.00000 1.000000 0.190000 

1 (0.000,+ oo ) 0.50000 0.363344 0.085441 

2 (0.000,0.982) 0.33685 0.076896 0.042723 
(0,982,+ 00 ) 0.16315 0.201243 0.034435 

3 (0.000,0.501) 0.19165 0.02.3687 0.016412 
(0.501,1.050) 0.16148 0.024683 0.017257 
(1.050,1.748) 0.10662 0.038160 0.018193 
(1.748,+ oo ) 0.04023 0.130557 0.014966 

4 (0.000,0.258) 0.10188 0.005543 0.005140 
(0.258,0.522) 0.09742 0.005799 0.005309 
(0.522,0.800) 0.08871 0.006373 0.005667 
(0.800,1.099) 0.07616 0.007434 0.006256 
(1.099,1.437) 0.06047 0.009386 0.007122 
(1.437,1.844) 0.04271 0.013391 0.008260 
(1.844,2.401) 0.02445 0.023947 0.009205 
(2.401,+ oo ) 0.00818 0.093356 0.007747 

5 (0.003,0.132) 0.05251 0.001451 0.001420 
(0.132,0.265) 0.05187 0.001466 0.001434 
(0.265,0.399) 0.05067 0.001502 0.001466 
(0.399,0.536) 0.04890 0.001558 0.001515 
(0.536,0.676) 0.04653 0.001636 0.001584 
(0.676,0.821) 0.04365 0.001746 0.001678 
(0.821,0.972) 0.04026 0.001893 0.001795 
(0.972,1.130) 0.03642 0.002091 0.001958 
(1.130,1.299) 0.03222 0.002367 0.002175 
(1.299,1.481) 0.02769 0.002754 0.002460 
(1.481,1.682) 0.02295 0.003325 0.002841 
(1.682,1.908) 0.01812 0.004225 0.003323 
(1.908,2.173) 0.01332 0.005764 0.004036 
(2.173,2.504) 0.00875 0.008842 0.004847 
(2.504,2.976) 0.00467 0.016968 0.005638 
(2.976,+ oo   ) 0.00146 0.071316 0.004866 

r^*   . 
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distribution [6], For a given number of regions, or, 

equivalently, for a given number of bits, this choice of 

i .gions results in the smallest mean-square quantization 

error. This error, in fact, is the one that occurs when 

the restoration corresponding to eq. 5.23 is performed and 

the correlations are either zero or simply ignored. 

However, when successive samples of the distribution are 

correlated and this correlation is utilized, the 

restoration can be improved and the mean-square error 

decreased, as the last column of the table indicates. The 

decrease in mean-square error is seen to be most 

significant for coarse quantization at a low number of 

bits, but an improvement is evident for every quantizing 

region. 

«i 

The specific correlation in this example is assumed to 

be due to a first-order Markov process with a correlation 

coefficient of 0.9. The choice of a Markov process is a 

convenient one because the restoration of a random sample 

from this process depends only on the sample immediately 

preceding <*>. The error results are thus independent of 

the number of samples, N, used for the restoration, and 

independent of the size of the correlation matrix, C. When 

only prior samples are utilized in  the  restoration  of  a 

<*>  By the definition of a Markov process, 

p(xN I x1,x2,...,xN_1)=p(xN I itN_1) 
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random sample, the method is denoted as "filterinq." 

Table 5-2 contains similar error results to table 5-1, 

but for the technique of "smoothinq." Smoothinq utilizes 

information about all past and all future samples to 

restore a current sample. However, in the case of a Markov 

random process, only the sample immediately precedinq and 

the sample immediately followinq the current sample are 

needed <**>. The use of this added information from future 

samples siqnificantly reduces the resultant mean-square 

restoration error for any choice of quantizinq reqion. 

The results of tables 5-1 and 5-2 are presented in a 

different format in fiqures 5-1 and 5-2 to illustrate the 

total mean-square quantization errors that occur at various 

quantizinq bit assiqnments. The errors are calculated bv 

usinq the information from the tables in the followinq 

equation 

M 
£=£ e  Pr{x e [a.b 1 } 

pTrS ym   N    N N m 
(5.48) 

- 

where fa ,b 1  is one of the M  reqions to which  x   is 
N  M m N 

quantized,  and  e   is the error, found from eq. 5.47, for 
ym 

£r 

<**>  For a Markov process it is also true that 

p(xN I Xj^ ,. . . ^^T ,xN+1 ,. . . )=p(xN I ^.J^'^J+X) 
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TABLE   5-2 

NORMALIZED   MEAN-SQUARE   RESTORATION   ERROR   FOR 
A   MAX-QUANTIZED,   GAUSSIAN-MARKOV   PROCESS 

CORRELATION   =0.9 
SMOOTHING   CASE 

Normalize ad Mean- 

n ■» *- *-. Quantization 
Probability 

of 
Square Restoration Error 

Bits 
Interval Occurrence Not Using 

Correlation 
Using 

Correlation 

0 ( -QO  ,+ 00  ) 1.00000 1.000000 0.105000 

1 (0.000,+ oo ) 0.50000 0.363344 0.049106 

2 (0.000,0.982) 0.33685 0.076896 0.028041 
(0.982,+ oo  ) 0.16315 0.201243 0.018555 

3 (0.000,0.501) 0.19165 0.020687 0.012428 
(0.501,1.050) 0.16148 0.024683 0.012115 
(1.050,1.748) 0.10662 0.038160 0.010920 
(1.748,+ oo ) 0.04023 0.130557 0.007810 

4 (0.000,0.258) 0.10188 0.005543 0.004501 
(0.258,0.522) 0.09742 0.005799 0.004577 
(0.522,0.800) 0.08871 0.006373 0.004720 
(0.800,1.099) 0.07616 0.007434 0.004908 
(1.099,1.437) 0.06047 0.009386 0.J05144 
(1.437,1.844) 0.04271 0.013391 0.005160 
(1.844,2.401) 0.02445 0.023947 0.005431 
(2.401,+ 00 ) 0.00818 0.093356 0.003924 

5 (0.000,0.132) 0.05251 0.001451 0.001356 
(0.132,0.265) D.05187 0.001466 0.001299 
(0.265,0.399) 0.05067 0.001502 0.001333 
(0.399,0.536) 0.04890 0.001558 0.001383 
(0.536,0.676) 0.04653 0.001636 0.001444 
(0.676,0.821) 0.04365 0.001746 0.001523 
(0.821,0.972) 0.04026 0.001893 0.001638 
(0.972,1.130) 0.03642 0.002091 0.001436 
(1.130,1.299) 0.03222 0.002367 0.001719 
(1.299,1.481) 0.02769 0.002754 0.001983 
(1.481,1.682) 0.02295 0.003325 0.00/267 
(1.682,1.908) 0.01312 0.004225 0.002996 
(1.908,2.173) 0.01332 0.005764 0.003345 
(2.173,2.504) 0.00875 0.008842 0.003428 
(2.504,2.976) 0.00467 0.016968 0.004066 
(2.976,+ OO ) 0.00146 1  0.071316 0.003735 

tit 
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SMOOTHING  CASE 

Ü 

0.001 
J I £ 

BITS 
Fioure  5-2.     Mean-square  restoration error  for a Max quantized, 
qaussian-Markov process with  correlation  factor  r. 96 
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this quantization region. The errors reveal the 

significant error reductions that can be obtained by 

utilizing available correlation information in an optimal 

fashion. For example, when samples of a random process 

have an average correlation of 0.96 and are quantized to 

one bit, utilizing this correlation in an optimum 

restoration yields a mean-square error eauivalent to that 

from three bit Max quantization which does not utilize ehe 

correlation. Figure 5-1 shows the filtering case and 

fig. 5-2 the smoothing case. 

5.4  Simulation Results for Gaussian Processes 

r^* ■-. 

In Sec. 5.1 a solution is described for acnieving an 

optimal nonlinear restoration of quantized ga^ssian data. 

This solution has now been applied to the restoration of 

quantized one-dimensional random signals and 

two-dimensional transform domain zonal-quantized i:aages. 

The results reveal a decrease in mean-square error in all 

cases. However, in spite of the error reduction, some 

images exhibit a degradation in subjective quality after 

being restored. Hence a nonlinear error criterion based on 

the human visual system has been used in place of the 

mean-square error function. Under this criterion a 

subjective image improvement, as well as a numerical error 

reduction,   are  obtained. 

97 

*    '" ^ -^^^ifMii     1        '   Ä^^i^iMMJLaMMrliteMt^ Ä_i 
JyJ 





1 '"•"" " -'■■-■ 
1 ■- ■-■—'■ - -™ 

sufficient   for   converqence,  and  that  more  than  one 

iteration provides negligible improvement. 

A typical  portion  of  the  results  from  the  above 

simulation is shown in £ig. 5-3.  The restoration decreases 

the mean-square quantization error by 33%, and is  seen  to 

provide  a better approximation to the original signal than 

the quantized  signal.   The   average  improvement   in 

mean-square  error   as  a  function of quantizing  bit 

assignment for different correlation coefficients is  shown 

in  fig. 5-4.   It can be seen from this graph that, as the 

amount of correlation  in  the  Markov process  approaches 

zero, the restoration provides no error improvement.  There 

is no improvement as the number of quantizing bits  becomes 

large  and  the differences between the original signal and 

the quantized signal vanish.  There is also no  improvement 

at  zero bits when there is no information remaining in the 

quantized signal upon which to base a  restoration.   Thus, 

the  above  procedure  represents  a viable  restoration 

technique only when the number of quantizing bits are small 

and the input samples to the quantizer are correlated. 

5.4 2  Block Transform Zonal Image Coding 

The conditions which were placed on the estimator 

derived in Sec. 5.1, and which were modified experimentally 

in the preceding paragraphs, are  satisfied  by  the  zonal 
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transform ceding technique for images. First, transform 

samoles typically have a gaussian distribution: each 

transform sample is the oum of a large number of random 

variables so that the central limit theorem can be invoked. 

Next, for all transforms except the Karhunen-Loeve, the 

transform samples are correlated. Finally, to achieve a 

bandwidth compression or a bit-rate reduction, some of the 

transform samples are quantized to a small number of bits. 

Hence, because all of the necessary conditions for a 

reconstruction are satisfied, it is possible and practical 

to restore zonal transform coded images. 

^ 

The image that is presented to a transform coder  is 

assumed  to be in the form of a two-dimensional array of 

light intensities.  (Each point of this array is known as a 

picture element or "pixel".)  If the image is presented as 

a continuous field of intensities, however, it must  firtr 

be  sampled  to obtain the image pixels.  A two-dimensional 

discrete mathematical transform  is  then  taken  of  these 

pixels.   The  transform is performed over the entire image 

or over subsections of the  image  known as blocks.   The 

transform domain  samples  are  next quantized and coded, 

either for storage or for transmission over  a  channel  as 

fig. 5-5  shows.  At the receiver the samples are decoded, 

restored to reduce the quantization  effects,  and  inverse 

transformed   to  reconstruct  the original  image.   The 

subsequent paragraphs discuss these operations  in  further 
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detail. 

5.4.2.1 Unitary Transformations 

The transform operation is usually performed by one of 

a class of linear unitary operators <*> which have been 

recently applied to image coding [7] . A unitary transform 

is 1 he most useful because it preserves the "length" or the 

energy of a vector component during the transformation, and 

because it transforms every orthonormal basis into anotr.er 

orthonormal basis. To interpret this concept for image 

coding purposes reveals: each unitary operator can be 

represented Ly a matrix composed of orthonormal basis 

functions (generalized spectral functions); each component 

in the transform domain then corresponds to the amount of 

energy of one of the basis (spectral) functions in the 

original (or image) domain. Unitary operators transform 

sums of squares into sums of squares, so that mean-sauare 

error calculations are equivalent in either domain. This 

also means that the t'.»tal energy in the original and 

transform domains is the same. The unitary transforms 

which are most commonly used are 

1. Karhunen-Loeve   transform 

2. Cosine  transform 

*• 

<*> A linear operator H such that HH*=H*H=I is called a 
unitary operator, where * denotes the conjugate transpose 
of the complex operator. In the -eal case, H is called 
orthogonal. 
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i.     Fourier transform 

4. slant transform 

5. Hadamard transform 

6. F.aar transform 

These are listed in order of efficiency, i.e., from the 

most efficient transform to the least. They are, however, 

listed in reverse order ot simplicity and speed of 

operation. 

The  Karhunen-Loeve   (K-L)   transform  results  in 

uncorrelated  transform domain components.   It has been 

found  that  quantizing  these  uncorrelated  components 

produces  a minimum possible mean-square quantization error 

[31.  since the components are uncorrelated,  they can  be 

quantized   and  restored  individually without  loss of 

performance, so that the restoration method of Sec. S." 

provides  no  advantage over  simple  Max quantization and 

restoration.  Less efficient transforms result  in greater 

quantization error  than the K-L transform at the same bit 

rate, but they can be made to operate much  faster.  Their 

transform  domain  components  have  some  statistical 

correlation remaining  (if the  components  in the image 

domain were originally correlated), so that the restoration 

method of Sec. 5.1 can be applied.  This  restoration 

reduces the mean-square quantization error. The remaining 

error approaches the minimum that is obtainable by means of 

the K-L transform.  Thus, almost the same performance as a 
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Y-L transform can be obtained by utilizinq a simpler 

transform together with a more complicated reconstruction 

technique. This procedure would be most useful, in 

practice, when an image coder is required to have a simpler 

design than the decoder. For the image coding simulations 

and reconstructions in this chapter, the Hadamard and the 

Haar transforms are utilized. These have fast and easily 

implementable algorithms, and also provide partially 

correlated transform domain samples which can then be 

restored. 

5.4.2.2 Zonal Coding 

«■ 

^^ 

There is, in general, a uniform distribution of 

information or energy throughout an image. Unitary 

transforms, although preserving the same total amount of 

energy as in the original image, rearrange this energy and 

concentrate it in a few of the transform domain components 

[9]. This concentration is achieved because the transform 

makes use of some of the correlation in the image. Zonal 

coding, which takes advantage of the energy concentration 

and rearrangement, entails the establishment of zones of 

constant bit assignments in the transform domain 

corresponding to zones of approximately constant energy. 

The bit assignments are chosen according to the assumed 

variances—which are a measure of the energy—of the 

transform  domain  components.    A  solution  for  this 

106 
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assignment, first derived by Huang and Schultheiss [10], is 

B .=b+ 
13   2 ln2 

(5.49) 

where V  s the matrix of transform domain  variances with 

components V.., b is the desired average number of bits for 

each component, and B.. is the resultant number of bits for 

the  (i,j)th  component.   This equation  provides the bit 

assignment needed to quantize gaussian variables based on a 

minimum mean-square  error  criterion.  By definition, the 

number of  bits  assigned  to each component must be  a 

nonnegative   integer.   Since  eq. 5.49  can  produce 

non-integer and even negative values, tne bit assignment it 

produces must be adjusted by trial-and-error techniques to 

obtain the final bit  assignment  for  each component.   A 

typical bit assignment for a 16x16, Haar transformed, image 

block that is zonal coded with an average of one bit  is 

shown in fig. 5-6. 

^ 

5.4.2.3 Spatial and Transform Domain Correlation Matrices 

To calculate an optimum bit assignment using eq. 5.49, 

it  is necessary to know the variance matfix of the 

transform domain samples.  This  can  be  derived  if  the 

correlation  tensor  of either the transform domain samples 

or  ehe  image  domain  samples  is   known.   The  exact 
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Fiqure     5-6.     Typical     transform    domain       quantizing       bit 
assignment   for   one  bit  per   pixel   transform coding. 

p 
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correlation information is usually unavailable, but the 

imaqe domain correlation can often be accurately modeled as 

a Markov process. In fact, experimental evidence [11,12] 

indicates that a i easonable autocorrelation function for a 

large variety of p->torial data is given by 

C(x,x',y,y')=exp(-h |x-x'| -v |y-y'| ) (5.50) 

(For convenience it is assumed that the continuous image, 

F(x,y), has zero mean.) This function can be used to model 

images with different amounts of horizontal and vertical 

correlation by choosing different values for h and v, 

respectively. An image wnich has an autocorrelation 

function that is invariant to translation is said to be 

wide-sense stationary. The autocorrelation can then be 

rewritten as 

C(Ax,Ay)=exp(-h |Ax| -V |Ay|) (5.51) 

This autocorrelation function also possesses the property 

of horizontal and vertical separaoility, i.e., the 

correlation between any two points of the image is 

separable into the product of horizontal and vertical 

correlation functions. 

Now, in discrete notation for an NxN sampled image  F, 

the correlation  between any two pixels can be represented 
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by a four-dimensional tensor as 

C(i,j,k,l)=E(F{i,k)F(j,l)} (5.52) 

for l£i,j,k,l<N It is sometimes convenient to column-scan 

an image array into a data vector, f, of resultant lenqth 

IT [13]. In this case its correlation matrix, C, , is 

^xN , and can be represented in partitioned form as 

/C-1,1 -1,2 •' * -1,N 

-2,1 -2,2 * * * -2,N 

<=f = 

SN,1 ^N,2 * * ' ^N,N 

(5.53) 

where C    is the correlation matrix of the (i)th and (j)th 
-i# j 

columns of F. Under the assumption of wide-sense 

stationärity, the correlation matrix has the block Toeplitz 

form 

*> 

< 
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k' 

h 
% 

-2 

k 

^N Sl-1 

(5.54) 

k 

Finally, when the correlation is horizontally and 

vertically separable, the correlation matrix can be written 

in direct product <*> form as 

C<r=C S C, -f -v   -h (5.55) 

where C  and C, denote the NxN correlation matrices of  the —v    —n 

LOWS and columns of F, respectively. If the image is now 

considered to be a sample of a Markov process with a 

correlation coefficient of v (0<v<l) between vertically 

adjacent pixels and coefficient h between horizontally 

adjacent pixels, then 

^i" '■■ 

<*>     The   symbol   8  denotes   the  matrix  direct   product.       The 
definition  employed   here   is  the  left direct  product   [15]. 

Ill 
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C  =s -v     v 

v 

V 

N-l\ 

N-2 

^5.56) 

and 

N-l     N-2     N-3 
V V V ...     1 

-h     h 

h 

l 

h 

b 

.   .   h 
N-l\ 

.   h N-2 

(5.57) 

N-l   ..N-^    .N-3 . . . i  y 

fr- 

i 
1 w* 
I 

where s   is the variance of the pixels in each column  and 

2 
s.   is  the  variance of  the  pixels in each row.  After 

performing a separable unitary transformation H <*> on  the 

image  F,  the  corresponding  row and  column correlation 

matrices in the transform domain can be found bv 

<*>  For a separable transformation. 

so that 

H=H  B H, 
- -v   -h 

^=H FH 
- -v—h 

112 

ktfMM -  '-   ''•*  -^"i^— --   ' -„LI*—*-^^—«. _:—iv ^   .~,.J:A<:^J1*L 





^^~--*r-wmmw^mi^~^^mmmii^m*m~~m**"^'^~~mmmmmm^~^*mm^*~mmm^ <'■"■'■'    "■■I 

I. 

- 

5.4.2.5 Zonal Coded Images 

For  the  transform  image  coding  simulations,   the 

correlations  were  chosen  to be h=0.95 and v=0.93.  These 

values most closely modeled the correlations of the  images 

chosen  for  the  simulations, and resulted in the smallest 

quantization errors and reconstruction errors.  Figure  5-7 

shows  the  three "original" images which «ere used for the 

simulations:  each image is an  array of  256x256  pixels, 

with the intensity at each pix< 1 quantized to one of 256 (8 

bits) grey levels.  The images  were  Haar  transformed  in 

blocks of 16x16 pixels, so that a 16x16 variance matrix was 

reauired  to  compute  the  bit  assignment.   Figure  5-8a 

displays  the "girl" image after being zonal Haar transform 

coded with an average of 1.0  bits  according  to  the bit 

assignment  shown  in fig. 5-6.  (This image actually shows 

the  Max  restoration  levels after  the  image  has been 

quantized  according  to  the Max decision levels.)  Figure 

5-8b shows the reconstructed version of this image after it 

was  restored according to the techniques of Sec. 5.1.  The 

restoration  technique was  applied  recursively to  the 

quantized samples since it is only capable of restoring one 

sample at a time; the current best estimates of  the other 

samples were  used  to  obtain  the estimate of the sample 

being restored.  The initial estimates of the samples were 

chosen to be the Max restoration levels.  The procedure, in 
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essence, beqins with the Max restored image as an initial 

guess and attempts to improve it by utilizing the known 

correlation of the tranrform domain samples. One iteration 

of this restoration procedure was utilized, because it was 

experimentally determined that more iterations were of 

negligible benefit. The mean-square error was reduced by 

10» as a result of the restoration. 

The "girl" image was next quantized to an average of 

0.5 bits according to the zonal bit assignment shown in 

fig. 5-9. Figure 5-10a shows the Max restored version of 

this coded image and fig. 5-10b shows the version 

reconstructed according to the technique discussed above. 

In this example, the reconstructed version has 19% less 

mean-sauare error. The "couple" and the "moon" pictures 

were alsc quantized to 0.5 bits and restored. The results 

are shown -• fig. 5-10. The resultant mean-square errors 

are summarized in table 5-3. The restoration technique of 

Sec. 5.1 is seen to provide a significant decrease in 

mean-qujavp error in all cases. 

«5. 

pP 

5.4.2.6 Visual Coded Images 

Subjectively, the reconstructed images of figures 

5-8b, 5-10b, 5-10d, and 5-10f appear to be much smoother 

and less noisy than the corresponding Max restored images 

of  figures  5-8a,  5-10a, 5-10C, and 5-10e.  However, they 
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*■. 

Figure 5-9. Haar transform domain zonal quantizing bit 
assignment for correlation factors h=0.95 and v=0.93 and 
for 0.5 bits per pixel. 
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TABLE 5-3 

NORMALIZED MEAN-SQUARE ERROR 
FOR ZONAL CODED IMAGES 

Picture 
Error/Pixel 

after 
Quantization 

Error/Pixel 
after 

Restoration 
Improvement 

Girl 
1.0 bit/pixel 

Girl 
0.5 bit/pixel 

Couple 
0.5 bit/pixel 

Moon 
0.5 bit/pixel 

1.024% 

1.366% 

1.793% 

1.523% 

0.922% 

1.509% 

1.412% 

1.158% 

9.9% 

19.2% 

21.2% 

24.0% 

1 

120 

  ti-Vi iMfrto   i «•b^t MM I^I MiMfiiMi^bAlMlMIHKMltfW 



r -^^immmm^*"**™**^** imutmmiMt.n' 

sometimes appear more blurred, as is very evident in 

comparing figures 5-10e and 5-10f. An improvement in 

mean-square error apparently does not correspond to an 

improvement in subjective quality in all cases. Hence an 

error measure is required in which numerical results match 

subjective results. 

This has been provided by modeling the error measure 

after the human visual system. Mannos and Sakrison [14] 

have derived a nonlinear error criterion which achieves 

this objective. They found that the human visual system is 

sensitive to approximately the cube root of incident light 

intensities. It is also most sensitive to middle spatial 

frequencies, near eight cycles per degree of arc subtended 

at the eye. Hence, to apply this error measure, an image 

has been processed according to the block diagram in 

fig. 5-11. The (i,j)th component of the filter function 

shown there is chosen to be 

T. .= (.05+.18525r)exp{-(.07125r)1'1} (5.60) 

where 

r-iiW)l/2 (5.61 

If- 

■ . 

t 

This filter was applied to the Hadamard  domain  seauencies 

of  the  image, rather than the Fourier domain frequencies, 
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because of the close similarities between sequencies and 

frequencies. Figures 5-12a and 5-12b show the results of 

the procedure for a 0.5 bit zonal coded Hadamard 

transformed "moon" image, with and without the 

reconstruction operation, respectively. The bit 

assignment, shown in fig. 5-13, was calculated by choosing 

h=0.96 and v=0.944 as the spatial, cube-root domain, 

correlations. The resultant Hadamard domain variance 

matrix wes then scalar filtered by a multiplication by the 

square of the filter function T. The mean-square error is 

reduced by 5.5% due to the reconstruction operation. There 

is also a noticeable subjective improvement after the 

restoration. Figures 5-12c, 5-12d, 5-12e, and 5-12f 

display similar results for the "girl" and "couple" 

pictures. Table 5-4 summarizes the errors for the 

restorations of these pictures. 

5.4.2.7 Zonal Coded Color Images 

The restoration technique has also been applied in an 

experiment in which a color image is encoded. In this 

experiment, a color image is first transformed to the YIQ 

color coordinate system and then Quantized according to the 

bit assignment indicated below for a typical block of four 

pixels. 

*x 

■ 
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Figure 5-13. A visual quantizing bit assignment in the 
Hadamard transform domain for spatial, cube-root domain, 
correlation factors h=0.96 and v=0.944, and for 0.5 bits 
per   pixel. 
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TABLE 5-4 

NORMALIZED MEAN-SQUARE ERROR 
FOR VISUAL CODED IMAGES 

Picture 
Error/Pixel 

after 
Quantization 

Ecror/Pixel 
after 

Restoration 
Improvement 

Girl 
0.5 bit/pixel 

Couple 
0.5 bit/pixel 

Moon 
0.5 bit/pixel 

1.21% 

1.94% 

0.73% 

1.11% 

1.79% 

0.69% 

8.3% 

7.5% 

5.5% 

- 
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Each pixel is hence coded with an average of nine bits per 

pixel, compared to an original coding assignment of 24 bits 

per pixel. The restoration technique of Sec. 5.1 provides 

a decrease of 42% in mean-square error in this case and an 

improvement in subjective quality. 

5.5  Summary 

Wl 

Gaussian data which are correlated and which have been 

coarsely quantized  are  amenable to being restored by the 

techniques  outlined  in  this chapter.   By choosing  a 

suitable error criterion, zonal transform coded images can 

be analytically and, in many cases,  subjectively  improved 

so  that  they more faithfully reproduce the details of an 

original image.  The restoration techniques have been found 

to  be most  successful when the transform is inefficient, 

i.e., when some statistical correlation remains between the 

transform domain  samples,  and when  the quantization is 
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CHAPTER 6 

RESTORATION OF QUANTIZED LAPLACIAN SAMPLES 

Laplacian density functions arise  in  the  stochastic 

modelling of  certain  kinds of  communications  systems. 

Specifically, the  output  of a differential  pulse  code 

modulation  (DPCM)  system can often  be modelled  as  a 

laplacian random process.  When a laplacian random variable 

is quantized,  as  in a DPCM system, some of the original 

information about the variable is lost.  If an estimate  of 

the  continuous laplacian variable is then made, based only 

upon the output of the quantizer, the estimate will usually 

be  poor.   However,  if  the characteristics of the random 

process are known and are utilized also, then the  estimate 

can be improved and a reconstruction of the original signal 

will be  attained.  The  estimation  equation derived  in 

Chapter 3 (eq. 3.6) provides a means for accomplishing this 

restoration.  Use of this equation  requires  knowledge of 

both  the quantizer  structure  and  the multidimensional 

probability density function of the input to the quantizer. 

An approximation  to a multidimensional laplacian density 

function was derived in Chapter 4.  This density  function 

can  then  be utilized in the estimation equation, together 

with arbitrary quantization  parameters,  to  obtain  a 

restoration  of Quantized  laplacian  samples.   The  next 

section presents in detail Lne solution to  the  estimation 
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equation  for  this case.  The results of that solution are 

then applied to the restoration of DPCM coded images. 

6.1  Laplacian Quantization Estimator 

A multidimensional  laplacian  probability  density 

function, as derived in Chapter 4, can be app'.oximated by 

C| -1/2 N 
p(x)=- ,N/2 •exp{-\/2"^ 

i = i k=l 1K K 
(6.1) 

where C is the NxN correlation matrix of x, gik  represents 

the {i,k)th element of G as given by 

G=EA"1/2ET (6.2) 

*-■ 

and E and A are the matrices of eigenvectors and 

eigenvalues of C, respectively. This density function can 

then be utilized in eq. 3.6 to obtain a minimum mean-square 

error estimate of a quantized N-vector of laplacian 

samples, x. Now, it is assumed that x is quantized to a 

region in N-space, R. It is also assumed that each 

component of x is quantized individually, so that P is 

rectangular (R can then be denoted [a,bl). Then the 

estimate, y, of x, given that x 6 R, is 

fl|V ■ 
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/. 
x exp{-\/2y) 

i=l 

N 
Egikxk 
k = l 

}dx 

y=. 

f N 

J R      i = l 

(6.3) 

k=l ̂ ik\ }dx 

A general solution to these integrals exists, but is rather 

complicated to state. Special cases of practical interest 

are considered in the following paragraphs. 

6.1.1  Scalar Case 

i 

When the components of x are uncorrelated, or when 

they are restored individually, then eq. 6.3 can be 

decomposed into a product of one-dimensional integrals 

which can be solved separately. Considering one of the 

components of x (for a unit variance). 

or 

J 1x.exp{-v1'| x. I )dx . 
i  ri    i   i 

7:' exp(-v^M x. | }dx . 

(lb. |+i-)exp{->/J|b. |}-(|a. |+i-)exp{-V2|a.|} 
1 V2 1     1 v^        1 

y .=  1  b a. 
—Mexpf-v^lb.n-l) Mexpi-v^la. |}-1) 
lb.I i |a.| 1 

i i 

(6.4) 

|^ 
. 
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hosen to be Max decision levels, then jft 

is the correspondinq Max restoration level. 

If a and b. are c 
i      i 

6.1.2  Two-dimensional Case 

In two dimensions, eq. 6.3 yields simultaneous 

estimates of two quantized and correlated laplacian 

variables. The solution is lenqthy, however, so the 

details are omitted and only the results are shown here. 

To simplify the notation, let the exponential terms in the 

two-dimensional version of eq. 6.3 be written as 

exp{-|fxi-qx2 |-|qxi-cx2 |} 

■ 

and let the quantization intervals be  a<xi <b  and c<x2<d. 

The constants f and q are based on the correlation between 

x and x .   Aiso  let  s(')  denote  the  siqn  or  siqnum 
1     2 
function.  Then the numerator of y is 

{b(s(qd-fb)f+s(fd-qb)q]-l}exp{-|qd-fb|-|fd-qb|} 
y (rium)=- — ~z —— - 1 [s(qd-fb)f + &(fd-qb)qr [S(qb-fd)f + s(fb-qd)q] 

{b[s(qc-fb)f+s(fc-gb)q]-l}exp{-|qc-fb|-|fc-qb|} 
+ —— x—  

[s(gc-fb)f+s(fc-qb)qr [s { fc-qb) f+s(qc-fb)gl 

{a[s(qd-fa)f+s(fd-ga)gl-l}exp{-lqd-fa|-|fd-qa|} 
+ — — z—  

[s(qd-fa) f + s(fd-qa)qr [ s ( f d-qa) f+ s (qd-f a) q] 
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{a[s(qc-fa)f+s(fc-ga;g]-l}exp{-|qc-fa|-|fc-qa|} 
 2  

[s(gc-fa)f+s(fc-ga)g]    [s(fc-ga)f+s(gc-fa)g] 

[s(gd-fb)-s(gd-fa)]gf2[|d(f2-g2)/f|+3]exp{-|d(f2-g2)/f|} 
___ 

[s(gc-fa)-s(gc-fb)]gf2[|c(f2-g2)/f l+31exp{-|c(f2-g2)/f | } 

[ s (f d-gb) -s ( f d-ga) ] f g2 [ I d (f2 -g2 ) /g I +3 ] exp{ - | d (<2 -g2 ) /g I } 
__ 

2   „2 P2 „2 [s(fc-ga)-s(fc-gb)]fg^ (I c (f  -g^ )/g |+3 ] exp{-| c (f^-gz )/g 11 

(s(gd-fb)-s(gc-fb)]g3 [|b(f -g2 )/g I H]exp{-| b(f2-g2 )/g |} 

(f2^2) 
2 ,3 

[s(fd-gb)-s(fc-gb)]f:i [|b(f2-g2)/f|+l]exp{-|b{fr-g2)/f|} 

(f2^) 

(s(gd-fa)-s(gc-fa)]g3 11 alf2-g2 )/g |+1] exp{-| aif2-g2 )/g |} 

[s(fä-ga)-s(fc-ga))f3 [lal^-g2 )/f |+1) exp{-| a (f2-g2 )/f|} 

{f2-g2); 

(6.5) 

Tne denominator   is 

. 
fe 
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y   (denom) 
exp{-|fb-qd|-|qb-fd| 

[s(gd-fb)f+s(fd-qb)q](s(gb-fd)f+s(fb-qd)g] 

exp{-|fb-gcI-Igb-fcI} 

[s(gc-fb)f+s(fc-gb)q]Is(gb-fc)f+s(fb-gc)g] 

exp'-|fa-gd|-|ga-fd|} 

(s(gd-fa) f+s(i:d-ga)g] [s(ga-fd) f + s(fa-gd)g] 

exp{-|fa-gcI-Iga-fcI} 

[s(gc-fa)f+s(fc-ga)g][s(ga-fc)f+p(fa-gc)g] 

[s(fd-gb)-s(fc-gb)] f2 exp{-I b(f2-g2 )/f I }b/f 

(f2-g2)|b(f2-g2)/f| 

[s{gc-fb)-s{gd-fb)]g2exp{-|b(f2-g2)/gl}b/g 

( f2 -g2 ) I b (f2 -g2 ) /g I 

[s(fd-ga)-s(fc-ga)]f2exp{-|a{f2-g2)/f|}a/f 

(f2-g2) |a(f2-g2)/f| 

[s{gc-fa)-s(gd-fa)]g2exp{-|a{f2-g2)/gl}a/g 

(f2 -g2 ) I a (f2 -g2 ) /g | 

i 

[s{gd-fb)-s(gd-fa)]f2exp{-|d(f2-g2)/f|}d/f 

(f2-g2) |d(f2-g2)/f| 

[s(gc-fb)-s(gc-fa)]f2exp{-|c{f2-g2)/f I }c/f 

(f2-g2) |c(f2-g2)/f | 
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[s(fd-gb)-s(fd-ga)]g2expi-|d(f2-g2 )/g|}d/g 

(f2-g2)ld(f2-g2)/gl 

[s(fc-gb)-s(fc-ga)]g2exp{-|c(f2-g2)/gl}c/g 

(f2-g2)lc(f2-g2)/gl 
(6.6) 

Hence, 

Y   (num) 
y   =__i.  

*■   y   (denom) 
1 

(6.7) 

The other component, y , can be found in a similar  manner. 

Expressing  the  constants  f and g  in  terms of  the 

correlation between x  and x„ reveals 
1     2 

vT+r" + VT^r 
f=- 

yl2(l-r2) 
(6.8) 

and 

Vl+r - vl-i 
g = . 

V2(l-r2) 
(6.9) 

where 

r=E{x x } 
1 2 

(6.10) 

»r- 

It can be seen that as the correlation, r, approaches zero, 

g also approaches zero and the solution (eauations 6.5 to 
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6.7) becomes the same as that shown in eq. 6.4 for the 

scalar case. For non-zero r, equations 6.5 to 6.7 provide 

a minimum mean-square error restoration of two correlaced 

laplacian variables which have been quanti:ed to the 

arbitrary intervals a£x, <b and c<X2<d. 

6.2 Covariance of the Laplacian Estimator 

The performance of the estimator found in equations 

6.5 to 6.7 can be analyzed by computinq its conditional 

covariance matrix. Equation 3.10 contains a qenaral 

expression for findinq this covariance matrix which, in 

this case, must be solved for a two-dimensional laplacian 

probability density function. A qeneral solution for this 

covariance matrix has been obtained, but is too complicated 

to be shown here. Instead, the covariance matrix to be 

derived is for the special case of one-bit quantization 

only. 

The  two quantization  intervals  for   the  one-bit 

quantizer are chosen to be [0,oo) and (-oo,0).  This choice 

is the optimum one  for  quantizinq  individual  laplacian 

samples  according to a mean-square error criterion.  There 

are now  four  possible  rectangular   regions,   R   for ' m 

m=l,2,3,4, into which XB(x.fX-) can be quantized. Within 

each region there is a restoration point which can be round 

by means  of equations 6.5 to 6.7.  The restoration points 
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are dependent on the correlation, r, between x, and x_;  on 

whether  x.  is  quantized  to  a  positive or  a negative 

interval, denoted by s(x.)$Q;   and on the variance of  x., 

2 
denoted as a  .  Then the restoration points are 

1.  for rs(x1)s(x2)>0 

^ (l+2|r|)s(x1) 

2 (2>/l+|r| -ViHTT) 
yi- (6.11a) 

y2 = 
ff2 (l+2|r|)s(x2) 

2 {2Vl+|r| -V^HT]) 
(6.11b) 

2.  for rs(x )s{x )<0 

/I- I r | 

^l=,Tl\—S(X1 
(6.12a) 

= ^_-s(x2 (6.12b) 

These values for y can now be substituted into eq. 3.10 and 

the two-dimensional integrals evaluated to obtain the 

covariance matrix for  each of the  two cases  (assuming 

a  =a =1,  : 
1  2 

1.  for rs(x )s(x )>0 
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cov{x   I   x   G  R}= 

/2\/l-r2-(l-|r|)2 tr| v/i^72+2(l-|r|)2N 

2v/i-r2-(l-|r|) 4[2v/l-r2-(l-|r|) 1 

r| v/l-r2 + 2(l-|r|)2 2v^Tr2-(1-I r I) 2 

4[2v/w2-(l-|r|)] 2yi-r2-(l-|r|) 

(l+2|r|)s(xi) 

v5{2v/l+|r|-N/rTr|) 

(l+2|r|)s(x2) 

v^(2N/r+|r|-v/]TT7T) 

(l+2|r|)s(x   ) (l+2|r|)s(x   ) 

v/?(2N/r+|r|-N/r
:rUT)  \/2(2N/l+|r|-N/l^Tr|) 

4(| r |-2)\/w2-2r2+9 (4-5 I r I )\/l-r2-8r2-2 I r |-4' 

2(5+3 1 r|-4/l^rT) 4(5+3|r|-4/l-r2) 

(4-5|r |)/l-r2-8r2-2l r I-4 4(1 r |-2) v/l-r2-2r2+9 

(6.13) 

4(5+3|r|-4N/l-r2) 2(5+31 r|-4v/i-r2) 

- 

fr. 

^i* ' 

i '' 

2.     for   rs(x   )s(x   )<0 
1 2 
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1-r 

cov{x I x e R}=| 

1-r 

1-r 1-r 

1-». 

1-r 

1-r    1-r 

2      2 

1-r 

1-r 

(6.14) 

The probability of occurrence of each quantization region 

is also dependent on the correlation. These probabilities 

are found by integrating the two-dimensional probability 

density function over each region.  The results are 

1.  for r>0 

Pr{s{ 
1  1 [iTr 

x )s(x )>0}=- -  
1   ^    2  4ll + r 

1 [I^F 

41Vl+r 
Pr{s(x1)s(x2)<0} = 

(6.15a) 

(6.15b) 
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2.  for r<0 

PrlslXj^ )s(x2)> 

Pr{s(x1)s(x2 )<0}=- 

1 fl+r 

1 1 IT+r 

2 4|l-t 

(6.16a) 

(6.16b) 

Thes: probabilities, together with the  covariance matrix, 

C, for the original vector x, 

(   ) 

(6.17) 

and the expressions for the restoration points listed in 

equations 6.11 and 6.12, can be used in eq. 3.13 to obtain 

an expression for the total mean-square error <*>: 

£=Tr{C - E^^^6 Rm)} 
m=l 

(3.13) 

I 

which becomes 

<*> Thp total mean-square error is the same whether r is 
positive or negative, so only the results for r>0 are 
shown. 
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^=Tr(c - 

3r2 + 6r+(2"2r)Vl-r2   5r2 + 2r + 2-(2-2r )Vl-r2' 

8+8r-4Vl-V 8+8r-4\l-r 

5r2 + 2r + 2-(2-2r)\/l-r2    3r2 + 6r+( 2-2r )Vl-r2 

3+8r-4Vl-r 8+8r-4Vl-r 

=Tr 

/8+2r-3r2+(6-2r)\/l-r2 

ir-4'\/l-r2 8+81 

3r2+6r-2+(2-2r)\l-r2 

3 + 8 r-4Vl-r: 

)+2r-3r2-(6-2r)\]L-r 

4+4r-2\/l-r' 

3r2 + 6r-2+(2-2r)\/l-r2 

8+8r-4Vl-r2 

8 + 2r-3r2+(6-2r)'\/l-r2 

8+8r-4Vl-r 

(6.18) 

This error is plotted in fiq. 6-1 as a function of the 

correlation r. Also shown is the mean-square error that 

results when the correlation between any two quantized 

laplacian samples is not utilized in the reconstruction of 

these samples. The use of the correlation information is 

seen to substantially reduce the resultant mean-square 

error. This holds true independent of the siqn of the 

correlation, but is only true when there is at least a 

moderate amount of correlation. The next section shows 

that deltamodulation imaqe coders satisfy this requirement, 

so that a reconstruction of the coded  imaqe can  then be 
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obtained. 

6.3  DPCM and Deltamodu]ation Image Codinq 

i 

Differential pulse code modulation (DPCM) is a common 

technique for achievinq bandwidth compression in digital 

systems. In this method differences between successive 

siqnal samples, rather than the siqnals themselves, are 

transmitted. Compression occurs because adjacent samples 

are often very similar, and transmittinq only siqnal 

differences removes some of this redundancy. A block 

diaqram of a typical DPCM system is shown in fiq. 6-2. An 

essential component of this system is the quantizer, 

because it permits a bandwidth compression. The coarser 

the quantization, the greater the compression, but also the 

qreater the deqradation of the reconstructed siqnal. To 

minimize this deqradation, a reconstruction must utilize 

all of the knowledqe that is available about the siqnal, 

such as the quantization levels, the siqnal distribution, 

and any correlation which remains after the differencinq 

op?ration. Section 6.1 presented a means for achievinq an 

optimal solution to this restoration problem. This section 

applies that solution to the reconstruction of DPCM coded 

imaqes. 

:   > 
In  the  DPCM  syr.tem  of  fiq.   6-2,   the  difference     siqnal 

d(k)      is     formed  by  subtractinq  a  prediction  of  the  current 

W-i 
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signal from the current signal itself. The first-order 

predictor shown in the figure can be characterized by 

specifying the constants a0 and a, . These constants are 

usually chosen to minimize the mean-square prediction 

error.  The prediction error can be written as 

(?=E{[x(k)-(a1x(k-l)+a0)] } (6.19) 

This expression  can  be minimized  by  simultaneously    solving 

the  two equations 

c—=2ar.-2m+2a, m=0 
CUQ        0 1 (6.20a) 

and 

r—=2a1 s
2-2rs2+2a„m=0 

da.       1 0 
(6.20b) 

where 

m=E{x(k) } (6.21) 

s2=E{[x(k)]2} (6.22) 

■i 

and 
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E{x{k)x(k-1)} 
r=- (6.23) 

The results are 

ms2(1-r) 
a.« 0     e2 m2 s -m 

(6.24) 

and 

2  2 rs -m 
a, = 
1  c2 m2 s -m 

(6.25) 

The reconstruction unit in the block diagram of the 

receiver in fig. 6-2 is a device which attempts to reduce 

the effects of the quantizer. The particular form of this 

device is based on a priori knowledge of the quantizer and 

the statistics of the quantizer input. This input is the 

difference signal, which has been found to have a laplacian 

distribution [1], described by 

p(x)=-^— exp(-|x|/2(T ) 
Via 

(6.26) 

1  fr. 

The distribution of the difference signal for the "girl" 

image (see fig. 6-6) is shown in fig. 6-3. It can be seen 

that a laplacian could model this distribution quite well. 

However, it has been found that the difference signals of 

images are correlated,  so  that  an accurate  statistical 

I 
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Figure   6-3.       Histogr'm of ihe DPCM   signal   for the "girl' 
picture 
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representation of them must also account for this fact. 

Figure 6-4 shows the actual two-dimensional distribution of 

the DPCM coded "girl". For tuis image, the average 

correlation for adjacent difference samples has been 

measured as 0.4. These samples c?n then be modeled by a 

correlated two-dimensional laplacian density, written as 

p(x'y)=:;—jr^ exp{- L.,  r< 
2<T a yJl-r x y' ^2(1- r") 

a      a x  y y x 

where 

o 2=E{x2} x 

)}  (6.27) 

(6.28) 

ory
2=E{y2} (6.29) 

E{xy} 
r=— 

x y 
(6.30) 

a=-y/l+r + ^1-r 

b="\/i+r - ^W 

(6.31) 

(6.32) 

IF 

Figure 6-5 contains a plot of  this density  function  for 

r=0.4 and 9   =a   , 
x y 

The two-dimensional laplacian distribution is seen  to 

provide an accurate model  for  the DPCM samples.  These 
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FIGURE 6-4.       TWO-DIMENSIONAL HISTOGRAM OF THE 
DPCM CODED "GIRL"   PICTURE 
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FIGURE   6-5.     TWO-DIMENSIONAL LAPLACLA.N DENSITY 
FUNCTION USED TO MODEL THE TWO-DIMENSIONAL  DPCM 
SIGNAL SHOWN IN  FIG.   6-4;      CORRELATION =0.4 
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^ 

samples ace quantized before they are transmitted through 

the channel. A minimum mean-square error restoration of 

the quantization can be obtained by utilizinq equations 6.5 

to 6.7. This solution is complicated, but can be 

simplified for the case of deltamodulation (one bit 

quantization). In this case x and y are each Quantized to 

the intervals [B,0«) or (-00,0), or equivalently, as 

positive or negative. The results are contained in 

equations 6.11 and 6.12. 

Applying this restoration to the quantized  image  in 

fiq. 6-6a results in a mean-square error reduction of 12%. 

Subjectively, as the restored  image  in  fig. 6-6b  shows, 

there  is  less apparent noise and more discernible detail. 

Equations 6.5 to 6.7 have also been  utilized  directly to 

restore   samples   quantized   to   general   regions. 

Specifically, the results were applied to the two and three 

bit  coded   images   shown  in  figures  6-6c  and  6-6e, 

respectively.  The reconstructed images in figures 6-6d and 

6-6f exhibit  bo :h  a reduction in rnean-square error and a 

subjective  improvement   in  quality.   The   subjective 

improvement  is  less  apparent in these pictures, however, 

because the quantization itself is less noticeable.   Table 

6-1 shows the quantization intervals that were used to code 

these images [21.  The intervals were  chosen  to  minimize 

the mean-souare  quantization error  that  occurs when an 

individual laplacian sample is quantized. 
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a.  One bit encoded 

c.  Two bits encoded 

b.  One bit restored 

d.  Two bits restored 

e.  Three bits encoded f.  Three bits restored 

fr. 

I&i 

Fiqure  6-6.     Minimum mean-square  error  restoration  of  DPCM 
encoded  images   using  two  adjacent pixels. 
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TABLE 6-1 

QUANTIZATION INTERVALS FOR SIGNALS WITH A LAPLACIAN 
DISTRIBUTION CHOSEN ACCORDING TO A MINIMUM 

MEAN-SQUARE ERROR CRITERION 

Bits Ou antization Interval Restoration Point 

0 - QO «? 0.0 

1 0.0 QO 0.707 

2 0.0 
1.102 

1.102 
OO 

0.395 
1.810 

0.0 0.504 
0.504 1.181 
1.181 2.285 
2.285 oo 

0.0 0.266 
0.266 0.566 
0.566 0.910 
0.910 1.317 
1.317 1.821 
1.821 2.499 
2.499 3.605 
3.605 oo 

0.222 
0.785 
1.576 
2.994 

0.126 
0.407 
0.726 
1.095 
1.540 
2.3.03 
2.895 
4.316 

t* 
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The image reconstructions shown in fig. 6-6 applied 

the techniques summarized in equations 6.5 to 6.7 by using 

the quantized information about a previous sample to 

restore a current sample. By solving eq. 6.3 in three 

dimensions rather than in just two, quantized information 

about two other samples can be used in the reconstruction 

of a third quantized sample. The DPCM image samples are 

thus modelled by a correlated three-dimensional laplacian 

density function. A form of this three-dimensional 

solution was then employed to obtain the reconstructed 

image shown in fig. 6-7a. In this image, the sample 

immediately preceding, and the one immediately following, 

the sample being restored were used in the reconstruction. 

The resultant image has 39% lower mean-square error than 

the one-bit quantized image shown in fig. 6-6a. Figure 

6-7b presents a similar result, except the samples 

immediately above and below the current sample were 

utilized in the reconstruction. In this case, the 

mean-square error improvement is 18%. Both image 

reconstructions also reveal a distinct subjective 

improvement—there is a reduction in visual noise in 

constant luminance areas of the image, together with a 

decrease in slope overload <*> at edges within the image. 

'-• 

Thus  the  technique  described  above  provider  an 

effective  method  for   restoring  DPCM coded  images, 

particularly when the quantization is coarse and  the DPCM 
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a.  Restoration using three horizontal pixels 

b.  Restoration using three vertical pixels 

- 

: 

^ 

Figure   6-7.     Minimum mean -square  error  restorations  of 
one  bit   (deltamodulation)   encoded   image   using   three 
adjacent  pixels. 
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samples are correlated, 
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CHAPTER 7 

QUANTIZATION AND RESTORATION OF RAYLEIGH SAMPLES 

The last two chapters have shown that the nonlinear 

quantization restoration equations of Chapter 3 can be 

solved for both qaussian and laplacian quantizer inputs. 

This chapter extends these results to quantizer inputs 

which can be described by Rayleigh probability density 

functions. It will be shown that a Rayleigh distribution 

can accurately model the intensity distribution of an 

image, so that quantized images can be reconstructed by the 

techniques developed herein. 

K' , 

7.1  Rayleigh Densities in PCM Image Coding 

In the PCM (pulse code modulation) coding of an image, 

the image is first sampled at an array of points known as 

pixels. The value assigned to each pixel is a measure of 

the light intensity at that point. Each light intensity is 

then quantized and coded, for either digital transmission 

or storage. Because it is proportional to the square of 

the magnitude of an electric field, light intensity is a 

real and non-negative quantity. The distribution of light 

intensities for an image can be char icterized by a 

histogram ranging from black (zero) to white. For most 

natural images, there are many more dark pixels than bright 
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pixels, and the envelope of the histogram tends to fall off 

exponentially at higher brightness levels [1]. Image 

histograms measured by Kretzmer [2] and Stockham [3] 

exhibit these properties. Figure 7-1 shows that the 

histogram of the "girl" image, shown originally in 

fig. 5-7, also possesses these characteristics. 

In the past, image intensity distributions iiave been 

well-modelled by Rayleigh, log-normal, and exponential 

probability density functions [4]. In this chapter, a 

variation of a Rayleigh distribution extended to many 

dimensions is utilized to model image intensities. A need 

for a multidimensional distribution arises because of the 

usefulness of including pixel-to-pixel correlations in the 

model. A correlated multidimensional Rayleigh 

distribution, derived in Chapter 4 as eq. 4.34, can be 

rewritten as 

N 
p(x) = |cr1/2l r(h,J,x)U{h,[x)exp{4xTC x} (7.1) 

where C is the correlation matrix of x and the vectors h^ 

are a function of the eigenvalues, X- , and eigenvectors, 

e., of C. If the eigenvectors are arranged column-wise 

into a matrix E having elements e.., then the components of 

the vectors h. can be found from 

m 
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Figure 7-1.    Hiatogram of the light intensities of the "girl"   image 
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N e. . e, . 
(7.2) 

The average correlation between adjacent pixels for an 

image such as the "girl" has been measured to be 0.95. A 

one-dimensional marginal probability distribution of 

eq. 7.1 for N=2 and a correlation of 0.95 is shown in 

fig. 7-2 (an expression for this marginal distribution can 

be found in eq. 4.45). This distribution is seen to 

provide an accurate model for the intensity distribution of 

fig. 7-1. A two-dimensional histogram of the "girl" image, 

obtained by plotting pairs of adjacent pixel intensities, 

is shown in fig. 7-3. This histogram can be closely 

modelled by the correlated two-dimensional Rayleigh density 

function shown in fig. 7-4. (Only the positive quadrants 

of figures 7-3 and 7-4 are shown since both the histogram 

and its Rayleigh model are identically zero elsewhere.) 

This statistical model for image intensities can then be 

used for the restoration of quantized and coded values of 

these intensities. 

7.2 Estimation of Quantized Rayleigh Samples 

■ 

.   - 
W ■ 

In order to obtain a restoration of quantized Rayleigh 

samples,  such  as those that result from the PCM coding of 

an image,  eq. 3.6 must be  solved  using  eq. 7.1  as  a 

statistical  model  of  the  underlying  Rayleigh  random 
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Figure   7-2.     Marginal  distribution  of   a  two-dimensional 
Rayleigh  probability  density   function with  correlation 
factor  =   0,95. 
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FIGURE 7-3.     TWO-DIMENSIONAL HISTOGRAM OF  LIGHT 
INTENSITIES  FROM THE "GIRL"   IMAGE 
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FIGURE 7-4.    TWO-DIMENSIONAL CORRELATED RAYLEIGH 
PROBABILITY   DENSITY   FUNCTION USED "O  MODEL THE 
INTENSITY DISTRIBUTION OF THE "GIRL"   IMAGE: 
CORRELATION  =0.95 

■ 

. i 

^* ■ . 

165 

i   ' i i niiitiifM ^^ ...... A M^itaMiMiHMMtaM» ^Mft^M igmm*  _ 



WM IM« »III    LIUI.III  m    J im. nmm 

process. Unfortunately, an explicit solution to eq. 3.6 

does not exist for this choice of input distribution, p(x). 

However, solutions can be found for several special cases 

of quantization regions and correlation matrices. Also, an 

approximate solution can be obtained, using a method 

similar to Curry's [5], which is valid for very fine 

quantization. 

The approximate solution can be found by means of a 

power-series expansion of p{x). By retaining terms of the 

expansion up to fourth-order, the approximation is accurate 

enough to restore the outputs of a wide variety of 

quantizers. A sufficient condition for the approximation 

to hold is that the size of the quantization intervals must 

be small compared to the variance of a component quantized 

to one of these intervals. A multidimensional Taylor 

series is used to expand p(x) about the midpoint, g, of a 

rectangular quantization region, R. Let the region be 

defined as 

R={x | x € [a,b]} (7.3) 

where a, b, and x are N-vectors, so that its midpoint ij 

I. 
9 

K'. 

g=(a+b)/2 (7.4) 

The size of the quantization region  can  be expressed  in 
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terms of a vector of half-widths as 

d=(b-a)/2 (7.5) 

The Taylor-series expansion of p(x) about J is then 

p{x)=P(ä)+ 
ÖP(x) 

q 

;x-£)+^(x-2)' 
.d2P(l) 

öxaxT 
(x-ä) 

a 

, N   N   N   ö^pCx) 

bi=l j=l k=l3x. äx. öxk 
(xi-gi)(xj-

g
j
)(Xk-gk) + 

(7.6) 

where p(x)  is given by eq. 7.1.  The terms of this 

expansion are evaluated individually as follows: 

?)P (x) 
 —=p(x) 

Ox 

N 

i = l^ 

1 MhTx) 
   +      ~i~ 
hTx       U(hTx) 

- c^x: (7.7) 

■ 

where     6(-)   represents  the Dirac delta  function,  defined  as 

the derivative  of  the unit  step  function UMr   and 

h%Ihil  h.2 . . . hiN] 
(7.8) 

- 

j - 

r 

This vector represents the  (i)th row of the matrix H. 

Next, define the vector w such that its components are 
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' 

hi2       U(h{ä) 
(7.9) 

so   that  eq.   7.7  can  be  rewritten  as 

ap(x) 
= P(g) (HTw-c"1q) (7.10) 

The second derivative can be computed in a  similar  manner 

as 

^x 

-T 
r)P(x) 

=p(g) [(/w-C"1^) (HTw-r1ä)T-C"1-HPWH]   (7.11) 

where W is a diagonal matrix having components 

wii"Tjr 
(^g)   U(htä) 

ö'(hj'g)   Mhjä)u(hiä) 

[U(h^)l2 
(7.12) 

- 

ft. 

Now let z=x-£. Then the denominator of the 

restoration equation (eq. 3.6), after retaining the first 

three terms of the expansion, becomes 
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^        f I    p(x)dx«| 
d T   -1  T 

p(g) {1+(H w-C  2.) 1 
d 

+2ZT[(HTw-C lä)(HTw-c"1g)T-c'1-HTWH]z}dz 

lil.  di 
=p(ä)V(l + 22

Bii-3-' 
(7.13) 

i=l 

where 

T   -1     T   -IT-IT 
B=l(H w-C  1)(H w-C  1) -C  -H WH] (7.14) 

and 

N 
v-TT(2<si) 

i=l 
(7.15) 

The quantity V is the volume of the rectangular 

quantization region R, and B is a matrix based on 

parameters of this quantization region. 

Ne xt, the numerator of eq. 3.6 can be approximated by 

ft 
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j    xp(x)dx=   / (2+z)p(g+z)dz 

/- f- T        -1      T      1   T 
p(x)dx+   /     zp(g) {1+{H  w-C    q)   z+i-z   Bz}dz 

1   N ^i IT       -1 wp^VU+jX) B^ + -(H  w-C     ä)D] (7.16) 
i = l 

where the diagonal matrix D has components 

D . -d.4 (7.17) 

Thus,  the conditional mean estimate  of  a  vector  x, 

quantized to the reqion R, is 

=q + y=ä 
(tfw-C"1^)^ 

3 + jTr{BD} 
(7.18) 

■ 

This estimate is seen to consist of a correction term added 

to the midpoint of the quantization reqion. Since the 

estimate is a function of a particular quantization region, 

the estimation process is a nonlinear operation. The 

estimation results are valid for 

1 

\ 

* 

(Äs 

2d. <s. 
i  i (7.19) 
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for i=l,2,...,N, where si is the variance of the (i)th 

component of x. It has been experimentally determined that 

an image must be coded with more than four bits per pixel 

for the solution given by eq. 7.18 to be useful. 

For very coarse quantization, the relation in eq. 7.19 

is not satisfied, so another solution to eq. 3.6 must be 

obtained which is valid f this situation. A solution can 

be found by utilizing a metnod developed in Chapter 5. The 

essence of this method is that the components of a 

quantized vector are restored individually, based on~ 

1. the quantization interval of the component being 

restored; 

2, estimates of the remaining quantized components 

(not the quantization intervals of the remaining 

components). 

The initial estimates can be chosen to be the midpoints of 

the quantization intervals. Alternately, they can be 

chosen as the solution to the one-dimensional version of 

eq. 3.6, which can be solved exactly. This latter choice 

is the more accurate one, and is the choice that will be 

made here. As new estimates of the components are found 

using the method of Chapter 5, they are used to replace the 

initial estimates. The technique is thus iterative. 

Keeping these concepts in mind,  consider  a typical 

component  of eq. 3.6.  This  component can  be  solved 
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approximately  by 

/ 1x.p(x)dj 

y =_1  

/  1p(£)dK 

/: ^i^'i'^ Vi'Wi V6*i 

I b. . ^l'^ Vl^i^i+l ^'^i 

(7.20) 

where 

/: v^*** 
t =—t !    K 

7 p(x )dxi 
a   k  k 
k 

(7.21) 

for Mi.  A  straightforward  integration of  this  last 

equation yields 

t 

i 

^flp 

k        ~~ ;    2^ n ■ 2 2^ 

k k 

(7.22) 
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where s^ is the variance of  xk . I'nfortunately,  eq. 7.20 

cannot  be  integrated  so easily. When the expression for 

p(x), as defined  by  eq. 7.1,  is substituted  into  this 

equation, the estimate becomes 

/b* N rp rp 1     T     "I 
xi] I"]!-tU(hit)exp{-7t C     t}dxi 

/b- N m m 1     T     -1 

jT-i-U(-i-)eXp{"?- -    -}dxi 
a.   k = l 

(7.23) 

■ 

■ 

where 

tT=[t1  t2  . . . ti.1 Xi     ti+1  • • • tN]   (7.24) 

Proceeding as in equations 5.16 to 5.19, common factors can 

be cancelled from both the numerator and denominator, 

leaving 

/ 

fN -1 2 
lxiTT(hkixi+Hk)u(hkixi+Hk)exP{:—(riixi+Ri) }dxi 

a.   ^ = 1 
i 

2r 
ii 

1       Tb.     N -1 2 
/     irT(hkixi+Hk)u(hkixi+Hk)exp{:—<riixi+Ri) }dxi 

J a .   K = 1 2r 
ii 

where  r . .   is  the   (i,j)th element  of  C     , 

(7.25) 

*>• 
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^c-Ä^'j (7.26) 

and 

N 
R. = y; r.. t. 

j=i 
(7.27) 

Making the substitution 

z=- 

NPTi 
(r. . x. +R. ) 
HI  i (7.28) 

yields 

/v    _      N 
k/2F. .z-R.)] 

y.=- 
i 

ki 

ii 

(V^FTTZ-R.)^ exp{-z }dz 

/v N 
ki Jii(x/2r. . z-R. )+H1 

><  ii   i   )■ 

ii 

exp{-z }dz 

where 

(7.29) 

max 
u=  k 

h .>0 
ki 

1 R.    H. frT~ 
(r..a.4-R.)P  i Ü_ -ii 

J2r..  ü 1 i J^FT  h, .V 2 
V  ii >  ii   ki 

n    1               R.    H, (rTT 
_-—(r..b.+R.) ,  i Ü- LU 

h  <0 ^27^  ii i  i  ^77   h, .V 2 
ki  v'  ii >  ii   ki 

nun 
v=  k 

(7.30a) 

(7.30b) 

Äs 

The expressions which multiply the  exponential  terms  in 

eq. 7.29  are  seen  to be Nth-order polynomials.  Writing 
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them as such, reveals that 

/v       N 

u     k= 
j^ q   z  exp{-2   }dz 

y   =  
1 fv     N 

zkexp{-z2}dz ii 

(7.31) 

The integrations can finally be performed to yield <*,**> 

num .=yß 

N+l 

x^erf(z) V 
k=l 

L2J g2k_1(2k-l)M 

k-2j 
-iV 

o  N 

k=0 K   j=0 2^ (k-2j)!! 
(7.32a) 

denom 
' ii 

\f erf (z) J^ 
k=0 

L2J g01 (2k-l)! '2k 

N 
k-1 

-exp{-z^} 5] g, (k-1)!! £ 
,k-2j-l 

TV 

k=l k 
j = 0 23{lc-2j-l)ll 

(7.32b) 

fr«. 

t 

' i 

t 

so that 

<*>  The notation LxJ denotes the smallest integer < x. 

<**>  The notatioi. k!! denotes the product 

(k-2)• -   '3-1 for k odd 

(k-2)' « •4*2   for k even 

Ik. 
k!!=< 

(k- 
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num. 
yi = denom.   r.. 

11 

(7.33) 

When C=_I or, equivalently, when x. is being restored 

independently of the other components of x, the estimate 

becomes y-j^t^, as given by eq. 7.22. When C=I, the 

estimate in eq. 7.33 is used in the recursive manner 

described previously. 

7.3  Error Covariance of Rayleigh Estimator 

The estimate given  by eq. 7.33  provides  a minimum 

mean-square error  reconstruction  of a quantized Rayleigh 

variable.   The  performance of this estimate  can  be 

determined  by a calculation of the estimation covariance. 

A general expression for this covariance was derived  as 

eq. 3.10.  This expression can be solved, for a Rayleigh 

probability density function, by the  same  technique  that 

was  used  in equations  5.36  to  5.37  for  a gaussian 

distribution.   Denoting  the  (i,i)th component of  the 

estimation  covariance (the only non-zero componeit because 

of  the  recursive  nature of  the  estimation  procedure 

described in Sec. 7.2) as e.., then 
ii' 

■ 
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or 

/ 

ix. p(t)dxi 

e. . =■ 
11 

a. 
i 

/ ip(t)dxi 
J  ai 

- y^ (7.34) 

eii=e 
num 

denom 

R. 0 
i v 2 

- (y+—-) 7i r , , ' 
ii 

(7.35) 

where 

e  =2 nam 

IN+2 

\perf{z) £; 
k=l 

I    q2k_2(2k-l)!! 

k+1 k-2j+l 
N L 2 J  z  - 

-exp{-z2} ^g. (k+l)ll E "i —" 
k.| k      j = 0 2:i(k-2D + } i i 

-"u 

r/.36) 

e,   = r . 
denom  n 

U g  (2k-.l)!l 
V^erf(z)i;   ' 

k=0 

M    k-2j-l 
,  N          L^ J   z 

-exp{-z2} 7 g, (k-1)!! E  "1 :  (7.37) 

u 

•St 
- 

This error covariance for the (i)th component is related to 

the estimates of the other components, tk for k/i, by mean 

*k 
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of both R., as given by eq. 7.27, and Hu  for  k-l,2,...,N, 
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as given by eq. 7.26. The expression in eq. 7.35 nence 

specifies the conditional covariance of y. , conditioned on 

the other estimates, t, . 

Because the components, t^ , are random variables, the 

conditioning can be removed by integrating eq. 7.35 with 

respect to the distribution of the t^ . Equivalently, the 

dependence on the t^ can be removed by integrating with 

respect to ^ and H,^ , which are functions of the tk . The 

first and second moments of ^ and ^ can be calculated as 

E{Ri} = l/^v^l^ 
3ti j/i 

(7.38) 

E{R 
N 

1 11j=l l^  ^ 
(7.39) 

N 

*' j-i 
Ji«i 

' VSi fc\i k-l,2,...,N (7.40) 

^ 

2        N N 
k ~n=l knj=iCnJ Kj 

nfi      j/i 

k-1,2,...,N (7.41) 

It  can  be  shown,   by means  of   lengthy derivations,   that 

■ 

I* 
< 

E{R. }   «   EfH, } 
i k (7.42) 
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and 

EiR^}  «  El^2] (7.43) 

for k = l,2,...,N. Since boc . ^ and Hk consist of a sum of 

many random variables, it can be argued that they have a 

gaussian distribution. Then, under this assumption, the 

two moments found in equations 7.38 and 7.39 are sufficient 

to characterize this distribution, now denoted as pd^). 

Hence, the unconditioned error covariance can be found from 

e  = Jeiip(Ri)dRi (7.44) 

However, due to the complicated form of the constituents of 

this expression, the error covariance cannot be evaluated 

for general cases. Rather, specific cases of the 

estimation covariance must be considered on an individual 

basis.  An approximation can then be obtained numerically. 

- 

Ife 

7.4  Simulation and Restoration of PCM fjded Images 

To determine the  utility and  effectiveness  of  the 

restoration  technique developed in Sec. 7.2, the technique 

was computer-simulated and then applied to images which had 

been quantized  according to various bit assignments.  The 

images were quantiztd in intensity using Max decision  and 

restoration levels.  These levels are shown in table 7-1. 

They were calculated  by means of  eq. 2.3,   using  a 

179 

E ' 



r    ^mmmfmmm^ ^»KUPÜBW mmm mmmmmm^ 

TABLE 7-1 

OUANTIZATION INTERVALS FOR SIGNALS WITH A RAYLEIGH 
DISTRIBUTION CHOSEN ACCORDING TO A MINIMUM 

MEAN-SQUARE ERROR CRITERION 

Bits Quantization Interval Restoration Point 

0 

1 

0.0 oo 

0.0 1.375 
1.375 00 

0.0 0.822 
0.822 1.420 
1.420 2.127 
2.127 OO 

0.0 0.499 
0.499 0.825 
0.825 1.135 
1.135 1.453 
1.453 1 .8t?0 
1.800 2.208 
2.208 2.760 
2.760 oo 

1.253 

0 .829 
1 .920 

0 .529 
1 .114 
1 .725 
2 .529 

0 .329 
0 670 
0 980 
1. 290 
1. 617 
1. 984 
2. H33 

3. 086 

^ 

k > 180 
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one-dimensional Rayleigh probability density function. 

Each pixel was quantized individually, i.e., independently 

of its neighborinq pixels. The results of this quantizinq 

scheme, when applied to the "girl" image, are shown in 

fiqures 7-5a and 7-5c for one bit per pixel and two bits 

per pixel Quantizers, respectively. 

Figures 7-5a and 7-5c were a posteriori restored by 

utilizing eq. 7.33 with N=5. Using this value for N means 

that the restoration of one pixel is achieved by utilizing 

the information that is available about four other pixels. 

A five-dimensional correlated Rayleigh probability density 

function is thus used to model the image for this 

restoration procedure. The five pixels were chosen and 

ordered as shown in fig. 7-6. These particular pixels 

allow maximum use to be made of the correlation between 

adjacent pixels. Tne 5x5 correlation matrix of these 

pixels is also shown in fig. 7-6. This correlation matrix 

is a necessary input to the restoration equation. 

The restoration provides an improvement because it 

permits many possible output intensity levels to occur, 

even though, as in the one bit case, there are only two 

input levels <*>. The restored images for one bit and for 

two bits are shown in figures 7-5b and 7-5d, respectively. 

The restoration of the one bit quantized image results in a 

decrease of 20.8% in mean-square error.  The  restored  two 
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0     0 0 

0     0 0 0 

0     0     0     0 
2     1     4 

0     0     0     0 
5 

a.  Pixels chosen for the restoration of pixel no. 1 

1.00 0.97 0.96 0.97 0.96 

0.97 1.00 0.94 0.93 0.95 

0.96 0.94 1.00 0.95 0.90 

0.97 0.93 0.95 1.00 0.94 

0.96 0.95 0.90 0.94 1.00 

' ■ ._ 

b.  Correlation matrix of the ordered pixels 

Fiqure 7-6.  Typical ordering of five PCM coded pixels  for 
restoration, and their corresponding correlation matrix. 
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bit image has 28.6% lower mean-square error than Its 

quantized version. Each restored imaqe exhibits a subtle., 

but noticeable, visual improvement over its correspondinq 

quantized image. The restored versions appear subjectively 

to be more "real" due to the extra intensity levels that 

result from the restoration. It should be emphasized that 

these improvements were obtained a posteriori, utilizinq 

only the correlation matrix of a typical sampled imaqe, 

together with the quantized image to be restored. 

<*> For this one bit case, since each of five quantized 
pixels can be in one of two possible states, there are 32 
possible output values for the restored pixel. 
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CHAPTER 8 

RESTORATION OF BINARY SYMMETRIC CHANNEL ERRORS 

The previous chapters have presented and analyzed 

techniques for restoring the output of a quantizer so that 

the result more accurately matches the quantizer's input. 

The restorations are based essentially upon exact knowledge 

of the quantizer output. A similar, but more difficult 

problem results when the quantizer output is not known 

exactly. This could occur, for example, when the quantizer 

output is transmitted over a noisy channel. The first 

section in this chapter explores the effect of channel 

errors on the restorations derived previously. The next 

section examines a technique that statistically compensates 

for the effect of channel errors. 

8.1  Effects of Channel Errors on Quantized Signals 

In this analysis, channel errors are assumed to arise 

in the context of a binary symmetric channel (BSC) [1). 

The characteristics of this type of channel are shown in 

fig. 8-1. The channel is discrete and memoryless and can 

be specified by a transition probability assignment P(j|k), 

for j ,k=0 ,1, as 

I» 
186 
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0 

input   K 

0 

j   output 

Figure   8-1.     Transition  probabilities   for  a binary 
symmetric  channel. 
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'1-P 

P={P(J|k)}= (8.1) 

1-P- 

Since the channel is memoryless, the probability of an 

output sequence z=(z ,z ,...,O, given an input sequence 

X»(x. fx_ ,., .,jt ) , is given by 

N 
P(z|x) = Trp(z. |x. 

i=l  :1-  1 
(8.2) 

fr. 

W^f 

Based on this definition, a BSC was simulated by means 

of a computer, with the channel error probability, p, 

chosen to be 0.01. The simulated channel was then applied 

to transform coded images. The three "original" images 

shown in fig. 5-7 were zonal transform coded in 16x16 

blocks, as described in Sec. 5.4. The quantized transform 

domain components were encoded by assigning each a binary 

code word. The resulting sequence of binary digits was 

operated on by the simulated channel. The error-corrupted 

bit stream was then either decoded directly, as shown in 

figures 8-2a, 8-2c, and 8-2e, or restored by the techniques 

of Chapter 5 to reduce the effects of the quantization 

process (see fig. 8-3 for a schematic of this procedure). 

The decoded images with the quantization effects reduced 

are shown in figures 3-2b, 8-2d, and 8-2f. 
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Bit errors in transform coding that arise due to a 

binary symmetric channel are seen to result in an emphasis 

of the block structure and a subjective error that extends 

over the entire block. This latter effect occurs because 

inverse transforming a block containing an error 

distributes this error over all the resultant image domain 

components. However, what is important to note from 

fig. 8-2 is that channel errors affect guantized and 

guantization-restored images identically. The 

reconstruction technigues derived in Chapters 5, 6, and 7 

are thus insensitive to channel errors. Since they provide 

visual and mean-sguare error improvements in noise-free 

cases, they can be utilized equally well in noisy 

environments. 

8.2  Reconstruction of Quantized and Transmitted Signals 

The previous section demonstrated that channel errors 

do not adversely affect the performance of the restoration 

techniques derived earlier. However, these techniques do 

nothing to ameliorate the effects of the channel errors. 

This is because the fundamental restoration eguation 

presented in eg. 3.6 was derived without ai.y consideration 

of channel structure. By including the channel structure 

in the derivation, the resultant restoration technique can 

simultaneously reduce the effects of the quantization 

process and mitigate the effects of channel errors. 
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The output of a data source (this output could consist 

of DPCM samples, PCM samples, or transform domain samples) 

is denoted by x=(x »x , ...,x ) and described by a 

probability' density function p(x). The reconstruction of 

x, after x has been quantized to one of M regions and 

channel-error corrupted, is denoted by z^ = {z ,z ,...,z ) 

for k=l,2,...,M (refer to fig. 8-1). The mean-square error 

that  results   from  this  process  is 

M       M 

k=l  m=l 
; If m 

t.) (x-^,)   p(x)dx (8.3) 

This error  can  be minimized  by proper  choice of  the 

restoration points, z.  Setting the partial derivatives of 

this error with respect to z equal to zero yields 
-k 

M f 
L P(mlk) /  x 
m=l      J R 

z B- 
-it  M       r 

p(x)dx 

/. 

(8.4) 
M 
V P(ni|k) | p(x)dx 
m=l      JR 

m 

1 

to 

' 

i 

for k=l,2,...,M. This expression is the noisy channel 

version of eq. 3.6 and provides a minimum mean-square error 

estimate of the input to a quantizer based on the output of 

a noisy channel, the characteristics of the quantizer, and 

the a priori statistics of the  input.   This  equation  is 
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also a multidimensional version of a result first derived 

in [2]. For a noiseless channel, the channel matrix P 

becomes the identity matrix and eq. 8.4 reduces to eq. 3.6. 

When the probability volume integrals in the denominator of 

ea. 8.4 are all equal, which is approximately true for Max 

quantization, the restoration equation simplifies to 

M 
z =£ P(m|k) 
K m=l 

m 

xp(x)dx 

m 

(3.5) 

p(x)dx 

or 

M 

m=l 
(^.6) 

where y  is given by eq. 3.6. Thib  result holds  for 

maximum output entropy quantizers and two-level symmetrical 

quantizers, and is approximately correct  for many other 

types. 

A signal that has been quantized and then  transmitted 

over a noisy channel  can  thus be optimally restored by 

utilizing eq. 8.4.  The restoration solutions fo-md earlier 

for gaussian,  laplacian, and Rayleigh probability density 

functions (see equations 5.23, 6.7, and 7.33, respectively) 

can  be  substituted  directly  into eq. 8.4  once  the 

transition matrix for the channel has been determined.  The 
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resultant estimator can then be used to restore the outputs 

of transform, DPCM, and PCM coders that have been degraded 

by channel errors. 
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CHAPTER 9 

CONCLUSIONS, AND TOPICS FOR FUTURE RESEARCH 

This dissertation has described a means for 

reconstructing quantized signals according to a minimum 

mean-square error criterion. The method, which is entirely 

a posteriori, is based on a priori statistical information 

about the original, unquantized signals. In a broad sense, 

the reconstruction technique described is applicable to an^ 

coding system for which the necessary a priori statistical 

information is available, since any coding system can be 

considered as a special case of a quantizer. In other 

words, assigning one of a finite number of code words to a 

random variable is equivalent to quantizing that variable 

to one of a finite number of intervals. Further, block 

encoding a string of random variables is the sane as 

quantizing a random vector to a generalized region in 

space. 

■ 

No attempt has been made in this work to optimize the 

location or choice of these generalized quantization 

regions, but only to utilize arbitrary, given regions in an 

optimal manner to obtain a signal reconstruction. Finding 

an optimum set of regions to vector-quantize a string of 

random variables remains an unexplored area, but one in 

which fruitful research can be conducted. 

^> . 
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The techniques described herein, in all cases, 

achieved a reduction in mean-square quantization error when 

compared to a Max restoration scheme. The reason for this 

imfrovement over a method which purportedly provides the 

"minimum mean-square error," is that Max's scheme is 

memoryless while the restoration described herein requires 

memory. The memory requirement arises in the form of 

knowledge of the quantized samples that surround a sample 

being restored. This added information, which must be 

stored in memory, permits the improvement in mean-square 

error. The restoration techniques derived in this 

dissertation, therefore, represent a generalization of 

Max's restoration results to many variables. 

From an information theory standpoint, this use of 

memory allows a coding system to operate closer to the rate 

distortion theory bound. Also utilizing memory to perform 

source-encoding—equivalent to vector quantization, as 

discussed previously—can provide an even closer approach 

to this bound. However, in this work a memoryless encoding 

scheme has been employed with its implicit assumption of 

rectangular quantization regions. 

The reconstruction technique developed herein has 

specifically been applied to three common types of image 

coding systems—transform coders, DPCM coders, and PCM 

coders.  These  coding  systems ha^c  been  statistically 
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characterized by gaussian, laplacian, and Rayleigh 

probability density functions, respectively. However, to 

completely characterize the coders requires correlated 

multidimensional versions of these density functions. 

Heretofore, multidimensional versions have not existed for 

either laplacian or Rayleigh distributions. This 

deficiency motivated the general technique derived in 

Chapter 4 for generating correlated multidimensional 

density functions from desired marginal distributions and 

correlation functions. In essence, this allows the 

correlation which exists between the variables in many 

coding systems to be utilized in a statistical restoration 

of tneir coded outputs. 

*- 

A determination of the minimum mean-square error 

restoration point for a quantized vector has often proven 

difficult, because a multidimensional integration of a 

complicated probability function is required. However, 

this difficulty has been surmounted by a novel, recursive 

approach. This approach permits a reduction to only a 

single integration which can then be evaluated 

analytically. The solutions which resulted from this 

approach have been applied to quantized images, and only 

one recursion of the technique has been found to be 

necessary for an image restoration. The restoration 

procedure can thus be readily implemented. 
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A decrease in mean-square error was obtained in all 

simulations of this restoration procedure. However, a 

corresponding subjective improvement was not always 

obs^.ved. This ancillary result substantiates an 

observation made by many others: lower mean-square error 

does not always correspond to a visual improvement, 

repeating the image restorations in the context of a 

weighted error criterion, with the weighting chosen 

according to characteristics of the human visual system, 

resulted in both an analytical and a subjective 

improvement. It is suggested that further image coding 

reconstructions be performed with respect to a weighted 

error criterion. 

•■ 

A fundamental limitation imposed on the images 

restored in this dissertation was an assumption of 

statistical stationärity. This restriction is very basic, 

because the reconstruction techniques herein are completely 

dependent on the choice of a statistical model for the 

underlying random process. Since images have been found to 

be inherently nonstationary, an assumption of stationarity 

limits the reconstruction performance. An adaptive 

technique could remove the limitation and improve the 

performance. This has not yec been investigated, but could 

prove to be a productive area of research. 

Another problem that was  discussed only  briefly  in 
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this work concerns the reconstruction of quantized signals 

in the presence of channel noise. This is a much more 

difficult problem tnan noise-free quantization restoration 

and warrants further study. 

«■ 
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