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ABSTRACT 

This report describes a technique that can 
be used to derive the penalty paid, in terms of 
increased apparent magnitude, for not observing 
artificial satellites at their maximum diffuse 
brightness.  The procedure is applied here to 
the simple case of geostationary right-circular 
cylinders.  We find that if these satellites (at 

in their brightest) are 0.5 brighter than the system 
limit, then = 63 percent of all such satellites 
within 60 degrees of the GEODSS ETS will never be 
visible. 
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I.   Introduction 

This report explores the visibility of a geostationary 

satellite with respect to the time of observation and the 

difference between the longitude of the sub-satellite point and 

the longitude of the observer's meridian (AX).  The analysis 

illustrates a versatile technique applicable to any distribution 

of satellite orbits, shapes, sizes, reflectivities, orientations, 

and motions about the satellite center of mass.  In particular, 

the penalty paid, in terms of the increased apparent magnitude 

(Am), is revealed as a function of the time of observation and 

AX.  The calculations are restricted to diffuse reflections. 

The next section more fully specifies the problem and the 

third presents the findings of the computations in a series of 

graphs.  Additional numerical details are in the Appendix. 



II.  Specifications 

A. Orbits 

All satellites are in a circular orbit with period 

P = 1 mean sidereal day, geocentric declination = 0, and geocentric 

distance r = 42164.3 km = (GM_P2/4ir2)1//3. 

B. Size, Shape, and Reflectivity 

All satellites are right circular cylinders with uniform 

reflectivity.  They all have the same dimensions and reflect 

diffusely.  Hence, their phase function is (Giese 1963, 

McCue et al. 1971) 

F = cos6 'cos6 ' [ (TT - 0)cos0 + sin0]/ir, (la) 

6 =(|a' - a;| - 12h) , (lb) 

where primed quantities denote topocentric coordinates.  See 

Figure 1. 

C. Orientation and Motion About the Center of Mass 

The angular momentum vector is parallel to the angular 

velocity vector and both point towards the North Celestial Pole. 

The motion is stable and the angular speed in constant. 

D. Satellite Population 

It is assumed that an ensemble of identical satellites 

are uniformly distributed in AX (measured positive to the east). 

The extreme values for AX used here correspond to topocentric 

zenith distances of 60  and 70 .  When apparent magnitudes are 

indicated instead of Am, it is assumed that a satellite due south 
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Fig. 1.  Phase function for a diffusely reflecting cylinder. 



of the observer (i. e., the GEODSS ETS) when viewed at full phase 

through an atmosphere with e = 0.25/air mass extinction has an 

apparent magnitude of exactly 16 . 

E. Times of the Year and of the Night 

For this satellite population there are four interesting 

times of the year.  They are (i) at an equinox when eclipses occur, 

(ii) near the eclipse season when they are the brightest, (iii) at 

a solstice when they are faintest, and (iv) in between the solstice 

and the near equinox times.  All calculations presented here for 

these four periods represent three week averages of the days numbered 

59-79, 80-100, 161-181, and 120-140 inclusive.  Since a satellite's 

brightness is not symmetrical about local apparent (or mean) solar 

midnight, when hours from midnight is used the results represent 

an average of the pre-and post-midnight hours. 

F. Procedure 

The apparent magnitude of each satellite in the ensemble 

was computed on the hour between sunset (6 PM local mean solar time 

= T) and sunrise (6 AM) inclusive for every day of the four three 

week periods.  These results when then combined to yield Figures 

2-8. 
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Fig. 2.  Magnitude loss at 6PM(2)12PM as a function of sub-satellite- 
meridian longitude for geostationary cylinders. 
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Fig. 3.  Magnitude loss at 0(2)6AM as a function of sub-satellite- 
meridian longitude for geostationary cylinders. 
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Fig. 4.  Contours of constant Am for the winter solstice.  Curves show 
successive magnitude loss of 0.250(0.125)0.750(0.25)1.50(0.5)2.5. 
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Fig. 5.  Three week average of magnitude loss for a uniform distribution 
of geostationary satellites at an equinox. 
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Fig. 6.  Three week average of magnitude loss for a uniform distribution 
of geostationary satellites near the equinox. 
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Fig. 7.  Three week average of magnitude loss for a uniform distribution 
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Fig. 8.  Three week average of magnitude loss for a uniform distribution 
of geostationary satellites in between equinox and solstice. 
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III. Results 

Figures 2 and 3 show the loss of brightness, in magnitudes, 

from maximum brightness as a function of AA at T = 18(2)30.  As 

one would expect satellites in the west at sunset are very faint 

etc., and the curves are almost symmetrical about T = 24.  Note, 

however, that even at 8 PM the loss at the 60  zenith distance 

limit is Am = 2.5. 

Figure 4 is a plot of constant Am contours in a T - AA 

plane.  The solid (innermost) curves represent losses in steps of 

0m125 starting from Am = 0m250.  The dotted curves represent 

successive losses in steps of 0.25 starting at Am = 1.00 and the 

solid (outermost) curves represent losses in steps of 0.5 starting 

at Am = 2.0.  An example of the use of such a graph is to calculate 

the fraction of the area displayed within a given Am value.  Thus, 

the area enclosed by Am = 0.50 is approximately 37 percent of the 

total.  Hence, an automatic detection system whose limit is 

m = 16.5 (independent of the signal-to-noise ratio) would lose, 

a priori, 2/3 of this population. 

Figures 5-8 show the cumulative number of satellites (in 

percent units) with magnitude loss <_ Am for Am = 0(0.25)2.75, 

> 3 at the four different times of the year.  Each figure contains 

curves for 0(3)6 hours from midnight for both the 60  (solid) 

and 70  (dotted) zenith distance limits.  The effects of eclipses 

at the equinoxes and losses due to larger air mass are clearly 

visible. 
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A simple extrapolation of these results can be made for 

any phase function that decreases more rapidly with 9 [cf. Eqs. (1)], 

namely that the restrictions on observing become more stringent 

and the penalty paid becomes larger. 
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Appendix 

In this appendix we discuss the calculation of the satellite 

brightnesses used in the preceding analysis.  All of the cal- 

culations refer to the GEODSS ETS whose geodetic coordinates are 

height above geoid = 1.529382768 km, 

geodetic latitude = +33?81805667 = <J> 

geodetic longitude = 253?341415028E = \. 

The corresponding geocentric values are 

geocentric distance = 6373.103 km « p, 

geocentric latitude = +33?64037171 = <J>' 

If T is the local mean solar time and t is the local mean universal 

time then 

T=t+A-24=t- 7h1105723. 

Although local apparent solar time would be more appropriate than 

local mean solar time,as the equation of time is ; 16, it's not 

an important effect.  The local mean sidereal time, T, is related 

to t by (for 1976) 

T = lI?0027379t + 6h5709822 x 10~2D - 0^52409761, 

14 



where t e [0, 24) and D is the integral number of days elapsed 

since 0  UT on 0 January 1976. 

The position of the sun is calculated based on the two 

assumptions (i) that the ecliptic latitude of the sun is zero and 

(ii) that its motion is strictly Keplerian.  Therefore, if e is 

the eccentricity of the orbit, T  is the time of perigee passage, 

and w is the argument of perigee then 

AQ = v + co, 

v = M + (2e - e3/4)sinM + (5e2/4 - lle4/24)sin2M 

+ (13e3/12)sin3M + (103e4/96)sin4M, 

M = n(t - T ), n = 360°/365?24219, 

where A« is the ecliptic longitude of the sun.  For 1976 

T  = 4dllh29m ET, co = 283?23931, e = 1.6719199 x 10"2.  The 

transformation to equatorial coordinates uses a value of the 

obliquity of the ecliptic e = 23?442404. 

The position of the satellite is specified by 

geocentric distance = 42164.3 km = r, 

geocentric right ascension = x + A A = a, 

geocentric declination =0=6, 

where AA is the difference (measured positive to the east) between 

the longitude of the sub-satellite point and the observer's meridian, 
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Since the equation of the equinoxes is < 1 , we commit no substantial 

error in using T instead of local apparent sidereal time.  The 

topocentric equatorial coordinates (corrected only for geocentric 

parallax) are given by 

a' = a + tan  [asinAX/(l - acosAX)], 

6'   =  6  -  tan_1[b/(l - bcoty)], 

coty = cot<f> 'sec [ (a - a')/2]cos[(a - a')/2 - AX], 

r' = rsinycsc(y - 6'), 

where 

a = (p/rjcos^' = 1.2583659 x 10_1, 

b = (p/r)sin<f>' = 8.3733500 x 10"2. 

The geocentric zenith distance, z, is given by (since 6=0) 

cosz  =  cos<f>co*AA. 

The topocentric zenith distance (corrected only for geocentric 

parallax) is given by 

z' = z + tan  {nsin(z - y')/[l - ncos(z - y')]}, 

where 

n = (p/r)cos(({) - ((/Jsecy* = 1.5114869 x 10  secy', 
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and Y' is determined from the geocentric and topocentric azimuths 

(measured from south to west) via 

A = -sin  [sinAAcscz], 

A' = A + tan  [msinA/(l - mcosA)], 

-4 m = (p/r)sin(<f> - 4>')cscz = 4.6874195 x 10  cscz, 

tany'   =   tan(cj)   -   cDcosHA'   +  A/2]sec[(A'   -  A)/2] 

Finally, topocentric zenith distance corrected for geocentric 

parallax and refraction is calculated via 

z" = z' - 58*.'2   tanz' . 

Table AI contains AX, z, z' as a function z" for 

z" = 40(5)75°. 

The apparent magnitude, m, of the satellite is determined 

from 

m = mQ + eX - 2.51og[pR
2F(*)/A2(r')2] 

where mfi is the apparent magnitude of the sun, e   is the extinction 

per unit air mass, X is taken to be secz", p is the albedo, R is 

the radius of the equivalent area sphere, F is the phase function 

of the phase angle <t>[F(0) =1], and A is the sun-satellite distance 
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z 

TABLE AI 

TOPO AND GEOCENTRIC ZENITH DISTANCE 

AX 

40° 40°0'48,.,9 34°24'59" 0h27ml3f7 

45° 45°0'58,.,2 38°51,47" lh2lm38?6 

50° 50°1' 9V4 43021'22" lh55m44?3 

55° 55°1,23V2 47°53'58" 2h24m47?9 

60° 60°1,40V9 52°29'51" 2h51m31?3 

65° 65°2' 5V0 57° 9'14" 3h16m58?6 

70° 70°2,40V3 61052'24M 3h41m43?0 

75° 75°3'38'.,1 66O39'40M 4h 6m 4f9 
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in A. U.  Variations in A can cause at most a ± 0.0006 change 

in m for geostationary satellites and its variation has been 

ignored.  Since the satellites are all identical cylinders, p and 

R are superfluous variables.  If a', 6' are the topocentric 

coordinates of the artificial satellite and aß and 6_ are the 

similar coordinates for the sun then, including the effects of 

parallax but not the solar semi-diameter, 

2 
cos<t>  =   -cos<t>'   +  ysin  <J>' , 

where 

cos<t>'   =   sinö'sinö'   +  cosö'cosölcos(a'   -  aX) 

p = (mean equatorial horizontal solar parallax)/(mean 

-4 equatorial horizontal satellite parallax) = 2.8076 x 10 

The phase function for a cylinder is [Eqs. (1)] 

F =  cosö'cos6 ' [ (IT   -   8)cos8   +  sin0]/iT, 

9   =   I|a'   -  a£|   -   12h 

In all cases geocentric rather than topocentric solar coordinates 

have been used because the solar semi-diameter is much larger than 

the solar parallax.  Wherever magnitudes are used instead of mag- 

nitude differences the normalization has been such that a satellite 
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seen at full phase would have apparent magnitude of 16.00 at the 

telescope, when e = 0.25.  Thus, 

m = 15m959 + eX + 2.51og{[sinycsc (y - 6')]2/F} 

Satellites are assumed to be eclipsed whenever they have 

entered the earth's penumbral shadow.  This has a radius at r of 

D= 908,56'.'0.  Since the transit time from (entrance into penumbral 

in  s shadow) to (entrance into umbral shadow) is - 2 10  this is 

conservative.  Clearly the coordinates of the eclipse center are 

(aR + 12, - 6R).  Hence the angular distance between the satellite 

and the eclipse center is given by 

-1 2 d = sin  {[cos6sin(a - a« - 12)]  + [cos6_.sin6 

+ sin60cos6cos(a - a0- 12)]
2}1/2 * [(a - a0 - 12)

2 + 62]1/2. 

Eclipse occurs whenever d < D, 
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