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ABSTRACT

The goal of this study is the formulation of a

technique for.the quantitative control of color film. The

specific application is the recording of digqital images
from a color mo.itor (or scanner) onto color film with
maximum colorimetric fidelity. Inasmuch as human color
perception 1is three-dimensional in nature, the recording
process can be modeled as the passaqge of a
three-dimensional signal throuyh a trinary channel.
Consequently, the distortions imposed upon the signal by
the channel can be neutralized by a suitable pre-distorion
of the input three-vector. Specifically, the
pre-distortion should be the mathematical inverse of the
channel mapping.

A hierarchy of methods for the inversion of the channel
mapping are developed, and tested. Although the numerical
errors associated with the inversion process are shown to
be 1insignificant, some subjective errors are apparent in
the photographic reproduction if the predistortion 1is
based on traditional fidelity criterion for color
matching. A fidelity criterion based on a more relevant

model of <color wvision, with particular attention to




chromatic adaption, 1is develovned. Using this model,

photographic reproductions of color monitor images can be

produced with excellent fidelity.

iv




TABLE OF CONTENTS

1. INTRODUCTION 1
2. THREE COLOR THEORY OF HUMAN VISION 7
2.1 Eye model and the trichromatic specification 7

2.2 Tristimulus values and color coordinate

systems 16
2.3 Color adaption 33
3. ADDITIVE COLOR SYSTEMS 60
3.1 The additive principle and color television
monitors 60
3.2 Gamut and luminance restrictions 69
4., SUBTRACTIVE SYSTEMS 83
4,1 Subtractive color systems 83
4.2 Subtractive systems; cuantitative description 88
5. COLOR PHOTOGRAFHY 101
5.1 Chemistry and physics of color photography 101
5.2 Mathematical model of transparency reversal
film 109
i; 5.3 A comparison of empirical findings and theory 120




6. THE DISPLAY-FILM SYSTEM AS A MAPPING OF
TRIST1MULUS VALUES 13¢

6.1 Direct inversion of the film model 131

6.2 Indirect inversion and computational
considerations 154

6.3 Experimental results . 160

7. GENERALIZATIONS, AND TOPICS FOR FUTURE RESEARCH 165

APPENDIX A

Transformations between sets of tristimulus values 171

APPENDIX B

Multidimensional mappings, and least sauar<s curve
fitting of surfaces 174

APPENDIX C

Spatial Filtering of color images 179

APPENDIX D

Transformations used in the film model 183



(1.86-1) Conceptual block diagram of film
recording process 3

(1.6-2) Conceptual diagram of the tristimulus

correction process 4
t- (2.1-1) A first-order model for color vision 10
3 (2.1-2) Color Mach bands (color plate) xii
-
' (2.1-3) A color vision model incorporating
spatial frequency effects 14
(2.2-1) Experimental color matching apparatus 17
(2.2-2) Color matching functions for spectral
F primaries 20
E (2.2-3) XYZ color matching functions 23
(2.2-4) Chromaticity diaqram 26
(2.2-5) Constant luminance planes in Lab space
(color plate) xii
(2.2-6) Television phosphor gamuts in ab plane
of Lab space 29
]
(2.2-7) Lab cylindrical coordinate system 31
(2.3-1) Color shifts due to chromatic adaption 36
|
(2.3-2) Von Kries model for chromatic adaption 37
(2.3-3) Konig ‘s receptor sensitivities 43
(2.3-4) Adaptive bias model for chromatic
adaption 46
k |
?g vii
;
&' -

T
g b




R P TN Ty

S i i e e . e

(2.3-5)

(2.3-6)

(2.3-7)

(2.3-8)

(2.3-9)

(2.3-18)

(2.3-11)
(3.1-1)
(3.1-2)
(3.1-3)

(3.1-4)

(3.1-5)

(3.2-1)
(3.2-2)
(3.2-3)

(3.2-4)

Chromatic adaption interpreted as a
selt-centering coordinate system

Effect of pre-nonlinearity gains on

adaption shifts for one-third power
nonlinearity

Effect of post-nonlinearity biases at
low lightnesses, for one-third power
nonlinearity

Effect of post-nonlinearity biases at
medium lightnesses, for one-third cower
nonlinearity

Effect of post-nonlinearity biases at
high lightnesses, for one-third power
nonlinearity

Color shifts predicted bv combined Von
Kries and subtractive bias effects

Block diagram of adaption transform
Nonlinearities of color monitor display
Effect of brightness and gain controls

Effect of gamma correction on color film
recording (color plate)

Typical television phosphor
characteristics

Comparison of modern phosphors and
N.T.S.C. phospohors

Gamut of additive system in RGB space
Gamut of additive system in XYZ space

Gamut of additive system in Lab snace

Histogram of image hues in ab plane for
test image of fig. 6.3-1

48

50

51

52

53

56
57

62

xii

66

67

70

74

75

viii




.

—_——p

(3.2-5)

(4.1-1)
(4.2-1)
(4.2-2)
(4.2-3)
(5.1-1)

(5.1-2)
(5.1-3)

(5.2-1)

(5.2-2)

(5.2-3)

(5.3-1)

(5.3-2)

(5.3-3)

(6.1-1)

(6.1-2)

(6.3-1)

Geometrical interpretation of the gamut
correction problem

The subtractive primaries
Mathematical model for absorption
Measurement of transmissivity

Gamut of colors in subtractive system

Hurter-Driffeld curves

Typical construction of color film

Schematic representation of modern color
film yrocessing

Mathematical model of color transparency
film

Layer sensitivities for EKTACHROME-X
film

Dye spectral densities for EKTACHROME-X
film

Comparison of XYZ color matching
functions and colorimeter
characteristics

Actual vs., estimated XYZ color matching
curves, using colorimeter

Comparison of actual vs. predicted
tristimulus values, using the film model

The display-film cascade as a mapping
Spectral distributions of colors used in
comparison of tristimulus integration

methods

Photograph of original test image (colior
plate)

79

86
89
94
99
104

105

107

110

113

116

121

124

127

132

151

xii




) (6.3-2)

(C-1)

(C-2)

Photograph of test image pre-distorted
by inverse of film model (color plate)

Frequency response of chromatic channels
in visual system model

Color image processed by high emphasis
filtering (color plate)

o R —— o —

Xii

181

xii




e P

» 2w

Figure (2.1-2) Color Mach bands
Figure (2.2-5) Constant luminance planes in Lab space

Figure (3.1-3) Effect of gamma correction on color film
recording

Figure (6.3-1) Photograph of original test image

Figure (6.3-2) Fhotograph of test image pre-distorted
by inverse of film model

Figure (C-2) Color image processed by high emphasis
filtering

Description of photographs in color plate

xi




Figure (6. 3-2)

Figure (2.

>

&=

5)




.

%

NOTATION

wavelenath variable, expressed in nanometers
spectral sensitivity of kth sensor (usually in
reference to the receptors of the visual system)
output of kth sensor

weight on additive orimarv (usually TV phosphor)
arbitrary spectral distribution

reflectivity

distribution of kth additive primary

kth XYZ color matching function

kth XYZ tristimulus value

distribution of reference white

optical transmissivity

optical density of kth dye

concentration of kth dye

footnote

reference

vector

matrix

xiii




RODUCTIO

The goal of the research to be described in this
dissertatinon is the hopefully fruitful union of two
diverse disciplines, color photography, and digital image
processing. The first came into prominence in the 1930 s
and is today still unchallenged as 2 convenient means of
recording color imagery. The second is of recent origin,
and is rapidly gaining popularity with the increasing
prevalence and economy of digital computing. The two
fields are dissimilar in that the disadvantages of one
often are the advantages of the other. Film recording is
fast, very high resolution, relatively inexpensive, but
can only be controlled with tedious and imprecise darkroom
techniques. Digital image processing, on the other hand,
offers perfect repeatability and control, but at the
present time is slow and relatively expensive. One point
at which the two disciplines meet 1is in the final
recording of a digitally processed image. Unfortunately,
this is often considered a mundane detail and little, if
any, effort 1is made to understard or control the

recording. Conseauently, the result may be an image

inadvertently processed to a greater deqree by the

photographic film than by the computer. In the case of
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color images recorded from a television monitor, the
distortions can be quite significant. However, if as much
care is given to the modeling of the film recording system
as is given to the processing of the image, auite faithful
reproductions can be achieved. The philosophy to be used
is that the film should be controlled not by chemical
means, but by a pre-distortjon of the 1image to be
photographed.

The basis of color matching theory is the three
dimersional nature of color wvision. That 1is, the
appearence of a color can be specified by only three

numbers, known as tristimulus values. This is due to the

fact that there exist only three types of color receptors
in the human retina. Consider the schematic diagrams of
figs. 1.8-1, and 1.8-2. The process of film recording 1is
modeled as a mathematical correspondence (mapping) between
the tristimulus values associated with the color being
photographed (the input), and the tristimulus values
associated with the color which results on the film (the
output). Therefore, from a systems standpoint, 2
particular display-film combination can be represented as
a trinary channel or "black box" with known input-output

characteristics. By mathematically inverting the black
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box magping, the input tristimulus vector necessary to
produce a dJesired output tristimulus vector can be
calculated. Consequently, this "inverse channel" can be
used to "pre-distort" the tristimulus values of the image
co be photogravhed, on a point-by-noint basis. Thus,
perfect colorimetric fidelity is possible in the recording
process. The practical implementation of this approach is
the subject of this dissertation.

Although digital techniques have been used for the
analysis. codina, and transmission of color images (2],
no studies on the colorimetrically exact film recording of
digital images have been published. However, some
previous work has been reported in which a color monitor
image was pre-distorted to vield an "improved"
photographic image [3,4)]. However, the techniques ‘'ere
qualitative in nature and not concerned with an exact
colorimetric match. While 1t can be argued that an exact
duplication of tristimulus values is not necessary for a
pleasing reproduction, the point is that gqualitative
techniques are ratht empirical and lack precise control.
However, once an accurate model of the film recording
process has been assembled, the type of reproduction

desired, whether exact or mnot, can be aquantitatively




controlled.
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THREE COLOR THEORY OF HUMAN VISION

The basis of color technology is the three dimensional
nature of color vision. Conseauently, color reproduction
systems reqguire only three deqrees of freedom. Color
television uses three guns and color film uses three
layers. Even so called "four color" printing utilizes
only three primary colors; the fourth color is black, and
is wused for reasons of economy (colored inks are
expensive). The following chapter explores the
assumptions of the three-color theory, its triumphs, and

also its failures.

EYE MODEL AND THE TRICHROMATIC SPECIFICATION

The perception of color is certainly a complex
phenomenon, sharing some similarities with the sense of
hearing. Both faculties exhibit wide dynamic ranges, and
tend to adapt to ambient levels of stimulus. (i.e. the
senses tend to perceive relative changes, rather than

absolute levels). Nevertheless, hearing and color
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perception differ in one fundamental respect, their
intrinsic dimensionality. Consider, for example,
duplicating a certain sound, such as a particular note on
a violin. In order for the replica and original to be
indistinguishable to the ear, it is necessary that their
power spectra match over the audible range. This
indicates that an auditory match involves a nearly
infinite number of degrees of freedom. 1In the case of
color vision, duplication of the spectrum over the visible
range 1is sufficient for a match, but 1is by no means
necessary. 1If this were the case, color reproduction
systems such as film and television {1] would be
substantially more complex, if not impossible to achieve.
The relative simplicity of these systems is due to the
three dimensional nature of color perception.
Specifically, a given color can usually be matched
perfectly by an additive mixture of only three ‘“primary"
colors, provided that none of the primaries is merely a
sum of the other two. The range of colors which can be
generated by this method is known as the gamut of
reproducible colors (for that particular set of
primaries). If a color 1lies outside the gamut, then a

match can only be attained by diluting the color with one




of the primaries until it can be matched with the
remaining two. Furthermore, color matching obeys the laws
of additivity and proportionality, i.e. if colors A and B
match, and colors C and D match, then colors (A plus C)
and (B plus D) match. Also, a match remains undisturbed
if the intensities of the two colors are varied equally.
The simplest model of color vision compatible with the
above laws, shown in fig. 2.1-1 [2], consists of three
receptors with spectral sensitivities sk(X). The output

of the kth receptor is given by

§ = fsk(X) C(X\) dx (2.1-1)
A

where C()\) is the spectral distribution of the color being
observed. The validity of the model is also supported by
physiological evidence indicating that the retina contains
three kinds of color receptors. In fact, various kinds of
color blindness have been explained as deficiencies in one
or more of the receptors [3, p. 155]. As with any simple
model, that of fig. 2.1-1 has 1its inadequacies, the
greatest of which is its failure to explain chromatic
adaption (A term used to describe the eve’'s ability to

perceive a wide range of illuminants as white). This
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Figure (2.1-1) A first-order model for color vision
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phenomenon is well known to photographers, since color
film does not adapt to the ambient illumination, and hence
must be balanced for one particular illuminant. For
instance, if film balanced for daylight 1is wused to
photograph a scene illuminated with tungsten 1light, the
resulting photograph will have a quite noticeable yellow
bias. The question immediately arises, why doesn’t the
eye adapt to the yellow bias of the photograph? The answer
is that the photograph usually subtends only a small
portion of the field of view, and its surroundings serve
as a reference which further exaggerates its poor color
balance [4, p. 130]. This is the reason that a color
print is less tolerant of errors in color balance than a
transparency viewed 1in a darkened room. A projected
transparency usually subtends a large field of view, and a
darkened room deprives the eye of any reference by which
to judge the color balance of the image. Chromatic
adaption will be discussed more fully in Sec. 2.3.

A second but related phenomenon unexplained by the

model of fig. 2.1-1 1is known as simultaneous contrast.

This is best illustrated by the color Mach bands of

fig. 2.1-2 (color plate). The eiqht colors gradually

shift from cyan to yellow, and are uniform across any

11
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given bar. Perceptually, however, it appears that the

cyan color becomes deeper just before the transition to
yellow. Similarly, the vellow at the interface between
the bars seems more intense. This is auite analogous to
black and white Mach bands which appear as overshoots at
the transitions between different grey levels [3, ». 2781.
The phenomenon can best be appreciated bv masking off the
fields adjacent to a given bar with white cards. This
will suppress the Mach band phenomenon, showing that each
bar is indeed uniform. For unknown reasons, this effect
appears to be strongest for transitions between cyan and
yellow, and is substantially weaker or totally absent for
other pairs of colors. In color 1images of very fine
structure, another poorly understocd phenomenon appears.
This is the Van Bezold spreading effect [4, p. 181]. 1In
this phenomenon, the color shifts are exactly opposite to
those predicted by contrast effects. The color shifts
appear to be an averaging or low-pass filteving effect 1in
which neighborina colors are blended together by the eye.
Furthermore, the model fails to explain why the eye
responds to stimuli in a auasi-loqarithmic manner
(87 . 83U8].

More complex visual models which attempt to explain the

12
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above mentioned contrast and adaption effects have been
proposed [5]. The block diagram of fig. 2.1-3 shows how
the scimple first order model can be extended to explain a
number of color ©phenomendn. Fig. C-1 indicates the
possible nature of the freouency response in the lightness
and chromatic channels. Note that the cross-couplings and
spatial filters in no way invalidate the color matching
laws deduced from the simpler model. That 1is, 1if two
spectral distributions generate the same receptor signals,
Sy then the two colors will still match, because no
amount of subsequent processing will allow the visual
system to distinquish identical signals. Later chapters
will discuss how the model of fig. 2.1-3 can be used to
analyze chromatic adaption phenomenon (Sec. 2.3),
formulate "uniform" color coordinate systems (Sec. 2.2),
and provide guidelines for color image enhancement

(APPENDIX C).

13
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TRISTIMULUS VALUES AND COLOR COORDINATE SYSTEMS

R ——

Having established the three dimensional nature of

color vision, it would seem reasonable to specify a

—TT——

color's appearance by a triplet of numbers. Although the
outputs of the three color receptors would be a logical
choice for the specification, the spectral respouses of
the actual receptors in the eye are difficult to measure.
However, since any linear combination of the recentor
outputs can serve as an equally valid srecification, e
will be demonstrated that an indiroct method such as color

matching can be used. In color matching, a subject

B ——
.

attempts to duplicate the appearan:e of a test color by an
additive mixture of three primaries [1, P. 395]). A
simplified schematic of the experimental setup is shown in
fig. 2.2-1. Now consider the matching of a spectral lipne
of unit power at wavelength X\=), . Assuming the wvalidity
: of the eye model (fig. 2.1-1 and ean. 2.1-1), a match will

be attained if and only if both colors evoke the same

é, three "signals" from the evye’s receptors, i.e.

i‘,‘

' 3

' fsi(k)ztj Pj(k) di = /Si(k) L O-2,) ax (2.2-1)
A j=1 )}
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wavelength A,

Figure (2.2-1) Experimental color matching apparatus
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E tj/Si(X) P, (\) d\ = g (),) (2.2-2)
j=1

for 1i=1,2,3, where the pj(X) are the spectral
distributions of the primaries, the tj are weights teo be
determined, and the si(X) are the receptor sensitivities

of the eye. Expressing 2.2-2 in matrix notation gives

s, O\,) t0h,)
% So O = [t,00,)
s,(\,) t,0h,) (2.2-3)
wher 2
2= /sim P, () a) (2.2-4)

Thus, the weights on the primaries required to match a
spectral line are always linear com-inations of the
receptor sensitivities at that wavelength, If the
wavelength of the spectral line to be matched is swept
across the visible range, (3890 to 775 nanometers), the

weights, tj(xa), being functions of wavelength, form a

18




family of three curves, known as color matching functioas

[1, p. 447]. A group of such curves generated by using
spectral primaries located at 7A8.8 nm. (red), 546.1
nm. (gqreen), and 435.8 nm. (blue) is shown in fig. 2.2-2
{1, p. 223). Now consider matching a continuous spectral
distribution by a weighted sum of three primaries. This
can be done by treating the continuous distribution as a

"picket fence" of delta functions

cOv = lim Ek:cuk) LO-N) 8 » (2.2-5)

with convergence in the sense that

lim win | con - C) O-NaN Yo =0 (2.2-6)
A)\-»o/ [ (zk: k xk X

or

W(N) C()\) d\ = lim Wh) C(\N) A N (2.2-7)
/ 0 S0, co,

k
where W()\) is any smooth function. Since the weights on
the primaries needed to match a spectral line are merely

the values of the color matching functions at that

wavelength, the weights, %., required to match the

19
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2.2

distribution, C()\), are given by the superposition

T, = 51'22 C () 5O B (2.2-8)
k
or
Ti= /C()x) ti()«) ax i=1,2,3 (2.2-9)

Hence, a visual match to C(\) is given by the following

weighted sum of primaries <'>.

3
coy T ZTi p, (\) (2.2-180)
i=1

If the color matching functions, ti(X), are normalized
such that the weights reauired to match a reference white,

W(\), are all unity, i.e.

Ti= /ti(k) W(\) d\ =1 i=1,2,3 (2.2-11)

then the weights, Ti' (defined in ean. 2.2-9) are known as

: tristimulus values. Here, the notation convention will be

) <*> The symbol ~ 1is used to denote a visual, or
tristimulus equality, as opposed to a mathematical
equality.

21
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to denote scalar weights, such as tristimulus values, by
uppercase letters, and the corresoonding color matching
functions by lowerczse letters, (i.e. Ti and ti(X))
Clearly, the tristimulus values associated with a
particular spectral distribution depend on the associated
set of oprimaries. However, since all color matching
functions are 1linear combinations of the receotor
sensitivities, tristimulus values of different primary
systems must also be linearly related. That is,
tristimulus values can be transformed from one system to
another by use a 3x3 matrix multiplication. Although
there are an infinite number of nossible color matching
functions, some systems are more convenient to use than

others. 1rhe most popular is the XYZ system <*>, developed

by the "Commission Internationale de L Eclairage" (or
CIE), in 1931 [1, p. 238]. The XYZ color matching
functions are shown in fig. 2.2-3. A common way of
specifying colors in this system (and other systems as

well) is in the form of a chromaticity diagram. This

avoids the problem of plotting vectors in a three

<*> Unless stated otherwise, the vectors T and t ()\) will
refer to the XYZ2 coordinate system.

22
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dimensional sprace by use of the transformation

X=X/ (X+Y+2) (2.2-12a)

y=Y/ (X+Y+2) (2.2-12b)

thus reducing color specification to two dimensions. This
transformation retains hue and saturation information but
suppresses lightness. A useful vpronerty of the XYZ svstem
is that 1its color matching functions are nonnegative.
This is accomplished by permitting the associated
primaries to be non-physically realizable. A further
advantage is that one of its color matching curves is the

luminous efficiency function, v()\). This function is used

to compute the 1luminance of a spectral distribution,

defined as

Y

./}(X) C(N\) dx\ (2.2-13)

Its utility is that two colors matchina in 1luminance
appear to be of equal lightness.

A major shortcoming of the XYZ system is its
unsuitability as a metric space. That is, if the distance

between two color vectors, R and S, is defined by the

24
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standard Euclidean metric

2
a-= /Z(Ri -5, ) (2.2-14)
1

then unfortunately, there is little corresoondence between
the perceived disparity between the colors and their
metric separation [1, p. 450]. As an illustration,
consider the chromaticity diagram of fig. 2.2-4. The
horseshoe-shaped line is the 1locus of spectral colors
which are by definition maximally saturated for their
particular hue. The ellipses are regions within which the
chromaticity can be varied (at constant luminance) without
any perceptible color shift <*>., Note that the ellipses
in the green region (500-550 nm.) are considerably larger
than those of the blue region (460-430 nm.) This means
that although colorimetric errors in the blue and green
portions of the color space might be eaual from a
Euclidean distance standpoint, the error in the blue color
would appear significantly greater.

Many attempts at finding uniform coordinate systems

<*> The size of the ellipses has been exaggerated by a
factor of 14.
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Figure (2.2-4) Chromaticity diagram




which would avoid this difficulty have been reported.
These are usually nonlinear transformations of the XY2
system, and are useful in that an error between two colors
can be expressed as the Euclidean distarce between them
[1, o. 450]. At the present time, two such systems are
being considered for adowtion by the CIE [2]. These are:
(1) a modified version of the 1964 U"V*wW'space, and (2) a
simplified version of the Adams-Nickerson space. The

first is defined as

\
L=25(100Y/Y, ) 216 (2.2-15a)
u=13L (u-u, ) (2.2-15b)
v=13L(v-v, ) (2.2-15c)
with
u=4X/ (X+15Y+32) (2.2-16a)
v=9Y/(X+15Y+32) (2.2-16b)

where u and v are the coordinates of the reference white
(with u, and v, defined in the same manner as u and v).

The second is defined as

27
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U
L=25(100Y/Y,) -16 (2.2-17a) 1
a=500 [ (X/X,) - (Y/Y,)"] (2.2-17b)
b=200((Y/Y,)%-(2/2,)"] (2.2-17c)

where X,,Y,,and %2, are the tristimulus values of the

reference white to which the eye is adapted <*>. This

l coordinate system is tentatively called the CIE 1976 Lab
. space, in anticipation of 1its formal adontion on that
date. Although neither system is officially preferred by
the CIE, it 1is felt by the author that the Lab space is
superior. This conclusion has been reached by generatina
constant luminance planes in both systems on a calibrated
color monitor, and comparing the two planes from the
standpoint of wuniformity. An example of four constant
luminance slices in the Lab system is shown in fig. 2.2-5
(color plate) and fig. 2.2-6. The perimeters of each
plane are determined by the constraint that the weights on
the display primaries be nonnegative and 1less than a

maximum value. The Lab system has several other

s b

. <*> A predecessor of the 1976 Lab system is the cube root
\ coordinate system, [3].

g!
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Figure (2.2-6) Television phosphor gamuts in ab plane
of Lab space
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advantages. First, 1if considered as a cylindrical
coordinate system (see figqg. 2.2-7), it can be used to
decompose a color into its hue, saturation, and lightness.
In this regard, it resembles the empirical "Munsell
system" [1, p. 477)], which attempts to arrange colors into
planes of constant lightness, cylinders of constant
saturation, and planes of constant hue. 1In addition, the
Lab system concurs almost exactly with the aczcepted
physiological model of color vision [2]. Recall that the
visual model vproposed in fig. 2.1-3 transformed the
receptor outputs into differences of nonlinear functions.
Note that the Lab System also forms differences of
nonlinear functions., Therefore, assuming that the

receptor sensitivities can be approximated by the xyz

color matching curves <*>, the Lab system models the

physioloay of the e€ve as well. For the above reasons the

1976 Lab system will be used throughout this study to
represent colors and colorimetric errors.
<*> The nature of the actual receptor sensitivites ijg
discussed in Sec, 2.3.
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Figure (2.2-7) Lab cylindrical coordinate system
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CHROMATIC ADAPTION

All human perception is to some extent relative. When
it is concluded that something is hot, cold, loud or
quiet, it is usually with respect to a reference of some
sort. The evaluation of color is no exception; a given
spectral distribution can be perceived as almost any
color, depending on the surround, adaption, etc. In most
work involving colorimetry, this difficulty is
conveniently evaded by stipulating identical viewing
conditions for the comparison of colors. Unfortunately,
for most practical situations such as photography, the
original scene and the reproduction are invariably viewed
under different conditions. The preferred white point for
color television is about 6500°K, (i.e., the ‘tristimulus
values of the white point are the same as those of a black
body radiator at a temperature of 65080 degrees Kelvin).
On the other hand, the white point of most slide
projectors is closer to 2888°K. If these two "whites" are
viewed side by side, the TV will appear blue and the slide
projector yellow. However, if viewed individially, with
dark surrounds, the eye will quickly adjust to the bhalance

of either color, and accept it as white. The phenomenon
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is enormously comolicated and exhibits temporal, spatial,
and even psychological aspects.

This remarkable ability of the human visual system to
discount the effects of the viewing illuminant is known as
chromatic adaption. Qualitatively, the appearance of a
color 1is determined by the direction and magnitude of itc
deviation from the reference white, where "reference
white" describes either the viewing illuminant, or the
prevailing color balance of the scene being viewed.
Quantitatively, a description is much more difficult.
Although some very precise experimental studies have been
undertaken {1, p. 435}, no unified theory explaining all
the experimental resultcs has emerged. The inconsistencies
in the published data are doubtless due to differences in
the experimental technique used, and individual variations
among observers. Nonetheless, the colorimetric shifts due
to adaption apoear to be guite systematic. For instance,
in the recent study by Sobagaki, et al. [2]}, the
influence on color wovercertion by a change in the
illuminant from daylight to tungsten was investigated
using 14 observers and 95 sample colors. Although there
was a noticeable variance in the color shifts perceived by

different individuals, there was a definite trend. The
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plot of fig. 2.3-1 illustrates their results for eight
colors <*>, Each of the individual arrows in a given
cluster corresponds to the chromatic shift perceived by a
particular observer, for daylight to tungsten adaption.
For instance, color number 8 (Munsell notation 16 Purple)
tends to shift towards red. Note that the color shifts
appear as a counterclockwise rotation in color space.
Although the investigators in the Sobageki study
restricted attempts to fit their data to linear
transformations, it is usually conceded that a nonlinear
transformation is generally reguired to model the
phenomenon with acceptable accuracy [3]. The traditional
linear hypothesis purporting to explain adaption, due to
Von Kries [3], is represented by the "gain controls" or
variable scale factors in each of the color receptors in
fig. 2.3-2. This hypothesis asserts that the gain
controls are varied in such a way as to insure that the
integrated responses from each of the three receptors are

scaled to unity when the reference white is being viewed

<*> The original Sobagaki data was plotted in the uv
coordinate system, and has been converted to the Lab
system used throughout this dissertation.
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i.e.,

= (2.3-1)

/Sj (\) W(X\) 4\

where W(\) is the spectral distribution of the reference

7
I

white, and sj(X) is the spectral sensitivity of the jth
visual receptor. Equivalently, the response of each

receptor can be formclated as <*>

[sj(X) C()\) dx
S, = : (2.3-2)

jfsj(\) W\ A\

The validity of this attractive linear hypothesis has

peen attacked on a number of grounas. Historically,
interest in the Von Kries hypothesis was motivated by the
need to calculate the actual visual receptor sensitivites.
Theoretically, this can be accomplished by per forming an

. eigenvector analysis on color matching data taken under

' <*> Note that if the receptor sensitivites, sj(X), are
assumed to Dbe equivalent to the XYZ color" matching
functions, this type of scalina is identical to that used
in the Lab coordinate system defined in ean. 2.2-17.
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two different states of adantion (1, o.438]. Denoting the
actual (physiological) receptor signals evoked by the same

color viewed under two different states of adaption by the

vectors S and S°, the Von Kries hypothesis asserts that

where D is a diagonal matrix. Denoting the
experimentally determined tristimulus vectors

correspondina to the two different adaotion states as T

and 2', the physiological tristimulus vectors must be

related as
and
S =AT (2.3-5)
where A is an unknown 3x3 matrix. The relationship
between the T and g' vectors should also be linear, and
: thus, a 3x3 matrix B can be fitted to the experimental

data such that
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‘= B (2.3-6)

i3
i3

Substituting equations 2.3-4, 2.3-5, and 2.3-3, yields

T'=A DAT . (2.3-7)
Therefore
B=A DA (2.3-8)
or
D=ABA" (2.3-9)

This means that the matrix A , which diagonalizes the
experimentally determined matrix B , can be wused to
determine the actual receptor sensitivites. Eqn. 2.3-4

implies

a
o

S(N) = A t()\) (2.3-10)

) where the tj(X) are the color matchinag functions

assocliated with the primaries used in the matching
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experiments. Although the diagonalization of 2.3-9 can be
accomplished by conventional eigenvector techniques, there
is no quarantee that the resulting matrix, A, will be
real. Indeed, this techniaue for findina the fundamental
sensitivites, s(\), is plagued with complex eigenvector
solutions. The conclusion seems to be that the Von Kries
hypothesis itself must be somewhat simplistic.

In order to investigate alternative color adaption
mechanisms, it is necessary to have some data on the
fundamental sensitivites of the evye. Fortunately,
estimates of the sj(X) can be obtained by alternative
methods, such as color blindness studies [4]. A number of
fundamental response curves have been proposed. One set
which was deduced from color blindness data, and 1is in
good agreement with more recent curves obtained directly
by Wald, is due to Konig <*>, These fundamentals are
defined in terms of the XYZ color matching functions by

the transformation

<*> A good summary of this work is given in [4], and (5].
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S, 670 .940 -.010| |X
Sif= |--477 1.409 .068| [v

Sy 0080 .000 1.000 Z (2.3=11)

The corresponding sensitivites are plotted in fig. 2.3-3.
The Konig fundamentals will be used to simulate various
chromatic adaption models, in order to compare the results
with experimental data.

An alternative to the Von Kries appbroach 1is the
hypothesis that some form of adaption takes place
subseguent to the compression-type nonlinearities depicted
in fig. 2.3-2. For the <case of a variable gain taking
place immediately following a logarithmic nonlinearity,

the net result is effectively a power law scaling

S° = a log(S)

=1og(s%) (2.3-12)

This type of structure is roughly equivalent to the

nonlinear mechanism proposed by MacAdam to model chromatic

adaption [3].

A hypothesis which has received little attention is a
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process based on spatial freocuency considerations and

homomorphic filtering [6] . The rationalization for such

an approach is the multiplicative nature of 1image
formation. That is, the perceived spectral distribution
is generated by multiplying the reflectance function by

the illuminant.

C(\) = I(X\) RN (2.3-13)

where I()\) is the iiluminant and R()\) 1is the spectral
reflectance. Altering the illuminant is approximately
equivalent to imposing multiplicative biases on the
"signals" generated by the visual receptors. Furthermore,
a logarithmic nonlinearity transforms products into sums,
changing the biases to additive form. Therefore, the
eye’s ability to "discount the illuminant" could be due to
a neural inhibition mechanism which linearly filters out
slowly varying components in the wvisual field (or
equivalently, exaggerates sudden changes) .

Consider the structure of the visual model in

fig. 2.1-3. There are three separate spatial filters, one

44




2.3

for each channel. The high-emphasis filter operating on
the luminance channel is reponsible for monochrome svatial
effects, such as black and white Mach bands. The fact
that chromatic Mach bands are weaker indicates that any
spatial filters operating on the chromatic channels must
be of a different nature. However, if these filters in
the ' chromatic channels basically reject zero spatial
frequency, and then "roll off" at the middle freauencies
(see fig. C-1), a definite adaption mechanism would take
place. A crude, first order aporoximation to such an
effect is 1illustrated by the subtractive biases in
fig. 2.3-4. This corresponds to an unrealistic spatial
filter which completely rejects zero spatial freguency and
passes all other spatial freauencies with unity gain <*>,
For the case in which all three compressive nonlinearities
are perfect logarithms, this formulation 1is exactly
eaquivalent to the Von Kries hypothesis. However, a
perfect 1logarithmic response is clearly unrealistic [7],

and therefore the effect of the homomorphic process

<*> Clearly, zero spatial freauencies cannot be completely
rejected, because this would imply that all completely
uniform fields would be colorimetrically neutral.
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described above will differ somewhat from the simple
scaling postulated by Von Kries, esvecially at low
hrightness levels. A graphical interpretation of this
type of normalization is shown 1in fig. 2.3-4. When
plotted in the perceptual "g-space" <(**> (see figs. 2.3-4,
and 2.3-5), the biases resulting from the zero frequency
rejection cause 3 translational shift of the coordinate
axes., Thus, this formulation would pnredict that the eye
would tend to "center its coordinate system" at the white
point to which it is adapted. For the case in which an
array of colors is being viewed, the effective white point
would be the statistical average of the colors in the
scene. For colors which deviate markedly from the
"preferred white" (approximately 6500° K), it is likely
that the eye never completely adapts, but reaches a sort
of intermediate compromise. This effect can be seen bhy
viewing a low color temperature tungsten bulb; at the
usual viewing lightnesses it will always retain

vellowish tinge.

<**> The perceptual "g-space" differs from Lab space in
that the actual receptor sensitivites, % (N\), are used, as
opposed to the CIE color mwatching “functions, t.(\).
Otherwise, the mathematical structure is the same. )
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Using the Lab coordinate systenm, plots of the
colorimetric shifts predicted by the mechanisms described
above were dgenerated. The presumed form of the
nonlinearity was a cube root, and the assumed change in
illuminant was from daylight to tungsten (2854°K). Tk
effect of placing the gains before th2 nonlinearities is
shown in fig. 2.3-6. The shifts predicted by the
subtractive bias hypothesis, for lightnesses of 404, 66,
and 80 are shown in figs, 2.3-7, 2.3-8, and 2.3-9, Note
that the predicted shifts are a strong function of
lightness. This phenomenon is of sufficient interest to
merit further discussion.

If the nonlinearities in the subtractive bias model
were perfect logarithms, then the predicted color shifts
would not be functions of the absolute level of the
adapting illumination, since a logarithm transforms any
gain into an additive term. However, for a more realistic
nonlinearity, such as a cube root, some interesting
level-dependent phenomenon take place. For 1instance,
assume that the subtractive biases in the coordinate
centering mechanism described above are adjusted so that a
particular illuminant (at a given 1lightness level) is

perceived as white. If the 1lightness 1level of the
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reference white is changed, slightly different subtractive

biases would be required to adapt to it (unless the
nonlinearities are perfect logarithms). This implies that
color shifts should depend on whether the lightness of the
color being viewed is greater than or less than the
lightness of the adapting field. That is, if a complex
field is being viewed, the adapting white can be
considered the statistical average of the distributions
being viewed (the =2zero spatial frequency component).
Therefore, lighter colors should undergo different shifts
than their darker counterparts. In the plots of
figs. 2.3-7, 2.3-8, and 2.3-9, it was assumed that the

nonifhéari;y was a cube root, ana that the lightness of

R

the adapting white was 60 (on a scale of 1#8). Note that

the lighter hues (L=80) teénd._to shift towards the

illuminant (yellow), while the darker hEéS*{Lg}B) tend to

~
~...

shift towards its complement (blue). Siqnificanti?T\these
are precisely the types of shifts which are perceived in
complex visual fields. By comparing these predictions
with the empirical results illustrated in fig. 2.3-1, it
is evident that a combination of the pre-nonlinearity
scaling and the subtractive bias transform can be used to

approximate chromatic adaption effects. This is
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reasonable from a physiological standpoint, in that it is

commonly thought that adaption proceeds with both a slow
and fast component. A scaling in the early stages of the
visual system might be due to chemical phenomenon, (such
as bleaching), with long time constants, while the neural
inhibition responsible for the subtractive bias component
would be essentially instantaneous. If such multiple
adaption mechanisms are 1indeed present in the visual
system, the variance 1in results reported by different
experimenters attempting to quantify the phenomenon might
be explained by the dominance of one mechanism over the
other.

In this dissertation the approach taken will be to
divide the adaotion effects between a pre-nonlinearity
scaling (Von Kries hypothesis), and a subtractive biasinag,
One method which can be used to formulate this, is to
modify the coefficients kj of egn. 2.3-1 by an inverse
power law compression, so that their effect on the

adaption is incomplete.

k; = k. (2.3-14)

The remainder of the adaption can be performed by the
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Figure (2.3-10) Color shifts predicted by combined
Von Kries and subtractive bias effects
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subtractive bias mechanism. In this manner, the parameter

n can be used to adjust the proportion of the adaption
effect contributed by either mechanism.

By using an n-parameter of 2 (sguare root), a family of
color shifts results which corresponds cioselv with those
found experimentally (see fig. 2.3-10). A block diagram
of the steps used in simulating adaption-caused color
shifts is provided in fig. 2.3-11. This is the chromatic
adaption transformation that will be referred to in later

chapters.
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ADDITIVE COLOR SYSTEMS

The previous chapter indicated how a wide gamut of
colors could be evoked by viewing linear superpositions of
three spectral distributions. Color reproduction systems
based on the summaticn of spectra are termed additive, as
opposed to systems based on the mixing of dyes, which are

known as subtractive. Although subtractive systems are

more common, additive systems are substantially easier to

analyze, and will be discussed first.

THE ADDITIVE PRINCIPLE AND COLOR TELEVISION MONITORS

The most common example of an additive display system
is the color television monitor, with the most popular
variety of tube being the three-gun aperture (or shadow)
mask tyne. In this, the screen contains three types of
Ehosghors, (red, green, and blue) 1ia the form of
individual "dots" deposited on the inner surface. The
dots are arranged in a mosaic of triangular grouos oOr

“triads,” and obscured from the three electron guns by a
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3.1

stencil, or mask [1]. The geometry of the guns, mask, and
dots prevents the red gun from exciting any but the red
phosphor dots, the qreen from exciting any but the green
dots, etc. Thus, by superposition, any given triad on the

screen can be made to elicit the spectral distribution

3
CiN =ij o, (M) (3.1-1)
=1

where the pj(X) are the spectral characteristics of the
red, green, and blue phosphors, and the Pj are weights,
roughly proportional to the drive signals on the gquns.
One drawback to this type of tube is the substantial
amount of energy lost in the mask, causing inefficient
operation. A second and perhaps more serious disadvantaqe
is the inherent difficulcy of maintaining alignment
between the phosphor dots and the electron beam as is it
swept across the screen (line converience) . In
quantitative work, a significant problem is the management
of the intrinsic nonlinearities of the cathode ray tube.
Chief among these 1is the relationship between the drive
sianals to the guns and the resulting brightnesses of the
stimulated phosphors. A typical set of such relationshins

is shown in fia. 3.1-1. The curves can be approximated by
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. Figure (3.1-1) Nonlinearities of color monitor
. display
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the power law <*)

= 3 (3.1-2)

where s is the input drive signal, ¥ is an exponent and b
is the resulting brightness. Such power law relationships

are usually called gamma curves. Clearly, if the three

curves do not overlap each other exactly, then the grey
scale "tracking" will be poor. That 1is, what may be
intended as a uniform grey scale, will not only be
non-uniform, but will exhibit color shifts as well. The
gamma curves can be modified in three ways. First, the
brightness control of the monitor can be used, which has
the approximate effect of raising or lowering all three
curves on a pedestal. Secondly, the three "cutoff"
controls (one for each gun) can be manipulated, causing a
similar effect in an individual curve. Thirdly, the red,
green, and blue gain controls can be adjusted singly,

changing the curve’s slope. The effects of the cutoff and

<*> Ean. 3.1-2 assumes that the brightness control has
been adjusted such that zero input gives zero output.
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gain controls on a single curve are ebown in fig. 3.1-2.

Since there is alwayz a substantial variance between
different monitors, the gamma curves for an individuall
monitor and a particular set of adjustments cannot be
specified in general, and must be measured with a
photometr’c device. Unfortunately, it is impossible to
linearize the gamma curves by monitor adjustments, and the
only recourse is a pre-distortion of the drive signals by
the inverse of the gamma curves. In a digital processing
environment this can be easily accomplished with a "look
up table." Such a procedure is known as gamma correction
and is of great importance if the image 1is to Dbe
photographed. This is because the gamma curve has the
effect of exaggerating the image contrast, and thus
straining the limited dynamic range of color film, Thie
results in a loss of detail in the shadows, and a "washing
out" of the highlights ( see fig. 3.1-3 in color plate).

A second consideration in guantitative work is the
character of the phosphors. If the exact spectral
distributions of a particular set of phosphors are needed,
they must be measured with a spectro-radiometer. A set of
typical curves for modern red, areen, and blue phosphors

is shown 1in fig. 3.1-4. It should be noted that the
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NTSC PHOSPHORS

Figure (3.1-5) Comparison of modern phosphors and
N.T.S.C. phosphors




chromaticity coordinates of present day phosphors differ

somewhat from those specified by the N.T.S.C. {[2]. A
chromaticity plot contrastina the two sets of phosphors is
shown in fig. 3.1-5. The phosphor distributions are of
concerti since they are needed to predict the response of
eye and film to the vario.s colors generated by the
monitor. The range of colors which the phosphors are
capable of generating is known as the gamut of

reprnducible colors, and is the subject of the next

section.
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GAMUT AND LUMINANCE RESTRICTIONS

An important attribute of anv color reproduction system
is the range, or gamut of colors which it can generate.
In a qualitative sense, a display limited to only drab,
muddy, colors would be considered to have a narrow gamut,
while one capable of bright, pure colors would be said to
possess a wide gamut. In the case of additive systems, a
guantitative description is quite straightforward.
Consider, for example, ar additive display using red,
green, and blue primaries. An arbitrary distribution

generated by such a cdevice would be

C(\) = Rr()\) + G g(x) + B b() (3.2-1)

where R, G, and B are weights, and r()\), g()), and b()\)
are the spectral distribitions of the primaries. Since a
negative amount of primary is physically meaningless, and
power limitations impose a maximum limit on the weights,
(say unity), the gamut can be represented as a unit cube
in RGB space (see fig. 3.2-1). That 1is, only points
interior to the cube can be generated by the display.

However, such a representation indicates nothing about the

69




POINT BEYOND
® THE DISPLAYS
GAMUT

magenta

yellow
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purity of the primaries. Thus, in order for different
display systems to be compared meaningfully, their gamuts
must be expressed in some common coordinate system, such
as the XYZ space. This can be accomplished by the the

‘linear transformation

X R
Y| = a.. G
1)
Y/ B (3.2-2)

where the coefficients a_  are determined by the spectral
1]

characteristics of the primaries r()\), g()), and b()) (see

appendix A). The transformation for typnical modern TV

phosphors balanced to a white point of 6560°K is

X .489 .324 .16l R
Y|= |.264 .672 .064 G

|2 .014 .134 .806] [B (3.2-3)

A point-by-point transformation of the unit cube of
fig. 3.2-1 using egn. 3.2-3 yields the distorted solid of
fig. 3.2-2. This is the gamut of reproducible colors in

XYZ space. A second, and perhavs more meaningful
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3.2

representation is attained by transforming the RGB cube to
a uniform color space, such as the Lab system (see
egn. 2.2-17 and figs 2.2-6, and 2.2-7). The resulting
color solid 1is shown in fig. 3.2-3. The warped and
distorted faces of the solid are due to the fact that the
RGB to Lab transform is nonlinear. Note that the Lab cube
tapers to a point at both low and high lightness reaions.
That is, highly saturated colors are possible only in the
middle lightness ranges. For dim colors, the saturation
is limited by the <constraint that the weights must be
positive. 1In the case of bright colors, the limits are

imposed by the constraint that the weights be less than

unity. Four constant lightness planes from the Lab solid
are rchown 1in fig. 2.2-5 (color plate). Note that the
darker colors are red, green and blue, while the lighter
colors are cyan (blue plus green), magenta (red plus
blue), and yellow (red plis green). Although 1in natural
scenes the occurrence of very bright, or saturated colors
r - is statistically small (see fig. 3.2-4), the problem of
dealing with colors beyond the display’s gamut is of some
consequence in film recording. This is because a great
deal of saturation 1is lost in the photographic process.

As a result, the pre-distorted image must contain colors
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Figure (3.2-4) Histogram of image hues in ab plane
for test image of fig. 6.3-1
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of very high saturation in order to generate the desired
results on the film,

Postponing for the moment the question of film
recording, consider the aquestion of how to "best"
approximate a required color which is beyond the display’s
gamut (see fig. 3.2-1). Under the naive assumption that
the optimal color is located at the point on the surface
of the display solid closest to color in guestion, the
problem is easily solved. Stated mathematically, the

optimal color vector T, minimizes the distance

3
2_ - ’ 2 -
a‘= 1;(1; T ) (3.2-4)

where T  is the color vector beyond the display’s gamut,
and the T vector is within the gamut. For the unit cube
color solid of fig. 3.2-1, the constraint on T reduces to

the stipulation
B < T, <1 (3.2-5)
for i=1,2,3. Because the solid is a cube, the constraints

on each element, T , are independent of the values taken

by the other elements, each term in the summation of 3.2-4
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3.2

can be minimized without regard to the other terms. Some
thought will show that the solution is a zero-one clamp.
That is; if T exceeds unity, set T;=1; if T{ is negative,
set T,=0; otherwise, set T}=T{. Ironically, this |is
precisely the fate of a signal "clipped" between a maximum
and minimum value (1 and # in this case), and is normally
what happens to any signal which exceeds the dynamic ranae
of the equipmant processing it. If the RGB space, in
which the <color solid is exactly a cube, were a uniform
color space (see Sec. 2.2), the above strateqy would
indeed be optimal. Unfortunately, this is not the case;
the color solid is typically far from rectangular when
transformed to a uniform space (see fig. 3.2-3). 1If the
variables in the minimization are not "separable," as is
the case with the cubic solid, the problem 1is
substantially more difficult to solve. However, by
employing some elementary concepts of Differential
Geometry [l], it will be shown that on any continuous
surface, a 1line drawn from the point in question to the
closest point on the surface, is always perpendicular to
the surfeace. In order to prove this, it is necessary to
introduce the parametric equation of a surface, S(u,v).

Only two parameters are needed since a surface is
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intrinsically two dimensional. For instance, the
parametric representation of a unit sphere could be [1]
sin(u)cos(v)+e

S(u,v)=e sin(u)sin(v)+g3cos(u) (3.2-6)

1 2

where the gjare the traditional Cartesian vectors, and u,v
are the standard spherical coordinates. The problem is,

given a vector x, not on the surface, find u,v such that
€ = | S(u,v) -x )I2 (3.2-7)

is a minimum. Taking partials with respect to u, and Vv

gives

(S(u,v) - x) JdS(u,v)/du =0 (3.2-8a)
(S(u,v) - x) 38(u,v)/ dv =0 (3.2-8b)

The partials with respect to u and v are vectors tangent
to the surface in the directions of increasing u and v
(see fig. 3.2-5). Since the line connecting the surface
to x 1is perpendicular to both these vectors, it must be
perpendicular to the surface. The problem is complicated

by the fact that the color solid is usually composed of an
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assemblage of surfaces. Hence, it is possible that the
closest point may 1lie on the boundary between two (or
three) svrfaces.

The above analysis has indicated the type of
calculation which would be required in order to optimally
correct gamut errors. For gamut problems involving
hundreds of colors, the computation required for optimal
gamu’. correction would be aquite modest for medium-sized
computers, making the methods outlined above practical.
However, for high resolution images containing thcusands
of points, the computation time required becomes
prohibitive. Conseauently, a sub-optimal, but expedient,
method must be used. The zero-one clamp discussed above
appears to be an attractive (and certainly fast)
possibility. In practice however, the results of such
signal "clipping" are r-ather objectionable. For example,
a section of an image requiring an amount of red greater
than unity would undergo a clipping of the red sianal over
the entire section. That is, the clamped red signal would
become a constaInt. The visual effect would be a
noticeable loss of detail, since all edge and textural
information in the red signal would be destroved. Thus,

even though the =zero-one clamp might verform well on a
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point-by-point basis, when its effects on the textural
details are considered, it Dbecomes =2 less attractive
alternative for natural images (5; opposed to bar-charts
and the like). An alternative sub-optimal approach, is a
cont;action of the color space reaquired by the image 1in
order insure that it is contained within the allowable
gamut. One method to accomplish this is to decrease the
contrast of the image (i.e. multiply each 'ristimulus
value by the same constant which is 1lr~s than unity).
From the standpoint of puint-by-point mean square error,
this approach performs pocrly as compared with the
zero-one-clamp. Nevertheless, for small 1losses of
contrast, the subjective deterioration of the total image
is not discernable. The reason for the visual system’s
tolerance of contrast errors is perhaps evolutionary. The
most common variations in natural scencs are caused by
_luctuations in illumination. Since image formation is a
multiplicative phenomenon, these fluctuations are
essentially contrast variations. Because the contrast
reduction technique gave the best per formance (considering
total image quality), of the fast methods, it was selected

for use with large images where computational speed is of

paramount importance.
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SUBTRACTIVE SYSTEMS

The majority of color reproduction systems are based on

the subtraction of spectral enerqgy from white

illumination, In order to gquantitatively control a
subtractive system such as transparency film, the physics
and optics of the situation must be understonod. The first
section of this cha.ier discusses the mechanisms by which
dye mixtures mcdulate spectral distributions generating
colors. T.ie second section analyzes subtractive systems

from a rigorous, mathematical standpoint.

SUBTRACTIVE COLOR SYSTEMS

The distinction between additive and subtractive color
reproduction is freoguently one which causes a great deal
of confusion. Altnough additive systems were the first to
be understood in terms of the three color theory of human
vision, most practical color reproduction systems today
are of the subtractive variety. Historically, it was the

misguided persistence of photographic scientists to




3.2
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4.1

develop additive color photogravhy which proved to be the
greatest impediment to the development of color film.
some forms of additive color photography have enjovyed
commercial success, but the complexities of these methods
have made them impractical, and they have heen relegated
to the status of historical curiosities. the best Kknown
of these is Maxwell s method, which he jemonstrated in his
famous lecture of 1861. Maxwell made three sevarate
positive transparencies of the same scene through red,
green, and blue filters.. Then, using three projectors
equipped with red, green and blue filters, the projected
images of the three slides were overlayed in exact
register. The auality of the resulting reproduction, and
the wide wvariety of colors produced were compelling
evidence 1in favor of the three color theory of color
vision.

A second approach known as the mosaic method, 1is
identical in princible, but avoids the three projectors
required in the Maxwell technique by use of a microscopic
grid, or nosaic of red, areen and blue filters, (the same
arrangement as found in the shadow mask television tube) .
The photograph is taken and viewed through the same

screen, which is, in effect, 2a multitude of tiny Maxwell
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projectors. When viewed at a sufficient distance, the eye
averages the tiny triads, seeing them as an additive
superposition,

Modern photogravhy owes its relative simplicity to the
subtractive techniaue which exploits the absorptive
properties of pigments, While an additive system
superimposes the spectra of its primaries, a subtractive
system generates colors by subtracting or absorbing
certain spectral bands from a sircle white light source.
For instance, when white 1light 1is transmitted through
vellow dye, the blue portion of the white 1light is i
blocked, leaving red and green. Thus, the color vyellow
can be generated by either adding together red and green,
or by subtracting blue from white. Consequently, vyellow |
and blue are considered to be complementary colors. (if
’added together, they give white). Similarly, the absence
of green is magenta (red-blue), and a deficiency of red

yields cyan (green-blue). The colors cyan, magenta and

yvellow are often referred to as the subtractive primaries

37

<*> (see fig. 4.1-1). These dyes can be thought of as
"notch filters" which block the red, green and blue

; portions of the spectrum respectively. A sandwich

<*> as opoosed to red, green, and blue, which are
ccnsidered to be the additive primaries.

s
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composed of cyan and madenta filters would thus "notch
out" red and green from white, leaving only blue. By
mixing various proportions of these dyes, a wide variety
of colors can be generated. .t should be noted that there
is nothing arbitrary about the choice of cyan, magenta and
yellow for the subtractive primaries. A subtractive
system using red, green and blue primaries would perform
quite poorly. This is because red, green and blue dyes
are essentially "band pass" filters (as opposed to notch
filters) and thus pecmit only narrow bands of the spectrum

to pass through them. Since these bands barely overitap,

sandwiching such filters would be equivalent to cascading

bandpass filters, and blocking nearly all wavelenaths. As
a consequence, only very dark colors could be generated by
mixing red, green and blue dyes. A quantitative
description of subtractive technicues is substantially
more involved than that for an additive approach, and will

be treated in the next section.




4.2

SUBTRACTIVE SYSTEMS; QUANTITATIVE DESCRIPTION

Because of the nonlirearities inherent in subtractive

systems, a guantitative description is substantially more

involved than 1is the case for additive systems. As

indicated in the 1last section, the Dbasis of color

L reproduction with dyes is absorption. As an idealized
mathematical model of absorptive material, consider a

homogeneous medium, composed of infinitesimal lamina as

depicted in fig. 4.2-1. Assume that each of the lamina,

of thickness dx, absorbs a fixed proportion of the

incident radiant flux, I1(x). That is,

di(x) = -D dx
(x) (4.2-1)

where D is a constant determined by the opacity of the
material. The solution of the differential 'equation in

4.,2-1 is,
I1(x) = I, exp(-ULx) (4.2-2)

where I, is the input radiant flux, and x is the distance

penetrated into the medium. This means that the radiant

88

5




[ [(x) /4 1(x) +dI{x) dI(x) _

——IL—dx ."

Figure (4.2-1) Mathematical model for absorption
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flux, I(x), decays exponentially as it propagates through
the absorptive medium. Furthermore, variations in the
concentration of the pigment have the same effect as
variations in the optical path length through the medium.
Since D contains an arbitrary scale factor, the base of
the exponentiation in ean. 4.2-2 is also arbitrary.
Choosing the base as 18, the constant D can be defined as

follows

I(out)
D = -log | =——
I(in)

(4.2-3)
where I(in) is the input flux density, and I(out) 1is the
output flux density. This is known as the obtical
density. The ratio of output to input intensities is

defined to be the optical transmissivity, 4 [1].

Therefore, the relationships between density and

transmissivity are

D = -log(7) (4.2-4)

and
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7= 106 (4.2-5)
In the actual measurement of density, a deqree of variance
is present, in that a material’ s ability to block light is
affected by the optical geometry used in the measurement.
Reflections, scatterina, etc., all affect the apparent
transmissivity of a material. Therefore, specifications
of density should always include the presumed optical
geometry used in the measurement {2, p. 838]. Among the
typical geometries are specular, diffuse, and double
diffuse.
Up to this point, it has been tacitly assumed that the
opague material was spectrally non-selective, i.e., that
its ebsorptivity was not a function of wavelength. In

order to extend the definitions of transmissivity and

density to colorants (which are by definition spectrally

selective), some further conventions must be established.
An obvious extension 1is to make the density and
transmissivity wavelength functions. Thus, let 7()\) be
the attenuation imposed on monochromatic illumination of

wavelength )\, and

D()\) = -log{T(\)]
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e
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where D()\) is defined to be the density as a function of
wavelength. In photographic 1literature, D(A) is termed

the spectral density distribution. If more than one

colorant is present, the optical density of the mixture

becomes

(4.2-7)

where the Dj(X) are the optical dercities of the

individual colorants. The above relationship is known as

the Lambert-Beer law, and is strictly correct only for the
transmission of 1light through solutions. However, since
dyes suspended in photographic gelatin behave as if they
were dissolved in . solution, the Lambert-Beer law is an
excellent approximation for the case of nphotographic
materials viewed by transmitted light [3]. The
transmissivity of a dye mixture is obtained by combining

eqns. 4.2-5 and 4-2-7'

= 2: Dj(k)
J

(N = 10 (4.2-8)

The transmissivity of a mixture is thus the product of the
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transmissivities of the components taken singly.

In the literature of color ohotography, densities are
usualiy considered scalar quantities. Conseguently, a
number of different types of densities are used, e.g.,
analytical, integral, visual, printing, etc. The integral

density of a sample with transmissivity 7()\), 1is defined

to be

/S(X) I(\) T(N) a\

/sm I(\) 4\ (4.2-9)

where I()\) is the viewing 1illuminant, and s()\) 1is the
spectral sensitivity of the sensor used (see fig. 4.2-2).
Clearly, this type of density depends on both I()\), and
s(N\) . Consequently, the same sample could be found to
have many different densities, depending on the
illumination and the sensor used for the measurement.

A more useful (bit difficult to determine) density, is
the actual concentration of dye (or dyes) present. In
order to define such a density, it is first necessary to
explain some conventions. As indicated in the derivation

of ean. 4.2-3, the arbitrary scale factor in the




I(\) ILLUMINANT
without // \\
sample \
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S(A) SENSOR

!
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A
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TRANSMISSIVITY = A
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A

Figure (4.2-2) Measurement of transmissivity
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definition of density was chosen so that density would be
equivalent to the negative, base 180, logarithm of
transmissivity. For instance, a unit density corresponds
to a transmissivity of @.1. In the case of color dyes, it
is not immediately clear how to extend this normalization
of monochrome densities. What 1is typically done in
photography, 1is to define a mixture of cyan, magenta, and
yellow dyes which appears colorimetrically neutral, and
transmits 10% of the flux incident upon it, as possessing
unit dye densities. In other words, the spectral dvye

densities of the three dyes, Dj(X), are scaled so that

-2 D.(\
fm 7T IO g0 A

fxm t,(\) d)

where I()\) is the viewing illuminant, and the tk(X) are

=0.1 (4.2-10)

the XYZ color matching functions, with tz(X) = y()\), the
luminous efficiency tunction. Note that this convention
is consistent with the definition of density used for
spectrally non-selective materials. That is, it reduces
to ean. 4.2-5 (for T=0.1), if pj(X) and tk(k) are not

functions of wavelength,
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In colorimetric 1literature, tristimulus values

mixtures viewed by transmission are defined as

- 3>d.D (N
/10 3 3 ) LNt (M) axa

/I()\) tz(M da

where tz(X) = y()\) is the luminous efficiency function,

(4.2-11)

and dj are the dye concentrations. However, it is felt by
the author that 4.2-11 |is unrealistic, in that |unity
luminance is only attainable with zero density, and hence,
will never be achieved. An alternative definition which
takes into account the typical viewing conditions for a

projected transparency is

- Y. d. D. (N
10 5 ) I(N) & (N aX

(4.2-12)

- Y. dmin D_(N)
10 y ) I(N) t; (X\) d\

wrere dminj are the minimum densities present in the color
image being viewed. This is ecuivalent to defining the

lightest areas of an image to be of unity luminance <*>.
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The converse problem is less straightforward; i.e.
given the desired tristimulus values, what are the
necessary dye amounts (or densities), % , reguired to
achieve them? The problem is essentially the inversion of
eqn. 4.2-12, and will be discussed in Sec. 6.1. A related
problem 1is the determination of the dye concentrations,
dj, from integral densities measured using three different
sensors. This problem is described by the following

eguation

= d. D.(N)
fw ? T I 5 (N ax

/}m)q(de

where the si(x) are the spectral sensitivities of the

S. (4.2-13)

sensors. For the special case in which the sensors are
extremely narrow band, and can be approximated by Dirac

delta functions, & () -)\), egn. 4.2-13 reduces to

-(ZdDixg)
s, =10 i 9 ] (4.2-14)

or

<*> This is felt to be realistic, since prcjected
transparencies are usually viewed in a Aarkened room, so
that the brightest portion of the field of view
corresponds to the "thinnest" part of the transparency.
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log(sy) = -Zdj D; (A;) (4.2-15)
j

The above indicates a linear relationship between the log
transmissivities (integral densities), and the dye
concentrations. It should be emphasized, However, that
this relationship is valid only to the extent that the
sensor functions, si()), can be approximated by Dirac
delta functions. The above linearization is widely used
in color densitometry, even though the typical filters
used are not sufficiently narrow-band to justify the
approximation.

The gamut of colors which such a subtractive system is
capable of generating can be calculated by use of
egn. 4.2-12. A set of tyoical dye densities, Dj(X), used
in color photography is shown in fig. 5.2-3. A plot in
Lab space of the gamut of colors possible assuming that
the dye amounts, dj, range from 8.5 to 3.0 density units
is shown in fig. 4.2-3. The numbers in the plot indicate
the 1lightness (on a scale from 1 to 18), of the third
coordinate, L.

The next chapter will discuss the mechanisms which

color photography uses to manipulate dye densities.
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Figure (4.2-3) Gamut of colors in subtractive system
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COLOR PHOTOGRAPHY

The goal of this chapter is the formulation of a
systems model “or color photography; i.e. one which can
be used to predict the spectral distribution which will
result if a given distribution is photographed. The first
section describes the mechanics and chemistry involved,
the second section, a mathematical model of transparency
film, and the third, the experimental verification of the

model ‘s predictions.

CHEMISTRY AND PHYSICS OF COLOR PHOTOGRAPHY

The basis of all conventional photographv is the 1light
sensitive nature of silver halide compounds, (chlorides,
bromides, and iodides). The typical black and white

(monochrome) photographic emulsion is prepared by

suspending a mixture of silver halides and sensitizing

agents in gelatin, coating the resulting suspension on a
transparent backing of cellulose acetate, and allcwing the

material to dry. The properties of the emulsion are
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determined by numerous factors, such as the average size
of the silver halide qrains, and their statistical
distribution. When a particular grain is struck by 1light
of sufficient intensity and proper wavelenath, changes
take place which render the grain more susceptible to
chemical reduction by a developing agent. These invisible
changes in the emulsion form what is known as the latent
image. Upon development, the silver halide grains are
transformed to metallic silver in a degree proportional to
their exposure to light. Since finely divided silver
particles are opaque to light, a negative image results.
In order to prevent the unexposed silver halide which
remains from eventually darkening the image, the halide
grains are removed by treating the emulsion with a fixing
agent.

The response of a photographic emulsion to 1light is
usually gquantified by using the relationship between the

exposure and the resulting density. The exposure can be

R 5 ffI(X:t) s(\) dt & (5.1-1)

2\t

defined as

where I(\,t) is the intensity of the exposing radiation as
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a function of time and wavelength, and s()\) is the
spectral sensitivity of the film. Generally, equal
exposures result in equal densities, however this rule
breaks down for very long exposures, a phenomenon known as
reciprocity failure (1]. A typical plot of the
relationship between the logarithm (base 10) of the
exposure and the resulting optical density (ean. 4.2-4),
is shown in fig. 5.1-!. Such plots are known as

Hurter-Driffeld curves, or characteristic curves.

Color transparency film exploits the above principles,
using a "szndwich" of three monochreme films, each of
which responds to a different region of the wvisual

spectrum (red, green, and blue). The structure used in

typical modern color film is shown in fig. 5.1-2. Through

a complex series of operations, color film produces
colored dyes in response to exposure, in each of its three
layers. The red, green, and blue sensitive layers produce
cyan, magenta, and yellow dyes in inverse proportion to
the degree «f exposure received (see Sec. 4.1). This is
accomplished as follows:
(1) Each layer is exposed and developed in

manner as monochrome film.

(2) The residual, unexposed silver halides
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deliberately exposed by either a bright light, or chemical
means.,

(3) The three layers are re-developed, +this time the
silver halides being reduced are precisely those not

affected by the initial exposure. This is done with a

special "color developer" which generates dyes in
prodortion to the amount of silver halide which it reduces
<*>,

(4) A bleach is used to extract the metallic silver,
leaving an image composed of cyan, magenta, and yeliow
dyes.

(5) The film is treated with a stabilizer and dried. A
scheinatic representation of the entire process is shown in
fig. 5.1-3. A more mathematical treatment of color

transparency film is provided in the next section.

- ——— - .- -

<*> The dyes are formed by a chemical ‘Eeaction between
agents in the emulsion known as "couplers," with the
oxidation products of the Jdeveloper.
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A MATHEMATICAL MODEL OF TRANSPARENCY REVERSAL FILM

The qualitative description of color film in the
previous section can be formulated into a mathematical
model, providing predictions in excellent aqreement with
experiment. The structure of the model shown in
fig. 5.2-1 will be discussed component by component. The
input spectral distribution, C()\), can be arbitrary, but

for the purposes of this study will be assumed to be of

the form

3
C(\) = Zpipim (5.2-1)
i=1

That is, the input color being photographed is derived
from an additive system with primaries pi(X), and weights
P; (for example a color television monitor). The red,
green, and blue sensitive emulsions are presumed to be
simultaneously and independently exposed to the input

distribution C()), generating exposures given by <*>

Xj=/Lj(>\) C(N\) ax (5.2-2)

<*> The exposure time is assumed constant, and has been
ignored in ean. 5.2-2.
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where Lj(X) is the spectral sensitivitv of the jth layer,
and X; is the resulting exposure. The convention will be
to refer to the red sensitive (cyan forming), green
sensitive (magenta forming), and blue sensitive (yellow
forming) emulsions by the indices 1,2 and 3, Combining
5.2-1 and 5.2-2 results in a matrix relationship between

the vector of exposures, x, and the vector of display

weights, P.

where

Bijj = /Li(X) Pj(A) dX (5.2-4)

The implicit assumption in egn. 5.2-2 is that the layer
sensitivities, Lj()\), are not functions of the exposing
radiation, C()). This assumption is somewhat simplistic.
In reality, the <spectral sensitivity of film changes
slightly with the intensity of the exposing radiation. 1In
order to make an exact determination of the exposure, the

spectral sensitivities, Li(X), must be known for all
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exposure levels, and the exact solution must be obtained
by recursive techniques [1, p. 445]. Hcwever, the
approximation of eaqn. 5.2-2 gives adequate accuracy, and
good aqreement with experimental results. A plot of the
layer sensitivities for EKTACHROME-X film is provided in
fig. 5.2-2. The exposures, X, give rise to the dye

J
densities, dj' thrv the nonlinearities hj(*)

= hjllog(xj)] (5.2-5)

The hj(*) are the Hurter-Driffeld curves for the reversed,

or positive process (see fig. 5.1-1). In the case of

color film, the densities, dj' refer not to the density of

metallic silver but to the concentration of dye fcrmed in
the jth emulsion (Sec. 4.2). The next block of the model
in fig. 5.2-1 denoted "interimage effects," represents the
interactions between the dye forming layers. Since the
three different emulsions are in intimate contact (being
in the form of a sandwich), each interferes with its
neighbors to some extent. Because all three must
chemically compete for the developer, the final dye
density in a given layer will be affected by the degree of

local chemical activity in the adjacent layers. The usual
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first order model for interimage effects is a 3x3 matrix

multiply [2]

(5.2-6)

Typically, the matrix G has negative off diagonal

elements, indicating that if the 1layers adjacent to a
given emulsion are producing dye, then the aiven layer’s
dye production will be inhibited. Since the G matrix
tends to exaqgerate the differences in the elements of the
d vector, the result of the interimage‘ mechanism is
actually an increase in the color saturation. This 1is a
beneficial effect, and can be exploited to enhance the
effective gamut of color film [3]. The G-matrix used in
the simulation of the model is given in ean. D-4. As with
other formu ations assuming linearity, the matrix model of
5.2-6 1is only a first order approximation of the actual
process.

A second family of phenomena, related to interimage
effects, which will be neglected in the film model is

known as adjacency effects. This is a term which




5.2

describes the interference of Photographic image points

spatially adjacent to each other (as oppcsed to

interference between layers). Adjacency effects are also

considered beneficial, since they result in an apparent

sharpening of the image by exaggerating spatial

discontinuities in the image,

The spectral density resulting from the dye

concentratiorns, d{, is given by the weighted summation

D()) = z 3’D. () (5.2-7) 1
bt )
J— o

where Dj(X) is the spectral density distribution of the

jth dye (see fig. 5.2-3). The transmissivity is therefore

- d/D. (\)
2(\) = 19 ZJ: J ) (5.2-8)

yielding tristimulus values given by (see ean. 4,2-12)

- Y 4. b, ()N "
10 ?V“ U I(N) t3(\) da)

=T, (5.2-9)
i

- 2: dmin D, (\)
19 j J )

I(N) ta(N) d)
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SPECTRAL DYE DENSITY CURVES

Normalized dyes to form a visual neutral density of 1.0

for a view' - iluminant of 3200 K
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Figure (5.2-3) Dye spectral densities for
EKTACHROME-X film

116




ot B

bl
Yy

3

As before, I()\) denotes the viewing illuminant, and the

tj(X) are the XYZ color matching functions.

In order to assemble a mathematical model for a
specific type of film, the necessary spectral
sensitivities, Lj(X), characteristic curves, hj(*), and
dye spectral distributions, Dj(x), must be obtained from
the marufacturer. 2 typical set of such specifications
for KODAK EKTACHROME-X transparency film is provided in
figs. 5.1-1, 5.2-2, and 5.2-3. In the case of interimage
effects, however, little information is usually available.
Nevertheless, an estimate of the matrix G (egn. 5.2-6) can
be obtained using empirical techniques as follows:

(1) Knowing the photographed input distribution, cC()\),

and the layer sensitivities, L.(N), the exposures xj can
J
be predicteg.

(2) With a knowledge of the characteristic curves,
hj(*), the dye concentrations, in the absence of
interimage effects can be calculated (the dj)‘

(3) Working bzckwards from the experimentally measured
output‘ spectral distribution, C(N) ., the dye
concentrations, d;, which gave rise to it can be computed,

(see Sec. 6.1).

(4) Using an ensemble of experimentally determined a
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and d° vectors, the best fitting G-matrix can be found |
using statistical, minimum mean sauare error technicues
(see APFENDIX B).

If the spectral characteristics of the phosphors,
and/or the layer sensitivities of the film, are not known,
a similar approach can be used to determine the matrix
relating the weights on the vprimaries, % , to the .
resulting film exposures, xj. In this manner, the
necessary parameters for an accurate model can be
established. The actual experimental techniqgues used for

the determination of dye densities and tristimulus values

will be described in the next section.
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A COMPARISON OF EMPIRICAL FINDINGS AND THEORY

The utility of a mathematical model is only as great as
its accuracy. Hence, it is of some practical conseguence

to compare the theoretical predictions of the model

described in the nprevious chanter with the behavior of
actual film. In order to do this, an experimental method
for the measurement of the dye densities, di, and/or the
tristimulus values generated by the film must be
available. In this study, most of the the photecmetric
measurements were carried out with the aid of three
photoelectric sensors, of composite qlass-silicon
photocell construction. Their spectral sensitivities were
designed to be as close as possible to the XYZ color
matchina functions <*>. A plot contrasting the CIE
functions X(N\), AONE and z(\), with the sensor

characteristics is shown in fio. 5.3-1.

Inasmuch as all sets of rcolor matchinag functions are

linear combinations of one another, the most effective use

I o

of the sensors 1is achieved by estimating the XYZ

tristimulus values by linear combinations of the sensor

”!

- - - B —h .. .

<*> A set of sensors, or instrument designed to measure
tristimulus values is known as a colorimeter.
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outputs. The "best" linear transformation (in the mean
square sense) which could be used to achieve this, can be
obtained in the following manner. Let tj(k) be the
spectral response of the jth sensor, and tj(A) be the
desired color matching functions. The problem 1is to
estimate the tj(X) using linear combinations of the tj(k).

The most direct method is the minimization of the integreal

2
ej= / [tj()\) —;ajktk()\)] ax (5.3-1)

over all ajk for j=1,2,3 and k=1,2,3. Setting the partial

derivatives egual to zero gives

de:
J . . =
= Zthn(X) [ tj(X) = E ajktk(X) ] d\ =90
k

nm

(5.3+2)

/tj()\) (SO VIR )Y =Zajfti‘(>\) t LN dX
k

The solution is

A= (06




tj(k) dx

B . = t t, d 5.3-
i ./P i()\) J()\) A (5.3-6)
A plot contrasting the t(\) vectors with their estimates,
At“(\), is shown in fig. 5.3-2. In other words, given
only the outputs of the three sensors with spectral
sensitivities t°(A), the best estimate of the actual

tristimulus values is given by

3
Ti=Zaijftj()) CON A\ (5.3-7)
j=l

with the aij defined above. This is a useful technique
for significantly improving the precision of an imverfect
colorimeter.

A second measurement of great value is the

determination of the dye densities in the film sample ,

d;. If the spectral density distributions, Dj(X), are
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5.3
known, both the crristimulus values and the dye densities

can be computed in one measurement. From egn. 4.2-13, the

transmittances measured using the colorimeter are

- )d. D.(\)
fm w7 g (N £ (N) dN

/I()\) t{ (\) dx

The problem is, given the T{, find the d

= 7/ (5.3-8)

l'dZ' and d3 which
gave rise to them. This problem can be solved by
iterative techniques, and will be discussed fully in
Sec. 6.1. Assuming for the moment that such techniques
are available, it 1is clearly possible to emvirically
determine the actual dye densities in a sample of color
film, Therefore, wusing a color monitor with known
phosphor characteristics, and a colorimeter as described
earlier, the model of Sec. 5.2 can be tested against
experiment, This was performed using a CONRAC color
monitor, znd kODAK EKTACHROME~-X film, Pure red, dgreen,
and blue fields were generated on the monitor, and
photographed over a wide range of exposures. The

exposures were varied in increments of one f-stop <*>,

from extreme underexposure to extreme overexposure. The
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model was then used in a computer simulation of the same
experiment. A comparison of the actual tristimulus values
with those predicted by the model is shown in fiq. 5.3-3.

The tristimulus values are plotted in the ab plane of
the Lab coordinate system. The L coordinate 1is
represented by the integer values 1 thru 9 (with @ being
black and 10 being white). The nonlinear nature of color
film is responsible for the "loops" in the diagram. Note
that they emerge and return to the center of the ab plane
as the exposure is increased. Furthermore, note that the
resulting color 1is a very critical function of the
exposure; differences of one-half f-stop cause significant
changes in the resultant color. For instance, the red
loop proceeds clockwise as the lightness (or eaquivalently
exposure) is increased. This corresponds to a color shift
from dark red to light orange, even though the color being

photographed remains fixed. The aqreement between the

model ‘s theoretical predictions and the experimental

findings 1is aquite gqood. Similar comparisons using less
saturated colors were made, with egually aood results.

In photographic nomenclature, the dynamic range of
<*> Each f-stop corresponds to a doubling of the exposure.
Therefore the exposures were incremented as an exponential

ramp in intensity, with each step twice the previous
value.
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acceptable exposure levels for a particular film is known
as the tilm’s exposure latitude. The very narrow latitude
of most color films is a consequence of a compromise in
their design. Specifically, the slope of the
Hurter-Driffeld curves (known as the gamma of the film) is
deliberately made gquite high, typically between 1.5 and
2.8. This is done in order to partially regain some of
the color saturation which is inevitably lost in the
recording process <*>, The penalty for the added
saturation is film’s inability to operate over a wide

range of exposures (as evidenced in fig. 5.3-3).

Having verified'the accuracy of the model, the next

step is the inversion of the model. That is, finding the
necessary inout color (on the monitor), required to
produce a desired output color (on the film). This is
clearly possible, provided that the requisite output color
is one whizh the monitor is capable of causing the film to
produce; i.e. the output color is within the film’'s
gamut, and the necessary input color is within the
monitor s gamut. These considerations will be more fully

explored in the succeeding sections.

<*> The loss of saturation is predominantly due to the
broad, overlapping, absorption bands of the dyes used.
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THE DISPLAY-FILM SYSTEM AS A MAPPING OF TRISTIMULUS VALUES

For the case in which a digitally controlled image |is
displayed on a monitor and photographed, the recording
process can be considered to be a mapping from an input
set of tristimulus values to an output set. Therefore,
the colorimetric distortions .nherent in the recording
process can be neutralized by a pre-distortion the image
to be photgraphed, using the inverse of the mapping.
Although this ©presents no conceptual difficulties, the
computational difficulties involved in the inversion are
substantial. The first section of this chapter descrihes
the individual components of the display-film model, then
discusses the mathematical procedures required to invert
the model, working directly from the desired output

tristimulus vector. This aporoach will be termed the

direct method.

The subsequent section will present two methods which
can be used to implement the pre-distortion which do not

require the formal inversion of the model. These will be

termed indirect methods.

The final section discusses the experimental results,

and some practical considerations.
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LIRECT INVERSION NF THE FILM MODEL

The motive for the develooment of an accurate film
model was not merely the ability to simulate film, but
rather a means towards the control of film, exploiting its
predictability. The problem of colorimetrically
pre-distorting the image to be photogravhed, in order to
compel the film to yield the desired tristimulus values,
is mathematically equivalent to the inversion of the film 1

model. This section will discuss the manner in which this

can be accomplished.

Before discussing the inversion process, the "forward

model"” of fig. 6.1-1 will he described in detail. The

actual transformations used for the specific film aad
display in this study are provided in APPENDIX D.

First, the spectral sensitivites of the display

phosphors, and the layer sensitivies of the film must be
available. Using ean. 5.2-4, the 3x3 matrix, E, in the

following relationship can be calculated
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6.1

X, Pl(in)

XZ = E PZ (in)

X P (in) (6.1-1)
3 3

where the x denote the film layer exposures, and the
Pi(in) den;te the display phosphor weights. With the aid
of the Hurter-Driffeld curves supplied by the film
manufacturer, the dye densities (neglecting interimage

effects) can be computed

dj =hillog(xj)] (6.1-2)

where the h [¢] represent the H&D curve nonlinearities
)

(see egn. 5.2-5 and figy. 5.1-1). The resulting dye

densities are transformed using the interimage effect

matrix G according to the relation (see ean. 5.2-6)

dl'l 4,

a’l=

2 ¢ d,

a’ 4 (6.1-3)
3 3

With the aid of the Lambert-Beer law and egn. 4.2-12,

the tristimulus values (in the absence of adaption
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effects) can be computed as

- 34" D (N
flﬂ 5 3 ) 1(\) ti()\) an

- Y. dmin D_(N)
10 i ) ) (N t,(N) dX\

At this point, if it is assumed that the photograph is

viewed under the same state of adaption as the monitor
display, the tristinulus values calculated in 6.1-4 can be

transformed to RGB space by use of the 3x3 matrix multiply

Pl(outq

Pz(out) =

P3(out{

Transformations between sets of tristimulus values, such
as the one above, are discussed in APPENDIX A.

1£ an adaption transform is reauired, the procedures
described in Sec. 2.3 can be used. First, the XYZ
tristimulus values resulting from ean. 6.1-4 must be
transformed to a coordinate system determined by the

actual receptor sensitivities of the eye.




(6.1-6)

where the matrix A is determined by the assumed
fundamental sensitivities (for instance see egn. 2.3-11).

If the simple Von Kries type of scaling is considered

adequate, the receptor signals, S , defined by ean. 6.1-6
}

are scaled so0 that the reference white yields Sj=1. This

is expressed 1in ean. 2.3-2, If a more accurate adaption
transform is desired, the Von Kries scaling can be
supplemented by the subtractive bias procedure illustrated
in fiqg. 2.3-4. Finally, the adaption-corrected XYZ2
tristimulus values can be obtained from the perceptual
g-variables of fig. 2.3-4 by reversing the transformation.
A block diagram of the entire adaption transform is Shown
in fig. 2.3-11. With the output color expressed in the
RGB coordinate system (using 6.1-5), the entire process
can be viewed as a channel associating an ouput RGB vector
with a given input RGB vector.

The transformations discussed above provide a method
for the calculation of an output tristimulus RGB vector,

denoted P (out), given the input tristimulus vector,




denoted P(in). The converse problem (the inversion), is
equivalent to the inversion of each of the 1individual
transforms 1in the cascade. This is a straightforward
procedure for all of the above relations, with the
exception of egn. 6.1-4. 1In order to invert this inteqgral

equation, the dye densities, d{ , necessary to produce a

given set of tristimulus values, q , must be calculated.

The most practical method for the inversion of nonlinear,
vector functions such as the above is the Newton-Raphson
iteration technique [1]. This method consists of
progressively refining an initial guess for the vector d

<*> by the following recursion

(6.1-7)

Each of the variables is "updated" after each recursion,
with the kth estimate denoted by the superscript (k). The
matrix J (known as the Jacobian matrix), is computed

from the partials

<*> The prime on the d° vector has been omitted
sake of notational clarity.




6.1

or
- 3.d,D (N
-1n(1ﬂ)/1ﬂ )_E: &k TNt (D (\)dX
3y = e (6.1-9)
- E:dmin D. ()\)
T T £ VIO VIR Y

K- .
The error vector, e, is the difference between the current
tristimulus vector, gﬁ (computed from the current gk
vector, as in 6.1-1) ) and the desired tristimulus values,
N
1.
k_ -k

e = -

i3>

Convergence of the iteration hinges on the accuracy of
the 1initial guess for the d vector. That is, if the
iteration is started with an estimate of the d vector
which differs greatly from the "true" value, the procedure
vill diverge. A simple technique for overcoming this
difficulty is as follows:

(1) Treating the relationship between the d and T

vectors as a vector mapping from the three dimensional
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d-space to the three dimensional T-space, compute a
collection of T vectors corresoonding to a large number of
different 4 vectors.

(2) Considering the resulting ensemble of d and T
vectors as a statistical mapping, find the 3x3 matrix, A,
which best fits the data (see APPENDIX B).

(3) Having determined the matrix, operate on a desired
T vector with the inverse of A to obtain a good estimate
of the associated d-vector.

(4) Use this d vector as the initial guess 1in the
recursion of 6.1-2, and recursively obtain the exact

g-vector.

The remaining tlocks of the model invert directly:

(1) The dye densities before the interimage effects are
obtained by the inverse of the matrix G (see ean. 5.2-6).

(2) The exvosures follow from the dye densities via the
inverses of the Hurter-Driffeld curves.

(3) The display weights can be obtained from the
exposures using the inverse of the E matrix (see
egqn. 5.2-3).

The method described above gives accurate results, but

necessitates a great deal of computation per image point.
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Each of the recursions demands 12 tristimulus
integrations, (9 for the J matrix, and 3 for the
e-vector). Typically, at least 5 recursions are needed
for convergence. Therefore a minimum of 60 numerical
integrations per image point are reauired. If the number
of imadc points involved is on the order of hundreds, such
as would be the case for very low resolution images, the
exact inversion 1is well within the practical limitations
of standard computers. If on the other hand, the
pre- .istortion of medium-to-high resolution images is
attempted, the procedure could easily consume thirty
minutes of computer time on all but the most powerful
machines.

However, there is little to be gained by inverting the
model with greater precision than the model itself
represents reality. Since the overall speed of the
inversion procedure is basically determined by the number
of numerical tristimulus integrations performed, one
obvious route to greater efficiency 1is the use of an
approximate, but fast, numerical integration procedure.
The method to be described below is based on this
philosophy.

The conventional technioues used for numerical
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integration are Simpson’s rule, and the trapezoid rule
[1]. These schemes are easy to implement, but lack
efficiency. The customary method for fast tristimulus

integration, is the selected ordinate method, which was

developed before the advent of modern computers
[2, p. 317]. The basic 1idea in this approach 1is the
selection of unequally spaced abscissas. First, the ith
tristimulus integral is broken up intc N+1 contiguous
intervals, separated by the points X; for i=l.2,37ea.0
Thus
¥,
% =}E: ti(X) C(N) ax (6.1-11)
DY

1
. J)
For closely spaced )\' “s, the integral can be approximated
J

as

T < £ (\) cOd) an 6.1-12
: Z (O el ax ( )
j

If the X?s are chosen such that
Ax%t.(x}) = Kk, (6.1-13)
I 1

where the k{s are constants, thern (6.1-13) reduces to




. i
% 'kiZC(xj)
j

The obvious advantage of this scheme is the elimination of

the multiplications, only one multiplication and n

additions are needed. Tables of the x;'s can be found in

various references [2, p. 324]. The penalty for the
increase in speed is of course a decrease 1in accuracy,
since the approximation of (6.1-12) 1is rather crude.
However, more sophisticated numerical integration methods
are available which can provide great speed with minimal
loss of precision. Among the best of these 1is Gaussian
quadrature integration, which will now be described.

As with the selected ordinate technique, the Gaussian
method uses unegually spaced abscissas. Consider the

numerical integration of the arbitrary function w(x) f(x)

b n
o -
/w(x) £(x) dx Zﬂif(xi) (6.1-15)

a i=1

where w(x) is some nonnegative weighting function, the X,

are the points at which f(x) is evaluated, and the Hi are
weights. 1In the Gaussian method, both the weights, H.,
and the abscissas, x , are chosen in an uptimal fashion,

1
to be described shortly. The advantage of this techniaue
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6.1

is that it 1is at least "twice as good" as conventional
numerical integration procedures. Specifically, an
n-point Gaussian formula gives results identical to that
of the best approximations utilizing 2n points selected
arbitrarily. That is, if f(x) in (6.1-15) can be fitted
closely with a polynomial of order 2n-1, then an n-point

Gaussian formula 1is sufficient to integrate w(x)f(x)

accurately.
The weights, H, , and abscissas, x;, of (6.1-15) are
found by use of the family of polynomials orthogonal to

the weighting function, w(x), over the interval (a,b).

b h2 if m=n
w(x) Q (x) Q (x) dx n
n m ) if m#n (6.1-16)

a
where On(x) is an nth order polynomial. In the n-point
formula, the &«bscissas, x , are given by the zero

1
crossings (roots) of Qn(x), and the weights are given by

1 /(W(X) QJX%
H, = dx )
QT (x,) X-X, (6.1-17)
n 1

1

where Q;in) is the derivative of Qn(x), evaluated at




o |

x=xi. Unfortunately, there are only a few weighting
functions, w(x), for which the corresponding orthogonal
polynomials, Qn(x), are known analytically [3].
Conseguently, the practical usaqe of Gaussian quadrature
integration has generally been guite limited.
Nevertheless, the orthogonal polynomials associated with
any nonnegative weighting function can be generated
numerically, permitting the implementation of the
technique for an arbitrary w(x), (for instance a color
matching function). Although the orthogonalization can be
accomplished by the traditional Gram-Schmidt process, a

more suitable method for computer implementation is the

recurrence relation [3]

h
0 [(x)= (x-B )0 (x)—[—“ {x)
n  ll h . ipk (6.1-18)
where
b
2 2
h =/w(x) Q0 (x) dax (6.1-19)
n n
a
1 b
1‘:ln=(—)2 x w(x) 0%(x) dx
By n (6.1-20)
a
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(6.1-21)

b
‘/; wi(x) dx
a

b
/w(x) dx (6.1-22)

a

Q,(x)

The resulting polynomials will be normalized so that their
leading coefficients are equal to unity, i.e.
1 n-2

Q0 (x) = x™b x"74c X T4 L.tr
n n n n

='Ir"f (x -xi) (6.1-23)
i=1

The above equations can be easily programmed on a digital
computer, using any weighting function and interval. For
instance, with w(x)= 1, and interval (-1,1), the algorithm
generates the classical Legendre polynomials numerically.
The method can bhe applie? to the color matching problem
by letting f(x) be the spectral distribution in question,
and w(x) one of the color matching functions [4]. For

instance the n-point formula for the second XYZ function,
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or luminance, would be

n
Ti= /ti(X) C(\) d) —ZHiC()\i) (6.1-24)

i=1
The weights Hi' and abscissas >‘i' have been calculated
using the 1931 CIE color matching curves as the weighting
functions, This has also been done with the CIE
illuminants A (2856° K}, and C (overcast skylight),
incorporated into the weighting functions. The results

are given 1in Table TI. For instance, the three-point

approximation for the luminance is

T,= /tz()\) C(N\) ax (6.1-25a)

or

T, © 0.1582 C(487.3) + 0.6616 C(558.4) + 0.1802 C(630.6)
2

(6.1-25b)

In the case of a sample with reflectance R(\), viewed with

illuminant C, denoted I()\)

T,= ftz()\) I(N) R(N) d)x (6.1-26a)
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TABLE I

Weights (H,), and abscissas, ()\), for Gaussian-quadrature
method. Ab&cissas expressed in nanometers.

Unbiased

T 1 'J'.‘z T 3
order A H N Hi Ni~ Hj
1 3 441.90 0.1573 487.3 9.1582 422,2 0.2701
571.9 0.5345 558.4 P.6616 459.6 P.6414
638.1 0.3081 630.6 0.1802 509.6 0.2887

4 433.0 0.1173 463.6 0.0462 409.6 0.9823
512.0 0.1506 529.4 f.4537 442.6 0.5689
595.6 0.6029 589.6 0.4410 479.3 0.3268
655.4 #.1293 651.6 0.0591 526.8 0.0241

5 422.1 0.0553 449.3 0.0178 398.1 0.0198
461.0 0.1190 507.5 0.2280 430.4 0.3556
566.0 0.3743 559.0 0.4997 461.0 0.4930
618.9 0.4093 612.9 0.2338 496.9 0.1235
672.0 0.0421 666.5 0.0207 537.6 0.0083

6 413.5 0.0244 440.6 0.0084 389.8 0.0061
448.1 0.1278 488.3 0.0966 421.0 0.1762
530.9 0.1185 535.6 0.3955 447.0 0.4794
587.2 0.4661 583.1 0.3771 476.4 0.2872
634.0 f.2454 630.6 0.1140 511.2 0.0478
682.2 0.0178 676.5 0.0084 0.0035




TI

TABLE I (CONTINUED)
Biased with illuminant A

‘ T, T
order bY H, N, H, \; H,
3 452.2 0.0624 502.2 p.1616 428.6 f.0972
582.9 0.6907 570.9 N.6498 467.2 0.2222

645.9 0.3454 638.9 0.1886 517.8 fA.0353

4 3439.9 .0415 476.2 0.0390 417.1 0.0323
545.7 0.2224 539.5 0.4350 449.6 0.1941
607.3 0.7021 598.5 0.4587 426.9 f.1168
663.6 P.1325 657.6 0.0673 532.3 p.0116

5 431.4 £.0257 457.8 A.0111 495.3 0.0074
484.1 A.6465 517.1 0.2116 436.1 p.1188
574.7 0.4778 568.0 7.4933 467.3 8.1736
625.5 0.4959 619.9 f.2581 503.6 A.0502
676.7 0.0525 670.7 0.0258 541.1 h.0047

6 421.4 0.0105 446.4 0.0042 395.4 0.0017
456.8 P.0414 498.0 0.0833 426.2 0.08595
558.2 .19090 543.9 .3699 453.9 .1628
598.1 9.5642 590.5 .397% 482.5 0.1059
641.7 0.2707 636.1 0.1338 516.5 0.0226
686.6 p.0217 679.3 P.0115 546.9 .0022

| i g
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TABLE I (CONTINUED)
Biased with illuminant C

T, Ts Ty
order A H, A H; N H,
8 442.5 0.1849 484.3 0.1601 425.9 0.3480
569.6 0.5093 556.4 0.6679 461.5 0.7403
636.7 0.2867 628.9 2.1719 509.7 0.0936

4 435.3 D.1407 462.6 0.0523 415.3 A.1161
510.0 9.1545 527.8 f.4521 445.4 0.6799
593.8 6.5650 587.0 ".4393 480 .6 0.3630
654.0 0.1207 650.1 h.N563 527.5 A.8229

5 425.7 N.0706 449,2 0.0210 404.4 N.0276
462.6 #.1343 505.1 0.2269 433.5 0.4436
565.3 0.3677 557.4 0.51087 462.8 0.5695
618.2 ¢.3698 611.2 0.2219 497.4 0.1334
670.8 0.0385 665.2 #.8195 538.4 7.0078

6 418.7 0.8352 440.9 0.0100 395.2 0.8067
450.8 0.1475 486.6 0.1743 424.4 0.2275
532.2 0.1241 534.6 9.3961 449.3 0.5708
586.5 0.4395 581.1 b.3756 477.7 0.3251
633.7 0.2188 629.5 0.1062 512.5 p.0484
681.3 0.0158 675.5 0.0078 545.90 0.0034

O L g
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T * P.1601 R(484.3) + 0.6679 R(556.4) + £.1719 R(628.9)

(6.1-26b)

For the tristimulus integrations considered in this
dissertation, the spectral distribution C()\), is the

product of the illuminant used, I(N), and the

transmissivity of the film sample, i.e.

- d.D,(\)
C(N) = I(\) 18 (Z] ) ) (6.1-27)

Since the computation in (6.1-27) is the most time
consuming step in the calculation of the weighted
summation of (6.1-24), the speed of this type of
tristimulus inteqration is basically qoverned by the
number of points used. Inasmiach as an n-point Gaussian
formula is equivalent to a 2n-point conventional method,
(and usually much better), the technique provides a speed
advantage of at least 2:1 over the non-Gaussian schemes.
As an illustration of the relative accuracy afforded by

the procedure, tristimulus values for the three spectral
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distributions of fig. 6. 1-2 have been computed wusing (1)
an 80-point Simpson’s rule method; (2) the Gaussian scheme
for orders 3,4,5 and 6; and (3) the selected ordinate
technique for orders 3,4,5 and 6. The results are qgiven
in table II. The tabulated errors, E1, and E2, are with
respect to the results o< the 80-point Simpson’s rule,
which were assumed to be the exact tristimulus values.
The errors were computed by two different methods. First,
the standard Euclidean separation was calculated in XYZ

space

El = J/A(Tlf'+ A(Tzf + A(T3)2 (6.1-2/)

Secondly, the T vectors were transformed to Lab space, and

the Euclidean metric computed

g2 = J/AL + Aa + 4b (6.1-29)

By either criterion, the Gaussian method is clearly
superior. It has been found that the fifth and sixth
order quadrature formulas give quite acceptable accuracy

when used for tristimulus calculations involving
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TABLE Il

Estimates of tristimulus values for the spectral
distributions of fig. 6.2-1, computed by three method::;
(1) Simpson’s Rule (S-R), (2) Gaussian OQuadrature (G-0),
and (3) the Selected Ordinate method (S-0).

dist. me thod pts. X Y 2

1 S-R 80

G-0Q




6.1

photographic dyes. The use of these techniques makes

possible colorimetric calculations which would otherwise

consume excessive amounts of computer time.
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INDIRECT INVERSION AND COMPUTATIONAL CONSIDERATIONS

As indicated in the previous section, the film model

can be inverted accurately by the use of recursive

techniques. This section presents two entirelv different

approaches, which avoid the formal inversion completely.
As usual, the increas2 in speed is at the expence of
accuracy. However, it 1is felt by the author that even
with these approximate numerical procedures, the dominant
sources of subjective errors in the colorimetric
corrections are due to inadequacies in the visual model
upon which the calculations are based, and not on the
numerical errors themselves,

The first method to be described involves the fitting
of an easily computable mathematical vector function to

the mapping between the input and output tristimulus

values.

P(in) = f[ P(out) ] (6.2-1)

where P(out) is the desired output tristimulus vector, and
P(in) 1is the corresponding input vector. By simulating

the model for a large number of input tristimulus vectors,




6.2

and associating with these their corcesponding output
tristimulus vectors, statistical techniques can be invoked
to fit a 3x3 matrix to the gencrated mapping. However,
since the film mapping is inherently nonlinear, this
approach is quite 1inaccurate, as might be expected.
Nevertheless, by "extending" the outout vector to include
ronlinear compvonents, a nonlinear vector function can be
fitted. This techniaue is discussed in APPENDIX B. The
approach offers a substantial savings in computation time,
since all the functions within the model, the
Hurter-Driffeld curves, the dye system nonlinearities,
etc. are all coalesced into one 1large matrix multioly.
This method is capable of producing an almost arbitrarily
high degree of accuracy, as the size of the extended
| predictor vector is raised. Of course, the point of

diminishing returns is soon reached. The transform which

was found to give the best compromise between precision

and complexity <*> is

<*> The transform was evaluated in the RGB coordinate
system of the television phosphors, denoted by the vector
P, (as opposed to a system such as XY%z), in order to
eliminate coordinate conversions, and hence, maximize
speed.

e ad
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Pl(out)

Pz(out)

P (out)
3

[Pl(out) l2

[P, (out) 1°
[P, (out) 1°
Pz(out) P3(out)
Pl(out) P3(out)
Pl(out) Pz(out)
[P, (out) ke

3
[Pz(out) ]

3

b[P3(out) )

where Pl(out) ,Pz(out) ,P3(out) are the weights on the
color monitor phosphors corresponding to the desired
image, while Pl(in), Pz(in), and P3(in) are the
tristimulus values required for the pre-distortion.

In calculating the matrix of eagn. (6.2-2), 125 colors,
distributed throughout P(in)-space were generated, and
used as inputs to a simulation of the model. These were
then paired with their corresponding P(out)-vectors, and

the matrix rc¢lationship computed by the methods of
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APPENDIX B, The average error of the fit, over all 125

colors was #.02, with the error, E, defined as

Apf(in) + AP;(in) + AP:(in)

pZ(in) + R2(in) + P2 (in) (6.2-3)
where APj(in) is the difference between the actual value
of Pj(in), and its estimate, computed using egn. 6.2-2.

The second and fastest alternative investigated was a
large look-up table. Since the model is merely a device
to associate input vectors with output vectors, it could
theoretically be replaced by a large look-up table with
"sufficiently close" entries. Such a table could be used
to assign to every desired output vector, a required input
vector. Unfortunately, since each entry in the table
would be three dimensional, 3N numbers would be required
for N-level quantization in red, green, and blue. Even
for 32 level quantization, the table would need to store
about 96,000 numbers. The advantage of this approach 1is
clearly its speed, which would be limited only by the
input-output capability of the computer used. Although,
the generation of the table might expend a great deal of
computer time, the cost would be more than compensated for

if numerocus pictures were processed.
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A variation of this scheme might be the combination of
a three dimensional interpolation techniaue with the
look-up table. This modification would involve a
trade-off between computational demands and storage
requirements. A second possible variation might be the
use of uniform color scales for the guantization. 1t has
been demonstrated (1] that such a procedure reduces (or at
least renders more uniform) the perception of colorimetric
errors when tristimulus values are auantized. The
drawback here would be the additional amount of
computation reguired, vartially defeating the purpose of
the look=-up table.

Of the methods described in this section, the approach
represented by ean. 6.2-2 is believed to offer the best
compromise between accuracy and computational speed for
high resolution images. A great advantage of the method
is that the chLannel mapping need never be inverted
directly. All that 1is required, 1is a statistically
significant collection of input tristimulus vectors paired
with their corresponding output vectors. This ensemble of
vectors can be generated by simulating the process in
guestion with a large number of inouts, or by strictly

empirical technicues. That is, if no accurate model |is
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available, the ensemble of input and output vectors can be

generated experimentally by using colorimeters,

spectro-radiometers, etc.

The next section describes some experimental results,
and gives practical suggestions for the actual
implementation of the pre-distortion procedure. The

method chosen was that described by egn. 6.2-2,
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EXPERIMENTAL RESULTS

A good experiment will often discredit the theory which
it attempts to verify; or at least betray its weakest
aspects. Hence, the formulation of a theoretical model is
typically a recursive pr.cess, driven by experimental
feedback.

In the case of the film recording problenm, the
experimental vprocedure used was as follows. A 256x256
digital color image was displayed on a Conrac color
monitor, and photographed on EKTACHROME-X film. A
reproduction of the resulting transparency 1is shown in
fig. 6.3-1 (color plate). The original digital image was
then processed by the inverse of the display-film mapving,
and the resulting pre-distorted image also photographed.
The method of eagn. 6.2-2 was used to effect the
pre-distortion. The actual numerical transformations used
are provided in APPENDIX-D. Both the original slide and
the one taken of the pre-distorted image were placed
together in a slide mount, projected, and compared with
the actual original image on the television monitor, in a
darkened room. This process was repeated dozens of times.

wor each recursion, a modification of some part of the
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6.3

model was implemented, in an attempt to "converge in" on
the subjectively best result. What follows is a summary
of what was learned.

(1) Correction for chromatic adaption 1is of primary
importance. In spite of this, adaption is completely
ignored in most of the colorimetric analyses of which the
author is aware. Simply normalizing the XYZ tristimulus
values (as 1is done in the Lab system), is totally
inadequate for tungsten illumination.

(2) It was originally assumed that a transparency
exposed to produce a neutral density <*>, would appear
neutral when projected. Surprisingly, this is not so.
The reason is that the eye never completely adapts to the
"white" of the slide projector at the typical brightness
levels encountered. Tungsten illumination will usually
retain a slightlv yellow-red character, even when viewed
in a Jdarkened room. Conseauently, the quality of the
white balance is usually improved by a slight cyan-blue
bias in the transparency being viewed. One of the most
significant, yet difficult problems encountered, was a

definition of the sensation of "white" in mathematical

<*> A neutral density is one which merely attenuates the
illuminant, and does not affect its chromaticity or color
balance.
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6.3

terms. Most analytical descriptions of projected
transparencies define white to be the vprojector’s
illuminant. This was found to be unrealistic, in that a
transparency would need to produce zeru density in order
:0 generate such a white. A more suitable definition,
takes this into account, using the minimum density of the
slide in question as the reference white (this is
expressed quantitatively in ean. 4.2-12).

(3) The nonlinear nature of film cannot be ignored.
Any inversion of the display-film mapping must take into
account the "operating point" of the film. In other
words, a particular color balance on the monitor will
result in a particular set of dye densities. In the
mathematical simulation of this process, precisely the
same points on the Hurter-Driffeld curves must be used if
there is to be a good equivalence with reality. For
cuantitative work, merely assuming that the film is
operating in the 1linear portion of the H&D curve is
inadequate. If the film is exposed to a certain white
point, the simulation must reflect this exactly.
Furthermore, the exposure is critical. Variations of less

than one-half f-stop <*> result in quite noticeable color

shifts,
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(4) At the outset of tihis research it was thought that
the limiting factor in reproduction fidelity would be the
variance 1in the photographic process, due to either
inconsistent film and/or processina. However, this notion
was unfounded. With reasonable care (i.e. keening film
refrigerated and using fresh processing chemistry)
excellent consistency resulted.

(5) Gamut restrictions also proved to be 1less of a
problem than was anticipated. Since the eye is
insensitive to slight changes in image contrast, scaling
the red, green, and blue pixels hy a constant less than
unity reduced the required dynamic range so that neither
the film or display gamuts were exceeded. This procedure
is discussed in Sec. 3.2.

A reproducticn of the transparency obtained from
photographing the pre-distorted image 1is shown in
fig. 6.3-2 (color plate). The most noticeable

improvements are in the facial tones and the more

saturated colprs. Furthermore, a comparison of the

"before and after" transparencies with the original image

displayed on the color monitor, showed that the slide

<*> An f-stop is a photographic term, corresponding to a
doubling of the exposure.
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taken of the pre-distorted image gave a very good match,
while the colorimetric errors in the slide taken of the
original image were guite considerable.

Since the errorr in film recording are tyoically losses
in satvration, the photograph of the pre-distorted image
tends to have a higher average saturation. Thus the
procedure gives the added bonus of a brighter,
subjectively more pleasing image, than would be the case
if the distortions went uncorrected.

The last section will describe some additional projects

being contemplated which would utilize the techniques

whica have been developed.




- GENERALIZATIONS AND TOPICS FOR FUTURE RESEARCH

In a more abstract sense, this dissertation has
described the modeling and inversion of a three
dimensional nonlinear channel, with the intent of removing
: the degradations induced upon the "signals" passing

through the channel. Although the specific "channel"
discussed was color television-to transparency film, the
conceptual framework could easily encompass other
applications. For instance, in the case of reflection
type color prints (1], or reproductions from an ink-jet
plotter, the only modification required would be &
generalization of the the Lambert-Beer law. Recall that
the relationship between the incident illumination, I()\).
and the transmitted spectral distribution, C()), for a

transparency with dye densities dj is given by

R - > ,4.D(\)
C(\) = I(\) 18 ; )3 (7-1)

e

T With dye mixtures viewed by reflected light, the

equivalent relation is much more complicated. Viewing
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angle, illumination geometry, and multiple internal
reflections must be considered [1]. However, the spectral

distribution will remain a function of the dye densities.

C(N = I(\) £(d;,d,,d,) (7-2)

Once this relationship has been determined, it can be
substituted for ean. 7-1, enabling the procedure to be
used for reflection-type materials.

Heretofore, it has been assumed that the image in
question was available in digital form. Clearly, the
original photograph must have been scanned, or digitized
in some fashion initially. As with the process of
"writing out" an image from computer to photoqrgph, the
converse process of "reading in" an image from photograph
to computer can be treated as a three dimensional channel.

Recall that the relatiorship between the "scanner

signals," %_, and the dye densities, dj, is given by




T

7.0

- Yd. b
/1@ o) I(\) si()\) d\

/Im s; (N) A\

where the si(X) are the spectral sensitivities of the

= S, (7-3)

scanner's color separation channels. Given the scanner
signals, the dye densities can be computed from the
inversion of 7-3. Working backwards through the film
model, the layer exposures which gave rise to the dye
densities can also be calculated. Hence, correction for
moderate overexposure or underexposure can be achieved
<k, For instance, in the case of underexposure, the
image can be scanned, the layer exposures deduced and
scaled up to the <correct 1level, and a new photograph
written out in such a way as to force the <correct laver
exposures.,

A non-deterministic variation of this procedure can be
used to correct for the fact that the laver sensitivites
of film are not color matching functions. Using the
concepts of estimation theory, and the statistics

available on the spectral distributions of natural scenes,

<*> If the horizontal portions (shoulder or toe) of the
fiD curve are 1involved, some of the signal has been
"clipped," and therefore irretrieveably lost. Hence, the
limitation to moderate exposure errors.
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estimates of the actual tristimulus values which gave rise
to the layer exposures in question can be calculated <**>,

Having gained some dearee of control over the film
recording process, there is no reason to limit

colorimetric manipulations to the duplication of an image.

Various types of enhancement are also easy to achieve. A

simple modification of the film recording procedure which
has been decribed could be used to increase the saturation
of the image colors beyond that required for mere fidelity
of reproduction. This could be advantageous in aerial
imagery, or in applications where the visibility of subtle
transitions is important.

An interesting prospect in the category of enhancement

is the generalization of homomorphic filtering to color

images. A possible approach is the use of the wvisual
model (see APPENDIX C), 1in an effort to exaggerate the
type of edge enhacement performed by the eye. This would
result in the added benefit of reducing the dynamic range
of a color image, without sacrificing the saturation of
its hues. Also, the problems associated with clipping due

to the limited dynamic range of high gamma films would be

<**> This is an underdetermined problem, discussed in (2].
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minimized.

.

In conclusion, it must be admitted that the type of
systems approach advocated in this dissertation does not
always give results superior to those produced by "ad hoc"
techniques. It is the opinion of the author that this is
due to the inadequacy of the mathematical models on which
some of the more scientific approaches are based. For
instance, a colorimetric analysis based solely on raw
tristimulus values (ignoring adaption effects) will
usually give absurd results, distictly inferior to those
attainable by use of common sense and qualitative
technigues. In the parlance of the computer community,
"garbage in, garbage out." If a model is only a first
approximation tu reality, then exacting calculations
carried out to ten decimal places of accuracy are often no
more than an academic exercise.

However, there is little doubt that our universe is an
orderly one, even though its laws may elude us. In image
processing, the laws of optics and vphotometry are well
understood, but those governing the human visual system’'s
interpretation of imagery retain a degree of mystery. It
is in this area of a visual fidelity criterion that great

strides can be made. The work described in this
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dissertation has reflected this philosophy, and it is

hoped, has made some progress towards the above goal.
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APPENDIX A
TRANSFORMATIONS BETWEEN SETS OF TRISTIMULUS VALUES

As shown in Sec. 2.2, the tristimulus values associated
with a particular color can be expressed in many different
coordinate systems, all of which are linearly
interrelated. For example, the television phosphor
weights, P, and the XYZ tristimulus values, T, are related

by a 3x3 matrix multiply

T= A P (A-1)
In order to determine the coefficients of the matrix A,
the spectral characteristics of the three phosphors,

pj(X), must be known. The relationship then follows

directly

Ti'.'/‘ti()‘) C()\) d) (A-2a)

= A-Zb

T ftimZPjpjm X (A-2b)
j

Ti=zaij Pj (A-2c)

j
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APPENDIX A

aij =/ti (N\) pj (N) dn (A-3)

Typically however, the pj(X) distributions are known
only in relative units, and arbitrary but unknown scale
factors on each of the pj(X) prevent the above
determination. Alternatively, the chromaticities of the
individual phosphors may be known, and the A matrix may be
desired for the case 1in which the white point of the
monitor is balanced to a particular color temperature.
For instance, in Sec. 2.3 the matrix required was one such
that unity values for the % resulted in a white point of
650@° K. Also, the transformation might be known for a
particular white point, but the transformation for a
second white point may be desired. The problem then, is
to scale the columns of A in such a way as force the
desired white point. Assuming that the unscaled matrix A
has been computed using ean. (A-3), the scale factors

sought are the k, k,, and kq which satisfy

k3] W (A-4)
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APPENDIX A

where the W are the XYZ coordinates of the desired white
point. If the matrix were already perfectly scaled, the
required values of k would all be unity. Since both W

and A are known, the k vector can be solved for by

inverting the A matrix

k=[a]w (A-5)

The correctly scaled A macrix is then obtained by

absorbing the scale factors, kn{ into the matrix
a =a k (A-6)

That is, the mth column is scaled by the mth scale factor.
This insures that unity phosphor weights yield the desired
white point. Using this technique, the transform from the

phosphor tristimulus values to the XYZ tristimulus values

was calculated as

X .489 .324 .16l R
YI=]|.264 .672 .064 G

Z .014 .134 .806 B




APPENDIX B

MULTIDIMENSIONAL MAPPINGS, AND LEAST

SQUARES CURVE FITTING OF SURFACES

A common prcblem in applied science is the fitting of a
mathematical curve to empirical data. In colorimetry,
since data is usually three dimensional, curve fits must
be generalized to higher dimensionalities. The simplest
problem is, given an ensemble of vectors, X, and y, which

are related by some (possibly stochastic) vector function

£

Yy=£f(x) (B-1)
find the matrix, A, which minimizes the error

e = Elffax - y? (B-2)

where E denotes the expected value, or average over all
samples, This is a classical problem in Estimation
Theory, and is usually treated in a statistical context.

The optimal A matrix (in the mean sauare sense) is the

solution to
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APPENDIX B

E{[Ax - y] [x"]} =0 (B-3)

where 5' is the transpose of the column vector x. This is
the celebrated orthogonality principle, which is easily

preved. The error in (B-2) can be cxpressed as

N 4
2
= Z: 5 255 % -y, B-4
% n=1%= a1J XJUﬂ yl(n) ] ( )

where the indexes (n) refer to the nth vector sample, and
the subscripts denote the element within the vector.
Taking partial derivatives of the error with respect to

the %i coefficients and setting the result equal to zero

gives
dej
= a.. [ x. (n) -y.(n) ] x n)
daym ZJ: ”Zn: : : nt (B-5a)
- A
? = - : - . B-5b
j:"alJ \Z;XJ(M X {n) Z:Y‘(n) :;,gn) (B-5b)

This is equivalent to the orthogonality condition stated

above in matrix notation. The required matrix, A, is thus

given by
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-1

y ’}] [E{§ 1'}] (B-6)

One of the advantages of this techniaue, is that it is not

>
[}
| |
m
p—
5<
1%

limite. to square matrices, i.e. the lengths of the x and
y vectors need not be egual. This property can be used to
great advantage in the fitting of nonlinear functions to
the data. Consider the estimation of the vector y using
only the vector x. 1In analogy with the one dimensional
case, more flexibility in the curve fit can he achieved by
allowing higher vowers of the predictor variables, xj, in
the estimation of the predicted variables, yj. An

approach which has been found fruitful <*> 1is the

postulation of the following structure between the x and vy

domains

(*] A similar approach, known as a phi-machine, is vused to
generate nonlinear separating sur faces in pattern
recognition algorithms (1].
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. (B-7)

The extended x vector can include any nonlinear functions
of the xj, such as reciprocals, logarithms, etc. Note
however that the relationship in (B-7) is still linear in
the coefficients aij : Therefore, the A matrix can be
found using (B-~6). The accuracy of the fit depends of
course on the number and type of nonlinearities used. By
making the extended X vector sufficiently 1long, the
desired degree of accuracy can usually be achieved.

This method can be used to advantage whenever

multidimensional nonlirearities are invoived. If great

accuracy is needed, the technigue can be used to calculate




APPENDIX B

an estimate of the desired vector, to use as the initial
guess in a recursive procedure (Sec. 6-1).

Since the matrix multiply of (B-7) is a completely
deterministic (as opposed to recursive) operation, it
provides a substantial savings in computation time.
Therefore, if a degree of accuracy can be sacrificed, a
significant gain in computational efficiency can be

attained for nonlinear colorimetric problems.

REFERENCES
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York:McGraw-Hill, 1965
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APPENDIX C

SPATIAL FILTERING OF COLOR IMAGES

Although the subject of this thesis is the recording of
color images, with emphasis on colorimetric fidelity,

certain enhancement techniques can be used to achieve a

subjective improvement in the appearance of an image (as
opposed to mere duplication). One such technique is
spatial filtering. It 1is clear that since the human
visual system attenuates the 1lower spatial frequencies,
the higher frequency comoonents must be of greater
utility. Also, from the standpoint of information theory,
the less correlated signal components possess greater
entropy, and hence more information. High emphasis
spatial filtering has 1long been used to enhance and/or
restore monochrome imagery. 1In the case of. color images,
very ‘ittle work has been done; perhaps because it is
unclear how the extra dimension(s) of color should be
handled. The most obvious (and naive) technique is to
filter the red, green, and blue sub-images independently,
as if each were a separate monochrome image. This
approach leads to very dissapointing results, because the

color balance of the original image 1is invariable
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destroyed. Clearly, the processing must assure that the
hues of the individual color patches in the image do not
suffer large shifts. A very satisfactory vprocedure for
accomplishing this 1is bhased on the visual model of
fig. 2.1-3. Note that the filtering in the model takes
place subseguent to the cross-coupling of the channels.
As discussed in the chapter on chromatic adaption
(Sec. 2.3), the effect of this on the chromatic channels
is basically an origin shift, compensating for changes in
illuminant. Concerning the actual shaves of the filter
functions in each of the channels, there is good evidence
that the 1lu inance channel provides most of the high
emphasis. The plot of fig. C-1 indicates the relative
frequency responses that are thought to exist in the
chromatic and luminance channels <*>. The hypothesis that
the chromatic response drops off before that of the
luminance freouency response is supported by the fact that
Mach-band phenomenon are generally %tronger for luminance
edges than for chrominance edges. This phenomenon is
exploited in the N.T.S.C. color television system, by

devotinag most of the signal bandwidth to the luminance

<*> The exact shape of the chromatic response function(s),
especially at 1low spatial freaguencies, is still open to
question at the time of this writing.
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APPENDIX C

component. Consequentlv, the visual system’'s processing
can be simulated by transforming from RGB space to the
perceptual g-space, performing high emphasis filtering on
each of the g-images, and then transforming back to RGB
space. Fig. C-2 shows an image processed in this manner,
contrasted with the original (fig. 6.3-1). Note that the
subjective effect is an increase in sharpnes~ coupled with

an apparent increase in the uniformity of the

illumination.
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APPENDIX D

TRANSFORMATIONS USED IN THE FILM MODEL

RGB phosphor weights to XYZ tristimulus values (6500° K

white point)

X .489 .324 .1l61 R

Y|=| .264 .672 .064 G

Z .014 .134 .806 B (D-1)
XYZ tristimulus values to RGB phosphor weights

!

BJ .111 -.2668 1.63 yA (N-2)
Phosphor weights to layer exposures

X, 1.79 .668 1.46 R

X, | -776 2.086  .112 G

Xy .325 1.89 1.74 B (D=-3)
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Interimag: effect matrix

41 [1.18 -.17 -.g1] [4
dy | =|-.16 1.35 -.19] |4

di =.12 =,19 1.31 4 (D-4)

Matrix of ean. 6.2-2 {in transposed form). Used to

perform pre-distortion.

s ey

e o R

o

r2.982 -0.136 ﬂ.886—
-1.369 1.744 -1.480
P.113 p.178 2.453
-1.654 -0.302 -1.259
9.771 -1.276 .710
-0.580 -0.261 -1.903
f.211 -0.004 -0.008
0.082 -0.038 .015
-0.514 f.040 f.453
.897 f.122 0.454
-0.291 .616 -0.426
_ﬂ.l7l f.140 ﬂ.894J
{D-5)
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