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ABSTRACT

An analysis of the optimum statistical restoratior of
quantized signals is presented. The restoration is based
upon minimizing the mean square error between the input to
a quantizer and its estimate. Since a gquantizer is a
nonlinear device, the estimation equation which is derived
achieves an optimum nonlinear restoration. 1Its solution
requires complete statistical knowledge of the gquantizer
input. Available statistical information usually includes
the marginal distribution of each of the input variables
and the correlation between them. Hence a technique is
developed for generating correlated multidimensional
probability density functions based on this available
information. The technique 1is applied to gaussian,
laplacian, and Rayleigh density functions. These
multidimensional density functions characterize the outputs
of transform coders, DPCM coders, and PCM coders,
respectively. The quantized outputs of these coders are
then restored by utilizing the multidimensional densities
in the estimation equation. Examples of images which have
been coded and restored by these techniques are presented.
The results reveal a mean sguare error reduction. To
achieve a visually subjective improvement also, a weighted
mean square error criterion is employed, where the
weighting corresponds to characteristics of the human

visual system.
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CHAPTER 1

INTRODUCTION

)

Quantization is a process inherent in all digital

systems, Basically, guantization occurs whenever

continuous physical properties are represented numerically.

When this representation takes place in a digital computer,
the guantization effect is called round-off, or truncation.
As a mathematical operation, guantization is the processing
of continuous functions to give a stepwise output, or the
processing of sampled functions to give a sampled output.
Even the value obtcined in measuring a continuous gquantity
is the consequence of quantization. But wherever *he
occurrence, a fundamental aspect of qguantcization is that it
results in an indeterminacy and a lack of complete
information about the particular property under

consideration.

In this report aquantization 1is assumed to be a
nonlinear operation which occurs within a cuantizer--a
zero-memory device that assigns an input to. one of a
countable number of possible output regions. This defines
a broad class of devices that includes coders, digital
transducers, and analog-to-digital converters. For many of
these quantizing devices the input is a continuous

variable; restricting a continuous input to a particular
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region destroys some of the information about that input.
For discrete inputs, combining their input regions into
larger, and hence fewer allowable, output regions also
decreases the amount of information available. These are
both irreversible operations and the lost information
cannot be recovered. It is thus important to optimize the
quantizina process so that this lost information is held to

a minimum,

The lost information can be minimized by decreasine
the size of the output regions while simultaneously
increasing their number. Unfortunately, this is not always
possible or practical. It would also oppose onre of the
benefits of aquantization: a smaller number of output
regions requires less processing and less storage. A
balance thus must be attained between accuracy and economy.
This balance can be determined by an analysis of the

quantization process.

Most analyses of cuantization to date have focused on
just one aspect of the problem, i.e., finding the best
quantizing device to minimize the information lost.
tiowever, the eventual use of any quantized output is to
accur. °ly represent a continuous signal input. The output
regions are ultimately utilized to estimate and restore the

original quantizer input. It is this guantization

restoration problem that has heretofore been neglected and




is the subject of this dissertation.

The simplest restoration procedure is to choose the
midpoint of each quantization interval as the estimated
value of the original input. However, this estimate can be
improved, since it is based only on the output regions of
the quantizer. The restoration to be described herein is
based also on a priori knowledge of the statistics of the
guantizer input. The input 1is assumed to consist of
samples from a continuous random process. (The sampling
presents few, if any, restrictions because digital systems
reauire sampled and guantized signals, and the operations
of sampling and gquantizing are commutable.) The necessary
statistics are the amplitude probability density function
of the input samples. Where the complete statistics are
unknown, a functional form for them is developed from known
correlation functions and one-dimensional distributions.
This statistical information is then combined with
knowledge of the guantizer output to provide an optimum
restoration. The restoration is optimum with respect to a

desired error criterion.

A second problem requiring a similar solution occurs

when quantized signals are transmitted through a noisy

channel, Because of the errors that accrue during

transmission, what is received does not exactly correspond

to the quantizer output regions. The channel output
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instead equals the quantizer output only within a specified

nrobability. To avhieve an optimum restoration the
following available information must be utilized:

1. the a priori distribution of the quantizer input

2. the structure of the guantizer
3. the transmitted quantizer output region (which may

be in error)

4., the channel error structure

The existence of the last constituent induces a
modification in the solution discussed previously. The

modification is also considered in this dissertation.

In this dissertation, solutions are presented for the
restoration of guantized samples based on a priori
knowledge of the multivariate probability density function
of the quantizer input. The two cases considered are:
(1), the quantizer output region is known exactly; and (2),
the quantizer output 1is transmitted over a noisy channel

and hence not known exactly.

These two situations arise in the coding and
transmission of images. Quantizers are an integral part of
all image coding systems. The go2l of these systems is to
make a coded 1image as similar as possible to an original
irage. Unfortunately cost, complexity, and hardware
constraints often force a suboptimal coding scheme which

results in a deqraded image. The application of the
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guantization restoration techniques discussed above can

improve these degraded images. Experimental verification
of this improvement is obtained by restoring images which

have been coded and quantized.
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CHAPTER 2

HISTORY OF QUANTIZATION AND SIGNAL RECONSTRUCTION

Developments in guantization have <closely paralleled
advances 1in digital systems. Although research had been
ronducted into areas such as uniform statistical groupina
(which may be considered aquantization) as early as 1898
11], it is only since 1947 that deliberate attempts have
been made to understand the process of quantization. By
1947 vacuum-tube technology had reached the stage for which
digital systems were both possible and practical. At that
time the concepts and the value of PCM (pulse code
modulation-~-the first major application of both
aunatization and digital hardware) were just being
discovered and made known [2,3,4]. Bennett (5] then
undertook an intensive investigation of the spectra of
quantized signals. Bennett analyzed uniform quantizers,
such as those wuitlized in PCM systems, and found the
characteristics of their output spectra for a white noise
input spectrum. Since Benrett’s initial work, developments
in quantization have proceeded along three basic lines:

l. analyzing the results and the process of

quantization

2. optimizing the quantization process with respect

to various criteria and goals

3. reconstructing gquantized signals to minimize the
6
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degradation incurred through ocuantization
Each of these categories will be considered separately in
the following paragraphs, and significant developments will

be discussed in roughly chronolngical order.

2,1 Anal/sis of Quantization

One of Bennett’s conclusions was that aquantization
uncertainty or noise, for a quantizer with many levels, is
uniformly distributed throughout the signal band. This
result was supported by Widrow in 1956 [6] in studies of
the probability density functions of quantized signals and
quantization noise. Widrow concluded that a quantizer
could be modelled as a source of uniform, independent
noise. In a later paper (7], Widrow attempted to define
the limits of the region over which his additive noise
conclusion would be valid, and then extended the

statistical results to two dimencions (i.e., the

quantization of two correlated samples). Myers [8]

extended Bennett’'s analysis to the case of the uniform
quantization of a signal corrupted by gaussian noise and
derived the resultant noise distribution, which is no
longer uniform. velichkin [9], calculated the correlation
function and output spectrum of a quantizer. In addition,
Velichkin considered the more general cases of nonuniform

quantization levels and arbitrary input signal spectrums.

Velichkin’s results, for the gaussian case, were in the
7
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form of an in.inite summation of Hermite polynomials of
increasing order which, unfortunately, cannot be evaluated

without simplifying assumptions.

Robertson [10] surmounted this difficulty by
evaluating combinations of the terms of the summation such
that the combinations tend to zero and hence obtained
jutput spectrums for nonlinear and nonsymmetrical
wantizers and for arbitrary input spectrum shapes. Chan
and Donaldson (11] obtained a further generalization by
finding the correlation function and spectrum of a
quantized gaussian signal transmitted over a discrete
memoryless channel. Their results reduce to those obtained
by Velichkin when the channel is noiseless. For very
coarse gquantization, Curry and Vander Velde [12] suggested
modelling the quantizer as a gain element, whose value is
equal to the random-input describing function, plus an
additive noise source. The inclusion of a gain element
causes the noise source to appear more nearly white. The

quantization process can then be analyzed more easily.

2.2 Optimum Quantizers

The analyses of ¢ untization described above were all
based on the cuncept that guantization introduces a noise
or distortior. A number of resecrchers have attacked the

fundamental problem of minimizing a measure of this

108 gy 3 o g P s ) g - g . -




distortion by varying the location of N quantizing levels,
given the characteristics of the guantizer input. They
attempted to do this in an optimal fashion under different
assumptions and conditions, and according to various

criteria.

In 1951 Panter and Dite {13] tried to minimize the
mean-square quantization error by utilizing statistical
properties of the signal. They developed an optimum
nonuniform guantizer based on the following assumptions:

1. the aquantizer is symmetrical abhout zero

2. the probability density function, p(x), is an even

function and 1is constant over each quantization
interval

3. the signal is limited to the range }|-V,V]

4. a signal quantized to a particular int rval is

restored to the midpoint of that interval
The resultant quantizer restoration levels, I, can then be

calculated from

2kV/N -1/3
\% . [p(x)] dx

r, = (2.1)
v -1/3
jﬁ [p(x)] dx
]

for k=1,2,...,n and where N=2n+l is the total number of

levels. The total dJistortion power for this choice of

9




levels

2 v 1/3 3
&=—=1 [p(x)]  dx)
3N a

Panter and Dite also suggested that this nonuniform level
spacing could be realized by "companding"--compressing the
original signal by a nonlinear function such as a
logarithm, performing a uniform quantization, and then
expanding the result by means of the inverse of the
nonlinear function. This type of system was later analyzed
by Smith [14] who provided a method for <choosing the
parameters of the nonlinecarity with respect to a

mean-square error criterion.

In a fundamental paper in 1968, Max [15] derived the
necessary equations for finding the parameters of a
guantizer having minimum distortion with respect to a
convex error criterion. For a fixed number of gquantization
intervals, N, the decision levels, dk, and the restoration

levels, r, . are obtained by a recursive solution of

dk=(rk+rk_l)/2 k=2,3,...,N

d X

d de(x-r, )
[ k+l ————kp(x)dx=0 k=l'2'ooo'N
k




gu——

where p(x) is the distribution function of the guantizer
input and e(-) 1is a convex error function. (Note that
these equations do not reguire n(x) to be constant over the
range of the gquantizer.) In this notation, a signal
guantized to the interval (dk'dk+1.) would be restored to
the point I The set of simultaneous equations contained
in eq. 2.3, except for trivial cases, cannot be solved
explicitly and so must be evaluated numerically. Max also
derived the equation which provides the optimum gquantizer
parameters for a uniform spacing of levels, and tabulated
both the optimum uniform and optimum nonuni form
guantization levels for a gaussian probability density

function and a mean-square error criterion.

The difficulty in solving eg. 2.3 explicitly has led a
number of researchers to ccnsider various approximations.
Garmash [16] simplified the integrals in eg. 2.3b by the
trapezoidal rule and reduced the number of egquations by
choosing the size of the smallest interval. His results
are valid only for a finite signal range. Roe [17]
approximated the probability density function, p(x), by the
first two terms of its Taylor series expansion about the

midpoint of each guatization interval to obtain

dk 1/(t+1)
[p(x)] dx =~ 2ak+b (2.4)
0

11
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tor k=1,2,...,N-1 where <t 1is the order of the error
criterion (t=2 for a mean-sauare error) and a and b are
constants. This relation approximately provides the
decicion levels (and restoration levels for k‘=k+1/2) for
differentiable probability density functions, but the
resultant quantizer is identical to that obtained by Panter
and Dite [13]. Algazi [18], in attempting to find some
simpler suboptimal algorithms, also rederived eqg. 2.2.
Williams [19]) published a closed-form sclution to eqg. 2.3
for the special case of a laplacian distribution, but erred
in assuming the restoration point to be the median, rather
than the centroid, of the guantization interval. The
correct guantization levels for a laplacian (and also a

gamma) distribution were later calculated numerically [(20].

No matter which method is utilized to calculate the
guantization parameters, however, it will fail 1if the
probability distribution is such that a wunique minimum
distortion point does not exist. For a mean-sguare
distortion measure, Fleischer [21] derived the sufficient
conditions under which a unigue optimum quantizer can be
found. To this end also, Bruce [22] used dynamic
programming to find optimum gquantizers for a variety of
convex error criteria, and checked their wuniqueness by

3 locating and comparing all other extrema of the error

sur faces.
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Since quantizers usually operate on sampled signals,
Velichkin [23]) and Goodman {[24] considered the joint
optimizaticon of both sampling and gquantizing. Velichkin
calculated the optimum parameters to achieve a minimum
mean-square arror, and Goodman compared this result to @&

lower bound obvained from rate distortion theory.

It has been found [25]) that wuniform guantizers
appcnach this lower bound, 1i.e., wuniform quantizers
asymptotically have the lowest output entropy. Wood [26]
and O°Neal [27]) have taken advantage of this fact to derive
(approximately) minimum entropy guantizers. Wood has shown
that for a fixed output entropy, uniform guantizers have
lower mean-square error than nonuniform (Max) quantizers.
However, to achieve this error reduction, the guantizer
output must be optimally coded (i.e., with a Huffman
variable-length code) and this causes buffering problems.
This difficulty may be partially overcome by permutation
encoding [28], but this coding technique has the limitation
of requiring very long block-lengths. For a non-buffered
coding scheme, a gquantizer having maximum output entropy
could be considered to be optimum. It has been shown that
the quantizers with minimum average error (such as Max’s)
are the same as those with maximum entropy, within a

multiplicative constant [29].

Max imum entropy, or minimum error, quantizers must be
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modified when their output 1is transmitted over a noisy

channel [30]. For a mean-sguare error criterion, the

decision and reconstruction 1levels for a noisy-channel

quantizer can be found from

N 2

2T (Pi=B ;)

i=1

d = k=2'3'...'N (2.5a)

N d.
» Py / 1+lxp(x)dx
i=1 d.1
r. = k=1,2,...,N (2.5b)
Fon Q5
_2: Py p(x)dx
i=1 d.1

where Pki is an element of the channel matrix, P. For a

noiseless channel (P=I), eg. 2.5 reduces to eqg. 2.3.
Minimum error quantizers also must be modified for
nonstationary inputs or for correlated input samples.
Golding and Schultheiss [31] and Stroh and Boorstyn [32]
presented ad hoc adaptive aquantizers designed to handle

this situation. An optimum adaptive quantizer has not vyet

been successfully derived, nor has an optimum quantizer for

correlated signals.




2.3 OQuantized Signal Reconstruction

An important area of research in recert years has been

the reconstr