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ABSTRACT

The principle of image estimation in the presence of
linear and nonlinear observations is considered in this
dissertation and a recursive estimation algorithm is
developed. The developmznt proceeds from the assumptions
that the image is statistically characterized by its
first two moments namely the mean and the autocorrelation
while the obse;vation is allowed to be a general function
of the signal and noise. A two step recursive estimation
procedure, compatible with the logical structure of the
optiwal minimum mean square estimator, is developed. The
procedure consists of a linear one step prediction and a
filtering operation.

In order to derive the linear predictor, the a priori
mean and autocorrelation information is employed to obtain
a linear finite order model of the two dimensional random
process. This model is of an autoregressive form whose
derivation requires only the numerical values of the mean
and the correlation functions. At each step of the esti-
mation, the autoregressive model is used in finding the
best linear predicted value and its error variance as a
function of past estimates and their error variances.
Following the prediction process, the filtering operation

proceeds to evaluate the estimate and its error variance
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as a function of the predicted value and the observation.

The estimation method is applied to a number of one
and two dimensional problems and the appropriate estimators
are developed for the cases where the observation contains
additive and/or multiplicative noise term(s). The perfor-
mance of the method is evaluated by applying the estimation
procedure to two dimensional pictorial data corrupted by
additive-Gaussian and multiplicative uniform noise.

The value of the method has been analyzed and dis-
cussed as to its application to practical problems and

its optimality as an estimation technique.
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CHAPTER 1

INTRODUCTION

Progress in the sophistication and the computational

capability of digital computers has opened a field of re-

search in the applied sciences dealing with the charac-

terization, understanding and analysis of pictorial data.

This field of image processing encompasses a variety of

areas of study such as coding, recognition, enhancement,

restoration, estimation, data compression and many more.

A particular subject of interest among these is that of

image estimation. This subject deals with the restoration

of images containing degradations where only some statis-

tical properties of both the image and the degrading phe-

nomenon are known. In this respect, a picture is generally

viewed as a two dimensional random process (field) (1],

[6] and often characterized by its first two moments,

namely the mean and the autocorrelation. Denoting the

brightness function of the discrete image by b(i,j), with

i and j as the row and column counters, the two moments

are defined as

M(i,3j) = Eb(i,]) (1.1)

and
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R(iljlkll) x E[b(llj)‘M(lfj)] [b(kfl)‘M(kfl)] (1.2)

where E is the mathematical expectation operator.

The list of degradation (noise) introducing sources
in imaging systems is extensive and in particular includes
inaccuracies in the sensing devices, the existence of air
turbulence or cloud layer between the camera system and
the scene, reflections from other objects in the scene,
uncertainties in the transmission systems and film grain
noise. The degraded image (observation), denoted by
y(i,j), specifies the functional relationship of the sig-

nal, b(i,j) and the noise y(i,j). Symbolically
y(i,j) = £(b(i,3),v(i,3)) (1 3)

where f may be nonlinear and y(i,j) may be vector valued
(i.e. more than one noise term).

The values of M(i,j), y(i,j) and R(i,j,k,1), for all
i,j,k,1, the functional form of f and the density function
of y(i,j) in (1.3) constitute the a priori information.
This constitutes the total amount of information that the

estimation procedure is to use in obtaining the improved

image. An estimation procedure is the process of assigning

a value to an unknown parameter based on the noise cor-
rupted observations involving some function of the para-
meter. The assigned value is called the estimate and the
system yielding the estimate is called the estimator. The

2
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assignment of the estimate values, in general, is based on
certain criterion known as the estimation criterion. One
such criterion is that of minimizing the mean square error.
Optimum filtering of images under the general condi-
tion of (1.3) has received little attention, while a vari-
ety of procedures have been developed for the cpecial lin-

ear case, where

withvY(i,j) white and Gaussian [32]-[37]. Although (1.4)
describes many natural forms of degradations [32]-[37],
there are conceivably as many situations where thi: model
does not apply. Examvles of the above are the film grain
noise and the taking of pictures through a nonhomogeneous
layer of clouds, where the noise is a random attenuation

factor. Hence the observation takes the form

y(i,3) = v(i,3j)b(i,3) (1.5)

The majority of these linear estimation techniques

require a rather specific analytical representation of the
correlation function R(i,j,k,1l) and in order for heir
underlying estimators to become computationally efficient,
the signal and the noise processes are required to be wide
sense stationary. Due to these requirements, the above

methods may not be suitable for certain practical problems.




Examples of which are the cases where the correlation func -

tion is specified numerically and/or partially (the corre-

lation function is represented partially if R(i,j,k,1l) is

defined only for |i-k|<p ard |j-1|<q, for some integers

p and q). A property, though, of thec. p~ocedures, which

has great intuitive appeal and is crucial to the real time

implementation of estimators, is the recursive nature of

their underlying algorithms. This property arises from F

Kalman-Bucy [23]-{[24] estimation theory reviewed briefly

in Section 1.2. Section 1.3 contains a review of one di-

mensional nonlinear estimation and the extended Kalman-Bucy
B filtering methods. These techniques, as will be pointed

out, deal with certain nonlinearities in estimation prob-

lems.

In this dissertation, a general estimation method

will be developed having the following characteristics:
1. The method will be applicable to two as well as one
dimensional estimation problems.

2. The estimation algorithm will only require specifi-

cation of the numerical values of Rfi,j,k,1).

‘e

1 3. The procedure will be applicable to problems where

only partial representation of the correlation function

2 is available.

- 4. The method will be applicable to general linear and
ﬁ nonlinear observation systems of (1.3).
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5. The procedure will be implementable; i.e. numerical

in nature and computationally feasible.

Section 1.1 contains the definition of some notations
and the description of a convention which unifies the one
and two dimensional indexing. A brief review of one dimen-
sional estimation techniques is presented in Sections 1.2
and 1.3.

The estimation methcd is derived in Chapters 2
trrough 5. In Chapter 2, the structure of the estimator
is developed. It is shown that the general estimation
technique consists of modeling, linear prediction and
filtering steps.

The modeling problem is considered in Chapter 3. A
general procedure is introduced which utilizes the a priori

statistics and derives a linear autoregressive model of

the process. Chapter 4 and 5 contain pertinent deriva-

tions of the linear one step predictor ané the filtering
steps, respectively.

The estimation process, as developed in Chapter 2
through 5, is applied to a number of linear and nonlinear
problems in Chapter 6. This chapter also includes the
derivation of the estimator for a few special cases. In-
cluded among these are the cases of additive-Gaussian and
multiplicative uniform observation noise. In Chapter 7,

the proposed estimation process is analyzed as to its
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computational requirements. Discussion on the optimality
of the estimator is presented in Chapter 8. Extensions,
topics for further research and conclusions are also in-
cluded in this chapter.

Appendix A contains a brief discussion on the er:or
variance. Appendix B describes a fidelity measure for

estimated images.

1.1 Notations

An image is viewed as an NxN matrix with elements
b(i,j), where b(i,j) is the intensity of the image at pixel
(i,j). To reduce the notational complexity, the pixels
are indexed by 1,2,....,N,N+1,....,N? consccutively from
left to right and from top to bottom. This convention
enables us to refer to the doubly indexed b(i,j) as b (k),

symbolically. Hence {(1.1) through (1.3) can be written as:

M(k) = E[b(k)] (156)
R(k,1) = E[b(k)-M(k)]1[b(1)-M(1)] (1.7)
y(k) = £(b(k),y(k)) (1.8)

Let us define the process x(k) as

x (k) = b(k)-M(k) k=1,2,....,N2 (1.9)
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Thus the problem of estimating b(k) reduces to estimating

(k).
1.2 A Survey of Discrete One Dimensional Estimation

At a given time k and for a given set of observations
y(1),....,y(k), the minimum mean square (MMS) estimate of
a random process x(k) is, by definition, the particular
value of x©(k) which minimizes the quantity e? (k) defined

as [see Appendix A]
e2 (k) = E[x(k)-x¥(k)12|y(1),...., ¥y (k) (1.10)

Let us denote this quantity by x%(k). Direct minimization

of e2 (k) with respect to x®(k) yields [22]
x% (k) = Ex(K)|y(1),..eury(k) (1.17)

This is a general result, in that, regardless of the under-
lying probability density functions (PDF) of x(.) and y(.),
the MMS estimate is given by (1.10).

When x(k) is a normal random process and processes
x(.)and y(.) are jointly normal [22], then x9(k) in (1.10)

will be linear in y(l),....,y{k), having the form

k
x(k) = ] aj(k)y(d) (1.12)
i=1
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To determine the constants a‘(k)"""ak(k)' the right
hand side of (1.11) is substituted in (1.9) and e? (k)
is minimized with respect to ax(k)"""ak(k)’ resulting

in k linear equations
E[x(k)-x7 (k)]ly(i) = 0 1) IO RS . (1.13)

collectively referred to as the orthogonality principle.
This procedure of finding x%(k), though clear and simple,
is numerically inefficient since for each time k,a system
of linear equations has to be solved where the size of the
system of equation grows with k.

Kalman and Bucy [23]-[24] have shown that if the pro-
cess x(k) can be generated by applying white noise to the
input of a finite dimensional linear dynamical system,
Lhen the estimation process will be recursive yielding an
implementable and computationally simple estimator. This

is done if there exist a vector Z (k) such that
x(k) = C(k)Z(k) (1.14)

with Z(k) satisfying a linear stochastic difference equa-

tion
Z(k+1l) = A(k)Z(k)+B(k)u(k) (1.15)

and the observation having the form




y(k) = C(k)Z(k)+D(k)V(k)
with

Eu(k) = Ev(k) = 0 (1.17a)
Eu(i)u’ (3) K(i)Ad (i-j) (1.17b)
Ev(i)v’ (3) L(i)D(i-7) (1.17c)

where A(k), B(k), C(k), D(k), K(k), L(k) are nxn, nxr, sxn,
sxq, rxr and gxq matrices, respectively. The term A(i=j)
is the Kronecker delta function and the prime indicates
matrix transposition.

The estimate of x(k) can be obtained from the estimate
of %(k) through (1.14). Denoting the MMS one step predic-

tion value of z(k) by 2z°(k), then
2%(x) = E2(kx) ly (1), ... y(k=1) (1.18)

and the Kalman-Bucy linear estimator is given by [22]1-1[24]

2% (k+1) = [A(k)=-F (k)€ (k)12° (k)+F (k)y (k) (1.19)

where -
-1
F(k) = A(k)P(k)C'(k)[C(k)P(k)C’(k)+D(k)L(k)D’(k)]

(1.20)

P(k+1) = [A(k)-F(k)C(k)]IP(k) [A(k)-F(k)C(k)1~

+B(k)K(k)B'(k)+F(k)D(k)L(k)D'(k)F'(k) (1.21)

The matrix P(k+1l) has the property that for each k
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P(k+l) = E{2(k+1)-27 (k+1)1[2(k+1)-2° (k+1)1" (1.22)

The a:ove results have been presented in a summarized
form (for more detail see [20], [22]) and are included in
order to point out the recursive nature of the solution
in (1.19) through (1.21). This property is conspicuous in
(1.19) where the estimate at time k+1, 2Z9(k+l), is only a
function of the estimate at time k, Z7(k) and the observa-
tion at time k, y(k). It is this attribute that makes the

Kalman-Bucy linear estimator easily implementable on digi-

tal computers.
1x3 Nonlinear Estimation and Extended Kalman Filtering

The majority of the existing nonlinear estimation
techniques are concerned with problems where the system
and observation models (equations (1.14) and (1.15), re-

spectively) are given as [22], [29]
Z(k+l) = £[z2(k),k]+B(k)u(k) (1.23)
y(k) = g[Zz(k),k]+D(k)v (k) (1.24)

where f(.) and g(.) are general nonlinear functions.
An implementable nonlinear estimation approach, which
uses linearization in obtaining a suitable procedure to

estimate the states of the nonlinear system of (1.23), is

10
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that of the extended Kalman method [22]. In this tech-
nique, relationships are obtained which describe the be-
havior of (1.23) and (1.24) in the vicinity of a ncminal
solution 2Z* (k). The dynamics of the difference %(k)-2Z* (k)
is characterized by a set of linear equations. This char-
acterization is achieved by assuming that f(2(k),k) and
g(z(k),k) are twice differentiable in 2(x) and defining

the matrices

'
o, Of, 2f |
e m
af,  Of,
0w, o,
atk) & :
afp, af
o, S ¢ 200 =2 (0 (1.25)
0z, 82, %
9y %
2z, 92,
cik) & | .
| o2, St T T Tag | s =zrk) (1.26)
b

11




where A(k) and C(k) are used as coefficient matrices of a
linearized representation of (1.23) and (1.24) in the

neighborhood of 72* (k).

It is shown in [22] that the application of the Kalman
Bucy estimation technique along with the proper choice of
2*(}), results in a recursive nonlinear estimator of the

forr

Z(k+l) = f[%(k),k]+F(k)[Y(k)-g[%(k),k]] (1.27)

where F(k) satisfies (1.20) and (1.21) with matrices A(K]
and C(k) defined by (1.25) and (1.26).

Aside from the extended Kalman-Bucy technique, there
are other methods that consider the models of (1.23) and
(1.24) (28], [29]. These procedures, however, lack the
ease of implementation inherent in the linear Kalman-Bucy

and the extended Kalman-Bucy techniques.




CHAPTER 2
ESTIMATION METHOD

In this chapter, the structure of the general non-
linear estimator will be developed. Section 2.1 contains
the derivation of the optimal minimum mean square esti-
mator. Based on the properties of this estimator, the
structure of a general implementable estimation procedure

is developed in Section 2.2,
2.1 The Minimum Mean Square Estimation

For a given set of observation y(1),....,y(k), taie
minimum mean square (MMS) estimate, x%(k), of a process

Xx(.) at time k is obtained from [22]
x¥(k) = Ex(k) |y(1),....,y(k) (2.1)

2
Similarly the error variance of this estimate, o7 (k), is

defined as

6% (k) = EIX(K)=xT(K) 12|y (1) ,.nnnry(k)

Defining the set Y(k) as

Y(k) = {y(1),....,y(k-1)}
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the equivalent form of (2.1) is
x% (k) =[x (k)p(x(k)|Y(k),y(k))dx(k) (2.4)

with p(.) designating the probability density. By applying

Baye's rule,

p(x(k),Y(k),y(k))

p(x (k) |Y(k),y(k))
p (Y (k),y(k))

p(y k) |x(k),Y(k))p(x(k)|Y(k))

p(y (k) |Y(k))

(2.5)

Since y (k) is defined as only a function of x (k) and vy (k)

(equation (1.7)), where y(k) is independent of Y(k), then
p(y(k)|x(k),¥(k)) = p(y (k) |x(k)) (2.6)

This simplifies (2.5) to

ply (k) | x(k))p(x (k) |Y(k))
p(x(k)|Y(k),y(k)) = (2.7)

ply(k)]|Y(k))

The substitution of the above in (2.4) yields

1

x7 (k) = [x (k) p(y (K) |x(k))p(x(k)|¥(k))dx (k)
p(y(k)lY(k))
(2.8)
Furthermore
14
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P(Y(k),Y(k)lIP(Y(k),Y(k),X(k))dX(k)

p(y(k)|Y(k))=
p(Y(k)) p(Y(k))

1

=—*————“fp(y(k)|X(k),Y(k))p(X(k)|Y(k))p(Y(k))dx(k)
p(Y(k))

=[p(y (k) |x(k))p(x(k)|Yk))dx (k) (2.9)

where again (2.6) has been used to obtain (2.9). Using

(2.9) in (2.8) yields

= fx(k)P(Y(k)|x(k))P(x(k)|Y(k))dx(k)
k)=

[ply (k) [x(k))p(x(k) | Y (k))ax (k)
Similarly the error variance of (2.2) is given by
0% (k) =[ [x (k) -x7 (k) 1 2p ( (k) | ¥ (k) y (k) ) dx (k) (2.11)
Substituting (2.7) in the above, results in

o2 [ Ix (k) =x7 (k) 1 2p(y (k) | x (k) ) p (x (k) |Y (k))dx (k)
o” (k)=

ply(k)|Y(k))
{2.12)
Finally the substitution of (2.9) in (2.12) yields the
form of 0% (k) to be

i [Ix (k) =x7 (k)1 2p(y (k) |x (k) p(x (k) | Y (k) )dx (k)
0’ =

[Py (k) |x(k))p(x(k)|Y(k))dx (k)

(2.13)

15
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Equations (2.10) and (2.13) suggest that the optimal
estimation, at time k, is achieved first by finding
p(x(k) |¥(k)) and then using it with y(k) to arrive at
x7 (k) and ocz(k). Letting xp(k) and oé(k) denote the
optimal prediction value and its error variance of x(k),

respectively, then (see (1.17)

xp(k) Ex(k) |y(1),....,y(k-1) = Ex(k)]|Y (k) (2.14)

o;(k) E[x(k)-xp(k)]zlY(k) (2.15)

But xp(k) and o;(k) are the mean and the variance, respec-
tively, of p(x(k)|Y(k)) in (2.10) and (2.13). Therefore,

the optimal estimation at time k can be thought of as a ;
two step procedure depicted in Fig. 2.1, where the blocks é

P and F may be identified as the prediction and filtering

steps, respectively.

y (k)
y(l) —o
F':Z} ) xU(k) "
P p(x(k)|Y(k))
. F 062 () |
y (k-1) ——=
Fig. 2.1
16 3




In this system structure,y(k) is isolated from the
other random variables and if p(x(k)|Y(k)) is known, con-
ceptually one can deal with its nonlinearities in block F.
So if pix(k)!Y(k)) is given, thcn the derivation of x7 (k)
and 0% (k) is accomplished Ly carrying out the integrations
in (2.19) and (2.13). However, the derivation of this
probability density for the general observation system
of (1.13) does not lend itself to analytic methods and in
addition, available numerical approaches are computation-
ally unfeasible [22].

In the following section, an alternate procedure is
considered, whereby an approximation to the probability
density p(x(k)|Y¥(k)) is derived. The method is compatible
with the logic of the optimal estimator in Fig. 2.1, in
that this logic ccnsists of the representation of past
information (i.e. information due to a priori statistics
and observations y(1),....,y(k-1)) in the form of a pro-
bability density to be combined with present information

(i.e. Y(k)) in block F.

e k2

g

2.2 Dzfinition of the Proposed Estimator

In order to comply with the inherent logical structure

of the optimum estimator and at the same time maintain

E oaes

the algorithmic implementability, the proposed estimator
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1s constructed according to the following restrictions.

a) Only the first two moments of any random variable
are computed.

b) The pradiction process is chosen to be linear.

c) The prediction is to be based on a selected small
number of past estimates. This will impose a
desired limited memory requirement for the
estimator.

In the estimation process, the imposition of con-
straint (a) on the estimator results in the derivation of
the estimate value and its error variance at each time k.
The value of the varia:ice represents a measure of uncer-
tainty of the estimate's numerical value. This constraint
alleviates the problem of deriving or approximating the
probability density associated with the estimate. Due to
the admissibility of general probability densities for the
observation noise, the lack of this constraint will require
estimation approaches similar to those described in (22,
Chap. 7], which as mentioned before, are computationally
unfeasible.

Since the prediction process is primarily a learning
procedure based on the past information, then the linearity
requirement of condition (b) does not violate the under-
lying logic of the optimal estimator. Although this re-

quirement, in general, results in suboptimal processing,

18
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it enhances the implementability of the overall procedure.
This enhancement is due to the prone: ty of linear predic-
tors being easily implementable.

Having chosen a specific form of the predictor, con-
dition (c) requires the estimator to be recursive. This
characteristic is much desired in estimation processes
since it simplifies the implementation of the estimator.
Basing the learning process (prediction) on the past esti-
mates is justified since each estimate is obtained so that
it represents the actual signal value with the least amount
of uncertainty.

Letting the estimate and its error variance at time i
be represented by §(i) and 02(i), respectively, then the
block diagram of Fig. 2.2 represents the structure of the

estimator.

— x(k=11),0° (k=) —
: x* (k)
: LP
~ a o*? (k)
x(k-IM),O (k-IM)“_’
D
Fig. 2.2
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In this figure, blocks LP, F and D signify linear
prediction, filtering and one 1it time delay operatic.s,

respectively. M is an indication of the size of the re-

quired memory and x* (k) and o*?(k) represent the one step

predicted value and its error variance, respectively. The

set {k-Il,....,k-IM} is a set of two dimensional indices

(time) each distinct and prior to k, i.e.
k—Ii € {l,z,....,k-l} i=l,2'oo.o,M

Figure 2.2 describes the structure of the proposed
estimator whose operating logic is derived in Chapters 3,
4 and 5. In Chapter 3, a method is introduced to derive
a linear Mth order model of the process x(k). This model
is used in Chapter 4 to derive the desired linear predic-

tor. Chapter 5 will describe the derivation of the fil-

tering step.
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CHAPTER 3
MODELING

In order to derive the linear predictor (block LP of
Fig. 2.2), the a priori mean and the autocorrelation infor-
mation of the random process x(k) are incorporated into
a finite order linear model of the form
M
x(k) = ] Bjx(k=I;)+Bu(k) (3.1)
i=1
This model is used in Chapter 4 to complete the derivation
of the prediction process. Since (3.1) is an autoregres-
sive model [15], [161, [17], then finding such a model, in
effect, solves the one step linear prediction problem in
the degenerate case where the values of a sample function
of x(i) is specified for 12,2, ciaai 851
Section 3.1 contains a brief discussion of the form
and the properties of the autoregressive models. In
Section 3.2, a procedure is introduced that finds the auto-
regressive model associated with a given autocorrelation
function. The derivation of the procedure is based on
the a priori knowledge of the maximum allowable order of
the model. The discussions and guidelines regarding the

best choice of the maximum order is presented in Section
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3.3. Finally, the properties of the modeling procedure

are considered in Section 3.4.

8.1 Autoregressive Models

A discrete random process x (k) is represented by an

autoregressive model of order M(k) if for each time k,

x (k) satisfies a linear stochastic difference egquation of

the form [15]

M(k)
x(k) = Bi(k)x(k-Ii)+B(k)u(k)

i=1

where M(Kk), Bl(k),....,'BM(k)(k) are deterministic time

constants and u(l), u(2),.... are a set of independent,
identically distributed random variates with
if i#)

Eu(i)u(j) = A(i-j) =
i=j

The indices k-Ii, i=1,2,....,M(k) refer to pixels (time)

previous to k, i.e.

for all i=1,2,....,M(k)

k—Ii e {k-1,k-2,....,1}

For a zero mean random process x(k), when constants

M(k), B (K)serenus BM(k)(k) and B(k) are time invariant

(i.e. independent of k) then x(k) will be wide sense sta-

tionary and (3.1) takes the form
22
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x(k) = z Bjx (k-I,)+Bu(k)

i=1

and M will be called the order of the model.
3.2 Modeling Procedure

In the following derivations the process x (k) is
assumed to be stationary. The extension of the procedure
to nodeling of nonstationary processes is presented in
Section 3.4.

Let M be the given maximum order of the model and

let S denote the set of all indices preceding k, so that
s = {k-1, k-2,....,1}

There are 2K71-1 nonempty subsets of S. Let si, S;s....
denote those subsets of S having M :lements or less with
N(sj) designating the number of elements in subset sj.
Note that N(sj)sM for all j For each sj, let

N(s.)

a " o e | g
x(k) = z Byx (k Ii)+Bju(k) (3.5)

i=1

where for i=l,2,....,N(sj), the indices k-Ig denote all

elements of subset sj.

The modeling criterion is chosen to be the minimiza-
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tion of E[Bju(k)]z, thus the constants B?,....,BJ in

N(sj)
(3.5) are chosen such that
N(sy) 5 y
E[B.u(k)]? = E[x(k)- ) I Bix(k-I7)]2 (3.6)
2 i=1 * :

is minimized. This criterion is the same as the minimizing
the error variance of the one step predicted value since,

E[Bju(k)]2 is the error variance associated with choosing
the predicted value of x(k) to be

N(s.) . c
) J ng(k-I?)
i=l x

Equation (3.6) is minimized by differentiating its
right hand side with respect to B?,....,Bg(s_) and setting

J
the result equal to zero. This results in N(sj) linear
equations of the form
N(sx

)
E[x(k)-_z g

92 ol ey o -

(3.7)
Carrying the expectation through in (3.7), a system of
linear equations of the form AB=b is obtained where, the
elements of matrix A and vector b will be in terms of the
values of the correlation function R(m,n) (see example
3.1). Solving this system of equations defines the quan-

tities Bi, i=l,2,....,N(sj). These quantities, in turn,

24
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define the values of (Bj)2 given as

mis5) 3 3
(B;)2 = E[B,u(k)1? = E[x(k)=- ] ~ Bix(k-I')]? (3.8)
J J i=1 i

Repeating this procedure for all subsets s, , s,,....,

the gnantities
(B,)2, (B,)?,...., (B)?,.... (3.9)

are obtained. The model of the random process x(k) is
chosen to be the autoregressive form associated with sub-
set s, such that (Bm)2 is the minimum of the quantities in
(3.9). If the minimum is not unique, then the model is
chosen to be that of Sm where (Bm)2 is a minimum of (3.9)
and N(sm)sN(sp) if (Bp)2 is any other minimum. The fol-
lewing =2xample is provided to clarify some of the above

derivat linsg.

Example 3.1:

Letting k correspond to two dimensional index (i, j)

and

Sj = {(l,]-l) ’ (l-lrj) ’ (l-llj-l)}

(In figure 3.1, O represents (i,j) and O represents ele-

ments of S5 on a two dimensional grid) then (3.5) yields

x(1,3)=83x(1,3-1)+8x (i-1,3)+83x(i-1,3-1)+Bju (i, )
(3.10)

25
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1 X X X X X X X X X '
X X X X X X X X X
X XX XBRXX X X
X X X XK@ x x X
X X X X X X X X X
Fig. 3.1

Applying (3.7) and assuming (stationarity)
Ex(i,j)x(k,1) = R(]i-k|,|3j-1}]) (3.11)

The system of linear equations for 8?, B;, B? will become,

R(0,0) R(1,1) R(1,0) 8] R(0,1)
R(1,1)  R(0,00  R(0,1) | |8)| =|R(1,0)
R(1,0) R(0,1) R(0,0) 3 R(1,1) | (3.12)

Solving (3.12) results in the values for 8?, 82, 82 and

these values result in

2_ uli.)12
(Bj) E[Bju(l,])]

S .

=Elx(i,3)-8Jx(i,3-1)-pdx (i-1,9)-pIx(i-1,5)]

=R(0,0)-8JR(0,1)-8JR (1,0)-8IR(1,1)

For any other subset Si» the above procedure is repeated

and (B;)? in (3.9) is obtained. Note that in finding

(Bj)2 from (3.13) and (3.12) only the numerical values of

26 l
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of R(m,n) are required.
Having defined a general modeling procedure, the
following theorem establishes its applicability to special

cases.

Theorem 3.1: 1f a zero mean, normal random process x(k)

satisfies an autoregressive model

»

x(k) = ? 0liX(k--Ii)+Bu(k) (3.14)
i=1

where M'<M, “hen the modeling procedure will yield the same

model.

Proof: Let

0
"

{(k'Il)v(k'Iz)'--'-'(k'IM)}

q = k-Iyhy

where k-Iy7, is an index (time) preceding k and not includ-
ed in s, i.e. qgs

let

s, = sUq = {(k=I ), (k=I,),cc..,(k-Tp), (k-1 )}

M¥1

Using the modeling procedure to find the autoregressive

form for s,, results in
M +1
x(k) = izl siX(k-Ii)+Blu(k) (3.33)

27
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and B, ... B are obtained such that
M +1
vf:[x(k)-xp(k)]2 (3.16)

is minimized, where (see (3.6))
M +1
= . k-I .
x5, (K) iil Byx (k-T.) (3.17)

But due to the Gaussian nature of x(k), the quantity

Ex (k) |x(k=I;),....,x(k-1 ) (3.18)

M’ +1
is linear in x(k—Il),....,x(k-IM’+l) and if substituted for

xp(k), it minimizes (3.16) [22]. Therefore
‘ M +1
Ex (k)| x(k=T,),eeeerx(k=Iy-yq) = L Byx(k-I;)
i=1

Also, using the conditioning of (3.18) in (3.14) results in

Ex (k) | x (k=T ;) ,..ccrx(k=Ip~ q)

»

]
e =

laiEx(k-Ii)|x(k—I,),....,x(k—IM’+1)

i
+BEu (k) [ (k=T ), ccoorx(k=Ty" 1) (3.20)
But
Eu(k) [x(k-I,),....,x(k=TIys ;) = Eu(k) =0

and

28
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Ex(k-Ii)|x(k-Il),....,x(k-Ii),....,x(k-IM,+l)=x(k-Ii)

Therefore (3.20) becomes

-

Ex(k)lx(k-Il),.....x(k-IM,+l) = ! 1aix(k-Ii), (3.21)

But the conditional expectation in (3.18) is a specific

linear function of x(k-Ix),....,x(k-IM'+l), thus the com-

parison of (3.19) and (3.21) necessitates that in (3.19)
aj  if ieM

Bi = . (3.22)
0 if i=M +1

This is turn indicates that in (3.15)

(3.23)

Now, by letting the set g be empty, then the same
procedure will indicate that (3.15) becomes identical to
(3.14) and by letting g contain m elements with M'+m<M,

then (3.22) and (3.23) will become
if isM
if i>M°
Bm

This completes the proof.
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Choice of the Model's Order

The modeling procedure of Section 3.2 is particularly
useful in the cases where only a small number of correla-
tion values are specified. 1In these cases, an upper bound
for the value of M exists. If this upper bound is suf-
ficiently small, then its value should be used to represent
the order of the model.

Since the modeling criterion is taken to be the mini-
mization of the model's noise variance then, in general,

M should be selected on the basis of the rate of decrease
of (Bi)2 as a function of M. This idea is applied and
explored further in example 3.2.

It will be shown in Chapters 4 and 5 that the com-
plexity and the memory requirement of the proposed esti-
mator will be a direct function of the value of M. A
logical consideration in the choice of M, therefore, is

the trade off between additional implementation complexity

and the reduction of (Bi)z.

Example 3.2:

Consider the stationary two diemnsional rorrelation

function




R(i,3,k,1)

R(|i-k]|,|3-1]) = Ex(i,3)x(k,1)

exp [~V (i-k) 2+ (j-1) 2]

Application of the modeling procedure yields:
a) Best 2nd order model is
x(1,3)=0.3x(1i,3-1)+0.3x(i-1,3)+0.883u(i, j)
b) Best 3rd order model is
: x(1,3)=0.29%(i,3-1)40.25x(i-1,3j)+0.12x(i-1,j+1)
' +0.8775u(i,3) |
c) Best 4th order model is
x(i,3)=0.28x(i,3j-1)+0.24x(i-1,7j)+0.03x(i-1,3-1)
+0.12x(i-1,3j+1)+0.8769u (i, j)
d) Best 5th order model is
x(i,3j)=0.28x(i,j-1)+0.24x(i-1,35)+0.03x(i-1,3-1)
+0.11x(i-1, j+1)+0.02x(i-1,3j+2)+0.8768u(i, j)
This indicates that additional complexity of going from the
‘ 3rd to the 5th order does not reduce (Bi)2 appreciably.
Hence, for example, to a third decimal place accuracy,

3rd order model is a sufficient approximation.

o e T

3.4 Properties of the Modeling Procedure

Derivation of the autoregressive model has been

based on minimizing the uncertainty associated with pre-

3
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dicting the present value of a sample function of a
process by a linear combination of a finite number (M)

of its past values [16]. This is in accord with the con-
cept of Fig. 2.2. The modeling , "ocedure is directly
applicable to nonstationary problems where for these
cases the procedure must be applied at each time k, re-
sulting in one autoregressive form for each k.

A property of the procedure, which is of extreme prac-
tical value, is that the determination of the model is only
a function of the numerical values of R(m,n) and, in fact,
is independent of the analytical form of R(m,n). This,
in turn, enhances the numerical and computational character
of the estimation process.

The optimality of the modeling procedure, in the
cases where the process x(k) has a corresponding autore-
gressive model of order less than M, is established by
theorem 3.1. However, by applying this method a model of
the form (3.1) can always be found even when a finite order
autoregressive model does not precisely describe the cor-
relation information, or if the exact model is of an
order higher than the chosen M. Whatever the case, it
should be noted, the correlation functicn generated by
the model obtained from this procedure will be identical
to R(m,n) at, at least, M+l points. This is demonstrated

for a simple case considered in Example 3.3.
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Example 3.3:

Consider the stationary one dimensional random pro-

cess z(k) with

R(i,j) = Ez(i)z(j) = R(|i-j|) (3.26)
Let M=2 and the model of z(k) be given by

x(k) = B,x(k-1)+B,x(k-2)+Bu (k) (3.27)

The system of linear equations that B, and B, must satisfy,

becomes (see Example 3.1)

R(0) R(1)| |8, R(1)

R(1)  R(0)| |8, R(2)

which results in

R(0)R(1)-R(1)R(2)

B, = (3.28)
J 2 2
R (0)-R* (1)

R(0O)R(2)-R?(1)

B, = (3.29)
2 2 2
R (0)-R°(1)

Accordingly

B2

i

E[x(k)-8,x(k=1)=8,x (k=2) ]

R(0)-B,R(1)=8,R(2) (3.30)

33




Letting
C(|i-j|) = Ex(i)x(3) (3.31)

be the stationary correlation function generated by (3.27),
then
C(0) = Ex’(k) = E[B,x(k-1)+B,x(k-2)+Bu(k)]’

(B2+85)C(0)+B?+28 B,C(1) (3.32)

E(x(k)x(k-1) = E[le(k-l)+82x(k-2)+Bu(k)]x(k—l)

B,C(0)+8,C(1) (3.33)

Ex (k) x(k-2)
E[B,x(k-1)+B,x(k-2)+Bu(k) Ix (k-2)

= B,C(1)+B,C(0) (3.34)

Substituting (3.28) through (3.30) in (3.32), (3.33) and

(3.34) and solving for C(0), C(l), C(2) yields

C(0) R(0)
C(1) R(1)

C(2) R(2)

This indicates that the_corpelation function generated

by (3.27) matches R(i,j) at, at least, 3 points.
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CHAPTER 4
LINEAR PREDICTION

In this chapter it is assumed that the model of the

random process x(k) is derived to be of the form

M
x(k) = Z B.x(k-I.)+Bu(k) (4.1)
i 1 g

and the process x(k) .s assumed to be stationary. Deri-
vation of the linear predictor for nonstationary processes
is identical to that of stationary processes, hence ic
omitted. Section 4.1 contains a brief discussion on the
optimal linear one step prediction and the difficulties
associated with implementing such a procedure. The devel-
opment and derivation of an implementable one step pre-
dictor compatible with the proposed system structure of
Fig. 2.2 is presented in Section 4.2. Section 4.3 contains

the derivation of the variance of the one step predicted

value.

4.1 Optimal Linear One Step Prediction

Denoting the MMS one step prediction value of x(k)

by xP(k), then

85




xP (k) = Ex(k)|y(1)s.. .oy (k-1) (4.2)

Conditioning the right hand side of (4.1) on y(1),...y(k-1)

and taking the expectation results in

M
xP (k)= 1

BiEx(k-Ii)|y(l),....y(k-1)+BEu(k)|y(l),...y(k—l)
i=1

(4.3)

But due to the statistical independence and the zero mean

property of u(k)
Eu(k) ly(1),oooory(k-1) = Eu(k) =

hence

M
xP(x) = 2
i=1

BiEx(k—Ii)|y(1),....,Y(k-l)

The difficulty in finding «P(k) in (4.5) is that at

each pixel k, the M expectations
Ex(k—Ii)|y(l),....,y(k-1) i=1,2,.0..4M (4.6)

have to be carried out. performing this task involves
interpolation of the random process x (k) , which in the
simplest case is computationally unfeasible. To maintain
implementability, a suboptimal recursive prediction pro-

cedure 1is introduced in the following section.
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4.2 A Linear One Step Prediction

In accordance with the discussion of Chapter 2 and the
system structure of Fig. 2.2, the linear predictor is
to be based on past estimates and their error variances.
In this respect, the one step predicted value x* (k) is
given by
k-1

x*(k) = L ax(k-3)
j=1 -

where QpreeeerOp are to be chosen such that

Elx(k)=-x* (k)] (4.8)

is minimized. The above minimization is to be carried out
based on the available information to the predictor. This
information, in turn, consists of the values of X(i) and

82(1), igk-1. Furthermore, each ;(i) and az(i) represents

the mean and variance, respectively, of a nosteriori pro-

bability density of x(i) at time i. This interpretation

is directly substantiated by the way each estimate §(i)

at time i is obtained as a function of the previous esti-
mates and the observation y(i).

As a result of the above discussion, the expectation
in (4.8) is well defined and operates on each random

variable x{i) such that




Ex (i) = x(i) $=1,2, .00 0k"1
~ 2 "2
E[x(i)-%x(i)] = o (i) 1=1.2, ... .,k-1 (4.9b)

Having (4.9a) and (4.9b) as the definition of the expecta-
tion operator, the following theorem establishes the

optimal linear predictor.

Theorem 4.1: When the random process X(Kk) satisfies a

model of the form (4.1), then the (optimal) choice of

ql,az,....,ak_l in (4.7) which minimizes (4.8), is given by

Bi if k=-j=k-I; for some i=1,2,....,M

o3
0 otherwise

Proof: Substitution of (4.1) and (4.7) in (4.8) yields

z M k"l ~ 2
E[x(k)-x* (k)] =E[Bu(k)+ Y B r(k=-I,)= Y ajx(k-j)] (4.10)
i=1 1 4=1

Since k-1, i=1,2,....,M is a set of two dimensional
indices and their particular values are immaterial to this

proof, assume

(4.11)

in order to reduce notational complexity. Wwith this,




(4.10) then becomes

\ M k-1
E[x(k)-x* (k)] =E[Bu(k)+ ] BiX(k-i)-.Z

a.x(k=3) 12
i=1 j=1

2 M k-l
=E[Bu(k)] +E[ } Bix(k-i)-'Z

A , 2
a.x(k=3)]
i=1 j=1 3

M k-1 ,
+2E{[Bu(k) ][ ] B, x(k-i)- Y a.x(k-j)1}
i=1 j=1 1

(4.12)

But (4.9) and the statistical independence of u(k) imply

that

2 1
E[Bu(k)]2 =B (4.13) {

k-1

M =
E([Bu(k)][ ] )
i=1 j=

B.x(k-1i)-
b8 J—l

an(k-j)l} =0 (4.14)

Substitution of (4.13) and (4.14) in (4.12) yields

2 2 M k—l ~ 2
E[x(k)-x*(k)] =B 4E[ ] B;x(k-i)- ] ajx(k-])]

: i=1 j=1 J

i 2 M M ~ k"M-l A 2
: =B +E[ ] Byx(k-i)= ] o) sx(k-3)= ] a;x(j)]
. 1=1 j=1 J j=l J
il (4.15)
.; Since

*
A 39
ki
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g-a
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M . M X
i_-)-‘;lak-ix (k-i)=i£1[Bi+ak_i-Bi]x(k_l)

M

=] Bix(k-i)+ } (o -8 )x(k-1)
i=1 * j=1 k-1 i

(4.16)
then, substitution of (4.16) in (4.15) and the expansion

of the square term results in

2
Elx(k)-x* (k)]

) M N M g k-M-1 2
=" +E{ | £ [x(k-1)-x(k-1)1- ] (a)_;=B;)x(k=1)- L a;x(1))
i=1 i=1 ' i=1

2 M ,\ 2 M ~ 2
—a +E{ § B, [x(k-1)-x(k-1)1} +E[ ] (a)_;=B;)x(k=1)]
i=1 * i=1

k-M-1 ) M . k-M-1 .
sE[ ] agx(i)] -2B[ ] B (x(k-i)-x(k=i)) I I a,x(i)]
o i=1 i=1 1

M ~ M =
~2E[ § B (x(k-i)=x (k=i)) 11 T (o ;=B )x (k1)
i=1 i=1 .

b}di ~ k-bf- 1
+2E( (g ;=B )x(k-1) 11 o, x(i)]
j=1 K1 i=1 1
(4.17)

But in (4.17) f(i), i=1,2,....,k-1 are a set of nonrandom
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quantities. This along with (4.9a) indicates that

E[iglsi(X(k_i)-;(k-i))][igl(ak-i_ei);(k_i)]
M . M .
=[i£181(Ex(k-i)-x(k-i))][izl(ak_i-Bi)x(k-i)]
M x . M X
=[iZlBi(x(k-i)-x(k-i))][izl(ak_i-ﬁi)x(k-i)] =0
(4.18)
and similarly
M 3 k-M-1
E[ ] B.(x(k-i)-x(k-i))]J[ § a,x(i)] = 0
i=1 j=l i
(4.19)

Furthermore, realizing that the third, fourth and seven*:h
terms of (4.17) are nonrandom, use of (4.18) and (4.19)

reduces (4.17) to
E[x (k) =x* (k)]

M
L

M ~
=B"+E[ | By (% (k-i)=x(k=1))1+[

~ 2
B i (@, _.=B,)x(k-1)]

1

k-M-1 . 2 M k-M-1
+[ ) oa.x(i)] +2[ )
i=1 ? i=

(0, .=B:)x(k-i)][ o x4 §
S ihy

or
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2
E[x(k)-x* (k)]

2 M iy 2
=B +E[ ) Bi(x(k—i)—x(k—i))]
i=1

M ~
1) (o =B ) x(k-i)+

k-M-1 . 2
i=1 i

Zl aix(i)]

The first two terms of (4.20) are independent cf
i i=1,2,....,k-1. The third term is a complete square
and its minimum is zero. Therefore, the minimum of (4.20)

is achieved if

gy for i=k-1,k-2,....,k-M

0 for i=1,2,....,k-M-1

This completes the proof of Theorem 4.1.
The foregoing theorem establishes that the best linear

predictor is given by

M
- iz

lBix(k—Ii)

which yields itself to on line implementation and satisfies

the finite memory requirement of Chapter 2.




4.3 Error Variance of Predicted Value

2
Letting op(k) denote the error variance of the pre-

dicted value x* (k) at time k, then

0;(k) E[x(k)—x*(k)]2 (4.23)

Substituting for x(k) and x*(k) in (4.23) from (4.1) and
(4.22), respectively, yields
M

M
'E BiX(k-Ii)--y’

oz(k)wE[Bu(k)+
P i=1 i=

~ 2
2 M R 9 .
=B +E{i£lBi[x(k~Ii)-x(k-Ii)]} (4.24)

where in deriving (4.24), use of the statistical indepen-

dence and the zero mean property of u(k) is made. Let
e(k-I,) = x(k-TI;)-x(k-I) (4.25)
1 1 1

then at each time k-Ii, e(k-Ii) is a random variable whose

fir-t two moments are (see (4.9a) and (4.9b)

Ee(k-I;) =0 (4.26)
2 ~2
Ee (k-Ii) =0 (k-I;) (4.27)
Expansion of (4.24) in terms of e(.) as defined in (4.25) ﬂ
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results in
M 2

2 2
= k--1.
0, (k) =B +E[i£181e( I;)]

2 2 2 2 2
=B +B1Ee (k-I )+......+B Ee (k=TI )

+28182Ee(k-11)e(k-I2)+...+2818MEe(k-I1)e(k-IM)

+28M_18MEe(k-IM_l)e(k-IM)

This relation shows that the evaluation of c;(k)
requires the knowledge of cross covariances of the random
variables e(k-Ii), i=1,2,....,M. To avoid the numerical
difficulties associated with the evaluation of these cross

covariances at each time k, the following upper bound of

2 2
g (k), denoted by o* (k), is derived and used in the fil-
P

tering step of the next chapter. The reason for finding
an upper bound, as opposed to a lower bound, is due to the
fact that 0;(k) is a measure of uncertainty of the value
x* (k), thus by assigning value 0*2(k) to x* (k) the uncer-
tainty associated with x* (k) is increased. This causes
the es*imation process to remain suboptimal and is dis-
cussed in more detail in Chapter 8.

Taking the absolute values of the right hand side of




i

(4.28) and using (4.27) results in

ol (k)<B +]8, 170" (kI )+..... #18 | o (k-1.)

p M M
+2|8,|18,] |Ee(k-I,)e(k-I,)|+......
+?|82||83||Ee(k-12)e(k-13)|+....
+é|s Byl [Be -1y ) (k-1)) | (4.29)

But for each pair of random variables e(k-Ii) and e(k-Ij),
Caachy-Shwartz inequality [30] establishes that

2 2 1 ~ A
|Ee(k-1I,)e(k-I.)|<[Ee (k-I,)Ee (k-I,)]/2=0(k-I.)0(k-I-)
i j i j 1 J

(4.30)
=To)
2"2 2A2
a5 (k)<B +|81| (k= )+.e....t]B | 0 (k=¥ )
M M
+2|8, ] |8, |0 (k-I,)0(k=I2)%.....
+2|8, Ils Io(k =B )o(k I ) (4.31)
where (4.31) is equivalently written as
i
2 2 M ~ 2
o (k)sB +[ ) |B.|o(k-1I.,)] (4.32)
P i=1 1 1
45




2
Hence, the upper bound o* (k) is given by

2 2 M N 2
o* (k)=B +[ )} |B,|o(k-I,)] (4.33)
i=1 1 1

2
It should be noted that o* (k) can easily be evaluated at

~2
each time k, since quantities o (k-I1,), i=1l,2,....,M are
i

available to the predictor for each k.



CHAPTER 5
FILTERING

This chapter develops the derivation of the final step
of the proposed estimation technique, where block F of
Fig. 2.2 will be analyzed and defined. 1In Section 5.1,
the information obtained from the linear predictor is
incorporated into an approximate probability density func-
tion (PDF) for x(k). This density is then used in Section
5.2 as an a priori statistic for the observation y (k) to

derive the estimate §(k) and its error variance 82<k).
Choice of A Posteriori PDF for x(k)

Assuming that the actual prediction variance o?(k) is
computed and available then the predicted value x* (k) and
its variance o;(k) represent the mean and the variance of
the a posteriori PDF on x(k). This density represents
the available knowledge of the random variable x (k) prior
to the reception of the observation y(k). Since, for
a given mean and variance the normal distribution repre-
sents the maximum uncertainty (entropy) [30]), this density

function is assumed to be normal. Further uncertainty is

associated with x(k) if o*?(k) is used in place of oé(k).
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Consequently, an approximate and a rather conservative

choice of an a posteriori probability density for x(k) is

2
1 [x(k)=-x*(k)]
p(x(k)) = —— exp{- - (5:1)
o*(k)V2m 20* (k)
5.2 Evaluation of the Estimate and its Variance

The density p(x(k))in (5.1) is used as an a priori
statistic for y(k) in order to obtain the Baye's estimate,

;(k), of x(k) as follows
;(k) = Ex(k)|y(k) = fx(k)p(x(k)ly(k))dx(k) (5.2)

Using the Baye's rule

p(x(k),y(k)) ply (k) Ix(k))p(x(k))
p(x(k)|ly(k)) = =
ply(k)) p(y(k))
(5.3)
Therefore
N 1
x (k) = ——/[x(k)p(y (k) |x(k))dx (k) (5.4)
p(y(k))

Using the same procedure as outlined in Section 2.1, it
follows that
ply (k))=[ply(k),x(k))ax(k)=[p (y (k)] x(k))p (x(k))dx (k)

(5.5)
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Therefore, the estimate x(k) is given by

R [x()p(y (k) |x(k))p(x(k))dx (k)
x(k) = — (5.6)
[ply (k) |x(k))p(x(k))dx (k)
Similarly, the error variance, az(k), is obtained by
~ 2 ~ 2
o (k) = E[x(k)-x(k)] |y (k)
= Ix(k)-x(k) ] p(x (k) |y(k))dx (k) (5.7)
Again by using the identity of (5.3), (5.7) becomes
~2 1 ~ 2
o (k) = — [Ix(k)=x (k)] ply(k) |x(k))p(x(k))dx (k)
p(y(k))
(5.8)
The substitution of (5.5) in (5.8) results in
- [ Ix (k) -x (k)1 ply (k) | x(k)) p(x(k))dx (k)
c (k) =
Ip(y (k) |x(k)) p(x(k))dx (k)
(5.9)

In (5.6) and (5.9), p(x(k)) is given by (5.1) and
p(y(k)lx(k))is obtained from that part of the a priori
information which describes the observation system struc-
ture and the probability density of the observation noise
(equation (1.7)).

The comparison of equations (5.6) and (5.9) with those
of the optimal filter given in (2.10) and (2.13) indicates

that the proposed estimator exhibits the same logic as the
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optimal estimator. This logic consists cf each estimate
and its error variance being a specific function of the
past and present information where p(x(k)) and p(y(k)lx(k))
represent these two quantities, respectively. In fact,

had the prediction been done optimally, the proposed pro-
cedure would have been optimal.

The integrals involved in evaluating Q(k) and Sz(k)
in (5.6) and (5.9) may or may not have analytic solutions.
If such solutions exist, then the computational require-
ment of the procedure is reduced tremendously. If such
solutions do not exist then these integrals can be evalu-
ated numerically. This in turn allows the procedure to be
applicable to a broad class of observation systems includ-
ing nonlinear forms of y(k). Chapter 6 contains examples
demonstrating and substantiating these properties.

The estimator developed so far is both feasible and
implementable. Its feasibility is due to the structure
of Fig. 2.2, which leads to (5.6) and (5.9) being scalar

operations.
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CHAPTER 6

DERIVATION OF A FEW SPECIFIC

ESTIMATORS AND APPLICATIONS

6.1 Introduction

Based on the general estimation procedure as developed
in Chapters 2 through 5, a number of specific estimators
for various observation systems are derived in this chap-
ter. Each estimator then is utilized in estimating a
number of noisy images as examples of the applicability
of the procedure. The procedure is almost exclusively
applied to two dimensional pictorial data and its appli-
cability to similar one dimensional problems is implied
implicitly. Section 6.2 céntains a discussion on the
methods of finding and specifying two dimensional a priori
correlation functions. 1In Section 6.3, a linear estimator
is derived by applying the estimation procedure to the
case of additive-Gaussian observation noise. The pro-
perties of this linear estimator are outlined and dis-
cussed in more detzail in Section 6.4. Section 6.5 con-
tains the derivation of the estimator for observations

having bounded multiplicative noise. This section also

includes the application of the procedure to two dimen-
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sional pictorial data corrupted by uniform multiplicative
noise. Finally in Section 6.6, the application of the
procedure to observations containing multiplicative and

additive noise terms is considered.
6.2 Two Dimensional A rriori Statistics

In applying the foregoing estimation method to the
noise corrupted two dimensional pictorial data, the know-
ledge of the a priori mean and at least a few values of
the autocorrelation function of the image is required.
These two quantities are defined by (1.1) and (1.2). 1If
the image is a member of a stationary two dimensional ran-

dom process, then they are defined to be
M(i,3j) = M = Eb(i,]) (6.1)

R(i,j.k,1,) = R(Ji-k |, |3-1] = E(b(i,j)-M][b(k,1)-M]
(6.2)
where E represents the ensemble averaging.
Experimental results indicate that random fields with
exponential autocorrelation functions are realistic models
for a variety of pictorial data [2] - [5]. Two widely

used forms of these functions for stationary processes are

. . 2 d ’
R(|i-k |, |3-1]) = oseXP[-a1|l-k|-a2|J-1|] (6.3)
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and

. ) 2 //2 2 2 2
R(|i-k|,|3-1]) = o_exp[-/a, (i-k) +a,(j-1) ] (6.4)

2
where o_ is the signal power and |i-k| and |j-1| are the

increments in the verticle and horizontal directions,
respectively. Although these correlation functions are
both of the exponential decaying type, they exhibit dis-
similar characteristics in that the separable correlation
function of (6.3) assumes more correlation in the hori-
zontal and vertical directions while the nonseparable
function in (6.4) indicates a smooth and rotationally
invariant correlation in all directions. Figures 6.1 and
6.2 represent two views of the three dimensional graphs

of these functions. It is suggested in [1l] that pictures
of the natural scenes exhibit nonseparable and rotationally
invariant correlations while the images of man-made objects
correspond to separable autocorrelation functions.

The complete definition of the correlation function in
(C.3) or (6.4) requires the specification of the three
quantities Ggi & and a,. Note that if any three correla-
tion values (for example R(0,0), R(0,1l), R(1,0)) are known
then these quantities can be obtained.

For the processed images in this dissertation, the
approximate values for the mean M and correlations R(0,0),

R(0,1) and R(1,0) are obtained, wherever necessary, from
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Fig. 6.1 Two Views of the Separable Correlation Function

R(11,12)=o;exp[—allrl|-a2|12|]
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1 N
N i=1 j=1

M =

1 N-p N=q
R(p,@)=— ) 1 (b(r,s)-M] [b(r+p,g+s)-M]
N r=1 s=1

where b(i,j) is the intensity value of the original image

at pixel (i,j) and N represents the size of the image.
Additive-Gaussian Observation Noise

In the case where the observation is given by
y (k) = x(k)+Y (k)

with y (k) normal and
Ey (k) =

0
EY(1)Y(]) = 2
o (i)
y

2
1 (y (k)-x(k))
ply (k) |x(k))=—— expl- 5 ]
/§ﬁoy(k) 20, (k)

Lemma 6.1: The estimate x(k) and its error variance

~2
o (k), {or this case of additive-Gaussian observation noise
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are given by

s o*? (k) 02 (k)
x(k) = y (k) + x* (k) (6.11)
o*? (k) +o_ (k) o*? (k) +o (k)

o*z(k)oé(k)
(6.12)

0% (k) =
o*z(k)+o§(k)

Substituting (6.10) in (5.6) and (5.9) and drop-

Proof:
then the

ping the time dependence k from all variables,

estimate x and its error variance g2 at time k are given

by
® (y-%) 2 (x-x*)?
x expl- - Jdx
- 00 * 2
20Y 20
%X = (6.13)
® (y-x) 2 (x-x*)?
expl- - ]Jdx
- 202 20%?2
o Y
® . (y-x) 2  (x-x*)?
* (x-x) *expl- - 1dx e
1 -0 202 2c*?2 -
2 e (6.14)
® (y-x) %  (x-x*)?
I expl(- = Jdx
| - 20$ 20%2
But
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2 2 2 -2 2 2. 2 2 2
(y—x)2 (x—x*)2 o* y +0Yx* + (o* +0Y)x -2(o* y+OY¥*)x

+ o <
2 2 2 2
OY o* O'Yo* ',;
0§+0* a* 0$ =1 1 )
m—= [x =207 y+ x*)]+.__2.y +____2x*
* Y
oYo* g* +o o* +oy Ty
1 (6.15)
’/
Let //
2 //"'
0* '/,
a1 = —7 =
o* A0y #
///
/,// 2
k!
./ a2 = 2 2
/7 g* +0,
2 2
2 Oy o* ‘
& =72 2 (6.16)
g* +0
then
2 2
(y-x) ° (x-x*)
. > + 2
*x
Oy o
1 2 1 2 1 ) 1 ;
* —;[x—(a1y+a2x*)] - ‘;(a1y+a2x*) b —y :zx*
(6.17)
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q=—y’+

then (6.17) becomes

(y-x)2 (x-x*)? 1
2 2 - o [x-(a1y+a2x*)]2+q (6.18)
oY o* £

Substituting (6.18) in (6.13) and (6.14) and noting that

@, a,, &% and g are independent of x, yields

1!

w [x-(a,y+a,x*)]?
e-%éi x expl[- . = jdx
- 00 252
% =
Q> [x- (o y+o x*)]?
e géj expl- - 22 ]dx (6.19)
-00 25
K- N [x(a,y+a,x*) ]2
e %QI (x-x) 2expl- : ]dx
-c0 252
e
oo [x- (a,y+o,x*)]?
e-%bj expl[- l - 1dx
= 262 (6.20)

Canceling the common terms from the numerator and the

denomenator of (6.19) and (6.20) and realizing that

A
g/2m

o [x-(a1y+a2x*)]2
expl[- ; ]Jdx =1
- 00 ZE
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X exp[- ]dx
- 2E?

. 1 Jw [x-(aly+a2x*)]2
x:
EV2T

. l (= N ‘[x-(aly+a2x*)]2
o2= = (x-x) 2expl- . ]Jdx
EvV2m)-» 2§

But these two relationships indicate that x and o? are the

mean and variance of the Gaussian density function

[x- (a,y+a,x*)]?2

p(x) = exp|-
£V/2n 282

therefore

X -

2 k2
OYO

o*24g2
y

This completes the proof.

This lemma indicates that the estimation process, in
this case of additive-Gaussian noise, involves obtaining
x* (k) and o*?(k) from (4.22) and (4.33) and inserting them

in (6.11) and (6.12) to find the estimate and its error

k. =

variance at each time k.
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Figures 6.3 and 6.4 describe the application of the
foregoing linear estimation method to two dimensional
pictorial data. In these figures, a stationary nonsepa-

rable correlation of the form

R(|i-k|, [3-1]) = Ex(i,§)x(k,1)

czexp[-/&f(i-k)2+a§(j-l)2] (6.26)

was assumed for the originals in Fig. 6.3(a) and Fig.
6.4(a). From (6.6), the three correlation values which

are used in finding o , a,, and a,, were found to be

R(0,0) = 1816
R(0,1) = 1807
R(1,0) = 1797

Using the modeling procedure the best 7th order autore-

gressive model was obtained as

X(i,3) = 0.87x(i,j-1)+0.02x(i,j-2)-0.03x(i-1,3-2)
+0.01x (i-1,3-1)+0.03x(i-1,3)+0.03x(i-1,j+1)

+0.13x(i-1,3+2)+0.29u(i, j) (6.27)

Note that with the above model, the estimator requires
only the storage of the current and the previously esti-
mated line of the image at each time k. Based on the
availability of two lines of image, at each time k, and

the use of the guidelines of the modeling procedure, the
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7th order model of (6.27) was found to be adequate.
Figures 6.3(b) and 6.4(b) represent noisy images,

where the noise is white additive-Gaussian with the signal

to noise ratios of one and one-half respectively. The

estimated image of Fig. 6.3(c) represents a 7.54 and

Fig. 6.4(c) represents an 8.4 db improvement (see Appendix

B for the definition of db improvement).
6.4 Properties of the Linear Estimator
For an autoregressive model of the form

x(k) = )

5 Bix(k-Ii)+Bu(k) (6.28)

1

when the observation noise is additive-Gaussian, then the

estimate and its error variance, at each time k are

given by
- a2 (k) a*? (k)
x(k) = Y x* (k) + y (k) (6.29)
o*?(k)+o2 (k) a*2(k)+02 (k)
Y Y
- = 02 (k)ao*? (k)
02 (k)= —IX (6.30)
o*2(k)+02 (k)
Y
where
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By (k-I,) (6.31)

M
o2 (k) = B2+[ ]

1By lo k151 (6.32)
1=

and ci(k) is the observation noise variance at time k.

Relations (6.29) through (6.32) indicate that imple-
mentation of the linear estimator is quite simple leading
to on line processing of either images or one dimensional
signals. An encourading property of this estimator is
that the error variance Gz(k) satisfies the set of recur-
sive equations (6.30) and (6.32) which are independent of
the value of the observation y(k). This enables the imple-
mentation of (6.30) and (6.31) on a digital computer,
prior to reception of any observations, and the investi-
gation of the steady state behavior of the error variance.
Since this estimation method is, in general, suboptimal,
as will be discussed in Chapter 8, the above a priori

analysis could be used as a basis for deciding for or

~ e T

against the use of the foregoing estimation technique
even. when the optimal solution exists. Of course, the
advantage of the use of this procedure when the optimal

solution exists is the computational and implementation

. - A

simplicity of this estimation algorithm. This is shown

in more detail in the following example.

65

¥
;;‘
.
LS
o d
1,
L
- E
‘; |
..“-




Example 6.1: Consider the one dimensional random process

x (k) satisfying the following autoregressive rodel.

x (k) = 0.248x(k-l)+0.014x(k-2)+0.969u(k)

For the observation

y(k) = x (k) +y (k)

Ey(k) =0
Ey2(k) = 0.5 (6.35)

the error variance of the one step predicted value can be

obtained from the two recursive relationships

o*2 (k) = (0.969)2+[o.2483(k-1)+o.0148(k-2)12 (6.36)

0.50*2% (k)
e e (6.37)

0.5+0*2% (k)

The converging value€ of o*2(k), denoted by g*2, in (6.36)

is found to be

g*? = 0.959 (6.38)

The estimation problem as defined by (6.33) through

(6.35) can also pe done optimally by defining a random

vector Z (k) [22] as




z,(k) = 2, (k-1) = x(k-2) (6.

Using (6.33), (6.40) and (6.41), the elements of Z(k+l)

can be written as

z, (k+1) x(k) = 0.2482,(k)+0.014Z, (k)+0.969u (k)

(6.
z, (k+1) z, (k) (6.

or with the use of (6.39) in a vector form as

0.248 0.014 0.969
Z(k)+ u (k)
1 0 0

Similarly the observation at time k-1 can be written as
y{k-1) = [1 01Z(k)+y(k-1) (6.

Equaticas (6.44) and (6.45) have the same form as
(1.14) and (1.15), thus the Kalman filte: 1ng technique is
applicable and the optimal estimates can be obtained from

(1.18) through (1.20) with




D(k)L(k)D(k) =1

K(k) =

Denoting the convergent value of the variance of the opti-

mal one step prediction value, obtained from implementing

(1.19) and (1.20), by 0;, this value was found to be

x = 0.957 (6.46)

Comparison of (6.38) and (6.46) reveals that, if the
third decimal place accuracy is negligible, then the
proposed method should be used for estimation since this
procedure is easily implementable and does not require
matrix operations. It should be noted that a second order
model was considered in this example, in order to outline
the desired properties with the least amount of notational

complexity. The computational simplicity of the proposed
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estimator will become exceedingly attractive when the
autoregressive model is of a much higher order, in which

case the optimal procedure would require operations on

large dimensional matrices.

6.5 Bounded Multiplicative Noise
When
Y(k) = y (k) [x(k)+M(k)] (6.47)

and y (k) has a density function pY(Y(k)) bounded between

v, (k) and vy, (k) with 0<y, K (k)<y,(k), then [26]

y (k)
=l
" x (k) +M(K) v (%)
if vy (k)€ <y, (k)
Py (k) |x(k)) ={ | % (k) +M (k) | x (k) +M (k)
0 Otherwise (6.48)

For images, the quantity x(k)+M(k) designates the intensity
of the original image at pixel k and hence it is always
positive. This is used in reducing condition

y (k)

Y1 (k) S < v, (k)
x(k)+M (k)

in (6.48) to a condition on x(k) as
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y (k) y (k)
— =M(k) & x(k) <

-M (k)

Y, (k) v, (k)

~

Thus, (6.48) can equivalently be written as

y (k)
p [—1
Y x(k)+M(k)

p(y(k)|x(k))=1 x (k) +M (k)

Substituting (6.49) in (5.6)
script k from all variables,

obtained from

y (k) y (k)
if -M(k)gx(k)g - =M (k)
Y, (k) Y, (k)
Otherwise (6.49)

and (5.9) and dropping sub-

then x and o2 for each k are

~ 1l (b, x y (x-x*)?
X = — ———pY(———)exp[- jdax (6.50)
G )b, x+M = xM 20%?
~ 1 {b, (x-x)? y (x-x*) 2
o= — p. ( )expl- ]dx (6.51)
GJb, x+M Y x+M 20%2
where
b, 1 y (x-x*) 2
G = —p. (T )expl- l1dx (6.52)
b, x+M ' x+M 20%2
Y
b1= —-M
Y
2
Y
b,= -Y—-M (6.53)
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Thus, computation of x and o? involves evaluation of

above definite integrals.

When y (k) is uniform then

1

if v, (k)sy(k)sy, (k)
Y, (k}-v, (k)

Otherwise

and (6.50) through (6.52) become

X (x=-x*)
—expl- ]Jdx
x+M 20*?

(x-%) 2 (x-x*)?
- exp[- —]dx
x+M 20*?

1 (x-x*) 2
—exp|[- —1]dx
X+M 20*?

The numerical technique of evaluating (6.55) through (6.57)
is presented in more detail in Chapter 7.

Figures 6.5 through 6.8 represent the application of
the foregoing estimation process to images containing uni-
form multiplicative noise. Fig. 6.5(a) represents the
same image as in Fig. 6.3(a), therefore it. autoregressive
model was chosen to be the same as in (6.27).

The binary square picture of Fig. 6.6(a) and Fig.
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6.7(a) are 32x32 images with a background intensity of 10

and a foreground intensity of 20. The shaded square pic-

ture of Fig. 6.8(a) is again a 32x32 image with intensity

values of 10, 15 and 20. The three correlation values of

the square picture were found to be R(0,0)=18.75, R(0,1)=

16.99 and R(1,0)=16.99 and those of the shaded square were
R(o,0)=12.1, R(0,1)=11.08 and R(1,0)=11.08.

A stationary nonseparable correlation function of the
form (6.4) was assumed for these images and the following
models were obtained:

a) For the square picture the best 4th order model

was found to be

z(i,j)=0.48x(i,j-l)+0.27x(i-1,j)+0.18x(i—1,j+1)
+0.07x(i-1,j+2)+0.46u(i,J) (6.58)
b) For the shaded square the best 4th order model

was given by

x(i,j)=0.48x(i,j-l)+0.27x(i—l,j)+0.18x(i—l,j+l)

+0.07x(i-1,3+2)+0.32u(i,3) (6.59)

Table 6.1 summarizes the result of the application of

the estimation pro~edure.

72




..

1! Fhadakl

LA

e

P

et

(b) Noisy, noise=0.7-1.0

Fig.

6.5

(a) Original

(c) Estimate

Uniform Multiplicative Noise
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(a) Original

T ad

i (b) Noisy, noise=0.7-1.0 (c) Estimate

Fig. 6.6 Uniform Multiplicative Noise
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(b) Noisy, noise=0.4-1.0

Fig. 6.7

(a) Original

(c) Estimate

Uniform Multiplicative Noise
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(a) Original

(b) Noisy, noise=0.6-1.0 (c) Estimate

Fig. 6.8 Uniform Multiplicative Noise
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IMAGE FIGURE| NOISE BOUNDS | db IMPROVEMENT

GiFl g 0.7-1.0 5.48

Square 4 0.7=1+0 7.58

Square 0.4-1.0 7:72

Shaded Square . 0.6-1.0 7.70

Table 6.1

Aside from the quantitative improvement, as ‘ndicated
in Table 6.1, note the preservation of edges in the esti-
mated images of Fig. 6.5(c) through Fig. 6.8(c), which is

a measure of subjective improvement. The responsiveness

of the estimator to abrupt pixel to pixel intensity changes

is due to the estimator structure of Fig. 2.2, since it is
this structure that allows the estimator to respond to

observation nonlinearities.

Observations Containing Additive and Multiplicative

Noise Terrs

In the case that the observation is of the form

y (k) = yv(k) [x(k)+M(k)]+v (k) (6.60)

then the application of the estimation method requires the
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derivation of the density function p(y(k)|x(k)). This
density function, then can be substituted in (5.6) and
(5.9) to determine the estimate and its error variance
at each time k.

Assuming that y (k) and v(k) in (6.60) are independent,
the conditional density p(y(k)|x(k)) can be obtained in
terms of the convolution of the probabiliiy density func-
tions of y(k) and v(k) [26]. This is achieved by noting
that conditioning of the right hand side of (6.60) on

x(k) will make the quantity x(k)+M(k) nonrandom, hence [26]

1 o y(k)-¢
ply (k) |x(k))=

py (—————)p_(£)dE
| % (k) +M (k) 0 ' x(k)+M(k) VY

(6.61)

In order to outline the procedure for solving (6.61),

let us assume that y(k) and v(k) are both uniformly dis-

tributed with

i

if  O<y, (k)gy (k)gy, (k)
Y, (k)=y, (k)
; py(Y(k))=<
E 0 Otherwise (6.62)
3
A and
f;
"
1 |
&

L
-




1
if vl(k)$v(k)$v2(k)

v, (k)-v, (k)

pv(V(k))=$
Otherwise (6.63)

L

Dropping the time dependence k from all variables and again

assuming that x+M>0 at each pixel (which is the case for

images) then,

_ y-&

if v, ¥y,
x+M

Otherwise

if y-Yz(x+M)sE<y-Yl(X+M)

Otherwise

Pv(€)=ﬁ

(6.66)

Otherwise

y-
—) and pv(E). it is
x+M

In order to find the product of pY(
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required to know whether

v,-v, <(x+M) (Y,-Y,) (6.67)

2
or

v,=v, 2 (M) (y,-Y,) (6.68)

The necessity of this requirement can easily be substan-
tiated by trying to find the density function of the

random variable z, where
z = a+b

where a and b are uniformly distributed between a , a, and

b b2, respectively.

]I
Assuming v is the dominant noise term in (6.60), i.e.
(6.68) hold at each pixel, and by inserting (6.65) and

(6.66) in (6.61) and carrying out the integration in terms

of £, then p(y|x) is given as

1 V=¥ y-v, y-v,

=l 2 41 if -Mgx< -M
-/ 1 y-v, y=v,
; if -Mg X< -M
¥ V2=, Y Y2

p(YIx)=T

1l y-v y-v y-v,

-1 =Ha] if -Mgxg -M

b x+M Y, Y, |
- L 0 Otherwise (6.69)
i 80
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Relation (6.69) can be substituted in (5.6) and (5.9)

to obtain the pertinent filtering equations.
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CHAPTER 7

COMPUTATIONAL ASPECTS

The estimation procedure developed in Chapters 2
through 5 has been mainly motivated by the ease of the
implementation and computational considerations. Since
the method consists of the three parts, namely modeling,
prediction and filtering, the computational requirements
of each will be discussed separately.

To find the model of the random process x(k), a
series of systems of linear equations must be solved. This
does not hamper the speed or running time of the estimation
process, since the modeling procedure is implemented prior
to the reception of any observations. The numerical meth-
ods, used in this work for solving each system of linear
equation, is just one of the many standard available meth-
ods [40]-[42].

In the actual operation of the estimator, the predic-
tion scheme requires a minimal amount of computation. This
only involves arithmetic operations to find x*(k) and the
upper bound of the variance o*?(k), equations (4.22) and
(4.33). Depending on whether or not the observation noise
is additive-Gaussian, the filtering step may represent the

bulk of the computational requirements of the entire esti-
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B . . N
mation procedure. In the linear case, again, finding x(k)
”»
and 02 (k) involves simple arithmetic operations and the
computational aspects of the general case is considered

below.
Nonlinear Filtering

Dropping the time dependence k (to reduce rotational
complexity) from all variables, the pertinent filtering
equations will become (equations (5.6) and (5.9)):

(x-x*) 2

jxp(y]x)eXp[— Jdx
20*%2

~
X =

, (x-x*) 2
jp(y|x)exp[— ]éx

20%2

R (x-x*)?
(x-x) ?ply|x)expl- 1dx
20%*?2

o=

(x-x*) 2
jp(Y!x)exP[- 1dx
20%2

In the general case, where (7.1) and (7.2) do not
have a closed analytic form, the integrals should be evalu-
ated numerically. Although (7.1) and (7.2) suggest that

three numerical integrations are required at each time k,




the following expansion of (7.2) can help in reducing this

number to two. An example of this is the case of the uni-

form multiplicative observation noise of Chapter 6, derived

in Section 7.2.

. 1 N A (x-x*)?2
gl= — {[Ix?-2xx+x?]p(y|x)exp[- - 1dx}
(x-x*) 20*
[P (y|x)expl- ]
20*?
(x=x*) 2
[x?p(y|x)erpl(- 1dx
20*%?2 R
= -x? 7.3
Y X ( )
[ply|x)exp[- ———]dx
20*?
7.2

Uniform Multiplicative Noise

Having developed the estimator for the case of bounded
multiplicative noise, the detailed expansion and the meth-
ods of evaluation of the integrals in (7.1) and (7.2) for

the particular case of uniform multiplicative observation

ey

noise is presented in this section. Therefore, when

1
3 plylx) =

(v,~v,) (x+M)

then (7.1) and (7.2) become

¥
s ald
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Letting

= X+M

results in




M? (z-M-x*)?
[z=-2M+—]exp[- ldz
z 20*%?

b (x-x*) 2
(x+M) expl- ]dx-ZM‘ expl- —}]dax

a 20%*2

jb (x=-x*)?

a 20%?

b 1 (x-x*)?
—expl- 1dx
a xtM 20%2

(x-x*)?
expl(- — ]dx
20%?

Using (7.7) and (7.12), then relations (7.10) and (7.11)

become




x expl-
3 20*2

&

b (x-x*) 2
————1dx-MI ,+M?T
(7.14)

Furthermore, with a change of the variable

z = ¥-x*

dz = dx

x expl- —]dx
a 20%?

l b (x-x*) 2

. b (x-x*) 2

a-x* 20% 2

b-x* z
= z expl- ldz+x* expl- 1dx

a 20%2

b-x* z? (a-x*)? (b-x*) 2

z expl- ]d-~g*2[expl- —]-exp[- —1]
a-x* 20*2 20*2 20%2

(7.17)

Letting
(a-x*) "~ (b-x*) 2

Q = o*?{exp{- ——1-expl- —_—11
io*? 20%2




then using (7.16) relation (7.14) can be written as

b x? (x-x*)?
—expl[- —J}dx = Q+(x*-M)Iz+M211
a x+M 20* 2

Substituting (7.13) and (7.19) in (7.4) and (7.5) results

02 = —————— "M2-x2 (7.21)

L

where I,, I, and Q are given vy (7.7), (7.12) and (7.18),

respectively.

Thus, finding x and o? requires carrying out the two

integrations I, and I,. Since, the functions involved in
these integrations are continuous aand well behaved, the
Romberg's method of numerical integration was used [42] to
determine the estimates of 22x32 images in Fig. 6.6(c)
through I'ig. 6.8(c). This integration method is reasonably
fast and requires minimal coding. For the images in
Fig. 6.6 through Fig. 6.8, the total CPU time of setting
up the iwmage, the observation and obtaining the estimated
image, was about 2.5 minutes on PDP-10 computer.

Although the CPU time of 2.5 minutes for the 32x32

images of Figs. 6.6 through 6.8 is reasonable, this time




increases linearly with the increase in the size of the
image. Such an increase, in general, may not be tolerable
in practical situations. Therefore, for images of the size
256x256 (such as those in Fig. 6.5) or higher, th® appli-
cation of the method ma' warrant some approximation of
the integrals I, and I,. For small values of the predic-
tion variance o*?, a crude approximation on the exponential
form of p(x(k), can be made by expanding the exponential
in its series equivalent and retaining the first twc terms.
This results in representing p(x(k)) at each time k by

20* 1

p(x) = [ ] (7.22)
V21 20%2+ (x-x*)?

With this it can he shown that ; and 82 are obtained from

] = B
X = - (7.23)
A
/. l ~ ~
02 = —[Q-2Bx+Ax?] (7.24)
A
s where
b
A = ply|x)p(x)dx
a
i
‘ 1 (x+M) 2 q, -1 2(x+M)+q, x=b
} = [—1n -——tan ————2] (7.25)
» 2q, 20*’+(x-x*)? q,/q Yq x=a
-
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with

and

jb 2 -1 2(x+M)+q, x=b

B = xply|x)p(x)dx = [—tan ——_ ] -MA
a Yq /q x=a
(7.26)
b
Q = x2p(y|x)p(x)dx
a
1 qd: 2 -1 2x+2M+g, x=Db
M?A+[—ln(20*2+(x-x*)2)—(2M+——)(——)tan
2 2 Vg /q X=a
(7.27)
q, = 20%7+(M+x*)?
q, = -2 (M+x¥*)
q = 4[20%2+ (M+x*) 2] -4 (M+x*)?
Y
a=—"-M
Yo
Y
b = —-M
Y
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CHAPTER 8

A DISCUSSION ON THE OPTIMALITY OF THE

PROCEDURE, EXTENSIONS AND CONCLUSIONS

8.1 Discussion on Optimality

Due to the various restrictions imposed on the esti-
mator in Chapter 2, the estimation procedure as developed
in Chapters 2 through 5 is, in general, suboptimal. An
exception to this is the case considered in the following

theorem.

Theorem 8.1: If the observation noise is additive-Gaus-

sian and the process x(k) is a first order normal Markov
~ /\2
process, then for given initial conditions, x(0) and o (0),

the procedure is optimal.

Proof: In this case, the model of the process x (k) and

that of observation are given by

x (k)

gx (k) +Bu (k) (8.1)

y (k) x (k) +y (k) (8.2)

In order to show the optimality of the procedure in this

particular case, let us assume that the estimate x (k-1)
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~2
and its error variance o (k-1) at time k-1 have been found

optimally, i.e.
%(k-1) = Ex(k-1) [y(1),....ry(k-1) (8.3)
A A 2
"2 ke1) = Elx(k-1)-x(k=1)1 |y (1), .c.ry (k1) (8.4)

2
The predicted value x* (k) and its error variance o* (k) are

obtained from
x* (k) = Bx(k-1) (8.5)
2 2 2A2
o (k) =B +R o (k-1) (8.6)
But from (8.1)

BEx (k-1) |y (1), ...,y (k-1)

Ex (k) |y (1) y.e0ny(k-1)

+ BEu(k) |y(1),.. .,y (k-1)

BEx(k-1) |y (1) ,. ..,y (k-1)

(8.7)
where by using (8.3) and (8.5), it follows that
\ Bx(K) |y (1) oo ry (k1) = BX(k=1) = x*(K) (8.8)
s
! and similarly
, _
E[x(k)-Ex(k)|y(l),...,y(k-l)] ly (1), ... y(k-1)
= 48 6 (k-1) (8.9)

2
But x* (k) and o* (k) being optimal quantities makes the !

chosen a posteriori density of x(k) in Section 5.1 to be
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pi(x(k)) = p(x(k)iy(l),...,y(k—l)) (8.10)

and the substitution of (8.10) in (5.6) and (5.9) results
in

) [x(K)p(y (k) |x(k))p(x(k) |y (1),...,y(k=-1))dx(k)
x(k)=

[p(yik) Ix(k))p(x(k) |y (1), ...,y (k-1))dx (k)

(8.11)

A 2
Az( [Ix(k) =% (k)] p(v(k) |x(k))p(x(k) |y (1) v ooy (k=1))dx (k)
o (k)=

Ip(y(k)|X(k))p(X(k)|y(1).--.y(k-1))dX(k)

(8.12)
A comparison of (8.11) and (8.12) with (2.10) and (2.13)
indicates that x(k) and Sz(k) are optimal quantities.

The proof of the theorem follows by applying the above
argument for k=1,2,....

In the derivation of the general estimation procedure,
the value of the prediction error variance was approximated
by its upper bound in Section 4.3. As stated previously,
this approximation was introduced in order to maintain
computational simplicity of the overall algorithm, but
since the error variance is an indication of the uncertainty
of the value of each estimate then the effect of such an
approximation on the values of the subsequent error vari-
ances should be investigated. 1In the following, the effect
of such an approximation on the error variance of the

linear estimator of Section 6.3 is analyzed and it is
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shown that the introduction of the upper bound causes all
future computed error variances to be larger than the

actual variances.

At each time k, the actual unavailable prediction

2
error variance o (k) is approximated by its upper bound
p

2
o* (k) where (equations (4.32) and (4.33))

M
L

o*z(k) = B2+[.

~ 2
IBiIO(k-Ii)] (8.13)
i

1
with
2

op(k) < o*z(k) (8.14)

The computed error variance of the filtered Juantity is

given by
2 2
~2 o* (k)o_ (k)
o (k) = —y 1, (8.15)
g* (k)+0Y(k)

2
Assuming Op(k) is available at time k then the actual vari-
2
ance oa(k) would be

2 2
5 a. (k) o (k)
o (k) = F—X

2 2 (8.16)
op(k)+oY(k)

2
But due to (8.14) and OY(k) being the observation noise

variance, then it follows from (8.15) and (8.16) that

2 a2
oa(k) < o (k) (8.17)
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Recursively, the substitution of (8.17) in (8.13) shows
that the computed prediction error variance, o*z(k), is
always larger than the actual variance. Therefore, for
the linear estimator of Section 6.3, all computed variinces

are the upper bounds for the actual variances.
8.2 Discussion of Nonlinear Case

In the light of the discussions in the previous sec-
tion, it is expected that the computed and actual variances
of the nonlinear estimator behave similar to those of the
linear case. The difficulty in showing this is in having
az(k) satisfy an integral relation of (5.9). It is sus-
pected, however, that the relationship between the computed
and the actual variances of the linear case does not hold
true for all nonlinear observations while for a certain
class of nonlinearities the same results may exist.

This subject requires a more exact and rigorous analy-
sis and is an excellent candidate for topic of future

investigation.
8.3 Extensions and Topics for Further Research

The estimation method of Chapters 2 through 5 has heen

derived based on the restriction of the linear prediction.
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But if a nonlinear model of the random process X (k) exists
chen the prediction procedure could be replaced by the
appropriate nonlinear one. In general, if the form of
nonlinearity is known then the modeling procedure can be
modified in order to determine a nonlinear model of the
process x(k). This modification is conciptually simple
and would require a priori decision on the order and the
degree of the nonlinearity. For example, for a given
order M and the 2nd degree polynomial nonlinearity the

modeling procedure can be used in obtaining a model of

the form
M 2 M
x(k) = Z Bix (k-Ii)+ Z QM+iX(k_IM+i)
i=1 i=]
1 + fome1 Boms2X (K- Tome1) X (K-Toyyp)* e -+Bu (k)

(8.18)

Oof course, (8.18) is a particular form of nonlinearity and
it should be noted that in order to apply the modeling
procedure the a priori statistice must contain up to and

including the 3rd moment of the random process x(k).

b+ 8.4 Conclusion

} This dissertation has examined and expanded the sub-

ject of general image estimation. An estimation procedure
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has been developed with a particular emphasis on the multi-

plicative and non-Gaussian observation noise. An analysis

of the optimal discrete filter has been presented to show
that the principle of the estimation at each time k consists
of a one step prediction and filtering operations. Concep-
tually these operations are shown to closely resemble a
learning procedure based on the past information and the
optimal use of the present information. Accordingly, a
recursive estimation procedure is derived such that the
logic of the estimation principle is maintained and, at

the same time, the procedure is implementable.

Although the derivation and application of the method
has primarily been presented in terms of the two dimensional
processes, the procedure is directly applicable to one
dimensional problems. A particularly important and prac-
tical feature of the estimation method is the method's
independence of the analytic representation of the a priori
correlation function. An equally significant value of the
procedure, in this respect, is its applicability to prob-
lems where only partial values of the correlation function
are specified.

The estimation method is demonstrated to be applicable
to a broad class of observation systems and, in fact, the
degree of ease or difficulty in applying the method to

general nonlinear systems is directly related to the ease




APPENDIX A
A DISCUSSION ON ERROR VARIANCE

For a given set of observation y(l),....,y(k), the
estimate x (k) of the process x (k) at time k is, in general,

some function f of the observations which can be written as
(k) = £(y(1),....,¥(K)) (A.1)

AR a2
Accordingly, the two error variances, o, (k) and o, (k), of

% (k) can be defined as

~ ~ 2
57 (k) = B{Ix(0)-x(k)] )

2

A~ ~ 2
Oz(k) E{[x(k)-x(k)] |Y(l),----:Y(k)}
(A.1) and (A.2), it follows that

2 ~2

5, (k) = Egoa (k)

where EY represents the expectation with respact to

y(1),.c..0y (k). Letting
e (k) = x(K)=x'K) (A.5)

then e(k) is a random variable and (A.2) and (A.3) can

equivalently be written as




2
o, (k) = (A.6)

2
[...][]e (K)ple(k),y(1),....,y(k))de(k)dy(1),...,dy (k)
~2 2
o, (k) = e (k)p(e(k)]|Y{l),...,y(k))de(k) (A.7)

In the linear optimal case of Section 1.3, the exist-
ence of the orthogonality principle (equation (1.12))
along with the zero mean and the Gaussian nature of the
random variables result in the statistical independence of
e(k) and y(1),....,y(k) [26] which reduces (A.6) and (A.7)

to

A2 A2

2
o,(k) = 0,(k) = [e (k)p(e(k))de(k) (A.8)

but in general
A2 A2
o, (k) # o,(k) (A.9)

A2
For a given sample function of the observation,o, (k'
in (A.3) specifies the amount of variation (uncertainty)
associated with choosing x(k) as the estimate of (k) at
A2

time k. The quantity cl(k), on the other hand, represents

the ensemble average of the variance when finding Q(k) from

-

(A.1) and for all possible values of y(l),.....y(k).
Since in this dissertation, our interest is in a particular

1 sample function of the observation (the degraded image),

quantity (A.3) is taken to represent the variance.
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APPENDIX B
AN IMPROVEMENT MEASURE FOR ESTIMATED IMAGES

Letting b(i,3j), y(i,j) and S(i,j) denote, in order
the intensities of the original image, the noise corrupted
image and the estimated image at pixel (i,j), then the two

. . 2 2
quantities o and o, are computed as

1 N N

— ¥} b, -y(i,]
N i=1 =1

2

1 N . 5
= } [b(i,j)-b(i,J)]
N i=1 j=1

where N is the size of the image.
S 2 2 .
Viewing o and L as the average error variance
associated with the observation and the estimate, respec-

tively, the amount of improvement in db is obtained from

(o]

2
' n
db improvement = 10 log,,|—7—

(B.3)
e
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