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ABSTRACT

The problem of restoring images degraded by blur and
corrupted by noise is considered in this dissertation.

The Fredholm integral equation of the first kind in a two-
dimensional form adequately describes the linear model. A dis-
cretization is performed by using quadrature methods. By trans-
forming the two-dimensional array into vector format a regression
model results. The overdetermined and underdetermined cases are
considered in detail, with the derivation of the estimators, their
covariance matrices, confidence intervals and hypothesis testing
involving parametric functions of pixel values. The problem of ill
conditioning is examined for atmospheric turbulence and diffraction
limited spread functions. The results of the restoration of simu-
lated pictures under separable spread functions are presented.

In order to solve the ill conditioning of the restoration
problem, a priori information in the form of deter ministic con-
straints is proposed. A comparison with existing methods like
Wiener filter, smoothing and regularizing techniques is made.
Linear equality constraints reduce the variance of the estimators,

but some bias may be introduced if the constraints are not valid.

iii



A combination of estimation and hypothe sis testing is proposed to
| decide if a reduction of the mean square error (taking into account
both bias and variance) occurs. Experimental results show that
more acceptable restored pictures are obtained in the restoration.

Linear inequality constraints are incorporated by means of
a quadratic programming formulation. The natural constraint of
nonnegativeness of pixel values is handled in a formal "/ay, as well

as other types of restrictions that can be described by linear in-

equalities. Experimental results indicate a substantial improvement

in the restoration even for the ill conditioned situation.
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1. INTRODUCTION

The subject of image restoration, encompassing attempts to
remove different types of degradations in imaging systems, dates
back to the fifties [1-1]. However, it was the space program of the
sixties, with its need for high quality imagery, that provided the
necessary motivation for the development of the field. In particular,
the work developed at the Jet Propulsion Laboratory [1-2] demon-
strated the feasibility of using the digital computer to deal with the
large quantities of pictorial data involved. The success of the effort
opened the path for new applications that now range the large spec-
trum of bioldgical [1-3] and geological sciences [1-4], high energy
physics [1-5], etc.

Image restoration or spatial filtering can be divided into two
main classes: optical and digital processing. The former has the
advantages of larger storage capacity and faster pro.essing, but
does not achieve the precision and flexibility of the latter. This

dissertation will be concerned with digital methods for image

restoration, with emphasis on a firm theoretical basis in their deri-

vation.

The degradations that an imaging system imposes over a

picture can often be roughly described as composed by a smoothing
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operation due to the finite resolution of the sensor and the addition

of disturbances, known only in a statistical sense. The earlier

methods of restoration, mostly optically oriented, attempted to undo

the first degradation by inverse filtering [1-6]. These techniques

used the Fourier transforming properties of lensges, by simply
multiplying the Fourier transform of the object by the inverse of the
Fourier transform of the blurring function. The Presence of sta-

tistical noise corrupting the image was disregarded and this fact

often limited the effectiveness of the se methods.

A nonoptimal pro-
cedure [1-7] consisted of replacing the inverse Fourier transform of
the blur function by zero in the spatial frequencies where the noise is
larger than the signal. |

Perhaps the first attempt to consider a formal way to deal
with the presence of noise in an image is due to Helstrom [1-8].
The image and noise were regarded as uncorrelated random pro-
cesses with a known blur function. Slepian [1-9] considered the
lack of knowledge of the blur function, and also modeled it as a
random process. Experiments (1-10 and 1-11] indicated that formal
approaches using the mean 8quare error criterion gave better results
than ad hoc schemes.

Digital methods for image restoration bave had to face the

Problems of starage and computational ime in dealing with large

scale sampled images. Some of the methods developed have utilized
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simple, ad hoc operations while others [1-12, 1-13 and 1-14] have
attempted more formal approaches based on mean square error. In
these cases the Bayesian approach has predominated, with the

modeling of the object as a two-dimensional random process.

In this dissertation a different direction is taken. In many
situations the experimenter faces the restoration task with very little
or even no a priori knowledge about the object to be restored. In
such cases the use of the Bayesian approach does not seem to offer
the best alternative. When no a priori knowledge about the image is
assumed, a regression model adequately describes the blurring and
addition of noise processes. The original object is simply considered
as a set of parameters to be determined, given the knowledge of the

{ blurred and noisy image, the blurring function and the statistics of
the noise. The necessity of digital processing requires a discrete
modeling of both the object and the image.

The use of the least squares criterion leads to a very tract-
able and general mathematical structure, allowing the image restora-
tion process to be cast in a technique analogous to those used in the
b . field of econometrics, for example. However, the lack of use of any
a priori knowledge limits the effectiveness of the restoration process.

It will be shown that for certain amounts of blur the estimators have

. o

very large variance, masking completely the real content of the

image.

™
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The model used is flexible enough to accommodate some a
priori information, including the Bayesian approach. Since this
path has been considerably explored in the past, a new approach was
pursued, namely, the use of deterministic constraints.

Linear equality constraints allow a reduction in variance, as
a result of a reduction in the dimensionality of the problem. The
detection of any bias imposed as the result of incorrectly formulated
constraints is also discussed.

The problem of taking into account some physical inequality
constraints that should be satisfied by estimators has been the ob-
ject of discussion by several authors. The most obvious restriction
to be satisfied in image restoration is nonnegativeness. It comes
from the basic physical laws governing the process of image for-
mation. Some results [1-15] concerning the properties of Fourier
transforms of nonnegative functions were used by Lukosz l1-161]
to give bounds on the transfer function of a physical system.
Similarly, Cleveland and Schell [1-17] extrapolated the spectrum so
that it would become an autocorrelation function, imposing that its
Fourier transform pair be nonnegative. Phillip [1-18] considered
the problem of finding the maximum likelihood estimator of a con-
tinuous function assumed to be nonnegative and upper bounded,
under gaussian noise. A quadratic expression has to be minimized

under these constraints, Necessary and sufficient conditions for
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uniqueness of the solution were derived and the problem was ex-
plicitly solved in some special cases. Some estimation procedures
can give only nonnegative results as a result ~; an exponentiation,
for example. This is the case with the technique of homomorphic
ifittering [1-19], that assumes the image to be the result of the pro-
duct of an illumination and a reflected component. The assumption
that the image is described by an array of cells whose content is
given by the Maxwell Boltzmann distribution also leads to estimators
given by exponentials. This has been explored by Friedea [1-20]
and Hershel [1-21 and 1-22]. Ad hoc procedures have also been
tried, as the control of the relaxation factor in an iterative method
to solve a linear system of equations [1-23]. Further d:tails on
these proposed methods are given in reference [1-24].

This dissertation will develop the inequality constrained
least squares approach to image restoration. The proposed method
follows a philosophy similar to the one described by Phillip [1-18]
ior the case of the discrete model. The optimal solution is given by
a quadratic Programming procedure. Any kind of linear inequality
constraint can easily be incorporated and, as a result, requirements
like monotonicity and convexity of the solutions can be satisfied. The
statistical analysis of the estimators is considerably more complex
than the previous cases, but some approximate confidence intervals

for functional values of the original image can be obtained. Besides

B e i A . s o
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improving the quality of the restoration by the use of additional a
priori information in the statistical procedure, the use of linear in-
equality constraints in the form of lower (nonnegativeness) and upper
bounds facilitates the display of the pictorial information.

A word about notation is necessary. An attempt has been
made to maintain coherence by expressing matrices by underlinci
capital letters, vectors by underlined small letters and scalars by

small or capital nonunderlined letters.




2. THE RESTORATION PROBLEM

This chapter presents the mathematical framework in which
the restoration problem can be cast. In section 2. 1 the modeling of
the blurring and addition of noise processes is discussed. Section
2.2 contains a brief discussion of the Properties of the Fredholm
integral equation of the first kind. Its discretization is examined
in section 2.3 and, finally, sectlon 2.4 presents the several numeri-

cal methods that have been proposed to solve this equation.

2.1 The Model

Figure (2.1-1) contains the block diagram of an incoherent
imaging system. The first source of degradation is represented by
the point spread function h(a, £, B, n). Itis assumed that this blur-
ring operation is linear so that it can be represented by a linear fil-
tering operation. The second source of degradation represents the
addition of noise. Due to the randomness inherent in this Process, it
can only be characterized in statistical terms. Consequently, due to
the lack of complete xnowledge of the degradation, the restoration
cannot be perfect in the sense of restoring the image to the original
value.

Assuming that all the processes involved are available con-
tinuously and unboundedly, the following equation characterizes this

7

e




Figure (2.1-1) The Restoration
Model
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two dimensional model
tot@
y(a, B) = _[ IX(E. nh(a, & B, n)dEdn + n(a, g)
< a,p< @ (2.1-1)

In many situations, the irput image is available only over a finite

extent and the previous equation reduces to

bb
y(a, B) =££1!(E. nh(a, §; B, nN)d Edn+ n(a, )

-0 < u,ﬁ < o (2. 1-2)

In the particular situation where the blur function is isoplanatic, the

point spread is a function of only two variables and the previous

equation takes the form
bb

yla, ) = I Ix(é, Mh(a-§; f-n)d&dn+ n(a, B)
aa

~2< 0,B < o (2. 1-3)

This model is general enough to include many situations that occur
in optical systems. The hypothesis of linear and spatially invariant
blur is valid in situations like limitation due to diffraction, for

example. In this case, the blur function in a rectangular system

assumes the general form [2-1].
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h(q, B) = (ﬂ“—‘i)z (%‘B—)z (2. 1-4)

o

A nice feature of this rectangular system is the fact that the

degradation is separable. In other words, this function of two vari-

ables can be cast into the product of two functions of one variable
each. Another example is the blurring due to atmospheric turbulence
for long photographic exposure, in which the point spread function is

of the form [2-21].

2 5/6] (2. 1-5)

h(a, p) = =xp [-(az + %)

Several other examples could be mentioned. The defocussing [2.1-1]
that the optical system may impose over the image is one of them.
Other examples could include certain types of optical imperfections
and motion blur [2-3].

The assumption of space invariance of blur cannot be vali-

dated under certain circumstances. Examples of this are motion

blur where objects at different distances from the camera move by
different amounts [2-3] or certain optical aberrations like coma,
pincushion and barrel distortion. Although most of the experimental
work in this dissertation will concentrate on the removing of spa-
tially invariant blur, the regression model wil! not be restricted to

this class of degradation.
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The assumptions of additive noise are broad enough to en-
compass different situations in which the limitations of the optical
and/or electrical system impose perturbations known only in a
statistical sense. Stray illuminaticn, circuit noise, or round off
due to digital processing could be mentioned.

Nevertheless, as it should be expected, there are restrictions
in the use of the present model. The assumption of linearity, for
example, is sultject to criticism, since ultimately the image is re-
corded on a photographic medium whose characteristic iu severely
nonlinear [2-1]. Even though this noniinear function is known, its
effect might be such that the addition of noise could occur before and
after the nonlinearity. Such would be the case with stray illumina-
tion in exposure, followed by the nonlinearity of the H-D curve, fol-
lowed by roundoff error in digital Processing cf the picture. In some
circumstances, however, the effect of the nonlinearity can be lumped
in one block after the addition of noise. Therefore, its effect can be
undone by an inverse operation prior to any other operation.

The a-sumption of additive noise can also be criticized. In
particulay, the effect of graininess in photographic materials is far
from being additive. Huang [2-4] has shown that it could be modeled

by a multiplicative process.

Once the limitations of the model are specified, the next step
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is to clarify the use of a priori information in it. First, the model
assumes that the analyst has complete knowledge of the blur function.
This hypothesis presupposes that the experimenter has some way of
measuring the mocualation transfer function. This could be done by
measuring the system itself, [2-5], by theoretical analysis [2-1] or
by measuring the response of a sharp point or edge in the picture
[2-6, 2-7, and 2-8].

With respect to the function x(a, f), unless explicitly stated,
it will be assumed throughout this dissertation, that it is a fixed but
unknown function to be determined, given the values of the output
function y(§, n). This implies that, although the observed values
y(€,n) are random, the desired function x(a, p) is not a random pro-
cess. This approach of parameter identification is in contrast with
the Bayesian approach that assumes an a priori statistical distri-
bution on x(&, B), characterizing it as a random process. The first
method leads itself to the use of other types of a priori information,
namely, linear relationships involving values of x(a@, B) and bounds
on their values. These methods will be extensively explored in the
present work.

As far as the noise is concerned, all the methods used will
assume knowledge of the second order statistical properties. It will
not be necessarily white although this assumption will often be made.

If additional hypotheses are assumed, further inferences will be
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drawn.

In order to perform some meaningful restoration, it is neces-
sary to define a goal to the estimation process. The purpose, of
course, is to estimate the unknown function x(n, B), given the ob-
served values y(£, ), for some criterion of goodness of the restored
image. Assuming that the picture is to be viewed by a human ob-
server, the criterion should take into account the psychophysical
properties of human vision. Much research is needed in this field
so that reasonable criteria, both from the point of view of realism
and mathematical tractaiility, could be obtained. In the lack of a
better one, a squared error criterion will be adopted, namely, mini-
mizing the covariance between the estimated values and true values.
Although it is known that the human observer does not judge images
according to this criterion [2-9], it has been found (and our experi-
mental work tends to confirm this) that reasonable results can be
obtained by its use. Furthermore, and here is its main advantage,
the use of a squared error leads to a very tractable mathematical
structure, the regression model, that has b:en considerably explored

in mathematical statistics and econometrics.

2,2 The Fredholm Integral Equation of the Fir st Kind
The problem of restoration, as stated in equations (2.1-2) or

(2.1-3) consists in solving a two dimensional ver sion of the Fred-

P e
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holm equation of the first kind. The same type of integral equation
occurs in different physical problems as radioastronomy [2-10 and
2-11], spectroscopy [2-12], applied optics [2-13], communication
theory [2-14] and nuclear engineering [2-15].

The ideal kernel would be

hix, E; B, m) = 8(a-E, B-n) (2.2-1)

since in this case, with no noise

bb
y(a, B) = i!x(i,n)é(a-g. B-n)d8dn=x(a, B) (2.2-2)

When the kernel is not the & function, there is a loss of re solution
and the problem that is posed is the one of recovering values of
x(€, m) given the values of y(q, B).

In order to keep the equations in their simplest form, only
the one dimensional blur will be considered in the following para-
graphs. The extension to planar equations is straightforward.
Under this condition, under no noise, equation (2.1-2) assumes the
form

b
yla) = jX(E)h(a. §)d§ (2.2-3)

a

where the function h(a, ) is the so-called kernel of the integral

equation. Associated with this kernel there is an eigenvalue -




eigenfunction problem defined by the equation

b
J h(a, §) & (5)dg =1 ¥a) (2.2-4)

a

The so-called spectrum of the kernel, i.e., the distribution
of its eigenvalues, determines the most important properties of the
solution x(§) for a given observed value y(a). For example, the
existence of zero eigenvalues expressed by the equation

b
- Ih(ﬂ. §) §(€)dg = 0 (2.2-5)

a
implies that the solution to equation (2.2~3) will not be unique because
a linear combination of eigenfunctions corresponding to zero eigen-
values can always be added to the solution and the result will still be
a solution.

A real kernel h(a, §) is symmetric if h(a, ) = h(§, o). The
eigenvalues of a symmetric kernel are real and eigenfunctions cor-

] responding to different eigenvalues are orthogonal, that is

b
jﬁi(ﬁ) %J.(E)de =0 (2.2-6)

a
L I W
i j

Furthermore, the eigenfunctions corresponding to the same eigen-
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value span a linear subspace. In this subspace an orthogonal basis
can be selected (say, by using a Gram-Schmidt procedure) so that it
is always possible to have an orthonormal set (as a result of further
normalization) of eigenfunctions for a symmetric kernel.

The kernel is defined to be closed if it does not have any zero
eigenvalues. As a result, the solution to equation (2.2-3) will be
unique. The kernel is said to be separable if it can be expressed as

the sum

N
h(e, € = ¥ f_(a)g_(5) (2.2-7)
n=1

where N is finite and the functions fl(u.), fz(a), veso, fN(Cl) are linearly
independent in [ a, b]. If the kernel is separable, equation (2.2-3)
will have a solution only if y(a) is a linear combination of fl(u.),
fz(a). oo fg(@).

Let >‘l' )‘2' eee, AN, ees,in order of decreasing absolute value,
be the eigenvalues of the real symmetric kernel and let Ql(a),
Qz(o,), ces, §n(a,), «ses be the corresponding eigenfunctions that are
assumed to form an orthonormal set. It canbe shown that this

kernel can be expressed as
hia, & = T A & (@0 (8)
n=1

if the series converges uniformly.
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Under the conditions that a kerne! be symmetric and closed,
the set of orthonormal eigenfunctions forms a complete set, i.e.,
any function in the space can be expressed a.s a linear combination
of the elements of this set. Conscquently, ti:e observed value y(q)

where the coefficients o are given by

b

o = Jy(a):ﬁn(o,) da (2.2-10)
a

In this case a necessary and sufficient condition for equatior (2.2-3)

to have a solution is that the series

2
° |u"'1|
__2 (2.2-11)
n=1 |)\ |
n

converges. In case of convergence, the solution is given by

a
x() = x_n ¢ (a) (2.2-12)
n=1l "n

23 The Discretization of the Integral Equation

When the Fredholm integral equation is to be solved in the

digital computer, a discretization has to be performed. This takes
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into consideration the fact that when images are processed digitally,
the information is necessarily finite and discrete. Therefore, sup-
pose that y(a, p), the observed function, is sampled at a finite set

of points

ylog, 8) 1= 1,2,e00,1 (2.3-1)
j=1,2,000,7
This implies that
bb
viay By = ££x(§. mIB(@, £ B MATdN Faloy 8) (2.3

In order to reduce the problem to a complete discrete form, numeri-
cal quadrature expressions must be used, replacing the integral by a

weighted sum of the values of the inte grand at points

l’ 2’ ...’K
Lov2s s = gulla

(5 my) (2. 3-3)

Under these conditions, one obtains the following expression

KL
yla;, 8;) =kz_‘,l§=lwkzh(ui. SN n)x(§ my) * n(a,, ﬁj)
1 = 1, 2,00s,1 (2. 3-4)
j = 1, 2, s0e, J
k = 1,2,¢:¢,K

PN T 1

=
"
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Using a lexicographic notation [2-16], it is possible to reduce this

two dimensional problem into a one dimensional model. Define the

square data arrays of the original and observed images, by the

(Kx L) matrix X and by the (IxJ) matrix Y respectively.

X = [x(5,, §,)]
Y= ylog, 8]

Also define a (L x 1) vector !L

a (Jx 1) vector v,, and a (I.JxI) matrix M,
=) =3

|' 0o |1
v, = 0 v, =
L 1 ’ =)
0 4+1
| L & d
8]
-1
9, | ¢
3 0 +1
: 9, A
(] Y
0 L
e zJ L
! %]
i
i.
: i

bt 200 I O 0080

Io - ..J'o

Qo meie | I

(2. 3-5)

(2. 3-6)

and a (K.LxK) matrix HZ as well as

j-1 (2.3-7)

jt+1l

j-1
j (2.3-8)
j+1

i g
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where 0, (0,) and I Qj) represent, respectively, the (KxK) ((Ix1))
=L =
matrix with all zero elements and the (KxK) ((IxI)) identity matrix.
Using tl:iis notation, the vector representations of the matri-

ces X and Y are given by

L |
x=Z N Xy, (2.3-9)
=1
and i
3
- Y M.Yv. (2. 3-10)
L j§1—3 =4

where x and y are (K.Lx 1) and (I.Jx 1) vectors, respectively. The l

purpose of the vector y_zis to extract the !?,th column from X. The 1

matrix _I:Izhas the rcle of placing this column into the l,th segn.ent of ‘

the (K.Lx 1) vector x. As a result, x contains the elements of X |

scanned column-~wise. Analogous considerations can be made for the a:

vector y and the mairix Y. ‘
At this point, it is also convenient to refer to the inverse

relation, that allows the transformation from the vector form back |

into the two-dimensional format. This manipulation will be useful

in transforming blurred and restored images into two-dimensional

form for display purposes.

(2.3-11)
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J

Y=y M yv (2.3-12)
e R

With this column scanning of the two dimensional data

arrays, the system of equations assumes the form

Y=Hx+n (2.3-13)

y = (I.Jx 1) vector
H = (I.JxK. L) matrix
x = (K.Lx1) vector

n = (I.Jx 1) vector

where
I Y1, X *1, 2
= XZ = }:Z’J x = 52 = ,fz'!'
Rk A N A
Y Y - X x
i JJ | I.J_ _ LJ | K.zJ

' }’_ll nl'J
: |22 1 72,;
! n= H ' n =] .
4 =~ 1 < 3|
: n .
; | 7T Fnl. ik

and the matrix H is given by

2
Tl

L

3
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Hy,--- 8 o
H = .
H . L ] L ] H
-=J, 1 J; L
| o
where the submatrices H, zhave the form
Wlf,h(ul' §1; Bj: T]j) LI B Wth(a.lv gK ’ pjv T]z)
B - . .
. e« o @ € s
. —

The problem of image restoration has now been reduced to a
regression framework, that can be stated as follows: given the ob-
served vector y, the blur matrix H and the.second order statistics
of the noise vector n, estimate, according to some suitable criterion,
the vector of parameters x. In the next chapter, this regression
problem will be treated extensively, as well as the specific questions
arising in its solution in the context of image processing.

Furthermore, by the use of additional a priori information,
expressed by equality or inequality constraints on the restoration,
the problem of ill conditioning will be improved. This will be the

object of discussion in chapter 4 of this dissertation.
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The problem of selecting the number and the location of the
nodes of the quadrature approximation, as well as the observed
values is a very complex one, since it involves several different
sources of error. The first error comes from the approximation of
the integral by the summation and it will be named quadrature error.
It tends to decrease as the number of nodes increases. The best
location of the nodes is not given, in general, by the equally spaced
distribution. In one dimension, if the nodes are located on the zeros
of the set of orthogonal polynomials on the interval fa,b], the so
called gaussian quadrature is obtained [2-17, pages 392-395]. It
provides the optimum precision in the sense of maximizing the de-
gree of the polynomial for which the quadrature is strictly correct.
In two dimensions, the technique of gaussian quadrature cannot be
easily generalized [ 2-17, page 419] since the zeros of the ortho-
gonal polynomials may be complex or lie outside the region of inte-
gration.

Another source of error may appear when the continuous
estimator X(§, n) 1s obtained from the discrete vector X. Assume that
the nonrandom function x(g, 1) is band limited in the frequency plane
within, for example, the rectangular region given by the coordinates
-Bu, +Bu and -Bv, +Bv, where u and v represent the coordinates of

the frequency domain. If the sampling grid is coarser than

1
2B r
u




24

2]13 (Nyquist rate), then an aliasing error will occur when the con-
v ;

r tinuous function is obtained from the interpolated values. For a

given interval, this requires that the number of samples be above a

4 certain threshold if an equally spaced distribution of quadrature nodes
1

is employed. The determination of the threshold will, of course, de-

F
t pend on the a priori knowledge of the frequencies B_and B _.
: The third source of error comes from the noise inherent in
the observations of the blurred picture. While the quadrature error
affects the process of passing from the continuous to the discrete
description and the aliasing error irtervenes in the inverse process,
the effect of the nolse is over the estimation of the discrete values.
It becomes wor se as the number of nodes in the quadrature formula
increases. It can be measured by the increased condition number
or, through a complementary point of view, by the increased vari-
ance of the estimators, as will be discussed in chapter 3 of this
dissertation. The type of quadrature, the location of the nodes and
b . of the observation values affect the blur matrix H and, by conse-
: quence, the quality of the estimators.

If the cuadrature error can be disregarded with respect to
the two other sources of error, a trade-off can be characterized
between aliasing and the effect of noise. A small number of nodes

implies small variances of the estimators but possibly an aliasing

error in the reconstruction. Increasing the number of nodes tends
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to eliminate the aliasing at the price of increased variances of the
discrete estimators.

The number of observation values y(«'x.i 5 Bj) should be kept at
least equal to the number of nodes in the quadrature if no other a
priori information is to be incorporated. Otherwise this lack of in-
formation will be reflected in infinite variances of the discrete esti-
mators. In the case of use of a priori information, a trade off can
be characterized between this information and the one coming fiom
the sample.

This dissertation will be concerned mainly with the third

type of error, namely, the one due to noise. It will be implicity

assumed that the sampling is enough to avoid aliasing errors and

that quadrature errors are negligible compared to noise errors.

2.4 The Existing Methods of Solution
Except for a few cases, the solution of the Fredholm equation
3 of the first kind is far from trivial. Usually numerical techniques
are used for its solution. All methods of solution have to face the
5 obstacle of the ill conditioning of the problem. This means that
small perturbations on the observed values result in very large
b changes in the solution. A large research effort has been underway

during the last two decades attempting to develop feasible compu-

Yo awdl

tational methods to d~al with this problem.

o bW
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In general, these methods try to circumvent the problem of
ill conditioning by imposing side constraints on the solutions. An
example is the method by Phillips (2-18), who imposed the con-

straint that the solution be smooth by minimizing the criterion

b
.Mhls [x" (@)] %40 (2.4-1)
X

a

where x'" (1) denotes the second spatial derivative of x(a), Ifa

discretization is performed, a linear system of equations is obtained

y=Hx+€ (2.4-2)

where H is a square matrix. In Phillips' method, an estimator %

is forced to satisfy a quadratic equality constraint related to the

noise level involved (LZ)

Q-EQTQ-§E=LZ (2.4-3)

and the solution is obtained by minimizing a quadratic form

measuring the smoothness constraint
: i
Minx " Sx (2.4-4)
X

The result of the equality constrained optimization problem is

given by

T ———
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% = [E +y (E'I)Tg]'lx (2.4-5)

where Y is a Lagrange Multiplier that specifies the amount of smo-
othing imposed by the constraints. It was also shown that an esti-
mator of the perturbation vector £ relates to the Lagrange Multiplier

Y and the optimal solution through the expression

€= v HhTsz (2. 4-6)

A trial and error method was used giving the largest value of the
smoothing coefficient vy compatible with the constraint expressed by
equation (2.4-3),

A generalization of the method of Phillips as well as a sim-
plification was performed by Twomey [2-19 and 2-20]. The solution

expressed by

=@'H+vs) g7y (2. 4-7)

I»>

involves only one matrix inversion instead of two in the method by
Phillips. In addition, the met! d allows solutions in the case where
the matrix H is not square. It should be observed at this point that
for S equal to the identity matrix, Twomey's method reduces to the
so-called method of ridge regression (2-21, 2-22, and 2-23] that
attempts to trade a small amount of bias in the statistical procedures

in order to achieve a major reduction in the variance of the estimator.
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Among the other methods that yield numerically stable solu-
tions to equation (2.2-3) is the regularization method of the Russian
mathematician A.N. Tichonov [2-24, 2-25, and 2-26]. Likewise,
the method imposes the cunstraint that the solution be a piecewise
smooth function. It is based on the minimization of a functional

which, after discretization, assumes the form

T, L

M'[xy) = o@Hx-y) Hz-y +VE (7754 88E)x

(2.4-8)

where S and P are appropriate positive definite matrices that define
the smoothness constraint and Ao and A§ are discrete increments
on equation (2.2-3). The solution, for any v > 0, was shown to be

given by
x' = Aa[AaﬂTﬂ ty (A_lé'é + AEE)]-IETX (2. 4-9)

and, again, a trial and error process is involved in the determination
of the optimal value of the coefficient Y. The method can also be
generalized so that the functional would involve higher order dif-
ferences on the solution vector.

In the context of image processing, the solution of the planar
integral equations involves additional difficulties due to the large

dimensionality required when a discretization of the equations is

made. Under the conditions of the separability of the matrix H as a
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Kronecker product, Ekstrom [2-27] restructured the calculations
using a singular value decomposition of the same matrix.

Other methods [2-28, 2-29, 2-30, 2-31, 2-32, 2-33, 2-34,
and 2-35] have also been suggested to solve the deconvolution prob-
lem. In general, these methods were proposed to solve one dimen-
sional, small dimensionality problems and, as pointed out by
Ekstrom [2-36], some sort of reformulation of the problem is often
needed in order to adapt these Procedures to the large dimension-
alities that occur in two-dimensional problems.

A significant development is possible in the solution involving

large amounts of data, when the kernel h(a, &, B n) is shift invariant,

that is,
h(aﬂ g, pv T]) = h(a-ﬁ. E'T]) (2-4-10)

and the functional that expresses the smoothness constraint is given
by a convolution expression. In this case (LITE) and S are Toeplitz
matrices in the one dimensional case and block Toeplitz in the two
dimensional case. By extending the domain of the convolutions and
transforming them into circular operations, Hunt [2-37, 2-38,

o 2-39, and 2-40) used Fast Fourier Transform techniques to solve

Twomey's method.

e
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oty o




3. REGRESSION TECHNIQUES

In the previous chapter a blurred digital picture corrupted by

noise was modeled by the expression

y=Hx+n (3-1)
where
y =(IxJ) x 1 vector
H = (IxJ)x(Kx L) matrix
x = (KxL) x 1 vector
n = (IxJ) x 1 vector

In this discrete form, the problem consists of performing an esti-
mation of the parameter vector x, given the observed vector y, the
knowledge of the matrix H and the statistical distribution of the noise
vector n.

In order to proceed with the derivation of the solution and its
properties, it is necessary to consider the possible dimensions in-

volved in the model. For the sake of simplification,

IxJ =M (3-2)

KxL=N (3-3)

Two cases are possible: M > N and M < N. In the first case, which

would occur if, for example, I 2K and J > L, the number of nodes in

30
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the quadrature expression is less than or equal to the number of
samples of the observed image. In the second case the opposite
situation occurs. The latter model would tend to occur when the
experimenter increases the number of nodes in order to improve the
discrete approximation of the integral equation that represents the
blurring process. In the case for which M 2 N, depending on the
values of the H matrix, its rank may or may not be given by the
number of columns, while in the case for which M <N, the rank is
necessarily less than the number of columns of H. As a matter of
notation, the model of full column rank is called overdetermined.
If the matrix H is not of full column rank, the model is said to be
underdetermined. The overdetermined model leads to the use of
classical regression techniques for its solution, while the underde-
termined scheme will require the concept of pseudoinverse and ex-

tensions of the previous case.

3l The Overdetermined Model

Consider the overdetermined model, i.e., under the condi-
tions of rank of the matrix H being determined by the number of
columns. Suppose, furthermore, that the noise has zero mean and
covariance matrix V, assumed to be positive definite. The vector
x is fixed but unknown and the task is to obtain an estimator X of x

according to some criterion. The chosen estimator is the best
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linear unbiased estimator (B.L.U.E,) of x. This means that one is

searching for an estimate

1%>

0
0
Mo

(3.1-1)
such that
E(Gy) =x (3.1-2)

Let Y;‘ denote the covariance matrix of the optimal estimator vector

2, and Y’f the covariance matrix of any other linear estimator that

satisfies (3.1-2). It is noted that (\_f_:iE - Y_;) is a positive semi-

definite matrix. The optimal solution is given by the Gauss-Markov

Theorem [3-1, page 52]

T!-lli)-ll__l_T vly 5,55

%>

:(E

and its covariance matrix is

V, = (ET y_'lH)'l (3. 1-4)

A
-x- ——

Suppose now that, instead of trying to estimate the set of

pixel values x,, i =1, 2... N, one is interested in estimating a

il

linear functional of the xi's. An example could be the estimation of

the integral of the original picture that would be observed by the

output of a photocell. The linear functional § can be represented by

the inner product
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5=¢'x (3. 1-5)

The task then is to obtaina B.L,U,E, estimator for §.

Using Lagrangean methods [3-2, page 33] it is possible to show that

$=c m vy m H Yy (3. 1-6)

This means that

$=c"% (3.1-7)

The optimal estimator of x could also be derived by considering

parametric functions
Qi = e, x i=1,2¢e,N (3.1-8)

where [ is the 12 column of the identity matrix. In this case & will
be formed by the set of B,L,U.E. estimators for each one of its

components.

The same result could have been obtained by another method,

e

namely, the one that minimizes the weighted sum of squares of the
residuals. This is the method of least squares, which was first
developed by Gauss. In this case one seeks for the vector x that

minimizes the quadratic expression

el

x-EHT Vv (y-HH (3.1-9)

0 (%)
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Taking derivatives and equating to zero, one obtains

e 7 =
2HT vV y+2H' ¥

| S
Hk =0 (3. 1-10)
or

T

aT vy T -1

=H Vg (3. 1-11)

1%>

This is the set of normal equations of the least squares prob-
lem. Under the hypothesis of full column rank of the blur matrix H
and positive definiteness of the covariance matrix V, the matrix
T

(H™ V' H) is invertible and the set of normal equations has a unique

solution given by

=@ v et vy (3.1-12)

15>

A comparison of equations (3.1-3) and (3.1-12) will confirm the
assertion that the B.L.U.E. and least squares estimators of X are

identical.

When the noise is white, V becomes an identity matrix and

expression (3.1-12) reduces to

2 =@ ey (3.1-13)

or
g = 5_3 (3.1-14)

Let
Ht= @ HT (3. 1-15)
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The matrix §+ is called the pseudoinverse or Moore-Penrose gen-
eralized inverse of H [3-3]. A more complete discussion of its
properties will be given in connection with the discussion of the
underdetermined model.

Assume for the moment that the noise is white. Therefore,
the least squares problem reduces to the minimization of the square

of the norm of the residual vector

Ve Mx - B’ (3.1-16

In order to obtain greater understanding over the question of
existence and uniqueness of the restoration problem, some heuristic
arguments will be presented. Consider Figure (3.1-1) where the
decomposition of a finite dimensional linear space into the direct

sum of two linear subspaces is represented [3-3] , namely,

N

ET = Ryr + Ny (3.1-17)
and
M
= + . 1=
E Ry + Nyt (3.1-18)

As x varies over EN, the vector y = Hx varies over R(H).
Therefore, the problem of minimizing |t - Hx | 2 over x can be

reduced to the one of minimizing hx - ¥, “2 where ¥, isinR

Ho
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From geometrical considerations it is clear that this is solved for

¥, given by the projection of y onto RH. Since ¥, is in RH, there
always exists a solution to the problem
Hx = X, (3.1-19)

which implies that a solution to the least squares problem zlways
exists. Now, the solution will be unique if and only if the null space
of H, NH, is composed only of the zero vector. Indeed, assutne the
solution is unique. Therefore, the null space of H has to contain

only the zero vector because otherwise a nonzero vector in NH could

always be added to x without affecting y. On the other hand, assume

that H comprises only the zero vector. If the solution is not unique,

say x' and x'' being two distinct solutions, then x' - x'' would be in
NH, which is a contradiction.

In the overdetermined case the columns of the blur matrix H
are assumed to be linearly independent, which implies that the null
space of H contains only the zero vector, otherwise there would be a
nontrivial linear combination of these column vectors resulting in the
zero vector. This explains the unique solution that was obtained for

the normal equations. In the underdetermined case this will not hap-

pen and there will be many solutions to the least squares problem.
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3.2 The Hyp-othesis of Normality and Interval Estimation

it will be assumed in this section that the noise is Gaussian.
Besides the fact that it occurs often in practice, this assumption also
has the advantage that it will allow the derivation of further prop-
erties of the estimators.

Accordingly, let the components of the noise vector n, n.,
R Ve be jointly distributed with a multivariate normal distri-

bution

n ~ NQO,YV) (3.2-1)

denoting that the mean is the zero vector and the covariance matrix
is V. Therefore, given the parameter vector x, the probability

density function of the observed vector yis given by

1 T. -1
p(ylx) = exp 1-1(y-Hx) V " (y-Hx)r (3.2-2)
M2 vt {2 }

Consider now the maximum likelihood estimator of the vector of the

original pixel values x. By definition [3-4, page 193] this estimator
is obtained by maximizing over x the expression of p(ylx). One may
take log before maximizing since it is a monotonically nondecreasing

function. In doing this one observes that the maximum likelihood

estimator £ minimizes the quadratic expression
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¢-Hn v'y-Hy (3. 2-3)

Under these conditions, given the observed values of the
blurred and noisy picture, the maximum likelihood estimator of the
original pixel values %;s the least squares estimator (and the
B.L.U.E. estimator for the overdetermirad model), if the hypothe-
sis of normality is assumed. Since the maximum likelihood estima-
tor has the desirable properties of consistency and asymptotic ef-
fi~iericy, the Gaussian hypothesis allows the extension of these
properties to the estimators derived under the two other criteria.

In the following discussion the assumption of white noise will
be made. The purpose will be to derive estimators for the variance
of the noise that corrupts the image. Under the white noise hypothe-

sis, (3.2-2) assumes the form

p(xli) = M;Z M~ &XP £ o (I'EE)T(X'.I;I’_{) (3.2-4)
(2m) o -

If the log likelihood function is maximized by setting the derivative

with respect to 7 equal to zero, one obtains

1

2 (I‘EE)T(I‘H’_‘) £ Mz =0 (3.2-5)
20 20

The expression for the maximum likelihood estimator of the
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coefficient vector x has already been derived. By substituting this

value, the maximum likelihood estimator for 02' 82. is obtained

8 = o (y-HB) (y-HY) (3.2-6)

Now, consider the quantity

1<

=y-§ = y-Hx=

= Ly (3.2-7)

Since L is the difference of two symmetric matrices, it follows that
L is also a symmetric matrix. Also L is idempotent as it can be
shown by the following derivation

- r-eem ety - Ty ™!

]
||—|
[ ]
IT
B>
I
fe
H
fes
EEH
|z
vl
e
-3

Furthermore, the trace of L can be obtained as follows

-1 =
trL, = trl - trﬁ(ﬂTﬂ) ﬂT = M-tr(ﬂTﬁ) IETQ =M-N (3.2-9)
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From the fact that the rank of an idempotent matrix is equal to its

trace, it follows that the rank of L is (M-N). Also, observe that

LH = [1-HE H) '# JH=H-H=0 (3. 2-10)

Now, consider another possible estimator foi the parameter

2
¢ , namely

(3.2-11)

M-

The following relationship is valid

=Lv=L(Hx+n)=Ln

where the fact that LH = 0 was used. Therefore,

§Te=a"L" n=n Ln=trLan (3.2-13)

The second equality comes from the idempotency of L and the third

la od
is based on the fact that n~ Ln is a scalar and therefore equal to its

own trace.

By taking expectations one obtains




E(QTQ) = E(trLEET) = tr EE(EET) ¥ 02 tr LI = oz(M-N) (3.2-14)

As a result of the last expression, s2 is an unbiased estimator for
the variance of the noise. Observe that, although Ix—ti _wZT_Q is the maxi-
mum likelihood estimator of 02. it is not an unbiased estimator.

It could be also of interest to determine an estimator for the

X -1
covariance matrix of the estimator X, namely, 02 (ETE) . Since

-1
s2 is an unbiased estimator for 02, it follows that sz(g_TE) is an

unbiased estimator of 02 (ﬂTﬂ)-l.

It has already been observed that, under the normality
assumption, the vector of estimated pixel values, %, is distributed

according to a multivariate normal distribution. Observe, further-

more, that (M-N)s2 = XT Ly = QT Ln and that L is an idempotent

matrix of rank (M-N). This fact implies that the quadratic form

]M-N[sz

> ha‘s a XZ distribution with (M-N) degrees of freedom
o

[3-5, page 91].

T -1
Now, observe that the matrix L and the matrix (H H) ET of 1

2= "Hy satisty

@ m et
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=
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=
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(3.2-15)
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This implies [3-6, page 89] that X and s2 are independently dis-
tributed.
Let us reconsider now, still under the Gaussian hypothesis,
the problem of estimating a linear functional of the pixel values of a
picture, like the sum of the pixels or a single pixel value, for
example. Expression (3.1-6) gives the value of the B.L.U.E. esti-

mator % That expression can be put into the form

t =uy (3.2-16)

where

=¢ (H V H HV (3.2-17)

Since n is normally distributed with zero mean and covari-
ance matrix V, it follows that y is also normally distributed with
mean Hx and covariance V. On the other hand, 5, being a linear
combination of Gaussian random variables, is also a Gaussian

random variable and its variance is expressed by

var(%) = ET Vu (3.2-18)

Sir-e L is an unbiased estimator of §, the random variable

A A

' (3.2-19)
v var(g)

is zero mean, unit variance and Gaussian.

As a consequence, the
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probability that fi falls in the interval [ -K,K? is given by

K
N 1 2
Pr{-K< n < K} = J = exp --’25- dx (3.2-20)
a

-K
or
_3- 3
Pr{-K < — < K| = q (3.2-21)
{ vvar(3) }
where
K
j 1 -x2
o = exp\—— ) dx (3.2-22)
K Von 2

It is our interest to derive the confidence interval at a given
level o for the parametric function § . In view of (3.2-21) this can

be given by

IK(E) = {5 -K(var(3n}, 3+ K(var(’i))i} (3.2-23)
or

IK(%) x {\_J_Tx - K(ETY__\_x_)i‘ ) .‘.%TX + K(_\_J_T!_\_l_)%} (3.2-24)

For each value of K, the corresponding confidence level is tabulated

below [3-2, page 38].
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K g,

1.0 0. 6827
2.0 0.9545
3.0 0.9973
4.0 0.9999

It is possible to give a geometrical interpretation of the con-
fidence ellipsoid. This interpretation will provide considerable in-
sight into the properties of the estimators, and will open the path
toward the discussion of the influence of the perturbations in the
solution of the linear equations involved. Excellent discussions of
this interpretation are found in references [3-2, pages 40-58 and
3-7, pages 406-411].

Consider the expression given by equation (3.2-3). For a
given observed value y, that expression represents a quadratic
function in N-dimensional space of the x variables. Under the over-
determined model the solution of the normal equations is unique.

Therefore, the minimum of the quadratic form is obtained at a

unique point ¥ . For other values of x the residual surface assumes

the shape of a parabolloid. Let r denote the minimum value of the

quadratic expression. Consider the expression 1

(x-gg)T 1’1(1-_115) = r + K2 (3.2-25)

Upon the substitution of the value of £ given by the solution of the

g
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normal equations, it is easy to verify that

(x-x)" H" V "H(x-%) = K (3.2-26)

This is the expression of an ellipsoid with center at the point X in the
N-dimensional x - space. Following reference 3-21 this ellipsoid
will be called the K - ellipsoid. Figure (3.2-1), obtained from ref-
erence [3-2, page 42] shows the residual surface and the K - ellip-
soid for N = 2.

Consider now a vector h in the N-dimensional space. For a
nondegenerate ellipsoid (this is the case with the overdetermined
model), there will be two (N-1) dimensional planes orthogonal to h
and tangent to the ellipsoid. These are planes such that the ellipsoid
lies entirely on one side of and has at least one point in common with
them. Following Scheffe [3-7] this planes will be called planes of
support of the K - ellipsoid.

On the other hand, equation (3.1-7) gives the value of the
estimator of the parame‘tric function & as expressed by the inner
product of the vector ¢ and the estimator X . If one considers the
planes of support of the K - ellipsoid perpendicular to ¢, their ana-

lytical expressions will be given by [3-2, page 41]

= 'z +[TE YV H) (3.2-27)
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Figure (3.2-1) The Residual Surface and
the K--Ellipsoid for N=2
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Since

var(® = ul vu = ¢t @V ) e (3.2-28)

it follows, comparing (3.1-7), (3.2-24) and (3.2-27), that the con-
fidence interval I.K(Q) can be given by the distance between the two
points where the planes of support touch the K -ellipsoid. Figure
(3.2-2), obtained from reference [3-2, page 43] illustrates the
previous assertion. The same figure also shows that the width of
the confidence interval is proportional to the distance between the
two support planes.

Since the width of the confidence intervals of parametric
functions of pixel values is proportional to the distance between the
planes of support, and since this distance will vary depending on the
direction of the vector c with respect to the axes of the ellipsoid, it
is important to character ize the directions of these axes in terms of
measurable quantities.

Fquation (3.2-26) gives the analytical expression of the K -
ellipsoid. If a translation of origin in the EN space is made through

the equation

136>

V :_x--

(3.2-29)

equation (3.2-26) assumes the form




Figure (3.2-2) The Determination of the Confidence
! Interval for Parametric Functions
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XTg y'lr_{X - k2 (3.2-30)

In order to find the directions of the principal axes of the K -

ellipsoid, first observe that a radius vector from the origin to any
point on the surface of the ellipsoid will be colinear with one of the
principal axes if and only if it will be in the direction of the normal
to the surface at that point. On the other band, the ellipsoid can be

considered as an equipotential surface [3-2, page 45] of the scalar

field

Blv) = v 5 v 'luy (3.2-31)

so that the normal to the surface can be obtained by the direction of

the gradient vector

() = 2H  V  Hv (3.2-32)

Consequently, the problem of finding the principal axes of the ellip-
soid reduces to the one of finding axes that are colinear with the

gradient vector. This is expressed by the following equation in p,

for some constant )

H V Hp = Xp (3.2-33)

The previous equation represents an eigenvector-eigenvalue

e e PRI L
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problem and the fact that ET \i-l H is symmetric and positive defi-
nite (since V is positive definite and H has full column rank in the
overdetermined model) guarantees that its eigenvalues are all real
and posiiive. The eigenvectors can always be chosen to be mutually
orthogonal and these will be the directions of the Principal axes.

Consider now the diagonal matrix 22 containing the eigen-
values of ET !_l H in decreasing order. Consider also the unitary
matrix P such that its columns are the normalized corresponding
eigenvectors. The matrix 22 is obtained by the following transfocr-

mation

pTuTv'iup = o (3.2-34)

In order to obtain the axes of the ellipsoid a rotation of coordinates

is performed

r = Ply (3.2-35)

This will align the axes of the ellipsoid with the axes of the coordi-
nate system. By solving for v in the previous equation and substi-

tuting in (3.2-30), the following expression is obtained

Tt vilup, =k? (3.2-36)

and, using (3.2-34), this reduces to
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_r_T Qz T = K2 (3.2-37)

Taking into consideration that 9_._2 is diagonal, with entries
W WZ’ ces, wn in the diagonal, the previous expression can be re-

written as

2
N Ty

v ~—-——-—-2 = 1 (3. 2-38)
i=1 K /wi’-

This is the canonical form of the equation of an ellipsoid

when the axes are colinear with the coordinate axes. The lengths of

these axes are given by

1 E =) i = 1, 2,---,N (3.2-39)

It also follows that the principal axes of the ellipsoid have lengths
inversely proportional to the square root of the corresponding eigen-
values.

Recall that the width of the confidence interval for parametric

functions of pixel values is proportional to the distance between the
planes of support. Now, if the vector c that specifies the parametric
function is parallel to an eigenvector that corresponds to a small
eigenvalue, the distance between the planes of support will be larger

than in the situation where c is parallel to an eigenvector corres-
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-1
ponding to a large eigenvalue of ET VvV H.

) So far the confidence interval for parametric functions of
pixel values has been derived under the assumption that the variance
of the noise is known to the experimenter. When this is not the case
the confidence interval can be determined as follows. First observe

that, under white noise conditions, E_T;c -ch is normally distri-

buted with zero mean and variance 0‘z cT(HTH) c. Therefore, the
y ratio
N
< (x-x
2 (x-x) (3.2-40)
T(IiTH)-l

‘ should be a standardized Gaussian random variable. The parameter

0 is not known but it has already been derived that X and s2 =

(z Hx) (y -Hx) are independently distributed. Therefore, the

M-
ratio given by (3.2-40) and -('—N)-s— are also independent. Since
.“ o’
: 2
. _(_I\_/;-_él\i)s_ is Xz distributed with M-N degrees of freedom, it follows
N fo]
o that

(3.2-41)

e
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is distributed according to a Student distribution with (M-N) degrees
of freedom. The determination of the confidence interval is then
easily done by using tables of this distribution. The determination
of the confidence interval for the unknown variance can be done by
observing that -(&-lzi)iz— has a chi-square distribution with (M-N)
degrees of freedo(:n.
3.3 Analytic Study of the Condition Number

This section considers the effects that perturbations on the
observed blurred pixels have on the estimated original pixel values,
from the complementary point of view of the numerical analyst.
Under this perspective,the estimation of pixel values would consist

in the problem of solving a system of linear equations
Hx = y (3.3=1)

such that the right hand side is subject to perturbations. These
errors represent the role of the noise in the system. Consider the
effect of the perturbation vector n on the solution of the system of

linear equations. Call

19>

= x +A0x (3. 3-2)

the solution, x being the true vector. The set of normal equations
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ET VY Bt = B Y 'y = BTV Hx4n)  (3.3-3)

gives the solution for the perturbed system. Reduction of the pre-

vious equation gives

T

n (3.3-4)

At this point, assuming the overdetermined model, one could simply
invert (ﬂT Y_-l H) in order ‘o obtain the change Ax in the solution of
the linear system due to the perturbation n. A decomposition of the
matrices involved will be performed, however, giving more insight
into the problem [3-2, pages 47-58]. The assumption that 1’1 is

positive definite leads to the possibility of a decomposition of the

form
= C C (3.3-5)

so that equation (3.4-4) can be written as

B cTcHMx = H ¢T Cn (3.3-6)

A factorization of the matrix C H will now be performed. This

is the so-called singular value decomposition of a rectangular matrix

[3-3, page 381

CH = g;}’g (3.3-7)




where L is the (Nx N) diagonal matrix of the eigenvalues of

(ET QT CH), P is a unitary matrix whose columns are the eigen-

vectors of (Q_EI_-I_T Q_T) and Q is also a unitary matrix whose rows

are the eigenvectors of (ﬂT QT CH). As a result, equation (3.3-6)

can be rewritten

rosx= L¥pTcn (3.3-9)

Since (IiT Q_T CH) is nonsingular, L is also nonsingular and one ob-

tains (by multiplying both sides of the equation by QT E- l)

(3.3-10)

. 9'1 (3.3-11)

where q; are the rows of Q (eigenvectors of ET QT CH)and w

i’

i=1,2,..¢Nare the square root of the eigenvalues of (LI_TQT CH).

The last quantities are called the singular values of the matrix CH.
Equation (3.3-11) shows that the component of the error along

-1
each of the eigenvectors of (&T V H) is inversely proportional to
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the corresponding singular value of CH. Assuming that the com-
ponents of (_F_’T C n) do not vary much in magnitude, the components
of Ax will tend to be larger in the direction of eigenvectors cor-
responding to smaller singular values.

So far the analysis of perturbations has been restricted to
absolute changes in the least squares solution due to errors in the
observed values. The next step consists in analyzing relative
changes in the solution due to perturbations in the data as well as in
the matrix H.

Assume for the sake of simplicity, that the noise is white.

This implies that the solution to the normal equations is given by
X =(HH Hy (3.3-12)

As pointed out before, the previous expression can be put into the

form

£E=Hy (3.3-13)
+
where H is the pseudoinverse of H.
Call
v = x+£ (3.3-14)

and let ¥, and il be the projections of y and v respectively, onto the

range oi the transformation H,denoted R(H). Under these conditions,




g
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the following bound is valid for the relative changes in the solution

to the least squares problems 3-8, page 221]

“E+x-l;l+i” < cH) . Hxl-iln

Iy g,

where c(H) = "ﬂ" . "Ii+" .

(3.3-15)

(3.3-16)

The quantity c(H) is called the condition number of the blur

matrix H, It plays an extremely important role in explaining the

c{fect of perturbations on the accuracy of the computations involved.

Equation (3.3-15) can be obtained by the following reasoning.

Decompose y into y, a.nd_z2 where Y, belongs to R(H) and Y, is in its

orthogonal complement, which is the null space of ET, denoted by

N(H'). Therefore,

+ + + + T, =T +
Hy=Hy +Hy =Hy +E BHE vy, "Hy,

Analogously,

'y = ®

bei

1

where 7 , is the projection of y onto R(H). Hence

(3.3-17)

(3.3-18)

\ +1 -Ii+i“ = "I'_I+(l1'i1) I < “_1—_1_+” . "XI 'il I (3.3-19)
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On the other hand, it is easily shown 3-8, page 2207 that if

_I-_I_+x is the solution to the least squares problem, then

HH'y = X, (3.3-20)
and
||3L1 I = lgatyl < lal . Nty (3.3-21)
>
2l ] 3.5

By dividing (3.3-19) by (3. 3-22) one obtains the desired result

Observe that it is only the component of the relative error in
the observed vector of pixel values lying on the range of the blur
matrix that contributes to the relative error in the estimated p'xel
values.

The condition number will determine the effect of the noise
in the restoration process. If its value is small a little relative
perturbation on the observed blurred picture will not produce large
relative changes in the restored picture. In this case, the normal
equations are said to be well conditioned. If, on the other hand, the
condition number has a large value, small relative changes in the

observed values may greatly affect the estimated pixel values and

the normal equations are said to be ill conditioned.
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The matrix norm used in the expression of the condition
number “g” N g+ | can be any one of the matrix norms that are
consistent with the vector norm used. In particular, one may select
the spectral norm, which is equal to the largest singular value of
the matrix.

In order to find the largest singular value of the pseudoinverse
ﬂ+ , (or (ng' if a colored noise corrupts the image) the factori-
zation expressed by equation (3.3-7) will be used. By doing this and

also using the expression for the pseudoinverse one obtains

cw’ = pew e emT = refLirTeLtay ! @ il pT
(3.3-23)
But since
pTp-=0o" -1 (3.3-24)
and
(-_TLIQ)'I =QTL lg (3.3-25)
it follows that
cHt =T L tpT (3.3-26)

The matrix (Q_I_{)+ is an NxM(M 2 N) matrix, so its singular

values are calculated by the pusitive square roots of the matrix
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cmt remt” = Q'L

Q (3.3-27)

The eigenvalues of this matrix in factorized form are given by the

-1 1 1 1
diagonal elements of L. , namely, s LR = As a
W, w, w

+
consequence, the singular values of (CH) are the reciprocal of the

+ 1
singular values of CH. The largest singular of (CH) is & °

n
Therefore, the condition number is given by
+, "1
lemiiem Il =5 (3.3-28)
n

that means that this nufnber is the ratio of the largest to the smal-~
lest singular value of the matrix (CH).

A further insight can be obtained by considering the r.e-
lationship between the conditinrn number and the K-ellipsoid [ 3-2,
page 54]. Equation (3.2-39) expresses the relationship between the
length of an axis of the ellipsoid and the co:'responding singular
value. Using that expression one may immediately conclude that
the ratio of the largest to the smallest singular value of (CH) is also
the ratio of the largest to the smallest axis of the ellipsoid. Tllis
means that the more the ellipsoid departs from the shape of a sphere,
the more i1l conditioned the restoration problem will be. Figure

(3.3-1) obtained from reference [3-2, page 54] shows the

B Ry N e e ol s
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<— well conditioned
problem

poorly conditioned
problem

Figure (3.3-1) K-Ellipsoids for a Well
Conditioned and a Poorly Conditioned Problem
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comparison between the K-ellipsoids for the well and ill conditioned
system, for the case where N = 2.

When the noise is Gaussian, the observed blurred and noisy
pixel values are also normally distributed, under the linear model.
in this case one can define ellipsoids centered at the mean value of
the observed pixel values (it may be assumed to be the origin for
convenience) and containing a given Percentage of this multivariate
distribution.

Since the estimated pixel values are obtained by combining
linearly the observed values, it follows that the estimators are also
Gaussian distributed.

It is possible to show [ reference 3-2, Pages 55-587 that if
the ellipsoid for the observed values in a regression model has the

exp. 2ssion

T . -1 2
(x-Hx)" V¥ (y-Hx < » (3.3-29)
then the corresponding ellipsoids of the estimators are given by

TET -1 2

(x-%) V Hx-X) < (3.3-30)

This ellipsoid es sentially gives the multidimensional confidence
interval for the pixel values under the normality assumption. The

eigenvectors and eigenvalues (gT X-l H) will determine the size




and shape of the ellipsoid.

The a’tention will be devoted now to the problem of con-
sidering the effects of prrturbations of the blur matrix H on the
restoration problem. This question is of extreme importance since
the experimenter rarely knows with great precision the spread func-
tion. This is particularly true when that function is derived from
measurements that inevitably involve errors.

The analysis of the effect of the perturbation on the blur
matrix is quite involved. In order to do this a new terminology is
introduced by Stewart [3-97. Let E be a perturbation matrix on the
blur matrix H and S be a subspace of RM. Each coluran of E is an -
M-vector that can be projected onto S. Call E_l(xl) and _}22(12) the
projections of E(y) onto the range of the blur matrix, denoted by R(H)
and its orthogonal complement (N(_IiT)), respectively.

Assuming the overdeter mined model and if

“I—_I+ 8 I'_}_:_lll < 3 (3.3-31)

then the columns of (A + E) are linearly independent. Also, assuming

that

>

"
o
<

(3.3-32)

and
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2=H+D'y (3.3-33)
then
" = E E E
P U B L BB )!l_z“
By IIEL 1Bl llx, H e’z
(3.3-34,
where c(H) = H_Iin . "ﬁh I (3.3-35)

is the condition number of H and the consistent Euclidean norm for

vector and Frobenius norm for matrices is used. The third term

in the bound depends on the square of “EZ ”2 and usually can be
disregarded when compared to the first two terms. The first term
is simi’ar to the bound that can be derived for perturbations in non-
singular linear systems.

The second term states that the relative perturbation in
N(_IiT) is amplified by c(H) - :T|¥2—::' . Since ¥, is the projection of
y onto R(H) and Y, is the pro_]ectlion on its orthogonal complement,
namely N(H ), it follows that the ratio H measures how nearly
y lies with respect to R(H). If y is close t<1> R(H; this ratio will be
small. If [|E, || and || E, || are of the same order of magnitude then
the first term tends to dominate when Y, is small. If, on the other

hand, XZ is large, the second term is prevalent. Stewart states

loosely that "if y very nearly lies in R(H), then c(H) is the condition




66
number for the least squares problem, otherwise CZ(E_) is the condi-
tion number., "

An important conclusion in the case of image restoration can
be drawn. If there is a small amount of noise present in the observed
pixel values (high signal to noise ratio), the y will tend to be near
R(H), which implies that c(H) will be the condition number. If, on the
contrary, the signal to noise ratio is low, the component of the noise
will tend to place y farther away from R(H) and in this case cz(ﬂ) will
be the condition number. Since c(H) is always greater or equal to
one, the latter case is certainly a worse situation. Incidentally, it
should be remarked that cz(w is the condition number of the matrix

@),

3.4 The Underdetermined Model

So far the study of the image restoration problem has been
essentially restricted to the overdetermined model. This means that
the (M x N) blur matrix H is assumed to have rank N. In other words,
the columns of this matrix are supposed to be linearly independent.

On the other hand, if, in the discretization method of the con-
tinuous planar equation that describes the blurring process, a number
of nodes for the quadrature formula is selected exceeding the number
of observed values (i.e., M <N), this condition is violated and the

rank of the hlur matrix E is necessarily less than N.
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Under the overdetermined model there was a unique solution
for the restoration problem given by the set of normal equations.

Furthermore, estimators and finite confidence intervais were ob-

tained for every parametric ‘unction of the pixel values. Also, a
finite condition number was obtained by considering the ratio of the
largest and the smallest singular values of the matrix CH.

If H has not full column rank several impartant consequences

are immediately derived. First, the uniqueness of the set of normal

-1
equations cannot be guaranteed any more, since the matrix (ETX H)

is sirgular and therefore cannot be inverted. Second, the smallest

singular value of the matrix CH is zero, re sulting in a condition num-
ber with an infinite value. As a consequence of this fact, many linear
combinations of pixel values have an infinite confidence interval,
which is equivalent to ray that these functions are not estimable
There is a concept that not only is necessary for the study of
underdeterminad systems but also broadens the view over the over-
determined systems, unifying the whole study of the linear model in
regression analysis. It is the concept of the generalized inverse oi a
matrix, which was mentioned briefly in connection with the treatment

of the overdetermined model and now is more filly treated.

Initially, a brief survev of generalized inverse concepts will
be presented. There are saveral ways of presenting these concepts. '

The presentation contained in reference [3-3] will be followed.
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+
Given an M x N matrix H, the matrix H obtained by the

following limiting operations

-1
lm@H 4 + 0’1 HT
a-0

Je
I

=1
HmH ©H +o%]
a0 (3.4-1)

always exists. Also, for any (M x 1) vector y, the vector

= H+x (3.4-2)

%>

is the vector of minimum norm among those that minimize

Iy - x| (3.4-3)

It can be shown that X is the unique vector in R(E_T) satisfying the
equation
Hx =§ (3.4-4)

where y is the projection of y on R(H). This vector X satisfies the

set of normal equations

H'Hx =H'y (3. 4-5)

+
The unique matriz H 1is called the generalized inverse or the pseu-
doinverse of the matrix H.

As a corollary of expressions (3.4-1) and (3.4-2), it follows

. .

e

B
3
.
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.

that for any vector y, _I-lﬂ+x is the projection of y on R(H), Q-I_-I__I-l+)1
is the projection of y on N(_I;IT). Furthermore, for any vector x,
§I_+_I_-I__>5 is the projection of x on R(I_—I_T) and (_I_-I_-_I+_Ii)§ is the projection
of x on N(H). It should be observed at this point that a projection
matrix P is idempotent, i.e., _132 = P,

If H is square and nonsingular, §+ is the inverse of H, I;I_-l.

If the columns of H are linearly independent, like in the overdeter -

mined model, the pseudoinver se is given by

ut - @) 'E (3.4-6)

If, on the other hand, the rows of H are linearly independent, the

pseudoinverse will be represented as

gt = gTwnh)’ (3.4-7)

A better perspective over the pseudoinverse can be obtained by
considering some specific cases. Take, for example, the (1 x 1)

matrix H, represented tv the value h. In this case,

H

(3.4-8)

If H is diagonal,
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E = diag (hl, hz, see hM) (3.4-9)
then
+ +  + +
E = dia.g (hl ’ hz g 000 hM ) (3.4-10)
where
hi+ =0 ifh =0
(3.4-11)
1
= hi if hi # 0

If H is a symmetric (M x M) matrix, it is possible to repre-

sent it in the following form

H =TDT" (3.4-12)

where T is an orthogonal matrix and D is diagonal. Using (3.4-1),

+
H can be expressed as

im (D’ + ’p” ' DT”

a0

e
"

T tim(p® + o’y 'p 17

n-+0

[0

Tp" 1T (3. 4-13)

As a result, the pseudoinverse of a symmetric matrix can be obtained
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by pseudoinverting the diagonal matrix that consists of its eigenvalues.
+ -1

If H is nonsingular, all the eigenvalues are nonzeroand D =D , so

that H' =§1_'1.

This result on symmetric matrices leads to spectral repre-

| gentations for the pseudoinverse matrix. If the columns of T are de -

LA N ) ’ ’ LN ] ’
noted by _t_l, LZ' s LM and the eigenvalues of H by 1 )\2 XM
the matrix H can be represented as
o T
H = ? )\i _gi_tj (3.4-15)
i=1
+
and the pseudoinverse H by
M
+ +. T
= ; .4-1
H i}=31 N (3.4-15)

where )\: has the same meaning as in (3.4-11).
Two results that will be useful in the analysis of the underde-

termined model of the restoration process are now stated. For any

matrix H, x belongs to the null space of H if and only if

x = (L-H'Hy (3.4-16)

for some vector y. For any matrix H, zbelongs to the range of H if

and only if
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z =HH u (3.4-17)

for some vector u.

For any rectangular matrix H, the pseudoinverse can be ex-

Pressed in terms of pseudoinverses of symmetric square matrices as

follows

E+ % (ETH)+ET = HT( gT)+ (3.4-18)

It can be shown that an entirely equivalent way of introducing
the pseudoinverse exists. This is the so called Penrose characteri-
zation [3-3, page 28]). A matrix ﬂ+ is said to be the pseudoinverse

of a matrix H if and only if the four conditions are satisfied

+ +
HH and H H are symmetric

H
+

Iz
jz

+
E:
+

and H _=g+

e

These results can now be applied to the restoration problem.

Consider first the no noise case
Y=Hzx (3.4-20)

where x represents the vector of pixel values, H is the blur matrix

and y is the vector of observed values. No restriction is placed on the




73
dimension of the blur matrix, either the overdetermined or the un-
derdetermined models could be involved.
Consider first the problem of existence of solution. In order
for a solution to exist y must be on R(H). By (3.4-17) this occurs if
| and only if y = I_II;I+5 for some u. On the other hand, since I;II;I+ is a
projection on R(H), it follows that

HE'y = ®EH% = HH'u = (3.4-21)

The condition expressed by the previous equation is the so called con-
sistency condition for the solution of a linear system.
At this point it is perhaps useful to point out that, under no
noise, for real situations, y will always be in R(H) since it was ob-
tained by blurring an existing picture. This is why the restoration
problem is then formulated as searching for the solution of the linear
system (3.4-20) instead of directly solving for the least squares
i problem. |
Turning now to the problem of uniqueness of the solution, the
k. homogeneous system Hx = 0 has to be investigated. Observe that, ‘
|
i

) for any vector v

x = (L-HHy (3.4-22)

is a solution to the homogeneous system since
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+ +
Hx = HI-H'Hy = (H-HHHy = 0 (3.4-23)

where in the last equality one of the conditions expressed by (3.4-19)
was used. Therefore, if §+§ # 1, a nonzero vector can always be
added to the solution, without changing the left hand side of system .‘

(3.4-20). A necessary and sufficient condition can be expressed by

'H =1 (3. 4-24)

this condition being equivalent to the statement that N(H) consists only :

of the zero vector.

A general solution to th: lihear system (3.4-20) can be ex-

pressed as
+ +
x =Hy+ (-HHy (3.4-25)

where v is an arbitrary vector.

M i e S e

In the case of the overdetermined system, the blur matrix H
has linearly independent columns, E+ is expressed by (3.4-6) and the

condition (3.4-24) is satisfied so that the unique solution is given by

¢ X = _I-l+y_ (3.4-26)
'15: For the underdetermined model, condition (3.4-24) is not satisfied

and there will not be a unique solution to the system of linear




equations.

The vector ﬂ+x is the minimum norm solution. This can be
verified by noticing that the set of vectors given by (_I_-E+ﬂ)z is ortho-
gonal to §+y_ as shown below

+. T 4+ T erten Tort
[(CHHy]"-Hy = v (I-HH Hy (3.4-27)

where the second equality used the fact that (;—gJ’g) is a symmetric
matrix and the fourth equality was based on one of the relations in
(3.4-19). Figure (3.4-1) taken from reference [3-2, page 63], shows
the geometry of the solutions to the linear system in the underdeter-
mined case, when N = 2 and the dimension of N(H) is 1.

Now, suppose that noise is added to the system so that
Yy = Hx +n (3.4-28)

In this case one would search for an estimator £ of x under some
meaningful statistical criterion. In the overdetermined case the best
linear unbiased estimator (B, L.U.E.) has already been obtained and
it was shown to be unique. Suppose, therefore, that one is looking
for a B,L.U.E. estimator in the underdetermined model, where rank

(H) < N. Assume that a linear estimator of the form

B B P T T T
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o |

)y for some v}

Figure (3.4-1) The Geometry of the Solutions
of the Underdetermined System




x = [_-T_Tx (3.4-29)

is used, where U is an (M x N) matrix.
By imposing the unbiasedness condition, the following ex-

pression has to be valid, for any value of x

UTHx = x (3.4-30)

Thus, it follows that

UH =1 (3.4-31)

But if this is true, the rank of_IN, N would be larger than the
rank of one of its factors (H, with rank < N) which contradicts the
Sylvester Inequality for the product of matrices. Therefore, there is
no unbiased linear estimator for the vector of pixel values X.

This fact greatly limits the usefulness of the underdetermined
model. This can be viewed from the perspective of being the price
paid for increasing the number of quadrature nodes above the number
of observed values. Because of lack of information an unbiaseri esti-
mator for the pixel values cannot be obtained.

However, restoration can be attempted according to another
criterion, namely, the minimization of the least squares quadratic

form

&
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0x) = (x-HxV (y-Hx) (3.4-32)

where V is the covariance matiria of the noise that corrupts the

picture.

The set of normal equations is represented by

-1 : =
H VIH®R = B vy (3.4-33)

By performing the factorization

vl = cTe (3.4-34)

(3.4-33) can be expressed as

@’ cn)

%>
i
Jas

Cy (3.4-35)

in order to check whether the system is solvable, the consistency
condition of equation (3.4-21) would have to be checked. Instead of
doing this, a simpler way would be to observe that R((QE)T) =
RUCH)T CH). Since H C' Cy is in the range of HL C.* = (CH)T, it
must be in the range of ET gT CH = (Q_I-__I)Tgli. As a result, it must
be the image of some X under the transformation (QE)T CH. In other

words, the set of normal equations is always consistent.

Using (3.4-25) the general solution of this system. of linear

equations is given by
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k=@ cTem ' c oy + [1- e ¢ Tem tmTc Temly  (3.4-36)

for an arbitrary vector y.
Taking into consideration (3.4-18), the previous expression

can be reduced to

& = (cH)'oy +[1-cH)’ cHIw (3.4-37)

The solution of the least squares problem is, therefore, not
unique and any vector in the set expressed by the previous equation
minimizes the quadratic form. The vector (Q§)+Qx is now merely
the smallest norm solution that gives this minimum value.

In Figure (3.4-2), taken from reference [3-2, page 65], the
geumctry of the least squares problem for the underdetermined
model is shown. The surface of the quadratic form (3.4-32) is in-

finitely long in the directions of the eigenvectors of 1V ™ H =

ET_C_ITQEcorresponding to the zero singular values of (CH). The set
of solutions given by (3.4-37) is the Projection on the x space of the
bottom of the infinitely long quadratic through. The K-ellipsoids are
degenerate, being infinitely long in the directions of the mentioned
eigenvectors. One of the principal axes of thase ellipsoids is given

by the solution set of the Jeast squares problem. The number of

dimensions where the ellipsoid is infinite is the dimension of N(H),




Figure (3.4-2) The Geometry of the Underdetermined Model
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assuming that V is positive definite.
Suppose now that the experimenter is interested in 2stimating
parametric functions of the pixel values, represented by the inner

product

3= clx (3.4-38)

A linear combination of the observed pixel valuer is used to perform

this estimation
$ = uy (3.4-39)

The requirement of unbiasedness implies that

Eu’y)

n
jo
14

(3.4-40)

which in turn leads to

ETHx = E_TJ_{_ (3.4-41)

for any value of x. Therefore, the following equality must be valid

pH = o (3. 4-42)

At this point the analogy between (3.4-31) and (3.4-42) is clear. The
previous equation can be also expressed by stating that there must

exist a vector u such that
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HTE = c (3.4-43)

In other words, the vector c has to be a linear combination of the
] o e .
columns of H , a condition that can also be expressed by saying

that c belongs to R(l-I_T) or still that
+
HHe = ¢ (3.4-44)

* T €
since H H is a projection :natrix onto R(H ). The term R(H ) has
dimension, say K < N, w' h will determine the number of linearly
independent parametric functions of pixel values that : e estimable.

The functions g;rz,given by

A0
)

(0,.00,1,.00,0) i = ]., 2,"0N (3-4'45)

form a set of N linearly independent parametric functions that can-
not all be estimated by an unbiased estimator. This confirms the
result that the whole vector of pixel values is inestimable.

If ¥ is an ¢stimable parametric function, it can be proved

that the estimator % is given by
L gT(QI_{)+91 = ¢'x (3.4-46)

where
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% = (CH)Cy (3.4-47)

is the minimum norm solution to the least squares problem. The

variance of this estimator is given by

6%(3) = u Vu (3.4-48)
where

u = ¢ (CH) ¢ (3.4-49)

Asg far as confidence intervals and hypothesis testing for para-
metric functions of pixel values, the analysis can be carried out in a
manner analogous to the overdetermined model. The confidence in-
terval will be finite for estimable functions and infinite for inestimable
functions. Similarly, hypothesis involving estimable functions will
be testable, while those involving none gstimable functions will be

nontestable. (See Appendix A.)




4. CONSTRAINED RESTORATION

In the previous chapter the restoration problem was solved
by application of regression techniques. However, the experimental
results will show that the problem can often be ill conditioned. This
fact can be expressed by the large variances of the estinators of the
individual pixel values or linear combinations of them. On the other
hand, these techniques make use of the minimum possible amourt of
a priori information about the image to be restored. Pixel values are
simply regarded as parameters to be determined in a N2 dimensional
space. Through the use of some additional a priori information it is
possible tc reduce considerably the uncertainty about the estimators.

This can be done in several forms.

4.1 Analysis of Established Techniques

The classical Bayesian approach consists of assuming an a
priori joint probability density on the pixel values to be estimated.
The problem of estimating these values under a meaningful criterion
like the mean square error, for any kind of a priori densities can be
very complex, involving nonlinear filters. If only linear operations
are allowed or if only second moments are known or if both noise and
pixel vectors are gaussian distributed and any operation is allowed,

the optimum procedure is the well known Wiener filter.

84




The problem can be formulated by the linear model
y =Hx+n (4.1-1)

where H is an (Mz x Nz) matrix, y is the (M2 x 1) vector of observed

pixel values, x is the (Nz x 1) vector of pixels to be estimated and n

is the (Mz x 1) noise vector. The covariance matrices of both n and x

are known to be respectively, V and gxx’ assumed to be positive
definite. Zero means and uncorrelatedness of signal and noise are
assumed for simplicity. It is desired to estimate the vector of ran-

dom variables x by means of a linear operation

= Gy (4.1-2)

in such a way that the covariance matrix E {(&-E)T(g-g)} is minimized
in the sense described in section 3.1 of chapter 3. It is well known
that G can be obtained by imposing the orthogonality principle, that

leads to the result

HC HT+V)'1=(C
Hc B X C

and the covariance matrix of the estimator is given by

C HT(H HT+V)'1HC (4.1-4)
_—XxXe= T =xx- - -—=Xx

A connection between the Wiener filtering technique and the
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regression techniques can be drawn. Assume that both signal and

noise are uncorrelated, that is

vV =1 (4. 1-5)

and
. =61 (4.1-6)

Now suppose that the value of 62 is fixed at unity and that 02 assumes
Progressively lower values approaching zero. Under these conditions,

the first expression for G assumes the form

G = lim H (M + 027}

40

=ut (4.1-7)

where equation (3.4-1) has been used. The same result could be ob-
tained by fixing the noise level o'z = 1 and letting the variance of the

signal, 62, g0 to infinity. In this case the second expression for G

would be

G = lim #2_1 + ng gl o §+ (4.1-8)

4\ B

In either case, the Pseudoinverse is obtained when the variance of the
a priori distribution on the pixel values is much greater than the noise

variance. This corresponds to assuming essentially no a priori
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knowledge about the parameters to be estimated, which is exactly
what the regression techniques do.

It is interesting at this point to relate expressions (4.1-7) or
(4. 1-8) to the method of ridge regression [2-21, 2-22, and 2-23] or
Twomey's method [2-19 and 2-20] for the case where the matrix V.
is the identity. The fact that there is some probabilistic prior infor-
mation about the vector of pixel values plays the same role in the
computational procedure as the damping factor Y in (2.4-7), for
example.

Instead of a probabilistic a priori information one could also
incorporate deterministic a priori constraints. These could be de-
rived, for example, from the knowledge of some physical restrictions
that the solution must satisfy. The methods described in chapter 2,
Phillips', Twomey's and Tichonov's, can be regarded as equality
constrained methods where the constraint expresses some degree of
smoothness that the solution of the least squares problem must
possess.

In the following discussion a framework to understand these
equality constrained methods will be formulated. This will not only
help to get a better understanding of these methods but also will make

the connection between them and the linear equality and inequality

methods to be described later.
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Phillips', Twomey's or Tichonov's method can be described
as searching for the minimum of a quadratic form §TQ§ that ex-
Presses the smoothness requirement, subject to an equality con-

straint on the residual vector

(r-Hx (y-Hx) = e (4.1-9)

By imposing this restriction, the stationary point of the Lagrangean

expression

F(x, ) = §T_<.3_§ + l[(x-Hz)T(x-Ez)-e] (4.1-10)

is searched for. Taking the derivatives with respect to x and ) and

setting them to zero one obtains

= 2Cx + \[-2H'y + 2H Hx] = 0 (4.1-11)

% |

OF

W: (.Y'I;IE)T(.Y'I;IE) -e = 0 (4.1-12)

From (4.1-11) it follows that

(C+ MM Hx = My




or, dividing by )\, and solving for x

— l—

x =( Ty + le (4.1-14)

where ) is chosen such that (4.1-9) is satisfied.

Now consider another problem related to the previous one. It

consists of solving the least squares problem, thatis, minimizing the

norm of the residual (y -Hx), but with the additional restriction of

satisfying an equality constralint expressed by

# d (4.1-15)

In this case the Lagrangean expression is

Glx, \) = (1-E§)T(x-li§) + Y[ETQ’_‘.'d] (4.1-16)
3 Setting the derivatives equal to zero, it follows that
;0
%C:— - 2Ty + 2H'Hx + 2YCx = O (4.1-17)
‘ G _ T -
el Cx -d =0 (4.1-18)

To av:

Solving for x from the first equation one obtains

>
4
A
]
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x = (H'H + vO) H'y (4.1-19)

A comparison of (4.1-14) and (4.1-19) reveals that the two somehow
inverse problems are solved by the same expression, the only dif-
ference being the Lagrange multipliers which are inverse of one
another. This can be viewed from a geometrical point of view, ex-
pressed by Figure (4. 1-1). In two-dimensional space, the contours
of constant value of both quadratic forms, (I-I;IJ_E)T(Y_-EX and 5Tg§
are represented. The same solution is obtained if §Tgx_is minimized
subject to (x-I_-_I:_:)T(x-gg) = e or if (x-I;Ig)T(x-gg) is minimized sub-
ject to :_:_ng = d.

Phillips', Twomey's and Tichonov's methods can therefore be
regarded as iterative methods to solve the equality constrained quad-
ratic minimization problem, with the equality being also expressed by
a quadratic expression. For Y= 0, the solution is equivalent to un-
constrained estimation; it will exhibit no bias and the covariance
matrix of the estimator is (ETIi)_l. For a value of Y # 0 this will
correspond to imposing a constraint expressed by some quadratic
form. The variance is reduced because the solution is now restricted
to the contour, but bias is introduced. When ¥ tends to infinity, the
estimator will be given by the origin of the x-space. This corres-
ponds to imposing the quadratic constraint §T_Q)_:_ , the variance will

be reduced to zero and the bias will be finite and given by the




Figure (4.1-1) Geometry of the Smoothing
and Regularization Methods
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difference between the true solution x and the zero vector.

A problem that occurs with the smoothing and regularizing
techniques is that, even though the variance of the solution can be
calculated, the bias is unknown. It is true, however, that, in prac-
tice, it has been observed that there is considerable reduction in
variance for a small amount of bias. A possible measure of the
quality of the estimator would be the mean square error, computed by
the square of the norm of the bias plus the sum of the variances of
the individual components of the estimator. The fact that the con-
straint is quadratic makes it difficult to develop any testing procedure
to verify whether the mean square error is reduced or not by the

imposition of the constraint.

4.2 Linear Equality Constraints

Another possible type of equality constraint that can be im-
posed over the solution of the restoration problem is the linear equali-
ty constraint. This could be derived from some a priori knowledge
that the analyst has about relations involving linear combination of
pixel values. Examples could be the specification of individual pixel
X values, of ratios of the values of some pixels, or the sum of part or

all of the pixels, representing the integral in the discrete form of the

Fo ]

image as measured by a photocell. Another zlternative would be
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presented when more than one image of the same object is available.
In this case, if the blur functions are supposed to be known, the
specification of blurred pixel values on additional pictures would
represent linear constraints to be met. The value of these con-
straints will depend on the amount of uncertainty represented by noise
in the additional images.

Suppose that the usual overdetermined linear model for res-
toration is adopted. The covariance matrix of the noise is V,

assumed to be positive definite. The set of linear constraints

A

LR

=t (4.2-1)

is imposed, where A is a (P x Nz) matrix of rank P < Nz, x is the

constrained estimator, and t is a (P x 1) known vector.
The minimization of (y -_I-_Igc_)T_Y- 1(1-;_19 can be carried out
using standard Lagrangean techniques. The optimal estimator will

be given by [3-1, page 100]

sty ' aTae Ty ' AT Ay w22

1
%>

where & is the unconstrained solution, expressed by

A = l = -
2= @ v avly (4.2-3)




and the covariance matrix of the optimal solution is

B -@ v e AT awT !

vimaT1 amTy )

1%
I
|

(4.2-4)

yi = (_I-_I'I‘I-IQI;I)-1 is the (positive definite) covariance matrix of the

unrestricted estimator. The second matrix on the expression of

V. can be shown to be nornegative definite with rank P. Therefore,
X

y;{ is equal to 15; minus a nonnegative definite matrix. As a con-

sequence, each diagonal :lement of yﬁ is less than or equal to the

corresponding element of y;{. Thus, there is a reduction in the

variance of each component of the constrained estimator vector as

compared to the unconstrained one. However, this should not imply

that the former is necessarily better than the latter. In fact, the

constrained estimator may present bias, as opposed to the unbiased-

ness of the unconstrained estimator. The bias of the constrained

solution is given by

x- @V A AE Y E AT Ax] (4205

This bias will be zero if and only if the specifications are satisfied

by the true vector x, i.e., if Ax =t. In this case, the set of con-

straints could be regarded as additional noise free observations. The

following result obtained by Theil [4-1, pages 536-538] follows
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naturally. It states that, if the restrictirns given by (4. 2-1) are
satisfied by the true parameter vectcr x, then the equality constrained
estimator X is B.L.U.E. of x in the sense of giving the minimum
variance among the class of all unbiased estimators that are linear

in y and t.

The reduction of variance comes from the fact that the solu-
tion X should lie in a smaller dimensional space. For example, as an
extreme case, if tha linear system (4.2-1) has a unique solution, the
variance of the solution will be zero. However, there will be bias if
the true picture is not this solution vector.

Like in the quadratic equality constrained methods, the amount

of bias is unknown, because the true vector of pixel values is not
accessible. A measure of the quality of the constrained estimator
should take into consideration both bias and variance. A possible
measure could be given by the mean square error matrix, defined by
E(X - :_5_)(:_"_2_ - §)T. The circumstance that the constrai=is are linear
Yy opens up the possibility of developing a statistical test procedure to

verify whether or not there is a reduction in the mean square error

by the imposition of the constraints. This is done by testing whether
or not the hypothesis that the matrix E(% - x)(k - §)T - E(x - x)
| (x - E)T is positive semidefinite is true. This procedure is due to

Toro Vizcarrondo and Wallace f4-2]. It makes use of the F -statistic
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described in chapter 3. The improvement in the mean square error
by the introduction of the equality constraint can be expressed by ile
fict that the noncentrality parameter A of the test statistic is 1ess
than or equal to one-half. Observe that the test to verify whether or
not the linear restrictions are true checks whethe.© or not this non-
centrality parameter is zero. In the MSE test one is not concerned
whether or not the linear restrictions on the pixel values are true,
but whether or not the imposition of these constraints represents an
improvement in MSE. One problem that ~ccurs in the application of
the Toro Vizcarrondo-Wallace test is that the decision regions have
been tabulated so far for only one linear constraint. In this case the
experimenter can always perform the F-test for linear hypothesis,
which has been tabulated for all degrees of freedom and uses the
same statistics as the Toro Vizcarrondo-Wallace test. This will not
tell whether there is an improvement in mean square error, but
whether or not the imposed linear restrictions are satisfied by the
true parameter vector.

The choire of the linear constraint tuv he imposed should be
judged by two factors. The first one is the knowledge, coming from
a priori considerations, that the relaticnship is true or at least ap-
proximately true so that an excessive bias will not be introduced in

the answers. This is important when the linear relationships are
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subject to random error, as is the case when they come from the

i observation of pixel values in another blurred and noisy image of the

|
f
;_

same object. The second factor that the experimenter should have in
mind is that a linear relationship tends to be more effective in re~
ducing variance if it is in the direction of smaller axes of the K-
ellipsoid rather than the larger ones. This can also be expressed by

the fact that the vector a_ in the linear re striction aTx =t, p
P P= P

1, 2, «s+, P should be in the direction of the eigenvectors of }_ITQ_- 1_1-1
corresponding to the smallest eigenvalues. These re~:irements may
not be very easy to conciliate in practice. Nevertheless, the MSE
test provides a tool to verify whether or not linear equality restric-
tions should be used in the restoration.

Nonexact linear constraints involving pixel values can also be
incorporated in another way, if the uncertainty can be modeled by 2
random process, with a known covariance matrix. An example wonld

be the use of an additional blurred and noisy image of the same ob-

ject. Suppose that the uncertain linear constraints are expres sed by

t = Ax+y (4.2-6)

where the covariance matrix of v is Tand v is assumed to be indepen-
dent of the n, for simplification. The combination of the sample infor-

mation expressed by (4.1-1) and a priori information given by (4.2-5)




can be accomplished through the model

Under this model, the estimator % is given by (using (5. 2-3))
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The covariance matrix of the new estimator is easily obtained as

T, -1 T

cr = @Tym + ATz (4.2-8)

%>

This technique of incorporating random linear constraints in

regression is known in econometrics as mixed estimation [4-3 and

4-4]. The connection between this procedure and the Bayesian ap-

proach is strong. In fact, suppose that t =0 and A = 1. This is

equivalent to stating that the vector of pixel values has an priori dis-

tribution with zero mean and covariance matrix V. Under these con-

ditions, expression (4. 2-7) reduces to




1 which is the familiar result of the Wiener filter.
( Observe at this point that the linear constrained or mixed
estimator procedures can make use of Fourier techniques if the

) ' matrices V and T are of the form oziand H and A represent convo-

lution operations. This would be the case when the constraints are
represented by an additional picture and the blur in the observed
picture as well as in the additional picture is space invariant and in
both pictures the noise is white.

The extension of the mixed estimation technique to multi-
exposure of the same object for more than two pictures is straight-

forward. Given K independent ohservations

Fy = Hki +£k (4.2-10)

with the covariance matrix of o being yk. the B.L.U,E. estimator

X is obtained as

>

E 7T _.i % K o -l

and the covariance matrix of the estimator is
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So far the discussion on linear constraints has been restricted
to the overdetermined model for image restoration. When the blur
matrix H has any rank, the analysis of the equality constrained least
squares problem can be carried out by the following procedure.
Assuming that the vector t in (4.2-1) is in the range of A, the general
solution of this equation is expressed by

2 =A"t+ @-A"AN (4.2-13)

for some vector u. Observe that the system (4.2-1) should be nder -
determined if the equality constraints do not involve any randomness,
otherwise these restrictions would determine the solution by them-
selves, irrespective of what the observed blurred values are. Under
white noise, the solution minimizes the norm of the vector (y - Hx)
over the set expressed by (4.2-13). Therefore, the problem has been

transferred to

min |3 - Hu| (4.2-14)

u

where
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for some vector z. Substituting this value of u into expression

(4.2-13), the solution for x is obtaired as

(o]

By observing that

which comes from the fact that (l_-ét_&_) is a projection matrix (onto

N(A)), equality (4.2-18) can be expressed as

Y- y-HAt (4.2-15)
and

= +

H = H(L-A"A) (4.2-16)
The general solution of (4.2-14) is given by

u = H'Y + I-HHE)z (4.2-17)

% = A"t + @-a"n) [EI_*E + (I_-ﬁﬁ+)£] (4.2-18)

B - B @) (4.2-19)
and also that
@-a'a)? = @-a'm = @-a'n" (4.2-20)

(4.2-21)
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{or some vector z. In analogy with the unconstrained case, it can

be shown [3-3, page 327 that

+—

o]}

+
= kg

%>

(4.2-22)

is the minimum norm solution.

Expr‘ession (4.2-18) (or (4.2-21)) gives the general form of
any solution to the linear constrained restoration problem. This
solution will be unique if and only if (L-E-FE) is the zero matrix or,
equivalently, if and only if the null space of i-_-I, N(E).is the zero vector.
The constraints substitute the matrix H for the matrix E for the de-
termination of the uniqueness of the solution. By the definition
(4.2-16) and by the observation that Q-é+é) pProjects any vector
onto N(A), this necessary and sufficient condition can also be expres-

sed by the condition
NH)NN@A) = 0 (4.2-23)

where 0 is the zero vector. This can also be viewed from another
Perspective: one can always add a vector lying anywhere on N(H) to
the solution of the unconstrained restoration prohlem and a vector
lying anywhere on N(A) tc the solution of the linear system of equaliiy
constraints. When the two systems are solved together, the sulution

will clearly be unique if their intersection contains a single vector,
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which is necessarily the zero vector. Therefore, the use of linear
equality constraints can transform the nonunique solution of the

1 underdetermined restoration problem into a unique solution if the

l constraints compensate for tie lack of information of the sample.

! This transforms the nonestimable vector xinto an estimable one.

E The imposition of linear equality constraints may still not

guarantee the uniqueness and estimability of the solution vector if

condition (4.2-23) is not satisfied. Nevertheless, the constraints
may transform previously inestimable Parametric functions of pixel
values into estimable functions. In fact, in the unconstrained case,
the only estimable functions ng were those such that the vector c
was orthogonal to N(H). Witt the equality constraints the set of esti-
mable functions comprises all those such that ¢ is orthogonal to the

intersection of N(H) and N(A). The latter set clearly contains the

forraer one.

4.3 Inequality Constraints

In the last section the a priori knowledge involving linear com-
binations of pixel values was analyzed and used in the restoration of
blurred images corrupted by noise. However, quite often the ex-
Perimenter has a priori information in the form of inequality con-

straints involving the pixel values. This is particularly true :n

image processing. In fact, the Physics of image forraation determine
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that pixel values should be nonnegative quantities. Furthermore, an
upper bound on these values is often known, as is the case when the
images are digitized and a finite number of bits is assigned to each
pixel. The analyst may also want to combine equality and inequality
cc;nstraints in the restoration model. It will be shown in the following
that if these constraints are linear and if a squared error is used as

a criterion, a tractable mathematical model is developed, leading to
considerably improved restoration results.

Suppose that the linear model
(4.3-1)

is adopted for the blurring process and the corruption by noise. As

before, H is an (Mz x Nz) matrix and y, x and n are vectors with com-

patible dimensions. The rank of the H matrix is R. IR = N2 or
R < N2, the model will be overdetermined or underdeter mined,

respectively. The covariance matrix of the noise will be assumed to

be V. The constrainis will be expressed by
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where A is an (S x NZ) matrix of rank S < Nz.

Under the least squares criterion the objective function to be

minimized is given by
T, -1
(y-Hx)" V  (y-Hx) (4.34)

The minimization of (4. 3-4) subject to the constraints (4.3-2) and
(4.3-3) may also be obtained if the vector x is supposed to be random,
with a uniform distribution in the region defined by the constraints,
and gaussian noise corrupts the image. Under the maximum a
posteriori (MAP) estimation criterion (or maximum likelihood, since
pP(x) is a constant in the interval), one looks for the vector g'i_ such that
p(gll) > p(x|y) for any x. Using the fact that the logarithm is a mono-
tonic increasing function and also the gaussian assumption on the noise

it is equivalent to maximize the function

log p(x|y) = log p(x) - % (I-Hy_'\[-l(x-ﬂy - log p(y)

Since p(x) is constant within the constraints, the maximization of
log p(x|y) leads to the minimization of the quadratic form (4.3-4)
subject to the linear constraints (4. 3-2) and (4. 3-3).

In order to obtain the quadratic programming problem in

standard form, some manipulation is necessary. Define a slack




106

vector s with nounegati7e entries such that

-
(L I = u (4.3-5)
8
" x
?_‘ =
8
Also, introduce a new matrix B, defined by the expression
A0 x t
= (4.3-7)
I 1 8 u
or
*
Bx =v (4.3-8)
where
t
-v- L
u
*
If a matrix H is defined as
*
H = (H 0 (4.3-9)

The linear model for restoration can then be vxpressed as
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(4.3-10)

And the objective function of the least squares is

w-1 2 v e -E 1) (4.3-11)

subject to the constraints

%
Bx = (4.3-12)

*
x =20 (4.3-13)

The previous equations express the standard form of a quadratic
programming problem, namely, the minimization of a quadratic form
subject to linear constraints on the variables.

The necessary and sufficient condition that the solution of such
a problem satisfles is expressed by the Kuhn Tucker Theorem [4-5,
page 233]. In the particular situation of a quadratic objective func-

tion, this theorem can be expressed by the following conditions

X
a) x is feasible, that is equations (4.3-12) and (4.3-13) hold,

b) there exist vectors u> 0 and w such that

* - * % x Fy
Ty Y - w4 Tw - 2H Yy = 0 (4.3-14)
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c) the vector u and the optimal solution are such that

*
gTJ_c =0 (4.3-15)

The Kuhn Tucker coaditions for quadratic Programming require the

%k
existence of vectors x , u, and w satisfying linear equalities and in-

*
equalities plus the additional condition that _1_1_T§ = 0. This suggests

the use of a method very similar to the one that verifies the existence

of a feasible solution to initialize the simplex method in linear pro-

*
gramming. The condition ET§ = 0 is nonlinear, however, and re-

quires a modification of the usual procedure.

This is the basis of the algorithms for quadratic pProgramming

that rely on the simplex method for linear programming. Two of the

main procedures are Wolfe's [4-6] and Dantzig's [4-7] algorithms.

The former has two versions, a short form and a long form. The

first one is capable of handling only positive definite quadratic forms

(which occurs when the model is overdetermined), but the sscond one

can also deal with positive definite forms (for the underdeter mined

case). There are several other algorithms available for quadratic

programming problems [4-8). In recent years a research effort has

been under way towards developing numerically stable methods [4-9,

4-10, 4-11, and 4-12] to solve this important problem.

The method developed so far to solve the linear inequality
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constrained restoration problem w2 s directed toward the estimation
of the image itself. Quite often one weauld be interested in estimating
parametric functions of pixel values. If this is the case, a reformu-
lation of the problem is convenient. This will lead to the calculation
of confidence intervals for the constrained problem.

In chapter 3, the computation of the confidence intervals was
made by considering the K-ellipsoids and the support planes ortho-
gonal to the vector c that wa» used to calculate the parametric func-
tion cx. In the overdetermined model, if the vector c is parallel to
some axis of the ellipsoid corresponding to a large eigenvalue of

-1
HTX H, the confidence interval would be small compared to the case

when c is parallel to an axis corresponding to a small eigenvalue. In
the underdetermined model some eigenvalues of ETX-IE are zero and
the confidence interval for some parametric functions is infinite,
which corresponds to the fact that these functions are inestimable.

The a priori knowledge involving inequality constraints may
change this situation considerably. The restrictions 0 < x <u may
bound the elongated (in the ill conditioned case) or degenerate (in the
underdetermined case) ellipsoids, reducing the confidence interval in
the former case and transforming inestimable functions into esti-

mable functions in the latter one. It is also clear that the estimation

of the vector x of pixel values may be improved, with the bounding of

the ellipsoids by the hyperplanes. The ill conditioning and the
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underdeterminacy problems may be solved, at least from the sta-
tistical point of view, with the use of linear inequality constraints.

In order to compute the confidence intervals for the inequality
constrained case, it is necessary to introduce the idea of a confidence
ellipsoid for a multidimensional distribution. The assumption of
gaussian noise will be made throughout the discussion.

For a given estimator R of x, the 100.0 % confidence interval
of x is the ellipsoid in the x-space with center in Xand given by the

expression

(x-%) H'V H(x-%) = ¥ (4.3-16)

where ‘Y2 is selected such that

Pr {B-@THTI'IH(E-@ < vz} = qQ (4.3-17)

The value of Yz can be computed by observing that the quadratic form
in (4.3-17) is distributed according to a Xz-distribution with r de-
grees of freedom, where r is the rank of the blur matrix H. This

means that [3-2]
2

y
(1=f [1‘(0/2)2r /z:l-l or/z'1 « exp(-p/2)dp (4.3-18)
(o]

where T'(s) is the gamma function defined by

=l =
T(p) = L vo eV ay (4.3-19)
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Now, suppose that the constraint x > 0 is imposed on the estimator.
This means that, with probability one, X will be in the positive quad-
rant. Without this constraint, X is guaranteed to be in the ¥ - ellip-
soid a% of the time. Therefore, with the imposition of the constraint,
the estimator X will be in the intersection of the ¥ - ellipsoid and the
positive quadrant 100.a % of the time.

Consider now the parametric function ng and the planes ob-
. tained by setting this function equal to a given constant. There are
two support planes of the region mentioned in the previous paragraph.
Figure (4.3-1) taken from [3-2, page 203], illustrates the assertion
for the case where the vector x has two components. The two support

planes will be denoted by

s = {§|£T& = aé} (4.3-20)

wn
1

g * {’il&T’i : ¢E“} (4.3-21)

% is guaranteed to lie between S+ and S_ with a probability of 1000 %,

£ Uu] is a 100®% confidence interval for @.

The interval Iy(a) = [GE' E

The interval Iy(a) can also be expressed as




Figure (4.3-1) Support Planes for th
Constrained Reptoration

e Inequality
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I(¢) =| min {ngl(x-ﬁ)THTV H(x-%X) < Yz} y
Y x>0
max {_ x| (x- )THT_ lg(yg) s vz} (4.3-22)
x>0
or as
IY(G) = min {C x'(l Hx) V (1 HX)< = +Y2}

x>0

max {c x](x-Hx) v (x -Hx) < r ¢+ YZ} (4.3-23)
x>0
where r, is the minimum value assumed by the quadratic residual
expression.
Since the minimum or the mu.ximum of the linear function can
occur only at the boundary of the ellipsoid, the expression for the

confidence interval can also be written as

1@ = |min {cTx(y-H0) v (-Hx)
W x>0

2
+
ro'v}

2
o4y } (4. 3-24)

. max {c x| (y-Hx) V" (y-Hx)
i x>0

As pointed out by Rust and Burrus [3-2, page 168], the two

optimization problems that define the confidence interval can be for-
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mulated in a somehow dual way by making the following observation:
the end points of the confidence interval are the points at which the
two support planes make contact with the lowest level contours in the
positive orthant. Figure (4.3-2) illustrates this point.

The inverted problems have the form

= min {Q-H{)T!-l(x-gg)lg'rg = GE} (4.3-25)
x>0

min {(z_—IjE)T!-l(y -Hx)| gT§ = g } (4.3-26)
x>0

This formulation now leads to quadratic programming problems, with
the role of the constraints and the objective function reversed.
The calculation of the confidence interval is facilitated by the

construction of a curve expressed by

T'(d) = min {(z-HJ_t)T‘_’-l(z-Hz)l gTJ_c =4 ]r (4.3-27)
x>0

Figure (4.3-3) illustrates the curve given by (4.3-27), for the case of

Figure (4.3-2). The bottom of the curve is in parabolic form, show-

ing that for small values of yz the inequality constraints sre not

being inforced. When YZ increases, however, these constraints

start becoming effective and the curve rises steeper than the para-




Figure (4.3-2) The Determination of Contact Points
for Confidence Tntervals
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T(¢)
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Figure (4.3-3) The Curve for Determination
of the Confidence Intervals
for Linear Inequality Constrained Restoration
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bola. For a given value of ‘Yz given by the tables of Xz distribution,
the value T (@) = rt v% determines two values on the abscissa of
Figure (4.3-3), UL and @, that are the extremes the confidence in-
terval for this parametric function of pixel values. The construction
of the curve can be accomplished by the procedure of imposing sim-
ultaneously the inequality constraint x > 0 and the equality constraint
£T§ = ¢ for several values of ¢.

An observation should be made at this point. The u;lcon-
strained confidence intervals, developed in chapter 3, and making use
of *he K-ellipsoids, are optimum in the sense of giving the shortest
possible cunfidence interval for a given confidence level. No claim
of optimality is made for the constrained confidence intervals using
quadratic programming and based on the Y -ellipsoids. In fact, they
may be very pessimistic, particularly for large rank of the blur
matrix H, when the ratlo ¥ /K becomes large. Further research is
needed in order to obtair tighter intervals.

It should be remarked that if the Y -ellipsoid is centered out-
side the inequality constraints, the computation of the confidence

intervals for small levels of confidence may not be pos sible. In this

case one possible solution consists of replacing the constraint

2 (4.3-28)

(x-Ho) v (x-He) = Fe U
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by
(x-Hx) vy -Hy) - £ § oyt (4.3-29)
where
T, -1
r, = min(y -Hx)"V (y-Hx) > r (4.3-30)

x>0

In the Preceding discussion of confidence intervals the assump-
tion of gaussian noise hasg been made. As a consequence, the Y-ellip-
soids contain a given Percentage of this multidimensicnal distribution.
An entirely similar analysis can be carried out when these ellipsoids

contain the whole set of pPossible values for the estimator. This would

be the case when the noise is distributed in some fashion, uniformly '
or not, within the bounds of an ellipsoid. In this case, the computed
intervals give the minimum and maximum values that a Parametric

function can assume, with Probability one. This bounded distribution l
does not have to be restricted to the ellipsoid shape. Suppose that the ]

noise components satisfy the linear constraint

_"‘ M2 n ,

El _Ll <u (4.3-31)
T i=
4 5
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where s, are positive quantities. This equation defines the shape of

a diamond in a higher dimensional space. In analogy to expression
(4.2-24), the lower and upper bounds of the inequality restricted con-

fidence interval are given by

2
M (y -Hx)
0% = min { Ty | i

x>0 i=1 8

‘ - } (4.3-32)

and

#° = max
x>0

2
M~ |(x-Hx)
o \ = | il 2) s

e x
i=1 %

The two previous equations clearly define linear programming prob-
lems, namely, the minimization (or maximization) of a linear function
subject to linear constraints.

Another type of bounded distribution that leads to linear pro-

gramming is the rectangular distribution, defined by

141
i 2
max — ) u (4.3-34)
2 8
1<i< M i

The confidence interval will be given by
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| : |(x - Bx) |
- ¢' = min {ch | max e uz} (4.3-36)

8,
x>0 1<j< e J
With some manipulation it is possible to make it clear [ 3-5, page 98]
' that the problems defined above are linear programming problems.
In fact, equation (4.3-34) {8 equivalent to the statement that
Iy 2 2

== 2 T T R (4.3-37)
i

or, by making u2 equal ic unity

. 2
'Bi < (X-Hi)i < ai i-= 1, z,oco,M
i (4- 3-38)
This can be expressed as
Hx), <y, + 8 (4.3-39)
and
_@&)1 < v + 8, (4.3-40)
] or, in matrix form
Hx <y + s (4.3-41)

and

-Hx < -y + s (4.3-42)
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T

whereg_t E (sl, sz,..., 8 2) .
M

2
Defining A to be a ZM2 x N matrix expressed by

Jer)

(4.3-43)
-H

and £ the ZM2 x 1 vector

yts
& =

(4.3-44)
yts /

The previous inequalities are expressed as

Ax < ¢ (4. 3-45)
so that the confidence interval can be given by
L T
0" = min {c'x|Ax < 2} (4. 3-46)
x>0
and
0% = max ETE‘ Ax < _g‘} (4.3-47)
x>0 '

The last two expressions are clearly linear programming formula-

tions.
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Linear programming is also used in two other possible for -
mulations of the restoration problem, for the calculation of the opti-

mal estimator _;g, insteal f linear functionals,as in the previous

derivation. As the first example, suppose that the noise components
are independent and identically distributed according to an exponen-

tial distribution

1
p(ni) = 'E exp {-lnil} (4.3-48)

Assuming the vector x to be random and uniformly distributed
within the constraints expressed by (4.3-2) and (4.3-3) and adopting
either the criterion of MAP estimation or maximum likelihood, the

following expression is to be minimized

MZ

Q) = 5 |y, - Hx), | (4.3-49)
i i
i=1
Observe that the same objective function would have been obtained
through the criterion of estimation by least sum of abgeolute deviations
under linear equality and inequality constraints.
This problem can be formulated in terms of linear program-

ming by observing [4-13] that the objective function can be expressed

as
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MZ
min €y + ei) (4.3-50)
i=1 1 2
such that
2
(Hx), -y, = ¢ - ¢ 1 =1,2 ¢00, M (4.3-51)
=1 i i i
2 1 ]
I
and
. 2
€ s € 2 0 I = 1, 2, col,M (4.3-52)
il iz

As a second example of the use of linear pProgramming in re-

gression analysis, suppose that the objective is to minimize the maxi-

mum absolute derivation in the regression model (Chebyschev cri-

terion). Then one seeks

min (max ‘yi - (g_h_:_)i |) (4.3-53)
2 1c1<m?

The reduction to a linear programming structure [4-13] can be done

by expressing the previous objective function as

min € (4.3-54)

such that
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2

-c gyi 5 (I—{E)i < e i=12¢ee, M (4.3-55)
The use of inequality constraints in image restoration also allows for
the incorporation of a priori knowledge concerning the variation of
the function that defines the original picture. This can be done by a
change of variables [3-2, pages 112-115 and 190-1937. Consider the
one -dimensional case first. If the solution is known to be monotoni-
cally increasing and positive, this can be imposed by expressing it
in terms of an integral of a positive function with a positive initial
condition. In discrete form, this corresponds to the change of vari-

ables

x =Rg, =20 (4.3-56)
and R in lower triangular form
1 0 . .« . 0-T
1 1 . « « 0
R=1* ° g (4.3-57)

If the solution is increasing, but not necessarily positive, the initial
condition can agsume any value, so it can be expressed by a difference

of two positive quantities. In this case the matrix R takes the form
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(4.3-58)

l "l 1 1 L] L] L] U

If the function is known to be pusitive and convex, it is enough
to express it as a double integral of a positive function with a positive

initial condition. In riatrix form this is done by expressing

x = Rg a=20 (4.3-60) y

where

R = ST (4.3-61)

where S and T are matrices with the form expressed by (4.3-57).

If the solution is positive and known to possess some degree
of smoothness, this can be subjectively incorporated by expressing

X as a positive linear combination of N2 vectors that have positive i

components, are linearly independent and have some smooth variation
in their components. Referenc: [3-2, page 1147 suggests the use of i

vectors whose components form a triangular function and are shifted

from vector to vector.
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The application of these techniques to the two-dimensional
problems that occur in image processing is easily accomplished by
the use of vector notation. If the experimenter feels that the varia-
tion of some row or some column in the picture has one of the prop-
erties described in the preceding paragraphs, this can be done by
substituting the variables corre sponding to the row or column by the
appropriate transformation. The matrix R will be diagonal with
elements equal to one everywhere in the diagonal except in the ele-
ments that are transformed. Once this is done, both the mathe-
matical programming problems of restoring the image itself or cal-
culating approximate confidence intervals for parametric functions
can be solved in terms of the new vector g9, with a new blur matrix
H'=H.R. When the problem is solved in terms of g, the trans-
formation x = Rq is used to obtain the desired solution.

The discussion on inequality constrained restoration will now
be concentrated on the pProblem of the calculation of the sampling dis-
tribution of the estimators. The imposition of inequality constraints
affects considerably that distribution. While in the unconstrained or
linear equality constrained restoration, under the gaussian hypothe -
sis, the estimators would still be normally distributed, in the case of
inequality constraints, the distribution is of the mixed type, partly

continuous, inside the permissible region and partly discrete, at the
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boundary of this area. The situation is exemplified by Figure
(4.3-4), obtained from reference [3-6, page 354], for the one-
dimensional case. In case a) the true parameter xo satisfies the
constraint x > 0. There is a positive bias since the distribution of
the estimator is moved to the right by the constraint. However, if
the mean square error is computed, taking into account both bias and
variance, there is an improvement, because that distribution tends
to be more concentrated around the true value. Case b) shows the
opposite situation. The constraint x > 0 is invalid, that is, the true
(and unknown) parameter X is negative. The bias is still positive
but there will be an improvement in the mean square error only if

X is not too far from 0. If this is the situation, the probability mass
concentrated at 0 will contribute less for the mean square error

than the part of the distribution for negative values of x. Zellner
4-14 and 4-15] calculated the moments of this mixed distribution in
the one-dimensional, gaussian case. His conclusions can be sum-
marized in the table below that gives the mean square error of the

constrained estimator expressed as a fraction of the mean square
X =0

error of the unconstrained estimator. The entry measures
the distance between the trie parameter X, and the value a that de-

termines that constraint x = o as a fraction of the standard deviation

o of the unconstrained estimator.
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(a)

Figure

(4.3-4) Distribution of the Inequality
Constrained Estimator s for the
One-Dimensional Case




T

X% 3 [2.512 |1.s5|t lo.s|o |-0.s5/-1.0|-1.5}-2.0{-2.5]-3.0

1.0{0.990.96{0.89|0.760.590.50[0. 66 1.24[2. 364.04J 6.26/9.0

The constrained estimator is seen to be superior to the unconstrained
even if the true parameter slightly violates the constraints. In the
referred papers, Zellner also studied the distribution of a flexible
bound procedure in which the estimator is given by a linear convex
combination of the unconstrained and constrained estimators, re-
flecting the lack of absolute confidence of the analyst in the imposed
bounds.

When the dimensionality of the problem is greater than one,
the difficulties in computing the sampling distribution or even the first
two moments increase considerably. Hocking [4-16] has obtained
closed form solutions for the case where the constraints are de-
scribed by a single, smooth, convex surface. Some Monte Carlo
experiments involving small dimensionality have been reported by
Lee, Judge and Zellner [4-17] in the estimation of transition prob-
abilities of a Markov probiability model.

In the context of image processing, the large dimensionality
of the problem makes any attempt to calculate the sampling distri-

bution of the constrained estimator extremely difficult. However, the
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confidence of the experimenter in the imposition of the constraints
is very high, at least for the lower bound x 20, due to the fact that
they come from physical laws governing the process of image for-
mation. As a result, by extending Zeliner's conclusions to a higher

dimensional space, there should be considerable reduction in mean

square error through the use of these restrictions.




5. EXPERIMENTAL RESULTS
WITH UNCONSTRAINED RESTORATION

In this chapter the experimental results obtained with com-
puter simulation studies of digital image restoration are described.
In order to expose the most salient features of the statistical and
numerical problems found in the restoration under a regression
model, a simplified artificial picture has been generated. The pic-
ture consists of an 8 x 8 pixel image, containing a bright square of
value 245 on a constant background of value 10 over a 0 to 255 scale.
Figure (5-1) displays this picture used as the object of blurring and
addition of noise in the simulation experiments.

For the purpose of displaying pictorial information, two
operations had to be performed in the pictures obtained in these ex-
periments. First, the images were blown up to the size of 256 x
256. This explains the checkerboard pattern that results. Second, a
redistribution of the pixel values is recessary. This redistribution
consists of clipping the results to the 0-255 scale. In some instances
the restored values will be far from this interval and in order to make
a meaningful judgment, a display of the actual numerical results will
be made. The objective of the experiments was to investigate, in the

context of image restoration, the usefulness of the regression model
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Figure (5-1) Original Picture Used

in the Computer Simulation Studies
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developed in chapter 3 when no additional constraint is impcased in

the restored values.

The overdetermined model is studied first, followed by the

underdetermined one. The computation of confidence intervals of

some parametric functions is performed and, finally, a few results

concerning the testing of hypothesis is presented.

.

i; 5.1 Restoration for the Overdetermined Model

Experiments with the overdetermined model simulated the
following real problem. The blurred and noisy image of an object |
of finite extent (e.y., the moon on a dark background) is available.

As pointed out before, the use of digital pProcessing requires that

this blurred image be sampled at a finite number of points. Further-
more, the original image has to be estimated based also on a finite
number of points that are the nodes of the quadrature integration.
The experiments represent the situation in which the analyst decides
to place those nodes at equally spaced points on a rectangular grid
over the finite object, taking into account the several factors dis-
. cussed in section 2.3. The 8 x 8 original picture of Figure (5-1)
represents the original object as if it were available at these quad-
l rature nodes. The blurred image is assumed to be sampled at points
separated by the same distance as the nodes of quadrature. There

are more sampling points than nodes, covering a blurred picture that

i -
AL L K

i
.

o
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is larger in exteni than the original. Some of the sampling points
coincide with the quadrature nodes. The blurred picture is still of
finite extent, which implies a point spread function of finite support.
This represents an approximation to the real case, obtained by trun-
cation of the kernel. In the experiment tae support was taken as a
multiple of the sampling distance and the kernel was assumed to be
zero beyvond two times this distance. The full extent of the blurred
picture was assumed available. Under these conditions, the original
8 x 8 object was blurred into a 12 x 12 image. U=sing the notation of

equation (2. 3-4) the following conditions describe the experiments
(50 1-1)

Figure (5.1-1) describes the data arrays involved. In that figure a
translation of the enumeration of the original picture was done. The
values of Ek and nZWere made to run from (Méli + 1) to (M—;IE)

Under these conditions, the truncation of the impulse response is

described by

h(a, , By pj. n,) =0 (5.1-2)
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M-N _ L-1

Jl>

M-N s =l
2 2

| >

By using the techniques described in section 2.3, atrans-
formation of the two dimensional arrays into vector form is done.

It results a model described by the equation

Bx + n (5.1-3)

(a8 ]

(M~ x 1) vector
(M~ x Nz) matrix

[\

[\

(N” x 1) vector

[\

(M~ x 1) vector

The description of the simulation experiments leads to the
following structure for the matrix B. First partition B in submat-
rices Bi,j of size (M x N), as shown !n Figure (5.1-2). Then each
matrix B 1, ] is composed by a similar structure, as described by
Figure (5.1-3). Observe that the matrix B has considerable structure
being very sparse. It is composed of a nonzero diagonal band of sub-

matriceés which, in turn, contain a nonzero diagonal band of elements.

A T p———
B A NN,




Figure (5.1-2) Partition of the Blur Matrix B

in the Overdeter mined Model
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In a real experiment the matrix B should involve both the
quadrature weights and the kernel of the point spread function. The
weights depend, however, on the type of quadrature expression that
isused. In order to circumvent this problem a simplification was
made: all weights were assumed to be equal to one. Therefore, the
entries of the blur matrix depend only on the point spread function.

If the impulse response is space invariant, then

h(a, , Ek;ﬁj. N, = h(ai-ﬁj;ﬁk-n ) (5.1-4)

L

Consequently, the columns of the submatrices of B are shifted ver-
sions of the fir st column and the same pattern occurs for each sub-
matrix. Suppose, furthermore, that the impulse response matrix H
is in separable forin, that is, h(ai, gk - ﬁj » M Z) is expressed by the

product
h(a,, §, ﬁj. n) = hylay; pj) *h(§ in) (5.1-5)
Then it can be shown that the blur matrix B is given by

(5.1-6)

B ='léc 13'R

where Ec and I_3R are given by matrices of the type described by
Figure (5.1-4) and@ denotes the Kronecker product.

Two expressions for the blur have been used. The first one
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simulates the effect of atmospheric turbulence over a long exposure.

The blur function is given by

2 2
(@, -B.) (B~ )
’ Ma g Sy By my) = exp. {- leJ ' kaJz }

(5.1-7)

where the coefficients bV and bH control the amount of blur imposed
on the vertical and horizontal directions, respectively. The expo-
nent 5/6 of expression (2.1-5) was approximated by unity. The
second blur function, also space invariant and in separable form,

simulates the effect of a diffraction limited optical system as given

by

ai-ﬁj>
. sin 5
h(ui.é‘k;pj.nzh \'s

k 1-59
b bV

o —d e

(5.1-8)

g
Y
.

2]

Both blur functions are truncated to dimension L x L. Once the pic-
ture is blurred by multiplying the vector x by the blur matrix B,
gaussian noise from a random variable generator is added to the com-

ponents of the vector y. The noise is uncorrelated, with a covariance
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matrix V given by

Vv = 5L (5.1-9)

Recall that under the gaussian assumption the B. L.U.E.
estimator is also the maximum likelihood estimator, besides being
the least squares solution. Furthermore, since the overdetermined
model is assumed, the solution is unique.

Under white noise, the estimator x is obtained through the

expression

= (§T§)°1§Tx = §+z (5. 1-10)

1%

The condition that the spread function should be space invariant may
be explored for computational purposes. In fact, under this hypoth-
esis, (§T§) is a block Toeplitz matrix and the inversion of such a
matrix can be performed quite efficiently through Fast Fourier
Transform techniques [5-1], even for large dimensions. Further-
more, §_Tx represents, in this case, a discrete convolution opera-
tion that can also be performed by the use of two-dimensional FFT.
The procedure is equivalent to the one used by Hunt [2-40] by
making the coefficient ¥ equal to zero in Twomey's method. If the
blur matrix is separable, considerable simplification in the compu-

tation of the pseudoinverse can be achieved. Using (5.1-6) it follows
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that [5-2]

= B B (5.1-11)

%@ET & AT BT (5. 1-12)

3 ' A®BDE®O = _p ) @) (5.1-13)

" a@p’ = a'@®e! (5.1-14)

Equation (5.1-11) allows the computation of §T through the
Kronecker product of pseudoinverses of much smaller dimensions.
Since the computational methods for the pseudoinverse [ 3-3, chapter

¥ V] are involved and particularly sensitive to numerical errors due to

o 4‘.’?&4;.




round-off, the importance of (5.1-11) becomes evident.

The method used for the computation of the pseudoinverses
1_32 and QIT{ was the gradient projection by Pyle [3-3, pages 69-74].
It is based on an application of the Gram-Schmidt orthonor malization
process. In the course of the method some care must be exercised
in order to decide, within the Precision of the machine, whether a
vector can be given by a linear combination of the previous ones or

not.

The restored image has been computed through the expression

S = ol +
2 = (Bo (B (5. 1-15)

for several values of blur, under noisy or noise-free conditions,
blurred by gaussian or sinc2 functions. In the case of no noise, the
least squares problem reduces to the solution of the system of linear

equations
Y = Bx (5.1-16)

and, under the assumption of full column rank of the matrix B (over-
determined model), the solution exists and it is unique, given by the
same expression as the estimator for the white noise (equation

(5.1-10)).

Figure (5. 1-5) shows the blurred and restored images under




Blurred b__=b .70, Var=0 Blurred b_. =b .70, Var=10

v °H v H
Gaussian Blur,Overdetermined Gaussian Blur ,Overdetermined

Restored Restored

Figure (5.1-5) Examples of Restoration with
the Overdetermined Model and Gaussian Blur-I
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gaussian blur and bV = bH =0.70. The first column of pictures re-
fers to the no noise case. It can be seen that the restored image
coincides with the original picture. This is what should be expected
with the overdetermined model: since the solution to the linear sys-
tem (5. 1-16) is unique, the original picture is the only possible solu-
tion. In the second column of pictures white gaussian noise has bheen
added to the blurred image. Now the ~estored picture is nc! =qual to
the original, but the difference is relatively small, with the light
square in the middle being clearly distinguishable.

A remark should be made at this point: even though all the
blurred pictures with the overdetermined model are 12 x 12, only the
center 8 x 8 parts are displayed, blown up to 256 x 256.

Figure (5. 1-6) presents the same results as Figure (5. 1-5)
for different values of the blur coefficients, bV = bH =2.5. The
result obtained with no nolse shows that the original picture is still
obtained, although a closer inspection of the numerical values will
evidence some round-off in the computation. The noisy restoration
differs substantially from the previous result. Even though the noisy
and blurred picture is visually barely different from the noise free
case, the restored image differs considerably, with the bright square
in the middle not even visible.

Figure (5. 1-7) presents the results for the case bV =b_, =

H
5000. For the noisy restoration it is observed that the result is
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Blurred bv =bH=2.5 , Var=0

Gaussian Blur ,Overdetermined

Restored

Restored

Figure (5. 1-6) Examples of Restoration with
the Overdetermined Model and Gaussian Blur-II
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Blurred bV =bH =5000, Var =0 Blurred bV =bH =5000, Var=10

Gaussian Blur Overdetermined Gaussian Blur ,Overdetermined

Restored Restored

Figure (5.1-7) Examples of Restoration with
the Overdetermined Model and Gaussian Blur-III
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somewhat in between the two previous results as far as fidelity of

the restored picture to the original is concerued.

Figure (5.1-8) shows the result for b._ = bH = 0.70 under

\'
Mmore severe noise conditions. It evidences the little sensitivity of
the solution to the increase in noise level for these values of blur
coefficients.

These experimental results suggest that the blur coefficient
influences considerably the amount of perturbation on the solution
with respect to the corrupting noise. The concept of condition num-
ber developed in chapter 3 offers an adequate framework to explain
and predict the behavior of the solution with respect to the periurba -
tion represented by the noise.

Therafore, the condition number of the blur matrix B =
]—3C®§R for EC = ]—3R was computed as a function of the blur coef-

ficient. This was done by the following procedure. Since the (M2

X NZ) matrix B is given by the Kronecker product of two (MxN) ma-

trices ]_BC, its N2 singular values are obtainad by all the possible

combinations of products of the N singular values of EC [(5-4]. The
condgition number c(B) is the ratio of the largest to the smallest sin-
giular values of B, which is equal to the square of the ratio of the

largest to the smallest singular value of EC’ this being the condition
number of I_3C. Now, the square of the condition number of EC is the

condition number of @ggc) [3-8, page 223]which can be calculated




Blurred bV =bH =
Gaussian Blur,Overdetermined

.70, Var=30
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Figure (5. 1-8) Example of Restoration with
the Overdetermined Model and Gaussian Blur-1IV
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by multiplying the norm of (§§§C) by the norm of (_1}2_150)-1. This
has been done by using the Froebenius norm, for several values of
the blur coefficient. Figure (5.1-9) shows the result of this experi-
ment. The condition number is maximum for moderate values of
the blur coefficient. The curve explains the results obtained with
the restoration of the noisy images. In fact, bV = bH = 0.70 is in the
initial part, with low values of c(B), and thus implies little effect of
the noise on the restored image. bV = bH = 2.5, on the other hand,
is on the peak of the curve with maximum perturbation and, finally,
bV = bH = 5000 gives moderate values for the condition number and
effect of the noise. The same type of curve for the condition number
was observed for the sinc2 spread function. Figure (5.1-10) dis-
plays the results. The matrix (_l}g_léc) becomes nearly singular for
moderate values of the blur coefficient. An even greater variation
of the condition number was observed as compared to the gaussian
spread function.

The restoration experiments were repeated with the sinc2
blur. Figure (5.1-11) shows the results for bV = bH = 0.25. The
noise-free restoration reproduces the original picture while the
noisy image is restored to values that are very close to the original
ones. This corresponds to the very small condition number on this

part of the curve. Figure (5.1-12) presents the experimental re-

stlts for by =byy = 1.0. In the noise free case, even though the
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Blurred b_. =b .25, Var=0 Blurred bV =bH=.25 , Var =40

Sincz Blur,Overdetermined Sinc2 Blur,Overdetermined

Restored Restored

Figure (5.1-11) Examples of Restoration with
the Overdetermined Model and Sinc2 Blur -1




Blurred bV =bH =1.0, Var=0 Blurred bV =bH =1,0, Var =40
Sinc~ Blur,Overdetermined Sinc Blur,Overdetermined

Restored Restored

Figure (5.1-12) Examples of Restoration with
the Overdetermined Model and Sinc2 Blur -II
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restored image visually reproduces the original, the effect of the

high condition number can be observed in the actual numerical re-
sults presented in Figure (5.1-13). The perturbation due to round-
off is noticeable (single precision has been used in the calculations).
In the noisy case, the displayed restored image shows the enormous
effect of the perturbation, but in order to give an idea of the order of ;
magnitude of the error in the estimation, the non-clipped numerical ‘
results are presented in Figure (5.1-14)., The very large pertur-
bations imposed by a high condition number are clearly displayed.
The restoration under a moderate value of condition number, under
aincz biur, is displayed in Figure (5.1-15),

A complementary point of view to explain the effect of the
noise on the restoration can be given. Equation (3. 1-4) gives the

expression of the covariance matrix of the estimator. Under white

noise conditions, that expression reduces to

T

. V. = uz(_B_ g)'l (5.1-17)

In the condition number is high the matrix (_1_3_T_]_3_) is nearly singular
and large variances of the estimated values are »xpected. On the
other hand, if the condition number is low, the opposite situation

occurs and the variances of the estimated values are reduced.

s
1
.

s

Figure (5.1-16) and (5.1-17) display the condition number
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| Blurred bV =bH =500, Var=0 Blurred bV =bH =500, Var =40

Sinc¢~ Blur,Overdetermined Sinc Blur,Overdetermined
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Restored Restored

Figure (5.1-15) Examples of Restoration with
the Overdetermined Model and Sinc2 Blur-III1
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curves, for a givan number of quadrature nodes (N = 8), varying the
number of sampled values (M), while maintaining the s‘ructure of the
blur matrix given in Figure (5.1-2). These results give more in-
sight into the reason for the existence of a maximum of the condition
number curves. This is due to the truncation of the point spread
function. In fact, for increasing M, the number of points where this
function can be nonzero is increased and the effect of the truncation
starts only for higher blur coecfficients. Consequently, the curves
for different values of M have essentially a common ascending branch *
and the descending part starts at varying points for different values
of blur coefficients. If there were no truncation, the curve would |
approach infinity very fast, the asymptotic value being obtained for {
the smoothe st possible kernel, with constant value one, implying a I
blur matrix with rank one. With the truncation, the curves show a

descending branch that begins at the point where the increasingly

wider kernel starts to be cut down substantially. Now, for increas-

ing value of blur coefficient, the curves tend to a finite value.
These curves can be used as a guide for the choice of the
number of sampling points, once th2 number of quadratvure nodes is
fixed. For a very small amount of blur all curves coincide so that
the designer may choose M = N with aimost no error. Blur in this

case plays no role, only noise will affect the restoration. With
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increasing amount of blur, different numbers of sainpling points will
give different values of condition number. If a curve on an asce=ding
branch is chosen, truncation will have no effect on the kernel but a
high condition number will impose high variances on the estimators.
If a curve on a descending branch is selected, lower variances of the 4
estimators will be obtained, at the price of error on the estimation
of the contlnuous function due to the truncation error in the discrete
model. Therefore, a trade-off between the variance of the estima-
tors and the truncation error of the discrete model can be charac-
terized.

Although these conclusions are drav;/n based on the particular
model discussed in this secticn, they are more general. This comes

from the fact that the inverse of the integral operator that describes

the blur is unbounded. Therefore, the closer the discrete model fol -
lows the continuous one, the more ill conditioned the former model
tends to be. A move in the opposite direction reduces singularity
but imposes modeling errors. This inevitable dilemma can only be
broken with the intervention of correct a priori knowledge abtout the

solution.

The effect of changes in he blur matrix was also experimen-
tally confirmed. For this purpose an image was restored using a
value of blur coefficient different from the one that was used for its

blurring. Figure (5.1-18) shows the resuit for noise-free and




Blurred bv=bH=l.0, Var =0

Sincz Blur,Overdetermined

e

Restored with bV = hH =1,0 Restored with bv = bH s 1.2

Figure (5.1-18) Effect of Changes of the
Blur Matrix on the Restoration-Noise Free Case



165

Figure {5.1-19) for noisy observations. The perturbationis mi h
higher in the noisy case, with many reversals of signs in the solu-
tion. This in accordance with the conclusions of equation (3.3-34),
which predicted that in the noise-free case, the condition number
would matter, while in the presence of noise the square of this

quantity would determine the amount of perturbation.

5.2 Restoration for the Underdetermined Model

Another set of experiments has been performed for the under-
determined model, i.e., when the number of quadrature nodes ex-
ceeds the number of observed values. The following real situation
is simulated by thecre experiments: the image of part of an object is
taken (e.g., the photograph of a certain region by an earth resources
satellite); as in the overdetermined model, a decision is made to
place the nodes of the quadrature integration at equally spaced points
on a rectangular grid. The sampling points are separated by the
same distance as the quadrature nodes and they coincide with some
of the quadrature nodes. The number of sampling points in this case
will be determined by the size of the image. The point spread func-
tion is assumed to be truncated to twice the sampling distance, like
in the overdetermined model. This determines the extent of the
original picture that coatributes to the blurred picture and only the

quadrature nodes that make a nonzero contribntion with this trun-

A
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on the Restoration - Noisy Case




cated kernel are retained.

Figure (5.2-1) describes the data arrays. The vector rep-
resentation for the original and blurred arrays is still valid, but the
matrix B is the transpose of the matrix of the overdetermined model.
Figure (5.2-2) shows the partition of B in this case. The structure
of the submatrices gi.j is described in Figure (5.2-3). In the case
of separable, space invariant blur, the unidimensional blur matrix
has the form expressed by Figure (5.2-4).

The experiments have been performed with the gaussian

shaped blur and white gaussian noise. The original picture is com-

posed of (12 x 12) pixels, coinciding with the (8 x 8) picture depicted
in Figure (5.1) on the center part.

As pointed out in the previous chapter, there is no unbiased

estimator in this case and the solution of the least squares problem

is not unique. The minimum norm solution is given by

= §+ Y (5. 2-1)

14>

Since the blur matrix is the transpose of the corresponding
matrix for the overdetermined model, it follows that B has full row

rank and _l}_"' can be given by

+ = sT@R") (5.2-2)
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The assumption of shift invariance allows the computation of
(5.2-1) to be done very efficiently using Fast Fourier Transform
algorithms. In the separable case, using a derivation entirely an-
alogous to the one that led to equation (5. 1-11), it is poasible to

conclude that
t-pt + i
BT = Bt (® By (5.2-3)

The noise-free minimum norm solution is not necessarily the origi-

nal picture and this is clearly shown in Figures (5.2-5) and (5. 2-6),

for blur coefficients set at .5, 5 and 500. Note that only the center
(8 x 8) part of the restored (12 x 12) picture is shown, blown up to
(256 x 256).

The nolsy restorations, displayed in Figure (5.2-7) and
(5.2-8) show the same pattern of the overdetermined model, namely,
small perturbation in the solution due to noise for small blur, fol-

lowed by large and moderate perturbations for increasing values of

the blur coefficient. This fact cannot be explained by the condition

number since it is infinite in this case. However, since B is the

transpose of the matrix in the overdetermined case, and considering
the fact that the nonzero eigenvalues of _l§_T§ and ]_3§Tare the same
(3.5, page 41] it tarns out that the ratio of the largest to the

1
smallest nonzero eigenvalue of B B follows the curve given by

- & Qs enae—E B I — . e
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.50, Var =0 Blurred b, =b__=5.0, Var=0

Blurred bV=b v =Py

H -
Gaussian Blur,Underdeter mined Gaussian Blur,Underdeter mined

Restored Restosed

Figure (5.2-5) Restoration for the
Underdetermined Model - Noise Free Case 1




Blurred bV =bH =500, Var =0

Gaussian Blur, Underdetermined

R R =

Restored

Figure (5.2-6) Restoration for the
Underdetermined Model - Noise Free Case II
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Blurred bV =bH =,50, Var=10 Blurred bV -'—bH= 5.0, Var =10

Gaussian Blur,Underdetermined Gaussian Blur,Underdetermined

PEEp—— .

praine B ad

Restored Restored

Figure (5.2-7) Restoration for the
Underdetermined Model - Noisy Case 1




[. Blurred b =b__=500, Var=10
v H

1 Gaussian Blur,Underdetermined

Restored

Figure (5.2-8) Restoration for the Underdetermined Mode!
Noisy Case II




.......... I — N T

177

Figure (5.1-9, therefore, the ratio of the largest to .he smallest
finite principa’ axes of the degenerate K -ellipsoid follows the same
curve.

On the other hand, the minimum norm solution is obtained by
projecting the origin of the x-space orthogonally ontu the subspace
which consists of null space of B, N(3), added to _B+1. Therefore,
when the minimum norm solution (]_3_+1) is taken from this subspace,
no variation in this solution due to noise is allowed in the direction of
the eigenvectors that span N(B). These are precisely the eigenvec-
tors corresponding to the zero eigenvalues of _@TQ. Only variations
al'ng the eigenvectors corresponding to nonzero eigenvalues are
allowed. These variations are in the (nondegenerate) ellipsoid that
consists of the intersection of the original (degenerate) ellipscid and
the hyperplance that passes through the origin and is orthogonal to
N’B), that is, the range of §T, 'z{(QT). The shape of this ellipsoid
is the same as ih: shape of the ellipsoid of the dual, overdetermined
model because the eigenvalues are identical. Therefore, the varia-
tions of the solution of the underdetermined model in this subspace
of restricted diinensions should be of the same type as in the corres-
ponding overdetermined modei. Viewed from another perspective,
this situation can be described as follows: by projecting the origin

onto N(B) added to _‘._3_+_x, to obtain the minimum norm solution, §+ ;
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the infinite variances of t"* underdetermined model are avoided,
lc;,a.ving only the finite variances in the directions of the nondegen-
erate axes of the ellipsoid. This is done at the pricc: of imposing
bias, since the lack of information in the sample is corapensated,
not by a correct a priori information about the original picture, but
by merely imposing a minimum norm solution. This trade-off
between bias and variance is somehow analogous to the one between
modeling error and high condition number in the choice of the size of
the point spread function. A similar  {‘uation will also occur with
the use of linear equality and {.cquality constraints in the restoratlon.
5.3 The Computation of Confidence Intervals and Hypothesis

Testing in the Overdetermined Model

Some computational work has been performed with the ob-
jective of determining both confidence intervals and results of hy-
pothesis testing in the linear model for restoration. In order to
simplify the calculations, the unidimensional regression model has
been employed.

Figures (5.3-1) and (5.3-2) present the results of the compu-
tation of the 68% confidence interval for individual pixel values, under
gaussian and sinc2 blur, respectively. The correlation of these
curves with those of the condition number is clear. The higher this

quantity the greater the confidence interval for the same pixel value,
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due to the larger variances involved. Furthermore, for large values
of blur coefficient, the curves for gaussian and sincz blur tend to
coincide. This is due to the fact that the truncated spread functions
assume the constant value unity when the blur coefficient tends to
infinity.

The hypothesis testing experiments involve one pixel value in
the unidimensional model, with sincz blur and white gaussian noise.
Two distinct sets of tests have been performed, the first with known
variance, using the normal distribution, and the second under un-
known variance, making use of the Student's distribution. The
reader is referred to Appendix A for the theoretical material con-
cerning hypothesis testing.

In both tests the level of confidence is set at 10%; the tests are
two-sided, testing the fourth pixel value, with the null hypothesis Ho

be.ng x, = A against the alternative hypothesis X, # A, for different

4
values of A; the true value of x4 is set at 245, the variance of the
gaussian noise is 50 in both tests. Tables 5.3-1 and 5. 3-2 present the
results for the normal and Student's distribution tests, respectively.
Again, the correlation of the testing results with the condition
number is evident through the inspection of the tables. A higher con-
dition number is associated with 2 higher variance of the statistics

used in ‘he test. For a given size of the test (or probability of false

alarm), fixed by the Neyman Pearson criterion, the power (or
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Table 5.3-1 Hypothesis Testing
For Pixel Values, Normal Distribution

a) Variance known (normal distribution)
Level of confidence: 10% (two-sided)
True value: 245
Variance: 50

Blur: sinc2 (diffraction limited)

Ho:x=A H: x, # A

4 1 4
A
Blur Condition
Coefficient Number 245 145 45
0.25 1.0 -0.156 12. 62 12. 40
{accept) (reject) (reject)
1.0 2500 0.999 1. 20 1.40
(accept) (accept) (accept)
500 13.0 -1.42 1.40 4,23
(accept) (accept) (reject)
Decision Regions
:‘ ! Reject H Accept H Reject H
o o o
X -1. 645 +1. 645
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k
Table 5.3-2 Hypothesis Testing
For Pixel Values, Student's Distribution
b) Variance unknown (Student's distribution)
Level of confidence : 10% (two-sided)
True value: 245
Variance: 50
Blur: sinc2 (diffraction limited)
Degrees of freedom: 12-8 =4
HO: x4=A Hl: x4‘1‘A
Blur Condition A
Coefficient Number 245 145 45
0.25 1.0 -0.140 11,34 22.83
(accept) (reject) (accept)
1.0 2500 0.751 0.902 1.05
(accept) (accept) (accept)
500 13.0 -1.49 1.46 4,41
(accept) (accept) (reject)
ﬂ Decision Regions -
¢ Reject H AcceptH Reject H i
. o] l (o] I o]
i
| |
-2.132 +2.132

v

|
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This explains

probability of detection) decreases with the variance.

the smaller probability of rejecting the null hypothesis when it is

false, obtained for higher condition numbers.




6. EXPERIMENTAL RESULTS WITH LINEAR
CONSTRAINED RESTORATION

In this chapter the results obtained with linear ccnstrained
restoration will be discussed. The first section presents experiments
with linear equality constraints while the second section focuses on

linear inequality restrictions.

6.1 Equality Constraints

As a first attempt to overcome the instabilities found in the
use of unconstrained restoration with regression techniques, a single
equality constraint has been imposed on the overdetermined model.
The constraint consists of restricting the sum of the restored values
to be equal to the sum of the original pixels. Since the analyst would
not have direct access to this value in a real world experiment, the
sum has been varied. The application of the Toro Vizcarrondo-
Wallace test showed that there was an improvement in the mean
square error for considerable variation of the constrained value,
under a given confidence level. However, the variation of the numeri-
cal answer was minimal. This can be explained in view of the fact
that for small condition number the unconstrained solution nearly
satisfies the constraint and with moderate or large condition number

the instabilities are in the form of oscillations from pixel to pixel.

185
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The imposition of a given value for the sum of the restored pixels
sir'nply cha ages the D.C. component of the waveform without affecting
the oscillations. Adopting the point of view of ellipsoids, this means
that this elimination of one dimension in a 8 x 8 = 64 -dimensional
ellipsoid does not seem to be done in the direction of the eigenvectors
corresponding to the smallest singular values.

In order to obtain a reasonable decrease in the variance, a
higher dimensional and more appropriate restriction should be neces-
sary. Considering both the nature of the image and the characteristic
of the oscillations, it was felt that the restriction that pairs of ad-
jacent pixels should be equal would tend to damp out the oscillations.
This is a 32-dimensional restriction in a 64 -dimensional space. In
the particular case of the image used in these experiments this re-
striction is satisfied by the original image. In other cases, the im-
position of these constraints will represent a smoothing of the solution
in relation to the original. Observe that the rows of the matrix A of
equation (4.2-1) have in this case the property of being shifted ver -

sions of the first row which opens the possibility of computation of

e

(4.2-2) by Fourier Transform methods in the case of space invariant 4

blur and white noise.

Equation (4.2-2) has been solved using the simplification that

e

comes from the assumption of separable blur functions and white

noise. This implies that the matrix (ETE) can be inverted by taking f

oy [ o .
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the Kronecker product of smaller matrices.

Figures (6.1-1), (6.1-2), and (6.1-3) compare the results of

unconstrained and lineax equality constrained restorations in the

overdetermined model for gaussian shaped blur, under the situations

of small, large and moderate condition number. With small con-

dition number the constrained restoration differs very little from the
unconstrained case and both are very close to the true value. It is
with larger values of condition number that the effect of the con-
straints, blocking the oscillatory nature of the unconstrained esti-
mator, can be observed.

Similar results have been obtained with diffraction limited blur,
shown in Figures (6.1-4), (6.1-5), and (6. 1-6). In this case the
pProblem can become extremely ill conditioned, and for blur coef-
ficients equal to 1.0 the round-off error in evaluating the inverse of

-1
the matrix FQT(LIT_}_I) Al prevents a meaningful result to be ob-

tained, so that the high condition number situation is exemplified by

the somehow better conditioned case of bV = bH & L3,

In both types of blur the statistics for the F-test have been com-
puted and, under any reasonable confidence level, the hypothesis
specifying that the linear relationships are true is accepted, con-
firming their validity.

The results obtained with both types of blur seem to be indica -

tive of the degree of damping of the oscillations that can be achieved

g
)

-
b
3
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Blurred bV =bH =.70, Var=10

Gaussian Blur, Overdetermined

k. Unconstrained Restoration Equality Constrained
v* Restoration

P

L

Figure (6. 1-1) Comparison of Unconstrained
and Equality Constrained Restorations

Gaussian Blur, bV = bH =.70
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Blurred bV =bH =2.5, Var=10
Gaussian Blur, Overdetermined

Unconstrained Restoration Fquality Constrained
Restoration

Figure (6. 1-2) Comparison of Unconstrained
and Equality Constrained Restorations

Gaussian Blur, bV = bH =2.5
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Blurred b_.=b._=5000, Var =10
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Unconstrained Restoration Equality Constrained
Restoration

Figure (6.1-4) Comparison of Unconstrained
and Equality Constrained Restorations

Sinc? Blur, by = by = .25
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Blurred b_.=b 1.3, Var =40

v °H"
Sinc  Blur,Overdetermined

Unconstrained Restoration Equality Con#irained
Restoration

Figure (6. 1-5) Comparison of Unconstrained
and Equality Constrained Restorations
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Blurred bV =bH=500, Var = 40

Sinc  Blur, Overdetermined

Unconstrained Restoration Equality Constrained
Restoration

Figure (6. 1-6) Comparison of Unconstrained
and Equality Constrained Restorations

2
Sinc  Blur, bv = bH = 500
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by the use of linear equality constraints involving only a reasonable a
priori knowledge of the smoothness of the solution. There is a trade-
off between the elimination of the oscillations and the achieved reso-
lution of we picture.

The use of the linear equality constrained method leads to the
determination of confidence intervals for parametric functions of
pixel values. The unidimensional, overdetermined regression model
has been set up, with gaussian shaped blur. The dimensions of the
vector of observations and the vector of original pixel values are
(12 x 1) and (8 x 1) respectively. The fourth pixel value has been con-
strained to vary from 0 to 500 and the norm of the residual vector,
fly -HX|| is computed. Figure (6.1-7) shows the result for different
values of the variance. These curves give examples of the type of
result represented in Figure (4.3-3) for the case when no inequality
constraint is imposed upon the solution.

Observe that the minimum value of each curve is obtained for
the pixel value X, that corresponds to the unconstrained solution. It
is only the true value (245) for the no noise case. In this case the K-
ellipsoids are degenerate so that the parabola also reduces to straight
lines.

The confidence interval foi the 95% confidence level has been

computed using the K value given by the table of normal distribution,

as described in chapter 3. It should be remarked that the parabola
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for Var = 500 is more open than for Var = 30, indicating that larger

confidence intervals are obtained in the former case.

6.2 Inequality Constraints

The experiments with linear inequality constrained restoration
involve the solution of the quadratic pProgramming problems discussed
in chapter 4. The problems have been solved through the use of the
Dantzig's algorithm [6-1]). The lower and upper bounds were set at
0 and 255, respectively. An attempt to solve the two-dimensional
problem directly has to face the serious storage requirements of the
matrix (_I-}TI_-‘{) of the quadratic expression, involving appr oximately
2 X N4 elements, where N is the size of one dimension in the original
image. Moreover, the attempt revealed numerical convergence prob-
lems due to the }arge amount of computations involved, ev n though
double precision was used. Therefore, the two-dimensional problem
was solved by a sequence of solutions involving first restorations on
the rows and then restorations on the columns. This is clearly an ap-
proximate method. The approximation tends to be better when there is
little blur. This occurs because on one hand a moderate amount of
blur implies large condition number and the input to the column resto-
ration will be clipped. This tends to invalidate the model of additive
noise that is the basis of the quadratic programming algorithm. On

the other hand, for large blur, with the truncation of the point spread
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function, the condition number is moderate, but now the random vari-
ables in the same row will tend to be correlated and this is not taken
into account in the column restoration.

The linear inequality constrained restorations have been per-
formed under gaussian or sinc2 blur, for different values of condition
number. Figures (6.2-1), (6.2-2), and (6.2-3) illustrate the results
for gaussian shaped blur, while Figures (6.2-4), (6.2-5), and (6.2-6)
refer to the diffraction limited case. The improvement over the un-
constrained restoration is clear, particularly with high condition
number. Figure (6.2-5) illustrates an example of a completely un-
feasible restoration using straightforward regression techniques be-
coming feasible by. the addition of irequality constraints. The im-
provement by the use of this type of restricticn is greater than with
the equality constraints, although a much higher computational task
has to be performed. The solution of each eight variable quadratic
programming problem took between 6 and 7 seconds, completing 10
or 12 iterations of the algorithm. However, most of this time was
spent writing and reading from the disk where the data is stored. It
is felt that a substantlal reduction in time is possible by all-in-core
programming. It should be noted that the upper and lower bounds of

the quadratic programming, respectively 255 and 0, determine exactly

the range of values that ave displayed. Therefore, while the uncon-




198

Blurred hv =bH =,70, Var =10
Gaussian Blur, Overdetermined

Unconstrained Rostoration Inequality Constrained
Restoration

i 0 <x < 255

Figure (6.2-1) Comparison of Unconstrained
and Inequality Constrained Restorations _
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= =2, =1
Blurred bV bH 2.5, Var 0

Gaussian Blur, Overdetermined

RS

Unconstrained Restoration Inequality Constrained
Restoration
0 <x <255

Figurc (6.2-2) Comparison of Unconstrained
and Inequality Constrained Restoratlons

Gaussian Blur, bV = bH =2.5
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Blurred bv=bH=5000, Var = 10

Gaussian Blur, Overdetermined

Unconstrained Restoration Inequality Constrained
Restoration

0 <x <255

Figure (6.2-3) Comparison of Unconstrained
and Inequality Constrained Restorations
Gaussian Blur, bV = bH = 5000
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Figure (6.2-4) Comparison of Unconstrained
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Blurred bV =bH =1.0, Var =40
Sinc~ Blur, Overdetermined

e

3 Unconstrained Restoration Inequality Constrained

Restoration
0 <x < 255

Figure (6.2-5) Comparison of Unconstrained
and Inequality Constrained Restorations

2
Sinc Blur, bV = bH = 1.0
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Figure (6.2-6) Comparison of Unconstrained
and Inequality Constrained Restorations
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strained or equality constrained results are clipped to these bounds,
sometimes from much higher or lower values, the displayed inequality
constrained restored pictures reflect precisely the numerical results.

The determination of approximate confidence intervals for
parametric functions of pixel values is also done. Figure (6.2-7)
illustrates the comparison with the unconstrained restoration. Ob-
serve that both confidence intervals, unconstrained and constrained
are pessimistic. In fact, these intervals were computed using the ¥
value which is approximately 1.89 times greater than the K-value used
in Figure (6.1-7) for the unconstrained case. This makes the uncon-
strained confidence interval larger than in that figure, in order to be
compared with the constrained interval. The last interval is algo

pessimistic for the reasons stated in chapter 4.
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7. CONCLUSIONS AND SUGGESTIONS
FOR FUTURE RESEARCH

In this dissertation an attempt has been made to put the prob-
lem of image restoration on a firm theoretical basis. The linear in-
tegral equation that describes the imaging formation process has been
discretized in order to adapt the method to the requirements of digital
computation. This leads to a regression model whose numerical and
statistical properties have been extensively studied in this work.
Through the use, of this regression model it has been possible to in-
corporate the large body of knowledge developed in mathematical
statistics, econometrics, optimization theory and numerical analysis
into the field of image restoration.

The first developer method consists of the solution of the least
squares problem by the set of normal equations. Tkis solution
assumes the minimum possible amount of a priori information about
the image to be restored. In the regression model the vector of pixel

values representing the image is simply a set of parameters to be

ra f

determined. A price is paid, of course, for this lack of knowledge.
In the case of the overdetermined model the restoravdon problem can
' become extremely i1l conditioned and the solution may exhibit wildly

oscillating behavior. The study of the variation of the condition

-
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number as a function of the blur coefficient has been made, for two
types of kernel, namely, atmospheric turbulence and diffraction 1imi-
tation. The effect of truncation of the kernel has been shown to be
one of reduction of condition number. A trade-off is developed be -
tween the uncertainty in the estimators, when the discrete model ap-
Proximates the continuous one, and the error in modeling when the
opposite approach is taken. The use of the underdetermined model,
representing an attempt by the experimenter to estimate more points
than observed values implies infinite variances of the estimator.
When a pseudoinverse solution is obtained this unbounded uncertainty
is traded for an unknown bias in the estimators.

It becomes clear that, in order to obtain meaningful solutions,
some sort of a priori knowledge has to be introduced. Most of the
prior work in image restoration has employed probabilistic a priori
information, as a Bayesian type of approach to the problem. This
dissertation has explored deterministic a priori constraints, of two
types: linear equality and linear inequality restrictions. A com-
parison with existing methods of solution has been made. In particu-
lar, it has been shown that the smoothing and regularization techniques
for solving the discrete version of the Fredholm integral equation of
the first kind can be interpreted as least squares with quadratic

equality constraints.

The use of linear equality constraints has shown the advantage
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of being able to formulate the restrictions in terms of a hypothesis
that could be tested, revealing to the experimenter the validity or not
of these restrictions. The test could be performed by verifying the
restrictions themselves (F -test) or testing whether there is an im-
provement in mean square error by the use of these (perhaps incor-
rect) constraints (Toro Vizcarrondo-Wallace test). A moderate
visual improvement has been observed by the use of linear equality
constraints imposing that pairs of adjacent pixels should be equal.
Nevertheless, for high condition number, large oscillations are still
present in the solution.

When inequality constraints are applied by solving the quad-
ratic programming problem, better results are obtained, damping

the oscillations even in the high condition number situation. This is

done at the price of increased computational requirements, in terms

of both storage and time. It is felt that restoration of large images by
quadratic programming could only be done in blocks, using an all-in-
core algorithm. Its use could be justified when large condition num-
bers are involved in the restoration of valuable imagery.

In the analysis of the effect of perturbations on the solution of
the least squares problem it has been pointed out that the condition
number for changes in the blur matrix tends to increase as the square
power when noise is present. As a consequence, extreme care must

be taken in the measurement of the blur function, particularly when a




.

Ye am o

209

high condition number is involved.

The research pursued in this dissertation may be extended in
several directions. A more detailed study of the interplay of the dif-
ferent sources of error in the estimation of the contiruous image,
when a discrete model is used, would be of considerable interest.
The choice of the number and location of nodes of quadrature and
sampling points affects the error of numerical quadrature, the model-
ing eiror due to the truncation of the point spread function, the vari-
ance of the estimators and the aliasing error. The problem is of
considerable complexity and one should be probably satisfied with a
suboptimal solution. The study of the cordition number for different
types of quadrature formulas and different kernels would provide
valuable information.

Another area that deserves some exploration consists of
modeling the lack of knowledge of the blur matrix by a probabilistic
description, leading to the use of stochastic regressors. This will be
particularly valuable in the 1estoration of images taken through tur-
bulent atmosphere, when the duration of the expcsure is not long
enough so that the blur function stabilizes. This work would comple-
ment the study by Slepian [(1-9], by considering for example, statis-

tical dependence between noise and the point spread function.

The use of recursive computational schemes of the regression
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estimators would be particularly useful in real time applications,
when the stream of data comes from a row or column scanning of the
image. Another possibility would be the exploration of iterative mett.-

ods to solve the least squares problem, in the unconstrained or

equality constrained constrained cases. This method is equivalent

to solvine the linenr system of normal equations in an iterative man-
ner. Finally, the area of nonlinear regression could provide an ade-
quate framework to deal with a situation in which the blur cannot be

modeled by a linear operation.
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APPENDIX A

HYPOTHESIS TESTING IN THE
OVERDETERMINED MODEL

One of the advantages of the model developed for the irmage
restoration problem is its feature of being mathematically very
tractable. In particular, it offers the framework of extensive hy-
pothesis testing that seems well suited to solve several image de-
tection problems. In chapter 4 the linear equality constrained
restoration combines estimation and hypothesis testing in a common
framework of image restoration.

The assumption of an overdetermined model (M > N) will be
made, together with the hypothesis of white Gaussian noise corrupt-
ing the image. Nevertheless, some recent work in the statistical
literature seems to indicate that some of these tests are robust, in
the sense that they seem to perform well even when the Gaussian
assumption is violated [3-6, page 515].

Suppose first that a linear functional of the pixel values is to
be tested. In this case the experimenter could be interested, for
example, in testing whether a single pixel is equal to a certain value
or not or whether the sum of all pixel values, representing an inte-
gral over the entire picture, is also equal to a prespecified value .
or not equal.

211
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Assume that the linear functional is represented by the inner
product _<_:_T§_ and that the hypothesized value (represented by the

hypothesis Ho) is . Under the hypothesis Ho' the random variable

(A-1)

is zero mean and Gaussian. Its variance is given by

- Z(S.T(I;I.TI;I.)-IE)

Thus, under Ho,

is a zero mean, unit variance Gaussian random variable. In order
to perform the test under a given level of significance, a table of
standardized normal distribution should be used. The threshold

a.a > 0 1is chosen such that

= 5 & =
P(N(O,)>a} = P{-N(0,]) < -2} =~ (A-4)

where nis the level of significance of the test also known as the

probability of false alarm, using detection theory terminology. If
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the raadem variable given by (A -3) falls between -amand a . Ho is
accepted. Otherwise Ho is rejected.

It should be noted that Ho is a simple hypothesis and the
alternative Hl is a composite hypothesis. It is well known that there
is no uniformly most powerful test involving a Gaussian random
variable in this situation. The test specified in the previous para-
graph can be stown to be the uniformly most powerful unbiased test

for the simple hypothesis Ho against the alternative composite hy-

pothesis Hl'

Assume now that the variance of the noise is not known.

The procedure in this casc would be equivalent to performing an

=T

estimation of the variance Prior to testing. In the section on con-

——

fidence intervals it was shown that the variance of the parametric

g

function could be estimated by

o —

| s(c(E'H) "¢ (A-5)

where
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is Student distributed with (M-N) degrees of freedom. The test

H : ng = c_againstH,: gT;_:_ # c can then be performed by the use

(A-7)

of a Student distribution table. It should be remarked that for a
sample size larger than 40, the test can be performed by using
tables of normal distribution. The procedure is entirely analogous
to the case of known variance.

Suppose now that the problem consists in testing the unknown
variance of the noise. Let oz = oi be the Ho hypothesis and
oz # c’: be the alternative hypothesis. In the section concerning

N2
confidence intervals it was pointed out that the statistics XM—%)S—
o

is chi-square distributed with (M-N) degrees of freedom. Under

N)al
the Ho hypothesis this quantity becomes '(M—ZI\DL- and the test, for

9%

a given level of significance, can be performed using tables of the
chi-square distribution. More specifically, using a 100 o percent
significance level, the thresholds aa and bm of this two-sided test

are choscn satisfying the relationships

PLXM-N <a ] = PLXM-N > b ] = 5 (A-8)
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2
The hypothesis Ho is accepted if the value of(M falls between

iy

o
aaand b(x' Otherwise the hypothesis is rejected.

Consider now the problemNOf testing the whole vector x of
pixel values. In order to simplify the discussion, it will be assumed
initially that the Ho hypothesis specifies the zero vector, denoted by
0. The purpose of the test is to verify whether the whole picture is
zero against the alternative that it is nonzero.

The following discussion will make use of three quantities,

denoted by Ql’ QZ' and Q3, that will be defined now. Ql will

measure the variation of the observed data around the hypothesized

regression line, specified by the hypothesis Ho

(A-9)

Q2 will measure the variation of the observed data around the regres-

sion line obtained by estimating the regression coefficients irrespec-

tive of whether or not Ho is true.
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Q3 will denote the variation of the estimated regression line around

the hypothesized regression line, that means

A T ~
Q; = [Hx-Ho] [Hx-Ho]
= (k-0 (H H)&- o) (A-12)
- 2T EHR
Now since
x = (ETH)-I_TX = (HTE) lET(Hx+n) =
T -1_T (A-13)

for x = 0 it follows that

$ = @H 'H n (A-14)

So that (A-12) can be put irto the form

Q, = o' HE'® '@ mE "y 5

=2 HE H) Hn (4-15)

Now, by observing expressions (A-9), (A-11) and (A-15) to-

gether with the observations that
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rank I = M (A-16)
rank L = M-N (A-17)
rank(I-L) = N (A-18)
Q Q Q
it follows that T] 1s X2 (M), —2- 15 X* (M-N) and 73 is X2 (N)
o o y
distributed. Also, it is easy to verify that
Q] E Q2 +Q3 (A-19)

Furthermore, by Cochran's Theorem [A-1, pages 212-214], Q2 and
Q3 are independent random variables.

From the definitions of Q2 and Q3 it should be clear that if
Q3 is large compared to QZ' this would lead to the belief that the hy-
pothesis Ho is not true. In fact, this would mean that the hypothe-
sized regression line is far from the estimated regression line as
compared to the variation of the data around the estimated regression

line. Under this perspective, the statistics

Q
3 M-N
F=q N (A-20)

is appropriate for the testing procedure [3-5, page 96]. This ratio
is distributed according to the Fischer distribution, with N and M-N

degrees of freedom. The null hypothesis Ho is rejected when this

ratio exceeds the significance limit.
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So far the test has been developed assuming that the null hy-
pothesis specifies the zero vector. When, in general, a nonzero

pixel vector X is specified, Q3 is given by

-Hx 1 [HE-Hx ) (A-21)

Q, = [H

%>

and still, after some manipulation, the previous expression assumes
the form of equation (A-15). Since Q2 is not affected by the form of
the null hypothesis, it remains the same. Therefore, expression
(A-20) can still be applied.

In some circumstances the experimenter might be interested
in testing only part of the total number of pixels in a picture. This
would happen when it is known that a certain object to be detected
could occur only at a certain location on the overall picture. In this
case, the previous test can be modified to take into account this
special feature. By performing, if necessary, a reordering of the

pixel values, the vector x can be subdivided into two subvectors.

X

[E]

(A-22) |

X,

Suppose that the subvector of interest is x, and that the Ho hypothesis

—

consists in testing x, = x o 2gainstx, #x

2~ % X50° Under this partition the

linear model is given by
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X
Y= @H) ,x,2>+n (A-23)

where x, is an (le 1) vector, X, an (Nzx 1) vector such that N1 + N2
N and _Iil and EZ are, respectively (Mx Nl) and (MxNz) matrices.

Under this partition, the estimator will have the form [3-5, page 100]

s (3

T T -1 T
= T
T T
T -1 T T -1 T -1_.T
(ﬂl Hl) El Y - (El El) El EZE ﬂz le
E'H L Y (A-24)
= =g =]
where 4
) T . -1._T
p. and
k.
M
i _ T T i -1_.T . i
b E = EZ ﬂz - E’Z El(ﬂl .Iil) H ﬂz = El EIEZ (A-26)

., Also, _5;2 can be expressed as

!
{

A3
B
&t
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-1_T

E H Ln (A-27)

Comparing (A-27) with (A -13) and taking into consideration
(A-26), it follows that in this case the quantity Q3 of interest for

testing has the form

% %k
Q, = (x, - x,)E (x, - %))

Q

*
B 3
where x, =X, is the null hypothesis. Since E has the rank NZ' ——02

has a X,z distribution with Nz degrees of freedom and the ratio

(A-29)

will be distributed according to the Fisher distribution with Nz and
(M=-N) degrees of freedom. A large value of this ratio leads to the
rejection of the null hypothesis.

Several other tests could be devised concerning the pixel
values of an image or their linear combinations. For example, sup-
pose that the problem consists in detecting whether there is a dif -
ference between the gray level of two parts of a picture. This is the
so called edge detection problem. Two versions of this question can

be formulated. In the first one, the null hypothesis specifies x, =X,




Poadee o2

A
i

221
wilere x, and X, are partitions of x but the common value is unknown.
In the second version the common value is known and represented by
a vector, say 5*. In the field of econometrics tests of this type have
been called tests for structural stability [ 3-5, page 103-1167.

Before closing this appendix some observations should be
made. First, even though no justification was given for the statistics
used in the tests, it can be shown [ 3-6, page 1417 that these tests can
be rigorously derived through the use of likelihood ratios, using some
suitable criterioa, like the Neyman-Pearson for example.

Second, the examples of tests of pixel values or their linear

combinations can be put into the framework cf a general linear hy-

pothesis represented by the expressions

H :Rx=£,Hl:§>_:#£ (A-30)

where R and r are matrices of dimensions Q xM and Q x 1, re-
spectively, the rank of R being Q. A test procedure [ 3-6, page 143]
can be developed for this general case, leading to the pPrevious cases
for specific choices of the matrices R and r. Reference [ 3-3, pages
100-104] presents broader results, encompassing the cases where
the rank of R may be not Q and the underdetermined model, where the

rank of H may not be N.

Further tests could be devised, using the large body of

—
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material developed so far in regression analysis. As examples,
could be mentioned a test to verify whether the white noise corrupting
the image has constant variance or the test to verify if any degree of
correlation exists between the noise elements corrupting different
pixel values. This last procedure would be based on the so called
Durbin-Watson test developed in econometrics [3-6, pages 199-20 1].

Also, tests to verify the hypothesis of linearity of the blurring process

could be used, being based on the von Neumann ratio [3-6, pages 222-

224].
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APPENDIX B

COMPUTATION OF THE NUMBER OF OPERATIONS
FOR DIFFERENT METHODS OF RESTORATION

In this appendix, the number of operations involved in the
computation of the estimators in the restoration problem is presented.
The unconstrained, linear equality and linear inequality constrained
methods are considered. It is assumed that the first two methods use
nonrecursive forms of the estimators and the overdeterinined model
is involved.

The unconstrained solution is obtained by a simple matrix-
vector multiplication. If the observed vector y is (M2 x 1) and the
vector of pixel values x is (N2 x 1), the solution would involve
Mz x N2 multiply and add operations.

Expression (4.2-2) gives the solution for the linear equality
constrained restoration. Assuming that Plinear constraints are in-
corporated, the number of operations involved in obtaining the solution

can be computed as follows:

M2 x N% mult. and add for x

== N N2 x P mult. and add for _Ag.

P add for t - A%

223
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N" x P mult. and add for K(t - A%) = X

T sl =7 -1_..-1, 7T

where K = (1 ¢™'H) AT [a@m e ') 1A T

N add for 2+Xx

Total: N%(2P + M%) mult. and add + (P + N?)
add

The computation of the number of operations involved in the
solution of the quadratic programming problems for inequality con-
strained restoration is more complex and only an estimated value can
be given. Suppose that the problem consists of minimizing the quad-
ratic form given by (4.3-4) subject to the constraints expressed by
(4.3-2) and (4.3-3). Wolfe's procedure [4-67 consists essentially in
solving the equations that express the Kuhn Tucker cond.tions.

The procedure consists of two steps: in the first one, three
nonnegative slack vectors, m, t, ax-d_i:_2 are introduced and the step
consists in finding a set of vectors x > 0, z>0and w and the slack

vector s that solve the problem of minimizing the objective function

S + N2

2 m
=1 1

subject to the constraints
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(B-3)
(B-4)

where the notation defined by equations (4.3-5) to (4.3-13) is used.
Except for the last restriction, this is a linear programming problem.
The procedure is very much similar to the simplex method, with some
modification to take into consideration the nonlinear restriction.

The minimum of (B-1) is attained for m =0 and the second

step consists of minimizing the objective function

subject to the constraints

(B-8)

where t contains the remaining nonzero components of_t:l andi2 and E

is the corresponding coefficient matrix,

The number of operations of each step will be computed as if
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they were standard simplex methods. This is evidently an approxi-
mation but it should be a reasonable one since a few extra operations
are necessary to impose cowditions (B-4) or (B-8).

Under this assumption, the number of wperatlons for each step
is estimated [4-5, page 55] as 1.5x (number of linear equality re-

strictions) pivot operations. Since in each step the number of linear

equality restrictions is given by (S + 3N2), it follows that the total

number of pivot operations should be about 3x(S + 3N2).

A pivot operation in linear programming comprises three
series of suboperations:

a) Determination of the column of the pivot, that is, the non-
basic variable that will enter the basis. This is done by a search of
the most negative reduced cost coefficient among the nonbasic vari-
ables.

b) Division o! all the elements of this column by the corres-
ponding right hand side elements and search for the smallest non-
negative quocient. This operation will determine the pivot.

c) The operation of pivoting, that is, reducing to one the pivot
element and to zero all other elements of the pivot column by elemen-

tary row operations and updating the entire simplex tableaa.
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