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ABSTRACT 

The principle of image estimation in the presence of 

linear and nonlinear observations is considered in this 

dissertation and a recursive estimation algorithm is 

developed.  The development proceeds from the assumptions 

that the image is statistically characterized by its 

first two moments namely the mean and the autocorrelation 

while the observation is allowed to be a general function 

of the signal and noise.  A two step recursive estimation 

procedure, compatible with the logical structure of the 

optimal minimum mean square estimator, is developed.  The 

procedure consists of a linear one step prediction and a 

filtering operation. 

In order to derive the linear predictor, the a priori 

mean and autocorrelation information is employed to obtain 

a linear finite order model of the two dimensional random 

process.  This model is of an autoregressive form whose 

derivation requires only the numerical values of the mean 

and the correlation functions.  At each step of the esti- 

mation, the autoregressive model is used in finding the 

best linear predicted value and its error variance as a 

function of past estimates and their error variances. 

Following the prediction process, the filtering operation 

proceeds to evaluate the estimate and its error variance 

r 
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as a function of the predicted value and the observation. 

The estimation method is applied to a number of one 

and two dimensional problems and the appropriate estimators 

are developed for the cases where the observation contains 

additive and/or multiplicative noise term(s).  The perfor- 

mance of the method is evaluated by applying the estimation 

procedure to two dimensional pictorial data corrupted by 

additive-Gaussian and multiplicative uniform noise. 

The value of the method has been analyzed and dis- 

cussed as to its application to practical problems and 

its optimality as an estimation technique. 

9. 
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CHAPTER 1 

INTRODUCTION 

Progress in the sophistication and the computational 

capability of digital computers has opened a field of re- 

search in the applied sciences dealing with the charac- 

terization, understanding and analysis of pictorial data. 

This field of image processing encompasses a variety of 

areas of study such as coding, recognition, enhancement, 

restoration, estimation, cata compression and many more. 

A particular subject of interest among these is that of 

image estimation.  This subject deals with the restoration 

of images containing degradations where only some statis- 

tical properties of both the image and the degrading phe- 

nomenon are known.  In this respect, a picture is generally 

viewed as a two dimensional random process (field) [U , 

[6] and often characterized by its first two moments, 

namely the mean and the autocorrelation.  Denoting the 

brightness function of the discrete image by b{i,j), with 

i and j as the row and column counters, the two moments 

are defined as 

M(i,j) - Eb(i,j) 
(1.1) 

and 



1111 mfm*m*mmmmim*~~~~' —"  • '" ■ 

R(l,J,k,lJ = E[b{i,j)-M(i/j)][b{k,l)-M(k,l)]    (1.2) 

where E is the mathematical expectation operator. 

The list of degradation (noise) introducing sources 

in imaging systems is extensive and in particular includes 

inaccuracies in the sensing devices,  the existence of air 

turbulence or cloud layer between the camera system and 

the scene, reflections from other objects in the scene, 

uncertainties in the transmission systems and film grain 

noise.  The degraded image (observation), denoted by 

y(i,j), specifies the functional relationship of the sig- 

nal, b(i,j) and the noise Y(i,j).  Symbolically 

y(i,j) = f(b(i,j),Y(i.j)) (1.3) 

where f may be nonlinear and y(i,j)   may be vector valued 

(i.e. more than one noise term). 

The values of M(i,j), y(i,j) and R(i,j,k,l), for all 

i,j,k,l, the functional form of f and the density function 

of yfi'J) in d-3) constitute the a priori information. 

This constitutes the total amount of information that the 

estimation procedure is to use in obtaining the improved 

image.  An estimation procedure is the process of assigning 

a value to an unknown parameter based on the noise cor- 

rupted observations involving some function of the para- 

meter.  The assigned value is called the estimate and the 

system yielding the estimate is called the estimator.  The 



ipiiini.jaaipw w**mm*mmmmmmmmmimmmm ■     ■(■!■■• m^mmfmmmmmfmm M   n H 

assignment of the estimate values, in general, is based on 

certain criterion known as the estimation criterion.  One 

such criterion is that of minimizing the mean square error. 

Optimum filtering of images under the general condi- 

tion of (1.3) has received little attention, while a vari- 

ety of procedures have been developed for the special lin- 

ear case, where 

y(i,j) = b(i, j)+Y(i» j) (1.4) 

•* 

* 

withY(i,j) white and Gaussian [32]-[37].  Although (1.4) 

describes many natural forms of degradations [32]-[37], 

there are conceivably as many situations where thit. model 

does not apply.  Examples of the above are the film grain 

noise and the taking of pictures through a nonhomogeneous 

layer of clouds, where the noise is a random attenuation 

factor.  Hence the observation takes the form 

y(i,j) = Y(i/j)b(i,j) (1.5) 

The majority of these linear estimation techniques 

require a rather specific analytical representation of the 

correlation function R(i,j,k,l) and in order for  heir 

underlying estimators to become computationally efficient, 

the signal and the noise processes are required to be wide 

sense stationary.  Due to these requirements, the above 

methods may not be suitable for certain practical problems 

^^M* 
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Examples of which are the cases where the correlation func 

tion is specified numerically and/or partially (the corre- 

lation function is represented partially if R(i,j,k,l) is 

defined only for |i-k|«p and |j-lUq, for some integers 

p and q) .  A property, though, of the"..- procedures, which 

has great intuitivs appeal and is crucial to the real time 

implementation of estimators, is the recursive nature of 

their underlying algorithms.  This property arises from 

Kalman-Bucy [23]-[24] estimation theory reviewed briefly 

in Section 1.2.  Section 1.3 contains a review of one di- 

mensional nonlinear estimation and the extended Kalman-Bucy 

filtering methods.  These techniques, as will be pointed 

out, deal with certain nonlinearities in estimation prob- 

lems. 

In this dissertation, a general estimation method 

will be developed having the following characteristics: 

L.    The method will be applicable to two as well as one 

dimensions 1 estimation problems. 

2. The estimation algorithm will only require specifi- 

cation of the numerical values of R'i,j,k,l). 

3. The procedure will be applicable to problems where 

onli partial representation of the correlation function 

is available. 

4. The method will be applicable to general linear and 

nonlinear observation systems of (1.3). 
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I. 

5.   The procedure will be implementable; i.e. nunerical 

in nature and computationally feasible. 

Section 1.1 contains the definition of some notations 

and the description of a convention which unifies the one 

and two dimensional indexing.  A brief review of one dimen- 

sional estimation techniques is presented in Sections 1.2 

and 1.3. 

The estimation method is derived in Chapters 2 

tvrough 5.  In Chapter 2, the structure of the estimator 

is developed.  It is shown that the general estimation 

technique consists of modeling, linear prediction and 

filtering steps. 

The modeling problem is considered in Chapter 3.  A 

general procedure is introduced which utilizes the a priori 

statistics and derives a linear autoregressive model of 

the process.  Chapter 4 and 5 contain pertinent deriva- 

tions of the linear one step predictor and the filtering 

steps, respectively. 

The estimation process, as developed in Chapter 2 

through 5, is applied to a number of linear and nonlinear 

problems in Chapter 6.  This chapter also includes the 

derivation of the estimator for a few special cases.  In- 

cluded among these are the cases of additive-Gaussian and 

multiplicative uniform observation noise.  In Chapter 7, 

the proposed estimation process is analyzed as to its 
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computational requirements.  Discussion on the optimality 

of the estimator is presented in Chapter 8.  Extensions, 

topics for further research and conclusions are also in- 

cluded in this chapter. 

Appendix A contains a brief discussion on the error 

variance.  Appen 

estimated images 

dix B describes a fidelity measure for 

1,1   Notations 

An image is viewed as an NxN matrix with elements 

b(i,j), where b(i,j) is the intensity of the image at pixel 

(i,j).  To reduce the notational complexity, the pixels 

. ^   J w  i o     M M+i     .N2 consecutively from are indexed by 1,2,....#«#»**»••••»" 

left to right and from top to bottom.  This convention 

enables us to refer to the doubly indexed b(i,j) as b(k), 

symbolically.  Hence (1.1) through (1.3) can be written as: 

M(k) ■ E[b(k) ] 

R(k,l) = E[b(k)-M(k)] [b(l)-M(l)] 

y(k) - f (b(k),Y{k)) 

Let us define the process x(k) as 

x(k) - b(k)-M(k) k=l,2, ,N' 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

■• .^^tmrnmrn 
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Thus the problem of estimating b(k) reduces to estimating 

x(k) . 

1.2   A Survey of Discrete One Dimensional Estimation 

At a given time k and for a given set of observations 

y(l)# ,y(k), the minimum mean square (MMS) estimate of 

a random process x(k) is, by definition, the particular 

value of xe(k) which minimizes the quantity e2(k) defined 

as [see Appendix A] 

2(k) = E[x(k)-x€-(k)]2|yU)' ,y(k) (1.10) 

Let us denote this quantity by xCT(k).  Direct minimization 

of e2(k) with respect to xe(k) yields [22] 

x^k) = Ex(k) |y(l), y(k) (1.1?) 

This is a general result, in that, regardless of the under- 

lying probability density functions (PDF) of x(.) and y(.), 

the MMS estimate is given by (1.10). 

When x(k) is a normal random process and processes 

x(.)and y(.) are jointly normal [22], then xcr(k) in (1.10) 

will be linear in yd), »y(M. having the form 

h 
* ■ 

xcr(k) = I  ai(k)y(i) 
i=l 

(1.12) 

.-r..  4 
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To determine the constants a, (k) iCx, (k) . the right 1 k 

hand side of (1.11) is substituted in (1.9) and e2 (k) 

is minimized with respect to a, (k) /ak (k), resulting 

in k linear equations 

E[x(k)-x(7(k)]y(i) - 0 1. — i. f Z f • ■ • • ^K (1.13) 

collectively referred to as the orthogonality principle. 

This procedure of finding x0" (k) , though clear and simple, 

is numerically inefficient since for each time k,a system 

of linear equations has to be solved where the size of the 

system of equation grows with k. 

Kaiman and Bucy [23]-[24] have shown that if the pro- 

cess x(k) can be generated by applying white noise to the 

input of a finite dimensional linear dynamical system, 

then the estimation process will be recursive yielding an 

implementable and computationally simple estimator.  This 

is done if there exist a vector Z(k) such that 

x(k) = C(k)Z(k) (1.14) 

E * 

h 
■ 

with Z(k) satisfying a linear stochastic difference equa- 

tion 

Z(k+1) = A(k)Z(k)+B(k)u(k) 

and the observation having the form 

(1.15) 
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y(k) - C(k)Z(k)+D(k)v(k) 

with 

Eu(k) = Ev(k) = 0 

Eu(i)u'(j) ■ K(i)Mi-j) 

Ev(i)v' (j) ■ L(i)Mi-j) 

(1.16) 

(1.17a) 

(1.17b) 

(1.17c) 

where A(k). B(k), C(k), D(k), K(k), L(k) are nxn. nxr, sxn, 

sxq, rxr and qxq matrices, respectively.  The term A(i-j) 

is the Kronecker delta function and the prime indicates 

matrix transposition. 

The estimate of x(k) can be obtained from the estimate 

of 8(10 through (1.14).  Denoting the MMS one step predic- 

tion value of Z(k) by Z (k), then 

zCT(k) =EZ(k)ly(l), ,y(k-l) 
(1.18) 

and the Kalman-Bucy linear estimator is given by [22]-[24] 

ZCT(k+l) = [A(k)-F(k)C(k)]Zc'(k)+F(k)y(k) (1.19) 

where -i 

F(k) = A(k)P(k)C'(k)[C(k)P(k)c'(k)+D(k)L(k)D'(k)] 

(1.20) 

and 

P(k+1) = [A(k)-F(k)C(k)]P(k)[A(k)-F(k)C(k)]' 

+B(k)K(k)B' (k)+F(k)D(k)L(k)r)' (k)F' (k)    (1.21) 

The ma trix P(k+1) has the property that for each k 

; 
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Plk+1) = EiZU+D-Z^k+l) ] [Z(k.+ 1)-Zrt(k+1)] '     (1.22) 

The a- jve results have been presented in a summarized 

form (for more detail see [20], [22]) and are included in 

order to point out the recursive nature of the solution 

in (1.19) through (1.21).  This property is conspicuous in 

(1.19) where the estimate at time k+1, Zcr(k+1), is only a 

function of the estimate at time k, Z(T(k) and the observa- 

tion at time k, y(k).  It is this attribute that makes the 

Kalman-Bucy linear estimator easily implementable on digi- 

tal computers. 

1.3   Nonlinear Estimation and Extended Kaiman Filtering 

The majority of the existing nonlinear estimation 

techniques are concerned with problems where the system 

and observation models (equations (1.14) and (1.15), re- 

spectively) are given as [22], [29] 

Z(k+1) - f [Z(k) ,k]+B(k)u(k) (1.23) 

y(k) = g[Z(k) ,k]+D(k)v(k) (1.24) 

where f(.^ and g(.) are general nonlinear functions. 

An implementable nonlinear estimation approach, which 

uses linearization in obtaining a suitable procedure to 

estimate the states of the nonlinear system of (1.23), is 

10 



^^ mmi^m^~— 

that of the extended Kaiman method 1221.  In this teoh- 

nique. relationships are obtained which describe the be- 

havior of (1.23) and (1.24) in the vicinity of a nominal 

solution IMW. The dynamics of the difference .(K)-zMk) 

is characterized by a set of linear equations.  This char- 

acterization is achieved by assuming that f(100 .kl and 

,(»(k),kl are twice differentiate in l(kl and defining 

the matrices 

f 

9fi >«, 
•  • 

as, 3Z2 3Z 

3f2 3f2 
1 

", 
3Z2 

A{k) k 

3fn 
• 

3Zi 

3fn 

3zn 
w 

*A 

3gi 
•  • •   •  • 

3Zi 3Z2 3Zn 

3g2 3ga 

azj 3Z2 

C(k) Ä 

»9n »«n 

3Zn 

Z(k)=Z*(k)  (1.25) 

Z(k)=Z*(k)  (1.26) 

11 

um — — 
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where A(k) and C(k) are used as coefficient matrices of a 

linearized representation of (1.23) and (1.24) in the 

neighborhood of 7-* (k) . 

It is shown in [221 that the application of the Kaiman 

Bu.y estimation technique along with the proper choice of 

ZMM, results in a recursive nonlinear estimator of the 

forr 

z(k+l) - f [Z(k),k]+F(k)[y(k)-g[Z(k),k]] (1.27) 

where F(k) satisfies (1.20) and (1.21) with matrices Mk) 

andC(k) defined by (1.25) and (1.26). 

Aside from the extended Kalman-Bucy technique, there 

are other methods that consider tne models of (1.23) and 

(1.24) [28], [29].  These procedures, however, lack the 

ease of implementation inherent in the linear Kalman-Bucy 

and the extended Kalman-Bucy techniques. 

r 

Ww 
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CHAPTER   2 

ESTIMATION METHOD 

In this chapter, the structure of the general non- 

linear estimator will be developed.  Section 2.1 contains 

the derivation of the optimal minimum mean square esti- 

mator.  Based on the properties of this estimator, the 

structure of a general implementable estimation procedure 

is developed in Section 2.2. 

2.1   The Minimum Mean Square Estimation 

For a given set of obse-vation y (1) , . .. . ,y (k) , tie 

minimum mean square (MMS) estimate, xCT(k), of a process 

x(.) at time k is obtained from [22] 

x'Mk) = Ex(k) |y{l), ,y(k) (2.1) 

Similarly the error variance of this estimate, o  (k), is 

defined as 

o9   (k) = E[x(k)-xCfk)]2|y(l), ,y(k) 

Defining the set Y(k) as 

Yds) = {yd), ..y(k-l)} 

(2.2) 

(2.3) 

13 
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the equivalent form of (2.1) is 

*?{k)   =Jx(k)p(x{k) |Y(k),y(k))dx(k) (2.4) 

with p(.) designating the probability density, 

Baye's rule, 

p(x(k),Y(k) ,y(k) ) 
p(x(k) |Y(k),y{k)) = 

p(Y(k) ,y(k)) 

By applying 

p(y(k) |x{k),Y{k))p(x(k) |Y(k)) 

p(y(k) |Y{k)) 

(2.5) 

Since y(k) is defined as only a   function of x(k) and y(k) 

(equation (1.7)), where y(k) is independent of Y (k), then 

p(y(k) |x(k),Y(k)) - p(y(<) |x(k)) (2.6) 

This simplifies (2.5) to 

p(x(k) lY(k) ,y(k)) - 
p(y(k) |x{k))p(x(K) |Y(k)) 

p(y(k) |Y(k)) 
(2.7) 

The substitution of the above in (2.4) yields 

xtT(k) =  /x(k)p(y(k) |x(k))p(x(k) |Y(k))dx(k) 
p(y(k) |Y(k)) 

(2.3) 

Furthermore 

T  • i- 

i 

14 
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P(y{k) |Y{k)) = 
P(y(k),Y(k))/p(y(k),Y(k)/x(k))dx(k) 

p(Y(k)) p(Y{k)) 

p(Y(k)) 
/p(y(k) |x(k),Y(k))p(x(k) |Y(k))p(Y(k))dx(k) 

=/p(y(k) |x(k))p(x(k) |Y'k))dx(k) (2.9) 

where again (2.6) has been used to obtain (2.9).  Using 

(2.9) in (2.8) yields 

x(7(k)=— 
/x(k)p(y(k) |x(k))p(x(k) |Y(k))dx(k) 

/p(y(k) |x(k))p(x(k) |Y(k))dx(k) 
(2.10) 

i ■ 

■ 

Similarly the error variance of (2.2) is given by 

2 

0er (k)=/[x(k)-x(T(k)]2p(>:(k) |Y(k)/y(k))dx(k)     (2.11) 

Substituting (2.7) in the above, results in 

2    /[x(k)-x
cr(k)]2p(y(k) |x(k))p(x(k) |Y(k))dx{k) 

a  (k)=   
P(y(k) |Y(k)) 

(2.12) 

Finally the substitution of (2.9) in (2.12) yields the 

form of a"2(k) to be 

2 /[x(k)-x0'(k)]2p(y(k) |x(k))p(x(k) |Y(k))dx(k) 
oCT (k)= 

/p(y(k) |x(k))p(x(k) |Y(k))dx(k) 

(2,13) 

]5 
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Equations (2.10) and (2.13) suggest that the optimal 

estimation, at time k, is achieved first by finding 

p(x(k)|Y(k)) and then using it with y(k) to arrive at 

xJ'(k) and aa   (k) .  Letting x (k) and o?(k) denote the 
P        P 

optimal prediction value and its error variance of x(k)/ 

respectively, then (see (1.17) 

x (k) =Ex(k)|y(l), ,y(k-l) =Ex(k)|Y{k)     (2.14) 

I' 

a2(k) = Elx(k)-x (k)]2|Y(k) (2.15) 

But x (k) and a2 (k) are the mean and the variance, respec- 
P        P 

tively, of p(x(k)|Y(k)) in (2.10) and (2.13).  Therefore, 

the optimal estimation at time k can be thought of as a 

two step procedure depicted in Fig. 2.1, where the blocks 

P and F may be identified as the prediction and filtering 

steps, respectively. 

y(k) 

p(x(k) !Y(k)) 

y(k-l) 

x^Mk) 

(k) 

Fig. 2.1 

16 
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In this system structure#y(k) is isolated from the 

other random variables and if p(x(k)|Y(k)) is known, con- 

ceptually one can deal with its nonlinearities in block F. 

So if p(x(k;|Y(k)) is given, then the derivation of xCT(k) 

and a**2 (k) is accomplished Ly carry ng out the integrations 

in (2.19) and (2.13) .  However, the derivation of this 

probability density for the general observation system 

of (1.13) does not lend itself to analytic methods and in 

addition, available numerical approaches are computation- 

ally unfeasible [22]. 

In the following section, an alternate procedure is 

considered, whereby an approximation to the probability 

density p(x(k)|Y(k)) is derived.  The method is compatible 

with the logic of the optimal estimator in Fig. 2.1, in 

that this logic consists of the representation of past 

information (i.e. information due to a priori statistics 

and observations y(1),....,y (k-1)) in the form of a pro- 

bability density to be combined with present information 

(i.e. Y(k)) in block F. 

2.2   definition of the Proposed Estimator 

In order to comply with the inherent logical structure 

of the optimum estimator and at the same time maintain 

the algorithmic implementability, the proposed estimator 

17 
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is constructed according to the following restrictions. 

a) Only the first two moments of any random variable 

are computed. 

b) The prediction process is chosen to be linear. 

c) The prediction is to be based on a selected small 

number of past estimates.  This will impose a 

desired limited memory requirement for the 

estimator. 

In the estimation process, the imposition of con- 

straint (a) on the estimator results in the derivation of 

the estimate value and its error variance at each time k. 

The value of the varii.:ice represents a measure of uncer- 

tainty of the estimate's numerical value.  This constraint 

alleviates the problem of deriving or approximating the 

probability density associated with the estimate.  Due to 

the admissibility of general probability densities for the 

observation noise, the lack of this constraint will require 

estimation approaches similar to those described in [22, 

Chap. 7], which as mentioned before, are computationally 

unfeasible. 

Since the prediction process is primarily a learning 

procedure based on the past information, then the linearity 

requirement of condition (b) does not violate the under- 

lying logic of the optimal estimator.  Although this re- 

quirement, in general, results in suboptimal processing. 

18 
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it enhances the implementability of the overall procedure. 

This enhancement is due to the property of linear predic- 

tors being easily implementable. 

Having chosen a specific form of the predictor, con- 

dition (c) requires the estimator to be recursive.  This 

characteristic is much desired in estimation processes 

since it simplifies the implementation of the estimator. 

Basing the learning process (prediction) on the past esti- 

mates is justified since each estimate is obtained so that 

it represents the actual signal value with the least amount 

of uncertainty. 

Letting the estimate and its error variance at time i 

be represented by x(i) and a2 d),   respectively, then the 

block diagram of Fig. 2.2 represents the structure of the 

estimator. 

y(k) 

l—jcCk-IiKoMk-l,) 

x(k-IM),aMk-IM) 

■-v— 

LP 
x*(k) 

F 
x(k) 

o*2(k) o'OO 

'-v -* 

D 

Fig. 2.2 
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In this figure, blocks LP, F and D signify linear 

prediction, filtering and one uit time delay operatic«., 

respectively.  H is an indication of the size of the re- 

quired memory and xMM and a*2(k) represent the one step 

predicted value and its error variance, respectively.  The 

. ^j j is a Set of two dimensional indices 

(time) each distinct and prior to k, i.e. 

k-I. e {1,2, fk-l} 
i 

i=l,2,.. . . rM 

Figure 2.2 describes the structure of the proposed 

estimator whose operating logic is derived in Chapters 3, 

4 and 5.  In Chapter 3, a method is introduced to derive 

a linear Mth order model of the process x(k).  This model 

is  used in Chapter 4 to derive the desired linear predic- 

tor.  Chapter 5 will describe the derivation of the fil- 

tering step. 

f. 
2u 
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CHAPTER 3 

MODELING 

In order to derive the linear predictor (block LP of 

Fig. 2.2). the a priori mean and the autocorrelation infor- 

mation of the random process x(k) are incorporated into 

a finite order linear model of the form 

M 
x{k) - I  3ix(k-Ii)+Bu(k) 

i=l 

(3.1) 

This model is used in Chapter 4 to complete the derivation 

of the prediction process.  Since (3.1) is an autoregres- 

sive model [151, 1161, [17], then finding such a model, in 

effect, solves the one step linear prediction problem in 

the degenerate case where the values of a sample function 

of x(i) is specified for i=l,2,....,k-l. 

Section 3.1 contains a brief discussion of the form 

and the properties of the autoregressive models.  In 

Section 3.2, a procedure is introduced that finds the auto- 

regressive model associated with a given autocorrelation 

function.  The derivation of the procedure is based on 

the a priori knowledge of the maximum allowable order of 

the model.  The discussions and guidelines regarding the 

best choice of the maximum order is presented in Section 

21 
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3.3.  Finally, the properties of the modeling procedure 

are considered in Section 3.4. 

3.1   Autoregressive Models 

A discrete random process x(k) is represented by an 

autoregressive model of order M(k) if for each time k, 

x(k) satisfies a linear stochastic difference equation of 

the form [151 

X(k) = I     B. (k)x{k-Ii)+B(k)u(k) 

i=l 

(3.2) 

»i^\     R, fk^      ß ., v (k) are deterministic time where M(k), PillCf»«»»«» pM(k) 

A  ,wi\  nm     are a set of independent, constants and u(l), U|2|»...« «"^ 

identically distributed random variates with 

Eu{i)u(j) = A(i-j) -i 
if  i*j 

if  l-j 

(3.3) 

t 

. T   i-i 9    .M(k) refer to pixels (time) The indices k-I^, l«lf ^# . . • • »»»»J *-* c 

previous to k, i.e. 

k-I  e {k-l,k-2 1)   for all i=l,2,....,M(k) 
i 

For a zero mean random process x(k), when constants 

M(k), 3i (k),.. (k) and B(k) are time invariant 
i \r.; , ' pM(k) 

(i.e. independent of k) then x(k) will be wide sense sta- 

tionary and (3.1) takes the form 
22 
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M 
x(k) = I aiX(k-I4>-t-Btt(k) (3.4) 

i=l 

and M will be called the order of the model. 

3.2   Modeling Procedure 

In the following derivations the process x(k) is 

assumed to be stationary.  The extension of the procedure 

to modeling of nonstationary processes is presented in 

Section 3.4. 

Let M be the given maximum order of the model and 

let S denote the set of all indices preceding k, so that 

S = (k-1, k-2, ,1) 

There are 2k~1-l nonempty subsets of S.  Let mi $   s2,.... 

denote those subsets of S having M elements or less with 

N(s.) designating the number of elements in subset s... 

Note that N(s.)<M for all j  For each s., let 

N(s.) .     j 
x(k) = I  J ß^xCk-I^+B u(k) 

i=l  ^^    1  ^ 
(3.5) 

-j where for 1=1,2, ,N(s.), the indices k-IY denote all 

elements of subset s.. 

The modeling criterion is chosen to be the minimiza- 

23 
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tion of EfB.udO]'', thus the constants 3?, 
D 

(3.5) are chosen such that 

N(s.) •     • 
E[B u(k)l2 = E[x(k)- I   J ß^x(k-I^)]2 

J i=l        1 

'^(s^ in 

(3.6) 

is minimized.  This criterion is the same as the minimizinq 

the error variance of the one step predicted value since, 

E[B.u(k)]  is the error variance associated with choosing 

the predicted value of x(k) to be 

N(s )      1 

I   i   ß^x(k-I.) 
iii    1 

Equation (3.6) is minimized by differentiating its 

right hand side with respect to 5T#....f3„J  . and setting 1      N(sj) 

the result equal to zero.  This results in N(s.) linear 

equations of the form 

E[x(k)- I       afx(lt-Z7)]x(k-in = 0   1=1,2, ,N(s.) 
1=1   i     1       1 J 

(3.7) 

Carrying the expectation through in (3.7), a system of 

linear equations of the form A3=b is obtained where, the 

elements of matrix A and vector b will be in terms of the 

values of the correlation function R(m,n) (see example 

3.1).  Solving this system of equations defines the quan- 

tities ß-, 1=1,2,....,N(s.).  These quantities, in turn. 

* 
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define the values of (B-)2 given as 

N(Sj) 
(B.)2 = E[B.u{k)]2 = E[x(k)- i   ■' ßjx{k-i:1)] 

J        3 i=l        i 
(3.8) 

Repeating this procedure for all subsets ■,, s2,...., 

the quantities 

(Bj)2, (B2)
2 , (B^2,  (3.9) 

are obtained.  The model of the random process x(k) is 

chosen to be the autoregressive form associated with sub- 

set sm such that (B )2 is the minimum of the quantities in 

(3.9).  If the minimum is not unique, then the model is 

chosen to be that of s where (Bm)2 is a minimum of (3.9) 

and N(sm)<N(s ) if (B )2 is any other minimum.  The fol- 

lowing example is provided to clarify some of the above 

deriva*  us. 

Example 3.1: 

Letting k correspond to two dimensional index (i,j) 

and 

Sj = {(i,j-l),(i-l,j),(i-l,j-l)} 

(In figure 3.1, 0 represents (i,j) and D iapresents ele- 

ments of s- on a two dimensional grid) then (3.5) yields 

x(i,j)=35x(i,j-l)+ß^x(i-l,j)+ß5x(i-l,j-l)+BjU(i,j) 

(3.10) 

25 
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Fig. 3.1 

Applying   (3.7)   and  assuming   (stationarity) 

Ex(i,j)x(k,l)   = R(|i-k|,|j-l|) (3  11) 

The system of linear equations for ß^, Qj,   ß^ will become, 

R(0,0) 

R(l,l) 

R(1,0) 

R(l,l) 

R(0,0) 

R(0,1) 

R(1,0) 

R(0,1) 

R(0,0) 

R(0,1) 

R(1,0) 

R(l,l) (3.12) 

Solving (3.12) results in the values for ß^, ß^, ß^ and 

these values result in 

{B.)2=E[B^u{i,i)]2 

=E[x(i,j)-ß5x(i,j-l)-ßJx(i-l,j)-ß^x(i-l,j)] 

=R(0,0)-ßJR{0,l)-f^R(l,0)-ß3R(l,l) 

For any other subset s^, the above procedure is repeated 

and (B^)2 in (3.9) is obtained.  Note that in finding 

IB-)2 from (3.13) and (3.12) only the numerical values of 

26 
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of R(m,n) are required. 

Having defined a general modeling procedure, the 

following theorem establishes its applicability to special 

cases. 

Theorem 3.1:    If a zero mean, normal random process x{k) 

satisfies an autoregressive model 

x(k) = T ^ix(k-Ii)+Bu(k) 
i=l 

(3.14) 

where M'^M, then the modeling procedure will yield the same 

model. 

Proof:  Let 

5. 

s = {(k-I,),(k-l2) ,(k-IM)) 

let 

q = k-^+i 

where k-I^.;, is an index (time) preceding k and not includ- 

ed in s, i.e.  q^s 

let 

■, - sUq - {(k-I,),(k-I2), ,(k-IM),(k-IM;1)} 

Using the modeling procedure to find the autoregressive 

form for s,, results in 

(3.15) 
M +1 

x(k) =  [  3ix(k-Ii)+Blu(k) 
i=l 

27 
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and B. , ßM- , are obtained such that 1 M +1 

E[x(k)-x (k) ] (3.16) 

is minimized, where (see (3.6)) 

M +1 
X_(k) = l        ßix(k-Ii) 
H     i=l 

But due to the Gaussian nature of x(k), the quantity 

(3.17) 

Ex(k) |x(k-I|) , 'x(k'j:M' + l) 
(3.18) 

is linear in x(k-I1), x(k-IM'+1) and if substituted for 

x (k), it minimizes (3.16) [22].  Therefore 
P 

M +1 
Ex(k)ix(k-I1), x(k-IM' + 1) - l     ßix(k-Ii) 

i=l 

Also, using the conditioning of (3.18) in (3.14) results in 

Ex(k)jxfk-Ij), ,x(k-IM'+1) 

M 
= I  a.Ex(k-I.) ^(k-l!) , ,x(k-IM' + 1) 

i=l       1 

+BEu(k)Ixfk-Ij), 'x(k"IM'+l) 

But 

Eu(k) ^(k-I,) x(k-IM' + 1) = Eu(k) = 0 

and 

(3.20) 

28 
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Ex(k-I1)|x(k-I1), x(k-Ii), ,x(k-lM.+i)=x(k-li) 

Therefore (3.20) becomes 

M 

Ex(k)|x(k-I1), 
x(k"V + l) = .1 «i34^"1!) '   (3-2i; 

But the conditional expectation in (3.18) is a specific 

linear function of x(k-I,)/ ,x(k-IM'+1), thus the com- 

parison of (3.19) and (3.21) necessitates that in (3.19) 

3i H 
cii   if i«M 

(3.22) 
if i=M +1 

This is turn indicates that in (3.15) 

n. = B (3.23) 

Now, by letting the set q be empty, then the same 

procedure will indicate that (3.15) becomes identical to 

(3.14) and by letting q contain m elements with M +m$M, 

then (3.22) and (3.23) will become 

ß. =< 
04    if i^M 

if i>M 
(3.24) 

and 

Bm = D m 

This completes the proof 

(3.25) 

ft 

* 
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3.3   Choice of the Model's Order 

The modeling procedure of Section 3.2 is particularly 

useful in the cases where only a small number of correla- 

tion values are specified.  In these cases, an upper bound 

for the value of M exists.  If this upper bound is suf- 

ficiently small, then its value should be used to represent 

the order of the model. 

Since the modeling criterion is taken to be the mini- 

mization of the model's noise variance then, in general, 

M should be selected on the basis of the rate of decrease 

of (B.)2 as a function of M.  Th^s idea is applied and 

explored further in example 3.2. 

It will be shown in Chapters 4 and 5 that the com- 

plexity and the memory requirement of the proposed esti- 

mator will be a direct function of the value of M.  A 

logical consideration in the choice of M, therefore, is 

the trade off between additional implementation complexity 

and the reduction of (Bi) . 

Examplg^J^j.' 

Consider the stationary two diemnsional correlation 

function 

30 
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Rdfjtk,!) = R( |i-k| , | j-l|) = Ex(i,j)x(k,l) 

- exp[-/(i-k)2+(j-l) 2] 

Application of the modeling procedure yields: 

a) Best 2nd order model is 

x(i,j)=0.3x(i/j-l)+0.3x(i-l,j)+0.88 3u(i/j) 

b) Best   3rd  order  model   is 

x{i,j)=0.29x(i>j-l)+0.25x(i-l/j)+0.12x(i-l/j+1) 

+ 0. 8775v. (i,j) 

c) Best  4th order model   is 

x(i,j)=0.28x{i,j-l)+0.24x(i-l,j)+0.03x{i-l,j-1) 

+0.12x(i-l,j+l)+0.8769u(i,j) 

d) Best 5th order model is 

x(i,j)=0.28x(i,j-l)+0.24x(i-l,j)+0.03x(i-l,j-1) 

+0.11x(i-l,j+l)+0.02x(i-l,j+2)+0.87 68u{i,j) 

This indicates that additional complexity of going from the 

3rd to the 5th order does not reduce (B.)2 appreciably. 

Hence, for example, to a third decimal place accuracy, 

3rd order model is a sufficient approximation. 

3.4   Properties of the Modeling Procedure 

r 

■ 

Derivation of the autoregressive model has been 

based on minimizing the uncertainty associated with pre- 

31 



"f*X ^mmmn^ " "  - " -'■,"  ■■" ■" 
1 ,"1■ '■■ 

h 
V 

■ 

■Hi. 

dieting the present value of a sample function of a 

process by a linear combination of a finite number (M) 

of its past values [16].  This is in accord with the con- 

cept of Fig. 2.2.  The modeling , -ocedure is directly 

applicable to nonstationary problems where for these 

cases the procedure must be applied at each time k, re- 

sulting in one autoregressive form for each k. 

A property of the procedure, which is of extreme prac- 

tical value, is that the determination of the model is only 

a function of the numerical values of R(m,n) and, in fact, 

is independent of the analytical form of R(m,n).  This, 

in turn, enhances the numerical and computational character 

of the estimation process. 

The optimality of the modeling procedure, in the 

cases where the process x(k) has a corresponding autore- 

gressive model of order less than M, is established by 

theorem 3.1.  However, by applying this method a model of 

the form (3.1) can always be found even when a finite order 

autoregressive model does not precisely describe the cor- 

relation information, or if the exact model is of an 

order higher than the chosen M.  Whatever the case, it 

should be noted, the correlation function generated by 

the model ootained from this procedure will be identical 

to R(m,n) at, at least, M+l points.  This is demonstrated 

for a simple case considered in Example 3.3. 
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Example   3.3; 

Consider   the  stationary  one  dimensional   random pro- 

cess   z(k)   with 

R(i, j)   -  Ez{i)z(j)   -  R(|i-j|) (3.26) 

Let M=2 and the model of z(k) be given by 

x(k) - ß1x(k-l)+ß2x(k-2)+Bu(k) (3.27) 

The system of linear equations that ß, and ß must satisfy, 

becomes (see Example 3.1) 

R(0) 

R(l) 

R(l) »i R(l) 

R(0) _32j 
R(2) 

r 
it 

which results in 

3, = 

&, = 

R(0)R(1)-R(1)R(2) 

R2(0)-R2(1) 

R(0)R(2)-R2(1) 

R2 {0)-R2 (1) 

Accordingly 

B2 = E[x(k)-ß1x(k-l)-ß2x(k-2)] 

= R(0)-ß]R(l)-ß2R(2) 

(3.28) 

(3.29) 

(3.30) 
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Letting 

C(li-j | ) - Ex(i)x(j) (3.31) 

be the stationary correlation function generated by (3.27), 

then 

C(0) =Ex2(k) = E[ß,x(K-l)+e2x(k-2)+Bu(k)]
:> 

= (ß^ + ß- )C(0)+B2 + 2ß1ß:)C(l) (3.32) 

Cd) - E(x(k)x(k-1) = E[ß1x(k-l)+ß2x(k-2)+Bu(k) ]x(k-l) 

= ß1C(0)+ß2C(l) (3.33) 

C(2) - Ex(k)x(k-2) 

= E[ß1x(k-l) + ß2x(k-2)+Bu(k) ]x(k-2) 

= ß1C(l)+ß2C(0) (3.34) 

Substituting (3.28) through (3.30) in (3.32), (3.33) and 

(3.34) and solving for C(0), C(l), C(2) yields 

C(0) - R(0) 

C(l) = R(l) 

C(2) - R(2) 

(3.35) 

This indicates that the correlation function generated 

by (3.27) matches R(i,j) at, at least, 3 points. 
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CHAPTER   4 

LINEAR PREDICTION 

In this chapter it is assumed that the model of the 

random process x(k) is derived to be of the form 

M 
x(k) ■ I   6.x(k-I.)+Bu(k) 

1*1 *    1 (4.1) 

and the process x(k) .s assumed to be stationary.  Deri- 

vation of the linear predictor for nonstationary processes 

is identical to that of stationary processes, hence is 

omitted.  Section 4.1 contains a brief discussion on f-Ke 

optimal linear one step prediction and the difficulties 

associated with implementing such a procedure.  The devel- 

opment and derivation of an implementable one step pre- 

dictor compatible with the proposed system structure of 

Fig. 2.2 is presented in Section 4.2.  Section 4.3 contains 

the derivation of the variance of the one step predicted 

value. 

4.1   Optimal Linear One Step Predict ion 

Denoting the MMS one step prediction value of x(k) 

by x^(k), then 

B. 
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/^ ^\ (4.2) 
xP(k) = Ex(k)|y(l). y(k-i) 

Conditioning the ri.ht hand side of (4.1) on yU>,...y(W) 

and taking the expectation results in 

M 
xP(k)= I 3 ExCk-^ 

i=l 1 

-Ulyd) y(k-l)+BEu{k)ly(l)...>y(k-l) 

(4.3) 

But due to the statistioai independenoe and the .ero .ean 

property of u{k) 

(4.4) 
Eu (k)ly(i) y<^ = Eu(k) = 0 

hence 

I 

xp(k) = ! e.Exa-ijlyU) y"1-11 

i=l 1 

(4.5) 

The diffieulty in finding xP(k) in (4.5) is that at 

each pixel k, the M expectations 

Ex(k-i.)ly(i) Y(k-i)   l-l.» M     (4•6, 

have to be carried out.  Performing this task Involves 

interpolation of the random process xOO. which in the 

simpiest case is computationally unfeasible.  To maintain 

taplementability. a suboptimal recursive prediction pro- 

cedure is introduced in the following section. 

36 



   — ^^mmmmmmmmm^<*^~' >   " "l  <  mmmnmmmmmmmmm 

4.2   A Linear One Step Prediction 

In accordance with the discussion of Chapter 2 and the 

system structure of Fig. 2.2, the linear predictor is 

to be based on past estimates and their error variances. 

In this respect, the one step predicted value x*(k) is 

given by 

k-1  . 
x*(k) =  I a.x(k-j) 

j=l J 
(4.7) 

where a,, 'ak-l are to be chosen such that 

E[x(k)-x*(k)] (4.8) 

is minimized. The above minimization is to be carried out 

based on the available information to the predictor. This 

information, in turn, consists of the values of x(i) and 
A 2 

a   (i), i^k-1.  Furthermore, each x(i) and o (i) represents 

the mean and variance, respectively, of a posteriori pro- 

bability density of x(i) at time i.  This interpretation 

is directly substantiated by the way each estimate x(i) 

at time i is obtained as a function of the previous esti- 

mates and the observation y(i). 

As a result of the above discussion, the expectation 

in (4.8) is well defined and operates on each random 

variable x(i) such that 
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Ex(i) = x(i) 1=1,2»•.••»K—i (4.9a) 

and 

Elx(i)-x(i) ]  = a2 (i)       i-1.2, rk-1 (4.9b) 

Having (4.9a) and (4.9b) as the definition of the expecta- 

tion operator, the following theorem establishes the 

optimal linear predictor. 

Theorem 4.1;   When the random process x(k) satisfies a 

model of the form (4.1), then the (optimal) choice of 

a„ , in (4.7) which minimizes (4.8), is given by 

ß. if k-j=k-Ii for some i=l,2l ..M 

CXj   . 
otherwise 

Proof; Substitution of (4.1) and (4.7) in (4.8) yields 

k-1 
E[x(k)-xMkr/=E[Bu(k)+ I   B^k-I.)- I ^(k-j)]   (4.10) 

i=l 3_J- 

Since k-I.i t-1.2 ,M is a set of two dimensional 

indices and their particular values are immaterial to this 

proof, assume 

I=i 
i 

(4.11) 

in order to reduce notational complexity.  With this, 

38 

K. 



■wqvipmmMnnmaM 
"'■" 

(4.10)   then  becomes 

2 M k-1     . 
E[x(k)-x*(k)]   =E[Bu(K)+   l   ß  x(k-i)-   J  a.x(k-j)l 

i-l   1 j=l 

M k-1      ^ 2 

=ElBu(k)]   +E[   l   ß.x(k-i)-   l   a.x(k-j)] 
l-l   l j = l   :, 

M k-1     A 
+2E{[Bu(k)l[   l   ß.x{k-i)-  l  a.x(k-j)]} 

l-l   1 j=l   J 
(4.12) 

But (4.9) and the statistical independence of u(k) imply 

that 

2       2 

E[Bu(k) ]  - B (4.13) 

M k-1  Ä 
E{[Bu(k)][ l   ß.x(k-i)- I  a.x(k-j)]} = 0 

i=l :L      j = l J 
(4.14) 

»• 

Substitution of (4.13) and (4.14) in (4.12) yields 

2  2   M k-1  „ 
E[x(k)-x*(k) ] =B +E[ l   ß.x(k-i)- I  a.x(k-j)] 

l-l 1      j-1 D 

Since 

=B 
M M    .    k-M-1 A 

+E[ I   3.x(k-i)- I  a. .x(k-j)- I  a x(])] 
l-l 1      j=l K :,      j=l :, 

(4.15) 

h 
K 
'■ 
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M M 
l a      x(k-i)= l   [ß^a^i-ßilxdc-i) 

i=l k-i       i=l 

M M ^ 
= Y ß.x(k-i)+ l   (a. .-P.)x(k-i) 
iii 1 i-i   k-1   1 

(4.16) 

then, Substitution of (4.16) in (4.15) and the expansion 

of the square term results in 

E[x(k)-x*(k)] 

k-M-1 
^B2+E| I   Pi[x(k-i)-x(k-i)]- j (a^-ßi^k-D-J^xUn 

i=l *"* 

-32+E{ l   ß.[x(k-i)-x(k-i)l} +E[ 1 (ak_i-ßi)x(k-i)] 
i=l i=l 

k-M-1 

+E [
kTVx(i)l2-2E[ l   ßi(x(k-i)-x(k-i))H.] a.xd)] 
i=l  1 i=l 1-i 

-2E 
M A        M « 

[ ? ßH(x(k-i)-x(k-i))l[ l   (ak-r
ßi)x(k i) 

l-l i=1 

k-M-1 M «       K-M-i 
+ 2E[ T (a.  .-ß.)x(k-i)] [ I     a x(i)] 

i=l K~  :L i=l 
(4.17) 

But in ( in (4.17) x(i), 1-1,2 k-1 are a set of nonrandom 
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quantities.  This along with (4.9a) indicates that 
' 

M M 
E[ I  3-(x(k-i)-x(k-i))] I I   [a.    .-BH)x(k-i)] 

i=l 1 i=l K":L  1 

M M 
= [ l   ßi(Ex(k-i)-x{k-i))] [ I   {a,    .-ß.)x(k-i)] 

i-1 i=l  k-1  1 

M    .      . M 
= [ l   ß. (x(k-i)-x(k-i))] [ )", (a,_.-ß.)x(k-i)] ■ 0 

i-1 X i=l  K 1  1 

(4.18) 

and similarly 

M k-M-1 
E[ I   3.(x(k-i)-x(k-i))] [ I     a.x(i)] 

i=l 1 i=l   1 
= 0 

(4.19) 

Furthermore, realizing that the third, fourth and seventh 

terms of (4.17) are nonrandom, use of (4.18) and (4.19) 

reduces (4.17) to 

Elx(k)-xMk) ]2 

=B2+EI l  ßi(x(k-i)-x(k-i))]+[ I   [a     .-B.)x(k-i)]2 
i=l i=i  K"1  1 

k-M-1 2     M k-M-1 
+[ I     a x(i)] +2[ I   (a   -3i)x(k-i)][  f  a.x(i)] 

i-1 1       i-1 k~x    1        i=i i 

or 

i 
41 
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E[x(k)-x*(k)] 

M 
-B +EI I   B. (x(k-i)-x(k-i))] 

i=l 

M <»      k-M-1  -    2 
+[ I   (a      .-6.)x(k-i)+ I     a.x(i)] 

i-1 K 1 1       i-1 1 
(4.20) 

The first two terms of (4.20) are independent of 

■ , i=l,2,. . ..,k-1.  The third term is a complete square 

and its minimum is zero.  Therefore, the minimum of (4.20) 

is achieved if 

(Jj  for i=k-l,k-2, ,k-M 
a 

0   for i=l,2, ,k-M-1 (4.21) 

This completes the proof of Theorem 4.1. 

The foregoing theorem establishes that the best linear 

predictor is given by 

M 
x*(k) = l   ß.x(k-I.) 

i-1 1 
(4.22) 

which yields itself to on line implementation and satisfies 

the finite memory requirement of Chapter 2. 
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4,3   Error Variance of Predicted Value 

Lettinq 0 (k) denote the error variance of the pre- 
P 

dieted value x*(k) at time k, then 

o2 (k) = E[x(k)-x*(k)] 
P 

(4.23) 

Substituting for x(k) and x*(k) in (4.23) from (4.1) and 

(4.22), respectively, yields 

2 M M   . 
o (k)-E[Bu(k)+ l  ß.x(k-I.)- I   ßix(k-Ii 
P i=l 1    1 i-1 

)] 

=B2+E{ I   0- tx(k-I.)-x(k-Ii)]} 
i-1 

(4.24) 

where in deriving (4.24), use of the statistical indepen- 

dence and the ze-o mean property of u(k) is made.  Let 

e(k-I.) - x{k-Ii)-x(k-Ii) (4.25) 

then at each time k-Ii, e(k-Ii) is a random variable whose 

firii: two moments are (see (4.9a) and (4.9b) 

Ee(k-Ii) = 0 

* 2 
Ee (k-Ii) =o (k-I;;^) 

(4.26) 

(4.27^ 

Expan sion of (4.24) in terms of e(.) as defined in (4.25) 
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results in 

o'(k)=B2+E[ l   ß e(k-Ii 
P        i=1 i 

)1 

2   2   2 
=B +ßiEe (k-I1)+ . + ß^Ee2(k-IM) 

+2ß1ß2Ee(k-Ii)e(k-l2)+...+2ß1ßMEe(k-I1)e(k-IM) 

^VIV^^-'M-I^^-V 
(4.28) 

This relation shows that the evaluation of ap(k) 

requires the knowledge of cross covariances of the random 

variables eCk-I.), 1-1,2 M.  To avoid the numerical 

difficulties associated with the evaluation of these cross 

covariances at each time k, the following upper bound of 

0
2(k), denoted by o*2(k), is derived and used in the fil- 

tering step of ehe next chapter.  The reason for finding 

an upper bound, as opposed to a lower bound, is due to the 

fact that a2(k) is a measure of uncertainty of the value 
P 2 

x*(k), thus by assigning value a* (k) to x*(k) the uncer- 

tainty associated with x*(k) is increased.  This causes 

the estimation process to remain suboptimal and is dis- 

cussed in more detail in Chapter 8. 

Taking the absolute values of the right hand side of 
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(4.28) and using (4.27) results in 

o2(k)^B +1^!|2o2 (k-I1) + + lB | a (k-IM) 

+2|3,||ß2||Ee(k-I1)e(k-I2)|+. 

+ 2|ß2l IßJ |Ee(k-I2)e(k-l3) | + , 

+2|ßM_i||ßMllEe(k-IM_1)e(k-IM)| (4.29) 

But ror each pair of random variables e(k-I.) and e(k-I.), 

Caachy-Shwartz inequality f'iO] establishes that 

'A- 
|Ee(k-I )e(k-I ) U [Ee (k-I,)Ee (k-I.)]  =o(k-I• , o(k-I•) 
ID i       j 1     ^ 

(4.3(/) 

so 

2*2 
a (kUB +16! | a (k-Ij)* 

7      o 

,+ |B I o (k-i ) 
M1       M 

+216,1|62|o(k-I1)o(k-I2)+ 

+ 2|Vll|3M|ö(k-IM-l)ö(k-IM) 

where (4.31) is equivalently written as 

2       2    M       ^ 2 
o (k)^B +( I   |6.|o(k-l,)] 

i = l 

(4.31) 

(4.32) 
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Hence, the upper bound a* (k) is given by 

2     2   M     ^       2 

a* (k)=B +[   I   |3. |o(k-I.)] (4.33) 

It should be noted chat o* (k) can easily be evaluated at 
« 2 

each time k, since quantities o (k-I ), i-l,2,....,M    are 
i 

available to the predictor for each k. 

*■ 
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CHAPTER 5 

FILTERING 

This chapter develops the derivation of the final step 

of the proposed estimation technique, where block F of 

Fig. 2.2 will be analyzed and defined.  In Section 5.1, 

the information obtained from the linear predictor is 

incorporated into an approximate probability density func- 

tion (PDF) for x(k).  This density is then used in Section 

5.2 as an a priori statistic for the observation y(k) to 

derive the estimate x(k) and its error variance a2(k). 

5.1   Choice of A Posteriori PDF for x{k) 

Assuming that the actual prediction variance oMk) is 

computed and available then the predicted value x* (k) and 

its variance a2 (k) represent the mean and the variance of 
P 

the a posteriori PDF on x(k).  This density represents 

the available knowledge of the random variable x(k) prior 

to the reception of the observation y(k).  Since, for 

a given mean and variance the normal distribution repre- 

sents the maximum uncertainty (entropy) [30], this density 

function is assumed to be normal.  Further uncertainty is 

associated with x(k) if a*2(k) is used in place of a2(k). 

* 
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Consequently, an approximate and a rather conservative 

choice of an a posterion probability density for x(k) is 

2 

p(x(k)) 
1        [x(k)-xMk)] 

- expf ?  (5.1) 
o*(k)/2? 2a* (k) 

5.2    Evaluation of the Estimate and its Variance 

The density p(x(k))in (5.1) is used as an a priori 

statistic for y(k) in order to obtain the Baye's estimate, 

x(k)/ of x(k) as follows 

x(k) = Ex(k)|y(k) - /x(k)p(x(k)1y(k))dx(k)      (5.2) 

Using the Baye's rule 

p(x(k),y(k)) 
p(x(k) |y(k)) = 

p(y(k) |x(k))p(x(k)) 

p(y(k)) P(y(k)) 

(5.3) 

Therefore 

* 

x(k) = 
P(y(k)) 

-/x(k)p(y(k) |x(k))dx(k) (5.4) 

Using the same procedure as outlined in Section 2.1, it 

follows that 

p(y(k) )=/p(y(k) ,x(k) )dx(k)=/p (y (k)| x (k) )p (x (k) ) dx (k) 

(5.5) 
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Therefore, the estimate x(k) is given by 

/x(k)p(y(k) |x(k) )p(x(k))dx(k) 
x{k) =   

/p(y (k) |x(k))p(x(k))dx(k) 

" 2 
Similarly, the error variance, o (k), is obtained by 

o2 (k) = EIx(k)-x(k)]2|y(k) 

■  Ix(k)-x(k) ] 2p(x(k) |y(k) )dx(k) 

Again by using the identity of (5.3), (5.7) becomes 

(5.6) 

(5.7) 

* 
* 

Zf 

a   (k) = 
P(y(k)) 

/[x(k)-x(k)] p(y(k) |x(k))p(x(k))dx(k) 

(5.8) 

The substitution of (5.5) in (5.8) results in 

.2     /[x(k)-x(k) ] p(y(k) |x(k))p(x(k))dx(k) 
a (k) = 

/p(y(k) |x(k))p(x(k))dx(k) 
(5.9) 

In (5.6) and (5.9), p(x(k)) is given by (5.1) and 

p(y (k) |x(k) )is obtained from that part of th-2  a priori 

information which describes the observation system struc- 

ture and the probability density of the observation noise 

(equation (1.7)). 

The comparison of equations (5.6) and (5.9) with those 

of the optimal filter given in (2.10) and (2.13) indicates 

that the proposed estimator exhibits the same logic as the 
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optimal estimator.  This logic consists of each estimate 

and its error variance being a specific function of the 

past and present information where p(x(k)) and p(y(k)lx(k)) 

represent these two quantities, respectively.  In fact, 

had the prediction been done optimally, the proposed pro- 

cedure would have been optimal. 

The integrals involved in evaluating x(k) and o (k) 

in (5.6) and (5.9) may or may not have analytic solutions. 

If such solutions exist, then the computational require- 

ment of the procedure is reduced tremendously.  If such 

solutions do not exist then these integrals can be evalu- 

ated numerically.  This in turn allows the procedure to be 

applicable to a broad class of observation systems includ- 

ing nonlinear forms of y(k).  Chapter 6 contains examples 

demonstrating and substantiating these properties. 

The estimator developed so far is both feasible and 

implementable.  Its feasibility is due to the structure 

of Fig. 2.2, which leads to (5.6) and (5.9) being scalar 

operations. 
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CHAPTER 6 

DERIVATION OF A FEW SPECIFIC 

ESTIMATORS AND APPLICATIONS 

6.1 Introduction 

■ 

Based on the general estimation procedure as developed 

in Chapters 2 through 5, a number of specific estimators 

for various observation systems are derived in this chap- 

ter.  Each estimator then is utilized in estimating a 

number of noisy images ab examples of the applicability 

of the procedure.  The procedure is almost exclusively 

applied to two dimensional pictorial data and its appli- 

cability to similar one dimensional problems is implied 

implicitly.  Section 6.2 contains a discussion on the 

methods of finding and specifying two dimensional a priori 

correlation functions.  In Section 6.3, a linear estimator 

is derived by applying the estimation procedure to the 

case of additive-Gaussian observation noise.  The pro- 

perties of this linear estimator are outlined and dis- 

cussed in more detail in Section 6.4.  Section 6.5 con- 

tains the derivation of the estimator for observations 

having bounded multiplicative noise.  This section also 

includes the application of the procedure to two dimen- 

51 



,pnw>a<w"<<mi imimmm^^-  imm^*~.-^*m^ ....... «mmm   

sional pictorial data corrupted by uniform multiplicative 

noise.  Finally in Section 6.6, the application of the 

procedure to observations containing multiplicative and 

additive noise terms is considered. 

K'. I 
I * 

6,2   Two Dimensional A Priori Statistics 

In applying the foregoing estimation method to the 

noise corrupted two dimensional pictorial data, the know- 

ledge of the a priori mean and at least a few values of 

the autocorrelation function of the image is required. 

These two quantities are defined by (1.1) and (1.2).  If 

the image is a member of a stationary two dimensional ran- 

dom process, then they are defined to be 

M(i,j) - M - Eb(i,j) (6.1) 

R(i,j,k,l,) = R(|i-k|, Ij-ll) = E[b(i,j)-M][b(k,l)-Ml 

(6.2) 

where E represents the ensemble averaging. 

Experimental results indicate that random fields with 

exponential autocorrelation functions are realistic models 

for a variety of pictorial data [2] - [51.  Two widely 

used forms of these functions for stationary processes are 

R( li-kl, |j-l |) - o'expl-a, |i-k|-a2|j-l |] (6.3) 
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and 

R(|i-k| . | j-1|) = a exp[ 
/l        2     2        2 

-/a, (i-k)  +')( (j-1 ) 1 (6.4) 

r 

where o  is the signal power and |i-k| and |j-l| are the 

increments in the verticle and horizontal directions, 

respectively.  Although these correlation functions are 

both of the exponential decaying type, they exhibit dis- 

similar characteristics in that the separable correlation 

function of (6.3) assumes more correlation in the hori- 

zontal and vertical directions while the nonseparable 

function in (6.4) indicates a smooth and rotationally 

invariant correlation in all directions.  Figures 6.1 and 

6.2 represent two views of the three dimensional graphs 

of these functions.  It is suggested in [1] that pictures 

of the natural scenes exhibit nonseparable and rotationally 

invariant correlations while the images of man-made objects 

correspond to separable autocorrelation functions. 

The complete definition of the correlation function in 

(C 3) or (6.4) requires the specification of the three 

quantities 0 . a, and a2.  Note that if any three correla- 

tion values (for example R(0,0), R(0,1), R(1,0)) are known 

then these quantities can be obtained. 

For the processed images in this dissertation, the 

approximate values for the mean M and correlations R(0,0), 

R(0,1) and R(1,0) are obtained, wherever necessary, from 
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RCt^tt) 

(b) 

Fig.   6.1 
Two Views  of   the  Separable Correlation Function 

RCtiiTjl-oJaxpl-o, IT, \-CL2\T2\] 
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; 

R(Ti.tt) 

(a) 

R(T,,T2) 

(b) 

Fig. 6.2   Two Views of the Nonseparable 

Correlation Function 

R<T|,T,)«oi«Xpl-^|T{+o|T*l 
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INN 
M  =   —  I       I  b(i.j) 

N   i=l   j=l 

(6.5) 

1   N-p  N-q 
R(pfq)=;_ y       I   (b(r,s)-M][b(r+p,q+s)-M] 

N2r=l   s=l 

(6.6) 

where b(i.j)   is  the   intensity value of   the  original   image 

at  pixel   (i,j)   and N  represents   the  size of   the   image. 

6.3 Additive-Gaussian Observation Noise 

In the case where the observation is given by 

y(k) = x(k)+Y (k) 
(6.7) 

with Y(k) normal and 

EY(k) = 0 
(6.8) 

EY(i)Y(J) =\     2 
a (i) 
Y 

if i * j 

if i = j 

(6.9) 

1 

then 

1 (y(k)-x(k)) 
p(y(k) |x(k))=    " exp[- I 

/2ia (k) 2aY(k) 
(6.10) 

Lemma 6.1;   The estimate x(k) and its error variance 

^(k), £o£  this case of additive-Gaussian observation noise 
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are given by 

x(k) = 
o*2(k) 

ö*2(k)+a2(k) 
y(k) + 

o400 
-3- —x*(k) 

o*2{k)+ö2(k) 
(6.11) 

o2(k) ■ 
o*2 (k)o2 (k) 

o*2 (k) + o2(k) 

(6.12) 

; ■ 

Proof:    Substituting (6.10) in (5.6) and (5.9) and drop- 

ping the time dependence k from all variables, then the 

estimate x and its error variance a2 at time k are given 

by 

(y-x)2 (x-x*)2 

x exp[-   Idx 

S 2a* 

x = 

(y-x)2  (x-x*)2 

exp[- "Idx 
2a2 

Y 
2o*2 

(6-13) 

(x-x)2exp[- 
(y-x)2  (x-x*)2 

2o2 
Y 

2o *? 
]dx 

o2=- 

/ ao      (y-x)2  (x-x*)2 

exp[-   -       Idx 
2a: 2 c, *'; 

(6.14) 

But 
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2 2 2 %       
2 2 2 

■} 2 2    2        2    *2 .  /r,*2j.rr2\ v   -2 (a*    v+"   x*)x 
(y-x)      (x-x*)      o-^y ^-oYx*  Ho*J-o^X_^lr     y     1  
 + :      = ■__- 

oy a' 

2 2 
OvO* 

2       *2 1   ..     I 
- x*)] —y +'~;;x 

2 *2 
[x -2(—:—:y+ 

a*2
+o'"    0*'+0; ^Y 

Let 

2 / 

(6.15) 

a i   =  —?    y{ 
a* X^y 

s 
/ 
/ 

'Y 
X       «2    - 2 2 

/ a*  +0^ 

/ 2     *? 

a*  +0^, 

(6.16) 

then 

(y-x) 2   (x-x*) 

1 2 1 
= —-[x-(aiy+a2x*)]   -     \ 

2 1 2 1 2 
—    -v« 

(aiy+a2X*)   + "jY  ■'    . 2X 

aY       o' 

(6.17) 
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letting 

q = — y2+   x*2-  —   (o^y+oijX*) 

then   (6.17)   becomes 

(y-x)2    (x-x*)2        1 
       =  —   [x-(o^y+c^x*) ] ^+q (6.18) 

Substituting   (6.18)   in   (6.13)   and   (6.14)   and  noting  that 

a   ,   a   ,   f;2   and  q  are   independent of  x,   yields 

q-/oo [x-(djy+otjjX*) ] 2 

r^2!     x exp[- Idx 
2C2 

qz/co [x-(aIy+a2x*)] 
e"^2 exp[-   "  ]dx 

2C2 

(6.19) 

.-* 
[x(a1y+a2X*)]2 

(x-x)2exp[-    ]dx 
2^2 

52 = - 
aW»                [x-(a1y+a2x*) ]2 

>-721        ^vnf- ]dx exp[- 
2C (6.20) 

Canceling the common  terras  from the  numerator  and the 

denoraenator of   (6.19)   and   (6.20)   and realizing  that 

1   {oo                [x- (oijy+aax*) ] 
 exp[-        ]dx =   1 
^/27j_oo 2C 
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then 

1 t» 
x = 

^/27j 
x exp[- 

[x-(a y+a2x*)] 
]dx 

2C 
(6.21) 

a2 = 
1   (°° ~ [x-iajY+ajX*) ] 2 

{x-x)2exp[- ]dx 
5/2FJ 25 

(6.22) 

But these two relationships indicate that x and a2 are the 

mean and variance of the Gaussian density function 

1      [x-(aiy+a2x*)]
2 

p(x) = exp[ ——] 
5/2¥ 2^ 

(6.23) 

therefore 

r*2 

x - a1y+a2x* = 
a*2+a 

y + x* 
r*2 

+ a: 

and 

a2= C2 = 
a2o*2 

a*2+a2 
Y 

(6.24) 

(6.25) 

This completes the proof. 

This lemma indicates that the estimation process, in 

this case of additive-Gaussian noise, involves obtaining 

x*(k) and a*?(k) from (4.22) and (4.33) and inserting them 

in (6.11) and (6.12) to find the estimate and its error 

variance at each time k. 
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Figures 6.3 and 6.4 describe the application of the 

foregoing linear estimation method to two dimensional 

pictorial data.  In these figures, a stationary nonsepa- 

rable correlation of the form 

R( |i-k|, | j-l|) = Ex(i,j)x(k,l) 

= a2exp[~/aj (i-k) 2+a2
2 (j-1) 

7] (6.26) 

was assumed for the originals in Fig. 6.3(a) and Fig. 

6.4(a).  From (6.6), the three correlation values which 

are used in finding a   ,   a]t   and a2, were found to be 

R(0,0) = 1816 

R(0,1) - 1807 

R(1,0) = 1797 

Using the modeling procedure the best 7th order autore- 

gressive model was obtained as 

x(i,j) ■ 0.87x(i/j-l)+0.02x(i,j-2)-0.03x(i-l,j-2) 

+0.01x(i-l,j-l)+0.03x(i-l,j)+0.03x(i-l,j+1) 

+0.13x(i-l,j+2)+0.29u(i,j) 16.27) 

Note that with the above model, the estimator requires 

only the storage of the current and the previously esti- 

mated line of the image at each time k.  Based on the 

availability of two lines of image, at each time k, and 

the use of the guidelines of the modeling procedure, the 
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7th order model of (6.27) was found to be ddequate. 

Figures 6.3(b) and 6.4(b) represent noisy images, 

where the noise is white additive-Gaussian with the signal 

to noise ratios of one and one-half respectively.  The 

estimated image of Fig. 6.3(c) represents a 7.54 and 

Fig, 6.4(c) represents an 8.4 db improvement (see Appendix 

B for the definition of db improvement). 

6.4   Properties of the Linear Estimator 

For an autoregressive model of the form 

M 
x(k) = I   3.x(k-I.)+Bu(k) 

i=l 1    1 (6.28) 

when the observation noise is additive-Gaussian, then the 

estimate and its error variance, at each time k are 

given by 

x(k) = 
a*(k) 

a*2(k)+a*(k) 

a*2(k) 
x*(k)+ y(k) 

o*z(k)+ö2(k) 
(6.29) 

a2(k)a*2(k) 
a2(k)= —^ 

a*2(k)+o2(k) 
(6.30) 

where 
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M 
x*(k) =  ); ß.x(k-I.) 

i=l      1 (6.31) 

,*2 (k) = 
M 

B2+[ l    |ß lodc-Ii)] 
i=l  1 (6.32) 

1 

and a2 (k) is the observation noise variance at time k. 

Relations (6.29) through (6.32) indicate that imple- 

mentation of the linear estimator is quite simple leading 

to on line processing of either images or one dimensional 

signals.  An encouraging property of this estimator is 

that the error variance a2(k) satisfies the set of recur- 

sive equations (6.30) and (6.32) which are independent of 

the value of the observation y(k).  This enables the imple- 

mentation of (6.30) and (6.31) on a digital computer, 

prior to reception of any observations, and the investi- 

gation of the steady state behavior of the error variance. 

Since this estimation method is, in general, suboptimal, 

as will be discussed in Chapter 8, the above a priori 

analysis could be used as a basis for deciding for or 

against the use of the foregoing estimation technique 

even when the optimal solution exists.  Of course  the 

advantage of the use of this procedure when the optimal 

solution exists is the computational and implementation 

simplicity of this estimation algorithn.  This is shown 

in more detail in the following example. 
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Rxample 6.1: 
Consider the one dimens 

ional random process 

.utoregressive model 
x(k) satisfying the following 

x(k) . 0.248x(k-l)+0.0l4x(k-2)+0.969u(K) (6.33) 

For the observation 

y(k) = x(k)+YW 

(6.34) 

with 

EY(k) = 0 

EyMk) = 0.5 
(6.35) 

redicted value can be 
the error variance of the one step P 

^ ^n, t-he two recursive relationships 
obtained from tne rwo 

a*2(k)   m   (o.969)
2
+l0.248o(k-m0.0145(k-2)] (6.36) 

and 

ö2(k) = 

0.5o*2(k) 

0.5+o*2(k) 

(6.37) 

.1.» of a*2(k), denoted by a*2, in (6.36) 
The converging value of a  ^n 

is found to be 

0*2 = 0.959 
(6.38) 

The estimation ptoblen aS defined by (6.33, through 

„.,5, can aiso he done optl-U, hy defining a rando. 

vector Z(k) [221 as 
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Z(k) - 
Z, (k) 

z2 'k) 
(6.39) 

with 

and 

Zj(k) - x(k-l) 

Z2(k) = Zj (k-1) = x(k-2) 

(6.40) 

(6.41) 

Using (6.33), (6.40) and (6.41), the elements of Z(k+1) 

can be written as 

Z^k+l) = x(k) - 0.248Z, (k)+0.014Z2 (k)+0.969u(k) 

Z2(k+1) = Zj (k) 

or with the use of (6.39) in a vector form as 

(6.42) 

(6.43) 

Z(k 1) = 
0.248   0.014 

1      0 
Z(k) + 

0.969 

0 
u(k) (6.44) 

Similarly the observation at time k-1 can be written as 

y(k-l) = [1  0]Z(k)+Y(k-l) (6.45) 

Equatirns (6.44) and (6.45) have the same form as 

(1.14) and (1.15), thus the Kaiman filte; ing technique is 

applicable and the optimal estimates can be obtained from 

(1.18) through (1.20) with 
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A(k) 

B(k) - 

0.248    0.014 

1        0 

0.969 

0 

C(k) - [1   0] 

D(k)L(k)D(k) = 1 

K(k) - 1 

Denoting the convergent value of the variance of the opti- 

mal one step prediction value, obtained from implementing 

(1.19) and (1.20), by o*, this value was found to be 

a^ = 0.957 (6.46) 

Comparison of (6.38) and (6.46) reveals that, if the 

third decimal place accuracy is negligible, then the 

proposed method should be used for estimation since this 

procedure is easily implementable and does not require 

matrix operations.  It should be noted that a second order 

model was considered in this example, in order to outline 

the desired properties with the least amount of notational 

complexity.  The computational simplicity of the proposed 
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estimator will become exceedingly attractive when the 

autoregressive model is of a much higher order, in which 

case the optimal procedure would require operations on 

large dimensional matrices. 

6.5   Bounded Multiplicative Noise 

Whan 

Y(k) = y{k)  [x(k)+M(k)] (6.47) 

and { \k)   has a density function p (y (k)) bounded between 

YjdO and y ^ {k)   with 0<Y , (k) <Y2 (k) , then  [26] 

PY[ 
y(k) 

p{y(k) |x(k)) =( 

x(k)+M(k) 

x(k)+M(k) 

] 
y(k) 

if Y, (k)^ <Y2(k) 
x{k)+M(k) 

Otherwise (6.48) 

For images, the quantity x(k)+M(k) designates the intensity 

of the original image at pixel k and hence it is always 

positive.  This is used in reducing condition 

y(k) 
Yi (JO < 

x(k)+M(k) 
s< Y,(k) 

in (6.48) to a condition on x(k) as 
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y(k) y(k) 
 -M(k) <- x(k) ^ M(k) 
Y2(k) YiOO 

Thus, (6.48) can equivalently be written as 

yCk) 
—] 

y(k) 
P, t Y x(k)+M(k) y(k) 

p(y(k) |x(k) )=<   x(k)+M{k) 
if M(kUx(k)< M(k) 

Y2{k) YjOO 

Otherwise (6.49) 

Substituting (6.49) in (5.6) and (5.9) and dropping sub- 

script k from all variables, then x and a2 for each k are 

obtained from 

1 fb. x    y      (x-x*)2 

—pv( )exp[-      ]dx 
G Jbj  x+M ' x+M 2o*2 

(6.50) 

a2= - 
1 

G 

where 

G = 

'^ (x-x)2  y      (x-x*)2 

 p ( )exp[-   ]dx 
bi  x+M  ' x+M      2o*2 

1    y       (x-x*)2 

 p ( )exp[- ■     ]dx 
bi x+M ' x+M 2o*2 

b = —-M 

b2 = -M 

(6.51) 

(6.52) 

(6.53) 
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Thus, computation of x and o2 involves evaluation of the 

above definite integrals. 

When y ik)   is uniform then 

YJOO-Y, (k) 
if  Y, ()O^Y(kUY2(JO 

p(Y(k)) =< 

Otherwise 

and (6.50) through (6.52) become 

(6.54) 

x = 

a7 = 

H 

b2  x (x-x*) 
■expl- ]dx 

b, x+M 

l(b2 (x-x) 

2a*2 

(x-x*)2 

exp[- -]dx 

H = 

bj x+M 

1 

2a* 

(x-x*)2 

—exp[- ]dx 
x+M     2a*2 

(6.55) 

(6.56) 

(6.57) 

* 

- 

The numerical technique of evaluating (6.55) through (6.57) 

is presented in more detail in Chapter 7, 

Figures 6.5 through 6.8 represent the application of 

the foregoing estimation process to images containing uni- 

form multiplicative noise.  Fig. 6.5(a) represents the 

same image as in Fig. 6.3(a), therefore it. autoregressive 

model was chosen to be the same as in (6.27). 

The binary square picture of Fig. 6.6(a) and Fig. 
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6.7(a) are 32x32 images v»ith a background intensity of 10 

and a foreground intensity of 20. The shaded square pic- 

ture of Fig. 6.8(a) is again a 32x32 image with intensity 

values of 10, 15 and 20. The three correlation values of 

the square picture were found to be R(0,0)=18.75, R(0,1)= 

16.99 and R(l,0)=16.99 and those of the shaded square were 

R(o,o)=12.1, R(0,l)=11.08 and R(1,0)=11.08. 

A stationary nonseparable correlation function of the 

form (6.4) was assumed for these images and the following 

models were obtained: 

a)  For the square picture the best 4th order model 

was found to be 

.:(i, j)=0.48x(i,j-l)+0.27x(i-l,:P+0.18x(i-l,j + l) 

+0.07x(i-l,j+2)+0.46u(i/j) (6.58) 

b)  For the shaded square the best 4th order model 

was given by 

x(i,j)=0.48x(i,j-l)+0.27x(i-l,j)+0.18x(i-l,j+l) 

+0.07x(i-l,j+2)+0.32u(i,j) (6.59) 

Table 6.1 summarizes the result of the application of 

the estimation procedure. 
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(a)   Original 

(b) Noisy, noise=0.7-1.0 (c)   Estimate 

Fig.   6.6 Uniform Multiplicative Noise 

4 
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(a)   Original 

(b)   Noisy,   noise=0.4-l.0 (c)   Estimate 

Fig.   6.7 Uniform Multiplicative Noise 
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(a) Original 

(b) Noisy, noise=0.6-1.0 (c) Estimate 

Fig. 6.8   Uniform Multiplicative Noise 
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IMAGE FIGURE NOISE BOUNDS db IMPROVEMENT 

Girl 
l 

6.5 0.7-1.0 5.48 

Square 6.6 0.7-1.0 7.58 

Square 6.7 0.4-1.0 7.72 

Shaded Square 6.8 0.6-1.0 7.70 

Table   6.1 

Aside from the quantitative improvement, as indicated 

in Table 6.1, note the preservation of edges in the esti- 

mated images of Fig. 6.5(c) through Fig. 6.8(c), which is 

a measure of subjective improvement.  The responsiveness 

of the estimator to abrupt pixel to pixel intensity changes 

is due to the estimator structure of Fig. 2.2,   since it is 

this structure that allows the estimator to respond to 

observation nonlinearities. 

6.6   Observa-,ions Containing Additive and Multiplicative 

Noise Terrs 

In the case that the observation is of the form 

y(k) = Y(k) [x(k)+M(k) ]+v(k) (6.60) 

»* 

then the application of the estimation method requires the 
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derivation of the density function p(y(k)|x(k)). This 

density function, then can be substituted in (5.6) and 

(5.9) to determine the estimate and its error variance 

at each time k. 

Assuming that y {k)   and v(k) in (6.60) are independent, 

the conditional density p(y(k)|x(k)) can be obtained in 

terms of the convolution of the probabiliuy density func- 

tions of y (k)   and v(k)  [26].  This is achieved by noting 

that conditioning of the right hand side of (6.60) on 

x(k) will make the quantity x(k)+M(k) nonrandom, hence [26] 

p(y(k) |x(k)) 
y(k)-c 

P^( )P (^)d^ 
x(k)+M(k) jj-oo Y x(k)+M(k)  v 

(6.61) 

In order to outline the procedure for solving (6.61), 

let us assume that y{k)   and v(k) are both uniformly dis- 

tributed with 

YjOO-Y^IO 
if  0<Y1 (k)<Y(k)^Y2(k) 

P (Y(k)H 
Y 

Otherwise (6.62) 

and 

f- 

I 
u 

7fi 
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Pv( v(k))=< 

v2(k)-V,(k) 

if  Vj (k)N<v(k)^v2 (k) 

Otherwise (6.63) 

Dropping the time dependence k from all variables and again 

assuming that x+M>0 at each pixel (which is the case for 

images) then, 

1 

P (—)=<[ 
Y x+M 

Y.-T, 

or 

y-5 
Y,-Y 2  ' 1 

Y x+M 

and 

y-5 
if  Y^ <Y, 

x+M 

Otherwise (6.64) 

if  y-YjU+MU^y-Y! (x+M) 

Otherwise (6.65) 

? 

v -v v2   1 

p iO'S V 

if Vj^Uv, 

Otherwise 

y-C 

(6.66) 

in order to find the product of PY(—) 
and PvCO' lt 1S 

X+M 
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required to know whether 

V,-V, .<(x+M) lYj-Y,) 
(6.67) 

or 

v -V, ^.(x+M) (Yj-Yi ) 
(6.68) 

The necessity of this requirement can easily be substan- 

tiated by trying to find the density function of the 

random variable z, where 

z - a+b 

where a and b are uniformly distributed between a^ a2 and 

b , b , respectively. 

Assuming v is the dominant noise term in (6.60), i.e. 

(6.68) bold at each pixel, and by inserting (6.65) and 

(6.66) in (6.61) and carrying out the integration in terms 

of 5, then p(y|x) is given as 

/ 

i v -y y-v, y-v2 
_|_! ^j   if M^ M 

A x+M Yz        Yi 

p(y|x)=< 

Vj-V, 

1 y-v 
-I Y.l 
A x+M 

y-v2     y-v, 
if M$x^ M 

y-v     y-v, 
if M$:<$ M 

Y2        Y, 

Otherwise (6.69) 
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where 

A= ( Y - Y ) (v -v ) 
I 2  ' 1     2    1 

Relation (6.69) can be substituted in (5.6) and (5.9) 

to obtain the pertinent filtering equations. 
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CHAPTER 7 

COMPUTATIONAL ASPECTS 

The estimation procedure developed in Chapters 2 

through 5 has been mainly motivated by the ease of the 

implementation and computational considerations.  Since 

the method consists of the three parts, namely modeling, 

prediction and filtering, the computational reguirements 

of each will be discussed separately. 

To find the model of the random process x(k), a 

series of systems of linear equations must be solved.  This 

does not hamper the speed or running time of the estimation 

process, since the modeling procedure is implemented prior 

to the reception of any observations.  The numerical meth- 

ods, used in this work for solving each system of linear 

equation, is just one of the many standard available meth- 

ods [40]-[42K 

In the actual operation of the estimator, the predic- 

tion scheme requires a minimal amount of computation.  This 

only involves arithmetic operations to find x*(k) and the 

upper bound of the variance a*2(k), equations (4.22) and 

(4.33).  Depending on whether or not the observation noise 

is additive-Gaussian, the filtering step may represent the 

bulk of the computational requirements of the entire esti- 
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mation procedure.  In the linear case, again, finding x(k) 

and o2(k) involves simple arithmetic operations and the 

computational aspects of the general case is considered 

below. 

7.1 Nonlinear Filtering 

Dropping the time dependence k (to reduce rotational 

complexity) from all variables, the pertinent filtering 

equations will become (equations (5.6) and (5.9)): 

(x-x*)2 

xp(ylx)exp[-   ]dx 
2o*2 

x = — 

) 

(x-x*)2 

p(y|x)exp[- '     ]dx 
2a *2 

o2 = 
f- 

(x-x*)2 

x)2p(y|x)exp[-   ]dx 
2o* 2 

J 
(x-x*)2 

p(y !x)exp[- -     ]dx 
2 a *2 

(7.1) 

(7.2) 

In the general case, where (7.1) and (7.2) do not 

have a closed analytic form, the integrals should be evalu- 

ated numerically.  Although (7.1) and (7.2) suggest that 

three numerical integrations are required at each time k, 

imaamm 
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the following expansion of (7.2) can help in reducing this 

number to two.  An example of this is the case of the uni- 

form multiplicative observation noise of Chapter 6, derived 

in Section 7.2. 

a2=- 
(x-x*) 2 

/P(y|x)exp[ 1 
2a*2 

*   ^ (x-x*)2 

{/[x2-2xx+x2]p(y|x)exp[ ]dx} 
2a*2 

(x-x*)2 

/x2p(y|x)e>.pi-  — ]dx 
2o *? 

(x-x*)2 

/p{y|x)exp[-  ]dx 

-x' 

2ö*2 

(7.3) 

7.2   Uniform Multiplicative Noise 

Having developed the estimator for the case of bounded 

multiplicative noise, the detailed expansion and the meth- 

ods of evaluation of the integrals in (7.1) and (7.2) for 

the particular case of uniform multiplicative observation 

noise is presented in this section.  Therefore, when 

P(y|x) = 
(Y^Y,) (x+M) 

then  (7.1) and (7.2) become 
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.1 
x = — 

I 

b x      (x-x*)2 

 exp[- ]dx 
a x+M 2o* 

b 1     (x-x*)2 

exp[-      ]dx 
a x-M      2a*2 

(7.4) 

■  x2     (x-x*)2 

 exp[-  ]dx 
a x+M 2a*2 

a = 
b  1      (x-x*)2 

 exp[—   ]dx 

-x 

a x+M 2o*2 

(7.5) 

where 

a = — -M 
Y2 

b = — -M 
Y
1 

Let 

(7.6) 

1:   = 

(b    1      (x-x*)2 

 exp[-  ]dx 
a x+M 20* 

(7.7) 

Letting 

z = x+M (7.8) 

results in 
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dz = dx 
(7.9) 

so 

b    x (x-x*)2 (b+M     t-« (z-M-x*) 
 expl ]dx =  1  exp[ —■        ]dz 

a x+M 2o*2 Ja+M       z 2ö* 

[L (x-x*)2 b     1 (x-x*) 
exp[- ldx-M -exp[- M 

Pa 

(7.10) 

20*« a  x+M 2a*2 

and 

b    x2 (x-x*)2 b+M M 
2 (z-M-x*)2 

a  x+M 
-exp[- ]dx -  I [z-2M+—]exp[-- 

2a*2 Ja+M z 2a*2 
idz 

(x-x*)2 b (x-x*)2   ^ 
(x+M)expf-     ]dx-2M|     exp[- ■ 

ia 2o*2 Ja 2o*2 

+M' 
fb    1 (x-x*)2 

 exp[- ]dx 
a  x+M 2a*2 

(7.11) 

f 

Let 

b (x-x*)2 

I     exr[- ;- |dx 
2a*2 i: (7.12) 

Using   (7.7)   and   (7.12),   then relations   (7.10)   and   (7.11) 

become 
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b x     ,x-x*) 
-expl- 

a x+M     2o * i 
;x = Ij-MI, (7.13) 

b  x2     (x- 
 exp[- - 

a x+M     2 

-x*)2      fb 
  ]fix =  x 

0*?       J - 

(x-x*)2 

exp[ Jdx-MX^M1!, 
2a *i 

Furthermore, with a change of the variable 

(7.14) 

z = x-x' 

dz = dx 

(7.15) 

then 

! 

b       (x-x*)2 

x exp[- ]dx 
a        2o*2 

(b-x* z2       f 
= 1   .- exp[- ]dz+x* 
Ja-x*      2a*'     J 

b     (x-x*)2 

exp[-   ]dx 
2o*2 

(7.16) 

But 

I b-x* 
(a-x*)2      (b-x*)2 

z exp[- ]d'--a*2[exp[-  "—]-exp[- 
a-x* 2o*2 2a^ 2o *2 

-11 

(7.17) 

Letting 

Q = o*2{expi- 
(a-x*)'      (b-x*) 

^c*2 
-]-exp[- 

2a *2 
-]} (7.18) 

i. 
■■. 
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then using (7.16) relation (7.14) can be written as 

1 b  x
2     (x-x*)2 

 exp[ ]dx = Q+(x*-M)I +M2I 
a x+M     2a*2 

(7.19) 

Substituting (7.13) and (7.19) in (7.4) and (7.5) results 

in 

x = - -M (7.20) 

G2 = 
Q+(x*-M)I 

■+M2-x2 (7.21) 

r 

where I,, I2 and Q are given oy (7.7), (7.12) and (7.18), 

respectively. 

Thus, finding x and a  requires carrying out ehe two 

integrations ll   and I2.  Since, the functions involved in 

these integrations are continuous and well behaved, the 

Romberg's method of numerical integration was used [12] to 

determine the estimates of 32x32 images in Fig. 6.6(c) 

through Pig. 6.8(c).  This integration method is reasonably 

fast and requires minimal coding.  For the images in 

Fig. 6.6 through Fig. 6.8, the total CPU time of setting 

up the i aage, the observation and obtaining the estimated 

image, was about 2.5 minutes on PDP-10 computer. 

Although the CPU time of 2.5 minutes for the 32x32 

images of Figs. 6.6 through 6.8 is reasonable, this time 
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increases linearly with the increase in the size of the 

image.  Such an increase, in general, may not be tolerable 

in practical situations.  Therefore, for images of the size 

256x256 (such as those in Fig. 6.5) or higher, th"? appli- 

cation of the method m£" warrant some approximation of 

the integrals Ij and I2.  For small values of the predic- 

tion variance o*2, a crude approximation on the exponential 

form of p(x{k)) can be made by expanding the exponential 

in its series equivalent and retaining the first twc terms. 

This results in representing p(x(k)) at each time k by 

2o* 
p(x) «  1" ] (7.22) 

/2i 2o*2+(x-x*)2 

With  this  it can  be  shown  that x and  a2   are  obtained  from 

B 
x =  - 

A 
(7.23) 

.2     — rr\_ ODvj-A v2 [Q-2BX+AX2 ] (7.24) 

where 

i: A = I     p(y | x)p(x)dx 

1 (x+M)2 

( ln- 
q2        -i    2(x+M)+q     x=b 

"tan     — —^-1 (7.25) 
2q1     20*2+(x-x*)2  ql/q /q x=a 
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i: b
 2-1    2(x+M)+q?   x=b 

|      xp(ylx)p(x)dx  =   [—tan !        -MA 
a /q /q" x=a 

(7.26) 

Q  =  1      x2p{y |x)p(x)dx 
a 

1 qz        2        -i    2x+2M+q2   x=b 
M:,A+[-ln(2o*2+(x-x*)2)-(2M+—) (—) tan      —        1 

2 2     /q /q x=a 

with 

q,   =   2a*2+(M+x*) 

q     -  -2(M+x*) 

(7.27) 

*^ 2 q   -   4[2o*2+(M+x*)2l-4(M+x*) 

ani 

a  = 
y 
—-M 

b  - 
y 
 M 
Y. 
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CHAPTER   8 

A DISCUSSION ON THE OPTIMALITY OF THE 

PROCEDURE, EXTENSIONS AND CONCLUSIONS 

8.1   Discussion on Optimality 

Due to the various restrictions imposed on the esti- 

mator in Chapter 2, the estimation procedure as developed 

in Chapters 2 through 5 is, in general, suboptimal.  An 

exception to this is the case considered in the following 

theorem. 

Theorem 8.1;   If the observation noise is additive-Gaus- 

sian and the process x(k) is a first order normal Markov 

process, then for given initial conditions, x(0) and a(0), 

the procedure is optimal. 

Proof:    In this case, the model of the process x(k) and 

that of observation are given by 

x{k) = ßx{k)+Bu(k) 

y(k) = x(k)+Y(k) 

(8.1) 

(8.2) 

In order to show the optimality of the procedure in this 

particular case, let us assume that the estimate x(k-l) 
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« ^2rv-n at time k-1 have been found and its error variance o (k-1) at time 

optimally» i.e. 

(8.3) 
i(k-i) = r;x(k-i)ly(i) sMk-l) 

;2(k-i) = Elx(k-i)-x(k-i)]2|y(i) y(k-^ (8-4) 

The predicted value xMk) and its error variance a*2 (k) are 

obtained from 

x*(k) = ßx(k-l) 

2   2^2 
(k) = B +ß ö (k-1) 

(8.5) 

(8.6) 

But from (8.1) 

Ex(k)|y(i) y(k-i) = 3Ex(k-i)|y(i) y(k-i) 

+ BEu(k) |y(l)»...»y(k-l) 

= ßEx(k-i) |y<l)»...»y(lt-l) 

where by using (8.3) and (8.5), it follows that 

Ex(k)ly(l) y(k-l) ■ ^-V   = ^(k) 

and similarly 

E[x(k)-Ex(k)|y(l) y(k-l)]2|y(l) *<*'" 
2   2^2 

= B +3 o (k-1) 

(8.7) 

(8.8) 

(8.9) 

But xMk) and o*2(k) being optimal quantities makes the 

chosen a posteriori density of x(k) in Section 5.1 to be 
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p(x(k)) = p(x(k)|y(l),...,y(k-l)) (8.10) 

and the substitution of (8.10) in (5.6) and (5.9) results 

In 

Jx(k)p(y(k) |x(k))p(x(k)|y(l),...,y(k-l))dx(k) 

x(k)=- 
/p(y(k) |x(k))p(x(k) |y(l) ,...,y(k-l))dx(k) 

(8.11) 

.2    J[x(k)-x(k)]
2p(v(k) |x(k))p(x(k) |y(l),..,y(k-l))dx(k) 

o (k)=_ ■ ~ 
/p(y(k) |x(k))p(x(k) |y (1) ,. . ,y (k-1) )dx(k) 

(8.12) 

A comparison of (8.11) and (8.12) with (2.10) and (2.13) 

indicates that x(k) and o2(k) are optimal quantities. 

The proof of the theorem follows by applying the above 

argument for k=lr2,.... 

In the derivation of the general estimation procedure, 

the value of the prediction error variance was approximated 

by its upper bound in Section 4.3.  As stated previously, 

this approximation was introduced in order to maintain 

computational simplicity of the overall algorithm,  but 

since the error variance is an indication of the uncertainty 

of the value of each estimate then the effect of such an 

approximation on the values of the subsequent error vari- 

ances should be investigated.  In the following, the effect 

of such an approximation on the error variance of the 

linear estimator of Section 6.3 is analyzed and it is 
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shown that the introduction of the upper bound causes all 

future computed error variances to be larger than the 

actual variances. 

At each time k, the actual unavailable prediction 
2 

error variance o (k) is approximated by its upper bound 
2 f 

o* (K) where (equations (4.32) and (4.33)) 

o*2(k) = B2+[ l   |ß |a(k-I.)]2 

i=l  1     1 (8.13) 

with 

2 2 
o (k) s< o* (k) 
P (8.14) 

The computed error variance of the filtered quantity is 

given by 

2      2 

-2     a* (k)o (k) 
a (k) = —j—_Xj  

a* (k)-»-o (k) 
(8.15) 

Assuming o (k) is available at time k then the actual vari- 

ance a (k) would be 
a 

2    2 

2     ^p(k)ö (k) 
o (k) = :    { 

o2(JO+a2(k) 
V Y 

(8.16) 

But due to (8.14) and o^(k) being the observation noi 

variance, then it follows from (8.15) and (8.16) that 

am (k) ^ o (k) 

se 

(8.17) 
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Recursively, the substitution of (8.17) in (8.13) shows 

2 
that the computed prediction error variance, a* (k), is 

always larger than the actual variance.  Therefore, for 

the linear estimator of Section 6.3, all computed variances 

are the upper bounds for the actual variances. 

8.2   Discussion of Nonlinear Case 

In the light of the discussions in the previous sec- 

tion, it is expected that the computed and actual variances 

of the nonlinear estimator behave similar to those of the 

linear case.  The difficulty in showing this is in having 

0 (k) satisfy an integral relation of (5.9).  It is sus- 

pected, however, that the relationship between the computed 

and the actual variances of the linear case does not hold 

true for all nonlinear observations while for a certain 

class of nonlinearities the same results may exist. 

This subject requires a more exact and rigorous analy- 

sis and is an excellent candidate for topic of future 

investigation. 

V 
■ 

8.3 Extensions and Topics for Further Research 

The estimation method of Chapters 2 through 5 has been 

derived based on the restriction of the linear prediction. 
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But if a nonlinear model of the random process x{k) exists 

chen the prediction procedare could be replaced by the 

appropriate nonlinear one.  In general, if the form of 

nonlinearity is known then the modeling procedure can be 

modified in order to determine a nonlinear model of the 

process x(k).  This modification is conciptually simple 

and would require a priori decision on the order and the 

degree of the nonlinearity.  For example, for a given 

order M and the 2nd degree polynomial nonlinearity the 

modelina procedure can be used in obtaining a model of 

the form 

i-l        i=l 

M    2        M 
x(k) = I   f^x (k-Ily+ I   f^iXU-I^i) 

^ —i i=1 

+   62M+lS2M+2X"t-I2H+l'
X'k-I2M+2' + ----+BU,k) 

(8.18) 

Of course, (8.18) is a particular form of nonlinearity and 

it should be noted that in order to apply the modeling 

procedure the a priori statistics must contain up to and 

including the 3rd moment of the random process x(k). 

8.4   Conclusion 

This dissertation has examined and expanded the sub- 

ject of general image estimation.  An estimation procedure 
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has been developed with a particular emphasis on the multi- 

plicative and non-Gaussian observation noise.  An analysis 

of the optimal discrete filter has been presented to show 

that the principle of the estimation at each time k consists 

of a one step prediction and filtering operations.  Concep- 

tually these operations are shown to closely resemble a 

learning procedure based on the past information and the 

optimal use of the present information.  Accordingly, a 

recursive estimation procedure is derived such that the 

logic of the estimation principle is maintained and, at 

the same time, the procedure is implementable. 

Although the derivation and application of the method 

has primarily been presented in terms of the two dimensional 

processes, the procedure is directly applicable to one 

dimensional problems.  A particularly important and prac- 

tical feature of the estimation method is the method's 

independence of the analytic representation of the a priori 

correlation function.  An equally significant value of the 

procedure, in this respect, is its applicability to prob- 

lems where only partial values of the correlation function 

are specified. 

The estimation method is demonstrated to be applicable 

to a broad class of observation systems and, in fact, the 

degree of ease or difficulty in applying the method to 

general nonlinear systems is directly related to the ease 
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APPENDIX A 

A DISCUSSION ON ERROR VARIANCE 

For a given set of observation yd) ,y(JO • the 

estimate x(k) of the process x(k) at time k is, in general, 

some function f of the observations which can be written as 

x(k) - f (yd). »yOO) (A'1 

Accordingly, the two error variances, a\w   and S2(k), of 

x(k) can be defined as 

(A.2) 
a^k) - E{[x(k)-x(k)] ) 

o2(k) = E{ix(k)-x(k)l |y(i). ,y(fcn 
(A.3) 

From (A.l) and (A.2), it follows that 

.2 -2 

o^k) = EY02(k) 
(A.4) 

where EY repre 

yd), ,y(k).  Letting 

e(k) ■ x(k)-x'.k) 

sents the expectation with resp-ct to 

(A.5) 

then e{k) is a random variable and (A.2) and (A.3) can 

equivalently be written as 
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ai (k) = (A. 6) 

/...//e {k)p(e(k),y(l), ,y(k))de(k)dy(1),....dy(k) 

ö9(k) = je   (k)p(e(k) |Y(l),...,y(k))de(k) (A.7) 

In the linear optimal case of Section 1.3, the exist- 

ence of the orthogonality principle (equation (1.12)) 

along with the zero mean <ind the Gaussian nature of the 

random variables result in the statistical independence of 

e(k) and y(1),,...,y(k) [26] which reduces (A.6) and (A.7) 

to 

- ? A I 

ajU) = a2(k) = je   (k)p(e(k))de(k) (A.8) 

but in general 

-^2 ^2 
al (k) ^ ö2(k) (A.9) 

For a given sample function of the observation,a2(k" 

in (A.3) specifies the amount of variation (uncertainty) 

associated with choosing x(k) as the estimate of Mk) at 
^ 2 

time k.  The quantity o (k), on the other hand, represents 

the ensemble average of the variance when finding x(k) from 

(A.l) and for all possible values of y(l), y(k). 

Since in this dissertation, our interest is in a particular 

sample function of the observation (the degraded image), 

quantity (A.3) is taken to represent the variance. 
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APPENDIX B 

AN II4PR0VEMENT MEASURE FOR ESTIMATED IMAGES 

Letting b{i,j), y(i,j) and b(i,j) denote, in order 

the intensities of the original image, the noise corrupted 

image and the estimated image at pixel (i,j), then the two 

2 2 ,  . 
quantities o and 0e are computed as 

INN 
I      I   [b{i,j)-y(i,j)] 

ön :  N2 1=1 j=l 

(B.l) 

0e " 

INN A      2 
~ I       I   [b(i,j)-b(i,j)] 
N  i=l j=l 

(B.2) 

where N is the size of the image. 

Viewing o2 and a2   as the average error variance 
n     e 

associated with the observation and the estimate, respec- 

tively, the amount of improvement in db is obtained from 

db improvement = 10 log10 (B.3) 
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