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ABSTRACT

—— e

Automatic computer determination of object boundaries has
attracted many researchers in the various areas of image processing
for some time., The concept of boundary determination is basically
motivated by problems in textural analysis (a subject in scene
analysis) and robotics (a subject in artificial intelligence),

In this dissertation, an object boundary estimator, applicable to
a class of noisy images, will be introduced, The images cons.dered
will contain an object of interest within the background. The boundary
estimator will be designed based on the existing estimation techniques
through certain available statistics of the object, background, noise,
and the boundary, Extensions of the estimator to multi-object images

will be discussed as well, The Procedures developed will be recursive

and readily implementable on a digital computer., A few examples will

be considered to illustrate the pPerformance of the estimator.,
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Chapter 1

INTRODUCTION

In visual perception, among the most effective stimulus configur-
ations are the ""edges" outlining the objects within an image, [1,27.
This has motivated many researcters in the areas of automated
image processing, specifically those in scene analysis, to develop
various techniques of edge detection and boundary determination,

An incentive for research in scene analysis is the study of
robotics, [3] The available information about the shapes and sizes
of physical objects constitute the total visual intelligence required by
a robot. Such informations can be provided through knowledge of
object boundaries.

Defining the set of points which separate the object and background
as ""object boundary, ' the purpose of this report is to develop a re-
cursive, easily implementable, estimator to yield an estimate of the
object boundary.

k. In preparation toward that goal, a survey of the existing bound-
ary determination techniques is made in Chapter II. It will be shown
that present techniques are generally based on image models repre-
senting overall image brightness functions. An image model, labeled
as the ''replacement processing, " will be defined which considers not

-_, only the intensity details of the image, but also explicitly contains 1
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the boundary information within the image.

In Chapter III, the replacement processing model will be utilized
to formulate a boundary estimator for a certain class of images. The
images considered will contain an object of interest within a back-
ground, The boundary estimator will be designed based on a combin-
ation of deterministic and probabilistic information pertaining to the
image,

Chapter IV will be concerned with the development of possible
solutions resulting in an implementable boundary estimator. Re-
cursiveness of the estimator will be our prime objective. A number
of examples will be provided to demonstrate the applicability of the
boundary estimator,

In Chapter V, an analysis of the boundary estimator, regarding
its performance, will be undertaken, Extensions of the estimator to
multiobject images will be considered, and, areas with potential for

future research will be explored,




Chapter 11

STATE OF THE ART: PAST AND PRESENT

A digital image is commonly represented by a two dimensional
discrete function, b(m, n), whose range is the grey level values of
the image and whose domain spans the entire image.

In general, as a deterministic function, the image function
b(m, n) does not carry any salient properties common to all images
other than the constraints imposed on it by image recording and/or
displaying systems, Examples of such constraints are positiveness
and boundedness of b(m, n). Statistical representations of images
are, hence, in order.

Statistical image models are generally based on the knowledge of
the mean and autocorrelation functions of b(m,n). It hat been shown,
[4], that two dimensional, wide sense stationary random processes,

possessing exponential autocorrelation functions of the form

_a‘mz—ml ‘ -B|n2-n1| '

Eb(ml, n, )b(mz, nz) = He

represent suitable inodels for b(m, n). The justification is basically
experimental, Such statistical models have been previously used in
image restoration and enhancement problems, [5-7]. However,
consistant in the results has been the presence of blurry edges.,

Intuitively, we may conclude, an image model based solely on the




first two moments of b(m, n) might be suitable for reconstruction of
image grey level values, but it does not carry sufficient information
to adequately reconstruct the object boundary, This conclusion has
been our main motivation in the development of a boundary estimator.
A boundary estimator, combined with the image estimators introduced
in [57 and [7], would result in an improved restoration of the image,

Along the way, we became aware of the importance of boundary
estimators in other areas of automated image processing such as
scene analysis and artificial intelligence.

Before proceeding any further, a brief review of existing methods
in edge detection and boundary determination is in order. For this
purpose, we have relied extensively on References [8] and [9],
because of their elaborate coverage of the subject. An attempt has
been made, however, to provide the reader with a complete list of
relevant bibliography at the end of this report,

In the following sections (2. 1-2,6), a description of tle basic
techniques regarding boundary determination is delineated. The list
of bibliography is intended to be complementary to the material cover
ed, and those not covered for the sake of brevity, in inis chapter.

2.1 Thresholding

Thresholding is the simplest method of data extriction. Basically,

the image function b(m, n), representing the intensity (grey level)

values of the image, is compared with two threshoid values, T1 and

4




TZ' If 'I‘l <b(m,n) < I'Z, the grey level value corresponding to

b(m, n) is set to some preselected constant, ;. Otherwise, it is set

to zero. The thresholds T, and T, can be obtained through inspection

1 2

of the image histogram,
A variation of this technique is to perform thresholding on some
tran. »rm of b(m, n). High pass filtering of tke image function

Fourier transform is an example. Since high spatial frequencies of

an image correspond to sharp edges, (8], high pass filtering is a
technique to extract boundaries.
In general, thresholding is applied along with spatial differencing

(described below) to outline objects within an image. Its sensitivity

to noise, and the fact that threshold values differ from picture to

St

picture, limit the usage of the technique.

- 2.2 Spatial Differencing: Noise Free Images

One method of boundary determination is to locate the abrupt
dark-light transition regions within an image. In terms of the image

function b(m, n), such regions correspond to points in the image

where the gradient of b(m, n) retains "large" magnitudes, Here, the
k. term '""large" is relative to an arbitrary threshold value.

Different definitions of image gradient have been given in the
literature, [8, 10]. The most common is the '"Roberts cross operator,”’

R (m, n), defined as

(2,2,1) R(m,n) = .[[b(m, n)-b(m+1, n+1)']2+fb(m, n+l)-b(m+l, n)]z.
5




If a picture element with grey level value b(mo, no) belongs to an
edge, the magnitude of R(mo, no) will be large; whereas, if b(mo, no)
belongs to a relatively uniform intensity region, the magnitude of
R(mo,no) will be small,

[n practice, for computational efficiency, 2 simplified veregion of

the above operator, namely,
(2.2.2) F(m,n) = |b(m, n)-b(m+l,n+1)} + |b(m, nt+1)-b(m+1, m},

is iniplemented instead. It can be verified by inspection that F(m, n)

behaves qualitatively as R(m, n). In fact,
(2.2.3) R(m,n) < F(m,n) = JZ R(m,n) .

The major disadvantages of this technique ar= again related to
the selection of an optimum threshold, If R(m,n), or equivalently
F(m,n), is compared to a too large a threshold, some significant
edges will be lost. Similarly, a small threshold will cause the
appearance of sparious outlines. The existence of noise in the image
is another source of restraint in boundary determination ‘nrough
spatial differencing.

2.3 Spatial Differencing: Noisy Images

Different methods for reducing the adverse effects of noise in
boundary determination have been suggested in the literature. Typi-

cal ones underscore some combination of averaging and differencing

of the noisy image function. Denoting such functions by
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(2,3.1) y(m,n) = b(m,n) + v(m,n),

where v(m, n) represents the noise function, an operator frequently

suggested is

(2.3.2) D(m,n) =

o B 1
E , y(i, ) - z ;z : y(i, w)\
w1 m, n) w2 w m,n)

The parameters used to define this operator are wl(m, n) and wz(rn n),
representing two arbitrary contiguous regions in the image with areas
AWl and sz, respectively, Comparing D(m, n) to a preselected
threshold, then, will constitute whether the picture element b(m, n)
belongs to an edge.

Choosing appropriate region sizes for w5 and W, is an important
factor in construction of this operator. If regions w, and w, are
chosen too large, a blurring of the edge position will result. Too
small regions, on the other hand, could introduce sparious boundary
points.

An ingenious, however ad-hoc, modification of the above operator

has been presented in [11] . Specifically, let

e R B ZZ v, ﬁ\

(2.3.3) dk(m,n) =
Wl wl(m, 1.;k) (m nik)

where k=1,2,4,8,..., 2‘2, with £ being a non-negative integer
number., To explain the notation, we resort to equation (2,3.2), For

each value of k, wl(m,n;k) represents a subregion in the image such

that
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(2.3.4) U wl(m,n;k) = wl(m,n) .
k=1
where U denotes the union of sets, Similarly for wz(m,n;k),

ZZ

(2.3.5) U w.(m,n;k) = w,(m,n).
2 2
k=1
Variables Aw (k) and A (k) represent the areas associated with
1 Y2

subregions wl(m, n;k) and wz(m, n;k), respectively. The modified
operator is, then, defined as
(2.3.6) Dim,n) = d,(m,n)d_(m,n)...d (m,n).

1 2 ZZ

This operator has been shown (experimentally) to perform

superior to D(m, n), [11, 12]. Its implementation, however, requires
selection of optimum region sizes (value of £) and threshold which,
as far as fully automated boundary determination techniques are

concerned, makes it wanting.

2.4 Spatial Differentiation: High Order Derivatives

In a rigorous mathematical setting, the gradient of a two
dimensional function b(m, n) is defined as follows. Let b(x,y) denote

the continuous version of the discrete image function b(m, n). Then,

{* the directional derivative of b(x,y), at a point (xo,yo), is defined as
Y
(2.4.1) 3B =b (x )cos O+ b (x ) sin ©
g 28 | o 0’70 vy Yo' 317 7
! 0o
. 8

. £Lg oo

e




where 8 represents a specified direction relative to the orthogonal

x-y coordinate system, and

_ Bb(xlx)

(2.4.2) b (xp:¥g) = T3

_ ob(x )
(2.,4.3) by(XO'YO) = ___.J_ay

(x5, ¥ )

The gradient, Vb(x,y), of the function b(x,y) is, then, a vector
originating from point (xo,yo), pointing in the direction in which
b(x,y) has its maximum directicnal derivative, Its magnitude is

given by

2 2
(2.4.4) Wbty yo | = ooty ¥g) +5: (g vg)

[131.
In terms of the digital image function b(m, n), the partial

derivative functions bx(x, y) and by(x, y) can be approximated by

(2.4.5) bx(x, y) b(m, n+l) - b(m, n)

(2.4,6) by(X,y) b(m+l,n) - b(m, n),
or, alternatively,
(2.4.7) bx(x,y) b(m, n) - b(m+1, n+l)

(2.4.8) by(x, y) ~ b(m,n+l) - b(m+l,n),

depending on the orientation of the orthogonal x-y coordinate system.

9




Replacing for (2.4.5) and (2.4, 6) into (2.4.4), yields

: 2
(2.4.9) IVb(x.y)I%Jfb(m,n+1)-b(m.n)J2+rb(m+1,n)-b(m,n)] ;

or, replacing for (2.4.7) and (2,4, 8) into (2.4.4), we obtain

(2.4.10) |vb(x, y)| mJ'[b(m, n)-b(m+1,n+1)]z+[b(m, n+1)-b(m+1,n)]2 ;
Comparing (2.4,10) with (2,2.1), one concludes
(2.4.11) R(m,n) ~ |vb(x,y)| .

Thus, as expected, '""Roberts cross operalor'’ is an approximation
to the actual gradient of the continuous image function b(x, y)

In the same manner as above, higher order derivatives of b(x,y)
can be approximated to represent spatial differentiation operators
utilized in boundary determination. For example, the "Laplacian

operator, ' L(m, n), defined as

(2.4.12) L(m,n) = |b(m,n+2)-2b(m, n+1)42b(m,n) -

2b(m+1, n) +b(m+2,n)|,

is an approximation of

(2.4.13) Poe )l = b (xy)+b (xy)]

where bxx and byy denote the second partial derivatives of the

continuous image function b(x, y).

"Bi-Laplacian operator, ' an approximated version of




4
2.4.14) b(x,y) = b x,y)+2b (x,y)b (x,y)+b (x,v),
( ¢ b(x,y) (x,y Ly - y -~ y

i{s another variation of the opeiators employed for boundary deter-
mination.

In general, an operator with higher order derivatives utilizes a
larger region of the image to decide on the position of the picture
element represented by b(m,n). A Laplacian operator, for instance,
employs five picture elements (see Fig. II. 1), namely b(m,n),

b(m, n+1), b(m, n+2), b(m+1,n), and b(m+2,n), as opposed to the
- gradient operator (equation (2.4.9)) which employs three picture
elements in determining whether b(m, n) is an edge point,

Other operators, based on approximation of image function partial
derivatives, have been proposed in the literature, (107. The quality
of the processed pictures, however, are about the same, because
basic disadvantages connected with spatial differencing techniques,
mentioned in the foregoing sections, are persistantly present
irrespective of the choice of the operator.

2,5 Contcur Following

Contour following is a Leuristic recursive algorithm for boundary

Fa o

1 determination. Different contour following routines have been

'“» proposed by several authors, [14-187. Sophistication of these routines
are based on the complexity and contents of the images under
consideration.

11




m,n m, n+l m,n+2 !

m+l,n |m+l, ntl |mtl, n+2

m+2,n |m+2,n+l |m+2,n+2

e

| Figure II.1, Image Elements Used to Define Gradient Operator and
r Laplacian Operator
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In the simplest case, namely that of binary images, the contour
following procedure is described as follows, Starting at a pre-
selected location, one scans the image until an cbject element is
identified. The scanner is, then, moved to the left of its current
position to the next picture element. If the new location is an object
element, the scanner is turned left again. Otherwise, it is moved
toward the right. This procedure is continued until the scanner
returns to within one picture element of its initial position, Figure
II, 2 illustrates the above operation for the case of a two-level image.
The image consists of a white diamond-shaped object within a dark
background.

Although contour following algorithms are simple to implement,
because of their serial nature, they are very sensitive to positioning
errors. For example, if a mistake is made in the identity of a
picture element (whether it belongs to the background or object),
total loss of a portion of the boundary could occur. Creation of
sparious edges is another result of wrongfully identifying an image
element,

Based on the above analysis, contour following techniques are
restricted to noise free or, at best, low noise images. Special pur-
pose contour following algorithms have been developed which sacrifice
simplicity for better performance by considerably increasing the

amount of computation time, [14-187.
13
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Figure 11,2, Boundary Determination by Contour Following,
Connected Lines Describe the Object, Arrowed
Line Traces the Square Object.




2.6 Statistical Differencing

Let .l;(m,n) be obtained through averaging of the image function
b(m, n) over a region w in the image., Furthermore, let
1
—a212
(2.6.1) o(m,n) = {z:z: (b(i, j)-b ] }
w(m, n)
Then, method of "'statistical differencing, " [19], utilizes an operator

T(m, n), of the form

_ b(m,n) -b(m,n)

(2,6,2) T(m, n) oon o)

.

To determine whether the picture element b(m, n) belongs to an edge

location or not, Note, oz(m, n) defines the variance of the grey

level values, b(m, n), over the region w(m,n), The reason for

explicitly denoting b and 0 in terms of m and n is to emphasize their

dependence on the selected region size.
This method is specially attractive for detection of minor edges

in an image. An example should illustrate this feature more clearly. ]
Let us select a rectangular region of grid size 3 by 4 within an

image (see Figure II.3), The region is constructed so as to represent

L

a minor edge, i.e., the grey level value differences at edge points,
Ab(m, n), are small, Refering to Figure II, 3, definition of E, and

equation (2,.6,1), the following values for b and 0 are obtained.

(2,6.3) b = 1,05

15
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Background

" Elements,

b(m,n) = 1.0

Elements

b(m,n) = 1,1

Region W(3,4)

Figure II, 3, Binary Image With a Minor Edge, (Ab =.1).
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(2.6.4) o = .17

-3 in tre background
(2.6.5) T =

+.3 in the object .

Replacing values of b(m, n) with T(m, n), The minor edge becomes

six times more conspicuous (AT{m,n) = ,6 as opposed to Ab(m, n) =.1),
Method of statistical differencing, therefore, is suitable for

extracting boundary out of images with a lot of detail, By its nature,

however, this technique is restricted to noise free images.

2.7 Replacement Processes

Having covered the basic past techniques of boundary determin-
ation, the ground work for the introduction of a new technique,
described in Chapter I1I, is developed here.

A mathematical model for the image function b(m, n) which
explicitly considers the object boundaries along with image internal

details is proposed as follows. Let

(2.7.1) T = {Yi}. :
i=

Represent a sequence of nonnegative, integer, and binary valued

functions such that
N

(20 70 2) V. = 1
§ : i
1=0

273 ﬁ =0, j=0,1,,..,N-1,
( ) o Y1 ) -
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Relationships (2,7.2) and (2.7.3) restrict the elements of I to he all
zero with the exception of only one element (any element) whose

value must be 1. The image function is now represented by

N
(2.7.4) b(m,n) = Z Y, (m, )b, {m, n)

i=0

where the functions bi(m, n), 0 <i <N, denote the grey level values of
the background (i=0) and the N objects in the image. The elements of
the sequence T carry the boundary information of the objects within
the image.

The two dimensional functions bo'bl' e ,bN are assumed to be
sample functions of N+l statistically independent, wide sense station-
ary random processes whose first two moments are known, The two
moments, namely the mean and autocorrelation functions, are re-
spectively indicative of the brightness and textural similarities of

b,b ooo,b

o’ °1’ N’ Note, an autocorrelation function with a sharp drop

off from its maximum corresponds to a finely textured region of the
image, [ZO].. i
The binary valued function Yi(m,n), another random process,
tikes values of 1 or zero corresponding to points in the image
: th . Lho. . . )
belonging to the i— object or the j— (j#i) object, respectively. In the
literature, this function is usually labeled as the image "characteristic

function, " 197, The statistical properties of Y will be described

later as the need arises.

18
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The image model (2, 7,4) is based on a concept defined as
'"replacement processing, ' where, by definition, a segment of a
function or random process is replaced by another function or random
process according to certain rule, Considering that for typical images
the object signals, in fact, ''replace' a portion of the background
signal, and/or each others (as in the cases of overlapping objects),
the structure of this model is justified. In model (2, 7.4), the
replacement takes place according to the values of Yi(m, n), For
example, for a non-overlapping 3E object, the replacement of the
background signal by the object signal occurs within the portion of
the image where Y3(m, n) =1,

For future reference, note that the domains of the sample
functions bo(m, n),eee, bN(m, n) are defined to be the entire image,
This, in fact, is the main motivation behind introducing the concept
of replacement processing in image modeling, Figures II,4 and II, 5
illustrate a few examples of constructing an image by replacement
processing.

In practice, the grey level values of an image, b(m, n), here
after referred to as ""original image, " are not available for measure-
ment. In lieu of the original image, a sequence of variables, y(m, n),
approximating b(m, n) are available for observation. This is due to
the existance of disturbances such as reflections from spurious

objects, inaccuracies in the image sensing mechanisri, corruption

19




bo(m,n)

(m, n)
= s en g i o . = ——
L L
m m m
pBij (o, n) } y,(m,n) Y,b,(m, n)
!
|
S |
C ] |
e
m m
YoPotY1P1
S I
T m
Figure 11,4, Construction of a Uniform, Two-Level, Single-Object
Image. Cross Section of a Typical Line n is Shown,
20
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Figure II,5. Construction of a Uniform, Three-Level, Two-Object
(Overlapping) Image. Cross Section of a Typical Line n
is Shown.,




introduced during transmission, film grain noise, and etc, which
cause distortion of the original image. The relationship between
the original image, b(m,n), and the observable image, y(m,n),
depends directly on the sources of degradation. For instance, dis-
tortions due to film grain noise, generally introduce a multiplicative

noise on the original image; i.e.,

(2.7.5) y(m,n) = b(m,n)v(m,n) ,

where v(m,n) is a random process representing the degradation
phenomena. In this work, we will consider the m.re common types

of distortions, namely, those modeled by additive noise, Hence,

(2.7.6) y(m,n) = b(m,n)+v(m,n) ,

where b(m, n) is defined in (2.7.4), and v(m,n) is as delineated above,.

In the following chapter, a specific case of image modeling
through replacement processing will be used to estimate object
boundar.c3s. Prior to that, however, the type of objects considered
in this work will be described in the next section.

2.8 Horizontally Convex Objects

In general, boundary determination techniques which incorporate
some geometrical properties of the objects within the image into
their algorithm are superior to others, [10]. Connectivity and

convexity are typical examples of such geometrical features. In this

work, we will consider images which contain ""horizontally convex"
22




objects, An object is defined to be horizontally convex if the set
forming that object can be characterized as follows.,

2
Definition: A set EC IR is said to be "horizontally convex" if given

1 1 1 2 2 2 1 2 1
X = (xl,xz)eE, X = (xl,xz)eE, with 3 #x and x, = x

I 2 2’

1 2
then ax + (l-a)x e€E, where 0 <a< 1,

Examples of such sets are E, and E, in Figurcs IL 6a and II, 6b,
respectively, Set E3 (Fig. II, 6c) is not horizontally convex,

Note that "horizontal convexity" is a less restrictive condition
than "convexity,'' In other words, a convex set is always horizon-

tally convex, but a horizontally convex set is not necessarily convex,

This fact can be observed in Fig, II, 6a-II, 6c,
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Chapter III

ESTIMATION OF OBJECT BOUNDARY: FORMULATION

In this chapter, we will develop a boundary estimator for a cer-
tain class of noisy images. The images belonging to this class can be
pariitioned into two regions: background and foreground. The fore-
ground forms a horizontally convex object. An object of interest will
always be assumed to exist in the i nage. Techniques developed in
217 may be used to detecct the existence of the object in cases when
its presence is not certain., The concept of replacement processing,
described in Chapter II, and the mathematical image model associated
with it, defined by relationship (2.7.4}, will be utilized here to
formulate the boundary estimation problem.

3.1 Modeling

A model for a single object image whose grey level values are
represented by che two dimensional discrete function b(m, n) is
defined as
(3.1. 1) b(m,n) = Y(m,n)bo(m,n) + [1-y(m, n)]bb(m,n).

This model is based on the replacement processing concept

delineated in section 2.7. The two dimensional functions bo(m, n)
and bb(m, n) represent incensity level values of the object and the

background, respectively, and vy(m, n) carries the boundary infor.a-

25




tion of the object within the image. Object and background functions,
bo(m, n) and bb(m, n), are assumed to be sample functions of two
statistically independent, wide sense stationary random processes

whose first two moments are given. The mean values of b0 and bb

are indications of the object and background brightness similarities,
whereas, their respective autocorrelation functions are measures of

the object and background textural information. The binary valued

function Y(m, n), another random process, takes values of 1 or 0
corresponding to the points in the image belonging to the object or

the background respectively. The statistical properties of Yy will be

described shortly. Note, the characteristic functions Y(m, n) and
[1-y(m,n)] satisfy relationships (2.7.2) and (2.7.3). Furthermore,
1 note that (3.1.1) is compatible with the image model (2.7.4) for

N =1, Hence, (3.1.1) is a replacemen: processing model for the

image signal b(m,n), and, as a result, the domain of the sample
functions bo(m,n) and bb(m, n) are the entire image.

A sequence of observations constructed as
(3.1.2) y(m,n) = b(m,n) + v(m, n)

are assumed available for measurement, where b(m, n) is as
defined in (3.1.1), and v(m, n) denotes an uncorrelated process

representing the observation noise.
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3.2 Scanning

An image scanner is now employed to transform the planar data
representing the noisy image, y(m,n), into temporal data, y(k). The
scanner output, in the 2bsence of observation noise, is denoted by

s(k), where

(3.2.1) s(k) = A(k)s (k) + [1-a)] s, (k)

models the image in terms of its grey level values and object bound-
ary as viewed by the output of a line by line scanner.

The structure of the one dimensional model (3.2.1) preserves the
replacement processing concept. The functions so(k) and sb(k) are
associated with bo(m,n) and bb(m, n), respectively. In other words,
so(k) and sb(k) denote the intensity values of the scanned object ard
background, and are assumed to be sample functions of two statisti -
cally independent, cyclo-stationary random processes, [5, 22], whose
first two moments are obtainable directly in terms of the fiist and
second order statistics of bo(m, n) and bb(m,n), [23]. As in the case
of b0 and bb, the domain of the sample functions so(k) and sb(k) are
the entire scanned image.

The binary valued function A(k) is the one dimensional counter-
part of Y(m,n). Its statistics are described in section 3.3. Note that
the statistics of A(k) completely define those of y(m,n).

The two dimensional observation sequence y(m,n) in (3. 1. 2) will

also be replaced by its scanned version defined as




(3.2.2) y(k) = s(k) + v(k) ,

where s(k) is as defined in (3.2.1), and v(k) is a zero mean Gaussian
. ; ] . 2
white noise process with variance 0 .

3.3 Representation of A (k)

Let m, and m, denote the first and the last lines of the object as

viewed by the scanner. Furthermore, let al and B)Z represent the

beginning and end points of the object on line £, respectively, In

general, m,, m,,a , and 8, for m, <t sz, are random.

Z I/

The function A(k), appearing in (3.2.1), is now defined in terms of

m,,um_,a , and B)Z as

1”20 %y
9

(3.3.1) AL = Z u[k-az-(z-l)ﬂ-u[k-Bz-(z-l)J] ,
JZ:m1

where uf- ] is the unit step function, J denotes the number of picture

elements in one line of the image, and BZ 20.2 . The statistics of the
process \(k) can now be given in terms of the statistics of m,,m,,
and

.3.2 = ,
(3.3.2) w, (a, 8}3)

Let us assume WZ to form a first order Markov process. This
assumption is made for the sake of computational sirnplicity, and it
emphasizes the dependence of the object boundary points on line £

upon the boundary points located on the previous line, £-1, It is

further assumed that the density functions p(azlaz 1,8

m),

2-1’ 28
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p(Bz |a£,az_],Bz_l,ml), p(mzlml), and p(ml) are given, and that

(3.35;3) p(wz wz-l,ml,mz) = p(wzlwz_l,ml) .

For future reference, notice

(3.3.4)  pw, |w, ,m) = pe,,B,lo, .68 |.m)

(3.3.5)  p@,.B,la, .8, ,m)=p@,lo, ;.8 ;. m)
p(sz |az,az-l'sz-l,ml) ;

therefore,

(3.3.6) p(wz |w‘c -l'ml) % p(az |a‘e_1,Bz_l,ml)p(leal,al_l,B

z-l’ml)'

3.4 Problem Statement

Relationships (3.2.1), (3.2.2), and (3.3.1) along with the defini-
tions and assumptions given in the previous section 3, 3, constitute the
basis for the boundary estimation problem of this chapter. The
objective here is to locate the object boundary. For this purpose,
estimates of the first and last lines (m1 and mz), and estimates of the
starting and ending points (az and Sz) of the object are sought. Looked
upon as an estimation problem, the problem statement is summarized

as follows, Define

(3.4.1) s(k) = A(k)s (k) + [1-A(k)]s, (k)
(3.4.2) y(k) = s(k) + v(k)
3
(3.4.3) Ak) = Z ufk-a, -(2-1)37 + ulk-g, -¢-1)37,
£=m) 29




Eso(k), Eso(kl)so(kz), Esb(k), and Esb(kl)sb(kz) are given;

L (az,Bz) represents a first order Markov sequence for
<g< .

ml £ mzo

s4s .
Bzzc,t for m, 2 m,;

!
Py loy 1o By yommy ) BB loyh0y 0By o my)p(my imy),

and p(ml) are known,"
Then we wish to obtain a set of estimates for m,, m,, al,’ and Bz,
m, <f sz, based on the available observation sequence, y(k),
1l <k <N, The fixed integer N denotes the total number of picture

elements in the image.

3.5 Grey Levell Value Estimates

The boundary estimation procedure developed in this chapter, as
it will b: shown, requires the values of so(k) and sb(k), 1 sk <N,
Since, in general, these values are not known (cases of known images
are exceptional), a set of estimates of so(k) and sb(k), often minimum
mean square estimates, will be used in their place, Based on the
given mean and autocorrelation functions of so(k) and sb(k), a set of
minimum mean square estimates of so(k) and sb(k) can be obtained by
implementation of the results in [237. Note that the concept of
replacement processing assures the existance of the estimates of
so(k) and sb(k) for all k in the range of [I,N]. Since the aim of

this dissertation is estimation of object boundary, throughout this
30
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chapter, we will assume the values of so(k) and sb(k), or their
corresponding minimum mean square estimates, are given,

3.6 Boundary Points Estimates

The boundary estimation problem, as is evident from (3,4.1) and
(3.4.2), is a nonlinear estimation problem, Moreover, due to the
type of nonlinearities involves (such as the binary nature of A(k)), the
available estimators based on linearization concepts (such as extended
Kalman-Bucy filters) do not yield satisfactory results, Inthe sequel,
a set of maximum a-posteriori (MAP) estimates for the unknowns

m;, m a,, and Bz, m

£ < i .
) £ mz, are obtained

1
Consider an image of grid size M by , resulting in a total of N
pixels (picture elements), The fixed integers M and J denotc the

number of lines in the image and the total number of pixels in each

line of the image, respectively, Let us define

(3.6.1)

|=

= (ml.mz)

,...,W )
1 m1+l m,

(3.6.2) W = (w ,w
- m

where w,, m

p 1 <2 sz, is defined in (3.3.2). The objective in this

section is to derive the MAP estimates of Z_and W,
Consider relationship (3.4.2) as the observation model. Define

the M-di'nensional vectors S, Y, and V as

-l
(3.6.3) S, W) = [hsoyreensdy,]
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- 1
(7. 6.4) [YI,YZ,...,YM]

!
(3.6.5) Vo= v v, vy, ]
where '"prime' denotes transposition, and

1 ¢< m,

[sbl'(z-l)ul 1, sb[(z-l)J+2],. of i sb[z J'|]' for

<g s
mZZM

s, = [sb[(z-l)JH'l,...,sb[(.4-1)J+az-1],So[(i-l)Jﬂxz-],....

) t
(3.6.6) so[“'”“Bz]' sb[(z-l)J+B£+l] . sb[zﬂ] for m < <m,

3.6.7) ¥, = fle-nund, yle-nse],...,yk37), 1 sesn
(3.6.8) Vv, = le -1)341, vl 1342, ..., vt dT)", 1s2sMm
are each a vector of dimension J. Then, from (3.4.23},
(3.6.9) Y = SM,W)+V

where Y is the observation vector. The observation noise, V, is
assumed a Gaussian process with mean zero and covariance 021,
"I'" denoting the identity matrix.

The form of the vector S(%, W), defined by (3.6.3) and (3.6, 6) is
a consequence of having one object of interest, The reason for
explicitly denoting S in terms of _and W is to underscore the vari-
ables we are specifically concerned with. Note that the vector S is

random due to the randomness ofﬁ and W, or equivalently m_, m

)2 =R

az, and Bl’ m, < sz.

To proceed with the MAP estimation ofﬁ and W, certain a-priogi2
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statistics are required. The given density functions pfml),p(m2 |m1 )y

B

, l) will be shown to

P, |az-1’ B,.1»m), and P(BA%.%_I.

2-1

suffice,

It is well known that MAP estimates of M and W are such values
of 77 and W that maximize the joint probability density function
p(Y,M, W), where Y, M, and W are as defined in (3,6.9), (3.6, 1), and
(3,6,2), respectively, [24.|. From (3.6.9), where V was assumed

2
Gaussian with mean zero and variance o , and based on the fact that

(3.6.10) P(Y, M W) = p(Y|m W)p(W|mpim)
we have
N
2)' 2 1 1
(3.6.11)  p(Y,”, W) = (270 exp{ - —5 [Y-stm, W] -
20

[Y-S(Z; K)] +1In P(ﬂ|ﬁ) + 1n p@)}.

Taking natural logarithm of both sides of (3,4, 11) yields

1
(3.6.12) I p(Y,m W) = - — [v-sm W)]'lv-sm, w)]'
20

[Y-sg, W)+ In pW|m) + 1n pom)
Taking natural logarithm of both sides of (3.6, 11) yields

(3.6.12)  Inp(Y,M W) = - —1—2 [Y-sem w)]'ly-sem, w)
20

2
+In pW M) +1n pr) - 5 1n 2m0”

Note that since logarithm is a monotonic function, those values

of 7% and W which maximize p(Y,”, W) coincide with the mode of

33




In p(Y,M, W). Considering the foregoing comment and the fact that
the last term on the right side of (3.6.12) is a constant, maximizing
4 ln p(Y,7M, W) is, then, equivalent to
(3.6.13)  max { —lé— ly-sem, W)Y (Y-S, W)+ In p(ﬂlﬁ)+lnp(ﬁ)} :
mw 2
Furthermore, expanding the expression inside braces in (3.6.13),
and considering that the term Y'Y is invariant under maximization of
Mand W, (3.6,13)is equivalent to

(3.6.14) max { - _}.2_ S'@,_\LV_)[S(Z,H_)-ZY] + In p(ﬂlﬁ) +1n p(WZ)} .
mow | 20

or,

(3.6.15)  min {S'(M, W)[s@m, W)-2Y] - 26% 1n p(ﬂl?_ﬁ_)-Zoz In p(M} .
7%

Before proceeding with the minimization process in (3.6.15), let
us transform it from vector into scalar notation, From (3,6.3) and

(3. 6.6), we obtain
M 1
(3.6.16)  S' (M, W)SM, W) = Z Sy, =
z:l

b my =1 L3 m, (z-l)J+%-l

Zl: Z Si(k; + Z Z Si(k) +

3 2=l k=(¢-1)J41  f=m, |ks(¢-1)T+]
:

(t-l)J+B£ Sz(k) 3 £J Z(k) +' M LI, Y
; 0 b Bl ¢
; k=(£-1)J+a, k=(2-l)J+B£+l £=m,+1 k=(£-1)J+1
34
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Similarly, from (3.6.3), (3.6.4), (3.6.6), and (3.6.7), we obtain

M
(3.6.17)  S'(M,