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ABSTRACT 

The problem of restoring images degraded by blur and 

corrupted by noise is considered in this dissertation. 

The Fredholm integral equation of the first kind in a two- 

dimensional form adequately describes the linear model.    A dis- 

cretization is performed by using quadrature methods.    By trans- 

forming the two-dimensional array into vector format a regression 

model results.    The over deter mined and underdetermined cases are 

considered in detail, with the derivation of the estimators,   their 

covariance matrices,   confidence intervals and hypothesis testing 

involving parametric functions of pixel values.    The problem of ill 

conditioning is examined for atmospheric turbulence and diffraction 

limited spread functions.    The results of the restoration of simu- 

lated pictures under separable spread functions are presented. 

In order to solve the ill conditioning of the restoration 

problem,  a priori information in the form of deterministic con- 

straints is proposed.    A comparison with existing methods like 

Wiener filter,   smoothing and regularizing techniques is made. 

Linear equality constraints reduce the variance of the estimators, 

but some bias may be introduced if the constraints are not valid. 
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A combination of estimation and hypothesis testing is proposed to 

decide if a reduction of the mean square error (taking Into account 

both bias and variance) occurs.    Experimental results show that 

more acceptable restored pictures are obtained in the restoration. 

Linear inequality constraints are incorporated by means of 

a quadratic programming formulation.    The natural constraint of 

nonnegativeness of pixel values is handled in a formal -/ay,  as well 

as other types of restrictions that can be described by linear in- 

equalities.    Experimental results indicate a substantial improvement 

in the rrstoration even for the ill conditioned situation. 
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1.    INTRODUCTION 

The subject of image restoration,  encompassing attempts to 

remove different types of degradations in imaging systems,  dates 

back to the fifties [l-l].    However,   it was the space program of the 

sixties,  with its need for high quality imagery,  that provided the 

necessary motivation for the development of the field.    In particular, 

the work developed at the Jet Propulsion Laboratory [1-2] demon- 

strated the feasibility of using the digital computer to deal with the 

large quantities of pictorial data involved.    The success of the effort 

opened the path for new applications that now range the large spec- 

trum of biological [l-3] and geological sciences [1-4].  high energy 

physics [1-5],  etc. 

Image restoration or spatial filtering can be divided into two 

main classes:   optical and digital processing.    The former has the 

advantages of larger storage capacity and faster pro- es sing,  but 

does not achieve the precision and flexibility of the latter.    This 

dissertation will be concerned with digital methods for image 

restoration, with emphasis on a firm theoretical basis in their deri- 

vation. 

The degradations that an imaging system imposes over a 

picture can often be roughly described as composed by a smoothing 
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operation -lue to the finite resolution of the sensor and the addition 

of disturbances,  known only in a statistical sense.    The earlier 

methods of restoration,  mostly optically oriented,  attempted to undo 

the first degradation by inverse filtering [1-6].    These techniques 

used the Fourier transforming properties of lenses    by simply 

multiplying the Fourier transform of the object by the inverse of the 

Fourier transform of the blurring function.    The presence of sta- 

tistical noise corrupting the image was disregarded and this fact 

often limited the effectiveness of these methods.   A nonoptimal pro- 

cedure [1-7] consisted of replacing the inverse Fourier transform of 

the blur function by zero in the spatial frequencies where the noise is 

larger than the signal. 

Perhaps the first attempt to consider a formal way to deal 

with the presence of noise in an image is due to Helstrom [ 1-8]. 

The image and noise were regarded as uncorrelated random pro- 

cesses with a known blur function.   Sleplan [1-9] considered the 

lack of knowledge of the blur function,  and also modeled it as a 

random process.    Experiments [1-10 and 1-11] indicated that formal 

approaches using the mean square error criterion gave better results 

than ad hoc schemes. 

Digital methods for image restoration have had to face the 

problems of storage and computational time in dealing with large 

scale sampled images.    Some of the methods developed have utilized 
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sinnple,   ad hoc operations while others [1-12,   1-13 and 1-143 have 

attempted more formal approaches based on mean square error.    In 

these cases the Bayesian approach has predominated, with the 

modeling of the object as a two-dimensional random process. 

In this dissertation a different direction is taken.    In many 

situations the experimenter faces the restoration task with very little 

or even no a priori knowledge about the object to be restored.    In 

such cases the use of the Bayesian approach does not seem to offer 

the best alternative.    When no a priori knowledge about the image is 

assumed,   a regression model adequately describes the blurring and 

addition of noise processes.    The original object is simply considered 

as a set of parameters to be determined,  given the knowledge of the 

blurred and noisy image,   the blurring function and the statistics of 

the noise.    The necessity of digital processing requires a discrete 

modeling of both the object and the image. 

The use of the least squares criterion leads to a very tract- 

able and general mathematical structure,  allowing the image restora- 

tion process to be cast in a technique analogous to those used in the 

field of econometrics,  for example.    However,  the lack of use of any 

a priori knowledge limits the effectiveness of the restoration process. 

It will be shown that for certain amounts of blur the estimators have 

very large variance,  masking completely the real content of the 

image. 
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The model used is flexible enough to accommodate some a 

priori information,  including the Bayesian approach.    Since this 

pa<h has been considerably explored in the past,  a new approach was 

pursued,  namely,   the use of deterministic constraints. 

Linear equality constraints allow a reduction in variance,  as 

a result of a reduction in the dimensionality of the problem.    The 

detection of any bias imposed as the result of incorrectly formulated 

constraints is also discussed. 

The problem of taking into account some physical inequality 

constraints that should be satisfied by estimators has been the ob- 

ject of discussion by several authors.    The most obvious restriction 

to be satisfied in image restoration is nonnegativeness.    It comes 

from the basic physical laws governing the process of image for- 

mation.    Some results [1-15] concerning the properties of Fourier 

transforms of nonnegative functions were used by Lukosz ri-161 

to give bounds on the transfer function of a physical system. 

Similarly, Cleveland and Schell [1-17] extrapolated the spectrum so 

that it would become an autocorrelation function, imposing that its 

Fourier transform pair be nonnegative.    Phillip [1-18] considered 

the problem of finding the maximum likelihood estimator of a con- 

tinuous function assumed to be nonnegative and upper bounded, 

under gaussian noise.   A quadratic expression has to be minimized 

under these constraints.    Necessary and sufficient conditions for 
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uniqueness of the solution were derived and the problem was ex- 

plicitly solved in some special cases.    Some estimation procedun 

can pive only nonnegative results as a result ex an exponentiation, 

for example.    This is the case with the technique of homomorphic 

riltering [1-19],  that assumes the image to be the result of the pro- 

duct of an illumination and a reflected component.    The assumption 

that the image is described by an array of cells whose content is 

given by the Maxwell Boltzmann distribution also leads to estimators 

given by exponentials.    This has been explored by Frieden [1-203 

and Hershel [1-21 and 1-22].    Ad hoc procedures have also been 

tried,  as the control of the relaxation factor in an iterative method 

to solve a linear system of equations [1-23].    Further details on 

these proposed methods are given in reference [1-24]. 

This dissertation will develop the inequality constrained 

least squares approach to image restoration.    The proposed method 

follows a philosophy similar to the one described by Phillip [1-18] 

lor the case of the discrete model.    The optimal solution is given by 

a quadratic programming procedure.    Any kind of linear inequality 

constraint can easily be incorporated and.   as a result,  requirements 

like monotonicity and convexity of the solutions can be satisfied.    The 

statistical analysis of the estimators is considerably more complex 

than the previous cases, but some approximate confidence intervals 

for functional values of the original image can be obtained.    Beside les 
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improving the quality of the restoration by the use of additional a 

priori information in the statistical procedure,  the use of linear in- 

equality constraints in the form of lower (nonnegativeness) and upper 

bounds facilitates the display of the pictorial information. 

A word about notation is necessary.   An attempt has been 

made to maintain coherence by expressing matrices by underlined 

capital letters,  vectors by underlined small letters and scalars by 

small or capital nonunderlined letters. 
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2.    THE RESTORATION PROBLEM 

This chapter presents the mathematical framework in which 

the restoration problem can be cast.    In section 2. 1 the modeling of 

the blurring and addition of noise processes is discussed.    Section 

2.2 contains a brief discussion of the properties of the Fredholm 

integral equation of the first kind.    Its discretization is examined 

in section 2. 3 and. finally,   section 2.4 presents the several numeri- 

cal methods that have been proposed to solve this equation. 

2. 1        The Model 

Figure (2. 1-1) contains the block diagram of an incoherent 

imaging system.    The first source of degradation is represented by 

the point spread function h(a, ^ ß , r,).    It is assumed that this blur- 

ring operation is linear so that it can be represented by a linear fil- 

tering operation.    The second source of degradation represents the 

addition of noise.    Due to the randomness inherent in this process, it 

can only be characterized in statistical terms.    Consequently,  due to 

the lack of complete knowledge of the degradation,  the restoration 

cannot be perfect ta the sense of restoring the image to the original 

value. 

Assuming that all the processes involved are available con- 

tinuously and unboundedly,  the following equation characterizes this 

7 
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xCfc?) 
h(a.€./3,ij) 

Figure (2. 1-1)   The Restoration 

Model 
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two dimensional model 

+00+00 

y( a, ß) = J Jx(5, r|)h(a, ?; p, Ti)d^dTi + n(a, 
-co-ee 

P) 

00 <  a, ß <      00 (2.1-1) 

In many situations,  the input image is available only over a finite 

extent and the previous equation reduces to 

b b 

y(a' ^ = J i*^' iM* ?: P' Ti)d5dn+n(a, p) 

-»<   a, ß <  « (2. l-lj 

a a 

In the particular situation where the blur function is isoplanatic,   the 

point spread is a function of only two variables and the previous 

equation takes the form 

b b 

= J Jx(?. y(a, ß) = J Jx(?, T))h{a-?; p-Ti)dfdTi+n(a, ß) 
a a 

-« < a, ß < oo (2.1-3) 

This model is general enough to include many situations that occur 

in optical systems.    The hypothesis of linear and spatially invariant 

blur is valid in situations like limitation due to diffraction,  for 

example.    In this case,  the blur function in a rectangular system 

assumes the general form [2-1] . 
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h(a, 
o\ - / sin a v       / sin ßv 
ß)"V    a    )     (    p   ) (2.1-4) 

A nice feature of this rectangular system is the fact that the 

degradation is separable.    In other words,  this function of two vari- 

ables can be cast into the product of two functions of one variable 

each.   Another example is the blurring due to atmospheric turbulence 

for long photographic exposure,  in which the point spread function is 

of the form [2-2]. 

h(a, ß) 
r    .  2  ,02,5/6-1 

2xp I  -(a   + ß  ) (2.1-5) 

Several other examples could be mentioned.    The defocussing [2. 1-1] 

that the optical system may impose over the image is one of them. 

Other examples could include certain types of optical imperfections 

and motion blur [2-3]. 

The assumption of space invariance of blur cannot be vali- 

dated under certain circumstances.    Examples of this are motion 

blur where objects at different distances from the camera move by 

different amounts [2-3] or certain optical aberrations like coma, 

pincushion and barrel distortion.   Although most of the experimental 

work in this dissertation will concentrate on the removing of spa- 

tially invariant blur,  the regression model wil. not be restricted to 

this class of degradation. 
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The assumptions of additive noise are broad enough to en- 

compass different situations in which the limitations of the optical 

and/or electrical system impose perturbations known only in a 

statistical sense.    Stray llluminatif n,   circuit noise,  or round off 

due to digital processing could be mentioned. 

Nevertheless,  as it should be expected,   there are restrictions 

in the use of the present model.    The assumption of linearity,  for 

example,  is subject to criticism,   since ultimately the image is re- 

corded on a photographic medium whose characteristic U severely 

nonlinear [2-1].    Even though this nonlinear function is known, its 

effect might be such that the addition of noise could occur before and 

after the nonlinearity.    Such would be the case with stray illumina- 

tion in exposure,  followed by the nonlinearity of the H-D curve, fol- 

lowed by roundoff error in digital processing ol the picture.    In some 

circumstances,  however,  the effect of the nonlinearity can be lumped 

in one block after the addition of noise.    Therefore,  its effect can be 

undone by an inverse operation prior to any other operation. 

The a   sumption of additive noise can also be criticized.   In 

particulax,   the effect of graininess in photographic materials is far 

from being additive.    Huang [2-4] has shown that it could be modeled 

by a multiplicative process. 

Once the limitations of the model are specified,  the next step 

JA^ 
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is to clarify the use of a priori information in it.    First,  the model 

assumes that the analyst has complete knowledge of the blur function. 

This hypothesis presupposes that the experimenter has some way of 

measuring the modulation transfer function.    This could be done by 

measuring the system itself,   [2-5], by theoretical analysis [2-1] or 

by measuring the response of a sharp point or edge in the picture 

[2-6, 2-7,  and 2-8]. 

With respect to the function x(a, ß),  unless explicitly stated, 

it will be assumed throughout this dissertation, that it is a fixed but 

unknown function to be determined,  given the values of the output 

function y(§, n).    This implies that, although the observed values 

y(5, nj are random,  the desired function x(a, ß) is not a random pro- 

cess.   This approach of parameter identification is in contrast with 

the Bayesian approach that assumes an a priori statistical distri- 

bution on x(a, ß), characterizing it as a random process.    The first 

method leads itself to the use of other types of a priori information, 

namely, linear relationships involving values of :c(a, ß) and bounds 

on their values.    These methods will be extensively explored in the 

present work. 

As far as the noise is concerned,  all the methods used will 

assume knowledge of the second order statistical properties.   It will 

not be necessarily white although this assumption will often be made. 

If additional hypotheses are assumed, further inferences will be 

mtm*Jtj*rm 
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dr awn. 

In order to perform some meaningful restoration,  it is neces- 

sary to define a goal to the estimation process.    The purpose,  of 

course,  is to estimate the unknown function x(a, ß) ,   given the ob- 

served values y(5 , ri) ,  for some criterion of goodness of the restored 

image.    Assuming that the picture is to be viewed by a human ob- 

server,   the criterion should take into account the psychophysical 

properties of human vision.    Much research is needed in this field 

so that reasonable criteria, both from the point of view of realism 

and mathematical tractaV.ility,  could be obtained.    In the lack of a 

better one,  a squared error criterion will be adopted,   namely,   mini- 

mizing the covariance between the estimated values and true values. 

Although it is known that the human observer does not judge images 

according to this criterion [2-91,  it has been found (and our experi- 

mental work tends to confirm this) that reasonable results can be 

obtained by its use.    Furthermore,  and here is its main advantage, 

the use of a squared error leads to a very tractable mathematical 

structure,   the regression model,   that has b jen considerably explored 

in mathematical statistics and econometrics. 

2.2        The FredhoLm Integral Equation of the First Kind 

The problem of restoration,  as stated in equations (2. 1-2) or 

(2. 1-3) consists in solving a two dimensional version of the Fred- 
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holm equation of the first kind.    The same type of integral equation 

occurs in different physical problems as radioastronomy [2-10 and 

2-11],   spectroscopy [2-12],  applied optics [2-13],  communication 

theory [2-14] and nuclear engineering [2-15]. 

The ideal kernel would be 

h(a. ? ; ß. n) = 6(a-?i p-^) (2.2-1) 

since in this case, with no noise 

bb 

y(a, ß) = J Jx(§,T1)6(a-5. p - T1)d§dTi = x(a, p)        (2.2-2) 
a a 

When the kernel is not the 6 function,  there is a loss of resolution 

and the problem that is posed is the one of recovering values of 

x(?, r|) given the values of y( a. ß)- 

In order to keep the equations in their simplest form,   only 

the one dimensional blur will be considered in the following para- 

graphs.    The extension to planar equations is straightforward. 

Under this condition,  under no noise,  equation (2. 1-2) assumes the 

form 

y(a) = Jx(5)h(a. 5)d5 (2.2-3) 

where the function h(a, 0 is the so-called kernel of the integral 

equation.   Associated with this kernel there is an eigenvalue - 
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j h(a. ?) I(§)d5 = A§(a) (2.2-4) 

The so-called spectrum of the kernel,  i.e.,  the distribution 

of its eigenvalues,  determines the most important properties of the 

solution x(§) for a given observed value y(a).    For example,  the 

existence of zero eigenvalues expressed by the equation 

Jh(a, ?) fU)d?  =   0 (2.2-5) 

implies that the solution to equation (2.2-3) will not be unique because 

a linear combination of eigenfunctions corresponding to zero eigen- 

values can always be added to the solution and the result will still be 

a solution. 

A real kernel h(a, §) is symmetric if h(a, ?) = h(?, a)« The 

eigenvalues of a symmetric kernel are real and eigenfunctions cor- 

responding to different eigenvalues are orthogonal,   that is 

IV5)fj (5)d5 (2.2-6) 

i        J 

Furthermore,  the eigenfunctions corresponding to the same eigen' 

mm 
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value span a linear subspace.    In this subspace an orthogonal basis 

can be selected (say, by using a Gram-Schmidt procedure) so that it 

is always possible to have an orthonormal set (as a result of further 

normalization) of eigenfunctions for a symmetric kernel. 

The kernel is defined to be closed if it does not have any zero 

eigenvalues.    As a result,  the solution to equation (2.2-3) will be 

unique.    The kernel is said to be separable if it can be expressed as 

the sum 

N 
h(a. ?) = £ f

n{a)gnm 
n=l 

(2.2-7) 

where N is finite and the functions f^a), f2(a), •• • , fN(a) are linearly 

independent in [a, b].    If the kernel is separable,  equation (2.2-3) 

will have a solution only if y(a) is a linear combination of f (a), 

f2(a), •••fN(a). 

Let X., X», • •• , Xn, ..., in order of decreasing absolute value, 

be the eigenvalues of the real symmetric kernel and let ^(a), 

*   (a), • • • , *   (a), • • •  be the corresponding eigenfunctions that are 
2 n 

assumed to form an orthonormal set.    It can be shown that this 

kernel can be expressed as 

Ma. ?) = £ x
nV

a)(,nm 

n= 1 
(2.2-8) 

if the series converges uniformly. 
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Under the conditions that a kerneJ be symmetric and closed, 

the set of orthonormal eigenfunctions forms a complete set,   i.e., 

any function in the space can be expressed as a linear combination 

of the elements of this set.    Consequently,  t-\e observed value y(a) 

can also be expressed in this way 

y(a) = £ a $ (a) ,   n n 
n=l 

(2  2-9) 

where the coefficients a    are given by 

an = J y(a) Va)da (2.2-10) 

In this case a necessary and sufficient condition for equation (2. 2-3) 

to have a solution is that the series 

\*n\ 
(2.2-11) 

n=l   IX IXnl 

converges.    In case of convergence,  the solution is given by 

a 
x(a) = £    -f- Ma) 

n=l   Xn     n 
(2.2-12) 

2. 3        The Discretization of the Integral Equation 

When the Fredholm integral equation is to be solved in the 

digital computer,  a discretization has to be performed.    This takes 
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In order to reduce the problem to a complete discrete form, numeri- 

cal quadrature expressions must be used, replacing the integral by a 

weighted sum of the values of the integrand at points 

x{?k. nJ k = 1, 2 K 

A = 1, 2, .... L 

(2.3-3) 

Under these conditions,  one obtains the following expression 

18 

into consideration the fact that when images are processed digitally, 

the information is necessarily finite and discrete.    Therefore,   sup- 

pose that y(a. p) . the observed function,  is sampled at a finite set 

of points 

y(a., 9.) i = 1, 2, ..., I 

j = 1, 2, • • •, J 

(2.3-1) 

This implies that 

bb 

y(ai. P.) ■ JJ«<?. ^^V f' ej' T1)d?dT1 + n(ai' V 
J       aa 

(2.3-2) 

If    T 

yla.. 9.) = EE   ^^h' ?k : Pj'Vx(V V + n(ai' V 
J    k=U=l 

i = 1. 2, .. ., I 

j = 1. 2. . .., J 

k = 1, 2, • • f is. 

1 ■ I, 2, • .., L 

(2.3-4) 
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Using a lexicographic notation [2-16],  it is possible to reduce this 

two dimensional   problem into a one dimensional model.    Define the 

square data arrays of the original and observed images, by the 

(KxL) matrix X and by the (IxJ) matrix Y respectively. 

Y = [yiOj. pJ] 

(2.3-5) 

(2.3-6) 

Also define a (Lx 1) vector v    and a (K. LxK) matrix N . as well as 

a (Jx 1) vector v.,  and a (I. Jxl) matrix M. 

^ 

r 
0 
1 

«+1 

v. = 0 
1 
0 

j-1 
j 
j + 1 

(2.3-7) 

"J 

a« 
i-1 

i M. 

0. 
-J 
I. 
-J 
0. 

j-1 

j 

j + 1 

(2.3-8) 

0 
-i 
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where 0.(0.) and I   (I.) represent,   respectively,  the (KxK) ((Ixl)) 

matrix with all zero elements and the (KxK) ((Ixl)) identity matrix. 

Using this notation,  the vector representations of the matri- 

ces X and Y are given by 

x   = E    N   Xv, (2.3-9) 

and 

X  =  SM.Yv. (2.3-10) 

where x and x are (K« Lx 1) and (I. Jx 1) vectors,  respectively.    The 

purpose of the vector v   is to extract the I     column from X.    The 

matrix N  has the rcle of placing this column into the H     segment of 

the (K.Lx 1) vector x.   As a result, x contains the elements of X 

scanned column-wise.   Analogous considerations can be made for the 

vector x and t^16 matrix Y. 

At this point, it is also convenient to refer to the inverse 

relation, that allows the transformation from the vector form back 

into the two-dimensional format.    This manipulation will be useful 

in transforming blurred and restored images into two-dimensional 

form for display purposes. 

Jj        rp rp 

X   = T N   xv. (2.3-11) 

.* 
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T       T 

j = l     J        J 
(2.3-12) 

With   this column scanning of the two dimensional data 

arrays,   the system of equations assumes the form 

where 

X = H x + n 

ii: 

Xi 

and the matrix His given by 

X = (I. Jx 1) vector 

H = (I.JxK.L) matrix 

x  = (K.Lx 1) vector 

n  = (I. Jx 1) vector 

x = 

^1 

^L 

Al 
a2 • 
• 
• '          %' 

n.   . 

n_ 

• 
• 

2j \i 

K.l 

(2.3- 13) 
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where the submatrices H,   „have the form 

V 

W i^VSrßj'V • * * wK*h(ai'V *V V 

wuh(ar VPj'V* * ' wiah(ar V Pj'V 

The problem of image restoration has now been reduced to a 

regression framework,  that can be stated as follows:   given the ob- 

served vector Y_,  the blur matrix H and the second order statistics 

ot the noise vector n,  estimate,  according to some suitable criterion, 

the vector of parameters x.    In the next chapter,   this regression 

problem will be treated extensively,   as well as the specific questions 

arising in itj solution in the context of image processing. 

Furthermore,   by the use of additional a priori information, 

expressed by equality or inequality constraints on the restoration, 

the problem of ill conditioning will be improved.    This will be the 

object of discussion in chapter 4 of this dissertation. 

» 
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The problem of selecting the number and the location of the 

nodes of the quadrature approximation,   as well as the observed 

values is a very complex one,   since it involves several different 

sources of error.    The first error comes from the approximation of 

the integral by the summation and it will be named quadrature error. 

It tends to decrease as the number of nodes increases.    The best 

location of the nodes is not given,  in general, by the equally spaced 

distribution.    In one dimension,  if the nodes are located on the zeros 

of the set of orthogonal polynomials on the interval [a,b] ,  the so 

called gaussian quadrature is obtained [2-17,  pages 392-395].    It 

provides the optimum precision in the sense of maximizing the de- 

gree of the polynomial for which the quadrature is strictly correct. 

In two dimensions, the technique of gaussian quadrature cannot be 

easily generalized [2-17, page 419] since the zeros of the ortho- 

gonal polynomials may be complex or lie outside the region of inte- 

gration. 

Another source of error may appear when the continuous 

estimator i(g, r\) is obtained from the discrete vector x.   Assume that 

the nonrandom function x(S, n) is band limited in the frequency plane 

within, for example,  the rectangular region given by the coordinates 

'Bu'  +Bu and "Bv'   +Bv' where u and v represent the coordinates of 

the frequency domain.    If the sampling grid is coarser than  1_ 
2B 

u 
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—-— (Nyqu^st rate),  then an aliasing error will occur when the con- 
ZB 

v 
tinuous function is obtained from the interpolated values.    For a 

given interval,  this requires that the number of samples be above a 

certain threshold if an equally spaced distribution of quadrature nodes 

is employed.    The determination of the threshold will,  of course, de- 

pend on the a priori knowledge of the frequencies B    and B   . 

The third source of error comes from the noise inherent in 

the observations of the blurred picture.   While the quadrature error 

affects the process of passing from the continuous to the discrete 

description and the aliasing error irtervenes in the inverse process, 

the effect of the noise is over the estimation of the discrete values. 

It becomes worse as the number of nodes in the quadrature formula 

increases.    It can be measured by the increased condition number 

or,  through a complementary point of view, by the increased vari- 

ance of the estimators,  as will be discussed in chapter 3 of this 

dissertation.    The type of quadrature,  the location of the nodes and 

of the observation values affect the blur matrix H and, by conse- 

quence, the quality of the estimators. 

If the cuadrature error can be disregarded with respect to 

the two other sources of error,  a trade-off can be characterized 

between aliasing and the effect of noise.   A small number of nodes 

implies small variances of the estimators but possibly an aliasing 

error in the reconstruction.    Increasing the number of nodes tends 
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to eliminate the aliasing  at the price of increased variances of the 

discrete estimators. 

The number of observation values y(a, , ß.) should be kept at 

least equal to the number of nodes in the quadrature if no other a 

priori information is to be incorporated.    Otherwise this lack of in- 

formation will be reflected in infinite variances of the discrete esti- 

mators.    In the case of use of a priori information,  a trade off can 

be characterized between this information and the one coming fi om 

the sample. 

This dissertation will be concerned mainly v/ith the third 

type of error,  namely,   the one due to noise.    It will be implicity 

assumed that the sampling is enough to avoid aliasing   errors and 

that quadrature errors are negligible compared to noise errors. 

2.4        The Existing Methods of Solution 

Except for a few cases,  the solution of the Fredholm equation 

of the first kind is far from trivial.    Usually numerical techniques 

are used for its solution.   All methods of solution have to face the 

obstacle of the ill conditioning of the problem.    This means that 

small perturbations on the observed values result in very large 

changes in the solution.   A large research effort has been underway 

during the last two decades attempting to develop feasible compu- 

tational methods to d^al with this problem. 
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In general, these methods try to circumvent the problem of 

ill conditioning by imposing side constraints on the solutions.    An 

example is the method by Phillips (2-18), who imposed the con- 

straint that the solution be smooth by minimizing the criterion 

b 

Min 

x 

in   I    [ x' (a)]'ida (2.4-1) 

where x"   (a) denotes the second spatial derivative of x(a).    If a 

discretization is performed,  a linear system of equations is obt?ined 

2 = Hx + C (2.4-2) 

where H is a square matrix.    In Phillips' method, an estimator x 

is forced to satisfy a quadratic equality constraint related to the 
2 

noise level involved {I  ) 

(l-Hx)Tfc-H2E)B*2 (2.4-3) 

and the solution is obtained by minimizing a quadratic form 

measuring the smoothness constraint 

MinxTSx (2.4-4) 

The result of the equality constrained optimization problem is 

given by 
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.-l.T„-1-l 
x   -   [fi + Ydl-Vs]-1! (2.4-5) 

where Y is a Lagrange Multiplier that specifies the amount of smo- 

othing imposed by the constraints.    It was also shown that an esti- 

mator of the perturbation vector , relates to the Lagrange Multiplie. 

Y and the optimal solution through the expression 

A -IT 
C   =   -Y{H   Vsx (2.4-6) 

A trial and error method was used giving the largest value of the 

smoothing coefficient y compatible with the constraint expressed by 

equation (2.4-3). 

A generalization of the method of Phillips as well as a sim- 

plification was performed by Twomey [2-19 and 2-20].    The solution 

expressed by 

x = (HTH + YS)"1*!1^ (2.4-7) 

involves only one matrix inversion instead of two in the method by 

Phillips.    In addition,  the met-   d allows solutions in the case where 

the matrix H is not square.    It should be observed at this point that 

for S equal to the identity matrix.   Twomey's method reduces to the 

so-called method of ridge regression [2-21,  2-22, and 2-23] that 

attempts to trade a small amount of bias in the statistical procedures 

in order to achieve a major reduction in the variance of the estimator. 

ML   _____ 
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A.mong the other methods that yield numerically stable solu- 

tions to equation (2.2-3) is the regularization method of the Russian 

mathematician A.N. Tichonov [2-24,   2-25,  and 2-261.    Likewise, 

the method imposes the constraint that the solution be a piecewise 

smooth function.    It is based on the minimization of a functional 

which,  after discretization,  assumes the form 

M 
T/   1 

[x,^] =  Aa(Hx-x)  {HX-X)+YX (^rS + ftSP^s 
(2.4-8) 

where S and P are appropriate positive definite matrices that define 

the smoothness constraint and A a and A? are discrete increments 

on equation (2.2-3).    The solution, for any y > 0, was shown to be 

given by 

xY   =   AarAa^H+Y^^ + A??^"1^       (2.4-9) 

and,  again,  a trial and error process is involved in the determination 

of the optimal value of the coefficient Y.    The method can also be 

generalized so that the functional would involve higher order dif- 

ferences on the solution vector. 

In the context of image processing,  the solution of the planar 

integral equations involves additional difficulties due to the large 

dimensionality required when a discretization of the equations is 

made.   Under the conditions of the separability of the matrix H as a 

■  
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Kronecker product.  Ekstrom [2-27] restructured the calculations 

using a singular value decomposition of the same matrix. 

Other methods [2-28.  2-29,  2-30.  2-31,   2-32,  2-33,   2-34, 

and 2-35] have also been suggested to solve the deconvolution prob- 

lem.    In general,  these methods were proposed to solve one dimen- 

sional,   small dimensionality problems and.  as pointed out by 

Ekstrom [2-36].   some sort of reformulation of the problem is often 

needed in order to adapt these procedures to the large dimension- 

alities that occur in two-dimensional problems. 

A significant development is possible in the solution involving 

large amounts of data, when the kernel h(a, §. ß. n) is shift invariant, 

that is. 

Ma. §, p, t])   =  h(a-ß. f-T]) (2.4-10) 

and the functional that expresses the smoothness constraint is givea 

by a convolution expression.    In this case (ifn) and S are Toeplitz 

matrices in the one dimensional case and block Toeplitz in the two 

dimensional case.    By extending the domain of the convolutions and 

transforming them into circular operations.   Hunt [2-37,   2-38. 

2-39,  and 2-40] used Fast Fourier Transform techniques to solve 

Twomey's method. 

.- — ■.., 
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3.    REGRESSION TECHNIQUES 

In the previous chapter a blurred digital picture corrupted by- 

noise was modeled by the expression 

i = Hx + n (3-1) 

where 

y_ = (IxJ) x 1 vector 

H = (Ix J) x(Kx L) matrix 

x  = (K x L) x 1 vector 

n  = (IxJ) x 1 vector 

In this discrete form,  the problem consists of performing an esti- 

mation of the parameter vector x,   given the observed vector £,  the 

knowledge of the matrix H and the statistical distribution of the noise 

vector n. 

In order to proceed with the derivation of the solution and its 

properties,  it is necessary to consider the possible dimensions in- 

volved in the model.    For the sake of simplification. 

Ix J  = M 

Kx L =  N 

(3-2) 

(3-3) 

Two cases are possible:   M s N and M < N.    In the first case, which 

would occur if, for example,  I ^ K and J ä L,  the number of nodes in 

30 

IM gcygiaft^Urigl^,!., 
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the quadrature expression is less than or equal to the number of 

samples of the observed image.    In the second case the opposite 

situation occurs.    The latter model would tend to occur when the 

experimenter increases the number of nodes in order to improve the 

discrete approximation of the integral equation that represents the 

blurring process.    In the case for which M ä N,  depending on the 

values of the H matrix, its rank may or may not be given by the 

number of columns, while in the case for which M < N,  the rank is 

necessarily less than the number of columns of H.    As a matter of 

notation,  the model of full column rank is called overdetermined. 

If the matrix H is not of full column rank,  the model is said to be 

underdetermined.    The overdetermined model leads to the use of 

classical regression techniques for its solution,  while the underde- 

termined scheme will require the concept of pseudoinverse and ex- 

tensions of the previous case. 

3. 1 The Overdetermined Model 

Consider the overdetermined model,  i.e.,  under the condi- 

tions of rank of the matrix H being determined by the number of 

columns.    Suppose,  furthermore,   that the noise has zero mean and 

covariance matrix V^,  assumed to be positive definite.    The vector 

x is fixed but unknown and the task is to obtain an estimator x of x 

according to some criterion.    The chosen estimator is the best 

I 
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linear unbiased estimator (B.L.U.E.) of x.    This means that one is 

searching for an estimate 

x = G^; (3.1-1) 

such that 

E(Gx) =x (3.1-2) 

Let VA denote the covariance matrix of the optimal estimator vector 
-x 

x    and V_ the covariance matrix of any other linear estimator that 
—' -x 

satisfies (3. 1-2).    It is noted that (V_ - V- ) is a positive semi- 

definite matrix.    The optimal solution is given by the Gauss-Markov 

Theorem [3-1, page 52] 

T     -1      -1      T     -1 
i = (H    V      H)      H    V     x (3.1-3) 

and its covariance matrix is 

T     -1       -1 
V*   =   (H    V      H) (3.1-4) 

Suppose now that,  instead of trying to estimate the set of 

pixel values x ,  i = 1, 2... N,  one is interested in estimating a 

linear functional of the x 's.    An example could be the estimation of 

the integral of the original picture that would be observed by the 

output of a photocell.    The linear functional | can be represented by 

the inner product 
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(3.1-5) 

The task then is to obtain a B.L.U.E. estimator for f. 

Using Lagrangean methods [3-2,  page 33] it is possible to show that 

This means that 

T      T     -1      -1     T   -1 
c    (H    V     H)      H   V     x 

A T   A 
§     =    £     X 

(3.1-6) 

(3.1-7) 

The optimal estimator of x could also be derived by considering 

parametric functions 

$.   = e.    x       i - 1, 2. • ».N (3.1-8) 

,th 
where e^ is the i— column of the identity matrix.    In this case x will 

be formed by the set of B.L.U.E.  estimators for each one of its 

components. 

The same r&sult could have been obtained by another method, 

namely,  the one that minimizes the weighted sum of squares of the 

residuals.    This is the method of least squares,  which was first 

developed by Gauss.    In this case one seeks for the vector x that 

minimizes the quadratic expression 

9 (x)   =   (j_- Hx)T V" 1 (x - Hx) (3.1-9) 



■ ' IM'" inMluw"^  i ii.Bwiiiiiwii  i        . i.  -..■..-. iPWiPBPP""""-"»!!   J   I 

34 

Taking derivatives and equating to zero,   one obtains 

or 

T     -1 T     -1 ■2H     V     jr + 2H     V      H x 

T     -1 T     -1 
H     V      Hx =H     V 

=   0 (3. 1-10) 

(3. 1-11) 

This is the set of normal equations of the least squares prob- 

lem.    Under the hypothesis of full column rank of the blur matrix H 

and positive definiteness of the covariance matrix V,  the matrix 

T     -1 
(H     V      H)  is invertible and the set of normal equations has a unique 

solution given by 

x   =   (HT V"1H)"1HT V"1^ (3.1-12) 

A comparison of equations (3. 1-3) and (3. 1-12) will confirm the 

assertion that the B.L.U.E. and least squares estimators of x are 

identical. 

When the noise is white,  V becomes an identity matrix and 

expression (3. 1-12) reduces to 

or 

Let 

T        IT 
x   =   (H   H)      H    y_ 

A + 
x   =   H ^ 

T„v-1 „T 
Ht=   (H   H)      H 

(3. 1-13) 

(3. 1-14) 

(3.1-15) 
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.+ 
The matrix H    is called the pseudoinver se or Moore-Penrose gen- 

eralized inverse of H [3-3].    A more complete discussion of its 

properties will be given in connection with the discussion of the 

underdetermined model. 

Assume for the moment that the noise is white.    Therefore, 

the least squares problem reduces to the minimization of the square 

of the norm of the residual vector 

Min   ., TT    ..2 (3. 1-16) 

In order to obtain greater understanding over the question of 

existence and uniqueness of the restoration problem,   some heuristic 

arguments will be presented.    Consider Figure (3. 1-1) where the 

decomposition of a finite dimensional linear space into the direct 

sum of two linear subspaces is represented [3-3] ,   namely. 

and 

EN   =  RHT   +   N,, 

E       =   R       +   N   T 
^ H HT 

.N 

(3. 1-17) 

(3. 1-18) 

As x varies over E   ,  the vector £ = Hx varies over R(H). 

2 
Therefore,   the problem of minimizing |X " Hi 11      over x can be 

2 
reduced to the one of minimizing llx " ^i 11     where ^.i I* ^n RTT« 
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From geometrical considerations it is clear that this is solved for 

^   given by the projection of ^ onto R    .    Since y_   is in R   ,  there 

always exists a solution to the problem 

Hx   = ^ 1 
(3. 1-19) 

which implies that a solution to the least squares problem -Iways 

exists.    Now,   tht> solution will be unique if and only if the null space 

of H,   N   ,  is composed only of the zero vector.    Indeed,  assume the 
H 

solution is unique.    Therefore,  the null space of H has to contain 

only the zero vector because otherwise a nonzero vector in N    could 

always be added to x without affecting ^;.    On the other hand,  assume 

that N    comprises only the zero vector.    If the solution is not unique, 

say x' and x" being two distinct solutions,  then x' - x" would be in 

N   , which is a contradiction. 
H 

In the overdetermined case the columns of the blur matrix H 

are assumed to be linearly independent, which implies that the null 

space of H contains only the zero vector,  otherwise there would be a 

nontrivial linear combination of these column vectors resulting in the 

zero vector.    This explains the unique solution that was obtained for 

the normal equations.    In the underdetermined case this will not hap- 

pen and there will be many solutions to the least squares problem. 

  ,--~.   ,—, — 
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3,2        The Hypothesis of Normality and Interval Estimation 

It will be assumed in this section that the noise is Gaussian. 

Besides the fact that it occurs often in practice,   this assumption also 

has the advantage that it will allow the derivation of further prop- 

erties of the estimators. 

Accordingly,  let the components of the noise vector n,  n  , 

n  , ••• , nw, be jointly distributed with a multivariate normal distri- 
2 M 

bution 

n   -   N(0 , V) (3.2-1) 

i 

denoting that the mean is the zero vector and the covariance matrix 

is V .    Therefore,  given the parameter vector x,   the probability 

density function of the observed vector^ is given by 

p(y|x) = 
1 

(2TT) 
M/2 

V|^ 
exp {-|(y-Hx)Tv"1(y-Hx)) (3.2-2) 

Consider now the maximum likelihood estimator of the vector of the 

original pixel values x.    By definition [3-4,  page 193] this estimator 

is obtained by maximizing over x the expression of p(y|x).    One may 

take log before maximizing since it is a monotonically nondecreasing 

function.    In doing this one observes that the maximum likelihood 

estimator x minimizes the quadratic expression 
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(3.2-3) 

Under these conditions,   given the observed values of the 

blurred and noisy picture,  the maximum likelihood estimator of the 

original pixel values M the least squares estimator (and the 

B.-L.U.E.  estimator for the overdetermirrid model), if the hypothe- 

sis of normality is assumed.    Since the maximum likelihood estima- 

tor has ehe desirable properties of consistency and asymptotic ef- 

ficiency, the Gaussian hypothesis allows the extension of theso 

properties to the estimators derived under the two other criteria. 

In the following discussion the assumption of white noise will 

be made.    The purpose will be to derive estimators for the variance 

of the noise that corrupts the image.    Under the white noise hypothe- 

sis,   (3.2-2) assumes the forrr. 

Pfcfe)-  M)2    M    •   exp/'^^ (Z-Hx)T(i:   y^l     (3.2-4) 
(2TT) CT 

If the log likelihood function is maximized by setting the derivative 

with respect to n equal to zero,  one obtains 

1 

2a 
^-(i-Hx)   (i-Hx) M 

2n 
=   0 (3.2-5) 

The expression for the maximum likelihood estimator of the 
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coefficient vector x has already been derived.    By substituting this 

2    /v 2 
value,  the maximum likelihood estimator for o   •   ry   ,  is obtained 

^2 = j5(x-äS)Tte-lU) (3.2-6) 

Now, consider the quantity 

A A TT   A 

T     -1     T ■ X-H(H   H)      H    x = 

T     -1    T 
■ [L-H(H   H)     H   ]x 

■   kl (3.2-7) 

Since L. is the difference of two symmetric matrices,  it follows that 

L is also a symmetric matrix.   Also JL is idempotent as it can be 

shown by the following derivation 

L2   =   [I-H(HTH)"1HT]2   =   I-H^H)"1 ^-HQi1^)"5 HT 

T     -1     T        T     -IT 
+  H(H   H)      H   H{H   H)      H 

= X-H^H)"1 HT    =   L      (3,2-8) 

Furthermore,   the trace of L can be obta .ned as follows 

trL = trl_ - trH^H)"1 HT ■ M-tr(HTH)" ^^ = M-N    (3. 2-9) 

\ 
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From the fact that the rank of an idempotent matrix is equal to its 

trace, it follows that the rank of L is (M-N).   Also,   observe that 

LH   =   Q-Ü^H)"1 HT]H =H.-H = 0 (3.2-10) 

Now,  consider another possible estimator foi the parameter 

2 . 
C3  ,  namely 

s2   -   ^(ü-Hx^lY-Hx) 

1 AT. 
V      V 

M-N -   - 

(3.2-11) 

The following relationship is valid 

v = L v = L(H x + n) = L n (3.2-12) 

where the fact that LH = 0 was used.   Therefore, 

T T   T T T 
v   v=n   L   .Ln = n    Ln ::: trLnn (3.2-13) 

The second equality comes from the idempotency of L and the third 

is based on the fact that n" Ln is a scalar and therefore equal to its 

own trace. 

By taking expectations one obtains 
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E(v   v) = E(trLnn   ) = tr _LE{nn   ) = a    tr LI_= a2(M-N) (3.2-14) 

7 
As a result of the last expression,   s    is an unbiased estimator for 

the variance of the noise.    Observe that,  although ~ vTv is the maxi- 
M —   ■"• 

mum likelihood estimator of rr  ,  it is not an unbiased estimator. 

' 

It could be also of interest to determine an estimator for the 

covariance matrix of the estimator x, namely,  a2 (H7^)"1.    Since 

s    is an unbiased estimator for a  .  it follows that s^H1**)"1 is an 

unbiased estimator of a   (HTH)     . 

It has already been observed that,  under the normality 

assumption, the vector of estimated pixel values, x,   is distributed 

according to a multivariate normal distribution.    Observe,  further- 

2        T T 
more,  that (M-N)s    = ^    L^ = n    Ln and that L is an idempotent 

matrix of rank (M-N).    This fact implies that the quadratic form 

(M-N)s2 ,. * 
2 has a X    distribution with (M-N) degrees of freedom 

a 
[3-5, page 91]. 

Now,  observe that the matrix L and the matrix (HTH)"1HT 0f 

x=(HTH)"1HT
X satisfy 

1..T ,T„%-1    T 1„T. 1„T (H   H)     H^L = (H^H)     H    [L-iKH1!!)-1!!1] = (H'H)'
1
!! 

T     -1     T 
(H i£)      H     =0 (3.2-15) 
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This implies [3-6, page 89] that x and s are independently dis- 

tributed. 

Let us reconsider now,   still under the Gaussian hypothesis, 

the problem of estimating a linear functional of the pixel values of a 

picture,  like the sum of the pixels or a single pixel value,  for 

example.    Expression (3. 1-6) gives the value of the B.L.U.E.  esti- 

mator f .    That expression can be put into the form 

where 

T 
f   =   u  2- 

T TT-1      -1T-1 
u1    =   c   (H    V     H)      H.   V 

(3.2-16) 

(3.2-17) 

Since n is normally distributed with zero mean and covari- 

ance matrix V,  it follows that ^ is also normally distributed with 

mean Hx and ^ovariance V.    On the other hand,   I, being a linear 

combination of Gaussian random variables,  is also a Gaussian 

random variable and its variance is expressed by 

var(i)   =   u    Vu 

Sir-e $ is an unbiased estimator of $ , the random variable 

(3.2-18) 

n   = $   -   f 
(3.2-19) 

^var(|) 

is zero mean,  unit variance and Gaussian.   As a consequence,  the 
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probability that fl falls in the interval T-K.K1 is given by 

Prf-K .   n** K)   ■   J   -^   exp(-f) dx    (3.2-20) 

or 

Pr{-K ^   ; $    =g   ^ K)  =  a 1 /var(f) J 
(3.2-21) 

where 

a = i^ expW") dx (3.2-22) 

It is our interest to derive the confidence interval at a given 

level a for the parametric function $ . In view of (3.2-21) this can 

be given by 

1^1) = {$ - K(var($))^ ,   $ + K(var(1))i} (3.2-23) 

or 

L-rt)   =   {uTx - K(uTVu)i ,  uTx + K(uTVu)l j (3.2-24) 

For each value of K,  the corresponding confidence level is tabulated 

below [3-2, page 38]. 
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K a 

1.0 0.6827 

2.0 0.9545 

3.0 0.9973 

4.0 0.9999 

It is possible to give a geometrical interpretation of the con- 

fidence ellipsoid.   This interpretation will provide considerable in- 

sight into the properties of the estimators,  and will open the path 

toward the discussion of the influence of the perturbations in the 

solution of the linear equations involved.    Excellent discussions of 

this interpretation are found in references [3-2, pages 40-58 and 

3-7,  pages 406-411]. 

Consider the expression given by equation (3.2-3).    For a 

given observed value x» Ö>»* expression represents a quadratic 

function in N-dimensional space of the x   variables.    Under the over- 

determined model the solution of the normal equations is unique. 

Therefore,  the minimum of the quadratic form is obtained at a 

unique point x .    For other values of x the residual surface assumes 

the shape of a parabollold.    Let r    denote the minimum value of the 

quadratic expression.    Consider the expression 

(i-H*)T Yf ^i-ü*)   =   r    +K2 (3.2-25) 

Upon the substitution of the value of £ given by the solution of the 
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(x-x)T HT V"1 H(x-x)   =   K' (3.2-26) 

This is the expression of an ellipsoid with center at the point x in the 

N-dimensional x - space.    Following reference r3-2'' this ellipsoid 

will be called the K -ellipsoid.    Figure (3.2-1),  obtained from ref- 

erence [3-2,  page 42] shows the residual surface and the K -ellip- 

soid for N - 2. 

Consider now a vector h in the N-dimensional space.    For a 

nondegenerate ellipsoid (this is the case with the overdetermined 

model),  there will be two (N-l) dimensional planes orthogonal to h 

and tangent to the ellipsoid.    These are planes such that the ellipsoid 

lies entirely on one side of and has at least one point in common with 

them.    Following Scheffe [3-7] this planes will be called planes of 

support of the K - ellipsoid. 

On the other hand,   equation (3. 1-7) gives the value of the 

estimator of the parametric function I as expressed by the inner 

product of the vector £ and the estimator x .    If one considers the 

planes of support of the K -ellipsoid perpendicular to £,  their ana- 

lytical expressions will be given by [3-2, page 41] 

T T T      T      -1 - 1 1 
£  *   "   £  *  + K[£   (H     V      H)      cp (3.2-27) 

 ,  
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E^y-Hxl'Vly-Hx) = r0+K' 
or 
(x-^)THTV'lH(x-^)=K2 

Figure (3.2-1)   The Residual Surface and 
the K-EIlipsoid for N=2 

■I 
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var(|)   =   uT Vu   =   cT(HT V*1 H)"1 c (3.2-28) 

it follows, comparing (3. 1-7), (3.2-24) and (3.2-27) , that the con- 

fidence interval 1^(5) can be given by the distance between tht- two 

points where the planes of support touch the K -ellipsoid. Figure 

(3.2-2), obtained from reference [3-2, page 43] illustrates the 

previous assertion. The same figure also shows that the width of 

the confidence interval is proportional to the distance between the 

two support planes. 

Since the width of the confidence intervals of parametric 

functions of pixel values is proportional to the distance between the 

planes of support,  and since this distance will vary depending on the 

direction of the vector £with respect to the axes of the ellipsoid,  it 

is important to characterize the directions of these axes in terms of 

measurable quantities. 

Equation (3.2-26) gives the analytical expression of the K - 

N 
ellipsoid.    If a translation of origin in the E     space is made through 

the equation 

V   = X -X (3.2-29) 

equation (3.2-26) assumes the form 
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S+:c
lx=clt+K[cT(HTV"lH)"lc] T/uTw-luH.!^ 

S.: cTx = cTx+K [c'mVHr'c]"2 

Figure (3.2-2)   The Determination of the Confidence 
Interval for Parametric Functions 

r 
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T     T     -1 2 
v    H     V      Hv   =   K (3.2-30) 

In order to find the directions of the principal axes of the K - 

ellipsoid,  first observe that a radius vector from the origin to any 

point on the surface of the ellipsoid will be colinear with one of the 

principal axes if and only if it will be in the direction of the normal 

to the surface at that point.    On the other hand,  the ellipsoid can be 

considerRd as an equipntential surface [3-2,  page 45] of the scalar 

field 

T     T     -1 
ß(v)   =   v    H     V      Hv (3.2-31) 

so that the normal to the surface can be obtained by the direction of 

the gradient vector 

V(ß)   =   2HT V"1 Hv (3.2-32) 

Consequently,  the problem of finding the principal axes of the ellip- 

soid reduces to the one of finding axes that are colinear with the 

gradient vector.    This is expressed by the following equation in JJ, 

for some constant X 

T     -1 
H    V      H£   =   ^£ (3.2-33) 

The previous equation represents an eigenvector-eigenvalue 

____^^^___- 
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T     -1 
problem and the fact that H    V      H is symmetric and positive defi- 

nite (since V is positive definite and H has full column rank in the 

overdetermined model) guarantees that its eigenvalues are all real 

and posidve.    The eigenvectors can always be chosen to be mutually 

orthogonal and these will be the directions of the principal axes. 

Consider now the diagonal matrix Q   containing the eigen- 

T     -1 
values of H     V      H in decreasing order.    Consider also the unitary 

matrix P such that its columns are the normalized corresponding 

2 
eigenvectors.    The matrix H   is obtained by the following transfor- 

mation 

T     T     -1 2 
P    H    V     HP   =   n (3.2-34) 

In order to obtain the axes of the ellipsoid a rotation of coordinates 

is performed 

T 
r   =   P   v (3.2-35) 

This will align the axes of the ellipsoid with the axes of the coordi- 

nate system. By solving for v in the previous equation and substi- 

tuting in (3.2-30),  the following expression is obtained 

rT PT HT V"1 HPr   = K' (3.2-36) 

and,  using (3.2-34),  this reduces to 
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r     H     r   =   K 
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(3.2-37) 

Taking into consideration that £^    is diagonal, with entries 

w., w_, .. . , w    in the diagonal,   the previous expression can be re- 
1       Z n 

written as 

N 

i=l   K*/ w 
i 

=    1 (3.2-38) 

This is the canonical form of the equation of an ellipsoid 

when the axes are colinear with the coordinate axes.    The lengths of 

these axes are given by 

1. 
2K 
w 

,    i   =    1, 2, t. . , N (3.2-39) 
i 

It also follows that the principal axes of the ellipsoid have lengths 

inversely proportional to the square root of the corresponding eigen- 

values . 

Recall that the width of the confidence interval for parametric 

functions of pixel values is proportional to the distance between the 

planes of support.    Now,  if the vector £ that specifies the parametric 

function is parallel to an eigenvector that corresponds to a small 

eigenvalue, the distance between the planes of support will be larger 

than in the situation where £ is parallel to an eigenvector cor res- 
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T     -1 
ponding to a large eigenvalue of H     V      H. 

So far the confidence interval for parametric functions of 

pixel values has been derived under the assumption that the variance 

of the noise is known to the experimenter.    When this is not the case 

the confidence interval can be determined as follows.    First observe 

T T 
that,  under white noise conditions, £   x-£   x is normally distri- 

2   T     T     -1 
buted with zero mean and variance a   c_  (H   H)     £.    Therefore,  the 

ratio 

X .A . 

yr"T     T     -1 
£    (H   H)     £ 

(3.2-40) 

should be a standardized Gaussian random variable.    The parameter 

CT is not known but it has already been derived that x and s    - 

1 T 
——rr{y-Hx)   (^.-Hx) are independently distributed.    Therefore,  the 
M - N 

ratio given by (3.2-40) and ^—"   '8    are also independent.    Since 

^ M"^)s      is x2 distributed with M-N degrees of freedom,  it followi 
a2 

that 

cT(x-x) . v/M-N 

/T     T     -1 
oVc    (IL H)     £ 

/M-N)S
: 

/    a2 

, T    T 
a /c   (H   H)     c 

(3.2-41) 
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is distributed according to a Student distribution with (M-N) degrees 

of freedom.    The determination of the confidence interval is then 

easily done by using tables of this distribution.    The determination 

of the confidence interval for the unknown variance can be done by 

(M-N)s2 

observing that 

degrees of freedom. 

has a chi-square distribution with (M-N) 

3. 3        Analytic Study of the Condition Number 

This section considers the effects that perturbations on the 

observed blurred pixels have on the estimated original pixel values, 

from the complementary point of view of the numerical analyst. 

Under this perspective,the estimation of pixel values would consist 

in the problem of solving a system of linear equations 

Hx  =   ;£ (3.3-1) 

such that the right hand side is subject to perturbations.    These 

errors represent the role of the noise in the system.    Consider the 

effect of the perturbation vector n on the solution of the system of 

linear equations.    Call 

x   =   x + Ax (3.3-2) 

the solution,  x being the true vector.    The set of normal equations 

..   . ______ 
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(HT V"1 H)(x + &x)   =   ^Y"1^   =   ^V^lHx + n)      (3.3-3) 

gives the solution for the perturbed system.    Reduction of the pre- 

vious equation gives 

T     -1 T     -1 H    V      H Ax   =   H     V      n (3.3-4) 

At this point,   assuming the overdetermined model,   one could simply 

T     -1 invert (H     V      H) in order  ;o obtain the change Ax in the solution of 

the linear system due to the perturbation n. A decomposition of the 

matrices involved will be performed,  however,  giving more insight 

into the problem [3-2, pages 47-58].    The assumption that V      is 

positive definite leads to the possibility of a decomposition of the 

form 

-1 T 
V        =   C   C 

so that equation (3.4-4) can be written as 

(3.3-5) 

T     T T     T 
(H    £    £H)&x   =   S.    C     C n (3.3-6) 

A factorization of the matrix C^H will now be performed.    This 

is the so-called singular value decomposition of a rectangular matrix 

r3-3> page 381 

CH   =   PLTQ (3.3-7) 
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where IJ is the (NxN) diagonal matrix of the eigenvalues of 

T     T 
(ü    Q.    SLS.),   P is a unitary matrix whose columns are the eigen- 

T     T 
vectors of (C^HH     C_  ) and Q is also a unitary matrix whose rows 

T     T 
are the eigenvectors of (H    C^    C.H)'   As a result, equation (3.3-6) 

can be rewritten 

(QT IiQ)M   "   9.Ti:^PTCn (3.3-8) 

or 

LQAx =   L^PTCn (3.3-9) 

T    T 
Since (H    C_   C^H) is nonsingular,   L is also nonsingular and one ob- 

T    -1 
tains (by multiplying both sides of the equation by Q    L    ) 

Ax   =   QTL  2PTCn (3.3-10) 

The previous equation can also be written 

. N    (pT c n) 
&x   ■  X     " *   •   % (3.3-11) 

i = l Wj "I 

T     T 
where 3, are the rows of Q (eigenvectors of H     C.    QJiD an^ wi» 

T    T 
i = 1, 2, •• . N are the square root of the eigenvalues of (H    C^   C^H). 

The last quantities are called the singular values of the matrix C_H. 

Equation (3. 3-11) shows that the component of the error along 

T     -1 
each of the eigenvectors of (H    V      H) is inversely proportional to 
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the corresponding singular value of C^H.   Assuming that the com- 

T 
ponents of (P    C^n) do not vary much in magnitude,  the components 

of Ax will tend to be larger in the direction of eigenvectors cor- 

responding to smaller singular values. 

So far the analysis of perturbations has been restricted to 

absolute changes in the least squares solution due to errors in the 

observed values.    The next step consists in analyzing relative 

changes in the solution due to perturbations in the data as well as in 

the matrix H. 

Assume for the sake of simplicity,  that the noise is white. 

This implies that the solution to the normal equations is given by 

T       -IT 
x   =   (H   H)     H   £ (3.3-12) 

As pointed out before,  the previous expression can be put into the 

form 

x   =  H   x (3.3-13) 

whete H   is the pseudoinverse of H. 

Call 

1 ■ x + a (3.3-14) 

and let ^- and ^. be the projections of y; and v respectively,  onto the 

range of the transformation H,denoted R(H).   Under these conditions, 

. 
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the following bound is valid for the relative changes in the solution 

to the least squares problems r3-8, page 221] 

H+x-S+X^   ^ C<0) .  1! 

H\\ 11^11 
(3.3   15) 

wherec(H)=M.   I1H
+

I1   . (3.3-16) 

The quantity c(H) is called the condition number of the blur 

matrix H.    It plays an extremely important role in explaining the 

effect of perturbations on the accuracy of the computations involved. 

Equation (3. 3-15) can be obtained by the following reasoning. 

Decompose ^ into ^ and^ where ^ belongs to R(H) and ^ is i« "s 

T 
orthogonal complement, which is the null space of H   ,  denoted by 

N(HT).   Therefore, 

H\ = Ei, + 1±\ " Hi, + (HTli)HTi2 'VL\ (3.3- 17) 

Analogously, 

H+l = ä+2, (3.3-18) 

where y , is the projection of x onto R(H).   Hence 
■*■ 1 

iH^-H^iuiiaVrii'114 »a*11' "xrii" '3•3■1,', 
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On the other hand,  it is easily shown r3-8, page 220] that if 

H+Xis the solution to the least squares problem,   then 

HH JL   • Xl 
(3.3-20) 

and 

r fl ■ NHH+J < IIHII . IIH^H (3.3-21) 

or 

IIH+
ZI1 Uli 

(3.3-22) 

By dividing (3.3-19) by (3.3-22) one obtains the desired result 

Observe that it is only the component of the relative error in 

the observed vector of pixel values lying on the range of the blur 

matrix that contributes to the relative error in the estimated p xel 

value s. 

The condition number will determine the effect of the noise 

in the restoration process.    If its value is small a little relative 

perturbation on the observed blurred picture will not produce large 

relative changes in the restored picture.    In this case,  the normal 

equations are said to be well conditioned.    If,  on the other hand,  the 

condition number has a large value,  small relative changes in the 

observed values may greatly affect the estimated pixel values and 

the normal equations are said to be ill conditioned. 
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The matrix norm used in the expression of the condition 

number lIH " . 'I H    II can be any one of the matrix norms that are 

consistent with the vector norm used.    In particular,  one may select 

the spectral norm, which is equal to the largest singular value of 

the matrix. 

In order to find the largest singular value of the pseudoinverse 

H    ,  (or (C_H)    if a colored noise corrupts the image) the factori- 

sation expressed by equation (3. 3-7) will be used.    By doing this and 

also using the expression for the pseudoinverse one obtains 

(CH)+ = [(CH)TCH]"1 (CH)T 

But since 

(3.3-23) 

T T 
P   P =QQ     =1 (3.3-24) 

and 

T   1     -1        T   -1 
(3.3-25) 

it follows that 

+        T    "1    T 
(CH)    =Q    L *P (3.3-26) 

The matrix (CH)    is an NxM(M ^ N) matrix,   so its singular 

values are calculated by the positive square roots of the matrix 
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(3.3-27) 

The eigenvalues of this matrix in factorized form are given by the 

1 
' '      2 

-1 1 1 
diagonal elements of L    ,  namely,     T"  ,     ^   * As a 

w 
1 

w. w 

consequence,   the singular values of (CH)    are the reciprocal of the 

singular values of CH.    The largest singular of (CH)    is w 

Therefore,  the condition number is given by 

w 
ll(CH)l|||(CH)+||   --i (3.3-28) 

n 

that means that this number is the ratio of the largest to the smal- 

lest singular value of the matrix (CH). 

A further insight can be obtained by considering the re- 

lationship between the condition number and the K-ellipsoid [ 3-2, 

page 54].    Equation (3.2-39) expresses the relationship between the 

length of an axis of the ellipsoid and the corresponding singular 

value.    Us?.ng that expression one may immediately conclude that 

the ratio of the largest to the smallest singular value of (CH) is also 

the ratio of the largest to the smallest axis of the ellipsoid.    Tl is 

means that the more the ellipsoid departs from the shape of a sphere, 

the more ill conditioned the restoration problem will be.    Figure 

(3.3-1) obtained from reference [3-2, page 54] shows the 
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^-well conditioned 
problem 

poorly conditioned 
problem 

Figure (3.3-1)   K-Ellipsoids for a Well 
Conditioned and a Poorly Conditioned Problem 
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comparison between the K-ellipsoids for the well and ill conditioned 

system,  for the case where N = 2. 

When the noise is Gaussian,  the observed blurred and noisy 

pixel values are also normally distributed,  under the linear model. 

In this case one can define ellipsoids centered at the mean value of 

the observed pixel values (it may be assumed to be the origin for 

convenience) and containing a given percentage of this multivariate 

diütribution. 

Since the estimated pixel values are obtained by combining 

linearly the observed values,  it follows that the estimators are also 

Gaussian distributed. 

It is possible to show [ reference 3-2, pages 55-58] that if 

the ellipsoid for the observed values in a regression model has the 

expi a s si on 

(i-Hx)T V"1 (x-Hx)   <:    p2 
(3.3-29) 

then the corresponding ellipsoids of the estimators are given by 

i*-*)THT V^H^-g)    *        2 (3.3-30) 

This ellipsoid essentially gives the multidimensional confidence 

interval for the pixel values under the normality assumption.    The 

eigenvectors and eigenvalues (HT V"1 H ) will determine the size 
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and shape of the ellipsoid. 

The a'tention will be devoted now to the problem of con- 

sidering the effects of pr rturbations of the blur matrix H on the 

restoration problem.    This question is of extreme importance since 

the experimenter rarely knows with great precision the spread func- 

tion.    This is particularly true when that function is derived from 

measurements that inevitably involve errors. 

The analysis of the effect of the perturbation on the blur 

matrix is quite involved.    In order to do this a new terminology is 

introduced by Stewart r3-9l.    Let E^be a perturbation matrix on the 

M 
blur matrix H and S be a sub space of R    .    Each column of E^ is an 

M-vector that can be projected onto S.    Call E ^Xj) and —2^2^ the 

projections of E^) onto the range of the blur matrix,  denoted by R(H) 

T 
and its orthogonal complement (N(H   )),  respectively. 

Assuming the overdetermined model and if 

IH Ejll   < (3.3-31) 

then the columns of (A + E) are linearly independent.   Also, assuming 

that 

x   =   H   £ (3.3-32) 

and 
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(3.3-33) 

then 

lix-iH 11^1 II 2 
2c(H) . __!_ + 4c  (H) . 

1H 

^2 

IH 
^+Bc3(H,L^ 

IXj H 

{3.3-34, 

where c(H) = 'IHII .   IIH'" (3.3-35) 

is the condition number of H and the consistent Euclidean norm for 

vector and Frobenius norm for matrices is used.    The third_term 

in the bound depends on the square of II E   11      and usually can be 
m 

disregarded when compared to the first two terms.    The first term 

is similar to the bound that can be derived for perturbations in non- 

singular linear systems. 

The second term states that the relative perturbation in 

T                                                11^211 
N(H   ) is amplified by c(H) • S s- .    Since ^i is the projection of 

^ onto R(H) and ^- is the projection on its orthogonal complement, 

namely N(H   ), it follows that the ratio measures how nearly 

X lies with respect to R(H).   If ^ is close to R(H, this ratio will be 

small.    If || E, || and || E   ||  are of the same order of magnitude then 

the first term tends to dominate when j_ is small.    If,  on the other 

hand, v   is large,  the second term is prevalent.    Stewart states 

loosely that "if ^ very nearly lies in R(H),   thc?n c(H) is the condition 
» 
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2 
number for the least squares problem,  otherwise c   (H) is the condi- 

tion number. " 

An important conclusion in the case of image restoration can 

be drawn.    If there is a small amount of noise present in the observed 

pixel values (high signal to noise ratio),  the j will tend to be near 

R(H), which implies that c(H) will be the condition number.    If,   on the 

contrary,   the signal fo noise ratio is low,  the component of the noise 

2 
will tend to place x farther away from R{H) and in this case c   (H) will 

be the condition number.    Since c(H) is always greater or equal to 

one,  the latter case is certainly a worse situation.    Incidentally,  it 

2 
should be remarked that c  (H) is the condition number of the matrix 

{HTH). 

3.4        The Underdetermined Model 

So far the study of the image restoration problem has been 

essentially restricted to the overdetermined model.    This means that 

the (M x N) blur matrix H is assumed to have rank N.   In other words, 

the columns of this matrix are supposed to be linearly independent. 

On the other hand,  if,  in the discretization method of the con- 

tinuous planar equation that describes the blurring process,   a number 

of nodes for the quadrature formula is selected exceeding the number 

of observed va'ues (i.e.,  M <N),   this condition is violated and the 

rank of the blur matrix F is necessarily less than N. 
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Umler the overdetermined model there was a unique solution 

for the restoration problem given by the set of normal equations. 

Furthermore,   estimators and finite confidence intervals were ob- 

tained for every parametric function of the pixel values.    Also,  a 

finite condition number was obtained by considering the ratio of the 

largest and the smallest singular values of the matrix CH. 

If H has not full column rank several important consequences 

are immediately derived.    First,   the uniqueness of the set of normal 

equations cannot be guaranteed any more,  since the matrix (HV1*!) 

is singular and therefore cannot be inverted.    Second,  the smallest 

singular value of the matrix CH is zero,  resulting in a condition num- 

ber with an infinite value.   As a consequence * this fact,   many linear 

combinations of pixel values have an infinite confidence interval, 

which is equivalent to ray that these functions are not estimable 

There is a concept that not only is necessary for the study of 

underdetermin.d systems but also broadens the view over the over- 

determined systems, unifying the whole study of the linear mode), in 

regression analysis.    It is the concept of the generalized inverse of a 

matrix, which was mentioned briefly in connection with the treatment 

of the overdetermined model and now is more fvlly treated. 

Initially,  a brief survev of generalized inverse concepts will 

be presented.    There are saveral ways of presenting these concepts. 

The presentation contained in reference [3 -3] will be followed. 
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Given an M x N matrix H,  the matrix H    obtained by the 

following limiting operations 

+ T 2     -1    T 
H      =   lim(H   H + a   1}    H 

a-»0 

T        T        2-1 
limH   (HH     + a   I) 

a-»0 (3.4-1) 

always exists.   Also,   for any (M x 1) vector y_,  the vector 

x   =   H x (3.4-2) 

is the vector of minimum norm among those that rmnimize 

i'z-Hxir (3.4-3) 

It can be shown that x is the unique vector in R(H   ) satisfying the 

equation 

Hx =y_ (3.4-4) 

where ^ is the projection of ^ on R(H).    This vector^ satisfies the 

set of normal equations 

T T H   Hx   =   H   x (3.4-5) 

The unique matrL: H    is czUed the generalized inverse or the pseu- 

doinverse of the matrix H. 

As a corollary of expressions (3.4-1) and (3.4-2),  it follows 
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that for any vector x- HH^ is the projection of^ on R(H),  (I-HH  )x 

is the projection of x on N(HT).    Furthermore,  for any vector x, 

H+Hx is the projection of x on K(HT) and (I.-H+H.)x is the projection 

of x on N(H).   It should be observed at this point that a projection 

2 
matrix P is idempotent,  i.e.,  P    ".P. 

If H is square and nonsingular, a is the inverse of H_, H . 

If the columns of H are linearly independent, like in the overdeter- 

mined model, the pseudoinverse is given by 

+ T     -1    T 
H   ■ <li ü)   Ja (3.4-6) 

If,  on the other hand,  the rows of H are linearly independent,   the 

pseudoinverse will be represented as 

+ T T -1 
H     =   H    »HH   ) (3.4-7) 

A better perspective over the pseudoinverse can be obtained by 

considering some specific cases.    Take, for example, the (1 x 1) 

matrix H, represented tv the value h.   In this case. 

If H is diagonal, 

HT   =   0      if h = 0 

=   l    ifh  O 
h 

(3.4-8) 
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(3.4-9) 

where 

H+   =   diag (h^, h2
+. •.•hM

+) 

hj     =   0       ifh    =   0 

■ -r- If h.  ^ 0 
hi 

(3.4-10) 

(3.4-11) 

K H is a symmetric (M x M) matrix,  it is possible to repre- 

sent it in the following form 

H   =   T D T (3.4-12) 

where T^ is an orthogonal matrix and D is diagonal.    Using (3,4-1), 

H    can be expressed as 

+ 2 2    -1 T 
H      =   lim T (IT + a IJ     DT 

a-* 0 

=   T_ lim(D2 + a2!)'1^ TT 

a -♦ 0 

+     T 
=   TD    T (3.4-13) 

As a result,  the pseudoinverse of a symmetric matrix can be obtainet1 
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by pseudoinverting the diagonal matrix that consists of its eigenvalues. 

If H la nonsingular,  all the eigenvalues are nonzero a^d D    = D     ,   so 

that H    = H"   . 

This result on symmetric matrices leads to spectral repre- 

sentations for the pseudoinverse matrix.    If the columns of T are de- 

noted by t., t_z. ..., iM and the eigenvalues of H by > j, X2, ... , XM 

the matrix H can be represented as 

M 

i=l    1   ^ J 

(3.4-15) 

and the pseudoinverse H   by 

M +     .T 
H     = T   \ Vi 

i = l J 

(3.4-15) 

where X.   has the same meaning as in (3.4-11). 

Two results that will be useful in the analysis of the underde- 

termined model of the restoration process are now stated.    For any 

matrix H, x belongs to the null space of H if and only if 

x   =   d - H H)i (3.4-16) 

for some vector ;£•   For any matrix H,  z belongs to the range of H if 

and only if 
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z   =   HH   u (3.4-17) 

for some vector u. 

For any rectangular matrix H,  the pseudoinverse can be ex 

pressed In terms of pseudoinverses of symmetric square matric 

follows 

es as 

H+   =   (HTH)+HT   ■   HT(HHT) + 
(3.4-18) 

It can be shown that an entirely equivalent way of introducing 

the pseudoinverse exists.    This is the so called Penrose characteri- 

zation [3-3,  page 28].   A matrix H+ is said to be the pseudoinverse 

of a matrix H if and only if the four conditions are satisfied 

HH    and H H are symmetric 

HH+H H 

and +       + + H   HH     =   H 

These results can now be applied to the restoration problem. 

Consider first the no noise case 

X = H.x (3.4-20) 

where x represents the vector of pixel values, H is the blur matrix 

and x is the vector of observed values.    No restriction is placed on the 
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dimension of the blur matrix,  either the overdetermlned or the un- 

derdetermlned models could be involved. 

Consider first the problem of existence of solution.    In order 

for a solution to exist y_ n™8* t>e on R{li)«    By (3.4-17) this occurs if 

and only if y. = ÜU Ü ^or some n.    On the other hand,   since HH    is a 

projection on R(H),  it follows that 

HP.\   =   (HH+)2u   =   HH+u   =   x (3.4-21) 

The condition expressed by the previous equation is the so called con- 

sistency condition for the solution of a linear system. 

At this point it is perhaps useful to point out that,  under no 

noise, for real situations, ^ will always be in R(H) since it was ob- 

tained by blurring an existing picture.    This is why the restoration 

problem is then formulated as searching for the solution of the linear 

system (3.4-20) instead of directly solving for the least squares 

problem. 

Turning now to the problem of uniqueness of the solution,  the 

homogeneous system Hx = £ has to be investigated.    Observe that, 

for any vector v 

x   =   (1- H H)v (3.4-22) 

r is a solution to the homogeneous system since 
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H*   ■   H(i-H+H)v   -   (H-HH+H)v (3.4-23) 

where in the last equality one of the conditions expressed by (3.4-19) 

was used.    Therefore,  if H H ^ L  a nonzero vector can always be 

added to the solution,  without changing the left hand side of system 

(3.4-20).   A necessary and sufficient condition can be expressed by 

H H   =   I (3.4-24) 

this condition being equivalent to the statement that N(H) consists only 

of the zero vector. 

A general solution to tKj linear system (3.4-20) can be ex- 

pressed as 

*   =   H 1   +   (I-H+H)v (3.4-25) 

where v is an arbitrary vector. 

In the case of the over determined system,   the blur matrix H 

has linearly independent columns, H    is expressed by (3.4-6) and the 

condition (3.4-24) is satisfied so that the unique solution is given by 

x   =   H x (3.4-26) 

For the under deter mined model,  condition (3.4-24) is not satisfied 

and there will not be a unique solution to the system of linear 
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equations. 

The vector H x is the minimum norm solution.    This can be 

verified by noticing that the set of vectors given by (I.-H+H)v is ortho- 

gonal to H ^ as shown below 

t(i-H+H)v]T . H^   =   vT(i-JH+H)TH+
x 

(3.4-27) 

vT(I-ü+H)H+x   ■   vT(H+-H+HH+)X   =   0 

where the second equality used the fact that (I.-H+H) is a symmetric 

matrix and the fourth equality was based on one of the relations in 

(3.4-19).    Figure (3.4-1) taken from reference [3-2,  page 63],  shows 

the geometry of the solutions to the linear system in the underdeter- 

mined case,  when N - 2 and the dimension of N(H) is 1. 

Now,  suppose that noise is added to the system so that 

X   =   Zii + H (3.4-28) 

In this case one would search for an estimator x of x under some 

meaningful rtatistical criterion.    In the overdetermined case the best 

linear unbiased estimator (B. L.U.E.) has already been obtained and 

it was shown to be unique.   Suppose,  therefore,  that one is looking 

for a B. L.U.E. estimator in the underdetermined model, where rank 

(H) < N.   Assume that a linear estimator of the form 
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T' 

T = {x|x=H+y+(I-H+H)vfor 

some v} 

S = {x|x = (I-H+H)vfor some v} 

Figure (3.4-1)   The Geometry of the Solutions 
of the Underdetermined System 
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(3.4-29) 

is used,  where U is an (M x N) matrix. 

By imposing the unbiasedness condition,  the following ex- 

pression has to be valid, for any value of x 

Thus,   it follows that 

U   Hx   =  x (3.4-30) 

T 
(3.4-31) 

But if this is true,  the rank ofl^,,  N would be larger than the 

rank of one of its factors (H, with rank < N) which contradicts the 

Sylvester Inequality for the product of matrices.    Therefore,  there is 

no unbiased linear estimator for the vector of pixel values x. 

This fact greatly limits the usefulness of the underdetermined 

model.    This can be viewed from the perspective of being the price 

paid for increasing the number of quadrature nodes above the number 

of observed values.    Because of lack of information an unbiased esti- 

mator for the pixel values cannot be obtained. 

However,   restoration can be attempted according to another 

criterion, namely,  the minimization of the least squares quadratic 

form 
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0{x)   ■   (x-Hx)Y"  (X-HX) (3.4-32) 

where V_ is the covariance matrix of the noise that corrupts the 

picture. 

The set of normal equations is represented by 

T    -1 T    -1 
(H   V     H)S   =   H    V     x (3.4-33) 

By performing the factorization 

-1 T 
V        =   C   C (3.4-34) 

(3.4-33) can be expressed as 

T    T T     T 
(H    C    CH)x   =   H   C    Cv (3.4-35) 

in order to check whether the system is solvable,  the consistency 

condition of equation (3.4-21) would have tobe checked.    Instead of 

T doing this,  a simpler way would be to observe tliat R((CH)   )   = 

R((CH)TCH).    Since HTCTCxis in the range of HTCT   =   (CH)T.   it 

T    T T 
must be in the range of H    C^   C^H = (C H)   C H.    As a result,  it must 

T 
be the image of some x under the transformation (;CH)    C^H.    In other 

words,   the set of normal equations is always consistent. 

Using (3.4-25) the general solution of this system of linear 

equations is given by 
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^^T^^^^ + ^^T^T T^T^^^+^.T^T 
x = (H   C   CH)   H   C   Cx + [l-m.  C   C^i^^CH)^     (3.4-36) 

for an arbitrary vector v. 

Taking into consideration (3.4-18),  the previous expression 

can be reduced to 

x   =   (CH)+Ci:+[l-(CH)+CH]v (3.4-37) 

The solution of the least squares problem is,   therefore,  not 

unique and any vector in the set expressed by the previous equation 

minimizes the quadratic form.   The vector (CH)+Cxis now merely 

the smallest norm solution that grres this minimum value. 

In Figure (3.4-2), taken from reference [3-2,  page 65], the 

geometry of the least squares problem, for the anderdetermined 

model is shown.    The surface of the quadratic form (3.4-32) is in- 

finitely long in the directions of the eigenvectors of H^V'Si = 

T   T 
H   C   CH corresponding to the zero singular va?uej of (CH).    The set 

of solutions given by (3.4-37) is the projection on the x space of the 

bottom of the infinitely long quadratic through.    The K-ellipsoids are 

degenerate,  being infinitely long in the directions, of the mentioned 

eigenvectors.    One of the principal axes of flmae ellipsoids is given 

by the solution set of the least squares problem.    The number of 

dimensions where the ellipsoid is infinite is the dimension of N(H), 
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assuming that V^ is positive definite. 

Suppose now that the experimenter is interested in estimating 

parametric functions of the pixel values,  represented by the inner 

product 

*   -     T 
t   -   C   X (3,4-38) 

A linear combination of the observed pixel valae»; is used to perform 

this estimation 

A rrt 

i   ■  Ä X (3.4-39) 

The requirement of unbiasedness implies that 

T T 
E/u  Y)   =   c  x (3.4-40) 

which in turn leads to 

T T 
u    Hx   =   c   x (3.4-41) 

for any value of at.    Therefore,  the following equality must be valid 

u T-r   ■ (3.4-42) 

At this point the analogy between (3.4-31) and (3.4-42) is clear.    The 

previous equation can be also expressed by stating that there must 

exist a vector u such that 



T 
H   u   =   c (3.4-43) 

In other words,   the vector £ has to be a linear combination of the 

T 
columns of li   ,   a condition that can alpo be expressed by saying 

T 
that £ belongs to R(H   ) or still that 

H He   =   c (3.4-44) 

+ T T 
since H üis a projection .natrix onto R(H   ).    The term K/H^  ) has 

dimension,   say K < N, w"     h will determine the number of linearly 

independent parametric functions of pixel values that e'e estimable. 

T 
The functions £^ x,given by 

(0, ....  1, .... 0)      i   =    1, 2, N (3.4-45) 

form a set of N linearly independent parametric functions that can- 

not all be estimated by an unbiased estimator.    This confirms the 

result that the whole vector of pixel values is inestimable. 

If $ is an estimable parametric function,  it can be proved 

that the estimator  $ is given by 

T + T 
'   £   (CH)   C^   =    £   x (3.4-46) 

where 



wmrm^mmmmmmrmm^^mmi^mmi^mmmim^wm^mmmmmnm'ii^m^ 

(CH) Cy_ 

83 

(3.4-47) 

is the minimum norm solution to the least squares problem.   The 

variance of this estimator is given by 

where 

2 ^ T 
a (§)   =   Ü  Vu (3.4-48) 

T T + (3.4-49) 

As far as confidence intervals and hypothesis testing for para- 

metric functions of pixel values,  the analysis can be carried out in a 

manner analogous to the overdetermined model.    The confidence in- 

terval will be finite for estimable functions and infinite for inestimable 

functions.   Similarly, hypothesis involving estimable functions will 

be testable, while those involving nonestimable functions will be 

nontestable.    (See Appendix A.) 
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4.    CONSTRAINED RESTORATION 

In the previous chapter the restoration problem was solved 

by application of regression techniques.    However,   the experimental 

results will show that the problem can often be ill conditioned.    This 

fact can be expressed by the large variances of the estimators of the 

individual pixel values or linear combinations of them.    On the other 

hand,  these techniques make use of the minimum possible amour t of 

a priori information about the image to be restored.    Pixel values are 

simply regarded as parameters to be determined in a N2 dimensional 

space.    Through the use of some additional a prioii irfcrmation it is 

possible to reduce considerably the uncertainty about the estimators. 

This can be done in several forms. 

4. 1        Analysis of Established Techniques 

The classical Bayesian approach consists of assuming an & 

priori joint probability density on the pixel values to be estimated. 

The problem of estimating these values under a meaningful criterion 

like the mean square error, for any kind of a priori densities can be 

very complex,  involving nonlinear filters.    If only linear operations 

are allowed or if only second moments are known or if both noise and 

pixel vectors are gaussian distributed and any operation is allowed, 

the optimum procedure is the well known Wiener filter. 

84 
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The problem can be formulated by the linear model 

Z   "   Hx + n (4.1-1) 

2        2 2 
where H is an (M    x N ) matrix, _i is the (M    x 1) vector of observed 

2 
pixel values, x is the (N    x 1) vector of pixels to be estimated and n 

2 
is the (M   x 1) noise vector.    The covariance matrices of both n and x 

are known to be respectively,  V and C     ,   assumed to be positive 

definite.    Zero means and uncorrelatedness of signal and noise are 

assumed for simplicity.    It is desired to estimate ihe vector of ran- 

dom variables x by means of a linear operation 

x   =   G^; (4.1-2) 

in such a way that the covariance matrix E f (x-x)   (x-x)) is minimized 

in the sense described in section 3. 1 of chapter 3.    It is well known 

that G can be obtained by imposing the orthogonality principle,  that 

leads to the result 

T T -1 -1 T-1-1T-1 
G   =   C    H   (HC    H     +V)      = (C       +H   V    H)     H   C       (4.1-3) 
■■ —--v—      — —Tnr— ■— —•••-•» —      —      — ■XX- ■xx- •xx 

and the covariance matrix of the estimator is given by 

C    HT(HC    HT + V)'1HC 
—xx— xx—       — XX 

(4.1-4) 

A connection between the Wiener filtering technique and the 

■*&■    ---   
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regression techniques can be drawn.   Assume that both signal and 

noise are uncorrelated,   that is 

V    =   ff    1 (4.1-5) 

and 

c   = tri ~xx — (4.1-6) 

:'umes 
Now suppose that the value of 62 i8 fixed at unity and that ^2 ^ 

progressively lower values approaching zero.    Under these conditions, 

the first expression for G assumes the form 

G   =   Um   HT(HHT + 0
Zi)-1   =H 

+ 

iT-»0 
(4.1-7) 

where equation (3.4-1) has been used.    The same result could be ob- 

tained by fixing the noise level a 2 = 1 and letting the variance of the 

signal,   62.   go to infinity.    In this case the second expression for G 

would be 

G   =   ü m Ti   +   HM-'u' H (4.1-8) 

In either case, the pseudoinverse is obtained when the variance of the 

a priori distribution on the pixel values is much greater than the nois, 

variance.    This corresponds to assuming essentially no a priori 



i w^uninwaHW^^MW —-. —        liliilWI --—_ 

87 

knowledge about the parameters to be estimated, which is exactly 

what the regression techniques do. 

It is interesting at this point to relate expressions (4. 1-7) or 

(4. 1-8) to the method of ridge regression [2-21, 2-22,  and 2-23] or 

Twomey's method [2-19 and 2-20] for the case where the matrix V 

is the identity.    The fact that there is some probabilistic prior infor- 

mation about the vector of pixel values plays the same role in the 

computational procedure as the damping factor V in (2.4-7), for 

example. 

Instead of a probabilistic a priori information one could also 

incorporate deterministic a priori constraints.    These could be de- 

rived,  for example,  from the knowledge of some physical restrictions 

that the solution must satisfy.    The methods described in chapter 2, 

Phillips1,  Twomey's and Tichonov's,  can be regarded as equality 

constrained methods where the constraint expresses some degree of 

smoothness that the solution of the least squares problem must 

possess. 

In the following discussion a framework to understand these 

equality constrained methods will be formulated.    This will not only 

help to get a better understanding of these methods but also will make 

the connection between them and the linear equality and inequality 

methods tobe described later. 

_____^_H^_ 



Wiimii IIMW—WWinii uiiWil.ii   IIKIIWI ^ZJ »^'"^mmmmmmmmmmmmm 

88 

Phillips',   Twomey'e or Tichonov's method can be described 

T as searching for the minimum of a quadratic form x   Cx that ex- 

presses the smoothness requirement,   subject to an equality con- 

straint on the residual vector 

(X-Hx)   (X-Hx)   =   e (4.1-9) 

By imposing this restriction, the stationary point of the Lagrangean 

expression 

F{xf >)   = xTCx  + XCCx-Hx^kr-Hx^e] (4.1-10) 

is searched for.    Taking the derivatives with respect to x and X and 

setting them to zero one obtains 

T~ "   2Cx   +   X[-2HTy + 2HTHx]   =   0 ox (4.1-11) 

— =   (y-Hx)   (y-Hx) -e   =   0 (4.1-12) 

From (4. 1-11) it follows that 

(C + >HTH)x   =   >HTy (4.1-13) 
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or ,  dividing by X,  and solving for x 

x   = (HTH ♦  \ C j       H1 (4.1-14) 

where X is chosen such that (4. 1-9) is satisfied. 

Now consider another problem related to the previous one.    It 

sists of solving the least squares problem, that is.  minimizing the 

of the residual d-Hx). but with the additional restriction of 

satisfying an equality constraint expressed by 

con 

norm 

xTCx   =   d 
(4.1-15) 

In this case the Lagrangean expression is 

G(x.X)   -   (i-Hx^-Hx)   +v[xTCx.dl (4.1-16) 

Setting the derivatives equal to zero, it follows that 

9G 
ax 
— =   2H   x   +   2H   Hx   +  2vCx =   0 (4.1-17) 

aG_ T x   Cx d   =   0 (4.1-18) 

Solving for x from the first equation one obtains 



^^«»■■^i1« HU   i i^mmmmmmmmmm*^ 

T -IT 
x   =   (H   H   +   YC)    H   x 
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(4.1-19) 

A comparison of (4. 1-14) and (4. 1-19) reveals that the two somehow 

inverse problems are solved by the same expression,  the only dif- 

ference being the Lagrange multipliers which are inverse of one 

another.    This can be viewed from a geometrical point of view,  ex- 

pressed by Figure (4. 1-1).    In two-dimensional space,  the contours 

T T 
of constant value of both quadratic forms,   {^.-Hx)   (^-Hx) and x   Cx 

T 
are represented.    The same solution is obtained if x   Cx is minimized 

m TP 
subject to (x-Hx)   (i-Hx)   =   e or if (^-Hx)   (^-Hx) is minimized sub- 

T 
ject to x   Cx   =   d. 

Phillips',  Twomey's and Tichonov's methods can therefore be 

regarded as iterative methods to solve the equality constrained quad- 

ratic minimization problem, with the equality being also expressed by 

a quadratic expression.    For Y = 0,   the solution is equivalent to un- 

constrained estimation; it will exhibit no bias and the covariance 

matrix of the estimator is (HTH)"   .    For a value of Y 5« 0 this will 

correspond to imposing a constraint expressed by some quadratic 

form.    The variance is reduced because the solution is now restricted 

to the contour, but bias is introduced.    When Y tends to infinity,  the 

estimator will be given by the origin of the x-space.    This corres- 

T 
ponds to imposing the quadratic constraint x   0x_, the variance will 

be reduced to zero and the bias will be finite and given by the 

__________^_________ 
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(y-Hx)T(y-Hx) = e 

xTCx = d 

Figure (4. 1-1)   Geometry of the Smoothing 
and Regularization Methods 
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difference between the true solution x and the zero vector. 

A problem that occurs with the smoothing and regularizing 

techniques is that,  even though the variance of the solution can be 

calculated,  the bias is unknown.    It is true,  however,   that,  in prac- 

tice,  it has been observed that there is considerable reduction in 

variance for a small amount of bias.    A possible measure of the 

quality of the estimator would be the mean square error,  computed by 

the square of the norm of the bias plus the sum of the variances of 

the individual components of the estimator.    The fact that the con- 

straint is quadratic makes it difficult to develop any testing procedure 

to verify whether the mean square error is reduced or not by the 

imposition of the constraint. 

4.2        Linear Equality Constraints 

Another possible type of equality constraint that can be im- 

posed over the solution of the restoration problem is the linear equali- 

ty constraint.    This could be derived from some a priori knowledge 

that the analyst has about relations involving linear combination of 

pixel values.   Examples could be the specification of individual pixel 

values,  of ratios of the values of some pixels,  or the sum of part or 

all of the pixels, representing the integral in the discrete form of the 

image as measured by a photocell.   Another alternative would be 
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presented when more than one image of the same object is available. 

In this case,  if the blur functions are supposed tobe known,  the 

specification of blurred pixel values on additional pictures would 

represent linear constraints tobe met.    The value of these con- 

straints will depend on the amount of uncertainty represented by noise 

in the additional images. 

Suppose that the usual overdetermined linear model for res- 

toration is adopted.    The covariance matrix of the noise is V, 

assumed to be positive definite.    The set of linear constraints 

Ax   =   t (4.2-1) 

2 2    ~ 
is imposed, where A is a (P x N ) matrix of rank P < N  , x is the 

constrained estimator,  and t_ is a (P x 1) known vector. 

T   -1 The minimization of (y -Hx)   V    (y-Hx) can be carried out 

using standard Lagrangean techniques.    The optimal estimator will 

be given by [3-1,  page 100] 

x = x + (HT V " ^ '1AT [ A(HT V " ^ ' ^ ] "1 (l-AS) (4.2-2) 

where ft is the unconstrained solution,  expressed by 

T    -1      -1    T    -1 
jc   =   (H   V    H)    H   V    x (4.2-3) 
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and the covariance matrix of the optimal solution is 

vE - (HW
1
 . (HVV^[A^V^AVWy-W1 

(4.2-4) 
T   -1     -1 

V^ - (H   Y    H)      is the (positive definite) covariance matrix of the 

unrestricted estimator.    The second matrix on the expression of 

y~ can be shown to b» nornegative definite with rank P.    Therefore, 

V- is equal to \. minus a nonnegative definite matrix.    As a con- 

sequence,   each diagonal element of V^ is less than or equal to the 

corresponding element of V..    Thus,   there is a reduction in the 

variance of each component of the constrained estimator vector as 

compared to the unconstrained one.    However,   this should not imply 

that the former is necessarily better than the latter.    In fact,   the 

constrained estimator may present bias,   as opposed to the unbiased- 

ness of the unconstrained estimator.    The bias of the constrained 

solution is given by 

x - (HTy"1H)"1AT[AWTV-1H)"1AT][l-Ax] (4.2-5) 

This bias will be zero if and only if the specifications are satisfied 

by the true vector x.  i.e..  if Ax = t.    In this case,  the    set of con- 

straints could be regardea as additional noise free observations.    The 

following result obtained by Theil [4-1,  pages 536-538] foll< lows 
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naturally.    It states that, if the restrictions given by (4. 2-1) are 

satisfied by the true parameter vector x.  then the equality constrained 

estimator x is B. L.U.E. of x in the sense of giving the minimum 

variance among the class of all unbiased estimators that are linear 

in J and_t. 

The reduction of variance comes from the fact that the solu- 

tion x should lie in a smaller dimensional space.    For example,  as an 

extreme case,  if th. linear system (4.2-1) has a unique solution,  the 

variance of the solution will be zero.    However,  there will be bias if 

the true picture is not this solution vector. 

Like in the quadratic equality constrained methods,   the amount 

of bias is unknown, because the true vector of pixel values is not 

accessible.   A measure of the quality of the constrained estimator 

should take into consideration both bias and variance.   A possible 

measure could be given by the mean square error matrix, defined by 

E(x - x)(x - x)T.   The circumstance that the constrains are linear 

opens up the possibility of developing a statistical test procedure to 

verify whether or not there is a reduction in the mean square error 

by the imposition of the constraints.    This is done by testing whether 

T ~ 
or not the hypothesis that the matrix E(* - x)(i - x)     - E(x - x) 

(g - x)T is positive semidefinite is true.    This procedure is due to 

Toro Vizcarrondo and Wallace r4-2].    It makes use of the F-statistic 
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described in chapter 3.    The improvement in the mean square error 

by the introduction of the equality constraint can be expressed by ^e 

fict that the noncentrality parameter X of the test statistic is hss 

than or equal to one-half.    Observe that the test to verify whether or 

not the linear restrictions are true checks whethe • or not this non- 

centrality parameter is zero.    In the M3E test one is not concerned 

whether or not the linear restrictions on the pixel values are true, 

but whether or not the imposition of these constraints represents an 

improvement in MSE.    One proolem that occurs in the application of 

the Toro Vizcarrondo-Wallace test is that the decision regions have 

been tabulated so far for only one linear constraint.    In this case the 

experimenter can always perform the F-test for linear hypothesis, 

which has been tabulated for all degrees of freedom and uses the 

same statistics as the Toro Vizcarrondo-Wallace test.    This will not 

tell whether there is an improvement In mean square error, but 

whether or not the imposed linear restrictions are satisfied by th3 

true parameter vector. 

The choire of the linear constraint to b« imposed should be 

judged by two factors. The first one is the knowledge,   coming from 

a priori considerations,  that the relationship is true or at least ap- 

proximately true so that an excessive bias will not be introduced in 

the answers.    This is important when the linear relationships are 

MlMttltolittMMIIIIiiiMiillfeMbi 
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subject to random error, as is the case when they come from the 

observation of pixel value8 in another blurred and noisy image of the 

same object.    The second factor that the experimenter should have in 

mind is that a linear relationship tends to be more effective in re- 

ducing variance if it is in the direction of smaller axes of the K- 

ellipsoid rather than the larger ones.    This can also be expressed by 

T 
the fact that the vector a   in the linear restriction a^x ■ y p 

' T    -1 
1, 2, .... P should be in the direction of the eigenvectors of H   C    H 

corresponding to the smallest eigenvalues.    These retirements may 

not be very easy to conciliate in practice.    Nevertheless,  the MSE 

test provides a tool to verify whether or not linear equality restric- 

tions should be used in the restoration. 

Nonexact linear constraints involving pixel values can also be 

incorporated in another way,  if the uncertainty can be modeled by a 

random process, with a known covariance matrix.   An example would 

be the use of an additional blurred and noisy image of the same ob- 

ject.    Suppose that the uncertain linear constraints are expressed by 

t   =  Ax + v (4.2-6) 

where the covariance matrix of v is Tand v is assumed to be indepen- 

dent of the n, for simplification.    The combination of the sample infor- 

mation expressed by (4. 1-1) and a priori information given by (4. 2-5) 
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can be accomplished through the model 

_       _ -1 •n 

X 
■ 

H 
* + 

n 

t A V 

Under this model,  the estimator |is given by (using (5.2-3)) 

x   - 

The covariance matrix of the new estimator is easily obtained as 

T   -1 T   -1   .-1 
CX    =   (H   Y    H   +  A   T    A) 
— x 

(4.2-8) 

This technique of incorporating random linear constraints in 

regression is known in econometrics as mixed estimation [4-3 and 

4-4].    The connection between this procedure and the Bayesian ap- 

proach is strong.   In fact,  suppose that 1 = 0 and A = I,    This is 

equivalent to stating that the vector of pixel values has an priori dis- 

tribution with zero mean and covariance matrix V.    Under these con- 

ditions,  expression (4.2-7) reduces to 
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(4.2-9) 

wUch is the familiar result of the Wiener filter. 

Observe at this point that Ihe linear constrained or mixed 

estimator procedures can make use of Fourier techniques if the 

matrices V and T are of the form Aand H and A represent convo- 

lution operations.    This would be the case when the constraints are 

represented by an additional picture and the blur in the observed 

Picture as well as in the additional picture is space invariant and in 

both pictures the noise is white. 

The extension of the mixed estimation technique to multi- 

exposure of the same object for more than two pictures is straight- 

forward.    Given K independent observations 

Ifc   =  H.X+, (4.2-10) 

with the covariance matrix of n   being V. the B.L.U.E. estimator 

x is obtained as 

K      T     -1        ^"1 

(J ^T *! *•) 
and the covariance matrix of the estimator is 

(4.2-11) 
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C   =(     S   Uk   ^^ Sv   i (4.2-12) 

So far the discussion on linear constraints has been restricted 

to the overdetermined model for image restoration.    When the blur 

matrix H has any rank,  the analysis of the equality constrained least 

squares problem can be carried out by the following procedure. 

Assuming that the vector t^ in (4. 2-1) is in the range of A,  the general 

solution of this equation is expressed by 

x     ■   A+_t   +   (I - A+A)u (4.2-13) 

for some vector u. Observe that the system (4. 2-1) should be vmder- 

determined if the equality constraints do not involve any randomness, 

otherwise these restrictions would determine the solution by them- 

selves,  irrespective of what the observed blurred values are.    Under 

white noise,  the solution minimizes the norm of the vector (X"Hx) 

over the set expressed by (4.2-13).    Therefore,  the problem has been 

transferred to 

min||x-Hu|| (4.2-14) 
u 

where 
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(4.2-15) 

(4.2-16) 

The general solution of (4.2-14) is given by 

u     =   H+x +   (L-HH+)z (4.2-17) 

for some vector z.   Substituting this value of u   into expression — " —o 

(4.2-13),  the solution for x is obtained as 

A+l +   (1-A+A)   I H4^ + (l-HH+)zJ       (4.2- 18) 

By observing that 

— +        —T T f 
H     =   H    (HH   ) (4.2-19) 

and also that 

+    2 + +    T 
(I-A A)     =   (1-A A)   =   (I-A A) (4.2-20) 

which comes from the fact that (I.-A A) is a projection matrix (onto 

N(A)),  equality (4.2-18) can be expressed as 

x Ai + g4! + (I-^äML-S^SJI (4.2-21) 

..■.^.. ^....^ 
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for some vector z.    In analogy with the unconstrained case,   it can 

be shown r3-3,  page 32] that 

x   =  A+_t   +  H+x (4.2-22) 

is the minimum norm solution. 

Expression (4.2-18) (or (4.2-21)) gives the general form of 

any solution to the linear constrained restoration problem.    This 

solution will be unique if and only if (i-H^H) is the zero matrix or, 

equivalently,  if and only if the null space of H,   N(H),is the zero vector. 

The constraints substitute the matrix H for the matrix H for the de- 

termination of the uniqueness of the solution.    By the definition 

(4.2-16) and by the observation that (I-A+A) projects any vector 

onto N(A),  this necessary and sufficient condition can also be expr« 

sed by the condition 

•es- 

N(H) n N(A)   =   0 (4.2-23) 

where 0 is the zero vector.    This can also be viewed from another 

perspective:   one can always add a vector lying anywhere on N(H) to 

the solution of the unconstrained restoration proMem and a vector 

lying anywhere on N(A) tc the solution of the linear system of equalily 

constraints.    When the two systems are solved together,  the solution 

will clearly be unique if their intersection contains a single vector, 
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which is necessarily the zero vector.    Therefore,  the use of linear 

equality constraints can transform the nonunique solution of the 

underdetermined restoration problem into a unique solution if the 

constraints compensate for tue lack of information of the sample. 

This transforms the nonestimable vector xinto an estimable one 

The imposition of linear equality constraints may still not 

guarantee the uniqueness and estimability of the solution vector if 

condition (4. 2-23) is not satisfied.    Nevertheless,  the constraints 

may transform previously inestimable parametric functions of pixel 

values into estimable functions.    In fact,  in the unconstrained case, 

the only estimable functions c   x were those such that the vector c 

was orthogonal to N(H).    WiM  the equality constraints the set of esti. 

mable functions comprises all those such that c is orthogonal to the 

intersection of N(H) and N(A).    The latter set clearly contains the 

former one. 

jar com- 

4. 3        Inequality Constraints 

In the last section the a priori knowledge involving line.- 

binations of pixel values was analyzed and used in the restoration of 

blurred images corrupted by noise.    However,  quite often the ex- 

perimenter has a priori information in the form of inequality con- 

straints involving the pixel values.    This is particularly true in 

image processing.    In fact,  the physics of image formation determine 
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that pixel values should be nonnegative quantities.    Furthermore,  an 

upper bound on these values is often known,   as is the case when the 

images are digitized and a finite number of bits is assigned to each 

pixel.    The analyst may also want to combine equality and inequality 

constraints in the restoration model.    It will be shown in the following 

that if these constraint.? are linear and if a squared error is used as 

a criterion,  a tractable mathematical model is developed,  leading to 

considerably improved restoration results. 

Suppose that the linear model 

i   "   H* + n (4.3-1) 

is adopted for the blurring process and the corruption by noise.   As 

before, H is an (M   x N ) matrix and^, x and n are vectors with com- 

2 
patible dimensions.    Th ; rank of the H matrix is R.    If R - N    or 

R < N2,  the model will be overdeter mined or under deter mined, 

respectively.    The covariance matrix of the noise will be assumed to 

be V.    The constraints will be expressed by 

Ax   =   t (4.3-2) 

and 

0 < x < u (4.3-3) 
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2 2 
where A is an (S x N ) matrix of rank S < N  . 

Under the least squares criterion the objective function to be 

minimized is given by 

(X-Hx)T V^^y-Hx) (4.3-4) 

The minimization of (4. 3-4) subject to the constraints (4.3-2) and 

(4. 3-3) may also be obtained if the vector x is supposed to be random, 

with a uniform distribution in the region defined by the constraints, 

and gaussian noise corrupts the image.   Under the rraximum a 

posteriori (MAP) estimation criterion (or maximum likelihood,   since 

p(x) is a constant in the interval),  one looks for the vector x such that 

P(X|Y;) S p(x|x) ^or any x«   Using the fact that the logarithm is a mono- 

tonic increasing function and also the gaussian assumption on the noise 

it is equivalent to maximize the function 

log p(x|i)   = log p(x)   -   -   (£-Hx)V"  (i-Hx) - log p(x) 

Since p(x) is constant within the constraints, the maximization of 

log p(x|y) leads to the minimization of the quadratic form (4. 3-4) 

subject to the linear constraints (4. 3-2) and (4. 3-3). 

In order to obtain the quadratic programming problem in 

standard form,   some manipuJation is necessary.    Define a slack 
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(liH    I- a (4.3-5) 

Also,  introduce a new matrix B,   defined by the expression 

A    0\     /x 

or 

where 

I      I s /        \ u 

* 
Bx     = v 

u 

* 
If a matrix H    is defined as 

(4.3-7) 

(4.3-8) 

H     =   (H   0) 

The linear model for restoration can then be expressed as 

(4.3-9) 
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^_   =   H    x     +    n (4.3-10) 

And the objective function of the least squares is 

*    « T     -1 *    * 
(X-IT    2t )     Y    (x-H    x ) 

subject to the constraints 

(4.3-11) 

Bx     =   v (4.3-12) 

and 

* x     ^   0 (4.3-13) 

The previous equations express the standard form of a quadratic 

programming problem, namely, the minimization of a quadratic form 

subject to linear constraints on the variables. 

The necessary and sufficient condition that the solution of such 

a problem satisfies is expressed by the Kuhn Tucker Theorem [4-5, 

page 233].    In the particular situation of a quadratic objective func- 

tion, this theorem can be expressed by the following conditions 

a) x* is feasible,  that is equations (4.3-12) and (4.3-13) hold, 

b) there exist vectors u > 0 and w such that 

ZH'VW   . u ♦ B*Tw  - 2B*Vll   =   0      (4.3-14) 
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c)   the vector u and the optimal solution are such that 

T  * 
u   x      =0 (4.3-15) 

The Kuhn Tucker conditions for quadratic programming require the 

* 
existence of vectors x  .  u,  and w satisfying linear equalities and in- 

equalities plus the additional condition that u   x    = 0.    This suggests 

the use of a method very similar to the one that verifies the existence 

of a feasible solution to initialize the simplex method in linear pro- 

T  * 
gramming.    The condition u   x    = 0 is nonlinear,  however,  and re- 

quires a modification of the usual procedure. 

This is the basis of the algorithms for quadratic programming 

that rely on the simplex method for linear programming.    Two of the 

main procedures are Wolfe's [4-6] and Dantzig's [4-7] algorithms. 

The former has two versions, a short form and a long form.    The 

first one is capable of handling only positive definite quadratic forms 

(which occurs when the model is over determined), but the second one 

can also deal with positive definite forms (for the under deter mined 

case).    There are several other algorithms available for quadratic 

programming problems [4-8] .    In recent years a research effort has 

been unde:r way towards developing numerically stable methods [4-9, 

4-10,  4-11,  and 4-12] to solve this important problem. 

The method developed so far to Boh e the linear inequality 
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constrained restoration problem w? g directed toward the estimation 

of the image itself.    Quite often one w.uld be interested in estimating 

parametric functions of pixel values.    If this is the case,   a reformu- 

lation of the problem is convenient.    This will lead to the calculation 

of confidence intervals for the constrained problem. 

In chapter 3,  the computation of the confidence intervals was 

made by considering the K-ellipsoids and the support planes ortho- 

gonal to the vector £ that wa? used to calculate the parametric func- 

tion ex.    In the overdetermined model,  if the vector c_ is parallel to 

some axis of the ellipsoid corresponding to a large eigenvalue of 

T   -1 
H   V    H,  the confidence interval would be small compared to the case 

when £ is parallel to an axis corresponding to a small eigenvalue.    In 

T    -1 
the under deter mined model some eigenvalues of H   V    H are zero and 

the confidence interval for some parametric functions is infinite, 

which corresponds to the fact that these functions are inestimable. 

The a priori knowledge involving ine^aality constraints may 

change this situation considerably.    The restrictions j) < x <u may 

bound the elongated (in the ill conditioned case/ or degenerate (in the 

underdetermined case) ellipsoids, reducing the confidence interval in 

the former case and transforming inestimable functions into esti- 

mable functions in the latter one.    It is also clear that the estimation 

of the vector x of pixel values may be improved, with the bounding of 

the ellipsoids by the hyperplanes.    The ill conditioning and the 
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underdeterminacy problems may be solved,   at least from the sta- 

tistical point of view, with the use of linear inequality constraints. 

In order to compute the confidence intervals for the inequality 

constrained case,  it is necessary to introduce the idea of a confidence 

ellipsoid for a multidimensional distribution.    The assumption of 

gaussian noise will be made throughout the discussion. 

For a given estimator xof x,  the 100. a % confidence interval 

of x is the ellipsoid in the x-space with center in xand given by the 

expression 

(x-^THTy"1H(x-x) (4.3-16) 

where Y   is selected such that 

Pr   {(X-X^HV^X-X)   ^Y2} = a (4.3-17) 

The value of y   can be computed by observing that the quadratic form 

in (4. 3-17) is distributed according to a X   -distribution with r de- 

grees of freedom, where r is the rank of the blur matrix H.    This 

means that [3-2] 

a ■ J    Lr(p /2V* /2J"" 0 exP(- ^'! .r/2   -1    r/2-1 
(4.3-18) 

I 

where T{>) is the gamma function defined by 
00 

r(p) ■ Ly^V^dy (4.3-19) 
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Now,   suppose that the constraint x ^ 0 is imposed on the estimator. 

This means that,  with probability one,  x will be in the positive quad- 

rant.    Without this constraint,  x is guaranteed to be in the Y - ellip- 

soid a% of the time.    Therefore,  with the imposition of the constraint, 

the estimator x will be in the intersection of the Y - ellipsoid and the 

positive quadrant 100. a % of the time. 

T 
Consider now the parametric function £  x and the planes ob- 

tained by setting this function equal to a given constant.    There are 

two support planes of the region mentioned in the previous Paragraph. 

Figure (4.3-1) taken from [3-2,  page 203],  illustrates the assertion 

for the case where the vector x has two components.    The two support 

planes will be denoted by 

S.= {x|cTx   =   «'} (4.3-20) 

(4.3-21) 

x is guaranteed to lie between S    and S    with a probability of 1000-%. 

■      0E ,   (^     is a 1000.% confidence interval for 0. The interval I  (0) 
Y 

The interval I {$) can also be expressed as 

_____ 
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E^) = {x|(x^)THTC-,H(x-^) 

s~*{*kh *<!>'} 

Figure (4.3-1)   Support Planes for the Ine 
Constrained Restorati 

quality 
on 
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yij = min   {£Tx|(l-i)THTl*^i(»-4)    ^ v2 }   . 
x>0 

max   {cTx| (x-^Vv^HCx x)   ^   Y2 ) 
x>0    l 

(4.3-22) 

or as 

V«) = min  { c.Tx I (i-Hx)TY"1 (^-Hx) <. r    + V 2 I 
x>0 0 

max  icTxl{x-Hx)Tv"1(x-Hx) < r    + yZ ] 
x>0 

(4.3-23) 

where r    is the minimum value assumtd by the quadratic residual 

expression. 

Since the minimum or the tr.jximum of the linear function can 

occur only at the boundary of the ellipsoid,  the expression for the 

confidence interval can also be written as 

y*)   = min  (c Tx | (x-Hx)TV "1 (x-Hx) 

.T-.-1 

^ + v2}, 

max |c   x | (x-Hx)   V"  (x-Hx)   =   r    + Y2 | 
x >0 

(4.3-24) 

As pointed out by Rust and Burrus [3-2,   page  168],   the two 

optimization problems that define the confidence interval can be for- 

____^^_^_________ 
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mulated in a somehow dual way by making the following observatioi-«: 

the end points of the confidence interval are the points at which the 

two support planes make contact with the lowest level contours in the 

positive orthant.    Figure (4.3-2) illustrates this point. 

The inverted problems have the form 

ro + Y2 = min    {(x-Hx^V"1^-Hx)I cTx = 0^ j 
x> 0 

x>0 

(4.3-25) 

ro + Y2=min    {(^-Hx^V-1^-Hx)| cTx = ^U ] (4.3-26) 

This formulation now leads to quadratic programming problems, with 

the role of the constraints and the objective function reversed. 

The calculation of the confidence interval is facilitated by the 

construction of a curve expressed by 

r(^)=min   {(^-Hx^V'^-HxMc^x = 0   ] 
x>0 

(4.3-27) 

Figure (4.3-3) illustrates the curve given by (4.3-27), for fhe case of 

Figure (4. 3-2).    The bottom of the curve is in parabolic form,   show- 

2 
ing that for small values of y    the inequality constraints   »re not 

2 
being inforeed.    When y    increases, however,  these constraints 

start becoming effective and the curve riser steeper than the para- 
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Figure (4. 3-2)   The Determination of Contact Points 
for Confidence Intervals 
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for Linear Inequality Constrained Restoration 
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2 2 
bola.    For a given value of Y    given by the tables of X    distribution, 

the value !*(#) ■ r    + Y   determines two values on the abscissa of 
o 

Figure {4. 3-3),   t1 and ^U ,  that are the extremes the confidence in- 

terval for this parametric function of pixel valuss.    The construction 

of the curve can be accomplished by the procedure of imposing sim- 

ultaneously the inequality constraint x >0 and the equality constraint 

c   x = 0 for several values of 0. 

An observation should be made at this point.    The uncon- 

strained confidence intervals,  developed in chapter 3,  and making use 

of «he K-ellipsoids,  are optimum in the sense of giving the shortest 

possible c..nfidence interval for a given confidence level.    No claim 

of optimality is made for the constrained confidence intervals using 

quadratic programming and based on the Y -ellipsoids.    In fact,  they 

may be very pessimistic, partic- larly for large rank of the blur 

matrix H, when the ratio Y /K becomes large.    Further research is 

needed in order to ^btair tighter intervals. 

It should be remarked that if the Y -ellipsoid is centered out- 

side the inequality constraints,  the computation of the confidence 

intervals for small levels of confidence may not be possible.    In this 

case one possible solution consists of replacing the constraint 

«v 

(X-Hx^V'^-Hx)   =   r      +   Y2 (4.3-28) 



' 
""ll1' " 

by 

where 

T    -1 
(^-Hx)   V     (y-Hx)   =   r1    +   v2 

o 
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(4.3-29) 

x>0 - o (4.3-30) 

In the preceding discussion of confidence intervals the assump- 

tion of gaussian noise has been made.    As a consequence,  the Y-ellip- 

soids contain a given percentage of this multidimensional distribution. 

An entirely similar analysis can be carried out when these ellipsoids 

contain the whole set of possible values for the estimator.    This would 

be the case when the noise is distributed in some fashion,  uniformly 

or not.  within the bounds of an ellipsoid.    In this case,   the computed 

intervals give the minimum and maximum values that a parametric 

function can assume, with probability one.    This bounded distribution 

does not have to be restricted to the ellipsoid shape.    Suppose that the 

noise components satisfy the linear constraint 

M 
E   N 

s. i=l 
^  a (4.3-31) 
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where s   are positive quantities.    This equation defines the shape of 

a diamond in a higher dimensional space.    In analogy to expression 

(4. 3-24),  the lower and upper bounds of the inequality restricted con- 

fidence interval are given by 

(?    = min   "I c.  x 
x>0 

it     llY-Hx^j 2 

i=i 
"2} (4.3-32) 

and 

V    = max   ]£  x 
x>0 i=l 

"2} (4.3-33) 

The two previous equations clearly define linear programming prob- 

lems,  namely,   the minimization (or maximization) of a linear function 

subject to linear constraints. 

Another type of bounded distribution that leads to linear pro- 

gramming is the rectangular distribution,  defined by 

max 'IM 
*    U (4.3-34) 

l<i<M 

The confidence interval will be given by 
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0   ■ min   -Ic   x j 
x>0 

max 

l<j<ivl 
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u2} (4.3-36) 

With some manipulation it is possible to make it clear [3-5,  page 981 

that the problems defined above are linear programming problems. 

In fact,  equation (4. 3-34) is equivalent to the statement that 

l-il 2 2 
-—   ^  u i = 1, 2, ... , M (4.3-37) 

or, by making u    equal to unity 

"8i      *    (X-H*^   «   sj i=l, 2. ...,M' 

This can be expressed as 

(Hx).    ^   Yj   +   Sj 

and 

(4.3-38) 

(4.3-39) 

•(Hx).    *   -y.   +   s. 
i i i (4.3-40) 

or,  in matrix form 

Hx   ^ X   +   Ji (4.3-41) 

and 

-Hx   5  -v   + Y_  +   B. (4.3-42) 
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t T 
where ^    =   (s,, s   , ....   s      )   . 

2        2 
Defining A to be a 2M   x N    matrix expressed by 

A   = 
H 

-H 
(4.3-43) 

and J? the 2M   x 1 vector 

I   = 
-X -■-I 

(4.3-44) 

The previous inequalities are expressed as 

Ax    ^    i 

so that the confidence interval can be given by 

min   -je,  x I Ax  ^ .£   f 
x>0 ~  * 

and 

(4.3-45) 

(4.3-46) 

tf     =   max    \c   x I Ax ^ 1 | 
x > 0 

(4.3-47) 

The last two expressions are clearly linear programming formula- 

tions. 
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Linear programming is also used in two other possible for- 

mulations of the restoration problem,  for the calculation of the opti- 

mal estimator x_,  instead    f linear functionals.as in the previous 

derivation.    As the first example,   suppose that the noise components 

are independent and identically distributed according to an exponen- 

tial distribution 

P^)   =   |   exp   {-jn^} (4.3-48) 

Assuming the vector x to be random and uniformly distributed 

within the constrain* s expressed by (4. 3-2) and (4. 3-3) and adopting 

either the criterion of MAP estimation or maximum likelihood,  the 

following expression is to be minimized 

Q(x)   = 
M 

i-1       1 ^ 
(4.3-49) 

Observe that the same objective function would have been obtained 

through the criterion of estimation by least sum of absolute deviations 

under linear equality and inequality constraints. 

This problem can be formulated in terms of linear program- 

ming by observing [4-13] that the objective function can be expressed 

as 



M v 

i=l    V   1 2/ 
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(4.3-50) 

such that 

and 

(Hxh    "   Vj   =   e,      -   C. i   =    1, 2, ...,M2 (4.3-51) 
2 Xl 

e,    '   e       SO i   =    1, 2. .... M' (4.3-52) 

As a second example of the use of linear programming in re- 

gression analysis,   suppose that the objective is to minimize the maxi- 

mum absolute derivation in the regression model (Chebyschev cri- 

terion).    Then one seeks 

min (max j y     -   (Hx)    I) 

-      l<i<M2 

(4.3-53) 

The reduction to a linear programming structure [4-13] can be done 

by expressing the previous objective function as 

min G (4.3-54) 

such that 

-^ 



I 

124 

-e   * y.    -   (Hx^   ^   e i   =   1, 2. .... M (4.3-55) 

The use of inequality constraints in image restoration also allows for 

the incorporation of a priori knowledge concerning the variation of 

the function that defines the original picture.    This can be done by a 

change of variables 1*3-2, pages 112-115 and 190-193] .    Consider the 

one-dimensional case first.    If the solution is known to be monotoni- 

cally increasing and positive,   this can be imposed by expressing it 

in terms of an integral of a positive function with a positive initial 

condition.    In discrete form,  this corresponds to the change of vari- 

ables 

x   =   Rc[,     ä   2   0 (4.3-56) 

and R in lower triangular form 

t 

R = 

1     0     .      .      .      0 

1     .      .      .      0 

(4.3-57) 

If the solution is increasing, but not necessarily positive,  the initial 

condition can assume any value,   so it can be expressed by a difference 

of two positive quantities.    In this case the matrix R takes the form 



R = 

1-10     0 

1-110 

• •       •       • 

• •        •        • 

• •        •        • 

1-111 .    1 
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(4.3-58) 

If the function is known to be positive and convex, it is enough 

to express it as a doubJe integral of a positive function with a positive 

initial condition.    In r.iatrix form this is done by expressing 

x   =   R£        3. ^ 0. (4.3-60) 

where 

R   =   ST (4.3-61) 

where S and T are matrices with the form expressed by (4. 3-57). 

If the solution is positive and known to possess some degree 

of smoothness,   this can be subjectively incorporated by expressing 

x as a positive linear combination of N   vectors that have positive 

components,  are linearly independent and have some smooth variation 

in their components.   Reference [3-2,  page 114] suggests the use of 

vectors whose components form a triangular function and are shifted 

from vector to vector. 
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The application of these techniques to the two-dimensional 

problems that occur in image processing is easily accomplished by 

the use of vector notation.    If the experimenter feels that the varia- 

tion of some row or some column in the picture has one of the prop- 

erties described in the preceding paragraphs,   this can be done by 

substituting the variables corresponding to the row or column by the 

appropriate transformation.    The matrix R will be diagonal with 

elements equal to one everywhere in the diagonal except in the ele- 

ments that are transformed.    Once this is done,  both the mathe- 

matical programming problems of restoring the image itself or cal- 

culating approximate confidence intervals for parametric functions 

can be solved in terms of the new vector £.  with a new blur matrix 

H1 = H .  R .    When the problem is solved in terms of £,  the trans- 

formation x = Ra is used to obtain the desired solution. 

The discussion on inequality constrained restoration will now 

be concentrated on the problem of the calculation of the sampling dis- 

tribution of the estimators.    The Imposition of inequality constraints 

affects considerably that distribution.    While in the unconstrained or 

linear equality constrained restoration,  under the gaussian hypothe- 

sis,  the estimators would still be normally distributed,  in the case of 

inequality constraints,  the distribution is of the mixed type,   partly 

continuous,  inside the permissible region and partly discrete,  at the 
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boundary of this area.    The situation is exemplified by Figure 

(4.3-4),   obtained from reference [3-6,   page 354] ,  for the one- 

dimensional case.    In case a) the true parameter x    satisfies the 
o 

constraint x ;> 0.    There is a positive bias since the distribution of 

the estimator is moved to the right by the constraint.    Howe/er,  if 

the mean square error is computed,   taking into account both bias and 

variance,   there is an improvement, because that distribution trnds 

to be more concentrated around the true value.    Case b) shows the 

opposite situation.    The constraint x > 0 is invalid,   that is,  the true 

(and unknown) parameter x    is negative.    The bias is still positive 

but there will be an improvement in the mean square error only if 

xo is not too far from 0.    If this is the situation,  the probability mass 

concentrated at 0 will contribute less for the mean square error 

than the part of the distribution for negative values of x.    Zellner 

r4-14 and 4-151 calculated the moments of this mixed distribution in 

the one-dimensional,  gaussian case.    His conclusions can be sum- 

marized in the table below that gives the mean square error of the 

constrained estimator expressed as a fraction of the mean square 

error of the unconstrained estimator.    The entry 
x   -n 

measures 

the distance between the trie parameter x    and the value a that de- 
o 

termines that constraint x ^ a as a fraction of the standard deviation 

ry of the unconstrained estimator. 

Mbta 
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0    x 0 

(a) 

/ 

x0    0 

(b) 

Figure (4.3-4)   Distribution of the Inequality 
Constrained Estimators for the 

One-Dimensional Case 
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x -a  - o      3 2.5 1.5 0.5 •0.5 1.0 1.5 •2.0 -2.5 •3. 0 

1.0 0.990.96 0,89 0.760.590.50 0.66 1.242.36 4.04 6.26 9.0 

The constrained estimator is seen to be superior to the unconstrained 

even if the true parameter slightly violates the constraints.    In the 

referred papers,   Zellner also studied the distribution of a flexible 

bound procedure in which the estimator is given by a linear convex 

combination of the unconstrained and constrained estimators,   re- 

flecting the lack of absolute confidence of the analyst in the imposed 

bounds. 

When the dimensionality of the problem is greater than one, 

the difficulties in computing the sampling distribution or even the first 

two moments increase considerably.   Hocking [4-16] has obtained 

closed form solutions for the case where the constraints are de- 

scribed by a single,   smooth,  convex surface.    Some Monte Carlo 

experiments involving small dimensionality have been reported by 

Lee,  Judge and Zellner [4-17] in the estimation of transition prob- 

abilities of a Markov probability model. 

In the context of image processing,  the large dimensionality 

of the problem makes any attempt to calculate the sampling distri- 

bution of the constrained estimator extremely difficult.    However,  the 

___ 
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confidence of the experimenter in the imposition of the constraints 

is very high,  at least for the lower bound x ^.2.»  due to the fact that 

they come from physical laws governing the process of image for- 

mation.    As a result,  by extending Zcllner's conclusions to a higher 

dimensional space,   there should be considerable reduction in mean 

square error through the use of these restrictions. 



5.    EXPERIMENTAL RESULTS 

WITH UNCONSTRAINED RESTORATION 

In this chapter the experimental results obtained with com- 

puter simulation studies of digital image restoration are described. 

In order to expose the most salient features of the statistical and 

numerical problems found in the restoration under a regression 

model,  a simplified artificial picture has been generated.    The pic- 

ture consists of an 8 x 8 pixel image,  containing a bright square of 

value 245 on a constant background of value 10 over a 0 to 255 scale. 

Figure (5-1) displays this picture used as the object of blurring and 

addition of noise in the simulation experiments. 

For the purpose of displaying pictorial information,   two 

operations had to be performed in the pictures obtained in these ex- 

periments.    First,  the images were blown up to the size of 256 x 

256.    This explains the checkerboard pattern that results.    Second,   a 

redistribution of the pixel values is necessary.    This redistribution 

consists of clipping the results to the 0-255 scale.    In some instances 

the restored values will be far from this interval and in order to make 

a meaningful judgment,   a display of the actual numerical results will 

be made.    The objective of the experiments was to investigate,  in the 

context of image restoration,  the usefulness of the regression model 

131 
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Figure (5-1)    Original Pi; ture Used 

in the Computer Simulation Studies 
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developed in chapter 3 when no additional constraint is impcjed in 

the restored values. 

The overdetermined model is studied first,  followed by the 

underdetermined one.    The computation of confidence intervals of 

some parametric functions is performed and,   finally,  a few results 

concerning the testing of hypothesis is preaented. 

5. 1        Restoration for the Overdetermined Model 

Experiments with the overdetermined model simulated the 

following real problem.    The blurred and noisy image of an object 

of finite extent (e.^.,   the moon on a dark background) is available. 

As pointed out before,   the use of digital processing requires that 

this blurred image be sampled at a finite number of points.    Further- 

more,  !:he original image has to be estimated based also on a finite 

number of points that are the nodes of the quadrature integration. 

The experiments represent the situation in which the analyst decides 

to place those nodes at equally spaced points on a rectangular grid 

over the finite object,   taking into account the several factors dis- 

cussed in section 2. 3.    The 8x8 original picture of Figure (5-1) 

represents the original object as if it were available at thyse quad- 

rature nodes.    The blurred image is assumed to be sampled at points 

separated by the same distance as the nodes of quadrature.    There 

are more sampling points than nodes,  covering a blurred picture that 
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is larger in extern than the original.    Some of the sampling points 

coincide with the quadrature nodes.    The blurred picture is still of 

finite extent, which implies a point spread function of finite support. 

This represents an approximation to the real case,   obtained by trun- 

cation of the kernel.    In the experiment tne support was taken as a 

multiple of the sampling distance and the kernel was assumed to be 

zero bpyond two times this distance.    The full extent of the blurred 

picture was assumed available.    Under these conditions,  the original 

8x8 object was blurred into a 12 x 12 image.    Using the notation of 

equation (2. 3-4) the following conditions describe the experiments 

I   =   J   =   N   =   8 

K    =   L  =   M   =    12 
(5.1-1) 

Figure (5. 1-1) describes the data arrays involved.    In that figure a 

translation of the enumeration of the original picture was done.    The 

values of ?   and n   were made to run from ^__ + ij to \__j 

Under these conditions,  the truncation of the impulse response is 

described by 

^Wßj'V ■0 (5.1-2) 

or 
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(1,1) 

ORIGINAL   PICTURE 

(I.M) 
t/M^ + |)M^y" ^       (M|N+i>M±N) 

IMPULSE 
RESPONSE 
ARRAY 

(^.^l) 

(M.I) 

/M+N Vl+N\ 
V 2   '  2   y 

(M.M) 

BLURRED  PICTURE 

Figure (5.1-1)   The Data Arrays 
in the Over deter mined Model 
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or 

IF    . „    I   ^   M-N    .    L-1 

By using the techniques described in section 2.3. a. trans- 

formation of the two dimensional arrays into vector form is done. 

It results a model described by the equation 

^   =   Bx   +  n (5.1-3) 

where 

i   =   (M   x 1) vector 

B  =   (M2 x N2) matrix 
2 

x   =   (N   x 1) vector 
2 

n   =   (M   x 1) vector 

The description of the simulation experiments leads to the 

following structure for the matrix B.    First partition B in submat- 

rlces B^ . of size (M x N),   as shown In Figure (5. 1-2).    Then each 

matrix Bj^ is composed by a similar structure,  as described by 

Figure (5. 1-3).    Observe that the matrix B has considerable structure 

being very sparse.    It is composed of a nonzero diagonal band of sub- 

matricÄs which, in turn,  contain a nonzero diagonal band of elements. 
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B   = 

B 
\ 
B, 

-2,1        -ZKZ 

\ 

\ 

\ 

s^L.l      *L.2 
\ 

\ 

\ 

\ -L + l, 2 
\ 

\ 

\ 

\ 

-N, N 

\ 

\ 

\ 

•      •      • V B 

\ 
M,N 

Figure (5. 1-2)   Partition of the Blur Matrix B 

in the Overdetermined Model 
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\ 
0 

\ 

\ 

b        > 
N.N N 

\ 

\ 

\ 

\ 
0    vb 

\ M, N 

\ 

Figure (5.1-3)   Composition of the Submatrices B 

in the Overdetermined Model 

"V n2 
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In a real experiment the matrix 13 should involve both the 

quadrature weights and the kernel of the point spread function.    The 

weights depend,  however,   on the type of quadrature expression that 

is used.    In order to circumvent this problem a simplification was 

made:   all weights were assumed to be equal to one.    Therefore,   the 

entries of the blur matrix depend only on the point spread function. 

If the impulse response is space invariant,   then 

h{<v WV = h(VfVVV (5.1-4) 

Consequently,   the columns of the submatrices of B^ are shifted ver- 

sions of the first column and the same pattern occurs for each sub- 

matrix.    Suppose,  furthermore,  that the impulse response matrix H 

is in separable form,  that is,  h(a      LiP.,r\) is expressed by the 

product 

Moj.^ ; ^.Tj|) = hi(ai; Pj) • h2(§k : ^     (5-1-5) 

Then it can be shown that the blur matrix 13 is given by 

B    =13    £) B„ (5.1-6) 

where B^ and B^ are given by matrices of the type described by 

Figure (5. 1-4) and(x) de note s the Kronecker product. 

Two expressions for the llur have been used.    The first one 
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\ 

N) 

\ 
bv(l) 

\ 

\ 

\ 

0    ^y(L) 

\ 

Figure (5. 1-4)   Unidimensional Blur Matrix 
in the Separable,  Space Invariant Case, 

Overdetermined Model 
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simulates the effect of atmospheric turbulence over a long exposure. 

The blur function is given by 

Ma.. 5k 5 ßj. T)e) = exp.   { -     — 
(a,  -ßJ2        CCw-^J2 

+ k    'I 

H 
1 

(5.1-7) 

where the coefficients b    and b    control the amount of blur imposed 

on the vertical and horizontal directions,   respectively.    The expo- 

nent 5/6 of expression (2. 1-5) was approximated by unity.    The 

second blur function,  also space invariant and in separable form, 

simulates the effect of a diffraction limited optical system as given 

by 

^wvv sin 
», - K 

^ 

sin\ 
k-l 

'H 

V^ 
H 

(5.1-8) 

Both blur functions are truncated to dimension L x L.    Once the pic- 

ture is blurred by multiplying the vector x by the blur matrix B, 

gaussian noise from a random variable generator is added to the com- 

ponents of the vector y_.    The noise is uncorrelated, with a covariance 
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matrix V given by 

V   m   a  1 (5. 1-9) 

Recall that under the gaussian assumption the B. L.U.E. 

estimator is also the maximum likelihood estimator,  besides being 

the least squares solution.    Furthermore,   since the overdetermined 

model is assumed,  the solution is unique. 

Under white noise,  the estimator x is obtained through the 

expression 

T      -1     T + 
x   =   (B   B)      B    x   =   B   1 (5. 1-10) 

The condition that the spread function should be space invariant may 

be explored for computational purposes.    In fact, under this hypoth- 

T 
eois,   (B   B) is a block Toeplitz matrix and the inversion of such a 

matrix can be performed quite efficiently through Fast Fourier 

Transform techniques [5-1] ,  even for large dimensions.    Further- 

_T 
more,  B    ^ represents,  in this case,  a discrete convolution opera- 

tion that can also be performed by the use of two-dimensional FFT. 

The procedure is equivalent to the one used by Hunt [2-40] by 

making the coefficient Y equal to zero in Twomey's method.    If the 

blur matrix is separable, considerable simplification in the compu- 

tation of the pseudoinverse can be achieved.    Using (5.1-6) it follows 

^^ 
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that [5-2] 

B+   ■   [(BC©BR,T   ^©B^]-1   (BC©BR,T 

■ t<fic©SR'(5c©V:i"1 <5C©SR) 

■ «CBCGSJäR''' <£C©SR' 

= 2J©B; (5.1-11) 

In the previous derivation the following identities were used [5-3] 

(A©B)T   =  A^QB
1 

(5. 1-12) 

(A©B)(F©G)   =   {AF)©(BG) (5.1-13) 

(A0B)-1   =  A"1©^"1 
(5. 1-14) 

Equation (5.1-11) allows the computation of BT through the 

Kronecker product of pseudoinverses of much smaller dimensions. 

Since the computational methods for the pseudoinverse [3-3, chapt 

V] are involved and particularly sensitive to numerical errors due to 

er 
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round-off,   the importance of (5. 1-11) becomes evident. 

The method used for the computation of the pseudoinverses 
■QT T 
-C and -R waa the grient projection by Pyle [3-3,  pages 69-74]. 

It is based on an application of the Gram-Schmidt orthonormalizati 

process.    In the course of the method some care must be exercised 

in order to decide, within the precision of the machine,  whether a 

vector can be given by a linear combination of the previous ones or 

on 

not. 

The restored image has been computed through the expression 

^ = <SC®5R^ (5.1-15) 

for several values of blur,  under noisy or noise-free conditions, 

blurred by gaussian or sine2 functions.    In the case of no noise,  the 

least squares problem reduces to the solution of the system of linear 

equations 

X.   =   Bx (5.1-16) 

and,  under the assumption of full column rank of the matrix B (over- 

determined model),  the solution exists and it is unique,  given by the 

same expression as the estimator for the white noise (equation 

(5.1-10)). 

Figure (5. 1-5) shows the blurred and restored images under 
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Blurred   b,-=b„s.70,   Var = 0 

Gaussian Blur .Overdetermined 

Blurred   b    =b    =.70,  Var = 10 
V        rl 

Gaussian Blur .Overdetermined 

Restored Restored 

Figure (5. 1-5)  Examples of Restoration with 
the Overdetermined Model and Gaussian Blur-I 
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gaussian blur and b     = b     = 0.70.    The first column of pictures re- 

fers to the no noise case.    It can be seen that the restored image 

coincides with the original picture.    This is what should be  expected 

with the overdetermined model:   since the solution to the linear sys- 

tem (5. 1-16) is unique,  the original picture is the only possible solu- 

tion.    In the second column of pictures white gaussian noise has been 

added to the blurred image.    Now the restored picture is n».' «qual to 

the original, but the difference is relatively small,  with the light 

square in the middle being clearly distinguishable. 

A remark should be made at this point:   even though all the 

blurred pictures with the overdetermined model are 12 x 12,  only the 

center 8x8 parts are displayed, blown up to 256 x 256. 

Figure (5. 1-6) presents the same results as Figure (5. 1-5) 

for different values of the blur coefficients,  b     = b     = 2. 5.    The 
V H 

result obtained with no noise shows that the original picture is still 

obtained,   although a closer inspection of the numerical values will 

evidence some round-off in the computation.    The noisy restoration 

differs substantially from the previous result.    Even though the noisy 

and blurred picture is visually barely different from the noise free 

case,   the restored image differs considerably, with the bright square 

in the middle not even visible. 

Figure (5. 1-7) presents the results for the case b     = b     = 
v H 

5000.    For the noisy restoration it is observed that the result is 

. . 
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Blurred   b    =b    =2.5,  Var = 0 
V        rl 

Gaussian Blur .Overdetermined Gaussian Blur .Overdetermined 

Restored Restored 

Figure (5. 1-6) Examples of Restoration with 
the Overdetermined Model and Gaussian Blur-II 
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Blurred   b    =b    =5000, Var=0 Blurred   b    =b„ = 5000.  Var = 10 
v        n v        H 

Gaussian Blur .Overdetermined Gaussian Blur .Overdetermined 

Restored Restored 

Figure (5. 1-7) Examples of Restoration with 
the Overdetermined Model and Gaussian Blur-III 
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somewhat in between the two previous results as far as fidelity of 

the restored picture to the original is concerned. 

Figure (5. 1-8) shows the result for b     = b     = 0. 70 under 

more severe noise conditions.    It evidences the little sensitivity of 

the solution to the increase in noise level for these values of blur 

coefficients. 

These experimental results suggest that the blur coefficient 

influences considerably the amount of perturbation on the solution 

with respect to the corrupting noise.    The concept of condition num- 

ber developed in chapter 3 offers an adequate framework to explain 

and predict the behavior of the solution with respect to the pervurba 

tion represented by the noise. 

Therefore,   the condition number of the blur matrix B = 

-C®-R for -C = -R Wa8 comPuted as a function of the blur coef- 

ficient.    This was done by the following procedure.    Since the (M2 

ma- x N ) matrix B is given by the Kronecker product of two (M x N) 

2 
trices Bc,   its N    singular values are obtainad by all the possible 

combinations of products of the N singular values of B    [5-4] .    The 

con-iition number c{B) is the ratio of the largest to the smallest sin- 

gular values of B, which is equal to the square of the ratio of the 

largest to the smallest singular value of B^   this being the condit! on 

number of B^    Now,   the square of the condition number of B    is the 

condition number of (BJBC) [3-8,  page 223] which can be calculated 
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Blurred   b„=b„ = .70,  Var = 30 
V        ri 

Gaussian Blur,Over determined 

Restored 

Figure (5. 1-8)  Example of Restoration with 
the Overdetertr.ined Model and Gaussian Blur-IV 
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T T        -1 
by multiplying the norm of (B   B   ) by the norm of (B   B   )     .    This 

has been done by using the Froebenius norm,  for several values of 

the blur coefficient.    Figure (5. 1-9) shows the result of this experi- 

ment.    The condition number is maximum for moderate values of 

the blur coefficient.    The curve explains the results obtained with 

the restoration of the noisy images.    In fact, b     = b     = 0.70 is in the 
V H 

initial part, with low values of c(B),  and thus implies little effect of 

the noise on the restored image,    b     = b     = 2.5,  on the other hand, 
V H 

is on the peak of the curve with maximum perturbation and,   finally, 

b     = b„ = 5000 gives moderate values for the condition number and 
V       H 

effect of the noise.    The same type of curve for the condition number 

2 
was observed for the sine    spread function.    Figure (5. 1-10) dis- 

T 
plays the results.    The matrix (B   B   ) becomes nearly singular for 

moderate values of the blur coefficient.   An even greater variation 

of the condition number was observed as compared to the gaussian 

spread function. 

2 
The restoration experiments were repeated with the sine 

blur.    Figure (5.1-11) shows the results for b     = b     = 0.25.    The 
V H 

noise-free restoration reproduces the original picture while the 

noisy image is restored to values that are very close to the original 

ones.    This corresponds to the very small condition number on this 

part of the curve.    Figure (5. 1-12) presents the experimental re- 

sults for by = bj^ = 1.0.    In the noise free case,  even though the 
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Figure (5. 1-10)   Blur Coefficient, 

Condition Number Curve for Sine    Blur 
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Blurred   b_   =b„ = .25,  Var = 0 
2 V      H 

Sine    Blur.Overdetermined 

Restored 

Blurred   b    =b    = . 25 ,   Var = 40 
2 V      H 

Sine    Blur.Overdetermined 

Restored 

Figure (5. 1-11)  Examples of Restoration with 
2 

the Overdetermined Model and Sine    Blur-1 



I"™^1    ll'""iw-™"«wWil«iP 
' 

-w-■™, ■-■^■^UPP 

155 

Blurred   b.   =b„=1.0,  Var = 0 
2 Sine    Blur, Over deter mined 

Blurred   b    =b    =1.0,  Var =40 
2 V      H 

Sine    Blur, Over deter mined 

Restored Restored 

Figure (5.1-12)  Examples of Restoration with 
2 

the Over determined Model and Sine    Blur -II 

iiv 
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restored imago visually reproduces the original,  the effect of the 

high condition number can be observed in the actual numerical re- 

sults presented in Figure (5. 1-13).    The perturbation due to round- 

off is noticeable (single precision has been used in the calculations). 

In the noisy case,   the displayed restored image shows the enormous 

effect of the perturbation,  but in order to give an idea of the order of 

magnitude of the error in the estimation,  the non-clipped numerical 

results are presented in Figure (5. 1-14).    The very large pertur- 

bations imposed by a high condition number are clearly displayed. 

The restoration under a moderate value of condition number, under 

2 
sine    blur,   is displayed in Figure (5. 1-15). 

A complementary point of view to explain the effect of the 

noise on the restoration can be given.    Equation (3. 1-4) gives the 

expression of the covariance matrix of the estimator.    Under white 

noise conditions,  that expression reduces to 

2     T     -1 
c   (B   B) (5.1-17) 

In the condition number is high the matrix (B^  BJ is nearly singular 

and large variances of the estimated values are expected.    On the 

other hand,  if the condition number is low,  the opposite situation 

occurs and the variances of the estimated values are reduced. 

Figure (5. 1-16) and (5. 1-17) display the condition number 
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Blurred   b.   =b„ = 500,  Var = 0 
2 Sine    Blur, Over deter mined 

Blurred   b    =b    =500,   Var =40 
2 V 

Sine    Blur.Overdetermined 

Restored Restored 

Figure (5. 1-15)  Examples of Restoration with 
2 

the Overdetermined Model and Sine    Blur-III 
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llllAI l   I—I llll I I I   I—I = 

GAUSSIAN  BLUR 
N =8 

"in I 

COEFFICIENT 

Figure (5. 1-16)   Blur Coefficient, 
Condition Number Curves for Gaussian 

Blur and Different Number of Sampled Values 
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I03 j-i111 i i—i Inn i i i—rp—Inn i i i—r-  - 

BLUR 

tin M  l l 

100 10 I 
BLUR    COEFFICIENT 

Figure (5. 1-17)   Blur Coefficient, 
Condition Number Curves for Sinc^ Blur 
and Different Nuvnber of Sampled Values 
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curves, for a gW«n number of quadrature nodes (N = 8),  varying the 

number of sampled values (M). while maintaining the structure of the 

blur matrix given in Figure (5. l-2\.    These results give more in- 

sight into the reason for the existence of a maximum of the condition 

number curves.   This is due to the truncation of the point spread 

function.    In fact,  for increasing M,  the number of points where this 

function can be nonzero is increased and the effect of the truncation 

starts only for higher blur coefficients.   Consequently, the curves 

for different values of M have essentially a common ascending branch 

and the descending part starts at varying points for different values 

of blur coefficients.    If there were no truncation, the curve would 

approach infinity very fast,  the asymptotic value being obtained for 

the smoothest possible kernel, with constant value one,  implying a 

blur matrix with rank one.    With the truncation, the curves fhow a 

descending branch that begins at the point where the increasingly 

wider kernel starts to be cut down substantially.    Now. for increas- 

ing value of blur coefficient,  the curves tend to a finite value. 

These curves can be used as a guide for the choice of the 

number of sampling points, once th-^ number of quadrature nodes is 

fixed.    For a very small amount of blur all curves coincide so that 

the designer may chooso M = N with almost no error.    Blur in this 

case pla/s no role,  only noise will .vffect the restoration.    With 
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increasing amount of blur,  different numbers of sampling points will 

give different values of condition number.    If a curve on an ascending 

branch is chosen,   truncation will have no effect on the kernel but a 

high condition number will impose high variances on the estimators. 

If a curve on a descending branch is selected,  lower variances of the 

estimators will be obtained,  at the price of error on the estimation 

of the continuous function due to the truncation error in the discrete 

model.    Therefore,  a trade-off between the variance of the estima- 

tors and the truncation error of the discrete model can be charac- 

terized. 

Although these conclusions are drawn based on the particular 

model discussed in this section,  they are more general.    This comes 

from the fact that the inverse of the integral operator that describes 

the blur is unbounded.    Therefore,   the closer the discrete model fol- 

lows the continuous one,  the more ill conditioned the former model 

tends to be.   A move in the opposite direction reduces singularity 

but imposes modeling errors.    This inevitable dilemma can only be 

broken with the intervention of correct a priori knowledge about the 

solution. 

The effect of changes in   he blur matrix was also experimen- 

tally confirmed.    For this purpose an image was restored using a 

value of blur coefficient different from the one that was used for its 

blurring.    Figure (5. 1-18) shows th(» rpsu:<-. for noise-free and 

y am 
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Blurred   b.   =b    =1.0,   Var = 0 
2 H 

Sine    Blur.Overdetermined 

Restored with b Restored with b     =b     =1.2 

Figure (5. 1-18)  Effect of Changes of the 
Blur Matrix on the Restoration-Noise Free Case 
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Figure (5. 1-19) for noisy observations.    The perturbation is m\   h 

higher in the noisy case, with many reversals of signs in the solu- 

tion.    This in accordance with the conclusions of equation (3. 3-34), 

which predicted that in the noise-free case,   the condition number 

would matter,  while in the presence of noise the square of this 

quantity would determine the amount of perturbation. 

5.2        Restoration for the Underdetermined Model 

Another set of experiments has been performed for the under- 

determined model,  i.e. , when the number of quadrature nodes ex- 

ceeds the number of observed values.    The following real situation 

is simulated by there experiments:   the image of part of an object is 

taken (e.g.,  the photograph of a certain region by an earth resources 

satellite); as in the overdetermined model,  a decision is made to 

place the nodes of the quadrature integration at equally spaced point3 

on a rectangular grid.    The sampling points are separated by the 

same distance as the quadrature nodes and they coincide with some 

of the quadrature nodes.    The number of sampling points in this case 

will be determined by the size of the image.    The point spread func- 

tion is assumed to be truncated to twice the sampling distance,   like 

in the overdettrmined model.    This determines the extent of the 

original picture that contributes to the blurred picture and only the 

quadrature nodes that make a nonzero contribution with this trun- 

I 1 
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1 
> 

^^H^Hn^v' . x.» ^| 1 
E.                                              u u u ii 

Blurred   b    «b    «1.0,  Var = 40 
2 Sine    El^r.Overdete  mined 

Restored with b.. =hr. = 1.0 v       H 
Restored with b    =b    =1.2 

V        ri 

Figure (5. 1-19)  Effect of Changes of the Blur Matrix 
on the Restoration - Noisy Case 
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cated kernel are retained. 

Figure (5.2-1) describes the data arrays.    The vector rep- 

resentation for the original and blurred arrays is still valid, but the 

matrix B_ is the transpose of the matrix of the overdetermined model. 

Figure (5.2-2) shows the partition of B in this case.    The structure 

of the submatrices B     . is described in Figure (5.2-3).    In the case 

of separable,   space Invariant blur,   the unidimensional blur matrix 

has the form expressed by Figure (5.2-4). 

The experiments have been performed with the gaussian 

shaped blur and white gaussian noise.    The original picture is com- 

posed of (12 x 12) pixels,  coinciding with the (8 x 8) picture depicted 

in Figure (6. i)   on the center part. 

As pointed out in the previous chapter,  there is no unbiased 

estimator in this case and the solution of the least squares problem 

is not unique.    The minimum norm solution is given by 

n 
*   =   B+-* 

(5.2-1) 

Since the blur matrix is the transpose of the corresponding 

matrix for the overdetermined model,  it follows that B has full row 

rank and B+ can be given by 

• 
B+   =   BT(BBT) 

1 
I 

1 

(5.2-2) 
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1 (I.I) 

/N-M 

ORIGINAL  PICTURE 

II,N) 

( 

V  2     ''      2     7 \  2    '•   2 / 

BLURRED 
PICTURE 

N-M   N-M o 
(N,l) 

( 

N+M NiM' 
2   '   2 

(N.N) 

Figure (5.2-1)   The Data Arrays 
in the Underdetermined Model 
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The assumption of shift Invariance allows the computation of 

(5.2-1) to be done very efficiently using Fast Fourier Transform 

algorithms.    In the separable case,   using a derivation entirely an- 

alogous to the one that led to equation (5. 1-11),  it is possible to 

conclude that 

2+   ■   B  +   ©   B   + R (5.2-3) 

The noise-free minimum norm solution is not necessarily the origi- 

nal picture and this is clearly shown in Figures (5.2-5) and (5. 2-6), 

for blur coefficients set at . 5,   5 and 500.    Note that only the center 

(8 x 8) part of the restored (12 x 12) picture is shown, blown up to 

(256 x 256). 

The noisy restorations,  displayed in Figure (5.2-7) and 

(5.2-8) show the same pattern of the over determined model, namely, 

small perturbation in the solution due to noise for small blur,  fol- 

lowed by large and moderate perturbations for increasing values of 

the blur coefficient.    This fact cannot be explained by the condition 

number since it is infinite in this case.   However,   since B^ is the 

transpose of the matrix in the overdetermined case, and considering 

T T 
the fact that the nonzero eigenvalues of B^ B and BB    are the same 

[3. 5,  page 41] it tarns out that the ratio of the largest to the 

T 
smallest nonzero eigenvalue of B B follows the curve given by 

. 
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/ 

'i-ji 

. 1 
Blurred   b„=b    =.50,  Var = 0 

v        H 
Gaussian Blur.Underdetermined 

Blurred   b    =b    =5.0,  Var = 0 
V        H 

Gaussian Blur .Under deter mined 

Restored Restored 

Figure (5.2-5) Restoration for the 
Underdetermined Model - Noise Free Case I 

>] 

—; .v.■■.<*-,.....;—:■—„, 
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Blurred bv=b    =500 ,  Var = 0 

Gaussian Blur, Underdetermined 

Restored 

Figure (5.2-6) Restoration for the 
Underdetermined Model - Noise Free Case II 

_ 
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Blurred   b,T =h„ = . 50 ,  Var ^ 10 
V ri 

Blurred   bv«bH«5.0l  Var = 10 

Gaussian Blur .Under deter mined Gaussian Blur.Underdetermined 

Restored Restored 

Figure (5.2-7)  Restoration for the 
Underdetermined Model - Noisy Case I 
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Blurred   b     =b„ = 500,   Var = 10 
V      H 

Gaussian Blur,Underdetermined 

Restored 
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Figure (5.2-8)   Restoration for the Under deter mined Mode' 
Noisy Case II 
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Figure (5. 1-9,       ririe.refore,  the ratio of the largest to .he smallest 

finite principa'. axes of the degenerate K-ellipsoid toJlows the same 

curve. 

On the other hand,  the minimum norm solution is obtained by 

projecting the origin of the x-space orthogonally onto the subspace 

which consists of null space of B,   N(B),  added to B^.    Therefore, 

when the minimum norm solution (B/^) is taken from this subspace, 

no variation in this solution due to noise is allowed in the direction of 

the eigenvectors thai span N(B).    These are precisely the eigenvec- 

T 
tors corresponding to the zero eigenvalues of B   B.    Only variations 

al'^ng the eigenvectors corresponding to nonzero eigenvalues are 

allowed.    These variations are in the (nondegenerate) ellipsoid that 

consists of the intersection of the original (degenerate) ellipsoid and 

the hyperplance that passes through the origin and is orthogonal to 

T T N'B),  that is,   the range of B   ,  ;<(B   ).    The shape of this ellipsoid 

is the same as th.^ shape of the ellipsoid of the dual,  overdetermined 

model because the eigenvalues are identical.    Therefore, the varia- 

tions of the solution of the underdetermined model In this subspace 

of restricted dimensions should be of the same type as in the corres- 

ponding overdetermined model.    Viewed from another perspective, 

this situation can be described as follows: by projecting the origin 

onto N(B) added to 3 x> to obtain the minimum norm solution, B'^ , 
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the infinite variances of t1 • underdetermined model are avoided, 

leaving only the finite variances in the directions of the nondegen- 

erate axes of the ellipsoid.    This is done at the pric; of imposing 

bias,   since the lack of information in the sample is compensated, 

not by a correct a priori information about the original picture, but 

by merely imposing a minimum norm solution.    This trade-off 

between bias and variance is somehow analogous to the one between 

modeling error and high condition number in the choice of the size of 

the point spread function.   A similar      'nation will also occur with 

the use of linear equality and !.^quality constraints in the restoration. 

5.3        The Computation of Confidence Intervals and Hypothesis 
Testing in the Over determined Model 

Some computatlon.il work has been performed with the ob- 

jective of determining both confidence intervals and results of hy- 

pothesis testing in the linear model for restoration.    In order to 

simplify the calculations, the unWimensional regression model has 

been employed. 

Figures (5.3-1) and (5.3-2) present the results of the compu- 

tation of the 68% confidence interval for individual pixel values,  under 

2 
gaussian and sine   blur,   respectively.    The correlation of these 

curves with those of the condition number is clear.    The higher this 

quantity the greater the confidence interval for the same pixel value. 

imammmm^M 
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due to the larger variances involved.    Furthermore,  for large values 

2 
of blur coefficient,   the curves for gaussian and sine    blur tend to 

coincide.    This is due to the fact that the truncated spread functions 

assume the constant value unity when the blur coefficient tends to 

infinity. 

The hypothesis testing experiments involve one pixel value in 

2 
the unidimensional model, with sine    blur and white gaussian noise. 

Two distinct sets of tests have been performed,  the first with known 

variance,  using the normal distribution,  and the second under un- 

known variance,  making use of the Student's distribution.    The 

reader is referred to Appendix A for the theoretical material con- 

cerning hypothesis testing. 

In both tests the level of confidence is set at 10%; the tests are 

two-sided,  testing the fourth pixel value, with the null hypothesis Ho 

bc^ng x    = A against the alternative hypothesis x4 ^ A, for different 

values of A; the true value of x   is set at 245,   the variance of the 

gaussian noise is 50 in both tests.    Tables 5. 3-1 and 5. 3-2 present the 

results for the normal and Student's distribution tests,   respectively. 

Again,   the correlation of the testing results with the condition 

number is evident through the inspection of the tables.    A higher con- 

dition number is associated with a higher variance of the statistics 

used in *;he test.    For a given size of the test for probability of false 

alarm),  fixed by the Neyman Pearson criterion,  the power (or 

■iiiAiir    ■*    - 
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Table 5.3-1   Hypothesis Testing 
For Pixel Values,  Normal Distribution 

a) Variance known (normal distribution) 

Level of confidence: 10% (two-sided) 

True value:   245 

Variance:   50 
2 

Blur:   sine (diffraction limited) 

H  :   x    = A 
o       4 Hl:   X4 *   A 

Blur 
C oefficient 

Condition 
Number 

1.0 

A 

' 245 

-0.156 

145 

12.62 

45 

0.25 12.40 
(accept) (reject) (reject) 

1.0 2500 0.999 1.20 1.40 
(accept) (accept) (accept) 

500 13.0 -1.42 1.40 4.23 
(accept) (accept) (reject) 

Decision Regions 

Reject H Accept H Reject H 

1.645 + 1. 645 

- i- 'T t« 
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Table 5.3-2   Hypothesis Testing 
For Pixel Values,   Student's Distribution 

b)      Variance unknown (Student's distribution) 

Level of confidence :    10% (two-sided) 

True value:   245 

Variance:   50 
2 

Blur:   sine    (diffraction limited) 

Degrees of freedom:    12-8 = 4 

H   :   x, = 
o      4 

A H,:   X4 i A 

Blur Condition 
Number 

1.0 

A 

Coefficient 245 

-0.140 

145 

11.34 

45 

0.25 22.83 
(accept) (reject) (accept) 

1.0 2500 0.751 
(accept) 

0.902 
(accept) 

1.05 
(accept) 

500 13.0 -1.49 
(accept) 

1.46 
(accept) 

4.41 
(reject) 

Decision Regions 

Reject H 

H 
Accept H 

-2.132 

Reject H 

+2.132 



^—-. —~———"   1 

■- 

184 

probability of detection) decreases with the variance.    This explains 

the smaller probability of rejecting the null hypothesis when it is 

false,   obtained for highei- condition numbers. 

►i^f^^V       A 
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6.    EXPERIMENTAL RESULTS WITH LINEAR 
CONSTRAINED RESTORATION 

In this chapter the results obtained with linear ccnsirained 

restoration will be discussed.    The first section presents experiments 

with linear equality constraints while the second section focuses on 

linear inequality restrictions. 

if 

■f 

Ik 

6. 1 Equality Constraints 

As a first attempt to overcome the instabilities found in the 

use of unconstrained restoration with regression techniques,  a single 

equality constraint has been imposed on the overdetermined model. 

The constraint consists of restricting the sum of the restored values 

to be equal to the sum of the original pixels.    Since the analyst would 

not have direct access to this value in a real world experiment,  the 

sum has been varied.    The application of the Toro Vizcarrondo- 

Wallace test showed that there was an improvement in the mean 

square error for considerable variation of the constrained value, 

under a given confidence level.    However,   the variation of the numeri' 

cal answer was minimal.    This can be explained in view of the fact 

that for small condition number the unconstrained solution nearly 

satisfies the constraint and with moderate or large condition number 

the instabilities are in the form of oscillations from pixel to pixel. 

185 
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The imposition of a given value for the sum of the restored pixels 

simply eh., iges the D.C.  component of the waveform without affecting 

the oscillations.    Adopting the point of view of ellipsoids,   this means 

that this elimination of one dimension in a 8 x 8 = 64-dimensional 

ellipsoid does not seem to be done in the direction of the eigenvectors 

corresponding to the smallest eingular values. 

In order to obtain a reasonable decrease in the variance,   a 

higher dimensional and more appropriate restriction should be neces- 

sary.    Considering both the nature of the image and the characteristic 

of the oscillations,  it was felt that the restriction that pairs of ad- 

jacent pixels should be equal would tend to damp out the oscillations. 

This is a SZ-dimensional restriction in a 64-dimensional space.    In 

the particular case of the image used in these experiments this re- 

striction is satisfied by the original image.    In other cases,  the im- 

position of these constraints will represent a smoothing of the solution 

in relation to the original.    Observe that the rows of the matrix A of 

equation (4.2-1) have in this case the property of being shifted ver- 

sions of the first row which opens the possibility of computation of 

{4.2-2.) by Fourier Transform methods in the case of space invariant 

blur and white noise. 

Equation (4.2-2) has been solved using the simplification that 

comes from the assumption of separable blur functions and white 

noise.    This implies that the matrix (HTH) can be inverted by taking 
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the Kronecker product of smaller matrices. 

Figures (6. 1-1).   (6. 1-2).  and (6. 1-3) compare the results of 

unconstrained and lineat  equality constrained restorations in the 

overdetermined model for gaussian shaped blur,   under the situations 

of small,  large and moderate condition number.    With small con- 

dition number the constrained restoration differs very little from the 

unconstrained case and both are very close to the true value.    It is 

with larger values of condition number that the effect of the con- 

straints,  blocking the oscillatory nature of the unconstrained esti- 

mator,  can be observed. 

Similar results have been obtained with diffraction limited blur, 

shown in Figures (6. 1-4),   (6.1-5),   and (6. 1-6).    In this case the 

problem can become extremely ill conditioned,  and for blur coef- 

ficients equal to 1.0 the round-off error in evaluating the inverse of 

the matrix rAT(HTH)" ^ prevents a meaningful result to be ob- 

tained,   so that the high condition number situation is exemplified by 

the somehow better conditioned case of b     = b     =13 
V       H 

In both types of blur the statistics for the F-test have been com- 

puted and,  under any reasonable confidence level,  the hypothesis 

specifying that the linear relationships are true is accepted,   con- 

firming their validity. 

The results obtained with both types of blur seem to be indica- 

tive of the degree of damping of the oscillations that can be achieved 
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Blurred   b=bt_ = . 70,    Var = 10 
V        hi 

Gaussian Blur, Overdetermined 

Unconstrained Restoration Equality Constrained 
Restoration 

1' 

Figure (6. 1-1) Comparison of Unconstrained 
and Equality Constrained Restorations 

Gaussian Blur,  b     = b     = .70 
V       H 

:* 



1 ■ i "WW^Wt^ppBBBP»»—- HW^P^--— '"  ' 'I mm>mr^^~^^^^mm ■■'--" 

Blurred  b    =b    =2.5,   Var = 10 V       H 
Gaussian Blur, Overdetermined 

189 

J 
Unconstrained Restoration Equality Constrained 

Restoration 

Figure (6. 1-2) Comparison of Unconstrained 
and Equality Constrained Restorations 

Gaussian Blur,  b     = b     =2.5 
V H 
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Blurred   b    =b    =5000,   Var = 10 
V        il 

Gaussian Blur, Overdetermined 

Unconstrained Restoration Equality Constrained 
Restoration 

r 

: 

Figure (6. 1-3)  Comparison of Unconstrained 
and Equality Constrained Restorations 

Gaussian Blur,  b     = b     = 5000 
V H 
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Blurred   b    =b    =.25 , Var =40 
2 Sine    Blur, Over determined 

Unconstrained Restoration Equality Constrained 
Restoration 

r 
Figure (6. 1-4) Comparison of Unconstrained 

and Equality Constrained Restorations 
Sine2 Blur, bv = bH = . 25 

mmmsmtimi 
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Blurred   b„=bt_ = 1.3,    Var = 40 
2 Sine    Blur.Overdetermined 

Unconstrained Restoration Equality Conr-Lrained 
Restoration 

Figure (6. 1-5) Comparison of Unconstrained 
and Equality Constrained Restorations 

2 
Sine    Blur, bv = t^ = 1.3 
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c 

f 

Blurred   b„ =b    = 500,    Var = 40 
2 v      H 

Sine    Blur, Overdetermined 

r 
h 
t 

Unconstrained Restoration Equality Constrained 
Restoration 

Figure (6. 1-6) Comparison of Unconstrained 
and Equality Constrained Restorations 

Sine2 Blur, h     = b     = 500 
i rl 
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by the use of linear equality constraints involving only a reasonable a 

priori knowledge of the smoothness of the solution.    There is a trade- 

off between the elimination of the oscillations and the achieved reso- 

lution of uie picture. 

The use of the linear equality constrained method leads to the 

determination of confidence intervals for parametric functions of 

pixel values.    The unidimensional,  overdetermined regression model 

has been set up,  with gaussian shaped blur.    The dimensions of the 

vector of observations and the vector of original pixel values are 

(12 x 1) and (8 x 1) respectively.    The fourth pixel value has been con- 

strained to vary from 0 to 500 and the norm of the residual vector, 

ll^-HxH   is computed.    Figure (6. 1-7) shows the result for different 

values of the variance.    These curves give examples of the type of 

result represented in Figure (4.3-3) for the case when no inequality 

constraint is imposed upon the solution. 

Observe that the minimum value of each curve is obtained for 

the pixel value x    that corresponds to the unconstrained solution.    It 

is only the true value (245) for the no noise case.    In this case the K- 

ellipsoids are degenerate so that the parabola also reduces to straight 

line s. 

The confidence interval foi the 95% confidence level has been 

computed using the K value f^iven by the table of normal distribution, 

as described in chapter 3.   It bhould be remarked that the parabola 
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for Var = 500 is more open than for Var = 30, indicating that larger 

confidence intervals are obtained in the former case. 

6. 2        Inequality Constraints 

The experiments with linear inequality constrained restoration 

involve the solution of the quadratic programming problems discussed 

in chapter 4.    The problems have been solved through the use of the 

Dantzig's algorithm [6-1].    The lower and upper bounds were set at 

0 and 255,  respectively.   An attempt to solve the two-dimensional 

problem directly has to face the serious storage requirements of the 

T 
matrix (H   H) of the quadratic expression,  involving approximately 

1 4 
2" x N   elements,  where N is the size of one dimension in the original 

image.    Moreover,  the attempt revealed numerical convergence prob- 

lems due to the large amount of computations involved,  ev  n though 

double precision was used.    Therefore,  the two-dimensional problem 

was solved by a sequence of solutions involving first restorations on 

the rows and then restorations on the columns.    This Is clearly an ap- 

proximate method.    The approximation tends to be better when there is 

little blur.    This occurs because on one hand a moderate amount of 

blur implies large condition number and the input to the column resto- 

ration will be clipped.    This tends to invalidate the model of additive 

noise that is the basis of the quadratic programming algorithm.    On 

the other hand,  for large blur, with the truncation of the point spread 

, *■ 
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function,  the condition number is moderate, but now the random vari- 

ables in the same row will tend to be correlated and this is not taken 

into account in the column restoration. 

The linear inequality constrained restorations have been per- 

formed under gaussian or sine    blur,  for different values of condition 

number.    Figures (6. 2-1),   (6.2-2),  and (6. 2-3) illustrate the results 

for gaussian shaped blur, while Figures (6.2-4),  (6.2-5),  and (6.2-6) 

refer to the diffraction limited case.    The improvement over the un- 

constrained restoration is clear,  particularly with high condition 

number.    Figure (6.2-5) illustrates an example of a completely un- 

feasible restoration using straightforward regression techniques be- 

coming feasible by the addition of inequality constraints.    The im- 

provement by the use of this type of restriction is greater than with 

the equality constraints, although a much highor computational task 

has to be performed.    The solution of each eight variable quadratic 

programming problem took between 6 and 7 seconds,  completing 10 

or  12 iterations of the algorithm.    However,  most of this time was 

spent writing and reading from the disk where the data is stored.    It 

is felt that a substantial reduction in time is possible by all-in-core 

programming.    It should be noted that the upper and lower bounds of 

the quadratic programming,   respectively 255 and 0,  determine exactly 

the range of values that a-e displayed.    Therefore, while the uncon- 

■ — 
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Gaussian Blur, Over deter mined 

Unconstrained Restoration Inequality Constrained 
Restoration 
0 <:x <: 255 

h 

Figure (6.2-1) Comparison of Unconstrained 
and Inequality Constrained Restorations 

Gaussian Blur,  bv = bH = . 70 
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Gaussfan Blur, Over determined 

r 
j 

Unconstrained Restoration Inequality Constrained 
Restoration 
0 £ x ;£ 255 

Figure (6.2-2) Comparison of Unconstrained 
and Inequality Constrained Restorationr, 

Gaussian Blur,  b     = b     =2.5 

: f 
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Blurred   bT  =bTT = 5000,  Var = 10 
V x* 

Gaussian Blur, Overdetermined 

Unconstrained Restoration Inequality Constrained 
Restoration 
0 ^x <: 255 

Figure (6.2-3) Comparison of Unconstrained 
and Inequality Constrained Restorations 

Gaussian Blur, b     = bH = 5000 

n 
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Blurred   b,  =b„ = .25,  Var = 40 
2 v      H 

Sine    Blur, Overdetermined 

Unconstrained Restoration Inequality Constrained 
Restoration 
0 <:x ^ 255 

Figure (6.2-4) Comparison of Unconstrained 
and Inequality Constrained Restorations 

2 
Sine    Blur, bv =bH = .25 
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Blurred   b=b= 1.0,    Var = 40 
2 v      ri 

Sine    Blur, Overdetermined 

Unconstrained Restoration Inequality Constrained 
Restoration 
0 5 x <: 255 

Figure (6.2-5) Compat'.son of Unconstrained 
and Inequality Constr lined Restorations 

Sine    Blur, b    *b« 1.0 
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Hi HDB 

Blurred  b    =b    - 300,    Var = 40 
2 V      H 

Sine    Blur, Overdetermined 

Unconstrained Restoration Inequality Constrained 
Restoration 
0 ^x ^ 255 

Figure (6.2-6) Comparison of Unconstrained 
and Inequality Constrained Restorations 

Sine Blur, b.r =b     = 500 
v ri 
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strained or equality constrained results are clipped to these bounds, 

sometimes from much higher or lower values,  the displayed inequality 

constrained restored pictures reflect precisely the numerical results. 

The determination of approximate confidence intervals for 

parametric lunctions of pixel values is also done.    Figure (6.2-7) 

illustrates the comparison with the unconstrained restoration.    Ob- 

serve that both confidence intervals,  unconstrained and constrained 

are pessimistic.    In fact,  these intervals were computed using the Y 

value which is approximately 1.89 times greater than the K-value used 

in Figure (6. 1-7) for the unconstrained case.    This makes the uncon- 

strained confidence interval larger than in that figure, in order to be 

compared with the constrained interval.    The last interval is alco 

pessimistic for the reasons stated in chapter 4. 

■ 
r 
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7.    CONCLUSIONS AND SUGGESTIONS 
FOR FUTURE RESEARCH 

v 

In this dissertation an attempt has been made to put the prob- 

lem of image restoration on a firm theoretical basis.    The linear in- 

tegral equation that describes the imaging formation process has been 

discretized in order to adapt the method to the requirements of digital 

computation.    This leads to a regression model whose numerical and 

statistical properties have been extensively studied in this work. 

Through the use. of this regression model it has been possible to in- 

corporate the large body of knowledge developed in mathematical 

statistics,  econometrics,  optimization theory and numerical analysis 

into the field of image restoration. 

The first developed method consists of the solution of the least 

squares problem by the set of normal equations.   This solution 

assumes the minimum possible amount of a priori information about 

the image to be restored.    In the regression model the vector of pixel 

values representing the image is simply a set of parameters to be 

determined.   A price is paid,   of course,  for this lack of knowledge. 

In the case of the overdetermined model the restoration problem can 

become extremely ill conditioned and the solution may exhibit wildly 

oscillating behavior.    The study of the variation of the condition 

206 
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number as a function of the blur coefficient has been made,  for two 

types of kernel,  namely,  atmospheric turbulence and diffraction limi- 

tation.    The effect of truncation of the kernel has been shown to be 

one of reduction of condition number.    A trade-off is developed be- 

tween the uncertainty in the estimators, when the discrete model ap- 

proximates the continuous one. and the error in modeling when the 

opposite approach is taken.    The use of the underdetermined model, 

representing an attempt by the experimenter to estimate more points 

than observed values implies infinite variances of the estimator. 

When a pseudoinverse solution is obtained this unbounded uncertainty 

is traded for an unknown bias in the estimators. 

It becomes clear that,  in order to obtain meaningful solutions, 

some sort of a priori knowledge has to be introduced.    Most of the 

prior work in image restoration has employed probabilistic a priori 

information,  as a Bayesian type of approach to the problem.    This 

dissertation has explored deterministic a priori constraints,  of two 

types:   linear equality and linear inequality restrictions.   A com- 

parison with existing methods of solution has been made.   In particu- 

lar, it has been shown that the smoothing and regularlzation techniques 

for solving the discrete version of the Fredholm integral equation of 

the first kind can be interpreted as least squares with quadratic 

equality constraints. 

The use of linear equality constraints has shown the advantage 
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of being able to formulate the restrictions in terms of a hypothesis 

that could be tested,   revealing to the experimenter the validity or not 

of these restrictions.    The test could be performed by verifying the 

restrictions themselves (F-test) or testing whether there is an im- 

provement in mean square error by the use of these (perhaps incor- 

rect) constraints (Toro Vizcar rondo-Wallace test).    A moderate 

visual improvement has been observed by the use of linear equality 

constraints imposing that pairs of adjacent pixels should be equal. 

Nevertheless,  for high condition number,  large oscillations are still 

present in the solution. 

When inequality constraints are applied by solving the quad- 

ratic programming problem, better results are obtained,  damping 

the oscillations even in the high condition number situation.    This is 

done at the price of increased computational requirements,   in terms 

of both storage and time.    It is felt that restoration of large images by 

quadratic programming could only be dona in blocks,  using an all-in- 

core algorithm.    Its use could be justified when large condition num- 

bers are involved in the restoration of valuable imagery. 

In the analysis of the effect of perturbations on the solution of 

the least squares pr-blem it has been pointed out that the condition 

number for changes in the blur matrix tends to increase as the square 

power when noise is present.   As a consequence,  extreme care must 

be taken in the measurement of the blur function, particularly when a 

. *■" ;:.*****.   'A 
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lügh condition number is involved. 

The research pursued in this dissertation may be extended in 

several directions.   A more detailed study of the interplay of the dif- 

ferent sources of error in the estimation of the contiguous image, 

when a discrete model is used, would be of considerable interest. 

The choice of the number and location of nodes of quadrature and 

sampling points affects the error of numerical quadrature,  the model- 

ing e^ror due to the truncation of the point spread function,  th« vari- 

ance of the estimators and the aliasing error.    The problem is of 

considerable complexity and one should be probably satisfied with a 

suboptimal solution.    The study of the condition number for different 

types of quadrature formulas and different kernels would provide 

valuable information. 

Another area that deserves some exploration consists of 

modeling the lack of knowledge of the blur matrix by a probabilistic 

description,  leading to the use of stochastic regressors.    This will be 

particularly valuable in the xestoration of images taken through tur- 

bulent atmosphere, when the duration of the exposure is not long 

enough so that the blur function stabilizes.    This work would comple- 

ment the study by Slepian [1-9],  by considering for example,   statis- 

tical dependence between noise and the point spread function. 

The use of recursive computational schemes of the regression 

■* 
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estimators would be particularly useful in real time applications, 

when the stream of data comes from a row or column scanning of the 

image.   Another possibility would be the exploration of iterative meth 

ods to solve the least squares problem,  in the unconstrained or 

equality constrained constrained cases.    This method is equivalent 

to solvinf the linear system of normal equations in an iterative man- 

ner.    Finally,   the area of nonlinear regression could provide an ade- 

quate framework to deal with a situation in which the blur cannot be 

modeled by a linear operation. 

Mtfujife. »*" ■ 
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APPENDIX A 

HYPOTHESIS TESTING IN THE 
OVERDETERMINED MODEL 

One of the advantages of the model developed for the image 

restoration problem is its feature of being mathematically very 

tractable.    In particular,  it offers the framework of extensive hy- 

pothesis testing that seems well suited to solve several image de- 

tection problems.    In chapter 4 the linear equality constrained 

restoration combines estimation and hypothesis testing in a common 

framework of image restoration. 

The assumption of an overdetermined model (M > N) will be 

made,  together with the hypothesis of white Gaussian noise corrupt- 

ing the image.    Nevertheless,  some recent work in the statistical 

literature seem.s to indicate that some of these tests are robust,  in 

the sense that they seem to perform well even when the Gaussian 

assumption is violated [3-6,  page olB]. 

Suppose first that a linear functional of the pixel values is to 

be tested.    In this case the experimenter could be interested,  for 

example, in testing whether a single pixel is equal to a certain value 

or not or whether the sum of all pixel values,  representing an inte- 

gral over the entire picture,  is also equal to a prespecified value 

or not equal. 

211 
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Assume that the linear functional is represented by the inner 

T 
product £  x and that the hypothesized value (represented by the 

hypothesis H  ) is c   .    Under the hypothesis H  ,  the random variable 

T 
C   X    -   c (A-l) 

is zero mean and Gaussian.    Its variance is given by 

2    T     T     -1 
(y*(c  « H)    c) rA-2) 

Thus, under H  , o 

T 
C   X    -   c 

/T     T     -1 
(A-3) 

r 
h v 
i ■ 

is a zero mean, unit variance Gaussian random variable.    In order 

to perform the test under a given level of significance,  a table of 

standardized normal distribution should be used.    The threshold 

a   >  0 is chosen such that 
a 

P{N(0, 1) > »J   =   P{-N(0, 1) <  -a^   = -j (A-4) 

where a is the level of significance of the test also known as the 

probability of false alarm, using detection theory terminology.    If 
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the ra idem variable given by (A-3) falls between -a   and a  .  Ho is 
ft a 

accepted.    Otherwise H    is rejected. 
o 

It should be noted that Ho is a simple hypothesis and the 

alternative Hj is a composite hypothesis.    It is well known that the 

is no uniformly most powerful test involving a Gaussian random 

variable in this situation.    The test specified in the previous para- 

graph can be shown to be the uniformly most powerful unbiased test 

for the simple hypothesis Ho against the alternative composite hy- 

pothesis H  . 

Assume now that the variance of the noise is not  known. 

The procedure in this ca«c would be equivalent to performing an 

estimation of the variance prior to testing.    In the section on con- 

fidence intervals it was shown that the variance of the parametric 

function could be estimated by 

re 

2,  T     T     -1 
s  (c   (K'H)    c) {A-5) 

■; 

f 

where 

8     =   M^N   ^-oDV-M) 

As a result,  the statistic 

iagmmM^IEi 
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(A-7) 
,   T     T     -1 

s/c   (H   H)     i 

is Student distributed with (M-N) degrees of freedom.    The test 

T T 
H   : c   x = c    against H,: c   x ^ c    can then be performed by the use o— —       o0 ]— —       o 

of a Student distribution table.    It should be remarked that for a 

sample size larger than 40,  the test can be performed by using 

tables of normal distribution.    The procedure is entirely analogous 

to the case of known variance. 

i 

Suppose now that the problem consists in testing the unknown 

2        2 variance of the noise.    Let a    = a     be the H    hypothesis and 
o o 

2        2 
CT    ^ a     be the alternative hypothesis.    In the section concerning 

(M-N)8^ 
confidence intervals it was pointed out that the statistics * T1  

is chi-square distributed with (M-N) degrees of freedom.    Under 

(M-N) s^ 
the H   hypothesis this quantity becomes ■1 j    and the test,  for 

a given level of significance,  can be performed using tables of the 

chi-square distribution.    More specifically, using a 100 a percent 

significance level,  the thresholds a   and b    of this two-sided test a. a 
are choscvi satisfying the relationships 

P[ X2(M-N) < a  ]   =   P[X2(M-N) > b  ]   =   -^     (A-8) 
a a ^ 
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een The hypothesis H    is accepted if the value of ^—"   )s     falls betw 
0 n2 

o 
a   and b   .    Otherwise the hypothesis is rejected. 

Consider now the problem of testing the whole vector x of 

pixel values.    In order to simplify the discussion,  it will be assumed 

initially that the H    hypothesis specifies the zero vector,  denoted by 

0.    The purpose of the test is to verify whether the whole picture is 

zero against the alternative that it is nonzero. 

The following discussion will make use of three quantities, 

denoted by Qj, Q^,  and Q  ,  that will be defined now.   Q   will 

measure the variation of the observed data around the hypothesized 

regression line,   specified by the hypothesis H 

Ql   =   [x-H0]T[y.-H0]   =   r?n (A-9) 

Q   will measure the variation of the observed data around the regres' 

sion line obtained by estimating the regression coefficients irrespec- 

tive of whether or not H   is true. 
o 

Q7    =   U-Hx]   [X-Hx] 

Using the notation defined previously,  it follows that 

Q     -   ü  ü  = Xk LtY. = vLy  = 2.   Ln 

(A-10) 

(A-ll) 
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Q    will denote the variation of the estimated regression line around 

the hypothesized regression line,   that means 

Q3   =   [Hi-Ha]  [Hx-Ho] 

"   (*-o)T(HTH)(x-o) 

T      T 
■   x   (H   H)x 

Now since 

(A-12) 

ä T-1T T-lT 
x   =   (H/H)      H   %   =   {UlH)      H    (Hx + n) 

T     -1     T 
x + (H   H)      H   n_ 

(A-13) 

for x = 0 it follows that 

T      -1      T 
ft   -   (H   H)      Hn (A-14) 

So that (A- 12) can be put into the form 

T        T-lT T-lT 
Q3   =   n   HflTH)     (H^HHH^H)   Vn 

T        T     -1   T 
■   II  S.(H   H)    H^n (A-15) 

■   n   (l-L)n 

Now, by observing expressions (A-9),   (A-11) and (A-15) to- 

gether with the observations that 
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rank I_        =    M 

rankL        =    M-N 

rank(I-L)   =    N 
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(A-16) 

{A-17) 

(A-18) 

it follows that —    is X2 (M).   -j- is X2 (M-N) and -f is X2 (N) 

distributed.    Also,   it is easy to verify that 

Ql   =Q
2
+Q3 ^A-19) 

Furthermore,  by Cochran's Theorem [A-!, pages 212-214],  Q    and 

Q3 are independent random variables. 

From the definitions of Q2 and Q3 it should be clear that if 

Q3 is large compared to Q^  this would lead to the belief that the hy- 

pothesis Ho is not true.    In fact,  this would mean that the hypothe- 

sized regression line is far from the estimated regression line as 

compared to the variation of the data around the estimated regression 

line.    Under this perspective,  the statistics 

F = 
Q. 

'3    M-N 
N (A-20) 

is appropriate for the testing procedure [3-5,  page 96].    This ratio 

is distributed according to the Fischer distribation. with N and M-N 

degrees of freedom.    The null hypothesis Ho is rejected when this 

ratio exceeds the significance limit. 

—— E:„it*.< ■£«•..- 
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So far the test has been developed assuming that the null hy- 

pothesis specifies the zero vector.    When,  in general,   a nonzero 

pixel vector x    is specified,  Q    is given by 

Q,    =   [H*-Hx   J   [Hx-Hx  ] (A-21) 

and still,  after some manipulation,  the previous expression assumes 

the form of equation (A-15).    Since Q    is not affected by the form of 

the null hypothesis,  it remains the same.    Therefore,   expression 

(A-20) can still be applied. 

In some circumstances the experimenter might be interested 

in testing only part of the total number of pixels in a picture.    This 

would happen when it is known that a certain object to be detected 

could occur only at a certain location on the overall picture.    In this 

case,  the previous test can be modified to take into account this 

special feature.    By performing,  if necessary,  a reordering of the 

pixel values,  the vector x can be s"bdivided into two subvectors. 

x (A-22) 

Suppose that the subvector of interest is x. and that the H    hypothesis —Z o 

consists in testing x    = x      against x    i x     .    Under this partition the 
20 

linear model is given by 
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^1 
X   =   (HjH^xJ-fn (A-2 3) 

where x   is an (N  x 1) vector, x_ an (N_x 1) vector such that N    + N = x 1 L L 12 

N and Hj and H2 are,  respectively fMxNj) and (MxN ) matrices. 

Under this partition,  the estimator will have the form [3-5,  page 10o1 

* m [(HjÜ^CHjH^r^H.^ 

where 

T T a, a,  a, ^ 
T T 

r T - 1 T T-lT IT 
(Hj   Hj)     Hj   x   -   (H/HJ)     HJ^E     H2 LJZ 

-1    T 
£    H2LlX (A-24) 

lij    ■   l-Hj^Hj)"1^ (A-25) 

and 

E   = T T T        -1    T H2 H2 - H2 H ^H J H^     HTH Hj Lj^       (A-26) 

A 

Also, fc   can be expressed as 

J 
mmmmm^B^m 
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(A-2 7) 

Comparing (A-27) with (A-13) and taking into consideration 

(A-26). it follows that In this case the quantity Q3 of interest for 

testing has the form 

QQ   =   (*9-xJE(x    -x2) 
(A-28) 

where x    = x* is the null hypothesis .   Since E has the rank N^       2 

has a X2 distribution with N    degrees of freedom and the ratio 

F   = 
^3 M-N (A-29) 

v 

r 

will be distributed according to the Fisher distribution with 1^ and 

(M-N) degrees of freedom. A large value of this ratio leads to the 

rejection of the null hypothesis. 

Several other tests could be devised concerning the pixel 

values of an image or their linear combinations.   For example,  sup- 

pose that the problem consists in detecting whether there is a dif- 

ference between the gray level of two parts of a picture.    This is the 

so called edge detection problem.    Two versions of this question can 

be formulated.   In the first one.  the null hypothesis specifies Xj = x.. 

•,«*.* 
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waere Sj and ^ are partitions of x but the common value is unknown. 

In the second version the common value is known and represented by 

a vector,   say x*.    In the field of econometrics tests of this type have 

been called tests for structural stability [ 3-5,   page 103-116]. 

Before closing this appendix some observations should be 

made.    First,   even though no justification was given for the statistics 

used in the tests,   it can be shown [ 3-6,  page  141] that these test 

be rigorously derived through the use of likelihood ratios,  using 

suitable criterion,  like the Neyman-Pear son for example. 

Second, the examples of tests of pixel values or their line 

combinations can be put into the framework cf a general linear hy 

pothesis represented by the expressions 

s can 

some 

!ar 

H
0   :   Rx   =  £ . Hj    :   Rx ^ r (A-30) 

re- where R and r are matrices of dimensions Q x M and Q x 1, 

spectively.   the rank of R being Q.   A test procedure [ 3-6.  page 143] 

can be developed for this general case,  leading to the previous cases 

for specific choices of the matrices R and r.   Reference [ 3-3,  pages 

100-104] presents broader results,  encompassing the cases where 

the rank of R may be not Q and the underdetermined model, where the 

rank of H may not be N. 

Further tests could be devised,  using the large body of 
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material developed so far in regression analysis.    As examples, 

could be mentioned a test to verify whether the white noise corrupting 

the image has constant variance or the test to verify if any degree of 

correlation exists between the noise elements corrupting different 

pixel values.    This last procedure would be based on the so called 

Dur-in-Wats on test developed in econometrics [3-6, pages  199-2011. 

Also,  tests to verify the hypothesis of linearity of the blurring procesi 

could be used, being based on the von Neumann ratio [3-6,  pages 222- 

224]. 

«Mb.-:..«    - 



APPENDIX B 

COMPUTATION OF THE NUMBER OF OPERATIONS 
FOR DIFFERENT METHODS OF RESTORATION 

In this appendix,   the number of operations involved in the 

computation of the estimators in the restoration problem is presented. 

The unconstrained,  linear equality and linear inequality constrained 

methods are considered.    It is assumed that the first two methods use 

nonrecursive forms of the estimators and the over deter mined model 

is involved. 

The unconstrained solution is obtained by a simple matrix- 

2 
vector multiplication.    If the observed vector x is (M   x 1) and the 

2 
vector of pixel values x is (N   x 1),  the solution would involve 

2        2 
M   x N    multiply and add operations. 

Expression (4.2-2) gives the solution for the linear equality 

constrained restoration.   Assuming that Plinear constraints are in- 

corporated,  the number of operations involved in obtaining the solution 

can be computed as follows: 

2        2 
M   x N    mult, and add for x 

N   x P mult, and add for Ax 

P add for t - Ax 

r 
■ > 

* 

h 
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N" x P mult, and add for K(t_- Ax) = x 

where K = (HTC" 1H)"1AT[A{HTc" 1H)"1AT] 

2 -.     _ 
N   add for x + x 

Total:   N (2P + M  ) mult, and add + (P + N2) 
add 

con- 

can 

The computation of the number of operations involved in the 

solution of the quadratic programming problems for inequality 

strained restoration is more complex and only an estimated value 

be given.    Suppose that the problem consists of minimizing the quad- 

ratic form given by (4. 3-4) subject to the constraints expressed by 

(4. 3-2) and (4. 3-3).    Wolfe's procedure [4-61 consists essentially in 

solving the equations that express the Kuhn Tucker conditions. 

The procedure consists of two steps:   in the first one,  three 

nonnegative slack vectors,  m, ^ ard^ are introduced and the step 

consists in finding a set of vectors x ^ 0,  z a 0 and w and the slack 

vectors that solve the problem of minimizing the objective function 

S + N* 

i=i 
m. (B-l) 

r 

P. 

subject to the constraints 

Bx     +   m = (B-2) 

K*. 



225 

2H      V     H x    - z +B   w - 2H   i V     x+I    -J    =0        (B-3) 

T   * 
z   x    =0 (B-4) 

where the notation defined by equations (4.3-5) to (4.3-13) is used. 

Except for the last restriction,  this is a linear programming problem. 

The procedure is very much similar to the simplex method,  with some 

modification to take into consideration the nonlinear restriction. 

The minimum of (B-l) is attained for m = 0 and the second 

step consists of minimizing the objective function 

2N 

i = l i (B-5) 

subject to the constraints 

* 
Bx    = v (B-6) 

*T       -1      *    * «X ^m i 
M      V     Hx    -z+BiW-2HiV     i: + El=0   (B-7) 

T  * 
z   x    =0 (B-8) 

where t_ contains the remaining nonzero components of f    and_t    and E 

is the corresponding coefficient matrix. 

The number of operations of each step will be computed as if 

MBHHB 
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they were standard simplex methods.    This is evidently an approxi- 

mation but it should be a reasonable one since a few extra operations 

are necessary to impose coi.aitions (B-4) or (B-8). 

Under this assumption,  the number of operations for each step 

is estimated [4-5,  page 55] as 1.5x (number of linear equality re- 

strictions) pivot operations.    Since in each step the number of linear 

2 
equality restrictions is given by (S + 3N  ),  it follows that the total 

2 
number of pivot operations should be about 3x(S + 3N ). 

A pivot operation in linear programming comprises three 

series of suboperations: 

a) Determination of the column of the pivot, that is,   the non- 

basic variable that will enter the basis.    This is done by a search of 

the most negative reduced cost coefficient among the nonbasic vari- 

ables. 

b) Division ox all the elements of this column by the corres- 

ponding right hand side elements and search for the smallest non- 

negative quocient.    This operation will determine the pivot. 

c) The operation of pivoting, that is, reducing to one the pivot 

element and to zero all other elements of the pivot column by elemen- 

tary row operations and updating the entire simplex tableai. 

mmmmm 
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