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Automatic  computer determination of object boundaries has attracted many 
researchers  in the   various  areas  of image processing  for  some time.     The 
concept of boundary determination is basically motivated  by problems in 
textural  analysis  («   subject  in  scene  analysis)  and  robotics  (a   subject in 
artificial intelligence). 

In this  dissertation,  an object boundary  estimator,   applicable to  a  class 
of noisy images,   will be introduced.     The  images considered will contain an 
object of interest within the background.     The boyndary  estimator will be 
designed based on the existing  estimation techniques through  certain  available 
statistics  of the  object, background,   noise,   and the boundary?     Extensions of 
the estimator to multi-object  images will be discussed  as  well.    The procedures 
developed will be  recursive  and readily implementable  on a digital  computer. 
A few examples will be considered to illustrate the performance of the 
estimator.. 

14.  Key  Words:    Scene Analysis,   Boundary  Estimation,   Image Characteristic 
Function,   Replacement  Processing. 
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ABSTRACT 

Automatic computer determination of object boundaries has 

attracted many researchers in the various areas of image processing 

for some time.    The concept of boundary determination is basically 

motivated by problems in textural analysis (a subject in scene 

analysis) and robotics (a subject in artificial intelligence). 

In this dissertation,   an object boundary estimator,  applicable to 

a class of noisy images,   will be introduced.    The images considered 

will contain an object of interest within the background.     The boundary 

estimator will be designed based on the existing estimation techniques 

through certain available statistics of the object,  background,   noise, 

and the boundary.    Extensions of the estimator to multi-object images 

will be discussed as well.    The procedures developed will be recursive 

and readily implementable on a digital computer.    A few examples will 

be considered to illustrate the performance of the estimator. 
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Chapter 1 

INTRODUCTION 

In visual perception,  among the most effective stimulus configur- 

ations are the "edges" outlining the objects within an image,   f1,2! • 

This has motivated many researchers in the areas of automated 

image processing,   specifically those in scene analysis,  to develop 

various techniques of edge detection and boundary determination. 

An incentive for research in scene analysis is the study of 

robotics,   [3].    The available information about the shapes and sizes 

of physical objects constitute the total visual intelligence required by 

a robot.    Such informations can be provided through knowledge of 

object boundaries. 

Defining the set of points which separate the object and background 

as "object boundary. " the purpose of this report is to develop a re- 

cursive,  easily implementable.  estimator to yield an estimate of the 

object boundary. 

In preparation toward that goal,  a survey of the existing bound- 

ary determination techniques is made in Chapter II.    It will be shown 

that present techniques are generally based on image models repre- 

senting overall image brightness functions.    An image model,  labeled 

as the "replacement processing. " will be defined which considers not 

only the intensity details of the image,  but also explicitly contains      i 
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the boundary information within the image. 

In Chapter III,   the replacement processing model will be utilized 

to formulate a boundary estimator for a certain class of images.     The 

images considered will contain an object of interest within a back- 

ground.     The boundary estimator will be designed based on a combin- 

ation of deterministic and probabilistic information pertaining to the 

image. 

Chapter IV will be concerned with the development of possible 

solutions resulting in an implementable boundary estimator.    Re- 

cursiveness of the estimator will be our prime   objective.    A number 

of examples will be provided to demonstrate the applicability of the 

boundary estimator. 

In Chapter V,   an analysis of the boundary estimator,   regarding 

its performance,  will be undertaken.    Extensions of the estimator to 

multiobject images will be considered, and,  areas with potential for 

future research will be explored. 

9 
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Chapter II 

STATE OF THE ART:   PAST AND PRESENT 

A digital image is commonly represented by a two dimensional 

discrete function,  b(m, n),  whose range is the grey level values of 

the image and whose domain spans the entire image. 

In general,   as a deterministic function,  the image function 

b(m, n) does not carry any salient properties common to all images 

other than the constraints imposed on it by image recording and/or 

displaying systems.    Examples of such constraints are positiveness 

and boundedness of b(m, n).    Statistical representations of images 

are,  hence,   in order. 

Statistical image models are generally based on the knowledge of 

the mean and autocorrelation functions of b(m, n).    It hat been shown, 

[4],  that two dimensional,  wide sense stationary random processes, 

possessing exponential autocorrelation functions of the form 

Eb(m1,n1)b(m2,n2)   =   Me 
■a!m2-m1 |-ß|n2-n1 | 

r 

represent suitable models for b(m, n).    The justification is basically 

experimental.    Such statistical models have been previously used in 

image restoration and enhancement problems,   [5-?].    However, 

consistant in the results has been the presence of blurry edges. 

Intuitively,  we may conclude,  an image model bsscd solely on the 

»,• 
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first two moments of b(m, n) might be suitable for reconstruction of 

image grey level values,   but it does not carry sufficient information 

to adequately reconstruct the object boundary.    This conclusion has 

been our main motivation in the development of a boundary estimator. 

A boundary estimator,  combined wUh the image estimators introduced 

in [5] and [?],  would result in an improved restoration of the image. 

Along the way,  we became aware of the importance of boundary 

estimators in other areas of automated image processing such as 

scene analysis and artificial intelligence. 

Before proceeding any further,  a brief review of existing methods 

in edge detection and boundary determination is in order.    For this 

purpose,  we have relied extensively on References [fc] and [9], 

because of their elaborate coverage of the subject.    An attempt has 

been made,  however,  to provide the reader with a complete list of 

relevant bibliography at the end of this report. 

In the following sections (2.1-2.6),  a description of H.e basic 

techniques regarding boundary determination is delineated.    The list 

of bibliography is intended to be complementary to the material cover 

ed,  and those not covered for the sake of brevity,   in tnis chapter. 

2. 1   Thresholding 

Thresholding is the simplest method of data extraction.    Basically, 

the image function b(m,n),   representing the intensity (grey level) 

values of the image,   is compared with two threshold values,   T    and 

mAam 
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,( a picture element with grey level value «»„. .„) belongs to an 

edge,  the magnitude .1 «(«.„.»„) «ill be large; whereas,  it Wnyn,) 

belongs to a relatively uniform intensity region,  the magnitude of 

R(m  ,n0) will be small. 

in praetice,   for computational efficiency,   a simplified version of 

the above operator,  namely, 

(2.2.2) F(m,n) =  |b(m, n)-b(m + l. n+l) 1 + lb(m, n+I)-b(m+l. n) | . 

ig implemented instead.    It can be verified by inspection that F(m,n) 

behaves qualitatively as R'm, n).    In fact, 

(2.2.3) R(m,n)   <  F(m,n)   ^  ^  R(m,n) . 

The major disadvantages of this technique ar» again related to 

the selection of an optimum threshold.    If R(m,n),   or equivalent^ 

F(m,n).  is compared to a too large a threshold,   some significant 

edges will be lost.    Similarly,   a small threshold will cause the 

appearance of sparious outlines.    The existence of noise in the image 

is another source of restraint in boundary determination Lnrough 

spatial differencing. 

?   3   g^tUl Differencinp-   Noisy Images 

Different methods for reducing the adverse effects of noise in 

boundary determination have been suggested in the literature.    Typi- 

cal ones underscore some combination of averaging and differencing 

of the noisy image function.    Deno^ng such functions by ^ 
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(2.3.1) y(m,n)   ■   b(m,n) + v(m,n) , 

where v(m, n) represents the noise function,  an operator frequently 

suggested is 

(2.3.2) D(m,n) T!yiyM) - -r- X)l]7(i'j)' 
Lw1       wTlm, n) w     w   (m,n) 

The parameters used to define this operator are w^m, n) and w^nr.  n), 

representing two arbitrary contiguous regions in the image with areas 

A       and A      ,  respectively.    Comparing D(m,n) to a preselected 
w1 w2 

threshold,  then,  will constitute whether the picture element b(m, n) 

sizes for w,  and .v    is an important 

belongs to an edge. 

Choosing appropriate region aiz-co iui  «j cw— -j 

factor in construction of this operator.    If regions w1 and w2 are 

chosen too large,  a blurring of the edge position will result.    Too 

small regions,   on the other hand,  could introduce sparious boundary 

points. 

An ingenious,  however ad-hoc,  modification of the above operator 

has been presented in [ll] .    Specifically,  let 

(2.3.3)    dk(m,n) = 
^i00 w^1".1-;^ 

A
wJk)   w7(m,n;k) 

here k = 1, 2, 4, 8 I1,  with i being a non-negative integer 

number.    To explain the notation, we resort to equation (2. 3. 2).    For 

each value of k, W.dn.njk) represents a subreglon in the image such 

that 7 

w 
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(2.3.4) U    w   (mfn;k)   =   Wjfm.n), 
k=l 

where U denotes the union of sets.    Similarly for w2(m(n;k), 

(2.3.5) U     w_(m,n:k)   =   w   (m, n) . 
2 ■ 

Variables A      (k) and A      (k) represent the areas associated with 
w2 

,n;k) and w,(m,n;k),   respectively.    The modified subregions w   (m, ..,^, ^..^ .. ^ 

operator is,   then,  defined as 

(2.3.6) D(m,n)   a   d1 (m, n)d2(m, n). . . d ^(m, n) . 

This operator has been shown (experimentally) to perform 

superior to D(m. n),   [11,121.    Its implementation,  however,   requires 

selection of optimum region sizes (value of Ü) and threshold which, 

as far as fully automated boundary determination techniques are 

concerned,   makes it wanting. 

2.4  Spatial Differentiation;   High Order Derivatives 

In a rigorous mathematical setting,   the gradient of a two 

dimensional function b(m, n) is defined as follows.    Let b(x, y) denote 

the continuous version of the discrete image function b(m,n).    Then, 

the directional derivative of b(x,y),  at a point (x^),  is defined as 

^b 
(2.4.1) ^ 

(xo'yo) 

= bx(x0,y0)cos e + by(x0,y0)sin 

VLZZZL 
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where 6 represents a specified direction relative to the orthogonal 

x-y coordinate system,  and 

(2.4.2) 

(2.4.3) WV ?>b(x,y) 
^y 

(xn.y0) 

(xo'yo) 

The gradient, Vb(x, y),  of the ^unction b(x, y) is,   then,  a vector 

originating from point (xn.y0).  pointing in the direction in which 

b(x, y) has its maximum directional derivative.    Its magnitude is 

given by 

(2.4.4) 

[131. 

|Vb(x0.y0)|=   y^(x0.y0)+b'(x0.yo)   , 

In terms of the digital image function b(m, n),  the partial 

derivative functions b   (x,y) and b   (x, v) can be approximated by 
x y 

(2.4.5) 

(2.4.6) 

or, alternatively. 

b   (x,y)   M b(m, n+1) - b(m, n) 
x 

b   (x.y)   M b(m+l,n) - b(m, n) , 
y 

b   (x,y)   M b(m,n) - b(m+l,n+l) (2.4.7) 

(2.4.8) 

depending on the orientation of the orthogonal x-y coordinate system. 

b   (x, y)   « b(m, n+i) - b(rn+l,n) , 
y 
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Replacing for (2.4.5) and (2.4.6) into (2.4.4),   yields 

r 7 ^ 
(2.4.9)    |yb(x,y)l «-Ab(m,n+l)-b(m,n)] +5>(m+l,n)-b(m,n)J     . 

or,   replacing for (2.4.7) and (2.4.8) into (2.4.4),   we obtain 

(2 .4.10)    lvb(x,y)| ^ v/tb(m, n)-b(m+l,n+l)f+ fb(m, n+l)-b(m+l,n) 
-2 

Comparing (2.4. 10) with (2.2. 1),  one concludes 

(2.4.11) R(m, n)   w   |vb(xfy)|   . 

;; 

Thus,  as expected,   "Roberts cross operalor'" is an approximation 

to the actual gradient of the continuous image function b(x, y) 

In the same manner as above,  higher order derivatives of b(x, y) 

can be approximated to represent spatial differentiation operators 

utilized in boundary determination.    For example,   the "Laplacian 

operator, " L(m, n),  defined as 

(2.4. n)      L(m,n)   =    |b(m, n+2)-2b(m, n+1) 42b(m, n) - 

2b(m+l,n)+b(m+2f n)| , 

is an approximation of 

(2.4.13) |* b(x,y)l=  lb     (x,y)+b     (x.y)l   , 
xx yy 

where b      and b      denote the second partial derivatives of the 
xx yy 

continuous image function b(x,y), 

"Bi-Laplacian operator, " an approximated version of 

10 
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(2.4.14)      v b(x.y)   = bxxxx{x> y) + Zb^x. y)byy(x, y)+byyyy(x. y) , 

is another variation of the operators employed for boundary deter- 

mination. 

In general,  an operator with higher order derivatives utilizes a 

larger region of the image to decide on the position of the picture 

element represented by b(m,n).    A Laplacian operator,  for instance, 

employs five picture elements (see Fig.  II. O,  namely b(m, n), 

b(m,n+l), b(m, n+2), b(m+l,n),  andb(m+2,n),  as opposed to the 

gradient operator (equation (2.4.9)) which employs three picture 

elements in determining whether b(m, n) is an edge point. 

Other operators,  based on approximation of image function partial 

derivatives,  have been proposed in the literature,   [lo] .    The quality 

of the processed pictures,  however,  are about the same,  because 

basic disadvantages connected with spatial differencing techniques, 

mentioned in the foregoing sections,   are persistantly present 

irrespective of the choice of the operator. 

2.5  Contour Following 

Contour following is a heuristic recursive algorithm for boundary 

determination.    Different contour following routines have been 

proposed by several authors,   [14-18].    Sophistication of these routines 

are based on the complexity and contents of the images under 

consideration, 

11 
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m, n m, n+1 m, n+2 

m+1, n mfl, n+1 ml-l,n+2 

mf2, n m+2,n+l m-'-2,n+2 

Figure II. 1.    Image Elements Used to Define Gradient Operator and 
Laplacian Operator 

IZ 
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Figure II. 2.    Boundary Determination by Contour Following. 
Connected Lines Describe the Object.    Arrowed 
Line Tra- es the Square Object. 

14 
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2.6  Statistical Differencing 

Let b(m,n) be obtained through averaging of the image function 

b(m, n) over a region w in the image.    Furthermore,   let 

(2.6.1) o(m.n)   =   | 2-^    &>(iJ)-b]    } 
' w(m, n) ) 

Then,   method of "statistical differencing," [19],  utilizer an operator 

T(m,n),   of the form 

(2.6.2) T(m, n)   = 
b(m, n) - b(m, n) 

o(m,n) 

To determine whether the picti'.re element b(m, n) belongs to an edge 

2 
location or not.    Note,  0   (m, n) defines the variance of the grey 

level values,  b(m, n),   over the region w(m, n).    The reason for 

explicitly denoting b and 0 in terms of m and n is to emphasize their 

dependence on the selected region size. 

This method is specially attractive for detection of minor edges 

in an image.    An example should illustrate this feature more clearly. 

Let us select a x'ectangula*  region of grid size 3 by 4 within an 

image (see Figure 11.3),    The region is constructed so as to represent 

a minor edge,  i.e.,  the grey level value differences at edge points, 

Ab(m, n),  are small.    Refering to Figure 11.3,  definition of b, ai.d 

equation (2.6. 1),  the following values for b and a are obtained. 

(2.6.3) 1.05 

15 
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Objects 
Elements 
b(m,n) = 1.1 

•   •   • 

0    O     0 

«00 

o   o    o 
r    0     0 

^»   •   • 

I   •    4 
ooo 
9    0     0 

0    <> 0 

0    0 0 

0    o 0 

Si i *   o 
0                    y^ 

/•   •   • 0   o 0             / 

/     • • • 

o   0    «     >/ 
0    p     0 
0   0    o 

o   p   o 

Region W(3,4) 
0   o    o 

Background 
Elements, 
b(rn, n) = 1.0 

Figure II. 3.    Binary Image With a Minor Edge,   (&b = . 1). 
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(2.6.4) 

(2.6.5) 

a  =   .17 

■i: 
.3        in tVe background 

3        in the object . 

Replacing values of b(m> n) with T(m, n).    The minor edge becomes 

six times more conspicuous (AT(mfn) = . 6 as opposed to &b(m,n) =.1). 

Method of statistical differencing,  therefore,  is suitable for 

extracting boundary out of images with a lot of detail.    By its nature, 

however,  this technique is restricted to noise free images. 

2.7  Replacement Processes 

Having covered the basic past techniques of boundary determin- 

ation,  the ground work for the introduction of a new technique, 

described in Chapter III,  is developed here. 

A mathematical model for the image function b(m,n) which 

explicitly considers the object boundaries along with image internal 

details is proposed as follows.    Let 

(2.7.1) r i=0 

Represent a sequence of nonnegative,  integer,  and binary valued 

functions such that 

(2.7.2) S   ^   =    1 

i=0 

|[ Y. = 0.    j = 0. li ....N-l . (2.7.3) 17 
i=3 
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Relationships ,2.7.2) and (2.7.3) restrict the elements of T  to be all 

ro with the exception of only one element (any element) whose 

function is now represented by 

•/,f 

va lue must be 1.    The image 

N 
i] (2.7.4) b(m.n)   =  ^   Y. (m. n)b.(m. n) 

i=0 

„here the function b^m.n).   0 M *N. denote the grey Wei values of 

the hac^ound ,1 = 0, and the N ohjeeU in the Image.    The element, of 

the 3eq„ence F carry the boundary information of the ohiects within 

the image. 
..•„UK b     are assumed to be The two dimensional functions b^ t^, oN 

sample functions of N+l statistically independent, wide sense station- 

ary random processes whose first two momenta are known.    The two 

moments, namely the mean and autocorrelation functions, are re- 

spectively indicative of the brightness and textural similarities of 

bo,bi bN.    Note,  an autocorrelation function with a sharp drop 

of, from its maximum corresponds to a finely textured region of the 

image,   POJ. 

The binary valued function Y.lm.nl,  another random process, 

takes values of 1 or zero corresponding to points in the image 

belonging to the i* object or the ^ ^i. object,  respectively.    In the 

literature,  this function is usually labeled as the image "characteristic 

function, " W.    The statistical properties of V. will be described 

later as the need arises. 

* 
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The image model (2.7.4) is based on a concept defined as 

"replacement processing, " where,  by definition,  a segment of a 

function or random process is replaced by another function or random 

process according to certain rule.    Considering that for typical images 

the object signals,  in fact,   "replace" a portion of the background 

signal,  and/or each others (as in the cases of overlapping objects), 

the structure of this model is justified.    In model (2.7.4),  the 

replacement takes place according to the values of V (m, n).    For 
i 

rd 
example,  for a non-overlapping 3—object,  the replacement of the 

background signal by the object signal occurs within the portion of 

the image where y.(m, n) = 1. 

For future reference,   note that the domains of the sample 

functions b  (m, n), . .. , b    (m, n) are defined to be the entire image. 

This,  in fact,  is the main motivation behind introducing the concept 

of replacement processing in image modeling.    Figures II.4 and II. 5 

illustrate a few examples of constructing an image by replacement 

processing. 

In practice,  the grey level values of an image,  b(m, n),   here 

after referred to as "original image, " are not available for measure- 

ment.    In lieu of the original image,  a sequence of variables,  y(m, n), 

approximating b(m, n) are a\ailable for observation.    This is due to 

the existance of disturbances such as reflections from spurious 

objects,  inaccuracies in the image sensing mechanisn,   corruption 

19 
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m m 

| Y^m, n) Yjb^m.n) 

1_ 
m m 

lVVYibi 

r\. 

m 

m 

m 

Figure II.4.    Construction of a Uniform,   Two-Level,  Single-Object 
Image.    Cross Section of a Typical Line n is Shown. 
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Figure II. 5.    Construction of a Uniform,   Three-Level,   Two-Object 
(Overlapping) Image.    Cross Section of a Typical Line n 
is Shown. 
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introduced during Iransmission,   film grain noise,  and etc.  which 

cause distortion of the original image.    The relationship between 

the original image.  b(m,n),  and the observable image,  y(m, n), 

depends directly on the sources of degradation.    For instance,  dis- 

tortions due to film grain noise,   generally introduce a multiplicative 

noise on the original image; i.e. , 

(2.7.5) y(m, n)   =   b(m, n)v(m, n)    , 

where v(m,n) is a random process representing the degradation 

phenomena.    In this work,   we will consider the m.re common types 

of distortions,  namely,  those modeled by additive noise.    Hence, 

(2.7.6) y(m, n)   =   b(m, n) + v(m, n)   , 

where b(m, n) is defined in (2.7.4),  and v(m,n) is as delineated above. 

In the following chapter,  a specific case of image modeling 

through replacement processing will be used to estimate object 

boundar.   *.    Prior to that,  however,  the type of objects considered 

in this work will be described in the next section. 

2.8  Horizontally Convex Objects 

In general,  boundary determination techniques which incorporate 

some geometrical properties of the objects within the image into 

their algorithm are superior to others,   flo].    Connectivity and 

convexity are typical examples of such geometrical features.    In this 

•k,  we will consider images which contain "horizontally convex" won 

'■'■'■'■- ■ :zik~ 



r 
objects.    An object is defined to be horizontally convex if the set 

forming that object can be characterized as follows. 

2 
Definition:   A set E (" IR    is said to be "horizontally convex" if given 

1/11.   r.2,22 1,2 1 2 -   = (x1.
x

2)eE,  x    = (Xj.x^eE, with x1 ^ Xj and x    ■ x 
1        , 2 

then ax     + (l-a)x  cE,  where 0 <a<   1. 

Examples of such sets are E    and E- in Figures II. 6a and 11.6b, 

respectively.    Set E    (Fig.  II. 6c) is not horizontally convex. 

Note that "horizontal convexity" is a less restrictive condition 

than "convexity,"   In other words,  a convex set is always horizon- 

tally convex,  but a horizontally convex set is not necessarily convex. 

This fact can be observed in Fig,  II. 6a-II. 6c. 

I 
23 
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— x. 

iaurc II. 6a.    Example of a Horizontally Convex Set. Figur 
x 

-Xl 
Figure II. 6b.    Example of a Horizontally Convex Set. 

'2 

Figure II. 6c.    Exam 

 —m-  x1 

pie of a Set Which i8 Not Horizontally Convex.    24 
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Chapter III 

ESTIMATION OF OBJECT BOUNDARY:    FORMULATION 

In this chapter,  we will develop a boundary estimator for a cer- 

tain class of noisy images.     The images belonging to this class can be 

partitioned into two regions:   background and foreground.     The fore- 

ground forms a horizontally convex object.    An object of interest will 

always be assumed to exist in the i-nage.    Techniques developed in 

[21]   may be used to detecc the existence of the object in cases when 

its presence is not certain.    The concept of replacement processing, 

described in Chapter II,   and the mathematical image model associated 

with it,  defined by relationship (2.7.4),  will be utilized here to 

formulate the boundary estimation problem. 

3. 1   Modeling 

A model for a single object image whose grey level values are 

represented by the two dimensional discrete function b(m, n) is 

defined as 

(3.1.1) b(m,n)    =   Y(m,n)b0(m, n) + [1-Y(m,n)]bb(m,n). 

This model is based on the replacement processing concept 

delineated in section 2. 7.    The two dimensional functions b0(m, n) 

and b   (m, n) represent intensity level values of the object and the 
b 

background,   respectively,  and Y(m,n) carries the boundary infor. .a- 

25 
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3.Z   Scanning 

An image scanner is now employed to transform the planar data 

representing the noisy image,  y(m.n).   into temporal data.   y(k).    The 

scanner output,  in the absence of observation noise,  is denoted by 

s(k),  where 

(3#2.1) s(k)    =   X(k)s0(k) + [l-X(k)lsb(k) 

models the image in terms of its grey level values and object bound- 

ary as viewed by the output of a line by line scanner. 

The structure of the one dimensional model (3.2.1) preserves the 

replacement processing concept.     The functions s^k) and s^k) are 

associated with b0(m,n) and bb(m.n).   respectively.    In other words. 

s   (k) and s   (k) denote the intensity values of the scanned object and 
0 b 

background,  and are assumed to be sample functions of two statisti- 

cally independent,  cyclo-stationary random processes,  [5,   22], whose 

first two moments .re obtainable directly in terms of the fixst and 

second order statistics of b0(m.n) and bb(m,n),   [23].    As in the case 

of b    and b   ,  the domain of the sample functions s^k) and s^k) are 
0 b 

the entire scanned image. 

The binary valued function X(k) is the one dimensional counter- 

part of Y{m, n).    Its statistics are described in section 3.3.    Note that 

the statistics of X(k) completely define those of Y(rr>,n). 

The two dimensional observation sequence y(m. n) in (3. 1. 2) will 

also be replaced by its scanned version defined as 

27 
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(3.2.2) y(k)   =   3(k) + v(k) , 

where s(k) is as defined in (3.2. 1),   and v(k) is a zero mean Gaussian 

. . 2 
white noise process with variance o   . 

3. 3    Representation of X(k) 

Let rrij and m    denote the first and the last lines of the object as 

viewed by the scanner.    Furthermore,   let a, and B     represent the 
Jc £ 

beginning and end points of the object on line i,   respectively.    In 

general,   rrij.m^a   .  and 0      form    s^Sm      are random. 

The function X(k),  appearing in (3.2.1),   is now defined in terms of 

1X1,1x1,01,  and ß„ ao 

m. 

(3.3.1) \(!)   =    y^   u[k-a^-(i-l)Jl- u^-ß^-^-MJ]   , 

I =m. 

where u[' J is the unit step function,   J denotes the number of picture 

elements in one line of the image,  and ß. == a   .    The statistics of the 

process X(k) can now be given in terms of the statistics of m   , m   , 

and 

* 

(3. 3.2) ^ ■ (VV • 

Let us assume w    to form a first order Markov process.    This 

assumption is made for Lhe sake of computational simplicity,   and it 

emphasizes the dependence of the object boundary points on line I 

upon the boundary points located on the previous line, i-1.    It is 

further assumed that the density functions p(a  |a       .ß      ,m). 
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p(0. |a.   , a       ,P       ,m   ),  p(m   |m   ),   and p(m   ) are given,  and that 

For future reference,  notice 
- 

(3.3.4) p(w£  ^  j.mj)   =   P«^.^!^  l.Pi   ^Wj) 

(3.3.5)      p^.^lVr^-i^i^P^'^-i'^-i^i^ 

p(ßi,arar.i'ßü-i'mi): 

therefore. 

(3.3.6)   p(wi l^.1.m1) = p(ajai_1,ßi5_1.m1)p(ßjarag_1,ß/_1>m1). 

3.4   Problem Statement 

Relationships (3.2.1),   (3.2.2),   and (3. 3. 1) along with the defini- 

tions and assumptions given in the previous section 3. 3,   constitute the 

basis for the boundary estimation problem of this chapter.    The 

objective here is to locate the object boundary.    For this purpose, 

estimates of the first and last lines (m.  and m   ),  and estimates of the 

starting and ending points (a   and ß   ) of the object are sought.    Looked 

upon as an estimation problem,  the problem statement is summarized 

as follows.    Define 

(3.4.1) 

(3.4.2) 

(3.4.3) 

3(k)   =   X(k)s0(k) + [1-Mk)]sb(k) 

y(k)   =   s(k) + v(k) 

m. 

X(k)   =    V^   ufk-a^-^-MJli ufk-ß^-^-Mil, 

l = mi 29 

1 
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where, 

i)      Es   (k),   E3()(k1)s0(k2),   Esb(k),  and Esb(k1 )sb(k2) are given; 

ii)     w   = (a   , ß   ) represents a first order Markov sequence for 

m.  s/ sm   ; 

•äi)   ß   ^a.   form    si^m   • 
It 1 -i 

and  iv)    P(a.^ I^^ß^ ^.m^.pfß^ |a^.a^_rß^_1,m1),p(m2|m1). 

and p(m   ) are known. 

Then we wish to obtain a set of estimates for m. ,   m   ,  a ,  and ß , 

m.  is.t ^rn  ,  based on the available observation sequence,  y(k), 
1 u 

1 sk £N.    The fixed integer N denotes the total number of picture 

elements in the image. 

3.5   Grey Level Value Estimates 

The boundary estimation procedure developed in this chapter,  as 

it will b    shown,   requires the values of srt(k) and s, (k),   1 ^k ^N. 
0 b 

Since,   in general,  these values are not known (cases of known images 

are exceptional),  a set of estimates of s   fk) and s, (k),  often minimum 
Ob 

mean square estimates,   will be used in their place.    Based on the 

gi'' en mean and autocorrelation functions of 3.(k) and sL(k),  a set of 6 Ob 

minimum mean square estimates of s   (k) and s   (k) can be obtained by 
0 b 

implementation of the results in [231.    Note that the concept of 

replacement processing assures the existance of the estimates of 

s   (k) and s   (k) for all k in the range of [l.N^.    Since the aim of 
0 b   

this dissertation is estimation of object boundary,   throughout this 
30 
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chapter,  we will assume tie values of s   (k) anJ s   (k),   or their 
0 b 

corresponding minimum mean square estimates,   are given. 

3.6  Boundary Points Estimates 

The boundary estimation problem,  as i? evident from (3.4, 1) and 

(3.4.2),   is a nonlinear estimation problem.    Moreover,  due to the 

type of nonlinearities involves (such as the binary nature of X(k)),  the 

available estimators based on linearization concepts (such as extended 

Kalman-Bucy filters) do not yield satisfactory results.    In the sequel, 

a set of maximum a-posteriori (MAP) estimates for the unknowns 

m, ,  m  .  a  ,  and B-.   m,  Si^m.,  are obtained. 
12* i I 2 

Consider an image of grid size M by J,   resulting in a total of N 

pixels (picture elements).    The fixed integers M and J denote the 

number of lines in the image and the total number of pixels in each 

line of the image,   respectively.    Let us define 

(3.6. 1) #!_   =   (m1,m2) 

(3.6.2) W   =   (w      fw  w      ) 
— m,      m+1 m_ 

where w   ,   m    ££ sm_,   is defined in (3.3.2),    The objective in this 

section is to derive the MAP estimates of ^_ and W_. 

Consider relationship (3.4.2) as the observation model.    Define 

the M-di nensional vectors S,  Y,  and V as 

(3.6.3) S(^_,W)   =   i^,^, ^jV 

f 31 

;• 



■I n^ mmi**^***mimm*m* —»*—»—»—»w-—w—~—~-^— 

where "prime" denotes transposition,  and 

M 

r^Itf-l )J + 1 ]. sh[U-l )J+2] s   0 Jlf for 
Is  ^< m. 

m    <t <.M 

.,     j    [■br(l-l)J+ll,...,.bt(l-UJ4ai-ll,.0[(l-l)J4q|l  

(3.6.6) '     so[(i-I)J+0j,sbr(^l)J+ß^+l-],...(sb[«jn,for m^^rr^ 

(3.6.7) Y   « ^U-l)J+l1.y[(i-l)J+2] y^Jir.    1 <i«M 

(3.6.8) V^ = Cvftl-l)J+ll.v[(|.l)Jrt] VDJJ]]'.    1  s^s 

are each a vector of dimension J.    Then,  from (3.4.2), 

M 

(3.6.9) Y    =   S(^, W) + V 

where Y is the observation vector.    The observation noise,   V,   is 

assumed a Gaussian process with mean zero and covariance a  I, 

"I" denoting the identity matrix. 

The form of the vector S(^_, W),  defined by (3.6.3) and (3.6.6) is 

a consequence of having one object of interest.    The reason for 

explicitly denoting S in terms of ^_ and W is to underscore the vari- 

ables we are specifically concerned with.    Note that the vector S is 

random due to the randomness of ^_ and W,   or equivalently m  ,   m  , 

O.,  and P ,  m    si s m  . 

To proceed with the MAP estimation of W_ and W,   certain a-priori 
— 32 
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statistics are required.    The given density functions p.'m   ), p(m   |m   ), 

P(ai '^-r^-r"1!^  and p(^la^'a£_l'^   i'     j) will be shown to 

suffice. 

It is well known that MAP estimates of ^_ and W are such values 

of J5[ and W that maximize the joint probability density function 

p(YI^f W),  where Y, g,  and W are as defined in (3.6.9).   (3.6. 1),   and 

(3.6.2),   respectively,   [24].    From (3.6.9),   where V was assumed 

Gaussian with mean zero and variance a   ,  and based on the fact that 

(3.6.10) p(Y,^,W)   =   p(Y|^, W)p(W|^)p(^) 

we have 

* 

TT 

^ 

N 

(3.6.11) p(Y,^,W) = (2na2)   2    exp } - -^-  fY-S^.W)]'. 
I     2o 

[Y-S(8 W)T + In p(W |^) + In p(^)i . 

Taking natural logarithm of both sides of (3.6. U) yields 

(3.6.12) In p(Y,^(W) = -—■ [Y-Sm, W^^Y-Sfl!-W)V 
20^ ' 

[Y-S(^,W)]+ In p(Wl^) + In p(^)   . 

Taking natural logarithm of both sides of (3.6.11) yields 

(3.6.12)        lnp(Y,^,W) = .-L TY-SR, W)]'^^^, W)l 
2o 

+ In p(W |^) + In p(^) - ^ In 2TTa2 . 

Note that since logarithm is a monotonic function,  those values 

of fl; and W which maximize p(Y,77!, W) coincide with the mode of 

33 
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In p(Y,77!, W_).    Considering the foregoing comment and the fact that 

the last term on the right side of (3.6.12) is a constant,  maximizing 

In p(Y,^, VV) is,   then,   equivalent to 

(3.6.13) max   | - -y [Y-S(^, W)TLY-S(^, W)l + In p(W 1^) + In p(w|   . 

Furthermore,   expanding the expression inside braces in (3.6.13), 

and considering that the term Y'Y is invariant under maximization of 

7/1 and W_,   (3. 6. 1 3) is equivalent to 

(3.6.14) max \ -   -y S'(fl!, W)^, W)-2Y1 + In p(W|^) + lnp(^)S. 

or, 

2 2 
(3.6.15) min   (S1^, W)[S(fl?, W)-2Y] - 2a    In p(W 1^) - 2a   In p(^)}   . 

Before proceeding with the minimization process in (3.6.15),   let 

us transform it from vector into scalar notation.    From (3.6.3) and 

(3. 6. 6),  we obtain 

(3.6.16)        S'(5,W)S(5,W) y^ JkJg* 
M 

1-1 
m. m. -1 i J •"_ 

^ = 1      k=W-l)J + l l-m 

k=(/-l)J-Kx/, 

U 

__      Sb(k) 

k=(irr)j+p+i 

(^-l)J+a-l t 
k=(£-l)J + l 

M 

■. (k) + 
b 

11 

E   E s^(k) . 
D 

>e=m2 + l   k=(X-l)J+l 

34 
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Similarly,  from (3.6.3),   (3.6.4),   (3.6,6),  and (3,6.7), we obtain 

M 
3.6,17)        S'^.WIY = V^^Y/ = 

1=1 

"V1 
tJ                               m2 (/-1)J-H1-1 

E T %(k)y(k) + ^ 
ka(f-T)J<fl i=i k=(.e-l)J+l                        £=m. 

iz-im^ i3 

J^ s0(k)y(k) + V*      sb;k)y(k) 

k«(l-i)J<la 

£ J?     sb(k)y(k)    , 
/=m. + l    k=(i-l)J+l 

k=(^-l)J+Si+l 

Combining (3, 6, 16) and (3, 6. 17) results in 

(3.6,18)        S'tf^W)^, W)-2Y]   = 

"V1       U m2 

E E ^k,+ E 
^=1    k = (^-l)J+l ^iimj 

(•e-MJ+ß^ 

E 
k«(l-l)J-ta 

W-l)J+a -1 
I 

T,     Kb,k, + 

k=(^-l)J+l 

iJ 

K0(k) + 

k=(i-l)J+ßi+l 

M |J 

E   E v^' 
^=m2 + l k=(i-l)J+l 

where 

(3,6,19) 

and 

lyk)    =    sb(k)[sb(k)-2y(k)], 

(3,6.20) K0(k)   =    s0(k)[sn(k)-2y(k)J 
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Note that K^lk) and K^k) are defined for all 1 ^k ^N. 

To put (3.6.1 8) in a more compact form,   let us add to and sub- 

tract from the right side of (3.6. 18) the quantity 

m, ^J 

ü^,    k=(i-i; 

K, (k). 

k=(i-l)J+l 

Then (3. 6. 18) can be written as 

M iJ 
(3.6.21)        S'(^W)[S(^W)-2Yl   =   ^        ^      ^(k) + 

jt=\   k=W-l)J + l 

If     £ 
^=i k-ii-njw^ 

Since the first term on the right hand side of (3.6.1).  i.e. 

IT   Z    [^^-^(kn. 

M        -e J 

^=1    k=(i-l)J+l k=l 
E K^(k) 

is a constant with respect to tt? and W,   it will be omitted out of 

minimization process (3.6.15).    Replacing what is left of (3.6.21) 

into (3.6.15),  we obtain 

(3.6.22)        min      -2r.2 In p(W - 2nZ In p(W|fl) + mm 
77!,W 

Defining 

m2 ^ 'Hl f 0Ü 
5J     E   rKo(k)-vk)i 
£=m1   k-^-MJ+a^ 

3 6 
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i* 

I 

(3.6.23) 

and 

(3.6.24) 

K(k)   =   K0(k) - lyk) 

T(w^)   i 

(-e-MJ+ß, 

kad-lKMa. 

K(k)   . 

(3. 6. 22) can be written as 

m„ 

(3.6.25) min 1 -2a    In p(^) - 2a   In p(W |^) + V^   T(w/ 

/=m 
1 

Furthermore,  from (3.3.3),   (3.6.2),  and the assumption that w^   u 

first order Markov, 

(3.6.26)        p(W|W = p(wm   |wm  .1.tn1)p(wm     ^w^  ^.m^ 
2 2 I. c. 

•••p(Wm,+l,Wm1'
ml)p(Wm1

,ml)' 

where 

(3.6.27) p(w      |w       i.tni)   = P(w      l"1^ • r    m. '    m.-l       1 1 

From (3.6.26),  then, 

(3.6.28) In p(W |fli)   =     'V'    lnp(we|wi   J.IHJ) . 

Replacing for (3.6.28) and 

m. 

l =m 1 

(3.6.29) In p(^)   =   lnp(m1,m2)   =   In p(m2 jmj) + In p(m1) 

into (3.6.25),  yields 
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(3.6.30)        min 
2 2 

-2rr    In p(m2|m1) - 2^    lnp(m1) + 

m^ 

^     rT(w^) - 2a   In p(w^lw^_1,m1 n   . 
i =ni 1 

To obtain MAP estimates of iry   m2,  0,^,  and f^,   m1 CJ ^m2, 

the minimization in (3.6.30) must be performed.    Techniques of 

finding the extremums of (3. 6. 30) through differentiation do not apply 

here since the variables m^  m2>  0^,  and $£,  m,  <i ^m2,  are net 

continuous.    Alternative methods,   however,  are possible and will be 

the subject of the next chapter. 

38 

MM 



mm*~mmm^mmmm mmmmmm 

t. 

Chapter IV 

ESTIMATION OF OBJECT BOUNDARY; 

PROPOSED SOLUTION 

Acquisition of a numerical solution for the minimization process 

(3. 6. 30) is an integral part of this dissertation.    Since a rigorous 

solution of (3. 6. 30),   resulting in a set of optimal estimates for m. , 

m  ,  a   ,  and ß   ,   m    ££, sm  ,   is computationally unacceptable, 

approximate solutions are sought.    Two possible approaches,   shown 

later to yield satisfactory results are proposed below. 

One approach is to obtain the estimates of a. and ß   ,   over the 
It. 

range m.  i-l ^m   ,  with the assumption that values of m.  and m_ are 

given.    For example,  values of m.  and m_ may be chosen as m.  = 1 

and m? = M,   implying the object boundary points lie on every line of 

the image.    Then,  if necessary,   one may utilize additional structural 

properties ol the object to elim, nate those boundary points estimates 

which are incompatible with the given structural information.    Ex- 

amples of structural properties include shape and/or size of the 

object within the image. 

An alternative approach is to consider the problem in two steps; 

namely,   first solve for the estimates of a. and §„,   m.  ^l <m_, 
I I l 2 

A * 

denoted by a,, and I. ,  for a selected set of m,  and m_ ,    Then,   solve 
11 12 

for the estimates of m.  and m    (m    and m») by replacing a   and 6 
39 
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for a and B   .    A recursive procedure will result if the above two 

steps are perforrru-d at each scan line producing an algorithm which 

yields a set of estimates for rrij,  m2>  a   .  and ß^  concurrently. 

The former approach,  as compared with the latter,   is computa- 

tionally more attractive.    However,  it requires additional information 

of a deterministic geometric nature on the object beyond those given 

statistical information delineated in section 3.4. 

We will elaborate on both approaches below. 

4. 1   Derivation of a   and ß   Given m    and m^ 

In the case when m    and m    are a-priori given,   (3. 6. 30) can be 

reduced to 

(4.1.1) mm 
W 

m. 

V*    [T{w ) - 2o   lnp(wi|w|_1,m1)] 

I =m 
1 

Expanding p(w   |w m   ) as in (3. 3. 5),   (4. 1. 1) is written as 

(4. 1.2) min 
W 

m. 
" 7 

I =m. 
7 

Furthermore,  from (3. 6. 24), 

w-MJ+e, W-MJ+a -1 
Ms 

(4.1.3) r^)  - y^   K(k) -   y^   K(k). 
k=w-i)j+i     k=(/-i)j+i 

Replacing for   r{w ) into (4. 1.2) yields 
Ki 
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m. 

(4.1.4) mm 
W 

y^       2a   Inplaja^^.^   j.m^ 

I =m 1 
2o  Inp^la .a   j.P   j.mj) + 

(l-MJ+fi, (i-MJ-Kl -1 

^2 KW - ^ K(k) 
k=(ü-i)J+i k=w-i):+i 

A recursive,   easily implementable solution of (4. 1.4) is possible 

if the density functions pfy 1^ a. P^.nij) and p(p^ |a£ . ^ ^ . 8^^ m^ 

are approximated by p(a^ ^ .y^ .i'™^ and P(ßü \ai'ai-l'^l-l'™^' 

respectively.    Hence,  the minimization process (4. 1.4) is replaced 

by 

(4. 1. 5) min 
W 

m. 

y^ [-20     ^ P^ l^.l'^.l'"1! )   - 

i =m 1 
Zn* UipCPjl^.^ i.^^.mj) + 

U-UJ+I. W-l)J4a-l 

V  '    K(k) - ^ K(k) 

k=(/-l)J + l k=(/-l)J+l 

To express (4. 1. 5) in a compact form,   let us define 

(1-1)140.-1 

(4.1.6) g(^)   ^  -2a2lnp(ai|ai_1.ßi.1.m1) - ^ K(k) ' 

k=^-l)J+l 

4 V*        K(h) , 

and 

(4.1.7)   W|)i-2o   lnp(ßJ,!ara£_1,ß^_1,m1) + ^ 

k=(i-l)J+l 
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for m    ^l Sm_.    Then (4. 1. 5) can be written as 
1 c 

(4.1.8) mm 
W 

m. 

E ^(v + h(ß.n 
l=Tr\. 

Note that,   from (3. 6. 27),   for ü = m 

(4.1.9) 

(4, 1. 10) 

1 
(m.-MJ+a      -1 

1 m. 
g(a       )   =    -2a    In p(a rn   ) 

m r    m 1 E '   K 
(k) 

k=(m   -1)J+1 

(m   -l)J+ß 
m, 

h(B     ) = - 2fT   in p(ß     |a     .m,) f V^      '   K(k) . 
m r   m       m 1 / J 

k=(m1-I)J+l 

The minimization process (4. 1. 8) can now be simplified consider- 

ably,  because a typical term of the summation in (4. 1.8),  for example 

i = m,   is a function of the variables a      and B      only.    Consequently, 
mm' 

(4.1.8) is equivalent to 

m_ 

(4.1.11) 

1 

min   h(ß   ) + min  g(a   ) 

This minimization is performed recursively an follows. 

: 

Step 1.        Determine a        by minimizing g(a       ).     Phis is 
m m 

possible since,  from (4. 1.9),   g(CX       ) is a function of 
m1 

a       only. 
m1 

A 

Step 2.        Determine ß       ,  based on the result of step 2,  by 

minimizing h(ß       ).    This again is possible since, 
m 

1 
from (4. 1. 10),  h(3       ) is a function of the variables 

ml 
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ß        and a        only, 
m m. 

Step 3.        Set i = m    fl, 
A A A 

Step 4,        Determine a   ,  given a        and ß        from previous steps, 

by minimizing g(a. ). 

A A A * 

Step 5.        Determine 0   ,   given a   ,  a     .,  and ß       ,  by minimizing 

Step 6.        Set /=/ + !. 

Step 7.        Check to determine if i >m-.    If "Yes",  go to step 9. 

If "No",  proceed to the next step. 

Step 8.        Go to step t. 

Step 9.        Terminate the computations. 

A 

Notice,  based on the definition of X(k) in (3.4.3),   ß     is constrained to 
X/ 

be ^a  . 

The computational procedure,  as described above,  is clearly a 

recursive one.    Specific choices of the density functions p{a    a    ., 
t    JL-i 

A |   A A A 

ß    ,, m. ) and p(ß ja , a.      ,ß      , m.) are required to implement this 

algorithm.    This will be,  however,   postponed to a later section. 

Use of add;tional structural knowledge about the object (such as 

its shape) will then complete this approach by locating the actual 

positions of the first and last lines of the object. 

A A 

4.2   Derivation of m.  and m 

We will now elaborate on the second approach referred to before. 

The first step of the problem,  namelv that of obtaining a   and ß  ,  was 
1 *        43 
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.olved in section 4.1.    Replacing the estimates ^ and ^  for ^ and 

B   in (3.6.30),   reduces the minimi zation process (3. 6. 30) to 

m2 
2 

(4.2.1) min U^lnplm^tV-Za    In p(m1) + ^   Tfw^ ) 

^=m 
1 

here w    = (a., 0^ »,  »~-  "v"/' ,h).  and Tlw^) is as defined in (3.6.24) with ^ and ^ 

replaced by ^ and B^ ,   respectively.    Let us define 

m 

(4.2.2) A(m)   ft   £T(w,): 

«■1 

then, 

(4.2.3) 

m. 

A(m2) - A(m^   =    V     T^) . 
^=m 

1 

Replacing for (4.2.3) into (4.2.1).  we obtain 

2 
(4.2.4) min 

77? 

[-2a2lnp(mJm^ - 2a2 In pdV + A(m2) - A^-D] . 

Considering that ^ = (m1, m2),   (4.2.4) can be rearranged as follows. 

(4.2.5)    min{-2a2lnp(m1)-A(m1-l)+min[-2n2lnp(m2lm1)+A(r^)ll. 

m m. 
1 

Furthermore,   let m, be uniformly distributed over the discrete 

interval fl, M] ; i.e.. 

(4.2.6) 

and let m. 

(4.2.7) 

pCmj)   =  ^ . 

be uniformly distributed over [mj.MJ I i.e.. 

. 1 
P(m2'ml) = M^     " 44 

W   :.:SÄi mm 



 'm**mmmmi* mmmmmmmm*^*mmmmmr*f^e |   ." Mnm^mmn^^Bmrn**'• ""        ' 

Then,   (4,2.5) can be written as 

r ,_2 
(4.2.8)    min   {2a    In M - A(m1-1) + min [ 2a    ln(M-m1)+   A(m2)ll 

m1 
m2 

Crossing out the constant terms and rearranging (4.2.8),  yields 

(4.2.9) min [2a    ID (M-nr^) - A(m1-1) + min   [A^^]} . 
ml m2 

It is clear that the minimization process (4.2.9),  with respect 

to m    and m-,   is separable.    That is,   it can be considered as two 
i £ 

independent extremization processes,  namely, 

(4.2.10) max iMm^l) - 2a    InfM-nr^)],      l^m^M, 
m. 

and 

(4.2.11) min[A(m)],       m    Sm^M, 
m. 

where satisfying (4.2.10) yields rr^ and (4.2.11) yields m2.    In other 

words,  defining 

A 2 
(4.2.12) C(m)   =A(m-l)-2a    In (M-m) , 

Estimates of m    and m2 are obtained by locating the relative maxi- 

mum and minimum of C(m),   1 sm ^M,   and A(m),  m1 ^m ^M, 

respectively. 

To acquire further insight,  variations of A(m) and C(m) with 

respect to m are obtained graphically by considering relationship 

(4.2.2).    Noticing that \(m) is obtained through discrete integration 
45 
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(summation) of T(w   ),  we will examine this function,  i.e.,   Hw   ), 

closely.    From (3. 6.24), 

(4.2.13)                        T(wi)   • 

k=W-l)J-Kx 

or,   from (3.6.19),   (3.6.20),  and (3.6.23), 

(4,2.14)        Tfw^) = a„(k)[sn(k)-2y(k)1 - ■. (k)[i. (k)-2y(k)l . 
0 0 b b 

k«(l-l)J4« i 

Rearranging the terms in (3.9. 14),  we obtain 

W-1)J+S 

(4.2.15) Kw  )   = ]P rs0(k)-y(k)l    -[sb(k)-y(k)]     . 

k=(J«-l)J+a^ 

Behavior of A in two regions of the image,   namely,  background and 

object,  are of interest to us.    First,   let us consider the region of the 

image corresponding to background.    A portion of this region corres- 

ponds to wTiere 1 ^i ^m,  and m    <£ ^ M,  with 

(4.2.16) y(k) = sb(k) t v(k) 

Replacing for (4. 2. 16) ;.nto (4.2.15),  yields 

(i-i)j+a. 

(4.2.17)        T(w^) ^        [s0(k)-sb(k)l2 - 2v(k)rs0(k)-sb(k)l. 

k=(^-l)JKX, 

For the sake of simplicity,  let us assume s   (k) = s    and a   (k) = s 

are constant (case of binary images); then,   relationship (4.2.17) 

reduces to 
46 

wm ÖÄ^S? * 



1 wwww»« •""• I       ■ ■ i I ill   ■ i   v^^^^i     i     ■ 

I (£-i)j+e 

0     b' 0    b' 
v(k) . 

Considering that the random process v(k) is zero mean,   the summa- 

tion term in (4.2.18) can be approximated by zero.     Therefore, 

(4.2.19) T(V ~<vv1)(8o-sb)2 

for 1 £Jl <m1 and m    <£ ^ M.    Since we restricted ß   to be always 

A A 

2 a-»   T{w^ )»  as represented in (4.2.19),  is always a positive quantity. 

Note the relationship (4. 2, 19) would be an exact one in cases of noise 

free binary images. 

Now,  let us consider the region of the image correponding to the 

object.   A portion of this region is related to where m, ^l ^m, with 

(4.2.20) y(k)   =   s0(k) + v(k) . 

Similar computations as for the background region results in 

(4.2.21) T<V -vv1)(8o-sb)2 

for m. ££ Sm_.    Relationship (4.2.21) is clearly an indication of 

T(w ) being always a negative quantity in the object region of the 

image. 

From relationships (4. 2. 19),   (4.2.21),  and the definition of A(m) 

in (4.2.2), we conclude Figures IV. 1 and IV. 2 represent typical 

graphs of A(m). 
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It is noteworthy to mention that in cases of working with highly 

degraded images,   corresponding to signal-to-noise ratios of less than 

unity,  variations of the form shown in Figure IV. 3 have been observed 

for A(m).    Intuitively,  this is due to highly unpredictable oscillatory 

values introduced by the noise term,  v(k),   in (4.2., 18) as a result of 

working with low aignal-to-noise ratio images.     The adverse effect of 

this problem can be significantly alleviated through inspection of 
A A 

Figures IV. 1 -IV. 3.    Notice,  the locations of rr^ and m2,   in all cases 

(high or low signal-to-noise ratios),   coincide with two significant 

slope changes in the graphs of Mm),    Therefore,  when designing an 

algorithm to determine those values of m which satisfy criteria 

(4.2.10) and (4.2.11),  we shall exploit this significant-slope-change 

feature delineated above.    Since,  as it is evident in Figures IV. 1- 

IV. 3,  the significant-slope-change feature holds for noise free and 

low noise images as well as high noise images,  the resulting algorithm 

should be applicable in all cases. 

The above artificial manipulation,  undertaken to improve the 

estimates of m    and m  ,   is analogous to when the optimum Kaiman 

gain of a Kalman-Bucy estimator is varied to improve the resulting 

estimates.    An explicit example of such a situation can be found in 

[25]. 

An algorithm has been developed to determine those values of m 

which maximize C(m) and minimize A(m) by searching for the 
48 
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A(m) 

* 

m 

Figure III. 1.    Noise-Free Image. 

A(m) 

\ 

» m 

Figure III. 2.    Noise Image. 

Mm) 

m   r" 

v. 

Figure III. 3.    High-Noise Image. 
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significant slope changes in C(m) and Mm),   respectively.    Such 

values of m are accepted as the estimates of first and last lines of 

the object.    Details of this algorithm are best shown concisely by the 

flow chart in Figure IV. 4.    The procedure is recursive and easily 

implementable on a digital computer.    Notice that estimates of m.  and 

m9 are computed concurrently with those of a. and ß    in a line by line 

manner.    Examples in section 4.4 should illustrate the results of this 

section to our satisfaction. 

4. 3    Choice of Density Functions for a„ and ß 

To implement the results of section 4. 1,   specifically to carry 

out the minimization process of (4. 1,11),  knowledge of the density 

■     A A A A A 

functions p(a   1 a    .,p.   j, m  ) and p(ß^ |a ,a    ^ß   ., m. ) are required. 

Since these functions are to be provided as a part of the given data, 

;wo different cases,  believed to be typical,  will be considered in this 

work. 

First,  we will assume the given density functions p(a     a.    ,.8    ,, 
t     £-1     l-l 

.   A A A 

m  ) and p(ß   |a  , a     ,, P    , , m. ) describe two normally distributed 

random variables, a   and ß   ,   for all t. in the range of (m. , m»] 

except for l - m.,  i.e.,  the first line of the object,  where a        and 
m. 

ß       are given to be uniformly distributed. 
m 1 

Next,  uniform statistics will be assigned to a   and ß   for all/ in 
I I 

the range of [m  , m  ] .    In the sequel,  a detailed formulation of the 

results is presented for each case. 
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Figure IV. 4.    Flow Chart For Estimation of Object Boundary. 
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i mj = m- I+ 1 

"      L_.           -- 
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j 
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Figure IV. 4.    Continued. 
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Since a Gaussian probability density function can be defined 

completely through the knowledge of first and second order statistics 

of the random variable,   [26],  the conditional mean and variance 

values of a   and B   should be sufficient to describe p(a   la ß m  ^ 
A A A 

and p(0^ l**«a^.i»3|.i»m|) in the Gaussian case.    The choices of 

conditional mean and variance values of a   and ß  ,  m   fl s/ sm ,  are 

somewhat arbitrary.    The motivation behind the valves chosen below 

will be given shortly.    Let 

■ 
■ 

* 

(4.3.1) 
1 

p(a_   !m )   =  -        i ^      ^j , m, '    1 m. '1 - '"i 

where J denotes the total number of pixels in every line of the image. 

Furthermore,   for m.+1 ^i s m  , let 

(4.3.2) 

(4.3.3] 

E(aJVi'Vi'mi)=^.i - 

^^'Vi'Vi'"1^ - iVi-Li  • 

where E(« ) and Var(« ) denote the mathematical expectation and 

variance operators,   respectively,   and 

(4.3.4) 

(4.3.5) 

*      A   * A 

(4.3.6) 

Similarly for ß ,  let 

L   =        max        (L ) 
m. ^is m 

L. - ^ - ^ • 
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(4.3.7) P(ß™   l°L   •m\) 
m.    m.       i 

J-a m. 
m.       m. 

and,   for m. f 1 s^ £;rn2, 

(4.3.8) E^j^.o^jJ^i.mj)   ■   S^j 

(4.3.9) Var(Bjara^1,B^_rm1)   =    I L^j-L]     . 

where L    and L are as defined in (4. 3. 4) and (4. 3. 5).    From (4. 3.2). 

(4.3.3) and (4. 3. 8)-(4. 3. 9),  then, 

(4.3.10)        P'^lVi'^.i'"1^ = 
.yzi|L J-LI 

exp 

(4.3.11) p{fLia.,a. ,.0, ..m.) ■ 
./2TT|L      -L| 

exp 

2 

1 

21^,-1.1 

"i-^.l1 

for m, +1 s-e ^ m. and a, ^ g, ^ J. 
1 Lit 

In the presence of a finely digitized (sampled) image,   [2?] ,   it 

seems reasonable to assume the mean values of a   and B   to be at 
I I 

a.   ,  and ß,   ,  the conditional mean values of a    and B   to be at 
i-\ 4-1 I I 

a.   ,  and ß     ,,  hence (4.3.2) and (4.3.8). 

In choosing the conditional variances of 0.   and ß   ,  the flexibility 

of the boundary estimator,   in the sense of adapting itself to break 
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away from bad estimates,  has been our major concern.    It is intuitive- 

ly desirable to choose the variances of 0^ and ß^   large when the 

estimates a    ,  and §    ,  are poor and small when they are good.    In 
i-i .6-1 

other words,  we would like to encourage the estimator to stay close 
A A A A 

to a        and ß        when it is looking for a^ and ß^ only if O^j and ß^ 

are good estimates of 0., and ß^^.    The choice of variances as in 

(4. 3. 3) and (4. 3.9) is an attempt in that direction.    Notice the bound- 

ary estimator will be less "rigid" in estimating c^ and ß^, if the 

estimated width of the object on line i-1,   I.e.,  L^j,  is far from the 

maximum width of the object.    The maximum width of the object,   L, 

assumed approximately known in practice, was chosen as an arbitrary 

reference value. 
A A A A 

With density functions p(CL l*|,i» ^ 1»ml' and p(^'a/'a/-r ^-1'"^ 

given as in (43.1.),   (4.3.7),   (4.3.10),  and (4.3.11),   relationships 

(4.1.6),   (4.1.7).   (4. 1.9), and (4.1.10) can be written as 

2 
(m.-MJ+a     -1 1 m. 

'4.3.12)        g(a     )   =   2a   In J - 
m lI 

(4.3.13)       g(a^)   = 

K(k) , 

(L^  ,-L) 

k=(m1-l)J+l 

(/-MJ+a^-l 

E     K(k) + 
k=(Jg-l)J+l 

2 2        A ' 
2o   In^ff a   ln(L^_1-L) 

(m  -l)J+ß 1       m, 
(4.3.14)       h(ß     )   =   2a    ln(J-a      ) + 

m m. z ' K(k) , 

k=(m1-l)J+l 
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(4.3.15)       h(B ) 

2*2 (l-l)J-ffiL 

k=W-l)J + l 

K(k) + 

_22        * 2 
2a    lnA/T7+ o    ln(L       -L)     , 

where m^l  „ ^ and ^^^^ ^ ^  ^ ^^      ^.^.^ ^ 

constant terms which do not affect the minimization of g(a ) and h(ß ). 

ve obtain 

(4.3.16) 
(m   -l)J4<x      -1 

1  x       «i, 

•V ■ -    E 1 

2        A        2 

K(k) , 

k=(m1-l)J+l 

t-^MJ-Hl-l 
(4.3.17) g(a)= i    tl    - V „„.        2        * 

(4.3.18) 

{h.rL) 

h(e    ) = 
mi 

k=^-l)j+l 
(m  -l)J+e 

m. 
K(k) , 

k=(m1-l)J+l 

U-l)J+fl 2        *        2 
o (0,-6   ,) 

(4.3.19)       MB, )= £    4li  -   + 
* .A 2 

L.  ,-L) 
£-1 k=(^-i)j+i 

K(k) + a2 In^^-L)2 . 

Computations of a, and B^  m, Ci «m^   such that criteria 

(4. 1. 11) is satisfied is now routine using equations (4. 3. 16)-(4. 3. 19) 

along with the recursive procedure described in section 4.1. 

An alternative choice for the density functions p(a |a      . B      . m ) 

and P(B^ IVVl'^.i'^) i«.  as noted before,  uniform distribution. 

In this case density functions of o^ and ^ are constant and can be 

omitted out of the minimization process (4.1.11).    The corresponding 
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g(a ) and h(S ) functions,  from (4.1.6) and (4. 1. 7),  then,  are as 

follows. 

(4.3.20) 

(4.3.21) 

gK 

mz) - 

(,e-i)j+0L -i 

. ^2    K(k) • 
k=W-l)J+l 

11-1)1+1. 
y^   K(k), 

k=(i-l)J+l 

r- 

for m,  <i £m„.    Estimates of a. and 3..  can,  thnn,  be computed 
12 £ I 

recursively using (4.3.20),   (4.3.21),  and the pr ocedure described in 

section 3. 8, 

A comparative analysis of the above two choices of distributions 

(Gaussian and uniform) for a   and ß  will be performed in a later 

section.    Presently,  a few examples are provided in the subsequent 

section to illustrate the results. 

4.4   Examples 

Several images have been considered to depict the results of this 

chapter.    Figure IV. 5 illustrates the "original image" versions of 

these pictures.    Two of the original images (square and diamond) 

were simulated by computer.    The third image (girl),  wa3 chosen to 

represent a natural photograph.    All the images are digital with equal 

grid sizes of 256 by 256 picture elements.    The "observable image, " 

in each case,  is obtained through determining the mean and variances 

of the  original pictures and then adding a white Gaussian noise of 

specified variance (zero mean) to each picture.    Figures IV, 6 and      57 
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Figure IV.6a.    Noisy Square 
(S/N = 1.0). 

Figure IV. 6b.    Noisy Diamond 
(S/N = 1.0). 

Figure IV. 6c.    Nois/Girl 
(S/N = 10.0). 
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Figure IV.7a.    Noisy Square 
(S/N = .6). 

Figure IV. 7b.    Noisy Diamond 
(S/N = .6). 

Figure IV. 7c.    Noisy Girl 
(S/N = .9). 
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IV. 7 represent two sets of observable images with different signal- 

to-noise ratio values.    An image signal-to-noise ratio,  here, is 

defined as 

(4.4.1) 
S   A  sienaKoriginal image) variance 
N noise variance 

An arbitrary segmentation procedure was performed to produce 

background,   ^(k).   and object,  s^k).   sample functions for each 

image.     The segmentation procedure was based on replacing the 

object intensity values by the maximum background grey level value 

(forming the background sample) and replacing the background 

intensity values by the minimum object grey level value (forming the 

object sample).    In general, an estimator,  as described in section 

3.5.   is required to perform the segmentation task.    However,   since 

the original images were available here (not usually the case),  the 

above arbitrary technique was a more convenient procedure. 

Two sets of experiments were performed reflecting results of 

sections 4.1 and 4.2,   respectively.    Statistics of ^ and ?,. in these 

experiments, were assumed Gaussian as described in section 4.3. 

Figures IV. 8 and IV. 9 illustrate outputs of the boundary estimator 

when values of r^ and m2 are given as n^ = 1 and m2 - 256.    Note, 

no additional geometric information was used to delete those bound- 

ary point estimates not belonging to the object.    Figures IV. 10 and 

IV. 11 depict the results of section 4.2 where locations of the first 
61 
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and last lines of the object were estimated based on statistical 

informations provided in section 3.4.    The routine described in flow 

chart of Figure IV. 4 was implemented to obtain estimates of rr^ and 

m_.     To insure that m    and m    represent the maximum and minimum 
2 l c, 

points of the functions C(m) and Mm),   respectively,   a few lines 

located ahead of m. and m    were checked as well.    The number of 

lines selected for this purpose are denoted by integer constants ^rnax 

and X in Figure IV. 4.    To keep the boundary estimator totally 
min 

on-line,   values of X and \    .     should not exceed the quantity 
max mm 

(m^-m,).    For the examples illustrated here,  values of X and 2       I max 

X        ,  when applicable,  were chosen to be 15,    No significant improve- 
min 

ment of the results were noticed for larger values of ^max and ^„j^* 

Higher values of X and X may,  however,  better the results & max mtn 

when the noise power of the image under consideration is higher than 

those chosen here. 

Table (IV. A) summarizes the S/N ratio values of the observed 

images,  and the conjectured values of the object maximum width,   L, 

for each picture.    Note,  from relationships (4.3.3) and (4.3.9), 

variances of a. and B    are directly proportional to L.    Various 
* Jc 

starting and ending points (a   and S ) variances were considered, by 

selecting different values for L,   to detect the sensitivity of the 

boundary estimator to changes in variance values.    Figures IV. 9c 

and IV. 12 are two such examples depicting the girl-boundary for 
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L = 250 and L = 80,   respectively. 
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Chapter V 

DISCUSSION AND CONCLUSION 

I„ this chapter,  we will eoncern ourse.ves with analyais of the 

boundary eatlmator.    The quality I the e.tlmator outputs  a, 

■     r-h,«t^r IV    will be discussed, 
demon Hratcd through examples ,n Chapter IV, 

Possible ways ,. improvemeut «ill be examined.    Extensions of the 

estimator to mu.tiobiect images,  and areas of future research wiU be 

explored. 

5.1    Analysis 

Referring to expression (3. 6. 30).  i. e., 

(5.1.1) min 
-2a2lnp(m2lm1)-2a2lnp(m1) + 

m2 j 
V   [T(wi)-io

2Uip(wilwi-l.min|   . 

It K. evident that the boundary estimator basicaUy capItaU.es on two 

characteristics of the image, namely: 

„      The amount of contract between the object and the bade- 

ground,  and 

U,     The statistics of the object boundary. 

The contribution of the former is represented in ,5. ..I, through 

(5.1.2) 

m 

2-«       T(w.)   . 
i=m1 I 70 
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and that of the latter is represented by 

2  m2 

(5.1.3) 2o2 In p(m2|m1) + 2a    In pfm^ + 2a   V^ lnp(w/|^_1, rrij). 

i=m 

Two types of statistics were chosen for the object boundary points 

O. and ß ,  namely,  Gaussian and uniform.    The boundary estimator 
t I 

designed based on the latter type of statistics,  as is clear from 

(4.3.20) and (4.3.21),  considers only the image contrast in locating 

the object boundary.    Intuitively,  then,  it should be suitable for high 

contrast (such as binary) images. 

The boundary estimator based on Gaussian statistics,  on the 

other hand,   considers both the image contrast and the boundary 

statistics in locating the object boundary.    This is evident from 

(4. 3. 16)-(4. 3.19).    Varying the variances of CL and ^,  in this case, 

one can emphasize dependence of the boundary estimator on either 

image contrast or object statistics.    This estimator,  therefore,   seems 

to be better suited for images whose object boundaries are mostly 

due to textural dissimilarities rather than just contrast. 

Based on the above analysis,  choice of the variances of a^ and ^ 

become crucial in design of the boundary estimator based on Gaussian 

statistics.    Locally optimum variances for a. and ß^ (differing from 

picture to picture or,  in a more general setting,  differing among 

classes of pictures),  therefore,   should exist.    Determination of such 
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optimal variances,  however,  i3 not a trivial problem. 

Our choice of variances as in (4.3.3) and (4.3.9),  although 

intuitively motivated,  is not claimed to be optimum.    But,  based on 

the experimental results,  depicted in section 4.4,  it seems to have 

been a suitable choice. 

Since a method of selecting optimum variance values was not 

established,   other forms of variances could result in better (or 

worse) estimator outputs.    In fact,  an alternate technique of defining 

the conditional variances of 0^ and B^ will be suggested by ourselves 

in the next section.    It will be shown,  however,  that this alternative 

definition does not always yield superior results.    It is suspected, 

therefore,  that until a consistant method of finding the optimum 

variances is developed,  different variance values will carry different 

tradeoffs. 

5.2   Possible Ways of Improvement 

A refinement of the boundary estimator can be achieved if one 

believes that majority of the objects within typical images possess 

connected boundaries. 

Recall,   in section 4.3,   it was assumed the conditional mean 

values of a   and ß   are at a,   . and 0       ,   respectively.    This assump- 

tion is specially valid if the object boundary forms a connected set. 

However,  over there,  in order to not bias the boundary estimator 

toward connected boundaries,  the variances of c^ and ß     were 
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allowed to vary freely.    To capitalize on the connectiveness of the 

boundary, we shall restrict the magnitudes of the variances of a   and 

0   to be very small.    Note that the flexibility of the estimator to 

compensate for poor estimates of a   and |. should still be one of our 

major concerns.    In other words,  utilization of connectivity property 

should not unduely obstruct the necessary agility of the boundary 

estimator.    The adverse effects of such oversight will be shown by an 

example shortly.    Note that, by utilizing the connectiveness of the 

object boundary, we do not expect the bounaary estimator to yield a 

connected boundary. 

A technique implemented to improve the output of the boundary 

estimator visually based on the connectiveness of the object boundary 

is described below.    Let 

2 . * ,2 
if     L ■   ' 

a i-1 if  |L     -L|   SCJ, 

S-1-Ll2   «    lL,   rH2^, 

? 

(5.2.1)        Vwr^la^jJ^j.mj)" 

where a   is an arbitrary small number (comparative to 1L    .-LI   ) 
a * 

and C,  is an arbitrary threfihold.    Similarly,  let 

12 i A i2 

aß If   IL^-L]    SC2, 

2 2 IL^-H if    IL^-Lj    >C2, 

2 2 
where rj    and C^ are defined analogous to a     and C,,   respectively, 

ß 2 0. l 
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Incorporation of (5.2.1) and (5.?-. 2) into boundary estimation 

algorithms described in sections 4. 1 and 4.2 are easy matters. 

2       2 
However selection of optimal values for n   ,   rt   ,  and the thresholds 

a      B 

C. and C- is not trivial. 

Few examples illustrative of the effects of connectivity modifica- 

tion in the boundary estimation algorithm, are presented here for the 

sake of clarity.    Figure V. 1 depicts the case where 

2 2 
na -  ap =   *' 

c1   =   c2   =   10. 

Notice the points forming the boundary are more centered and show 

less fluctuations in this figure as compared with,  for example. 

Figure IV. 8.    The signal to noise ratio and other pertinent values of 

Figure V. 1 are the same -s those of Figure IV. 8. 

Figure V. 2 has been submitted to illustrate the case where 

inclusion of connectivity property has overwhelmed the flexibility of 

the boundary estimator to a degree of losing the boundary altogether. 

Pertinent parameter values of this figure are identical with those of 

Figure IV. 9. 

Significant improvements in the output oi the boundary estimator 

can be expected if one is ready to . pecialize the estimator further. 

For example,  given that the objects considered will always have 

circular shapes,  will improve the final results considerably. 
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Availability of such informations,  however,  cannot be visualized as 

practical if one is to develop generally applicable boundary estimators. 

5. 3   Extensions of the Estimator to Multiobject Images 

As mentioned in section 5.1,   the boundary estimator basically 

capitalizes on two characteristics of the image,  namely,  the amount 

of object-background contract and the statistics of object boundary. 

The contrast is an inherent property of the image.    The statistics, 

however,  can be manipulated to improve the results.    For the 

Gaussian statistics chosen in this work, the variances of ^ and ^ 

were arbitrary.    A small variance would instruct the boundary esti- 

mator to emphasize its dependence on the statist cs of the object 

boundary, whereas,  a large variance would encourage the estimator 

to rely mainly on the amount of contract between the object and back- 

ground.    This dichotomy of the boundary estimator suggests a method 

of obtaining boundaries for multi-object images. 

Assuming the variances of 0^ and ^   are suitably defined,   for 

example as in (4. 3. 3) and (4. 3.9).  L'cr each object in a multi-object 

image, a classification of the objects is made based on their 

maximum size.    This is posBible since the variances are directly 

proportional to the objects maximum sizes.    The boundary estimator 

is then biased to look for an object with maximum size L..  where i 

denotes the i^ object.    Once this object is located (its boundary 

determined), its detail,   represented by the i^ object sample function. 
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is replaced by the background sample function.    The procedure is 

then repeated until the boundary of the last object is determined. 

The above suggested technique is based on the replacement 

processing concept delineated previously.    It is mainly suitable for 

images with nonoverlapping objects.    Furthermore,  the segmentation 

procedure required to determine various objects and background 

sample functions is a crucial operation here and it should be per- 

formed based on techniques described in section 3. 5. 

As a by product of considering multi-object images,   we observe 

that the optimum variance functions of a. and 0    should depend on 

some characteristic of the object in the image so aa to differentiate 

it from other objects.    This is another readon,  not possible to explain 

until now,  that we defined the variances of a   and B     as functions of 
/ i 

the object maximum width in (4. 3. 3) and (4. 3.9). 

Suitability and verification of the above suggested procedure to 

obtain boundaries of multi-object images is left as a future research 

topic.    Other topics meriting further research are discussed in the 

following section. 

5.4   Areas of Future Research 

Digital image processing techniques,  as opposed to analog 

(optical) techniques,  are generally based on utilization of digital 

computers.    As a result,  development of efficient computational 

algorithms,  aimed at alleviating the amount of time and storage 
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required to process an image,  have been given special attention in the 

literature [5-7].    Recursive computational procedures,   usually, 

retain the above mentioned desired features for implementation on a 

computer. 

The proposed recursive solution of the minimization process 

(3. 6. 30),  delineated in Chapter IV,  was an attempt to produce a 

computationally efficient algorithm for the boundary estimator. 

Forcing a recursive solution on (3.6.30),  however,  may have affected 

the results adversely.    Although satisfactory experimental results 

favored the recursive solution,  implementation of parallel computers, 

for processing the minimization (3. 6. 30),  could clearly yield 

improved estimates of the boundary.    An efficient algorithm appli- 

cable to computers with parallel processing capabilities,  therefore, 

should be considered in the future when such computers are readily 

available. 

Accepting utilization of sequential computers as the most 

efficient choice at present,  and furthermore,  the Gaussian statistics 

as reasonable choice of density functions for a    and B   ,  development 

of a method to determine optimum variance values for a    and I     is 
/ i 

another area meriting further research. 

Appropriate extensions of the boundary estimator to multi- 

object images is another interesting problem.   An intuitively 

justified procedure, based on available geometric information about 
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the objects within the image (such as their maximum sizes) was 

described in section 5, 3.    Development of a boundary estimator 

based on the replacement processing concept is,  however,  a more 

direct approach to derive a multi-object boundary estimator.    Such a 

procedure would require explicit representation of Y ls.   defined in 

section 2.7,   in terms of the boundary points of each object.    Further 

work to explore the possibilities of such representations for Y ,s 

i 

seems,  henceforth,  to be worthwhile. 

5.5   Conclusion 

The feasibility of resolving boundary determination problems 

through existing estimation concepts was establisned.    An imple- 

mentable boundary estimator,  based on a combination of deterministic 

and probabilistic information pertaining to the image,  was developed 

and its performance was satisfactorily tested through a few examples. 

The boundary  estimator was designed to be recursive,  hence,  making 

it computationally attractive.    The recursive processing of images is 

specially desirable because of the enormous amount of data and 

computations involved.    Finally, although the boundary determination 

procedure developed in this work is not claimed to be superior to 

other existing techniques in all cases,  its methodological formulation 

is hoped to generate further interest and insight into design of future 

boundary determination techniques, 
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