\

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD-AO34 606

SPEECH UNDERSTANDING RESEARCH

STANFORD RESEARCH INSTITUTE
MeNLO PARK, CALIFORNIA

OctoBer 1976

' 024099

Final Technical Report
Covering the Period 15 October 1975 through 14 October 1976

SPEECH UNDERSTANDING RESEARCH

Edited by: DONALD E. WALKER

With Contrikutions by: WILLIAM H. PAXTON JONATHAN SLOCUM
GARY G. HENDRIX ANN E. ROBINSON
BARBARA J. GROSZ JANE J. ROBINSON
RICHARD E. FIKES DONALD E. WALKER

Prepared for:

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
ARLINGTON, VIRGINIA 22209

CONTRACT DAAG29-76-C-0011
ARPA Order No. 2903 D D C
Program Element Code 62706E

R
JAN 21 09T
Approved for public release; distribution unlimited. @EE—U—E

D

STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 - U.S.A.
REPRODUCED BY

NATIONAL TECHNICAL
INFORMATION SERVICE

U.S. DEPARTMENT GF COMMERCE

SPRINGFIELD, VA. 22161 /

—— e

STANFORD RESEARCH INSTITUTE
Menlo Park, Celifornia 94025

Approved for public releesse; October 1976
distribution unlimited.

Finel Technical Report
Covering the Period 15 October 1975 through 14 October 1976
Stanford Research Institute Project U762

SPEECH UNDERSTANDING RESEARCH

Edited By

Donald E. Welker
Project Leader
(415) 326-6200, Ext. 3071

With Contributions by

William H. Pexton, Gary G. Hendrix, Barbare J. Grosz, Richard E. Fikes,
Jonathan Slocum, Ann E. Robinson, Jane J. Robinson, arnd Donald E. Walker

CONTRACT DAAG29-76-C~0011 Effective Date: 15 October 1975 ;
ARPA Order No. 29032 Expiration Date: 14 October 1976
Program Element Code 62TO06E Amount of Cor:uract: $307,710

Prepared for

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
ARLIHGTON, VIRGINIA 22209

The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
of the Defense Advanced Rese2rch Projects Agency or the
U.S. Government.

Approved by: ’
PETER_ E. HART, Director Z?-;é‘/[W
n v

Artificial Intelligence

EARLE D. JONES, Associate Executive Director x
Information Science and Engineering Division

BLANK PAGES
IN THIS
DOCUMENT
WERE NOT

"~ FILMED

r“

R
— —_— - P %3 T P S W I PSS S s A e
| BCCESS!ON jor
[)1} VAls Bection
”e L St
UL E 0
¥ NI -
"-uu---- erier Tebe s.n et sseersisrvingdecad’
DISTRIZIT! W kg 2 L,0ivY CODER
e TR
E 5’ , ABSTRACT
i {
. " e @ v cn v e

This report is the final report 1in a series describing research
performed by Stanford Research Institute over the past five years to
develop the technology that will allow speech understanding systems to
be designed and implemented for a variety of different task domains and
environmental constraints.,

Chapter I provides an overview of the speech understanding system
we have developed, together with an example showing how an utterance is
processed and some historical background. Chapters II and III present
detailed desriptions of the definition system and the executive system
that provide overall integration and control. Chapter IV discusses the
results of experiments conducted to test alternative system control
strategies. Chapters V, VI, and VII describe the representation of
semantic knowledge, present a model of the problem domain, and show how
semantic processing 1is used in the interpretation of an utterance.
Chapters VIII, IX, and X deal with discourse and include discussions of
dialog collection and analysis, the resolution of definite noun phrases,
and ellipsis. Chapters XI, XII, and XIII indicate how *the system
responds to the interpreted utterance, how deduction 1is used both to
find an answer and in the interpretation process, and how the system
generates replies in English to a user. A final chapter 1lists
publications and reports documenting the research we have performed
on speech understanding during the past five years.

Preceriing page blank

iii

CONTENTS

LIST OF ILLUSTRATIONS . .+ « ¢« « « o« « o« o o « o ix

j I INTRODUCTION e o o & 2 & 2 W e+ o e e « a I-1
A. ORIENTATION . . ¢« ¢ o o o o o o o o o I-1

: B. AN OVERVIEW OF THE SPEECH UNDERSTANDING SYSTEM . I-4
% C. AN EXAMPLE TO ILLUSTRATE PROCESSING IN THE SYSTEM . I-14
D. AN HISTORICAL PERSPECTIVE e e e e = e e e e I1-.25

TI THE DEFINITION SYSTEM e e e e e e e e e e e I1-1

A. INTRODUCTION e e e e e e e e e e e e II-1

B. THE METALANGUAGE e e e e e e e 4 e e e . I11-2

cC. A VERSION OF THE SRI LANGUAGE DEFINITION e e e e I1-15

D. THE DEFINITION COMPILER+ =+ .+ - . I1-27

E. DISCUSSION e e e e e e e e e e e e e II-42

III THE EXECUTIVE SYSTEM e e e e e e e e e a2 e III-1

A. INTRODUCTION e e e e e e e e e e III-2

B. PARSE NET e s s e e e e e e e e e e e I11-4

C. OVERVIEW OF THE EXECUTIVE e e e e e e e e s I1I-7

D. DETAILS OF THE EXECUTIVE e e e e e~ e e e III-20

e. DISCUSSION e e s e e e e & e e e e e I11-75

Preceding page blank

v

| IV EXPERIMENTAL STUDIES . . .« « « « & « « « « . Iv-1
: A. INTRODUCTION . . v « v & « o o « « o . V-1
B. EXPERIMENT 1 -- MAPPER PERFORMANCE IV-2 '
; C. MAPPER SIMULATION« .« « V-5 !
7 D. EXPERIMENT 2 -- FANOUT Iv-9 |
F. EXPERIMENT 3 -- CONTROL STRATEGY DESIGN CHOICES . . IV-13 :
i F. EXPERIMENT 4 -- GAPS AND OVERLAPS IV-37 |
§ G. EXPERIMENT 5 -- INCREASED VOCABULARY AND IMPROVED
1 ACOUSTICS v v v v &« « o o « « o . Iv-39
- : H. DETAILED MEASUREMENTS OF EXECUTIVE OPERATION . . . IV-4l
4 I. CONCLUSION . . + v « v & o + « o« o« o . 1V-53
if J. TEST SENTENCES+ « « v « & « « . IV-54
: V THE REPRESENTATION OF SEMANTIC KNOWLEDGE V-1
A. INTRODUCTION e e e e e e e e e e V-2 ,
B. THE ROLE OF SEM;NTIC REPRESENTATION V-4 ;
C. BASIC NETWORK FOTIONS+« « .« . . V-10
£ D. PARTITIONING « & « &« & « « « . V-20
‘ E. HIGHER-ORDER STRUCTURES V-30
F. AUGMENTATIONS+ « « & « « o . V-85
G. SUPPORTS FOR DIVERSE TASKS« .« .« . . V-93
H. LINEARIZED NET NOTATION« « . . . V-95
I. APPLYING THE REPRESENTATION e e e e e e V-99
V1 THE MODEL OF THE DOMAIN e e e e e e e VI-1
vi

E VII SEMANTIC ASPECTS OF TRANSLATION « . VII-1
t A. INTRODUCTION 5 o o o o o o o o o © o o ViI-2
B. PHASE I: SIEMANTIC COMPOSITION VIiI-5
c. PHASE 1I: QUANTIFICATION 5 o 0 o o o o o o VII-36
D. THE USE OF CASE INFORMATION 5 o o o 0o o o o« VII-55
VIII DISCOURSE ANALYSIS © o 0o © o o 0o ©o o o o s g VIIT-1
A. INTRODUCTION 5 o o 0o o 0o o o o o o o a VIII-2
B. DIALOG COLLECTION AND ANALYSIS 5 o o o o o o VIII-S
? C. COLLECTION OF THE DIALOGS 5 o o o o o o o o VIiI-T7
; D. ANALYSIS OF THE DIALOGS« « + «+ =« VIII-15
IX RESOLVING DEFIMITE NOUN PHRASES + «+ .+ . IX-1
A. INTRODUCTION s o 0o o o © © o © 8 ©o 0o o IX-1
B. THE FOCUS SPACE ENCODING OF CONTEXT+ . IX-9 i
C. DEFNP RESOLUTION IN CONTEXT 5 © o o o a o0 o IX-20 !
X ELLIPSIS © o o 0 o 0 o o o o o o o o o o X-1
A. OVERVIEW . . .+ +« + « v o« « o o o o o X-1
B. SLOT DETERMINATION e e e e e e e e e e e X-5
C. COMPLETING THE UTTERANCE 5 o o o 0o o 0 o o X-14
D. ELLIPTICAL RELATIONAL NOUN PHRASES o 0o o 0o o g - X-26
E. LIMITATIONS AND EXTENSIONS « « « o« X-29 é
XI RESPONDING ON THE BASIS OF THE SEMANTIC TRANSLATION o o XI-1 %
A. PERSPECTIVE + + « « « & + o XI-1

B. INTERACTIONS WITH THE DEDUCTION COMPONENT AND THE
ENGLISH GENERATOR« .« .+ .« . XI-3

vii

XIT THE DEDUCTION COMPONENT 5 o 0o o o o o a o ¢
A. INTRODUCTION o e s e e e e 4 e s e
B. ELEMENT PARITY+ « « =+« « « « « .
C. THE ENVIRONMENT TREE . . .

D. THE EXECUTIVE FOR THE DEDUCTIVE COMPONENT .

E. GENERATING CANDIDATE BINDINGS FOR A SELECTED QVISTA
ELEMENT+ +« « +« « +« «

F. RAMIFICATIONS OF A PROPOSED BINDING
G. THE BINDER

H. DERIVING ELEMENT-OF AND SUBSET RELATIONS USING
TAXONOMIES . . .

I. SIMPLIFICATION OF NEGATIONS o e e e
J. THE KVISTA EXTRACTOR
K. THE QVISTA EXTRACTOR

L. PROCEDURAL AUGMENTATION

M. TWO EXAMPLES 9 0 o © ©o o © o o ©o o0 o o
XIII GENERATING VERBAL RESPONSES« .« .+ .

A. INTRODUCTION 5 o ¢

B. GENERATION TEMPLATES . .

C. NOUN FHRASES e e e e e e e e e

D. DISCUSSION

E. LOCKING AHEAD

XIV REFERENCES+ .+ .

XV SRI SPEECH UNDERSTANDING ARESEARCH PUBLICATIONS AND REPORTS

viit

XII-1
XII-2
XII-10
XII-14

XII-18

XI11-22
¥II-23

XII-26

XII-31
XII-33
XIT-34
XII-U1
XII-51

XII-58

XIII-1
XIII-1
XIII-2
YITI-T7
XIII-8

XII1I-9

XIvV-1

Xv-1

S e S 1N T T T [y, NN L (- T e o oo i = PP T EEE EERR

™

(ke

I-2.
II-1.
II-2.
II1-3.
II-4,
I1-5.
I1I1-6.
11-7.
I1-8.

I1-9.

II-10.
ITI-1.
I11-2.
ITI-3.
ITI-4.
ITI.5,
III-6.
I11-7.
II1-8.

III-9.

ILLUSTRATIONS

SRI CONTRIBUTIONS TO SPEECH UNDERSTANDING . .
SYSTEM ORGANIZATION e e e

PART OF A COMPUSITINN RULE

SAMPLE LEXICAL ENTRY« . . .
DECLARATIONS« « « « « .
LEXICON 5 0 o o o 0o o o o 0 © C
RULES+ .

GLOBAL DECLARATIONS .
PHRASE STRUCTURE PALI3 OF NUMEZR RULES
SMALLNUM RULE DEFINITION

A PHRASE STRUCTURE DECLARATION AND
ITS CORRESPONDING GRAPH

NP GRAPH BEFORE ADDITION OF EXTRA NIL ARCS .
EXECUTIVE TASKS« .« .« «+ «

A CONSUMER PATH

CREATE TERMINAL PHRASE

DISTRIBUTE A PHRASE TO CONSUMERS

ADD CONSTITUENT TO CONSUMER

PART 1 OF PRELIMINARY ADD-CONSTITUENT TESTS
PART 2 OF PRELIMINARY ADD-CONSTITUENT TESTS
COMPLETE-PHRASE PROCEDURE e e e e e e

CREATE AN INCOMPLETE PHRASE . .

ix

IT-11
II-12
II-14
II-17
I1-19

II-21

II-31

I1-34

III-9
I11-13
I11-22
ITI-24
JII-26
I11-28
III-30
III-33

I11-38

TR el R |

i AR A Ll L e s o

R Tk

gk A R

LodtiiEatts i g

b e e

IT11-11.
I11-10.
I11-12.
ITI-12,
I11-14.
III-15.,

Iv-1.

Iv-2.

Iv-4,
Iv-5.
IT-€.
I".7.
Iv- 8.
Iv-g.
IvV-10.
IV-11.
Iv-12.
IV-1R.
IV-14,
IV-15.
Iv-16.
Iv-17.
Iv-18.
IV-19.

Iv-20.

FILL-OUT-SUBNET PROCEDURE

CREATE SUBNET PROCEDURE

TRAVERSE SUBNET PROCEDURE . .

NP-PREPP PARSE NET LOOP . . .

PASS 1 OF RATING ASSIGNMENT

PASS 2 OF RATING ASSIGNMENT 5 o a c
MAPPER PERFORMANCE 5 o ©6 o o o c
SCORE DISTRIBUTIONS FOR FALSE ALARMS AND HITS .
CUMULATIVE DISTRIBUTIONS OF HIT AND FALSE-ALARM SCORES
FANOUT HISTOGRAM
ACCURACY AND RUNTIME OF THE 16 DESIGNS . .
CONTEXT CHECKING -- MAIN EFFECTS

MAPPING ALL AT ONCE -- MAIN EFEECTS

FOCUS BY INAIBITION -- MAIN EFFECTS

ISLAND DRIVING -- MAIN EFFECTS

MAIN EFFECTS OF VARIABLES ON PERCENT CORRECT
ACCURACY VERSUS LENGTH FOR ISLAND DRIVING
FOCUS AND ISLAND-DRIVING INTERACTION

STORAGE AND ACCURACY FOR THE 16 SYSTEMS

MAIN EFFECTS ON STORAGE . . .

FOCUS AND ISLAND-DRIVING

CONTEXT AND MAP-ALL INTERACTION

MAIN FTFECTS ON TOTAL RUNTIME

EFFECTS ON EXECUTIVE RUNTIME

EFFECTS ON ACOUSTIC RUNTIME e e e

EFFECTS OF MODIFIED FOCUS BY INHIBITION

X

IIT1-44
IT11-42
I117-46
ITII-47
I11-50
ITI-51
V-4
Iv-5
IV-6
Iv-11
Iv-16
IV-17
Iv-18
IV-19
Iv-20
Iv-21
Iv-22
Iv-22
Iv-24
Iv-25
Iv-25
1v-26
Iv-31
Iv-32
Iv-32

IV-27

Iv-21. EFFECTS OF GAP-OVERLAP PARAMETER 5 o o ©o o o @ 1v-38
IV-22. OBSERVED DISTRIBUTION OF GAPS AND OVERLAPS Iv-39
IvV-23. ACCURACY RESULTS e e e e e e e e e e e Iv-41
IV-24, MAIN EFFZCTS OF ACOUSTICS, VOCABULARY, AND MAP-ALL 0 IV-42
IV-25. VOCABULARY AND MAP-ALL INTERACTION FOR ACOUSTIC

RUNTIME+ .« .+ . « .+ « « . Iv-42
Iv-26. ACOUSTICS AND MAP-ALL INTERACTION FOR FALSE TERMINALS Iv-43
Iv-27. COMPOSITION OF THE PARSE NET IV-45
IV-28. BLOCKING CF PHRASES AND PREDICTICNS IV-U6
Iv-29. EFFECTS OF LOOKAHEAD+ .+ . . IV-47
IV-20. TIMING BREAKDOWN 5 o o o o o o o ©o o o o IV-49
IV-31. ACCURACY BREAKDOWN« .« . . Iv-51
g. V-1. FLOW OF SEMANTIC INFORMATION 5 o o 0o © o o o o V-5
v-2. AN EXAMPLE SEMANTIC NETWORK V-11
| V-2, ABSTRACTED USE OF DS ARCS 6 o o o o o o o c V-16
: V-4. ABSTRACTED USE OF DE ARCS 5 o o © o o o o c V-17
V-5. THE USE OF DS AND DE ARCS o o 0o o © o o o o V-18
V-6. SPACES SHOWING SYNTACTIC GROUPINGS 5 o o o o o v-22
V-T. ABSTRACTION OF VISTA ORDERING v-24
v-8. USE OF VISTA IN SYNTAX ENCODING e e e e e e V-26
V-9. EQUIVALENCTZ OF ENCLOSURE AND HEAVY ARROW NOTATION . . V=27
V-10. THE BELIEFS OF JOHN e e e e e e e e e e V-29

V-11. THE CONJUNCTION "THE HENRY.L.STIMSON WAS BUILT BY

GENERAL.DYNAMICS AND THE HENRY.L.STIMSON IS
OWNED BY THE U.S." 5 6 o o o o o o c V-32

V-12. THE DISJUNCTION "EITHER THE HENRY.L.STIMSON WAS BUILT
BY GENERAL.DYNAMICS, OR THE HENRY.L.STIMSON IS
OWNED BY THE U.S.S.R." e v s e e e e V-34

xi

v-21.

v=22.

v-23.
v-24.
V-25.
V-26.
v-27.

v-28.

THE HENRY.L.STIMSON IS OWNED BY EITHER
THE U.S. OR THE U.S.S.R. o o ©o o ¢

TiE U.S.S.R. DOES NOT OWN THE HENRY.L.STIMSON . .

EITHER GENERAL.DYNAMICS DIDN’T BUILD THE
HENRY.L.STIMSON OR THE U.S. OWNS IT

IF GEMERAL.DYNAMICS BUILT THE HENRY.L.STIMSON,
THEN THE U.S. OWNS IT . o o a

COMPACT IMPLICATION NOTATION . . .
A HIERARCHY OF QUANTIFICATION SPACES . .

THE ENCODING OF AxEy(p(x,y)] BY THE ORTHOGONAL
PARTITION METHOD

AN ENCODING OF AxEy[p(x,y)] BY THE IMPLTCIT
EXISTENTIAL METHOD . e

AN ENCODING OF Ax[{Ey[u(x,y)]} => {Ez[v(x,2)]}]

A SHORTHAND ENCODING OF Ax[{Eylu(x,y)l} =>
{Ez(v(x,z)1}] . ..

EVERY SUBMARINE IS OWNED 3Y SOME COUNTRY
EVERY LAFAYFTTE IS OWNED BY THE U.S.

ALL THE SHIPS IN ANY GIVEN CLASS HAVE THE SAME LENGTH

ALL SHIPS BUILT BY GENERAL.DYNAMICS BELONG TO THE U.S.

THE DELINEATION THEOREM OF OWNINGS

ABBREVIATED DELINEATION OF OWNINGS

RELATING A SENTENCE TO ITS MEANING

DID GENERAL.DYNAMICS EUILD THE HENRY.L.STIMSON?
DID GENERAL.DYNAMICS BUILD ALL U.S. DESTROYERS?
WHO BUILT THE HENRY.L.STIMSON?

WHO BUILT EVERY DESTROYER?

WHO BUILT EACH DESTROYER?

WHAT COMPANIES BUILT WHAT DESTROYERS?

xii

V-37

v-38

vV-40

v-41
V-42

v-148

V-51

V-55

v-58

V-75
vV-77
v-80
v-81

V-8¢

AT o

vVIi-2.
Vi-2,
vI-h,
VI-5.
VI.6.

VIt-1,

VII-2.

VIiI-2,

ViI-b,

HOW MANY SHIPS DID GENERAL.DYNAMICS BUILD?

RELATYNG SUMS SITUATION TO FUNCTION PLUS

AN APPLI”ATION OF SHIPDATA

A XEYED-AF " ICATIONS SITUATION
THEOREM I4PL’ED BY FIRST KEY

NETWORK CPEA'ED BY LN2 5 o o o o o o o o«
AN LN2 STATEKENT 5 o o o =&

TO” OF DOMAIN MODEL e e e e e e e e e
DELINEATIONS OF MEASURES AND SPEEDS

THE OVERLAPPING TAXONCMIES OF SH™ S AND SHIP.GROUPS
THE DELINEATION OF HAVE.BEAM

ALL CVTS ARE TRAINING SHIPS

LINKING HAVE.BEAM SITUATIONS TO RELATIONAL FILES

PARSE TARGET STRUCTURE FOR "A-}WER-PLANT OF
A SUBMARINE WAS-BUILT BY A-COK™ ~NY" ., . .

MULTIPLE SCRATCH SPACES FOR "A-PCWEH-PLANT OF
P-SUBMARINE WAS~BUILT BY A-COMPANY™

VIEWING HIERARCHY ABOVE S2

CONTEZT-DEPENDENT PARSE TARGET STRUCTURE FOR
»GENFEAL _DYNAMICS BUILT THE AMERICAN
SUBMARINE" 5 o o o o o o o o 9 &

NODE-SPACE PAIRE FOR PHRASES IN "GENERAL.DYNAMICS
BUILT THE AMERICAN SUBMARINE"

SCRATCH SPACES ¥(R "GENERAL.DYNAMICS BUILT
THE AMERICAN SUBMARINE®

THE TWO-NODE INTERPRETAT! N OF BEAM

SCRATCH SPACES WITH EQUI. ARC FOR
"THE HENRY.L.STIMSON IS A SHIP®

SIMPLIFIED INTERPRETATION OF
"THE HENRY.L.STIMSON IS A SHiP®

xiid

V-84
v-87
v-8¢
V-91
V-92
v-96
V-97
VI-2
VIi-4
VI-6
VI-10
VI-11

Vi-12

VII-8

VII-11

VIi-15

VIIi-22

ViI-23

VII.-24

VII-31

VII-33

VII-34

VII-10.

VII-1i.

VII-12.
VII-13.
VII-14.
VII-15.
VIII-1.
VIII-2.
VIII-3.
VIII-4.
VIII-S.

VIII-6.

iII-7.
VIII-8.
VIII-9.

VIII-10.
VIII-1.
VIII-|I2.
VIII-13.
VIII-14,
VIII-15.
VIII-16.
VIII-1T.

VIII-18.

SCR SPACES FOR "DID GENERAL.DYNAMICS BUILD
EVERY LAFAYETTE?" o e e

ULTIMATE TRANSLATION OF "DID GENERAL.DYNAMICS
BUILD EVERY LAFAYETTE?" .« e e e e

RESULT OF Q.YN SCGPING PROCEDURE « e e e
RESULT OF Q.UNIV SCOPING PROCEDURE .

THE Q FUNCTIONS AND STRENGTHS OF QUANTIFIERS
SEMANTIC NET REPRESENTATION OF THE OUWNING SITUATION
A SMALL AIR COMPRESSOR
EXPERIMENTAL SETUP FOR RESTRICTED DIALOGS
FRAGMENTS OF COOPERATIVE DIALOGS

DESCRIPTION OF "KNURLED" WITH AN WITHOUT VISTON
USING VISION TO HELP WITH A DESCRiPTION

DIFFICULTIES IN EXPLAINING AN URFAMILIAR
COMPLEX OBJECT

PRONOUN USE REFLECTING DIALOG STRUCTURE

A SEQUENCE OF ELLIPTICAL SENTENCE FRAGMENTS

A DATA BASE QUERY SUBDIALOG
A SUBDIALOG CHECKING PREVIOUS MESSAGE .
DIFFERENT USES OF "0.K."

A MISUNDERSTOOD "O.K."

A SIMPLE TASK MODEL FOR ILLUSTRATING DIALOG POPS
SINGULAR/PLURAL DISTINCTIONS

EFFECT OF SHIFT IN SUBDIALOG ON DEFNPS
EMBEDDINGS OF REQUESTS AND RESPONSES
UTTERANCE TYPES IN A SAMPLE DIALOG FRAGMENT

TWO SIMILAR DIALOG FRAGMENTS FOR COMPARING
RESPCNSE INFLUENCE

xiv

VII-39

VII-42
VII-U4s5
VII-46
VII-u8
VII-58
VIII-10
VIII-13
VIII-16
VIII-18

VIII-18

VIII-19
VIII-22
VIII-24
VIII-25
VIII-28
VIII-21
VIIi-33
VIII-38
VIII-U0
VIII-U0
VIII-U5

VIII-U6

VIII-47

S i

LD g

b e

T T use e —

VIIT-19. WORDS OCCURRING IN ALL FOUR DIALOGS

YIII-20. WORDS OCCURRING IN ALL FIVE DIALOGS,
GROUPED BY CATEGORY o e e e e e e

VIII-21. WORDS IN ALL NAIVE APPRENTICE DIALCGS BUT
MISSING IN AT LEAST ONE OF THE OTHERS

VIII-22. BOLT/NUT CONFUSION
IX-1. THE KITE STORY e e e e e e e e e e s
IX-2. A SIMPLE KVISTA WITH TWO FOCUS SPACES . . .

IX-3, QVISTAS FOR "THE WRENCH" AND "THE BOX-END WRENCH"

I¥-4. A KVISTA WITH THE SET OF WRENCHES DIVIDED INTO
SEVERAL SUBSETS . e e e e .

IX-5. THE WRENCHES KVISTA WITH FOCUS ADDED . . .

IX-6. PARSE LEVEL SEMANTIC NET REPRESENTATION
FOR "AMERICAN SUB"

IX-7. SEMANTIC REPRESENTATION FOR "RED BOX-END WRENCH"
IX-8. ORIGINAL FOCUS SPACE 5 o o o o ©o o o ¢
IX-9, WNEW FOCUS SPACE

X-1. PATH-GROWING ALGORITHM

X-2. REPRESENTATIONS FOR "WHAT IS THE SPEED OF THE
SUBMARINE?" e e e e e e

RESOLVING "THE CARRIER" AND FIRST LEVEL EXPANSION
OF ELLIPSIS TO "THE SPEED OF THE CARRIER"

FINAL EXPANSION OF ELLIPTICAL UTTERANCE TO
"WHAT IS THE SPEED OF THE CARRIER?"

REPRESENTATTONS FOR "DOES BRITAIN CwN THE CARRIER?"
EXPANSION OF THE ELLIPTICAL UTTERANCE, "THE U.S."
EXPANSION OF THE ELLIPTICAL UTTERANCE, "THE LENGTH"
SCHEMATIC OF YES/NO QUESTION .

SCHEMATIC OF WH QUESTION

VIII-5

VIII-S3

VIII-53
VIII-62
IX-4
IX-15

IX-15

IX-17

IX-19

IX-22
IX-30
IX-31
IX-32

X-12

X-17

X-20

X-21
X-23
X-24
X-28

XI-4

XI-5

XI-3.

XII-1,

XII-Z .

XII-5.
XII-6.
XII-7.
XII-8.
XII-9.
XII-10.
XIII-1.

XI111-2.

TRANSLATION OF "WHO BUILT THE HENRY.L.STIMSON?" .

KVISTA AND QVISTA FOR THE EXAMPLE QUERY "WHAT
SUBMARINES DID GENERAL.DYNAMICS BUILD?" .

AN EXAMPLE QUERY, "WHO BUILT THE HENRY.L.STIMSON?",
WHOSE ANSWER IS EXPLICITLY AVAILABLE .

AN EXAMPLE QUERY, "WHO BUILT THE HENRY.L.STIMSON?",
WHOSE ANSWER IS INTERNALLY DERIVABLE .

AN EXAMPLE QUERY, "WHO OWNS THE HENRY.L.STIMSON?",
WHOSE ANSWER IS EXTERNALLY DERIVABLE .

EXAMPLE KVISTA THEOREM

EXAMPLE OF KVISTA EXTRACTION
EXTENSION SPACES FOR KVISTA EXTRACTION EXAMPLE .
EXAMPLE OF QVISTA EXTRACTION .

EXTENSION SPACES FOR QVISTA EXTRACTION EXAMPLE .
RELATING SUMS SITUATION TO FUNCTION PLUS . . .
A SEMANTIC NETWORK FRAGMENT e e e e

THE BASIC GENERATION ALGORITHMS

xvi

XI-9

XII-5

XII-7

XII-8

XII-10
XII-39
XII-41
XII-42
XII-k9
XII-50
XII-54
XIII-4

XIII-6

L

RIbouRIv

T

T

I INTRODUCTION

Prepared by Ann E. Robinson, Donald E. Walker, William H. Paxton,
and Jane J. Robinson

CONTENTS:

A. Orientation

B. An Overview of the Speech Understanding System
1. Components Developed by SDC

The Language Definition

Syntax

Semantics

Discourse

Deduction

Generation

Executive

Example to Illustrate Processing in the System

Historical Perspective

5 .

(@]
>3 O@~JONOUN =ZWN

o
3

A. ORIENTATION

For the past five years, SRI has been a part of the Speech
Understanding Research Program sponsored by thne Advanced Research
Projects Agency of the Department of Defense.* The program, begun in
1971 following a thorough assessment of its feasibility by a study group
(Newell et al., 1973), launched a multi-disciplinary effort based on
state-of-the-art advances in computaticnal linguistics, artificial

intelligence, systems programming, and speech science. A set of

#* This research has been funded under the following ARPA contracts, all
administered through the Army Research Office: DAHCOU-72-C-0009, DAHCOL-
75-C-0006, and DAAG29-75-C-0011.

i

i

ki

e o S — <ok

coordinated, cooperative projects was established to focus fuirther
research both in the development of these source knowlecdge areas and in
their effective integration in the context of a complex computer-based
system. The goal was to develop one or more systems that would
recognize continuous speech uttered in the context of some well
specified domain by making extensive use of grammatical, semantic, and
contextual contraints. A system emphasizing such linguistic constraints
is called a ‘speech understanding system’ to distinguish it from speech

recognition systems, which rely on acoustic information alone.

From the beginning of our participation in the Speech Understanding
Research Program, our work at SRI has demonstrated two characteristic
features. First, we have approached the problem of natural language
processing from the perspectives of artificial intelligence and
computational linguistics. Second, we have stressed the importance of
having 2 functioning system guide the progressive elaboration of the
various system constituents (Walker, 1973a,b). Following the 1973
midterm review of the ARPA program, we began a joint effort with System
Deveiopment Corporation (SDC). We were responsible for overall system
control and for developing components to handle syntax, semantics, and
discourse. SDC was responsible for the acoustic components -- signal
processing, acoustic-phonetics, and phonology (see Bernstein, 1975;
Ritea, 1975; and Barnett, 1976). This report will concentrate on the
SRI contributions both to the operational system that resulted from the
Joint SRI-SLC eoffort and to the goal of the ARPA 3peech understanding

program.

N ——

™

il e

At e |

g U

L ko dai

P

Figure I-1 1ists the major contributions made by SRI together
with the characteristics that distinguish our system from others in the
program. These contributions are elaborzted further in the following

overview of the speech understanding system.

B. AN OVERVIEW OF THE SPEECH UNDERSTANDING SYSTEM

This section contains brief descriptions of the various components
of the speech understanding system, including those developed by SDC,
and of their ccordination by the system executive. Details regarding

the components developed by SRI are given in the rest of this report.

The domain for the speech understanding system is information about
the ships of the U.S., Soviet, and British fleets. The system data base
contains characteristics such as owner, builder, size, and speed for
several hundred ships. The user czn get information from the system by
simple English questions, commands, and dialog sequences using
incomplete sentences and pronouns. The internal organizaticw of the
system is shown 1in Figure 1I-2. The direction of the arrows in the
figure indicates the general flow of information as an utteraace is
interpreted by the systum and an appropriate response raturned to the

speaker.

I-3

e e bt e o S i ks e e R e e e cachl. B I . ey

i

=
4

DEFINITION OF INPUT LANGUAGE

Defines the input language by means of linguistically
motivated rules that are gereral and extensible over a
variety of domains

® Provides a means for adjusting (tuning’) the language
definition to particular domains without loss c¢f gener-
alicy

% Combines syntactic, semantic, and discourse information
within th2 rules that define words and phrases

SEMANT LS \“
% Us2s partitioned semantic networks
% Handles higher-order 1logical predicates, espec ially
quantifiers

% Provides deduction routines for retrieval and infe-ence
that can access supplementary relational data baue in
in responding to a user’s query

% Provides a network substructure that is converted to an

English sentence or phrase to answer a user’s question

DISCQURSE MODELING
% J1s based on in-depth studies of domain-oriented dialogs
% Fncodes model of dialog context by using semantic
partitions
% Finds meanings of elliptical expressions and referents
of definite noun phrases by using dialog context

SYSTEM INTEGRATION

% Provides for interaction of information from various
sources of knowiedge -- syntax, semantics, discourse --
as part of the language definition itself

% Avoids commitment to particular system control strategy,
allowing flexible use of various strategies for putting
together words and phrases out of incomplete and
uncertain fragments

SYSTEM CONTROL

% Provides special techniques to assign priorities by the
use of contextual constraints

Allows combinations of top-down, bottom-up, and bidirec-
rectional strategies

% Organizes data structures for testing hypotheses atout
utterances in a manner that avoids duplication of effort

% Used in extensive experimental studies to evaluate
design alternatives

Figure I-1. SRI CONTRIBUTIONS TO SPEECH UNDERSTANDING

I-4

NOILVZINVOHO W3LSAS

NOLLINIZ3Q 3DVYNONVY

¢-1 38N9i3

gkl o it

3s¥NOJsIa SOILNYW3S XVLINAS NODIX3T
! IY319010NOHd
4 4
_
J'Y
. J ; ¥
Acuy NOILONA3Q
viva aNv HIddYW -
7300W JILNVIN3S
)]
NOILYHINIO y311358NS
3ISNOJS3Y 3AILND3XT AvaIX3 XIHLYW-V
3
HOSS3II0Hd
> H3INV3IdS 3113INOHd
-211SN0aV

SYSTEM ORGANIZATION

Figure I.2.

I-5

T

i
E

TR R

el s il e

1. COMPONENTS LEVELOPED BY SDC

The acoustic-phonetic processor, the A-matrix, the mapper, the
phonological lexicon, and the lexical subsetter were developed by SDC

and are described more fully in their publicatlons referenced above.

The acoustic processor digitizes and records the input from
the human speaker at a rate of 20,000 samples per second. RMS-energy
values are calculated for each 10 millisecond frame of speech, followed
by fundamental frequency extraction, formant frequency analysis,
syllable segmentation, phrase segmentation, and other analyses. From
these parameters, rough segment labels are derived; subsequent processes
use the information available to segment the speech into phoneme-like
units, assign feature bits such as nasal or retroflexed, and generate
phonemic labels with associated merit scores for each segment. All of

the acoustic-phonetic information is stored as an A-matrix for the

utterance.

A mapper carries out acoustic tests using the A-matrix data.
Given a word predicted by the executive together with a location in the
speech input, the mapper compares alturnative possible pronunciations of
the word with the acoustic data at that point. The location can be
specified with a left time, a right time, or both. The mapper assigns a
score between 0 and 100 that indicates how well the word matches the
input. If the value exceeds a given threshold, the mapper reports the

beginning and ending times of the word together with the score.

I-6

Lkl s s |

TV

Rk L

The lexical subsetter performs an analysis of the A-matrix at
a specified location in the utterance and returns a list of words that
could begin (or end) at that time. This capability reduces the number

of words that otherwise would have to be checked by the mapper.

2. THE LANGUAGE DEFINITION

The input language is a subset of natural, colloquial English
that is suitable for carrying on a dialog between a user and the system
regarding information in the data base. The definition of this language
is based on augmented phrase structure rules. A rule consists of a
parase structure declaration, which specifies the possible constituents
of a phrase category, and an augmentation. The augmentation is a
procedure containing two principal kinds of statements called
‘attributes” and ‘factors’. The attritute statements determine the
properties of particular instances of a purase constructed by the rule.
An attribute statement may compute values for attributes that relate to
syntax, semanties, or discourse. The factor statements compute
acceptability ratings for an instance of the phrase. The scores for
factors are non-Boolean; that 1is, they may assume a wide range of
values. As a result, a proposed instance of a phrase is not necessarily
simply accepted or rejected; it may be rated a: more or less acceptable
or as more or less ‘likely’, depending on a combination of factor
values. Like attributes, factors may be syrtactic, semantic, or

discourse related. One of the distinctive features of the language

1.7

definition is its integration of the syntactic, semantic, and discourse
sources of knowledge through the attribute and factor statements.

Another is the provision of non-Boolean factors.

The forw of the rules is designed to avoid commitments to
particular system control strategies. Fror cxsmple, the rule procedures
can be executed with any subset of coastituents, so incomplete phrases
can be constructed to provide intermediate results, aad it is not

necessary to acquire constituents in a striccly left-to-right order.

3. SYNTAX

The syntactic knowledge in the system is represented both in
the phrase structure part of the language definition rules and in the
attribute and factor statements in the procedure part of the rules.
Syntax provides computationally inexpensive information about which
words or phrases may combine and how well they go together. In testing
word or phrase combinations, syntactic information alone often ecan
reject an 1{ncorrect phrase without requiring costly semantic and
discourse analysis. Factors are used for traditional syntactic tests
such as agreement for person or number, but factors also are used to
reduce the scores of unlikely phrases. For example, WH-questions that
are negative (e.g., "What submarine doesn’t the U.S. own?") are
unlikely to occur. A factor statement 1lowers the value for this
interpretation but does not eliminate it completely, so that if no

better hypothesis can be formed tc account for the input utterance, this

1-8

i el o

W
J

o il £ AP U £ e T, o

e e

Sl 3 ik e)

interpretation will be accepted. Since the language definition system

T TR

provides the capability for evaluating phrases in context by means of
non-Boolean f.:tors, the grammar can be tuned to particular discourse
3 situations and language users simply by adjusting factors that enhance
or diminish the acceptability of particular interpretations. It 1is not

necessary to rewrite the languaze definition for each new domain.

b, SEMANTICS

The system’s knowledge about the domain is embodied in a
partitioned semantic network. A semantic network consists of a
collection of nodes and arcs where each node represents an object (a
physical object, situation, event, set, or the 1like) and each arc
represents a binary relation. The structure of our network differs from
that of conventional nets in that nodes and arcs are partitionea into

gpaces. These spaces, playing in networks a role roughly analogous to

that played by parentheses in logical notation, group information into

bundles that help to condense and organize the network’s knowledge.

Our semantic network also serves as the medium for recording
and communicating semantic information among the relevant system
components. Diring the interpretation of an utterance, semantic
composition routines, which are called directly from the language
definition rules, relate the constituents of a phrase to ‘he network
model. These routines build new network structures to reflect the

underlying meanings of those phrases that are acceptable and to

eliminate those phrases that do not satisfy semantic criteria.

I-9

RRERIIORS, T8

To supplement the knowledge encoded in the network, a
rerational data base is maintained. It can be accessed directly from
the network, which contzins a representation of the contents of the data

base.

5. DISCOURSE

The discourse component of the speech understanding system
relates a given utterance (or a portion of it) to the overall dialog
context and to entities and structures in the domain. The current
domain of the speech understanding system provides for interacting with
information in a data base. 1In this domain, the discourse context is
limited to & linear history of the preceding interactions. For complex
task-oriented dialogs, the linear discourse history can be replaced by a

structured history mirroring the organization of the task execution.

An important function of the discourse component is to expand
elliptical expressions into their full meaning. In our system, a single
ncun phrase can be accepted as a complete utterance if it can be
expanded intc a meaningful sentence using information from the previous
dialog context. For example, the phrase "The George Washington" is
unacceptable 1in isolation, but following "What 1is the speed of the
Lafayette?", it can be expanded to mean "What is the speed of the George

Washington?"

I-10

s an il

Another important capability is the identification of the
referents of definite noun phrases. Partitions in the semantic network
are employed to focus the attention of deductive procedures on those
items that have been mentioned previously in the dialog. A
representation of the referent of a definite noun phrase is kept as the
ciscourse attribute of the phrase. If no referent ‘s found, the phrase

is given a low score.

3 6. DEDUCTION

The deduction component of the system provides an inierence

mechanism for retrieving information from the semantic network. This

component serves a dual purpose. During the interpretation of an

utterance, it supplies information needed both by the semantic

composition routines and by the discourse procedures. When an
interpretation has been found for a question, the deduction component is

used to find an answer.

7. GENERATION

The generation component of the speech understanding system
contains procedures to prcduce an English phrase or sentence
corresponding to a semantic network substructure. Usually, this

substructure is the answer to a quesation asked by the user. Using a

distributed generation grammar, the generator expresses the content of

the input nodes and arcs by employing the closest applicable templates

P — - = - - o e L

(rules) in the superset hierarchy of those nodes. The answer to a WH |
question, for example, can be either a noun phrase or a complete
sentence, depending on the exact content of the input. The generator
can produce a variety of paraphrascs of a constituent (e.g., "General
Dynamics built the Whale."; "The Whale was manufactured by General

Dynamics."). At present, the particular paraphrase is chosen at random.

8. EXECUTIVE

G L e

The executive 1is responsible for coordinating the various
components of the system. It uses the language definition and the
4 acoustic components to find an interpretation for the input. When a
successful interpretation has been found, the executive invokes the

response functions which produce a reply.

The principal data structure used by the executive 1is called
the ‘parse net’. It is a network with two types of nodes: phrases and

predictions. Phrases in the parse net can be complete, containing all

their constituents, or incomplete, with some or all of their
constituents missing. A prediction is for a particular category of

phrase. Each phrase or prediction is associated with a particular time

span in the utterance. As the interpretation of an utterance
progresses, new phrases that have been constructed from existing phrases
or from words found in the utterance are added to the parse net. At the
came time, new predictions are made as more information 1is obtained.

Thus, the parse net grows as the interpretation process advances.

L Al i i

There are two tasks involved in maintaining and evolving this
parse net: the ‘word’ task and the ‘predict’ task. The role of the word
tssk is to look for a particular word in a particular location 1in the
utterance. If the mapper has not been called previously for that word
in that 1location, the word task calls it. If a word is found
successfully in the specified location, the word is used to build a new

phrases.

The role of the predict task is to make a prediction for a
word or phrase tiat can help complete an incomplete phrase. Whenever a
new constituent is inserted into an incomplete phrase, any adjacent
constituents that had been missing can be predicted. Of course, new
predictions can include predictions for particular words, leading to new

instances of calls on the word task.

Besides creatingz these tasks, the executive must have &z means
of determining which one to perform next. Establishing the priority of
a task begins with determining the “score’ of the phrase involved. The
score is computed from the results of the acoustic mapping of any of the
words contained in the phrase, from the factor statements for the
phrase, and from the scores of the constituents. After the score is
determined, the phrase is given a rating which 1is an estimate of the
best score for a phrase of the root (sentence) category that uses that
phrase. This rating is then modified depending on the control strategy
being used, and the result is the priority cf the task to be performed

for that phrase.

I-13

TV T ———

C. AN EXAMPLE TO ILLUSTRATE PROCESSING IN THE SYSTEM

We present in this section a partial trace of the successful
processing by the system of the question "Who built the
Henry L. Stimson?". The utterance is 190 centiseconds (e¢s) 1long,
extending from 10 to 200 in the A-matrix containing the acoustic-

phonetic data for it. To simplify the presentation, interactions with

the mapper are not shown.

Lines in the trace beginning with ### indicate nodes that are built
into the parse net for complete or partial phrases. If the 1line ends
with ..., the phrase is partial; that is, not all of the constituents
are present. Lines beginning with 44+ identify nodes in the parse net
that specify predictions for the presence of particular categories.
Nodes 1 through 10 for phrases and 1 through 49 for predictions do not
appear in the trace. These rodes and predictions represent categories
that can begin an utterance, and include determiners, nouns, noun
phrases, and auxiliaries. They are pre-computed at the time when the

language definition is compiled.

In the following presentation, blocks of lines from the trace will
be followed by explications of the notation as well as of the processing

that takes place.

e v
E$..=..u.

it 1L

RE® 11 #8% (N WHALE) 15 25 (9 . 691)=76
%88 12 ®%% NP UBEG L (17 . 1219)=71 RHS 11 ...
[WHALE]

CALLING ROUTINE SEMRNP1

RESULT IS NET FRAGMENT (684 (686 683 1))

16857 1684}

i1 1683}

--;-- --e
E<<<<<l

BRE 3 @88 NP 15 25 (17 . 1219)=T71 RHS 11
[WHALE]

The first line of the trace shows that a node (node 11) is built in
the parse net for a complete phrase. (A phrase may be a single word.)
The (N WHALE) of the first line ‘ndicates that the first prediction for
which the mapper finds a likely candidate is for a noun (N), and that
the candidate was the word "whale". The following pair of numbers, 15
and 25, identify the beginning and ending times, 1in centiseconds,
corresponding to the possible 1location of the candidate in the
utterance. The remaining numbers are parts of the information used for
rating the phrase. There are 9 factors whose sum is 691. Therefore,
the score is 691 and the quotient is 76. (See Chapter II for an

explanation of thesec terms.)

This complete node 1is then used by the word task to build a new
phrase at node 12 for an NP. In the general case, it is possible to

extend a partial phrase by adding constituents on either side. In this

case, however, it 1is rnot possible to add constituents on the left

because the left anchor coincides within 5 centiseconds of the beginning

of the utterance. Thus, the phrase can be extended only to the right,

as shown by the UBEG L, which means that the phrase is left anchored at
utterance beginning. RHS 11 means that the right-hand-side of the NP
production rule to be completed vses thg phrase built at node 11 as the
: first right-hand-side constituent. Following entries for non-terminal
nodes, there is a line specifying the terminal words found for it. 1In

this case, there is one word -- "whale"™ -- for the NP of node 12.

The next step is to build node 13 for a complete NP, using node 11
and the single word "whale". As described in the text, semantic
structures are built for a complete phrase as part of applying the rule
for that phrase. For this reason, the call on the semantic routine and

the results of that call appear before the 1line for the ncde.

Similarly, discourse calls (e.g., PRC..RES for pronoun resolution) appear

before the phrases that result from them.

. The l1ire CALLING SEMRNP1 indicates that the semantic composition
routine SEMRNP1 has been called; the following lines show the resulting
semantic net structure built for node 13. The numbers specify the node
in the semantic network corresponding to the noun phrase (684) and the
space containing the nodes and arcs to which that node is connected (686
683 1), as determined by the composition routine. The boxes contain a
node number and, below it, the space the node is on. In this case, the
semantic structure of the noun phrase of node 13 is a node in the
semantic network numbered 684 on space 683, which is an element of the
set 685 on space 1, the set of submarines of the Whale class.

I-16

PHRASE 12 RATING IS 80 {

+4+4+ 50 +++ TOKEN.PL 25 L
++4+ 51 +44 PREP? 25 L 1
#%% 1L *#%#% PREPP 25 L (2 . 132)=66
+4+4 52 +44 PREP 25 L

CALLTNG ROUTINE SEMRNPS

UL R Rk T

RESULT IS NET FRAGMENT (690 (689 1))

N.LEGAL.PERSONS '
1690! !10 |
1689% 11 !
3 0
3] t
: E>>OOO»

After node 12 is built for a phrase consisting solely of the word
"whale”, the previous incomplete phrase tuilt at node 12 receives a

rating. Subsequently, the executive makes predictions for a plural

o o T el A

(TOKEN.PL) and for a prepositional phrase (PREF™) to the right of the
noun phrase in node 12. These predictions, 50 and 51, begin at time 2%

in the input. A parse net node (1L4) for an incomplete phrase (with no

T e

constituents) is built for the PREPP prediction. It causes another

prediction to occur for a prepositior (PREP) at the left of the phrase,
‘corresponding to the phrase structure part of the preposition rule,
wnich is PREPP = PREP NP. The preposition "by" is found in the input by

the mapper (this is not shown in the trace), and so a new node is built,

which is partially completed by the addition of "by". However, when
this phrase is evaluated in the context of the NP from node 12 which
caused this prediction, the attribute and factor statements determine

that "by" is not a valid preposition to rollow the noun "whale", and so

the phrase built in node 12 is rejected.

I-17

it b

T

B48 15 #¥% (NP WHO) 15 25 (3 . 213)=T1
##® 16 #%#% S1 UBEG UEND (11 . 755)=68 RHS 15 ...
[WHO]
PHRASE 16 RATING IS 823

CALLING ROUTINE PRONRES
RESULT IS NET FRAGMENT (15 (1))
N.THE.US

N.COUNTRIES

t]
ED>O55>
8% 17 RRR (NP WE) 15 25 (3 . 195)=65
+++ 53 444+ BE 25 L
++4+ 54 444 DO 25 L
++4 55 +44 VP 25 L
#8218 #=® YP 25 L (6 . 396)=66
+44+ 56 +4+ V 25 L
(DO.THEY (8 . 511) 30 (1 . 1) 75)
##a2 19 #2% (DO DO) 30 (1 . 1) (8 . 511)=63
#28 D0 ®®® S1 UBEG UEND (18 . 1200)=66 RHS 15 19 ...
{ WHO DO]
PARASE 20 RATING IS 800
+44+ 57 44+ NP (1 . 1) L
CALLIN” ROUTINE PRONRES
RESULT IS NIL: REJECT!

The next word found ("who") satisfies an initial prediction for a
noun phrase. It extends from 15 tu 25. A semantic structure is built
for it (node '5) which indicates that it refers to some unspecified
member of the set of legal persons. Node 16 is built for an incomplete

S (sentence) phrise with the NP "who" at the beginning.

The next word found is "we". A discourse routine (PRONRES) is
called to find a referent for it, and "the U.S.", which is an element of
the set of countries, is found. Thus, another noun phrase is found for

the initial portion of the utterance.

! LU Lkl il

R KA Ik Skl et B 0) e AL

ek A

The next predictions made, numbers 5, :5, are for the various
constituents that can complete phrases starting with an NP. They are

provided by the rule S1 in the grammar, which allows the following

patterns:
S = NP DO NP VP
S = NP VP
S = NP BE {VP | NP | "THERE,

The VP prediction leads to the construction of a node for a verb phrase
and to the further prediction of a V. The multi-word "do.they" is found
satisfying prediction 54, and a node is constructed using "do". This is
distributed to the S rule, and a new S node (20) is constructed with the
words "who do" in it. The discourse routines reject the attempt to use

"they" to construct an NP.

#ae 0o ##® (y BUILT) 30 70 (¢ . 572)=63
#an 03 ¥R yp 25 L (14 , 902)=64 RH3 22 ...
[BUILT]
PHRASE 23 RATING IS O
#as oo #w® (v BUILT) 30 70 (9 . 572)=63
#R® o6 #8% VP 25 L (14 . 902)=64 RHS 25 ...
[BUILT]
e o7 ®a® yr 30 70 (14 . 902)=64 RHS 25
[BUILT]
PHRASE 26 RATING IS 795
+++ 58 +++ TOKEN.PPL 70 L
+++ 59 +4++ TOKEN.PAST 70 L
+++ 60 +++ TOKEN.SG 70 L
+++ 61 ++4+ PREPP 70 L
#an 08 ##% PREPP 70 L (2 . 132)=66
+4++ 62 +4++ PREP 70 L
+4++ 63 444+ NP 70 L
#a8 29 ##® NP 70 L (9 .
+++ 64 ++4+ TOKEN.A 70 L
+++ 65 +++ WHDET 70 L
+++ 66 ++44+ DET 70 L
+++ 67 +++ TOKEN.HOW.MANY 70 L
+4+ 68 +4+4+ N T0 L
+++ 69 44+ CLASSIFIER 70 L
+++ 70 +++ NUMBER 70 L
#u8 30 ##® NUMBER 70 L (4 . 264)=66

59U4)=66

I-19

l » S —

+++ T1 +44+ CENTI 70 L

8% 39 ®&® CENTI 70 L (4 . 264)=66
+++ T2 +++ SMALLNUM 70 L

e#s 3o #a® SMALLNUM 70 L (5 . 330)=656
+4+4+ T3 +++ DIGIT 70 L

+++ T4 +++ TEEN 70 L

+++ 75 +++ TOKEN.HUNDRED 70 L

+++ 76 +++ TOKEN.THOUSAND 70 L |

Sl L i e

CALLING ROUTINE PRONRES
RESULT IS NIL: REJECT!

: ®es 3y *#e (DET THE) 70 75 (1 . 61)=61
] a8 35 #%® NP 70 L (9 . 589)=65 RHS 34 ...
[THE]

PHRASE 35 RATING 15 792
+++ TT +++ NUMBER 75 L
#ae 37 w&® NUMBER 75 L (4 . 264)=64K
+¢+ 78 +++ CENTI 75 L
#8% 38 &% CENTI 75 L (4 . 264)=66 |
i +++ 79 +++ SMALLNUM 75 L |
ma® 39 ### SMALLNUM 75 L (5 . 320)=66
- +4++ 80 +++ DIGIT 75 L
+4++ 81 +44+ TEEN 75 L
- +4+4+ 82 +++ TOKEN.HUNDRED 75 L
+++ 83 +++ TOKEN.THOUSAND 75 L
+++ 84 44+ N 75 1,
+4+ 85 ++4+ CLASSIFIER 75 L
8% 40 ##® (N HENRY.L.STIMSON) 80 195 (11 . 836)=76
#ue 41 we# NP 70 L (19 . 1359)=71 RHS 34 40 ...

[THE HENRY.L.STIMSON]
CALLING ROUTINE SEMRNP1
RESULT IS NET FRAGMENT (301 (694 693 1))
HENRY.L.STIMSON
N.CLASS.LAFAYETTE

T T T Y

{ 1
E>>5>5555

Ra® Lo #%% NP 70 195 (19 . 1359)=T71 RHS 34 U0
[THE HENRY.L.STIMSON]

I-.20

The next successful mapping of a predicted word is "built". It
| occurs twice because it has two senses, past and passive. The passive
form is quickly rejected by the case factors but the past is retained.
Two VP phrases are constructed, nodes 26 and 27. Node 27 can include
only the verb since its boundaries coincide with that of the word, but
26 can have another constituent. Predictions 58 through 76 are
predictions for constituents foliowing the V in phrase 26. Note that
nodes 28-32 also are constructed in the process of making these

predictions in turn, lead to predictions.

After these predictions are made, the mapper is called to look for

possible words beginning at 70, and the mapper finds the word "it" (not

R

shown in the trace). The discourse routines reject "it", because there

is no referent for it in the current context.

The word "the" 1is then found; phrases 34 and 35 are constructed;
and predictions 77 through 85 are made for possible next corstituents in

the NP phrase. "Henry L. Stimson" is found after "the". The semantic

structure built for the phrase "the Henry L. Stimson" contains a pointer

to the node for the individual ship the "lenry L. Stimson"™ and
identifies it as an element of the "Lafayette" class.

CALLING ROUTINE SEMRVP1
RESULT IS NET FRAGMENT (697 (698 696 694 693 1))

HENRY . L.STIMSON
S.BUILD
16971 1301] 1187)
1696, 11 1 11 |
T T
)])
0BJ>>>>>
| 1

I-21

el et e il

E>>555555555555
##% L2 ##% yp 20 195 (32 . 2195)=68 RHS 25 42
[BUILT THE HENRY.L.STIMSON]
CALLING ROUTINE SEMRS1
RESULT IS NET FRAGMENT (697 (701 700 698 696 694 693 689 1))

S.BUILD
N.LEGAL.PERSONS
HENRY .L . STIMSON
16971 16901 {301 11871 110 |
16961 1689} {1 | 11 1 {1 |
VT YT T T -
] L} } ' 1
0BJ>>>>>5>5>>>>
[} [} [}

]
E>>355555555505000555)
' !]]

' i
AGT>>>>>
| |

' '] '
ED>5555050555555055555

When the NP is combined with the VP for the complete VP phrase,
number 43, a new fragment of semantic neiwork 1is constructed,
representing an instance of the situation of builaing where the object
(OBJ) of that action, that which has been built, is the
"Heriry L. Stimson". This complete VP node is combined with the NP node
17 to complete an S phrase. The result is an expansion of the last
semantic network fragment in which the agent (AGT) is also specified for
the building situation.

CALLING ROUTINE REPLY
ENTERING QUANTIFY. PREQUANTIFIED PARSE NET IS

S.BUILD
N.LEGAL.PERSONS
HENRY.L.STIMSON
16971 16907 1307 {187 ligQ |
1696% 16891 11 1 1 i

- .- - - e - - = - - - e .-

'
EDDO200550000200055555
| 1

E w s T ¥ W

OBJI>>5555555>>>

| | [} |} [}
i 1 | 1 | |
! AGT>>>>>
| : : ! ! !
3 E>>335555555555550555)

LEAVING QUANTIFY. REPARTITIONED PARSE NET IS
S.REQUESTS.WH
HENRY.L.STIMSON N.LEGAL.PERSONS

S.BUILD

1705% i704) 1697! 1690} 1301} {187} 1i45} {10
A T I B

E ') ' I 1 [' I
% INDEX<<< 1259PP PP PP PP PP P PIPPPPIN
=]] |] |]]]
=]] 1]]]]]
3 EXDOO000055 50050000055 555 55535555555
]]]]]]]]
E] [}] [] 1 []]]
P OBJI>>>>>>>>>>>>
]]]]] | |]
] 1]]]] |]
AGT>>>>>
]

' 1 [} [} | [}
v 1 1 1 1 | 1

L}
E>33355355353555555055555555)

Gl

RESULT IS NET FRAGMENT (GENERAL.DYNAMTCS)
(GENERAL .DYNAMICS)

Since a svccessful interpretation spanning the utterance is found,

that interpretation is given to the quantification routines to make any
ad justments necessary for quantification and to change the structure
into a form that indicates to the deduction component what is to be
done. In this case the node corresponding to the interrogative "who" is

INDEXed as the answer to be returned.

The network resulting from the application of the quantification

routines is shown, a.d following it is the answer, "General Dynamics".

REE L4 w%E 51 15 195 (42 . 2884)=68 RHS 15 43
[WHO BUILT THE HENRY.L.STIMSON]

T T O T T S _q

e ey

PHRASE 41 RATING IS 824
+++ 86 +++ TOKEN.PL 195 L
+44+ 87 +++ PREPP 195 L
#a® 45 ### PREPP 195 L (2 . 132)=66
++4 88 ++4+ PREP 195 L
(GENERAL .DYNAMICS)
uy
WHO BUILT THE HENRY.L.STIMSON
824
St 4y
NP WHO 15
VP 43
V BUILT 25
NP 42
DET THE 34
N HENRY.L.STIMSON 40

Node 44 is the completed phrase. The system continues processing
to determine if there are any other competing interpretations that could

be hetter than this one. There are none, so the interpretation and its

answer are accepted as correct.

At the end of the exampie 1is the parse tree. It shows that the
structure found is an S, which consists of an NP and a VP. The VP
consists of a V and another NP. This second NP consists of a DET and an

N.

I-24

D. AN HISTORICAL PERSPECTIVE

Reflecting our concern with the Jmportance of implementing a
complete system as early as possible, our first system adapted an
existing language understanding program de3iigned for text input (Walker,
1973a,b). However, although our initial results were positive, it
became clear that for processing spoken utterances many more alternative
possible interpretations of their structure have to be considered. The
uncertainties associated with segmenting and labeling the acoustic input
in continucus speech contrast markedly with the easy identifiability of
words ir texts. To provide the reguired flexibility, our second system
featured a new parsing strategy that attempted to explorz the most
likely parse paths first (Paxton and Robinson, 1973; Paxton, 1975). We
were able to reduce the size of the search space in this way, thus
avoiding the inefficiencies of both depth-first and breadth-first
parsing. We also begar the development of our work on performance
grammai's (Robinson, 1975a) and on the systematic analysis of task-
oriented dialogs (Deutsch, 1974a). A case subsystem was introduced to
provide more sophisticated semantic processing, and functions were
developed to resolve simple anaphoric reference and to correlate
information from a primitive world model. Using programs for speech
analysis and word verification developed by the SRI Sensory Science
Research Center (Becker and Poza, 1375), we were able to process T1

utterances with an accuracy greater than 60% (Walker, 1974, 1975;.

I-25

v ok bt e

[e el

e

AR Ll

Following the completion of this system and the mid-period review
cf the ARPA Program, we began our joint etfort with SDC. {Walker et
al., 1975; Paxton and Robinson, .97=; Robinson, 1975b; Hendrix, 1975¢;
Deutsch, 3975; Sloecum, 1975; raxton, 976a, 1976b). The components of
tne speech understanding system that were developed by SRI were
programmed initiaily in INTERLISP-10 (Teitelman, 1975) on a PDP-10
TENEX system. In the system implementation at SDC, the acoustic
processing was performed on a PDP-11, and the rest of the system ran on
an IBM 370/145 under the VM cperating system. We were able to use
INTERLISP/370 (Uppsala University, 1975)%* for the SRI components, which
simplified the transfer of programs. The mapper was programmed in CAP

(Barnett and Pintar, 1974), an assembly language developed by SDC.

The results of this cooperative effort culminated in the system
that is described in this Final Report. However, immediately after we
had briught up an operational system, the SDC computer facility was
removed and further refinement of the system as a whole no longer was
possible. During the last week before tne removal of the SDC computer,
we were able to get data on the performance of the acoustic components
of the system. Subsequently, we have conducted extensive tests of the

system framework, simulating the unavailable acoustic components. These

results also are presented here.

% We are gpgrateful to Jaak Urmi and the Uppsala University Computer
Center for their help in installing INTERLISP-370 on the SDC Computer.

1-26

‘F

TSR A o

In the succession of speech understanding systems described above,
we dealt with several domains that differed in size and complexity. 1in !
the systems developed wholly at SRI, we began with the blocks world,
then worked on the repair of plumbing fixtures. With SDC, we were to
have dealt both with the maintenance of electromechanical equipment
(tal.ing advantage of a companion project at SRI that was developing a
computer-based consultant®*) and with operations on a file contairing
information about the attributes of ships in different naval fleets
(which SDC had workad on earlier). We developed strategies for the
maintenance probiem, but a general reduction in ARPA funding limited our
resources, and further activities ir. that area were postponed. Our

current system uses the navy ships domain, and most of the work

described in this report will reflect that context.

The work on speech understanding at SRI has produced a system :
design concept and a set of natural language processing components that

are well-suited for research on natural language understanding

Lt i U e

generally. Chapters 1II and III present detailed descriptions of the

Definition System and the Executive System that provide overall

i

integration and control. Chapter IV discusses the results of the
experiments that we conducted to test alternative system control

strategies. Chapters V, VI, and VII describe the representation of

semantic knowledge, present a model of the domain, and show how

semantic processing 1is used in the interpretation of an utterance.

See Nilsson et al., 1975; Hart, 1975.

1.27

= e = e s . Bl s

Chapters VIII, IX, and X deal with discourse and include discussions of
dialog collection and analysis, the resolution of definite noun phrases,
and ellipsis. Chapters XI, XII, and XIII indicate how the system

responds to the interpreted utterance, how deduction is used both to

find an answer and in the interpretation process, and how the system

generates replies in Engiish to a user. Following the references is a

ko

complete 1ist of publications and reports produced under the various

ARPA contracts that have supported our research.

it

I-28

il ol ekl

II THE DEFINITION SYSTEM
Prepared by William H. Paxton

CONTENTS:

A. Introduction
B. The Metalanguage
1. Composition Rules
2. The Lexicon
3. Global Declarations
4, Annotated Formal Syntax
C. A Version of the SRI Language Definition
1. Global Declarations
2. Lexicon

3. Composition Rules
D. The Definition Compiler

1. Category Records and the Lexicon

2. Rule Records, Structure Graphs, and Procedures
2. Details of Rule Ccmpilation Algorii.ms
I, Lookahead Information

E. Discussion

A. INTRODUCTION

This chapter contains a detailed discussion of the Definition
System. The Definition System consists of a metalanguage for writing

definitions of the input languaze for the speech understanding system
and a compiler to convert such definitions into a form foir use by the

Executive System.® In this chapter, the metalanguage is described, and

We make the usual distinction between the metalanguage and the object
language: the object language is the language being defined (in our
case, it is the system’s input language); the metalanguage 1is the
language used to state the definition. The ‘language definition” is
written in the metalanguage and snecifies the obilect language.

gl St e R

TR

OO R il o

gelililscail

i

T

TN AN R TR § Sty

oy

its use is illustrated by a sketch of the SRI language definition. The
final part of the chapter, Section D, contains a discussion of the
Definition Compiler, focusing on the process of rule translation and
describing the internal representation of the structural and procedural
information. The use of the translated 1language definition 1in
understanding utterances is described 1in Chapter III, The Executive

Systen.

B. THE METALANGUAGE

The metalanguage 1s designed for specifying the definition of the
input 1language for the speech-understanding system. Such a language
definition consists of a lexicon containing the vocabulary, a set of
composition rules for combining words into phrases and smaller phrases
into larger ones, and some global declarations giving information needed
by the Definition Compiler and the Executive. The lexicon 1s separated
into categories, such as noun and verb, and the words in each category
are assigned values for various attributes such as grammatical features
and semantic representation. The composition rules are phrase structure
rules augmented by a procedure which 1s cxecuted whenever the rule
constructs a phrase. Information provided by the procedure includes
both attributes of the phrase based on the attributes of its
constituents, and factors for use 1in judging the acceptability and
likelihood of the phrase. The global declarations 1in a language
definition give Iinformation such as 1ists of attributes for the

different categories.

I1-2

e =

1. COMPOSITION RULES

A speech-understanding system uses several kinds of knowledge,
each playing a partiicular role during the processing of an utterance.

For example, our system employs knowledge about acoustics, syntax,

semanties, and disccurse. The composition rules in the 1language i
definition are the principal means by which these knowledge sources are

integrated. In addition to defining the possible constituent structure

for phrases, each rule has a procedure for calculating both attributes
of phrases and factors for use in judging phrases. Phrases with their
attributes and factors are the basic units for the integration of
knowledge sources in our system. Because the rule procedures may call
upon any or all of the sources of knowledge, the attributes and factors

1 of a phrase can, and Rgencrally do, reflect decisiontc by each major

component from acoustics to discourse. The following paragraphs

describe the structure of composition rules; Section C.3 of this chapter
contains more details about a complete set of rules for a small language

definition.

Part of a composition rule is shown in Figure II-1. The

rule starts with the keyword RULE.DEF followed by the rule name (S1),

it L L L LU

the structure declaration, and the procedure. In the structure
declaration, vertical bars separate alternatives, braces are used to
delimit a set of alternatives, parentheses delimit optional items; and
angle brackets mark an optional set of alternatives. Category names can

be terminated with a number to provide unique names for different

I1-3

RULE.DEF St S = NP1 <(DO NP2) VP1 | BE {VP2 | NP3 | "THERE}>;

BEGIN

MOOD = IF DEIX(NP1) EQ "WH THEN "WH

: ELSE IF DEIX(NP1) NQ "UNDEFINED THEN "DEC

E ELSE "UNDEFINED;

- IF MOOD EQ "WH THEN F.MOOD = GOOD;

IF OMITALL(VP1,BE) AND SUBCAT(NP1) EQ "PRO AND MOOD EQ "DEC
THEN F.REJECT(F.PROSENT);

END;
Figure II-1. PART OF A COMPOSITION RULE

occurrences in the rule of the same category (e.g., NP1, NP2, and NP3,

R et AL L

are all noun phrases or NPs). A quote mark indicates that the next word

= is to be taken literally rather than being interpreted as a category

- name. Thus, the phrase structure declaration in Figure II-1 states that
% a phrase of category S can b~ composed of a noun phrase, NP1, optionally

followed by either a predicate with a verb phrase, VP1, or a predicate

with a BE verb (such as "is" or "are"). The constituent VP1 can

T

optionally be preceded by a DO verb (such as "did" or "does") and a noun
phrase, NP2, The BE verb must be followed by either a verb phrase, VP2,

a noun phrase, NP3, or the word "there".

The portion of Figure [I-1 starting with trne wc~d "BEGIN"
contains an excerpt from the procedure for the rule. The first
statement assigns a value to the MOOD attribute. The expression

DEIX(NP1) refers to the ittribute named DEIX of the constituent NPi1. If

II-4

T TR

i R

i s it

G i i

NI NN RS PN

the value of the DEIX attribute of NP1 is WH, the MOOD attribute of the
sentence is set to WH (indicating a question like "What ..." or "Who
..."). The MOOD 1is set to DEC (indicating a declarative sentence) if
DEIX of NP1 i3 not WH and is not UNDEFINED. (The default value of
attributes is the special symbol UNDEFINED.) However, if DEIX of NP1 is
UNDEFINED, MOOD is also set to UNDEFINED. The next statement sets the
MOOD factor, F.MOOD, to GOOD if the MOOD attribute of the sentence is
WH. This is a nonBoclean factor indicating a high expectation for WH
questions. The last statement 1n the figure is a restriction blocking
elliptical sentences formed of a single nonWH pronoun such as "we". 1In
other words, if both kinds of predicates are omitted (OMITALL(VP1,BE)),
if NP1 is a pronoun (SUBCAT(NP1) EQ "PRO), and if the sentence is
declarative (MOOD EQ "DEC), then the phrase is blocked
(F.REJECT(F.PROSENT)). ‘The full procedure for the rule contains several

pages of such attribute and factor statements.

In this and other rules, there are attributes that specify
acoustic properties related to the input signal, syntactic properties
such as mocd and number (singular or plural), semantic properties such
as the semantic network representation of the meaning of the phrase, and
discourse properties for anaphora and ellipsis. The values of
constituent attributes are used in computing the attributes of larger
phrases, 2and the attributes of complete interpretations are used in

generating responses.

II-5

s s e e = o e

T — - R e — S— N
H " - =

L The factors also use acoustic, syntactic, semantic, and
discourse Information. Acoustic factors reflect how well the words
match the actual input, syntactic factors deal with tests such as number
agreement between various constituents, semantic factors ensure that the

meaning of the phrase 1s reasonable, and dlscourse factors indicate i

T T

whether an elliptical or anaphoric phrase makes sense in the given
dlalog context. The values of factors are included in a composite score
for the phrase. The scores of constituents are combined with the factor
scores to produce the scores of larger nphrases, and the scores of

complete interpretations are used in setting Executive priorities.

Attributes and factors either have constant values or have
values that depend on attributes of constituents and global information
E (such as a model of the discourse or the results of preliminary, low-
level acoustic processing). By design, the attributes and factors of a
phrase are not allowed to depend on the context formed by other phrases

that can combine with it to produce larger structures. This restriction

makes it possible to share phrases among different contexts and reduces

duplication of effort in the Executive.

Another restriction on the rule attribute and factor
definitions 1is that they must cover cases in which the value of a
referenced attribute has the special wvalue UNDEFINED, The primary

reason for UNDEFINED attributes is the desire to allow Executive control

strategies that depend on Information regarding incomplete phrases --

phrases missing one or more constituents. With the attribute and factor

11-6

o e i

s bl il

i

i

ot dt ot el il

definitions required to handle UNDEFINED attributes of missing
constituents, the Executive can execute the rule procedure with a
partial set of constituents, and the results will be indicative of

possible completicns of the phirase. The use of this ability in setting

pricrities for the Executive is a topic of Chapter III, Section D.5.

There i1s an emphasis on factors in the 1language definition
because of the need to block bad phrases that might be incorrectly
accepted by acoustic tests. A system with text input can usually
tolerate 3 language definition that accepts a wide variery of strange
combinations of words as long as the 1looseness of the definition does
not produce apparent ambiguities in actual user inputs. In other words,
the text system can focus on what the user might say and generally
ignore what he/she will not say. A language definition for a speech-
understanding system should be general enough to allow the speaker to
communicate naturally, but it must also block unacceptable phrases that
might be incorrectly ‘heard” due to errors in acoustic tests even though

no speaker would actually say such phrases.

2. THE LEXICON

Like the composition rules described above, the 1lexicon
combines declarative and procedural information. However, whiie the
rules are predominantly procedural, the lexicon mainly contains static
declarations of words and their attributes. The structure of the
lexicon 1is 1llustrated by considering the information for the word
"length",

II-7

o b s

T Ty

WORDS.DEF N

WORDFN LAMBDA(C) NULLDEFAULTATTRS(C,"(DETREQ MEAS RELN UNIT INDFiG));
SUBCATEGORY RELN.MEASURES

ATTRIBUTES MEAS=T, NBR=SG,;

WORDS

LENGTH
PDGM=(S.HAVE.LENGTH PG.INVH),

SUPSET=N.LENGTHS;
SIZE

ENDWORDS;
END;

Figure II-2. SAMPLE LEXICAL ENTRY

Figure 1II-2 contains an extract from the SRI 1lexicon
containing information related to "length". "Length" 1is in the
subcategory RELN.MEASURES (relational measures) of the lexical category
N (nouns). Some other RELN.MEASURES are "size" and "speed". The noun
subcategories correspond to semantic classes that are important in the
task domain of the speech system. Attributes declared for a subcategory
are shared by all of its members. Thus, hecause it is a RELN.MEASURE,
"length" is automatically given several attributes including one that
marks it as a measure term (MEAS=T) and another that marks it as
singular (NBR=SG). Derault values for some other attributes are shared
by all the N subcategories. For instance, because "length" 1is not
marved otherwise, the WORDFN redundancy function for N sets attributes

DETREQ, UNIT, and INDFLG, to the value NIL to indicate, respectively,

I1-8

S

that "length" does not require a determiner, that it is not a unit of
measurement (such as "feet"), and that it does no* refer to an
individual (such as "England"). Most of the attributes of "length" are
é set according to category and subcategory redundancies. The only
attributes explicitly given for the particular word "length" are PDGM
and SUPSET which relate to its meaning, the information that
distinguishes "length" from other RELN.MEASURES. (Phonological

§ information that would also distinguish "length" is stored separately

Al

since it is only used in acoustic processing.)

In addition to word and attribute declarations, 1lexical
catege.-ies have an associated procedure that is invoked whenever a word
from the category is found in an utterance. For example, the lexical NP
2 procedure, for words like "it" and "wh¢", calls semantic routines to
build nodes in a semantic network and also calls discourse routines to

find possible referents.

3. GLOBAL DECLARATIONS

% The glooal declarations at the start ¢f a language definiti-n
provide information needed by the Definition Compiler and the Executive.
This information includes a 1list of categories to be used 1in the
definition and 1lists of attributes for the categcries. The global
declarations can also contain redundancy functioas for rewriting
category and rule definitions. These functions were inciuded in the

design because they provide ways to simplify the definition in much the

I1-9

R T R NS WEP i Y LNy R s — O

dame way that macros can simplify a program; however, they have not been

used in the current system.

I
%
E 4. ANNOTATED FORMAL SYNTAX

As described above, a language definition contains a lexizon,

i

composition rules, and global declarations. fhe lexicon groups words

into categories and subcategories. The composition rules have a parase

WAL R L U

structure declaration augmented by a procedure specifying attributes and
factors. The global declarations provide information needed by the

Compiler and the Executive. The remainder of this section is devoted to

AR Ll A

a more formal statement of the structure of a language definition.

An annotated formal syntax of the metalanguage 1s given below
using phrase structure rules with the notation described previously.
- Vertical bars separate alternatives, braces delimit a set of
alternatives, parentheses enclose an ontional set of 1items, angle
brackets bound an optional set of alternatives, and a single preceding

quote mark indicates a literal. Any item whose name ends with the

T R T

string "name" 1s an identifier, and items with names ending with the

st~ing "names" refer to a series of one or more identiflers separated by

commas. In this formalism, the first part of a language definition is

shown in Figure II-3.

The global declarations include a list of categories, the name

of the root category (typically the sentence catcgory, S), specification

ITI-10

Tl

language.def = "LANGUAGE.DEF decls "END "; rules.and.categories

decls = decl "; (dr~is)

dec) = "CATEGOHIES categorynaw.~ ! "ROOT "CATEGORY categoryname |
deel.function functionspec |

"ATTRIBUTES atir.decls "ENDATTRS

decl.function = "RESPONSEFN | "SCOREFN | "WORDFN |
"CATEGORYFN | "RULEFN

functionspec = functionname |

"LAMBDA "((variablen. es) ") expression
attr.decls = attr.decl "; (attr.decls)

attr.decl = "{categorynames | "ALL ("EXCEPT categorynames)}
{"HAVE | "HAS} attributenames

rv’es.and.categories = {lexical.category | composition.rule}
(rules.and.categcries)

Figure II-3. DECLARATIONS

of varisus functions, and declarations of attributes. The RESPONSEFN
function is called.by the Executive whenever a root category phrase is
constructed or when some resource 1limit is reached. The SCOREFN
function i3 responsible for combining individual factor values 1into a
composite rating for the phrase. (The particular procedures used for
RESPONSEFN and SCOREFN in the speech inderstanding system are described
iu Chapter III, Sections C.4 and D.5. .} The CATEGORYFN, RULEFN, -nd
WORDFN, are functions that make changes in “he definitions for lexical
categories, composition rules, ard words, respectively, before the
definitions are compiled. Th. expression appearing in the function

specification 1is an arbitrary LISP expression written in an infix

I1-11

notation developed at SDC (see Barnett, 1973). The attribute
declarations give lisuts of the various categories and their attributes

for use by the Compiler.

3 The syntax for the 1lexicon is shown in Figure II-4. The
optional expression in the lexical category specifies the category
procedure. Followirg it can come a WORDFN function to modify the word
definitions in the category before they are compiled. A typical use of
a WORDFN 1is to supply default values for attributes. A category

definition can w<ontain either a set of words or a series of

subcategories. kach word can have an arbitrary number of attribute-
value pairs. Each subcategory can have a set of attribute-value pairs
in addition to its set of words. Thzse attribute-value pairs provide
defaults for the words in the subcategory. For example, if attribute A
is listed with value B in the subcategory attributes, all words in the
subeafegory that go not explicitly assign a value to A get B as a
default assignment. The attribute values in the lexicon are LISP data

items such as atoms, numbers, or lists.

The syntax for composition rules is shown in Figure II-5.
The rule structure declarations wuse the same notation for phrase
structure as is employed in this section. The rule subfunctions and the

rule expression form the procedural part of the rule. They are written

in a dialect of LISP (see Barnett, 1973) with extensions for testing
constituent structure and computing attribute and factor values. The

Definition Compiler recognizes references to attributes by mears of the

II-12

T = S PR=ST i e s

lexical.category = "WORDS.DEF categoryname (expression ";)
lexcatparts "END ";

lexcatparts = {"WORDFN functionspec |
"WORDS catwords "ENDWORDS |
"SUBCATEGORY subcatname
("ATTRIBUTES catwordattrs ";)
catwords "ENDWORDS}
#. (lexcatparts)
catwords = lexentryname (catwordattrs) "; (catwords)

. catwordattrs = attributename "= attributevalue (", catwordattrs)

Figure II-U4., LEXICON

1 composition.rule = "RULE.DEF rulename structure
£ (subfunctions) expression "END *;

3 structure = categoryname "= rhsalts ";
rhsalts = rhsseries ("!| rhsalts)

rhsseries = rhsitem (rhsseries)

rhsitem = "(rhsseries ") | "{ rhsalts "} | "< rhsalts "> |
""" literalname | categoryname

subfunctions = "RULE.SUBFN functionname

"((variablenames) ") expression ";
(subfunctions)

Figure I1I-5. RULES

global declarations of their names. Factor names are identified by an
"F." prefix. A rule application can be blocked by the statement
“[',REJECT(factorname)". This statement causes immediate termination of

the rule. Both attributes and factors can be used in expressicie and

II-1%

W

T

can be assigned values. Attributes of constituents can be accessed by

an expression of the form ™"attributename(constituentname)". Attributes

are often set to the same value as an attribute of the same name in some

constituent, so a special statement is provided for this operation:
“ATTRS attributenames FROM constituentnane.

This statement produces for each attribute in the list an assignment

statement. of the form

attributename=attributename(constituentname).

The main forms for testing constituent structure are "HAVE
constituentname” and "OMIT constituentname". HAVE 1implies thar the
constituent position 1is filled with a phrase. OMIT implies that the
constituent position is not going to be filled because some other
alternative has been selectea. The rule procedures are scmetimes
invoked by the Executive with only a partial set of constituents, and it
is possible in such cases for both HAVE and OMIT to be false for a
missing constituent. Once the phrase is complete, however, either HAVE
or OMIT, and not both, will be true for each constituent. For tests
with HAVE and OMIT that refer to more than one constituent, logical
connectives AND, OR, and NOT are available, or one of the following
special operators can be used: HAVEALL, HAVEANY, OMITALL, and OMITANY.
These operators take a list of constituent names as arguments and have

the obvious meanings.

II-14

T

C. A VERSICN OF THE SRI LANGUAGE DEFINITION

A version of the SRI language definition will serve as an
illustration of the use of the Definition System. The definition
described below is of moderate complexity: it is less complex than those
used in some current natural language text systems, but more complex
than the languages of most previous speech systems. It was derived from
a larger definition and used in the series of experiments described in

Chapter IV.#%

The domain of disccurse for the language 1is a data base of
information about ships of the U.S., Soviet, and British fleets. The
particular domain of discourse determines a 1large portion of the
vocabulary, and, hence, the lexicon. A change in the domain would
require corresponding changes in the vocabulary and 1lexicon. The
composition rules, however, are quite general and the effect on them of
3 change in discoui -~ domain would be relatively small. Some attributes
and factors in the :'ules have been ‘tuned” to the particular domain (see

Robinson, 1975), but most of them deal with general features of English.

There is information in the data base about several hundred ships
and a large number of ship classes and categories. For each ship, the

data base contains characteristics such as name, type, owner, builder,

* The larger definition was developed by Jane Robinson and Ann FRobinsor,
with assistance from Gary Hendrix, Joyce Friedman, and myself. As
designer of the Definition System, I influenced the general structure of
the definition but did not work out the details. After the definition
was relatively complete, I extracted a subset, made some revisions, and
nsed the result in a series of experiments.

TI-15

Ll

il el

length, beam, draft, displacement, speed, complement, and power. The
language definition is designed to allow a user to get information from
the data base by questions, commands, and dialog sequences using
incomplete sentences and pronouns. The 60 test sentences used ipr the
experiments are 1listed at the end of Chapter 1IV. These sentences
indicate the scope of the language in an informal way. The following

paragraphs give a more precise description.

1. GLOBAL DECLARATIONS

Figure 1II-6 contains an abbreviated version of the global
declarations. There are 18 categories with S as the root category.
There are U1 attributes, which can be divided into four sets: 12
attributes for syntax, 13 for case semantics, 9 for semantic
translation, and 7 for discourse. The category with the most attributes
is NP with 24, On the average, each category has about eight
attributes. The RULEFN and SCOREFN are not given explicitly since the
system defaults are used. There are also no redundancy functions

defined for category, word, or rule definitions.

2. LEXICON

The 1lexicon is divided into twelve categories. There are
three categories of verbs, BE, DO, and V, illustrated by "is", "does",
and "own", respectively. All have attributes for number (singular or

plurzl) and tense (present or past), and verbs in category V also have

I1I-16

T AT Ry v A R e Yap e R

sl Gl

LANGUAGE. DEFINITION
CATEGORIES S,NP,VP,CLASSIFIER,PREPP,PREP,N,BE,DO,V,
NUMBER, CENTI , SMALLNUM, TEEN,DIGIT, DET,WHDET, ADJ;
RCOT CATEGORY S;
ATTRIBUTES
S HAS REPLY;
V,VP,BE,DO HAVE TENSE;
NP,ADJ,VP,WHDET, DET, PREPP,NP HAVE SUPSET,SUPCASE;

ENDATTRS;
END;

i Figure II-6. GLOBAL DECLARATIONS

attributes for voice (active or passive) and case semantics that

resemble the case grammar of Fillmore (1968) as adapted to computer use

by Celce Murcia (1976) and others. There are two categories of numbers:
DIGIT and TEEN. The TEENs ("ten", "eleven", and "twelve"”) are separate
because they do not combine in the same manner as DIGITs to form larger
numbers (for example, 31 cannot be said as "twenty eleven"). Both
DIGITs and TEENs have attributes giving their numeric value and their
grammatical attributes. Determiners are also split into separate groups
to simplify the rules: declarative determiners like "the" are 1in the
category DET; question (WH) determiners like "what" are in the category
WHDET; and the indefinite "a" is included as a 1literal in the noun
phrase rule. The categories for adjective (ADJ) and prepositions (PREP)
also appear in the lexicon, but are represented by only two words each:

"of" and "by" for PREP, "fast" and "long" for ADJ.

I1-17

- e e A i e e ST e e

The final three lexical categories (N, CLASSIFIER, and NP) are
each divided into subcategories. There are two subcategories of NPs:

countries (such as "Russia") and pronouns (like "it"). In both cases,

% the words have attributes similar to those for a noun phrase constructed
F by the NP composition rule. These attributes include number (singular
or plural), case (nominative or accusative), and semantic

interpretation. The 1lexical NP procedure also calls the discourse
routines to find possible referents for the pronouns; it blocks use of

the pronoun if no referent is found.

E Classifiers are prenominal modifiers. There are three
subcategories of classifiers in the lexicon: countries (as 1in "British
ships"), type designations (as in "nuclear submarine"), and predicates
(as in "patrol sub"). All the classifiers have attributes indicating

the kinds of nouns they can modify and their semantic translation.

By far the largest lexical category is N, nouns. There are 10
subcategories of N: units of measure (such as "ton"), parts of ships

(such as "reactor"), classes of ships (such as "Nautilus"), individual

ships ("Seslion"), companies ("General Dynamics"), countries
("England"), relational measures ("length"), two kinds of ship types
("CGN", "submarine"), and a subcategory of miscellaneous nouns. Members

of category N have grammatical attributes 1like number, semantic

attributes such as pointers into a semantic network, and attributes used

for both syntax and semantics such as information regarding whether the

N is a measure, a unit, or a relation.

I11-18

ke

3. COMPOSITION RULES

In addition to the twelve 1lexical categories, the language
definition includes ten composition rules. First to be discussed are
the three nuinber rules whose phrase structure declarations are given in
Figure II-7. SMALLNUMs can be a DIGIT ("one"), a TEEN ("eleven"), a
DIGIT followed by the suffix TEEN ("fourteen"), a DIGIT followed by the
suffix TY ("seventy"), or a DIGIT TY DIGIT sequence ("sixty four"). The
two occurrences of TEEN and DIGIT in the phrase structure are
disambiguated by use of numeric suffixes, "1" and "2%. Thus, the rule
procedure refers to the first (leftmost) DIGIT as DIGIT1, and the
second, as DIGITZ2. The SMALLNUM proceduée checks attributes on the
digits since some cannot be followed by TZEN or TY ("one" is acceptabls,
but not "oneteen™ or "onety"), some can be followed by TY but not TEEN
("twenty", but not "twenteen"), and some must be followed by either TEEN

or TY ("thirteen" or "thirty", but not "thir").

SMALLNUM = TEEN1 |} DIGIT1 <"TEEN2 | "TY (DIGIT2)>
CENTI = (SMALLNUM1) ("HUNDRED (("AND) SMALLNUM2))

NUMBEFR = (CENTI1) ("THOUSAND (("AND) CENTI2))
Figure II-7. PHRASE STRUCTURE PARTS OF NUMBER RULES
The CENTI rule allows numbers like 2235 to be said 1in various

ways 1including "twenty two hundred and thirty five". The CENTI

procedure blocks sequences like 4000 said as "forty hundred" and also

IT-19

S . E T e T L P L e N B YA

computes the numeric value of the CENTI phrase from the values of the

E constituents. The NUMBER rule can construct number phrases 1llke "two
: thousand and one". The procedure blocks phrases like 8100 s2id as
E "ejght thousand hundred" or as "one thousard and seventy one hundred".

A language definition for text input might omit such restrictions on the
grounds that no one would ever violate them in practice. However, as
mentioned previously, difficulties in acoustic processing can cause the

system to ‘hear’ almost anything, so the language definition must take

o Lot ntet i e ol

advantage of every opportunity to block unacceptable phrases and

downgrade unlikely ones.

In the remainder of this section, the descriptions of rules

T

1 are typically 1limited to simple sketches 1like the preceding ones.
] However, to give a better 1indication of how the rules are actually
é written, one rule procedure, for SMALLNUM, will be discussed in detail.
? The SMALLNUM rule definition is given in Figure II-8. The procedure
E body is a conditional statement with four main cases that depend on the
; constituent structure.

i In the first case, the SMALLNUM is a TEEN (TEEN1 in the

structure declaration), a number from the lexical category including
"ten", "eleven", and "twelve". The attributes NUM and NUMTYP are copied
to the SMALLNUM phrase from the TEEN by the “ATTRS statement. The
second case for SMALLNUM occurs when the suffix TEEN is used (TEEN2 in
the structure declaration). In this case, there are two statements to

be performed (grouped together by square brackets and separated by a

I1-20

e S s i ——ic e e e i e

T T

e et

RULE.DEF SMALLNUM SMALLNUM = TEEN1 | DIGIT1 <"TEEN2 { "TY (DIGIT2)>;
IF HAVE TEEN1 THEN “ATTRS NUMTYP,NUM FROM TEEN1
ELSE IF HAVE TEEN2 THEN
[IF TEEN(DIGIT1) EQ "NO THEN F.REJECT(F.DIGTYP1),
IF COMPLETE.NODE THEN NUM=NUM(DIGIT1)+10]
ELSE IF HAVE TY THEN
[IF TY(DIGIT1) EQ "NO THEN F.REJECT(F.DIGTYP2),
IF HAVE DIGIT2 THEN
[IF ALONE(DIGIT2) EQ "NO THEN F.REJECT(F.DIGTYP3),
IF COMPLETE.NODE THEN NUM=NUM(DIGIT1)#10+NUM(DIGIT2)]
ELSE IF OMIT DIGIT2 THEN
[NUMTYP="DECADE2,
IF COMPLETE.NODE THEN NUM=NUM(DIGIT1)%#10]]
ELSE IF HAVE DIGIT1 AND OMITALL(TEEN2,TY) THEN
[IF ALONE(DIGIT1) EQ "NO THEN F.REJECT(F.DIGTYPY),
NUM=NUM(DIGIT1)];

Figure I1I-8. SMALLNUM RULE DEFINITION

comma). The first statement looks at the TEEN attribute of DIGIT? and
blocks the phrase if the attribute is NO by performing
F.REJECT(F.DIGTYP1). This blocks bad DIGIT TEEN sequences such as
"oneteen". The second statement tests the flag named "COMPLETE.NODE"
and, 1if the flag is true, sets the NUM attribute, which gives the
numerical value of the phrase, to ten plus the NUM attribute of DIGIT1.
(The Executive sets COMPLETE.NODE false when applying a rule with some
of the constituents missing or for special tests.) The third main
SMALLNUM case 1is executed when HAVE TY is true. The first statement
checks the TY attribute of DIGIT1 and blocks the phrase if the attribute
value is NO (eliminating phrases like "onety"). The second statement is
another conditioral depending on the phrase structure. If HAVE DIGIT2

is true, two statements are perfcrmed: a rheck that DIGIT2 can occcur

I1-21

T

byl el

kit

il it b

without a suffix -- that is, ALONE(DIGIT2) is not NO -- and an
assignment statement setting the NUM attribute to NUM of DIGIT2 plus ten
times NUM of DIGIT1. If HAVE DIGIT2 is falae but OMIT DIGIT2 1is true,
the NUMTYP attribute 1is set to DECADEZ2, This attribute 1s wused in
checks in the CENTI rule to block phrases like "forty hundred". The NUM
of the SMALLNUM is then set to ten times the NUM of DIGIT1. The fourth
and final case for the SMALLNUM procedure occurs when the phrase has
DIGIT1 ard omits both suffixes. The ALONE attribute is checked to block
the phrase if DIGIT1 needs a suffix (for example, "thir-" is in the
lexicon as a digit that needs a suffix). If that test is passed, the

NUM attribute is copied from the digit.

The SMALLNUM composition rule illustrates several points.
First, the use of options and alternatives in the phrase structure
declaration makes it easy to specify the basic possibilities. Second,
the rule procedure i1s organized as nested conditional statements
depending on the particular phrase structure. Third, unwanted phrases

are blocked by tests referring to constituent attributes. These tests

are embedded in conditionals in a manner ensuring that as soon as the
necessary constituents are available, the tests are made. The tests are
independent of the presence or absence or other constituents and are
also insensitive to the order in which the constituents are acquired.
Finally, the conditionals testing the structure treat HAVE and OMIT for
a particular constitvent as separate possibilities. HAVE und OMIT can

both be false for a missing constituent in certain cases, since the

II-22

g ol e T s e e e e e——— —
FETTe s e Pty i 2 e SO L S T

T T

Executive needs to apply the rules with incomplete sets of constituents.
For example, if DIGIT1 and TY have been found for a SMALLNUM, then
without waiting for a possible DIGIT2, the ruie procedure will be

executed to confirm that the DIGIT1 can occur with the TY suffix.

As an example composition rule, SMALLNUM accurately reflects
the general form, but it is atypically simple. In contrast to the one-
third page size of the SMALLNUM rule, the average rule length is about
one page, and the tiggest rule, for noun phrases, is almost three pages.
Consequently, the following discussions are iimited to sketches of rules

rather than exhaustive, line-by-line documentation.

The phase structure declaration for the noun phrase rule is

NP = {"HOW.MANY | <DET | WHDET | "A> (NUMBER)}
((CLASSIFIER) N ("PL) (PREPP)).

The noun, N, can be optionally preceded by a CLASSIFIER and rollowed by
a plural suffix (PL) and a prepositional phrase (PREPP). At the front
of the noun phrase, there can optionally be "how many" or an optional
choice ot DET, WHDET, or "a", followed by an optional number. This

phrase structure allows many possibilities, somne of which must be

blocked by the NP procedure. For instance, "a" must be blocked if it

occurs without a following number or noun. Other structures are blocked
in certain cases depending on the attributes of conatituent phrases.
For example, the NUMBER cannot be ieftmost if it begins with "hundred"
or "thousand". On the other hand, if the NUMBER does not start with

"hundred" or "thousand”, it cannot be preceded by "a".

I1-23

The NP procedure has a large number of statements related to
tre head noun, N. Several NP attributes are derived from corresponding
N attributes, and many of the restrictions on possible NPs depend on
properties of the N. For example, if N refers to an individval 3uch as
a particular company, ship, or country, it cannct be precaded by "how
many", "a", WHDET, CLASSIFIER, or NUMBER, and the only preceding DET
allowed is "the". There are also case semantics checks for the noun
with a CLASSIFIER or a PREPP, and number agreement tests for the noun

with several other NP constituents.

When the NP is complete, the proceaure invokes routines to
construct a semantic net representation of its meaning. If the NP has a
definite determiner (like "the" or nthat?), there are also calls on
discourse routines to look for possible referents. The phrase is
rejected if the semantic translation caanot be made or the discourse

referents cannot be determined.

The phrase structure part of the verb phrase rule 1is
YP = V <<"SG } "PAST> NP | ("PPL) (PREPP)>.
The constituents are verb (V), singular suffix (SG), past tense suffix
(PAST), object noun phrase (NP), passive suffix (PPL), and prepositional
phrase (PREPP). The VP pu sedure checks various attributes of the verb
and other constituents to block unwanted combinations such as a verb
marked as active (like "have®) followed by a passive marker (PPL).
There are similar syntactic checks regarding terse and number. Case
semantics checks ensure that the verb is compatible with the object and
the prepositional phrase.

1124

T —

L

The prepositional phrase rule is one of the simplest. The
phrase structure is just PREP NP. The PREFP procedure blocks the phrase
if the NP is nominative case (like "we"), or if the preposition and the
noun phrase do not go together _.emantically. The phrase is given a low
rating if the NP is marked WH, or if the N contains a NUMBER and the
noun is not a unit or a relation. (For example, "of ten knots" is ok~y,
but "of ten ships” is considered unlikely in view of the expected

questions.)

The remaining rules are for the root category, S. Tne
simplest S ruie has the ‘“rase structure HOW ADJ BE NP, illustrated by a
sentence like "How fast is i1t?" The rule procedure checks the semantics
of the adjective and the noun phrase for compatibility. Phrases are
blocked if BE and NP do not agree in number, or if the NP is marked WH
or accusative case ("us"). The phrase is given a low rating if the BE
is past tense or the NP is indefinite and has a NUMBER. ("How fast are
the ten ships?" is okay, but "Hou fast are ten ships?" is dubious.)
The phrase is blocked if the NP is a unit or measure, or if the semantic

translation fwils for othe: reascns.

Anocher relatively simple S rule has the phrase structure
S = (DO NP) VP. This rule handles imperatives and questions starting

with a DO verb. If DO and NP are present, they must agree in number,

the NP must not be marked as WH or accusative case, and the VP must not
be impecative. If DO and NP arz omitted, tne VP must be imperative and

must not be marked WH. In either case, the VP must not be marked as

I1-25

singular, past, or passive, and the phrase is blocked 1if semantic

translation fails.

The phrase structures for the last two S rules are

S

BE NP1 {NP2 | VP}, and

S

NP1 <(DO NP2} VP1 | BE {VP2 | NP3 | "THERE}>.

These rules handle a variety of question types and elliptical sentences.
Both make many tests concerning syntax, case semantics, and semantic
translation. The procedure for the first rule is about one page long,

and the second is about two pages in length.

In summary, the composition rules use the phrase structure
declaration to give the basic constituent possibilities and use the
procedure to block or downgrade unwanted combinations and upgrade
expected ones. The procedures arc organized as nested conditionals
depending on the constituent structure. Simple syntactic tesis are mzde
first, followed by case semantics, and, finally, by semantic translation

and discourse processing.

11-26

T N LI ST P N S S S <R T, TP A T e

|

L R i T

D. THE DEFINITION COMPILER

The Definition Compiler translates a 1language definition into a
form for use by the Executive System. Data structures called ‘record:.’,
containing a variety of information, are constructed for each category
and rule. An important component of the category records is the list
holding the lexical entries. Major components of the rule records are
the phrase structure information and the rule procedure. This section
describes the internal form of a 1language definition in detail and

sketches the principal Definition Compller algorithms.

1. CATEGORY RECORDS AND THE LEXICON

The global declarations for a language definition include a
list of ihe categories. In addition to these declared categories, the
Compiler creates special one-word lexical categories for each distinct
literal used in the composition rules. These special categories are
constructed so that the Executive does not have to treat literals as a
separate case. For each category, declared or specially created, the
Compiler constructs a record containing several components, the most
important of which are the following:

®# A 1list of attributes for the category. These are derived
from the global declarations section of the 1language

definition.

®# A list of rule records for the rules that produce phrases
of this category.

* A 1list of categories that can occur as the leftmost
terminal phrase in a phrase of this category. This

I1-27

R g
(s

component, the next one, and the ones like it in the rule
records, are used for "lookahead" by the Fxecutive.

A 1list of categories that can occur as the rightmost
terminal phrase in a phrase of this category.

® A LISP function to set the attributes and factors of

terminal phrases of this category. This function is
created from the category procedure given in the language
definition.

® A 1list of lexical subcategory structures.

Fach lexical subcategory structure is a 1ist vcontaining the
name of the subcategory, the defzult attribute-value pairs for members
of the subcategory, and the 1list of members. Each member is represented
by a list with the word, its attribute-value pairs, and a back-pointer

to the category record.

A lexical category declaration is compiled in a series of
steps. It is first converted into a 1list structure, and the language
CATEGORYFN, if any, 1is called to modify the definition. The
subcategories are then compiled with the global WORDFN and the category

WORDFN applied to each word definition before its attributes are stored.

In addition to the words declared in the 1language definition,
the internal lexicon contains items called ‘multiword 1lexical entries’,
or ‘multiwords’. These items are treated as single units for acoustic
processing but not for linguistic processing. For example, the phrases
"of the" and "ere the" are among the multiwords used in the speech
system. The use of multiwords improves the acoustic performance by

providing larger units for testing. However, the language definition

11-28

e T

g

el

would become excessively complicated and lose linguistic generality if
multiwords had to be treated as single words linguistically, so the
Compiler and the Executive cooperate to hide the existence of the
multiwords from the language definition. The Executive’s treatment of
multiwords is described in Chapter III, Section C.4. The Compiler’s job
is to add them to the lexicon so that a multiword phrase X starting with
word A 1is included in all the lexical subcategories that include A.
Thus, whenever the Executive considers A as a candidate word, X will be
availahle for consideration also. Since the Executive can work in both
directions in an utterance, the Compiler also adds multiwords Y that end
in word B to all subcategories including B. The multiwords 1in the
lexicon are marked to indicated whether they are to be considered in

left-to-right tests (such as X) cr right-to-left tests (such as Y).

2. RULE RECORDS, STRUCTURE GIAPHS, AND PROCEDURES

The Compiler creates a record for each rule containing, among
other things, the following components:
*# A graph representing the phrase structure possibilities for

the rule.

® A 1list of categories that can occur as the leftmost
terminal phrase in a phrase constructed by this rule.

® A 1ist of categories that can occur as the rightmost
terminal phrase in a phrase constructed by this rule.

A LISP function crezated from the rule procedure.

A back-pointer to the category record for this rule.

I1-29

T TR L W o T e S = B i el

Rule compilation proceeds in a series of steps: (1) the rule

is translated into a 1list structure, (2) the language RULEFN, if any, is

ARSI LT

applied to modify the rule definition, (3) the phrase atructure graph is
created, and (4) the rule procedure is rewritten and compiled as a

standard LISP function.

The phrase structure information is represented by an acyclie,
directed graph. The arcs in the graph are 1labeled with either a

category or NIL. Recall that literals are replaced by special one-word

=

categories, so there is no need for a special kind of arc for literals.
NIL arcs are introduced to deal with optional elements in the graph.®
There is a unique starting, or "leftmost", point 1in the graph, and a

unique ending, or "rightmost", point. A path 1is a series of ares

A1,...Ak, such that the end point of A1 is the starting point of Ai+1.
It is a complete path if the starting point of A1 is the leftmost point
in the graph, and the endpoint of Ak is the rightmost point. Two points
are connected if there is a path between them; by convention, a point is
considered to be connected to itself by a zero-length path. The
category labels along any complete path indicate a valid sequence of
constituents for the rule. Figure 1II-9 shows a phrase structure

declaration and its corresponding graph.

A phrase structure graph is stored as a collection of points

and arcs. Fach point is represented by lists of arcs coming in from the

¥ NIL arcs are somewhat 1ike JUMP ares in an augmented transition
network (see Woods, 1970).

IT-30

= = 2= — e e o L e o S S Skt

L

S = NP1 <(DO NP2) VP1 | BE {VP2 | NP3 | "THERE}>
cerveass VP2 iiiinn

0000 00l450 0000000 00000000 0l?E000000000¢

...‘....’I.HERE.......“
LA ') 2 R

eesesesNIL.......ss

...DO.... %, NP2....%,.......VP1.......

00000000000000000LBIb00CE0000a000000C

Figure II-9. A PHRASE STRUCTURE DECLARATION AND
ITS CORRESPONDING GRAPH
left and arcs goingz out to the right. The arc lists for each direction
from a point are divided into separate asections for category arcs and
NIL arcs so that the Executive does not have to test each arc every time
it is used to see which kind it is. Each arc is represented by a list
containing its starting point, its ending point, its label (a category
or NIL), an index number, and a table indicating other ares in the graph
that cannot occur in complete paths that contain this arc (for instance,
the BE arc above cannot occur in complete paths with DO, NP2, or VP1
arcs or with either of the NIL arcs). Notice that this representation

allows the Executive to search the graph in either direction from any

arc or point.

In processing an utterance, the Executive tries to get a

series of adjacent phrases corresponding to the category labels on a

I1-31

s et i i S

" = eT———

Uil

complete path through the structure graph. As the subphrases of a
phrase are acquired, they are stored in a constituent-array for the
phrase in the position specified by the index number of the
corresponding category arc. The constituent-array 1is initialized vo
contain NILs, so the Executive can check whether it has acquired a
constituent for a particular category arc by a simple array reference
using the arc index number. The "HAVE constituentname” expressions in
the rule procedures are also implemented as constituent-array references
(requiring only two instructions in the PDP-10 INTERLISP). NIL arcs are
assigned index numbers larger than those for the category arcs 1in order

to minimize the size of the constituent array.

Since the Executive is often concerned with the relative order
of constituents, the category arc index numbers are assigned such that
if the index of category arc A is less than the index of category arc B,
either A is to the left of B or they are mutually exclusive. (Arcs are
mutually exclusive if there is no complete path that includes both of
them.) As an example, the order of the category arc index numbers in
the graph shown above is NP1, BE, VP2, Nr3, THERE, DO, NP2, and VP1.
The Executive takes advantage of the orderirg of categery ares in many
places. For 1instance, to find the first filled arc (an arc with an
acauired constituent for the phrase under consideration) to the right of
the arc with index number I, the Executive searches through the
constituent-array for the first nonNIL entry at location I+1 or above.

The arcs are also stored 1in an array according to their index numbers,

I1-32

b N e T e e e o

b i -

so if a phrase is found in location J of the constituent-array, the same
index J can be used to access the corresponding arc in the graph. 1In

this way, the Executive substitutes array scans for graph searches.

As constituents are acquired for a phrase, some arcs are
filled, and others are blocked because they are mutually exclusive with
the filled arcs. The Executive keeps track of which arcs are blocked by
maintaining a bit table with each phrase. (The table is actually
implemented as a single integer, thus limiting the total number of arcs
in a graph to 36. This limit has not been a problem in practice.) Bit
nunber I 1is turned on if and only if tune arc with index number I is
blocked. Part of the data stored for each arc is a bit table with the
bits turned on for the arcs that are blocked by it. Whenever an arc is
used, the Executive updates the bit table for the phrase by ORing it
with the bit table for the arec. The Executive tests if an arc is
blocked by checking the corresponding bit in the table (which takes
seven instructions after the value of the arc index is loaded into a
register). The "OMIT constituentname" expressions in the rule procedure
also refer to the bit table. (The OMIT expression is compiled in only
four instructions since the constituent index number 1s known at
compile-time.) Similarly, OMITANY and OMITALL are implemented by
creating a bit table for the constituents in question and ANDing it with
the phrase bit table or its complement (taking a total of five

instructions).

I1-32

The operation of the Executive is simplified further by adding
redundant NIL ares to the graph so that it is never necessary to
traverse two NIL ares in a row. If two points, A and B, in the graph
are connected by a path of two or more NIL arcs, but no single NIL are
connects them, the Compiler adds a new one to connect A and B directly.
No redundant NIL arcs are added to the graph in Figure II-9, but in
other cases, such as the NP rule, many are needed. Figure II-10
shows the NP graph before redundant NIL arcs are added. To this graph,

the compiler adds five NIL ares: (1) from the 1leftmost point to the

bk b

point at the right of the NUMBER arc, (2) from the left of the NUMBER to

the right of the CLASSIFIER, (3) from the leftmost pcint to the right of

D B e

CLASSIFIER, (4) from the left of NUMBER to the rightmost point, and (5)

it

from the left of PL to the rightmost point.

é ¥ —HOW.MANY~emem- .
S S —— S s
o Aen®oNUMBER--~#— - -NILonmmn- . K- _PL--#_PREPP-#
¥ WHDET-#-— -NIL-~-=-#~-CLASSIFIER-~¥---Nonnn-® : :
*oNIL--# #_NIL--#--NIL--#

Figure II-10. NP GRAPH BEFORE ADLITION OF EXTRA NIL ARCS

The redundant arcs simplify the Executive algorithms by
allowing {iterative operations to replace recursive searches of
arbitrarily long, and perhaps converging, paths of NIL ares. For

example, to check all the categories that can occur immediately to the

I1-3Y4

i il D

T

left of a given constituent, the Executive can fetch the point at the
left of the arc for the constituent, check the incoming category arcs,
and then for each incoming NIL arc, check the incoming category arcs for
the point at the left of 1it. Because of the presence of redundant NIL
arcs, this simple algorithm covers all the possibilities without
duplication. For example, to the 1left of the N arc in the NP graph
after the redundant NIL arcs have been added, there 1s an incoming
category arc for CLASSIFIER and three incoming NIL arcs: one to NUMBER
and HOW.MANY, a second to DET, WHDET, and A, and a third to the leftmost

point in the graph.

The Executive can acquire constituents of a phrase in any
order, not just left to right. Consequently, after each category arc is
filled, tests are made to see if a complete path has been created. The
tests succeed 1if there is a filled path from the left of the newly
filled arc to the leftmost point in the graph and a filled path to the
rightmost point. (A path 1is filled if all of its category arcs are
filled.) NIL arcs are used in the search for filled paths if they are
not marked as blocked. The Compiler makes this search more efficient by
ordering the 1ist of NIL arcs from each point so the Executive never
needs to try more than one of them. The outgoing NIL arcs from a point
are ordered such that if arc A precedes arc B in the 1list, no path from
the endpoint of A leads to the endpoint of B. Similarly, the incoming
arcs are ordered such that if A precedes B, no path leads from the

starting point of B to the starting point of A. Basically, this means

I1-35

putting the ‘longest’ arus at the front of the lists. For example, the
NIL arcs coming in to the lc¢ft of the N in the NP graph are ordered such
that the first goes to the leftmost point, the second goes to the point

at the left of NUMBER, and the third gces to the point at the 1left of

CLASSIFIER. With the NIL arcs ordered in this way, the search for a
filled path only needs to consider the first unblocked NIL arc. If the

first one fails to lead to a filled path, none of the following ones can

R

possihly succeed. To prove this, assume to the contrary that A precedes
B in a 1list of outgoing arcs, both are unblocked, a search to the right
starting with A falls to lead to a filled path, but a search wusing B

succeeds. The point at the right of B cannot be the rightmost point in

S

the graph, since A 1leads to the rightmost point, and A is before B in

the 1liast. Thus, there must be a filled category arc immediately

following B. However, this contradicts the hypothesis that & is
unbloc':ed since no path including A leads to the end of B where the

filled arc begins. The proof for incoming NIL arcs is similar.

Lt s

To review, the phrase structure declaration for a rule is

T

translated into an acyclic, directed graph. The arcs are labeled with a
category or NIL and are assigned index numbers reflecting their left-to-

right order. Arcs and constituents are stored in vparallel arrays

ordered by arc index number. A bit table is stored with each phrase to
record which arcs are blocked. Other bit tables are stored with each
arc to indicate the other arcs that are mutually exclusive with it.

Redundant WIL arcs are added to the graph so that paths do not need to

I1-36

R e

il il bl

ik,

i

G i i

include two MIL arcs in &« row. Finally, the NIL arcs from a point are
ordered so that a search for a filled path can stop after considering

the first unblocked NIL arc.

2 DETAILS OF RULE COMPILATION ALGORITHMS

The following paragraphs sketeh the Compiler algorithms for
translating the phrase structure declarations into their internal form.
The translation begins with the creation of an initial graph. Recall
from the formal syntax given previously that a phrase stiructure is a set
of alternatives, each alternative is an ordered series of elements, and
each element is either a category, a literal, an optional series, a set
of alternatives, or an optional set cf alternatives. To create an
initial graph for such a phrase structure declaratinon, the Compiler
first creates the leftmost and rightmost points, and then, for each top-
lavel alternative, it creates a graph for the series of elements in the
alternative, starting at the leftmost point and ending at the rightmost.
To create a graph for a series of elements E1,...,En, from point A to
point B, the Compller creates n-1 intermediate points P1,...,Pn-1, and
then creates graphs for E1 from A to P1, for E2 from P1 to P2,..., and
for En from Pn-1 to B. A graph for an element E from points A to B
depends on what kind of element E is. If it is a category (or literal),
a category arc from A to B 1is constructed. If it 1is a set of
alternatives, a graph from A to B is created for each alternative series

of elements. If if is an optional series, a graph from A to B for the

I1-37

TR

RN« 40 (9 o

series is created, and then a NIL arc from A to B is added. Similarly,
an optional set of alternatives is handled by creating the graphs for

the alternatives and adding a parallel NIL arec.

The next step is to add the redundant NIL arcs. The Compiler
keeps adding NIL arcs as long as it finds two in sequence between points
A and B, and no single NIL arc joins A and B. After this process is
complete, duplicate NIL arcs are deleted, as are any joiniug the

leftmost point to the rightmost.

The 1lists of incoming and outgoing NIL arcs for each point are
then ordered. The lists are sorted by exchanging arcs A and B until it
is the case that if A precedes B, then, for incoming arcs, there 1is no
path from the starting point of B to the starting point of A, or, for
outgoing arcs, there is no path from the end pcint of A to the end point

of B.

Arc index numbers are also assigned by a sorting procedure.
If th're are N categories and 1literals 1in the phrase structure
declaration, the category arcs gei numbers 1 to N, and the NIL arcs get
numbers above N. The numbers for category arcs are sorted by exchanging
the numbers for arcs A and B urtil it is the case that if the index for
A is less than the index for B, then there is no path from the right

point of B to the left point of A.

The final operation is to make a bit table for each arc A

indicating the arcs that are blocked by the use of A. This table is

I1-38

formed by turning on the bit for each other arc B such that no left-to-
right path exists either from the right point of B to the left point of

A or from the right point of A to the left point of B.

The arcs are stored 1in an array acc~rding to their index
number, and the arc-array is stored as part of the rule record. Also
stored in the rule record are the leftmost and rightmost points in the
graph and the number of category arcs. This additional information
could be derived from the arra: of arcs, but the Executive benefits by

having it directly availatle.

After the phrase structure declaration 1is translated, the
Comriler begins we¢ % on the rule procedure. The procedure statements
i dealing with attributes, factors, and constituent structure are

rewritten as standard LISP statements that will work in the environment
provided by the Executive. Before calling the rule procedure, the

Executive sets up an environment containing: (1) the consticuent-array

i

for the phrase, (2) the bit table showing blocked arcs, (3) the array of
atiribute values, and (4) the array of factor values. The Compiler

converts "HAVE constituentname" expressi ns to constituent-array

references using the appropriate category arc index. Similarly, "CMiT
constituentname" expr_asions are converted to a test or the appropriate
bit in the bit table of blocked arcs. In both cases, the Compiler locks
up the arc number corresponding to the constituent name, and a macro

produces th~ required zode.

11-39

M e e e Lo R

LA b

References to attributes are converted to attribute-array
references using as index the position of the attribute in the category
attribute 1ist. Factor references are converted to factor-array
references using as index the position of the factor name in the 1ist of
factors for the rule. In both cases, the array indexes are constants
known at compile-time, 30 efficient code is prodvced. For example,
references to constituent attributes produce eight PDP-10 instructions
to load an item from the constituent-array, and to give UNDEFINED if the
item is NIL or, if it 1is not, get the attribute value from the

attribute-array of the constituent.

The stateament employe’ to abort a rule,
"F REJECT(factorname)",
is converted tc a call on a function named F.REJECT with <two arguments:
the name of the factor and the name of the rule procedure. The F.REJECT
function calls a LISP subroutine ("RETFROM") to cause the rule function
to retirnn immediately with the value NIL as an indication of failure.
The facce, name 1s passed to F.REJECT as an aid to debugging. If a rule
is rejecting an input that the definition writer intended it to accept,
it 1is often because of a bug 1in a factor statement. The offending
statement can be easily located by watching calls on F.REJECT from the

rule proccdure.

The 12~ step in compiling a rule is to create an empty phrase
for it, a phrase with no constituerts. The phrase is saved with the
rule record and used by the Executive in ways described in the next
chapter.

I1-40

i

Rl e

b

b, LOOKAHEAD INFORMATION

Both category records and rule records contain 1lists of the
categories that can occur as the leftmost or rightmost terminal phrases
of that category or rule. This information is used by the Executive to
“look ahead” to avoid unnecessary work on a category or rule whose
possible categories for boundary words do not intersect the categories
of the word possibilitiss determined by acoustic tests. For example,
before trying te construct a verb phrase starting at a particular
loca.ion in the input, the Executive checks acoustic results for that
location to ensure that the possibilities include at least one word that
can occur as the leftmost word in a verb phrase. The next chapter

contains more discussion of the use of lookahead by the Executive.

The 1lookahead l1ists are constructed in the following way.
Each category is first added to its own list of possible leftmost and
rightmost categories. Then, for each rule producing a phrase of
category A and for each constituent of category B that can occur as the
leftmost immediate ccnstituent off the rule, the Compiler calls the
procedure ADDLEFTCAT to 2dd B to the list for A. If B is already on A’s
list, ADDLEFTCAT does nothing. Otherwise, it adds B and then propagates
the addition in the following way: (1) for each categery C that 1is a
possible left category of B, ADDLEFTCAT calls itself recursive’y to add
C to the list for A, and (2) for each category D that includes A as one
of its possible left categories, ADDLEITCAT calls itself recursively to

#dd B to the 1list for D. A similar operation is performed for rightmost

il

category lists. When this process 1s completed for all the rules, the
category 1lists are trimmed to eliminate categorlies with no lexical
entries. The rule category lists are finally set to be the union of the
lists for the categories that can cccur as their leftmost or rightmost

immediate constituents.

E. DISCUSSION

As des~ribed 1in the preceding sections, the Definition System
consists of a metalanguage and a compiler. The metalanguage 1s designed
to provide a means for integrating the contributions of a variety of
knowledge sources while avoiding commitment to a particular overall
control strategy. The basic approach 1n the metalanguage 18 to use
augmented phrase structure (APS) rules in which a structure declaration
glves the constituent possibilities and an associated procedure defines
attributes and factors for phrases built by the rule. A major job of
the Definition Compiler is to contruct an internal representation of the
definition for use by the Executive in processing sentences. Structure
graphs are constructed by the Compiler from the phrase structure
declarations, and LISP procedures are written and compliled to implement
the rule procedures. The Compiler also builds an internal 1lexicon that
includes special entries for ‘multiwords.’ Finally, lookahead
information is computed and stored for categories and rules. In this
section, we compare the Definition System to some alternative approaches

that have bSeen used in previous efforts.

I1-42

The best known natural language understanding system is undoubtedly
Winograd’s SHRDLU (Winograd, 1971). The language definition system used
in SHRDLU is called PROGRAMMAR, and, like the other components of
SHRDLU, emphasizes a procedural approach to representirg knowledge. A
PROGRAMMAR program is designed for top-down, left-to-right sentence
processing. The structural possibilities for the defined 1ianguage are
encoded in the control structure of the program rather than being
declared separately in a form such as phrase structure rules. This
method reflects a de3ire to encode a great deal of special-case
knowledge to guide processing as an alternative to relying on a uniform
but weak algorithm. The emphasis on special-case knowledge and close
cooperation among different knowledge sources during Sentence processing
is a wajor contribution, but the particular method used in PROGRAMMAR
makes it difficult to experiment with different overall control
strategies. In earlier speech understanding work at SRI, we used a
procedural approach in the PROGRAMMAR tradition (Walker, 1973a,h), but
that approach was abandoned to aliow freer experimentation. Our current
approach retains the PROGRAMMAR emphasis on special-case knowledge and
close cooperation of knowledge sources, but it eliminates from the
language definition the commitment to a particular control strategy.
Procedural representation is limited to attribute and factor
information; the structural possibilities for the defined 1language are
declared separa.ely rather than being encoded in the control structure
of a program. Thus, the use o' APS rules attempts to keep the most
valuable aspects of PROGRAMMAR's procedural representation while
eliminating its constraints on system control options.

II-43

Another well-known approach 1is the use of augmented transition
networks (ATNs) for language definition (Thorne, Bratley, and Dewar,
1968; Bobrow and Fraser, 1969; Woods, 1970). ATNs are extended versions
of finite-state machines of automata theory. The first extension is to
allow state transitions to depend on the successful execution of an
entire network rather than being limited to testing a single word. By
this extension, context-free languages can be handled. The second
extension is to allow each arc to have an arbitrary condition associated
with it that must be satisfied for the arc to be used in a transition.

This extension gives ATNs the theoretical power of Turing machines.

ATNs have been used sucessfully in several large natural language
understanding systems (such as LUNAR described in Woods, Kaplan, and
Nash-Webber, 1972), and the approach is also used in the BBN speech-
unde~standing system (see ,apers in the 1974 TIEEE Symposium, Erman,
1974b). However, we prefer an appruach based on augmenting phrase-
structure rules rather than transition networks. One reason for this is
a personal preference for reading and writing rulcs rather than ATN
networks,* but a less subjective reason concerns the relative freedom
from cortrol strategy commitments. Recall that our objection to
Winograd s PROGRAMMAR approach centered around its commitment to a

particular control strategy. However, as Winograd notes, PROGRAMMAR

* This preference appears to be shared by some users of ATNs. In a
recent report, BBN comments that to document its grawmar it has wused a
"semi-BNF" notation "which indicates much more ciearly than the grammar
listing whzt sorts of sentences are accepted by the grammar" (Woods et
al., 1976a, p.10).

II-U44

programs ana ATNs "are just two different ways of talking about doing
exactly the same thing" (Winograd, 1971, p.201). An ATN is conceptually
a description of a nondeterministic machine. To process a senteace, the
machine moves through a series of states specified by the structure and
conditions of the ATN. The order of transitions 1is fixed, at least
conceptually, by the left-to-right scan of the sentence, so tests and
actions associated with arcs at the right of a network make use of
information from previous arcs to the 1left. This left-to-right
assumption affects t' -~ writing of augments on the arcs, but it is not an
absolute barrier to the use of other control strategies. Unlike a
PROGRAMMAR program, ar. ATN does separate the basic structure (i.e,, the
network) from the augments (the tests and actions associated with the
arcs), so it 1is possible to use ATNs with non-left-to-right control
strategies. The method for doing this depends on recognizing augments
that use contextual information and delaying their execution wuntil the
necessary information 1is available (see Bates, 1975). Our APS rules
avoid control commitments, conceptual or otherwise, by putting the
augments in a single procedure rather than 3spreading them over a
network; if a test or action uses information from several constituents,
it is embedded in conditional statements that check for the relevant
structure. The augments are thus organized in a way that avoids the
left-to-right bias of ATNs. Although that bias ¢an be circumvented, we
prefer to use a representation that eliminates it rather than forcing

the Executive to try to work around it.

II-45

TR —

As a final comment regarding ATNs, note that our internal
representation for rules is like an augmented transition network with
the augments collected in a single procedure. As mentioned above, the
procedures are organized to avoid control strategy commitments, and the
networks provide the Executive with explicit knowledge of the basic
structural possibilities of the language in a form that is easy to use.
The structure information is heavily used by the Executive in making
predictions and constructing phrases (as discussed in Chapter III).
Thus, in rejecting ATNs, we are not rejecting the value of networks as a
representation. Instead, by changing the manner of adding augments and
by constructing the networks automatically, we retain their internal
efficiencies, and we also get an opportunity to optimize the network
format during compilation (as in the additior of extra NIL arcs and the

reordering of NIL zrcs).

Our preference for AP3S rules over more procedural methods such as
PROGRAMMAR and ATNs is shared by others. Such a preference appears, in
fact, in early work on compilers for programming languages. The first
programming language complilers were completely procedural; the
definition of the language was embedded (lost) in the control structure
of the compiler. 1In reaction to the obscurity of this method, "syntax-
directed compiling” was developed by Irons and others (see, for
instance, Irons, 1961; and Cheatham and Sattley, 196U4). The developers
of the new method were explicitly concerned with separating the two

functions of defining the larguage and translating it, functions which

I1-46

are merged in procedural approaches (see opening comments in Irons,

o

1961). Irona used a version of APS rules to state the syntax and
semantics of 2 programming language. Each phrase structure rule had an
associated semantic definition to form a ’“translation” for a phrase
constructed by the rule. The translation was the only attribute of the
phrase and was formed from the translations of the constituents. Irons
implemented a general translator program to operate on such language
definitions and demonstrated the usefulness of the approach by

developing an ALGOL 60 compiler.

Irons”® technique of using APS rules for programming languages was
extended by Knuth in a paper on the "semantics of context-free
languages” (Knuth, 1968). Knuth's first extension was to allow an

arbitrary number of attributes with each phrase. A set of attribute-

defining functions was associated with each phrase structure rule rather
than the single translation function of Irons. The second and more

significant extension was to allow both ‘synthesized” and “inherited’

attributes. Synthesized attributes of a phrase are defined solely in

. terms of attributes of the constituents of the phrase. 1Irons’

translation attributes and our rule attributes are of this type.
Inherited attributes of a bphrase are defined by functions associated
with phrases that include it as a constituent. In other words, these
attributes are “inherited’ from the context rather than being

‘synthesized” from information local to the phrase. In this system,

there 1is a danger of circular definitions of attributes (such as

I1I1-47

T T

e

inherited attribute A depending on attribute B, which 1is 1in turn
synthesized by a function with A as an argument), but such circular
definitions can at least be detected automatically by an algorithm

sketched in Knuth’s paper.*®

Knuth points out that 1inherited attributes do not provice greater
theoretical power since "synthesized attributes alone are (in principle)
sufficient to define any function of a derivation tree" (Knuth, 1968,
p.142). However, he claims that in practice the use of both kinds of
attributes can 1lead to important simplifications producing more
"natural®™ definitions. To support this claim, he gives a small larguage
definition that makes use of both synthesized and inherited attributes.
The inherited attributes are used for operations such as testing the
agreement between the declaration and the use of variables. Kauth
comments that "in general, inherited attributes are useful when part of
the meaning of some construction is determined by the context in which

the construction appears" (Knuth, 1968, p.142).

Although Knuth’s discussion is 1limited to programming languages,
his system of inherited and synthesized attributes appears attactive for
use in natural language processing. In fact, it has been used for
semantic translation in the REQUEST system, which is an experimental
question-answering system based on a transformational grammar of English

®# However, the problem of determining whether the grammar avoids
circularity in all possible instances is very difficult computationallvy.
See Jazayeri, Ogden, and Rounds (1975) for a proof that any correct
algorithm for solving this problem must require time that grows
exponentially with the size of the grammar.

11-48

]
i
K
t
I

(see Petrick, 1973, 1976). In REQUEST, an input is parsed according to a
/ surface structure context-free grammar, the surface tree is converted to
! a deep-structure tree by reversed transformations, and the deep-
structure tree is mapped into a "logical representation" by Knuth's

translation technique, using both synthesized and inherited attributes.

Faced with Knuth’s claims supported by the example of REQUEST, we
must explain our decision restricting the APS rules to use only
. synthesized attributes. In this case, as with our rejection of

PROGRAMMAR-like procedural representations, the primary motivation is

T

the desire to free the 1laaguage definition from features that would
excessively constrain the options for the Executive. Knuth states that
his approach does not depend on any particular form of syntactic

analysis. This is certainly true if the attributes are not to be

Lo

computed until after a complete derivation tree is constructed, but we
cannot afford to force the Executive to find complete context-free

parses before drawing on attribute and factor information. The

Executive must be free to use such information during sentence

processing to limit and direct its efforts. Furtheraore, inherited

attributes make it difficult to share a phrase among several competing
contexts. Such sharing is particularly important with = .ech
understanding since acoustic uncertainty leads to a large number of
alternative contexts. Inherited a.tributes are context dependent, so
they, and all other attributes depending on them, would have to be

duplicated for each context. Thus, we have restricted ourselves to

1I-49

s kg

e

using only svnthesized attributes Lecause we cannot delay the wuse of
augments until a 2omplete parse is found, and we cannot afford to
duplicate attribute and factor information for each context. The
restriction to synthesized attributes and factors prceices important
flexibility in the Executive, and, to date, it has not been an

impediment to the development of the SRI language definition.

A variety of computer systems for processing natural language have
used some form of APS rules (for example, Sager and Grishman, 1975;
Hobbs, 197%; Heidorn, 1975, Pratt, 1975, Landsbergen, 1976). The first
was the Linguistic String Parser implemented at New York University
under Sager in 1964-1965. The system has been redesigned and
reimplemented since then, but it has continued to use a (w0 component
grammar: context-free rules defining the broad construction patterns of
sentences, and rezirictions covering detailed conatraints. There 1is an
emphasis on restrictions (corresponding to our Boolean factors), but the
system does allow attributes tc be set for nodes in the parse tree. 1In
contrast with our approach, the restrictions for a rule are not
organized into a single procedure. Instead, the approach foreshadcows
ATNs by associating restrictions with particular positions in the rules.
As with ATNs, the positioning of restrictions assumes left-to-right
sentence processing. For example, in a rule A=B C, a restriction might
be positioned between B and C so it would be executed after the B phrase
was acquired and before the C was tried. Finally, some of the

‘restrictions’ are really optimizations for the top-down back-up parser,

11-50

so there 1is some blurring of the distinction between the language
definition and the control strategy for applying the definition. From
our standpoint, this blurring and the left-to-right bias caused by
positioning restrictions within rules are both shortcomings of the
approach. However, the successful application c¢f the approach to
nroduce a grammar of very ‘ilde scope is evidence for the value of using

APS rules for natural language.

Other APS systems for natural language processing have avoided the
shortcomings mentioned above. For example, PHLIQA1 uses APS rules each
with a single procedure for augments to translate from English to the
first of several 1levels of semantic iranslation (Landsberger, 1976;
Scha, 1976). Our work was influenced by PHLIQA1 and differs mainly in
allowing alternatives and options in structure declarations and in
providing for nronBoolean factors in addition to [Loolean restrictions.
These additions are especially important 1in a system for speech
understanding: the a’ternatives and option3 reduce the number of rules
and hence decrease the storage requirements of the Executive, ard the

nonBoolean factors are of use in setting Executive priorities.

To summarize the prec~”_ng discussion, our Definition System
continues a long-established line of systems using APS rules. We share
with earlier developers, such as Irons, the desire to keep the language
definition free of control strategy commitments in order to make the
definition simpler and to allecw greater flexibility 1in experimenting

with different system designs. Qur system differs from previous ones in

I11-51

naving broader phrase structure declaration capabilities and in allowing

| nonBoolean factors.

Up to this point the discussion has focused on the metalanguage and
the choice of APS rules as a representation. The other major component
of the Defiritinn System 1is the Compiler. The Compiler creates an
internal representation of =z laaguage definition for wuse by the
Executive 1in sentence processing. The internal representation has
- several features that differentiate it from those wused 1in previous
systems. The networks representing the phrase structure declarations
; are reminiscent of ATMs or charts (see papers by Kay, 1973; Kaplan,
1973a) but they are distinguished from ihose systems by the presence of
extra NIL arcs and the ordering of NIL arcs, both changes that

contribute to Executive efficiency. Other distinctive f{eaturzs of the

internal representation of the language are also concerned with
efficiency of Executive operations. These features are (1) the use of
paraliel arrays for structure grapl arcs and phrase constituents, with

entries ordered to reflect the i~ft-to-right structural possibilities,

(2) the use of bit tables to keep ti'ack of blocked arcs and mutually

exclusive arcs, (2) the translation of rule procedures into compiled
LTISP functions employing 1in-line instructions for efficient operations
on attributes and factors and quick tests of constituent structure, and
(4) the construction of left and right lookahead information for both
rules and categories. The internal representation is tied t> the design
of the Executive, so furtter discussion of the representation is

deferred to Chapter III.

11-52

e — e S, e e

i e R . vt

III THE EXECUTIVE SYSTEM

Prepared by William H. Paxton
CONTENTS:
A. Introduction
B. Parse Net
C. Overview of the Executive
1. Predict Task and Word Task
2. Setting Priorities
3. Starting the Task Cycle
4y, Stopping the Task Cycle
D. Details of the Executive
1. Word Task
a. Getting a Word and Creating a Terminal Prrase
L. Distributing a Phrase to Consumers
2. MAdding a Constituent to a Consumer
a. Preliminary Tests
b. Create Complete Nonterminal Phrase
¢. Create Partially Filled Nonterminal Phrase
3. Predict Task
a. Create Subnet
b. Assign Ratings
¢. Cleanup
d. Dead Phrases and Predictions
4, Multiword Lexical Entries
5. Priority Setting
a. Factors
b. Phrase Scores
c. Phrase Ratings
d. FRelation to Executive Tasks
6. Adjusting Priorities and Focus by Inhibition
E. Discussion
1. Review
7. CMU: HARPY and HEARSAY-II
2. BBN: SPEECHLIS and HWIM
4, Earlier SRI Systems
= s S s

A. INTRODUCTION

This chapter discusses the Executive System. The Executive 1in the
speech understanding system has three main responsibilities: (3) it
coordinates the work of the other components o¢f the system by ca2lling
acoustic processes and applying language definition procedures, {2) it
assigns priorities to the various tasks in the system, and (3) it
organizes hypotheses and results so that information is shared and
duplication of effort is avoided. In other words, the Executive carries
out the functions of iantegrating and controlling the sy<tem components.
Experimental results, to be discussed in Chapter IV, show that the
manner in which the Executive performs these functiors has a large
effect on the overall performance of the system. For example, different
techniques for setting priorities result in significant differences i.

average accuracy and runtime.

In processing an utterance, the Executive performs a series of
tasks to find words in the speech signal and to organize them into
phrases of the input language with the ultimate goal of creating a root
category phrase that spans the input. Thus, becaude we have designed
the speech understanding system with the language definition as the
primary mechanism for specifying knowledge source interactions, the
Executive does the Job of a parser in fulfilling 1its responsibilities
for system integration and control. We might have divided the Executive
box in the system diagram (see Chapter I, Figure I-2) into two boxes,

perhaps calling one ‘Control’ and the other ‘Parser’, and then made

III-2

KA Al A

g == R e B T N e T . e} =

favorable comments about the modularity of our approach. However, that
would belie the extent to which the parsing operaticns of the Executive
have been shaped to serve its integration and control functions and
would also fail to reflect the central place i. the system we have given
to the language definition -- system components are controlled via the
language definition, so it is not accidental that the Executive does the
parsing. Consequently, our system diagram has a single box for the
Executive rather than two boxes for Control and Parser, and this chapter

deals with both system control strategy and parsing.

The following sections contain (1) a description of the main
Executive data structure, called the ‘parse net”, (2) an overview of the
Executive in suffizient detail to allow the reader to understand both
the discussion in the last section of this chapter and the exverimental
results covered in Chapter IV, (3) a complete description of the
Executive, and (4) a discussion comparing this approach to seversl
others and sketching its evolution. This chapter presumes familiaricy
with the internal representation of the language definition as described

in Sections D.1 and D.2 of Chapter II.

I11-3

S g

TR —

B. PARSE NET

The ‘parse net’ is the principal data structure built by the
Executive.®* This section describes the form and content of the parse
net; following sections describe the procedures that operate on it.
Nodes in the parse net are either ‘phrases’ or ‘predictions.” Phrases
correspond to words or composition rules from the language definition.
Predictions are for particular categories of phrases at particular input
locations. ‘Terminal’ phrases contain a single word and are formed when
words are acquired by acoustic tests. ‘Nonterminal’ phrases are formed
when a language definition rule 1is applied to a set of constituent
phrases. If there are no unfilled, unblocked category arcs in the
phrase’s structure graph, the phrase is called ‘complete’ (for a
description of structure graphs, see Section D.2 in Chapter IV).
Otherwise, more constituents can be added, so the purase is called
“incomplete.”’ A complete phrase that 1is formed by adding missing
constituents to an incomplete phrase P is called a ‘completion” of P.

Predictions are made as part of the process of acquiring constituents to

fill category arcs in incomplete, nonterminal phrases. An incomplete
phrase is called ‘empty” if none of 1its category arcs are filled. 1In
this terminology, the parse net of predictions and phrases holds
intermediate hypotﬁeses and results while completions of empty, root-
category phrases are constructed. Such complete root-category phrases
with their attributes and factors are called “interpratations’ of the

®* The design of the parse net was inspired by Kaplan’s multiprocessing
consuner-producer approach (Kaplan, 1973b).

III-4

O ST

Phrases and predictions have time specifications indicating their
position 1in the input. By analogy with written text, beginning and
ending times are referred to as left and right, respectively. The times
for terminal phrases are provided as part of the output of the word
recognition routines. The times for nonterminal phrases come from the
leftmost and rightmost constituents, if those constituents have been
acquired for the phrase. An incomplete nonterminal phrase that is
missing its boundary constituents has its times either ‘fixed’ or
‘unfixed’. Fixed times for a phrase P are either boundaries of the
utterance or times from complete phrases that might be adjacent te
completions of P, A fixed right time for a phrase P constrains possible
rightmost constituents of P to end at or near the specified position.
In contrast, an unfixed right time for a phrase means that there are no
constraints on the ending time of possible rightmost constituents.
Fixed or unfixed left times have similar results. Predictions also have
fixed or unfixed times that determine which phrases fulfill them. For
example, if a prediction has a fixed left time of 50, a phrase
fulfilling the prediction must start at or near 50. (The details of how

near is near enough are discussed later.)

Other information saved with each phrase includes an array of
attributes. For terminal phrases, the attributes come from the lexical
entry for the word or are computed by the category procedure. For
nonterminal phrases, the rule procedure computes attiibutes of the

phrase from constituent attributes. Terminal phrases have a pointer to

I11-5

Riie

TN

the lexical entry that was used to construct them, and nonterminal
phrases .nclude a pointer to their composition rule, a 1list cf
constituent phrases, and a bit table showing the blocked arcs in the

struature graph.

Each prediction in the parse net is for phrases of a particular
category that meet particular time requirements. Stored with the
prediction record, in addition to the category and times, are the
following lists:

% 1Instances -- Complete phrases of the predicted category

that meet the time requirements. These phrases fulfili the
prediction.

% Word sets -- Sets containing words from the predicted
category which, if accepted by acoustic tests, can be used
to construct terminal phrases fulfilling the prediction.

% Consumers -- Incomplete phrases that can have a phrase that
fulfills the prediction added to them as a new constituent.
Thus, the phrases on this list can ‘consume” instances of
the prediction.

% Producers -- Incomplete phrases whose completions could be
instances of this prediction. In other words, these
phrases can ‘produce’ instances for the prediction.

A prediction thus serves as an intermediary between twc sets of
incomplete phrases: consumer phrases that are all missing a constituent
of the predicted category at the predicted location in the input, and
producer phrases that all might supply the missing constituents. Note
that a phrase can be a producer for one prediction and a consumer for

another. Thus, ‘producers’ and ‘consumers’ are not names for distinct

classes of phrases, but instead are names reflecting structural

I1I-6

prae

L L

relations in the parse net. The full set of producer-consumer
connections :in the parse net make explicit the different sentential
contexts for each phrase. This contextual information is used by the
Executive in setting priorities and in lookahead. These operations and
the operaticns that construct the parse net are sketched in the next

section.

C. OVERVIEW OF THE EXECUTIVE

The Executive carries out a series of tasks adding predictions and
phraszs to the parse net. There are two main types of tasks: the
precdict task, which oOperates in a top-down manner, and the word task,
which operates in a bottom-up manner.® This section sketches these
tasks and briefly describes how tne task priorities are established and
how the series of tasks i3 started and stopped. The level of detail in
the descriptions is minimal but adequate to provide the reader with the
prerequisites for understanding both the discussion in Section E and the
experiments reported in Chapter IV. For the reader who wants a detailed
description of the Executive, this section provides an introduction that

should make the details given later easier to understand.

See Aho and Ullman (1972) for a discussion of top-down and bottom-up
parsing strategies.

I1I1-7

E
i
4
i
b
L
|
Ev

1. PREDICT TASK AND WORK TASK

Figure 1II-1 shows the basic outline of the two main types
i of Executive tasks. The predict task takes incomplete phrases ard adds
a subnet of predictions and phrases to the parse net. The creation of
predictions for categories with lexical entries causes the word task to

be scheduled. Performing the word task entails getting an accepted word

T

(one that has passed the acoustic tests), constructing a terminal

Gl iy il

phrase, and distrivuting it to consumers in the parse net. Adding the
phrase to 4 consumer can result in a complete phrase P, in which case P
is also distributed to consumers, or an incomplete phrase Q, in which

case the predict task is scheduled to make predictions for constituen‘s

that can be added to Q. The 1link 1in Figure III-1 from the cleanup
stagze of the predict tasic to the add-constituent-to-consumer operation
reflects the possibility of an old prediction with instances acquiring a

new constumer .

Both tasks are guided by lookahead: in other words, they avoid
urnecessary operations by using information about the acoustically
possible adjacent words. For example, if acoustic tests show that there
are no adjectives starting to the right of a phrase P, then no

structures are built using P that would require an adjective to its

rignt. Both tasks can also work either left-to-right through an input
or bidirectionally from words selected at arbitrary positions within an
utterance. The system is designed to allow constituents of phrases to

be added in any order, so experimentation with a variety of control

I111-8

e e i e S g ey s B

WORD TASK PREDICT TASK
GET A WORD CREATE SUBNET
CREATE A TERMINAL PHRASE ASSIGN RATINGS
DISTRIBUTE PHRASE TO CONSUMERS CLEANUP
I —

ADD CONSTITUENT TO CONSUMER/ SCHED'JLE WORD TASK

SCHEDULE PREDICT TASK

FIGURE 1l1-1 EXECUTIVE TASKS

strategies has been possible. Most importantly from the system-control
standpoint, each task does a limited amount of processing and then stops
after scheduling further operations for later. The scheduling doss not
aspecify a particular time for a future operation, but instead gives the
operation a certain priority. The operation. is performed when it
becomes top nriority. This organization allows tne Executive to control

the overall activity of the system by setting task priorities.

We have experimented with two verslons of the Executive tasks
that differ in where the accustic tests are performed. In the first
versizn, called ‘mappin. .ne at a time”, a word is tested as the first

step of the word task, and only if the word passes the test 1is a

I1I-9

b

i

terminal phrase created. In this method, word priorities are primarily
determined by consumer ratings (as described below). With the second
method, called ‘mapping all at once’, all the word tests at a particular

input 1location are performed before predictions are made at that

Bl

location. The word priorities are then influenced by the results of the

bRt L

acoustic tests in addition to the consumer ratings. When a word becomes

T

T

top priority, the word task goes directly to the step of creating a

terminal phrase. Mappitg all at once causes the system to test more

words per location but yields better priorities since experimental

results indicate that true hits tend to get higher scores than false

;

alarms. The choice between mapping one at a time or mapping all at once

is explored in the experiments reported in the next chapter.

3
-
3

2. SETTING -RIORITIES

The fundamentzl data for priority setting are the word scores
3 provided by the acousti: mapper and the factors computed by the language

% definition procedures. Mapper scores indicate how well a word matches

the input signal at a particular location in the input. Language
definition factors reflect likelihood judgments from syntactic,
semantic, and discourse sources of knowledge. The “score’ for a phrase

combines mapper scores, language factors, and, for a nonterminal phrase,

the scores of its constituents. The score is thus a local, context-free

piece of information about how ‘good” the phrase is. The score may

Ui

reflect zlobal data such as a discourse model, but it does not depend on

IIT-10

il TR

T g

T

possible sentential contexts for the phrase. In contrast, the ‘rating’
of a phrase does depend on the other phrases in which it may be embedded
to form a sentence. The rating of a phrase P is intended to provide an
estimate of the best score for an interpretation that can be constructed
using a completion of P. If P is itself a root category phrase, its
score determines its rating directly. Otherwise, the rating for P is
determined by reference to the consumers for P in the parse net. (The
organization of the Executive guarantees that all non-root-category
phragdes have at 1least one consumer.) We have experimented with two
te.hniques for using the consumer context in setting phrase ratings. 1In
one method, the rating with respect to a particular consumer is formed
by adding the phrase score and the consumer rating. (Whenever possible,
ratings are assigned top-down in the parse net so that consumer ratings
are directly available for use in this process.) The phrase rating is
then the maximum rating with respect to any of its consumers. This
method is fast, but it leaves the rating unaffected by the consumer
restrictions that are expressed in rule procedures rather than in
structure declarations. A phrase may satisfy the structural
requirements of a cousumer C but still be incompatible with C because of
constraints encoded in C’s factor statements. For example, if the only
sentential context being considered is "Is it owned by --%, the
structural requirements will be satisfied by any noun phrase, but

semantic factors will restrict the alternatives to possible owners.

III-11

=g . = el s =T Mok

o

-

The =2cond method for setting phrase ratings takes into
account the procedural information “in the rules by exploring the paths
in the parse net that show how a phrase might be used and executing the
corresponding procedures tc gether attribute and factor information.

Each producer-consumer path from a phrase P to a root category phrase

reflects a way of constructing an interpretation using P. To calculate

I

a rating for P with respect to such a complete path, temnorary
structures called ‘virtual phrases’ are built. For example, assume A is

a consumer for P, B is a consumer for A, and C is a root-categery

consumer for B (see Figure III-2). The virtual phrase A° 1is formed

by placing P in the appropriate empty constituent position in A. The

attributes and score of A’ indicate possible completions of A-plus-P.
The virtual phrase B’ is constructed by adding A° to B, and C° is
constructed by adding B” to C. By assumption, C’ is a root category
phrase, so the score of C’ determines the rating of P with respect to
the consumer path A-B-C. Various paths from P are formed in this way,
and the rating for P is its best rating with respect to any of the

constructed paths.

To recduce the cost of rating alternatives by this method, a
heuristic search is made in the parse net for a near optimal path rather
than exhaustively trying all possible paths. The heuristic exploits the
fact that, typically, when a phrase is being rated the higher ievel
phrases that form its context have already uveen rated. (The parse net

is initialized so that a context of previously rated phrases exists even

I1r-12

e R i i s R e e e . W e W . T2

-~
(wﬂmc Cc') virtuel ghrase C from C end E

A
\/!', Vitusl phrasse B8 from B and A’
-
TN

PHARASE A ‘A" Vietual ol.e0e A’ from A and ¢
~

PHRASE P

s

CP link is #n indirstt link between 0 corsumer
an s producer vis an intermediste prediction SA-3804-4

FIGURE 111-2 A CONSUMER } ‘TH

III-13

e eam e e e T

K
r‘iq
b

P Ay

ik

when the system i{s doing bottom-up processing.) These prior ratings
% provide important heuristic information. The object is to find the path
: giving the best score, so the paths with the highest prier rating are
explored first. When a complete path is found, one tnat leads to a
root-category phrase, the score for that path sets a lower bound on the
rating. This lower bound is used to prune paths whose prior ratings are
low enough to suggest that they are unlikely to produce a rating higher

than the lower bound already established.

L i A

This method takes more computation per rating assignment than

L A e

the first one, but it should produce tetter phrase ratings since it
gathers more information in forming them. Experimental results reported
in the next chapter indicate that the extra effort spent in the second

method is worthwhile; it leads to better system performance in both

it e Ll

acctrracy and runtime.

Phrase ratings are used to determine task priorities. The
priority of the predict task comes from the highest rating of any phrase
scheduled to make predictions. When the predict task is executed, it
creates predictions and phrases only at the time and direction (left or
right) that are determined by the best phrase scheduled to make
predictions. Similarly, the priority of the word task is equal to the
highest rating for any predicted word (the word rating is the rating of
the terminal phrase that could be constructed from the word). When the

word task is performed, it oniy operates on the highest rated word.

III-14

[t

R

e

In the case where task priorities are directly determined by
ratings, the control strategy is described as ‘best-first’. We have
experimented with modifying priorities to implement other control
strategies in addition to best-first. In particular, we have tried a
method we call ‘focus by inhibition’ in which high scoring words are
selected from the best phrases for the predict-task, and tasks that
cannot use those words are inhibited by having their priorities lowered.
The selected words are the focus of attention for the system in this
method and are described as “the focus® or as “in focus”. A phrase
conflicts with the focus if it contains a nonfocus word that overlaps
some focus word. The tasks that would try to complete such phrases have
their priori ies lowered. The priority reduction causes the system to
be biased against working to complete phrases that conflict with the
focus. If a task for a phrase P that is in conflict with the focus
manages to overcome the system bias against it to become the task with
the highest priority, the system shifts to a new focus by removing the
words from focus that conflict with P and adding new words co focus from

P.

The technique of focus by inhibition is motivated by a desire
to reduce the thrashing among closely rated alternatives that can happen
with a Dbest-first strategy. Thrashing 1is reduced with focus by
inhibition because the best phrase inhibits its competition and thus
keeps the system’s attention focused on fulfilling its predictions. The

inhibition is a relatively small decrease in priority, so the bias can

ITI-15

TP T

TR

be overcome. Therefore, focus by inhibition does allow the system to
recover from selecting an incorrect word for focus. However, if the
system focuses on incorrect words too often, the net effect of the
priority changes can be harmful rather than helpful. Experimental
results showed that selecting incorrect words was in fact a --~ious
problem for focus by inhibition, and, as a result, overall performance
was not improved by this technique. Although this particular attempt to
improve performance by adjusting priorities did not succeed, the basic
approach still merits further study. As a method for adjusting
priorities, it provides simple answers to how, when, and why to focus
attention, while still maintainirg the completeness of the control
strategy. (It does not discard alternatives, it simply revises their
priorities.) Better success at selecting hits rather than false alarms
for focus 2ould result in a focus by inhibition that improved

performance.

3. STARTING THE TASK CYCLE

The Executive starts processing an utterance with an initial
parse net already in existence. If the system is using a left-to-right
control strategy, the initial net contains: (1) for each root category
rule, an empty pnrase with times fixed at the beginning and end of the
utterance, and (2) for each category that can occur at the left of an
input, a prediction with its associated empty producers, all with their

left times fixed at the beginning of the utterance and their right times

II1-15

-~

unfixed. Each phrase P in the initial parse net 1is connepted as a
consumer to the predictions for categories of phrases that can occur in

P as leftmost immediate constituents. The Executive task cycle starts

by scheduling the word task for the predictions in the 1initial net.

This task will find 2 word at the start of the utterance and the

interplay of word task and predict task will start.

As an alternative to left-to-right processing, the system can

Lo gl

use ‘island driving’ in which phrases are constructed bi .rectionally

around ‘island’ words selected at arbitrary locations in the input.®

The motivation for island driving is that it allows the syster to begin

processing an utterance where it is most confident that it has found a

correct word. It can nse that word to provide contextual guidance in

it o e

processing other parts of the utterance where it is less confident. In
contrast, left-to-right processing must start at the beginning of the
5 utterance even 1if the system is not confident about any of the words

there.

T e T

For island driving, the initial parse net contains: empty root

Ll it U

category phrases with times fixed at the beginning and end of the

utterance, and, for each category in the language, a ‘monitor’ (which is
a special kind of prediction) with its associated empty producers, all

with both times unfixed. Each phrase P in the 1initial parse net is

Island-driving 1is derived from Miller’s ‘locally organized parsing’
based on ‘islands of reliability’ (see Miller, 1973). For examples of
its use in speech understanding systems, see Ritea, 1974 and Bates,
1975.

III-17

= = N Ty

connected as a consumer 0 the monitors for categories of phrases that
can be added as immediate constituents of P. The task cycle starts with
the selection of an island word according to a criterion combining the
word s mapper score and its estimated likelihood of being a false alarm.
The word task is performed for this island word to create a terminal
phrase. The terminal phrase is then passed to the distribute-phrase
f procedure. For island driving, this procedure is modified so that if
i the phrase being distributed does not fulfill any predictions, it is

given to the consumers for the monitor of its category. In general,

this operation can construct incomplete phrases that lead to predictions

on either side of the island word. After the first island word is

i c bt

distributed, the Executive schedules a task to select a second island

word in case the first one fails to 1lead to highly rated phrases. If
this task is performed and starts a second island, it will reschedule
itself to try a third in case the second runs into trouble. In this
manner, a number of islands can be worked on simultaneously. The effect
of 1island driving on system performarce is a topic of Chapter IV,

Section E.

4, STOPPING THE TASK CYCLE i

After each execution of a task, the Executive checks several
parameters to sce if it should stop the task cycle. For instance, the

Executive keeps track of the amount of storage in use and stops before

the available storage is exhausted. Another stopping criterion is the

IIT1-18

=i = g . — = e — ——— e e

TN A et

difference between the priority of the best remaining task and the
processing time already ured for the utterance. The Executive stops if
the value of this criterion falls below a certain threshold. The
threshold is initialized to a low value, but whenever an interpretation
is constructed, the threshold can be raised so that the system will not
spend much more time looking for other interpretations unless the
priorities are high. When the Executive decides to stop, it calls the

language RESPONSEFN function. This function is also called whenever an

ik il

interpretation 1is constructed, and it stores the interpretations and

T

manipulates the priority-minus-processing-time threshold. When the

il

Executive tells the RESPONSEFN that it is time to stop, the function
P initiates question answering using the highest rated interpretation it

has.

This concludes the overview of the Executive. The reader has

i an option at this point of skipping ahead to the discussion section at

the end of this chapter or to Chapter IV (which deals with a series of
experiments concerning system performance and the Executive) beiore

going on to the following detailed description of the Executive.

I11-19

TR, - PP Y

D. DETAILS OF THE EXECUTIVE

This section gives a detailed explanation of the Executive. The
topics covered are the word task, adding a constituent to a consumer,
the predict task, multiword 1lexical entries, and priority setting. To
make the following descriptions complete, there is some repetition of

information covered in the overview.

1. WORD TASK

The major operations in the word task are to acquire 2a word
that is accepted by the acoustic tests, create a terminal phrase for it,
distribute the phrase to consumers, and schedule the predict task for
any incomplete phrases that result. Predicted words are organized into
‘word sets’. Each word set has a list of words from some lexical
subcategory, time specifications 1like those for a prediction, and
priority information. Word sets are typically created during the final
step of a predict task, but they are also created zt the start of a
left-to-right parse. Like a prediction, a word set has one fixed time
and one unfixed time.®* The creation of a word set begins by finding the
subset of the lexicon that 1is worth considering 2t the fixed time. If
the system is using the mapping-all-at-once control strategy, this
subset contains the words actuaily accepted by the mapper at or near the

time. Otherwise, the subset is created by a special acoustic process

Word sets for the root-category are exceptional in that both of their
times are fixed. The algorithms take care of these as special cases.

III-20

L

i Seoe i

e

e

ok iait

called lexical subsetting, which 1looks at 1local acoustic features to
eliminate words that the mapper would not accept. In either case, the
lexical subset 1is intersected with the set of words in the predicted
lexical sutcategory to form the entries in the word set. (The word set
is not created if the intercection is empty.) The word set is then
assigned a priority and added to the list of word sets for use in the
word task. The word set priority reflects the expected rating of
terminal phrases constructed from words in the zet. A single rating is
computed for the entire set of words. If the system is mapping all at
once, the priority of the word set 1is strongly influenced by the best
mapper score for a word in the set. Otherwise, the pricrity is affected
by the estimated false alarm likelihoods for words in the set, 30 that,
other things being equal, the system will try words in an order that is
expected to minimize false alarms. The priority of the word task is the

highest priority of any word set.

a. GETTING A WORD AND CREATING A TERMINAL PHRASE

When it is performed, the word task begins by selecting a
word from the highest priority word set. The selected word is the one
with the highest mapper score, if the system is mapping all at once, or
the one with the lowest false alarm likelihood, if the system is mapping
one at a time. If ther2 are no other words in the set, the set is
deleted. Otherwise, the priority for the set is revised. If the system

is not using the map-all strategy, the chosen word is now tested by the

ITI-21

B T W R e SO Pl = e Siind cuicas

ez

R e R -

mapper. If it is rejected, the word task goes directly to 1its final
stage. In that stage, the priority for further word tests 1is compared
to the priority for other system tasks. If word testing is still the

highest priority, the word task is directly reexecuted. Otherwise, it

returns control to the top-level Executive procedure.

If it is assumed that the word has been accepted by the
mapper, the next operation is to create a terminal phrase (see Figure 1

I111-3). This operation begins by checking if a terminal phrase for

the same word®* in the same input location has already been created. For 3
instance, the word might have been accepted as the result of a }
prediction from the opposite direction (right-to-left instead of left-

to-right, say), or it might have been found follcwing a prediction with

R——

a slightly different fixed time. If such a terminal phrase exists, the

word task does not create a duplicate, but instead, it simply goes to

E its final stage.

If there is a terninal phrase for the same word and place, quit.

If there is a phrase for the same word at a different place, use
the previouvs attributes and factors rather than recomputing
them.

Otherwise, call the category orocedure.

Construct the phrase record.

Distribute it to consumers.

Figure III-3. CREATE TERMINAL PHRASE

®* Tn this discussion, a ‘word’ is a lexical entry, so if there is a word
in category X that happens to have the same spelling or pronunciation as
another word in category Y, they are still different words.

I11.22

Bl ikt I LS K e g o

If there is a phrase already created for the word in a
different location in the input, the attributes and language factors for
that phrase can be reused rather than recalculated. For example, after
a phrase for "it" is created, other "it" phrases use the same array of
attributes, including the semantic network representation and the list
of possible discourse referents. The shared language factors are

combined with the particular mapper scores to produce scores for the

different "it" terminal phrases.*®

If the word has not been used for a previous terminal
phrase, the category procedure is called to compute attributes and
factors for it. If the category procedure does not reject the word, and
the resulting phrase score is above a certain threshold, the terminal
phrase record 1is constructed. The record holds the word’s lexical
entry, the times given by the mapper, the phrase score, and other

information. The phrase is now ready for distribution to consumers.

b. DISTRIBUTING A PHRASE TO CONSUMERS

The procedure for distributing a phrase to consumers is
the same for terminal and nonterminal phrases (see Figure III-4). It
is c2lled from the procedure that creates terminal phrases and from the

procedure that adds a constituent to a consumer to create a couplete

Acoustic attributes and factors are not shared. In the current
system, the only attributes that depend on acoustic results are the
phrase times, and the only acoustic factors are from mapping and phrase
mapping. The acoustic attributes and factors are treated specially by
the system; there is not a general mechanism for dealing with them.

ITT .23

R AL bl

bk il e R R AL

If 2t is a root-category phrase, give it to the RESPONSEFN.
For each prediction fulfilled by the phrase,
Record the phrase as an instance of the prediction, and

Add the phrase to each consumer of the prediction.
Figure III-4, DISTRIBUTE A PHRASE TO CONSUMERS

nonterminal phrase. If the category of the new phrase 1is the root
category of the language, the phrase 1is passed to tne 1language
RESPONSEFN. This function saves the phrase for possible use in question
answering and adjusts the Executive stopping parameters. If the
category of the new phrase is not the root category, all predictions for
the category are checked to see if the new phrase satisfies their time
constraints. For example, if the phrase 13 an NP starting at locat;on
35 and ending at location 55, it satisfies an NP prediction with left
time 35 znd right unfixed, but it does not satisfy an NP prediction with

left unfixed and right at 180.

The actual algorithm for checking times takes two times
as its input and decides whether or not they are compatible. For a
phrase to satisfy a prediction, the left phrase time must be compatible
with the left prediction time, and similarly for the right times. If a
time is unfixed, it is ccmpatible with any other time. Two fixed times
are compatible if the gap between them 1is not too large. In the

simulation experiments described in the next chapter, the allowed gap

I11-24

—

was given by a parameter -- the standard size was 0.05 seconds, bui this
was varied in one of the experiments. With real rather than simulated
acoustic processing, syllable *“oundary information is used in the time
check -- the gap between two times must not contain an entire syllable.
This test eliminates the obviously bad cases and 1leaves the more
difficult ones to be handled by phrase mapping. Phrase mapping looks at
a pair of words that have been accepted individually to see if they are

acceptatle as a sequence. Phrase mapping is done in the add-constituent

operation when phrases are put together to form larger phrases (by a

3
.-

procedure discussed below).

For each prediction that the new phrase fulfills, the
phrase is added to the prediction’s instances list and then given to the
prediction’s consumers. The instances 1list is maintained so that i
consumers arriving later can make use of previously constructed
instances. The operation of giving the phrase to a consumer is the

source of nonterminal phrases that have one or more constituents.

2. ADDING A CONSTITUENT TO A CONSUMER

The add-constituent procedure (Figure I11-5) performs
preliminary tests to ensure that the phrase and 1its consumer are
compatible with respect to times, phrase mapping, and lookahead. The
time checks in the distribute-phrase procedure described above ensure
that the phrase satisfies the times of the consumer s prediction; the

time checks for the add-constituent procedure are more detailed and take

I111-25

é

L0 it i

If the preliminary tests fail, quit.

Try to create a complete phrase, and distribute it if successful.

Try to create an incomplete phrase, and if successful then
assign its rating and scnedule the predict task.

Figure III-5. ADD CONSTITUENT TO CONSUMER

into account other constituents of the consumer. If tLhe preliminary
tests succeed, the procedure goes on to try creating both complete and

incomplete phrases.

The add-constituent procedure is called from two locations.
It is called from the procedure that distributes new phrases, and it is
called from the predict task when a new consumer 1is added for a
prediction that has been previously fulfilled. Because of multiple
consumers and multiple instances, a particular phrase can be added to
many different consumers, and a single consumer can receive many

different constituents. This multiple use is possible since
constituents are not modified by their context, and consumers are copied

before they are combined with a constituent.

a. PRELIMINARY TESTS

The add-constituent procedure begins with a series of
tests to block certain bad constituent-consumer combinations. The first

tests concern the time constraints on the new constituent imposed by the

III1-26

i L B i L

time specifications of the consumer and its old constituents (see Figure
I111-6). The tests to the 1left of the new constituent will be
described; similar tests are performed té the right. Let the indes
number for the constituent rategory arc be 1. (This sectiun assumes
familiarity with the Jinternal representation of the ianguage definition.
See Sections D.1 and D.2 of Tapter II.) If the new constituent has a
left neighbor constituent in the consumer, the neighbor can be found by
scanning through the consumer’s ccnstituent-array, starting at position
2 I-1 and going down to position 1 1looking for the first nonNIL entry
(recall that entries are ordered from .eft to right in increasing
positions of the array). If there is a neighbor, the following tests
are macZe to ensure that it is time compatible with the new constituent.

- As an initial check, the left neighbor must really be somewhat to the

left of the new constituent. If neither of the left or right times of

the new constituent is to the right of the corresponding time of the

left neighbor, the preliminary tests fail.

The next test depends on the structure graph relation
between the new constituent and its left neighbor. If the consumer’s
s.ructure graph indicates that the two phrases must be immediately
adjacent (i.e., the right point of the left arc is the left point of the

rigiut arc), the rightmost word in the left phrase and the 1leftmost word

in the right phrase are passed tc the phrase mapping procedure. The jcb
of the phrase mapper 1is to deal with coarticulation effects at word

Juncticns, and if it rejects the pair of words, the add-constituent

I11-27

T T

"

AT S o e I

If find a neighboring constituent to the left,
(1) quit if the neighbor is not to the left in the input,

(2) if the neighbor must be adjacent,
phrase map and quit if the test fails,

else if the neighbor optionally can be adjacent,
phrase map and block the NIL arc if the test fails.

Otherwise, if the consumer phrase left time is fixed and
the prediction left time is unfixed, then

if the new constituent must be leftmost,
check the left times and quit if the test fails

else if the new constituent can be leftmost,
check the left times and
block the NIL arc if the test fails.

Do the same tests to the right of the new constituent.
Figure III-6. PART 1 OF PRELIMINARY ADD-CONSTITUENT TESTS

procedure terminates without adding the phrase to the consumer.
Alternatively, the structure graph for the consumer may indicate that
the phrases 4o not have to be adjacent. but that they can optionally be
adjacent if an unblocked NIL arc is used. In this case, phrase mapping
is performed, and if it fails, the NIL arc is blocked to record that the
phrases cannot in fact be adjacent. (The arc is marked as blocked by
turning on the appropriate bit in a copy of the consumer’s blocked-arc
bit table.) The last alternative is that the structure graph does not

allow the neightors (o be immediately adjarent. No phrase mapping is

done in this case.

If there is not a left neighbor for the new constituent,

but the consumer’s left time is fixed, a time check may be made like the

[' time checks to see if a phrase satisfies a prediction. However, 1if the
consvmer and the constituent were brought together by a prediction with

a fixed left time, a time check i3 not necessary here since it would

duplicate the check made when the phrase was added as an instance for

i the prediction. In case the prediction’s left time is not fixed, but
the consumer’s left time is (which can happen if the consumer is a root
é category phrase), and the new phrase can be the leftmost constituent, a
time check is made with the constituent s left time and the consumer’s
left time. If the test fails and the constituent must be 1leftimost, the
add-constituent procedure terminates. If it can be leftmost by the use
of an unblocked NIL arc and the time test fails, the NIL arc is blocked.
These tests, and similar ones regarding the right side of the new

; constituent, ensure the acceptability of the times and word junctions

between the new constitueunt and its consumer.

The second group of preliminary add-constituent tests
look at the lexical subsets adjacent to the new constituent to block
various arcs in the consumer (see Figure III-7). The 1lexical subsets
are determined by acoustic tests and indicate the wocrds that may be
found in the utterance at the specified 1location and direction. For

example, if the constituent starts at location 70 and ends at 105, the

subset to its left will contain words that can end around 70, and the

subset to its right will contain words that can start around 105. Each

III-29

For each arc coming in to the left of the new ccnstituent,
block the arc if it is inconsistent with the lcokahead.

If all arcs to left are blocked, quit.
Do similar tests to the right of the new constituent.

Block any arcs that can no longer be in a c¢omplete path.

Figure III-7. PART 2 OF PRELIMINARY ADD-CONSTITUENT TESTS

category in the language has a precomputed list of possible leftmost and
rightmost terminal phrase categories. These lists are used to block
arcs that are inconsistent with the 1lookahead provided by the lexical

subsets.

The details of the tests to the right of the new
constituent are given below; similar tests are also made to the left.
If the arc for the constituent ends at the rightmost point of the graph,
no lookahead tests are made at this point in the add-constituent
operation (but more 1lookahead will be done at a later point in the
operation i1f a complete phrase can be constructed). Otherwise, the arcs
are checked that start directly to the right of the arc for the new
constituent. If a category arc 1is blocked or filled, it does not need
to be tested with respect to the 1lexical subsetting 1lookahead. Each
unblocked, unfilled category arc is tested by intersecting the set of
possible leftmost terminal categories for the arc with the lookahead set
of categories for the lexical subset on the right of the constituent.

If the intersection is empty, the arc is blocked. Next, each 'nblocked

III-30

= o S —= R R e

T T

b

NIL