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ABSTRACT 

This report Is the final report In a series describing research 
performed by Stanford Research Institute over the past five years to 
develop the technology that will allow speech understanding systems to 
be designed and implemented for a variety of different task domains and 
environmental constraints. 

Chapter I provides an overview of the speech understanding system 
we have developed, together with an example showing how an utterance is 
processed and some historical background. Chapters II and III present 
detailed desriptions of the definition system and the executive system 
that provide overall integration and control. Chapter IV discusses the 
results of experiments conducted to test alternative system control 
strategies. Chapters V, VI, and VII describe the representation of 
semantic knowledge, present a model of the problem domain, and show how 
semantic processing is used in the interpretation of an utterance. 
Chapters VIII, IX, and X deal with discourse and include discussions of 
dialog collection and analysis, the resolution of definite noun phrases, 
and ellipsis. Chapters XI, XII, and XIII indicate how the system 
responds to the interpreted utterance, how deduction is used both to 
find an answer and in the interpretation process, and how the system 
generates replies In English to a user. A final chapter lists 
publications and reports documenting the research we have performed 
on speech understanding during the past five years. 
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INTRODUCTION 

Prepared by Ann E. Robinson, Donald E. Walker, William H. Paxton, 
and Jane J. Robinson 

CONTENTS: 

A. Orientation 
B. An Overview of the Speech Understanding System 

1. Components Developed by SDC 
2. The Language Definition 
3. Syntax 
4. Semantics 
5. Discourse 
6. Deduction 
7. Generation 
8. Executive 

C. An Example to Illustrate Processing in the System 
D. An Historical Perspective 

Ä.  ORIENTATION 

For the past five years, SRI has been a part of the Speech 

Understanding Research Program sponsored by the Advanced Research 

Projects Agency of the Department of Defense.* The program, begun in 

1971 following a thorough assessment of its feasibility by a study group 

(Newell et al., 1973)» launched a multl-diacipllnary effort based on 

state-of-the-art advances in computational linguistics, artificial 

intelligence, systems programming, and speech science.  A set of 

• This research has been funded under the following ÄRPA contracts, all 
administered through the Army Research Office: DAHC0il-72-C-0009, DAHCOM- 
75-C-0006, and DAAG29-76-C-0011. 



coordinated, cooperative projects was established to focus further 

research both in the development of these source knowledge areas and in 

their effective integration in the context of a complex computer-based 

system. The goal was to develop one or more systems that would 

recognize continuous speech uttered in the context of some well 

specified domain by making extensive use of grammatical, semantic, and 

contextual contraints. A system emphasizing such linguistic constraints 

is called a 'speech understanding system' to distinguish it from speech 

recognition systems, which rely on acoustic information alone. 

From the beginning of our participation in the Speech Understanding 

Research Program, our work at SRI has demonstrated two characteristic 

features. First, we have approached the problem of natural language 

processing from the perspectives of artificial intelligence and 

computational linguistics. Second, we have stressed the importance of 

having a functioning system guide the progressive elaboration of the 

various system constituents (Walker, 1973a,b). Following the 1973 

midterm review of the ARPA program, we began a joint effort with System 

Development Corporation (SDC). We were responsible for overall system 

control and for developing components to handle syntax, semantics, and 

discourse. SDC was responsible for the acoustic components — signal 

processing, acoustic-phonetics, and phonology (see Bernstein, 1975; 

Ritea, 1975; and Barnett, 1976). This report will concentrate on the 

SRI contributions both to the operational system that resulted from the 

joint SRI-SDC «ffort and to the goal of the ARPA speech understanding 

program. 
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Figure 1-1 lists the major contributions made by SRI together 

with the characteristics that distinguish our system from others in the 

program. These contributions are elaborsted further in the following 

overview of the speech understanding system. 

B.  AN OVERVIEW OF THE SPEECH UNDERSTANDING SYSTEM 

This section contains brief descriptions of the various components 

of the speech understanding system, including those developed by SDC, 

and of their coordination by the system executive. Details regarding 

the components developed by SRI are given in the rest of this report. 

The domain for the speech understanding system J.S information about 

the ships of the U.S., Soviet, and British fleets. The system data base 

contains characteristics such as owner, builder, size, and speed for 

several hundred ships. The user can get information from the system by 

simple English questions, commands, and dialog sequences using 

incomplete sentences and pronouns. The internal organlzati^ of the 

system is shown in Figure 1-2. The direction of the arrows in the 

figure indicates the general flow of information as an utterance is 

interpreted by the system and an appropriate response returned to the 

speaker. 
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DEFINITION OF INPUT LANGUAGE 
• Defines the input language by means of linguistically 

motivated rules that are general and extensible over a 
variety of domains 

• Provides a means for adjusting ('tuning') the language 
definition to particular domains without loss cf gener- 
ality 

• Combines syntactic, semantic, and discourse information 
within the ruled that define words and phrases 

espec tally 

SEMANTx^S 
• Us^s partitioned semantic networks 
• Handles higher-order logical predicates, 

quantifiers 
• Provides deduction routines for retrieval and infe ence 

that can access supplementary relational data bane in 
in responding to a user's query 

• Provides a network substructure that is converted to an 
English sentence or phrase to answer a user's question 

DISCOURSE MODELING 
• Is based on in-depth studies of domain-oriented dialogs 
• Encodes model of dialog context by using semantic 

partitions 
• Finds meanings of elliptical expressions and referents 

of definite noun phrases by using dialog context 

SYSTEM INTEGMTION 
• Provides for interaction of information from various 

sources of knowledge — syntax, semantics, discourse — 
as part of the language definition itself 

• Avoids commitment to particular system control strategy, 
allowing flexible use of various strategies for putting 
together words and phrases out of incomplete and 
uncertain fragments 

SYSTEM CONTROL 
• Provides special techniques to assign priorities by the 

use of contextual constraints 
• Allows combinations of top-down, bottom-upj, and bidirec- 

rectional strategies 
• Organizes data structures for testing hypotheses about 

utterances in a manner that avoids duplication of effort 
• Used in extensive experimental studies to evaluate 

design alternatives 

Figure 1-1. SRI CONTRIBUTIONS TO SPEECH UNDERSTANDING 
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Figure 1-2. SYSTEM ORGANIZATION 
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1 COMPONENTS DEVELOPED BY SDC 

The acoustic-phonetic processor, the A-matrix, the mapper, the 

phonological lexicon, and the lexical subsetter were developed by SDC 

and are described more fully in their publications referenced above. 

The acoustic processor digitizes and records the input from 

the human speaker at a rate of 20,000 samples per second. RMS-energy 

values are calculated for each 10 millisecond frame of speech, followed 

by fundamental frequency extraction, formant frequency analysis, 

syllab?e segmentation, phrase segmentation, and other analyses. From 

these parameters, rough segment labels are derived; subsequent processes 

use the information available to segment the speech into phoneme-like 

units, assign feature bits such as nasal or retroflexed, and generate 

phonemic labels with associated merit scores for each segment. All of 

the acoustic-phonetic information is stored as an A-matrix for the 

utterance. 

A mapper carries out acoustic tests using the A-matrix data. 

Given a word predicted by the executive together with a location in the 

speech input, the mapper compares alternative possible pronunciations of 

the word with the acoustic data at that point. The location can be 

specified with a left time, a right time, or both. The mapper assigns a 

score between 0 and 100 that indicates how well the word matches the 

input. If the value exceeds a given threshold, the mapper reports the 

beginning and ending times of the word together with the score. 
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The lexical subsetter performs an analysis of the A-matrix at 

a specified location in the utterance and returns a list of words that 

could begin (or end) at that time. This capability reduces the number 

of words that otherwise would have to be checked by the mapper. 

2.  THE LANGUAGE DEFINITION 

The input language is a subset of natural, colloquial English 

that is suitable for carrying on a dialog between a user and the system 

regarding information in the data base. The definition of this language 

is based on augmented phrase structure rules. A rule consists of a 

phrase structure declaration, which specifies the possible constituents 

of a phrase category, and an augmentation. The augmentation is a 

procedure containing two principal kinds of statements called 

'attributes' and 'factors'. The attribute statements determine the 

properties of particular instances of a phrase constructed by the rule. 

An attribute statement may compute values for attributes that relate to 

syntax, semantics, or discourse. The factor statements compute 

acceptability ratings for an Instance of the phrase. The scores for 

factors are non-Boolean; that is, they may assume a wide range of 

values. As a result, a proposed instance of a phrase is not necessarily 

simply accepted or rejected; it may be rated a more or less acceptable 

or as more or less 'likely', depending on a combination of factor 

values. Like attributes, factors may be syr':actlc, semantic, or 

discourse related. One of the distinctive features of the language 
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definition is its integration of the syntactic, semantic, and discourse 

sources of knowledge through the attribute and factor statements. 

Another is the provision of non-Boolean factors. 

The form of the rules is designed to avoid commitments to 

particular system control strategies. For cypmple, the rule procedures 

can be executed with any subset of constituents, so incomplete phrases 

can be constructed to provide intermediate results, and it is not- 

necessary to acquire constituents In a strlrcly left-to-right order. 

3.  SYNTAX 

The syntactic knowledge in bhe system is represented both in 

the phrase structure part of the language definition rules and in the 

attribute and factor statements in the procedure part of the rules. 

Syntax provides computationally inexpensive information about which 

words or phrases may combine and how well they go together. In testing 

word or phrase combinations, syntactic Information alone often can 

reject an incorrect phrase without requiring costly semantic and 

discourse analysis. Factors are used for traditional syntactic tests 

such as agreement for person or number, but factors also are used to 

reduce the scores of unlikely phrases. For example, WH-questions that 

are negative (e.g., "What submarine doesn't the U.S. own?") are 

unlikely to occur. A factor statement lowers the value for this 

interpretation but does not eliminate it completely, so that if no 

better hypothesis can be formed to account for the input utterance, this 
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Interpretation will be accepted. Since the language definition system 

provides the capability for evaluating phrases in context by means of 

non-Boolean f. "tors, the grammar can be tuned to particular discourse 

situations and language users simply by adjusting factors that enhance 

or diminish the acceptability of particular interpretations. It is not 

necessary to rewrite the language definition for each new domain. 

t.  SEMANTICS 

The system's knowledge about the domain is embodied in a 

partitioned semantic network. A semantic network consists of a 

collection of nodes and arcs where each node represents an object (a 

physical object, situation, event, set, or the like) and each arc 

represents a binary relation. The structure of our network differs from 

that of conventional nets in that nodes and arcs are partitioned into 

spaces. These spaces, playing in networks a role roughly analogous to 

that played by parentheses in logical notation, group information into 

bundles that help to condense and organize the network's knowledge. 

Our semantic network also serves as the medium for recording 

and communicating semantic information among the relevant system 

components. Djring the interpretation of an utterance, semantic 

composition routines, which are called directly from the language 

definition rules, relate the constituents of a phrase to the network 

model. These routines build new network structures to reflect the 

underlying meanings of those phrases that are acceptable and to 

eliminate those phrases that do not satisfy semantic criteria. 
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To supplement the knowledge encoded in the network, a 

relational data base is maintained. It can be accessed directly from 

the network, which contains a representation of the contents of the data 

base. 

5.  DISCOURSE 

The discourse component of the speech understanding system 

relates a given utterance (or a portion of it) to the overall dialog 

context and to entitles and structures in the domain. The current 

domain of the speech understanding system provides for Interacting with 

information in a data base. In this domain, the discourse context is 

limited to s linear history of the preceding interactions. For complex 

task-oriented dialogs, the linear discourse history can be replaced by a 

structured history mirroring the organization of the task execution. 

An important function of the discourse component is to expand 

elliptical expressions into their full meaning. In our system, a single 

neun ohrase can be accepted as a complete utterance if it can be 

expanded into a meaningful sentence using information from the previous 

dialog context. For example, the phrase "The George Washington" is 

unacceptable in isolation, but following "What is the speed of the 

Lafayette?", it can be expanded to mean "What is the speed of the George 

Washington?" 
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Another important capability is the identification of the 

referents of definite noun phrases. Partitions in the semantic network 

are employed to focus the attention of deductive procedures on those 

items that have been mentioned previously in the dialog. A 

-epresentatlon of the referent of a definite noun phrase is kept as the 

ciscourse attribute of the phrase. If no referent ia found, the phrase 

is given a low score. 

6. DEDUCTION 

The deduction component of the system provides an inierence 

mechanism for retrieving information from the semantic network. This 

component serves a dual purpose. During the Interpretation of an 

utterance, it supplies information needed both by the semantic 

composition routines and by the discourse procedures. When an 

interpretation has been found for a question, the deduction component is 

used to find an answer. 

7. GENERATION 

The generation component of the speech understanding system 

contains procedures to produce an English phrase or sentence 

corresponding to a semantic network substructure. Usually, this 

substructure is the answer to a question asked by the user. Using a 

distributed generation grammar, the generator expresses the content of 

the Input nodes and arcs by employing the closest applicable templates 
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(rules) In the superset hierarchy of those nodes. The answer to a WH 

question, for example, can be either a noun phrase or a complete 

sentence, depending on the exact content of the input. The generator 

can produce a variety of paraphrases of a constituent (e.g.t "General 

Dynamics built the Whale."; "The Whsle was manufactured by General 

Dynamics."). At present, the particular paraphrase is chosen at random. 

8.  EXECUTIVE 

The executive is responsible for coordinating the various 

components of the system. It uses the language definition and the 

acoustic components to find an interpretation for the input. When a 

successful interpretation has been found, the executive invokes the 

response functions which produce a reply. 

The principal data structure used by the executive is called 

the 'parse net'. It is a network with two types of nodes: phrases and 

predictions. Phrases in the parse net can be complete, containing all 

their constituents, or incomplete, with some or all of their 

constituents missing. A prediction is for a particular category of 

phrase. Each phrase or prediction is associated with a particular time 

span in the utterance. As the Interpretation of an utterance 

proptresses, new phrases that have been constructed from existing phrases 

or from words found in the utterance are added to the parse net. At the 

Fame time, new predictions are made as more information is obtained. 

Thus, the parse net grows as the interpretation process advances. 
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There are two tasks involved in maintaining and evolving this 

parse net: the 'word' task and the 'predict' task. The role of the word 

tijsk is to look for a particular word in a particular location in the 

utterance. If the mapper has not been called previously for that word 

in that location, the word task calls it. If a word is found 

successfully in the specified location, the word is used to build a new 

phrases. 

The role of the predict task is to make a prediction for a 

word or phrase that can help complete an incomplete phrase. Whenever a 

new constituent is inserted into an incomplete phrase, any adjacent 

constituents that had been missing can be predicted. Of course, new 

predictions can include predictions for particular words, leading to new 

instances of calls on the word task. 

Besides creating these tasks, the executive must have a means 

of determlnin/z: which one to perform next. Establishing the priority of 

a task begins with determining the 'score' of the phrase involved. The 

score is computed from the results of the acoustic mapping of any of the 

words contained in the phrase, from the factor statements for the 

phrase, and from the scores of the constituents. After the score is 

determined, the phrase is given a rating which is an estimate of the 

best score for a phrase of the root (sentence) category that uses that 

phrase. This rating is then modified depending on the control strategy 

being used, and the result is the priority cf the task to be performed 

for that phrase. 
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C.  AN EXAMPLE TO ILLUSTRATE PROCESSING IN THE SYSTEM 

We present in this section a partial trace of the successful 

processing by the system of the question "Who built the 

Henry L. Stimson?". The utterance is 190 centiseconds (cs) long, 

extending from 10 to 200 in the A-matrix containing the acoustic- 

phonetic data for it. To simplify the presentation, interactions with 

the mapper are not shown. 

Lines in the trace beginning with ••• indicate nodes that are built 

into the parse net for complete or partial phrases. If the line ends 

with ..., the phrase is partial; that is, not all of the constituents 

are present. Lines beginning with +++ identify nodes in the parse net 

that specify predictions for the presence of particular categories. 

Nodes 1 through 10 for phrases and 1 through 1»9 for predictions do not 

appear in the trace. These nodes and predictions represent categories 

that can begin an utterance, and include determiners, nouns, noun 

phrases, and auxiliaries. They are pre-computed at the time when the 

language definition is compiled. 

In the following presentation, blocks of lines from the trace will 

be followed by explications of the notation as well as of the processing 

that takes place. 
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•»• 11 ••• (N WHALE) 15 25 (9 . 691)=76 
•»• 12 ••• NP UBEG L (17 . 1219)=71 RHS 11 ... 

[ WHALE ] 

CALLING ROUTINE SEMRNP1 

RESULT IS NET FRAGMENT (6BM (686 683 D) 

16851 \6BH\ 
II  !  !683! 

■     i 
i     i 

E<««« 

«•• 13 «•• Np i5 25 (17 • I219)=71 RHS 11 

[ WHALE ] 

The first line of the t^ace shows that a node (node 11) is built in 

the parse net for a complete phrase. (A phrase may be a single word.) 

The (N WHALE) of the first lint indicates that the first prediction for 

which the mapper finds a likely candidate is for a noun (N), and that 

the candidate was the word "whale". The following pair of numbers, 15 

and 25, identify the beginning and ending times, in centiseconds, 

corresponding to the possible location of the candidate in the 

utterance. The remaining numbers are parts of the information used for 

rating the phrase. There are 9 factors whose sum is 691. Therefore, 

the score is 691 and the quotient is 76. (See Chapter II for an 

explanation of these terms.) 

This complete node is then used by the word task to build a new 

phrase at node 12 for an NP. In the general case, it is possible to 

extend a partial phrase by adding constituents on either side. In this 

case, however, It is not possible to add constituents on the left 
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because the left anchor coincides within 5 centiseconds of the beginning 

of the utterance. Thus, the phrase can be extended only to the right, 

as shown by the UBEG L, which means that the phrase is left anchored at 

utterance beginning. RHS 11 means that the right-hand-side of the NP 

production rule to be completed uses the phrase built at node 11 as the 

first, right-hand-side constituent. Following entries for non-terminal 

nodes, there is a line specifying the terminal words found for it. In 

this case, there is one word — "whale" — for the NP of node 12. 

The next step is to build node 13 for a complete NP, using node 11 

and the single word "whale". As described in the text, semantic 

structures are built for a complete phrase as part of applying the rule 

for that phrase. For this reason, the call on the semantic routine and 

the results of that call appear before the line for the node. 

Similarly, discourse calls (e.g., PRC.iRES for pronoun resolution) appear 

before the phrases that result from them. 

The line CALLING SEMRNP1 indicates that the semantic composition 

routine SEMRNP1 has been called; the following lines show the resulting 

semantic net structure built for node 13. The numbers specify the node 

in the semantic network corresponding to the noun phrase (681) and the 

space containing the nodes and arcs to which that node is connected (686 

68? 1), as determined by the composition routine. The boxes contain a 

node number and, below it, the space the node is on. In this case, the 

semantic structure of the noun phrase of node 13 is a node in the 

semantic network numbered 68M on space 683, which is an element of the 

set 685 on space 1, the set of submarines of the Whale class. 
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PHRASE 12 RATING IS 810 

+++ 50 +++ TOKEN.PL 25 L 
+++ 51 +++ PREP? 25 L 
■•• m •«• pREPP 25 L (2 . 
+++ 52 +++ PREP 25 L 

132)=66 

CALLING ROUTINE SEMRNP5 

RESULT IS NET FRAGMENT (690 (689 D) 
N.LEGAL.PERSONS 

16901  MO 1 
1689!  M  ! 

i     i 

E»»»> 

After node 13 is built for a phrase consisting solely of the word 

"whale", the previous incomplete phrase built at node 12 receives a 

rating. Subsequently, the executive makes predictions for a plural 

(TOKEN.PL) and for a prepositional phrase (PREPr') to the right of the 

noun phrase in node 12. These predictions, 50 and 51, begin at time 25 

in the input. A parse net node (U) for an Incomplete phrase (with no 

constituents) is built for the PREPP prediction. It causes another 

prediction to occur for a prepositior (PREP) at the left of the phrase, 

corresponding to the phrase structure part of the preposition rule, 

wnich is PREPP = PFEP NP. The preposition "by" is found in the input by 

the mapper (this is not shown in the trace), and so a new node is built, 

which is partially completed by the addition of "by". However, when 

this phrase Is evaluated in the context of the NP from node 12 which 

caused this prediction, the attribute and factor statements determine 

that "by" is not a valid preposition to follow the noun "whale", and so 

the phrase built in node 12 is rejected. 
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•«• T5 ••» (NP WHO) 15 25 (3 • 213)=71 
••« i6 »»• SI UBEG UEND (11 . 755)=68 RHS 15 ... 

[ WHO ] 
PHRASE 16 RATING IS 823 

CALLING ROUTINE PRONRES 
RESULT IS NET FRAGMENT (15 (1)) 
N.THE.US 

N.COUNTRIES 

115 I  112 1 
II  I  II  I 

i     i 
i     i 

E»>»» 
••» i7 Mt (NP WE) 15 25 (3 . 195)=65 
+++ 53 +++ BE 25 L 
+++ 511 +++ DO 25 L 

+++ 55 +++ VP 25 L 
••«-18 •»» VP 25 L (6 . 396)=66 
+++ 56 +++ V 25 L 
(DO.THEY (8 . 511) 30 (1 . 1) 75) 
»«A 19 it« (DO DO) 30 (1 . 1) (8 . 511)=63 
ttt 20 ••• SI UBEG UEND (18 . 1200)=66 RHS 15 19 

[ WHO DO ] 
PHRASE 20 RATING IS 800 

+++ ty +++ NP (1 . 1) L 
CALLING ROUTINE PRONRES 
RESULT IS NIL: REJECT! 

The next word found ("who") satisfies an initial prediction for a 

noun phrase. It extends from 15 to 25. A semantic structure is built 

for it (node .5) which Indicates that it refers to some unspecified 

member of the set of legal persons. Node 16 is built for an incomplete 

S (sentence) phrase with the NP "who" at the beginning. 

The next word found is "we". A discourse routine (PRONRES) is 

called to find a referent for it, and "the U.S.", which is an element of 

the set of countries, is found. Thus, another noun phrase is found for 

the initial portion of the utterance. 
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The next predictions made, numbers 5j 15, are for the various 

constituents that can complete phrases starting with an NP.  They are 

provided by the rule SI in the grammar, which allows the following 

patterns: 

S = NP DO NP VP 
S = NP VP 
S = NP BE {VP I NP ! "THERE] 

The VP prediction leads to the construction of a node for a verb phrase 

and to the further prediction of a V. The multi-word "do.they" is found 

satisfying prediction 5^,  and a node is constructed using "do". This is 

distributed to the S rule, and a new S node (20) is constructed with the 

words "who do" in it. The discourse routines reject the attempt to use 

"they" to construct an NP. 

»• 22 ••• (V BUILT) 30 70 (9 . 572)=63 
««• 23 ••» VP 25 L (Til . 902)=6U RH3 22 . 

[ BUILT ] 
PHRASE 23 RATING IS 0 

•i« 25 ••• (V BUILT) 30 70 (9 . 572)=63 
••• 26 ••• VP 25 L (11» . 902)=6l» RHS 25 . 

[ BUILT ] 
•*• 27 ••• VP 30 70 (14 . 902)=64 RHS 25 

[ BUILT ] 
PHRASE 26 RATING IS 795 

+++ 58 +++ TOKEN.PPL 70 L 
+++ 59 +++ TOKEN.PAST 70 L 

+++ 60 +++ TOKEN.SG 70 L 
+++ 61 +++ PREPP 70 L 
»«« 28 ••• PREPP 70 L (2 . 132)=66 
+++ 62 +++ PREP 70 L 
+++ 63 +++ NP 70 L 
••• 29 ••• NP 70 L (9 . 5910=66 
+++ 64 +++ TOKEN.A 70 L 
+++ 65 +++ WHDET 70 L 
+++ 66 +++ DET 70 L 

+++ 67 ++♦ TOKEN.HOW.MANY 70 L 
+++ 68 +++ N 70 L 
+++ 69 +++ CLASSIFIER 70 L 
+++ 70 +♦+ NUMBER 70 L 
■•l 30 ••• NUMBER 70 L (4 . 264)=66 
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•«t 
71 +++ CENTI 70 
31 ••• (1 . 26U)=65 

(5 . 330)=66 

CENTI 70 
+++ 72 +++ SMALLNUM 70 L 
e«t 32 •« SMALLNUM 70 L 

+++ 73 +++ DIGIT 70 L 
+++ 71» +++ TEEN 70 L 
+++ 75 +++ TOKEN.HUNDRED 70 L 
+++ 76 +++ TOKEN.THOUSAND 70 L 

CALLING ROUTINE PRONRES 
RESU1T IS NIL: REJECT! 

•ttfl 3U ••• (DET THE) 70 75 (1 . 6l)=6l 
««« 35 «•« NP 70 L (9 . 589)=65 RHS 3M 

[ THE ] 
PHRASE 35 RATING If, 792 

+++ 77 +++ NUMBER 75 L 
••• NUMBER 75 L (H . 26U)=66 
+++ CEKTI 75 L 
»•• CENTI 75 L (U . 26U)=66 

+++ 79 +++ SMALLNUM 75 L 
•«• 39 #•• SMALLNUM 75 L (5 . 330)=66 

+++ 80 +++ DIGIT 75 L 
+++ 81 +++ TEEN 75 L 

+++ 82 ++♦ TOKEN.HUNDRED 75 L 
+++ 83 +++ TOKEN.THOUSAND 75 L 
+++ 84 +++ N 75 L 

++H 85 +++ CLASSIFIER 75 L 

•it» 

37 
78 
38 

• ft 10 
11 

••• (N HENRY.L.STIMSON) 
••• NP 70 L (19 . 1359) 

[ THE HENRY.L.STIMSON ] 
CALLING ROUTINE S01RNP1 
RESULT IS NET FRAGMENT (301 (69H  693 D) 
HENRY.L.STIMSON 

N.CLASS.LAFAYETTE 

1301!  11091 

80 195 (11 . 836)=76 
71 RHS 31» W ... 

11 11 

E»»»> 

••• H2 ••• NP 70 195 (19 . 1359)=71 RHS S1* '»O 
[ THE HENRY.L.STIMSON ] 
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The next successful mapping of a predicted word is "built". It 

occurs twice because It has two senses, past and passive. The passive 

form is quickly rejected by the case factors but the past is retained. 

Two VP phrases are constructed, nodes 26 and 27. Node 27 can include 

only the verb since its boundaries coinclie with that of the word, but 

26 can have another constituent. Predictions 58 through 76 are 

predictions for constituents following the V In phrase 26. Note that 

nodes 28-32 also are constructed In the process of making these 

predictions in turn, lead to predictions. 

After these predictions are made, the mapper is called to look for 

possible words beginning at 70, and the mapper finds the word "it" (not 

shown in the trace). The discourse routines reject "it", because there 

is no referent for it in the current context. 

The word "the" is then found; phrases 3H  and 35 are constructed; 

and predictions 77 through 85 are made for possible next constituents in 

the NP phrase. "Henry L. Stimson" is found after "the".  The semantic 

structure built for the phrase "the Henry L. Stimson" contains a pointer 

to the node for the individual ship the  "'lenry L. Stimson" and 

identifies It as an element of the "Lafayette" class. 

CALLING ROUTINE SEMRVP1 
RESULT IS NET FRAGMENT (697 (698 696 691* 693 D) 

HENRY.L.STIMSON 
S.BUILD 

1697!  1301!  11871 
16961  II  !  11  ! 

0BJ»»> 
■ i 
■ i 

1-21 

-"■- ^^       i i Ma mmm 



£>»»»>»»» 
«•« t|3 »»« VP ?0 195 (32 . 2195)=68 RHS 25 ^2 

[ BUILT THE HENRY.L.STIMSON ] 
CALLING ROUTINE SEMRS1 
RESULT IS NET FRAGMENT (697 (701 700 698 696 691* 693 689 D) 

S.BUILD 
N.LEGAL.PERSONS 

HENRY.L.STIMSON 

16971  1690!  13011  1187!  !10 I 
1696!  1689!  M  !  II 1 

OBJ»»»»»» 

E»»»»»»»»»»> 

AGT»>» 

E»»»»»»»»»»> 

When the NP la combined with the VP for the complete VP phrase, 

number ^3, a new fragment of semantic neLwork is constructed, 

representing an instance of the situation of building where the object 

(OBJ) of that action, that which has been built, is the 

"Henry L. Stimson". Thi.'s complete VP node is combined with the NP node 

17 to complete an S phrase. The result is an expansion of the last 

semantic network fragment in which the agent (AGT) Is also specified for 

the building situation. 

CALLING ROUTINE REPLY 
ENTERING QUANTIFY. PREQUANTIFIED PARSE NET IS 

S.BUILD 
N.LEGAL.PERSONS 

HENRY.L.STIMSON 

1697!  !690!  I301| mil    HO ! 
!696!  1689!  M I  M  I  11  I 

£»»»»»»»»»»> 
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OBJ>»»»»»> 
(iiii 
i               i               i               i               i 

AGT»>» 
i               i               i               i               i 
i               i               i               i               i 

E»»»»»»»»»»> 
LEAVING QUANTIFY.   REPARTITIONED PARSE NET IS 

S.REQUESTS.WH 
HENRY.L.STIMSON N.LEGAL.PERSONS 

S.BUILD 

1705!     I70M!     J697!     1690!     !?0l!     [187!     11*51     HO  i 
17031     17031     1696!     !689!     M    I     M    I     II     !     11    I 

INDEX«< 
IIII 

E>»>»»»»>»>>»»»>»»»»>» 

£>»»»»»»»»»» 

0BJ»>»>>>>»> 

AGT»>» 
■     i     i 

E>>>>>>>>>>>>>»>>>>>>>>>>>>> 

RESULT IS NET FRAGMENT (GENERAL.DYNAMICS) 
(GENERAL.DYNAMICS) 

Since a successful interpretation spanning the utterance is found, 

that interpretation is given to the quantification routines to make any 

adjustments necessary for quantification and to change the structure 

into a form that indicates to the deduction component what is to be 

done. In this case the node corresponding to the interrogative "who" Is 

INDFXed as the answer to be returned. 

The network resulting from the application of the quantification 

routines is shown, a.-.d following it is the answer, "General Dynamics". 

• •• i,n «•» si 15 195 (12 . 288J|)=68 RHS 15 13 
[ WHO BUILT THE HENRY.L.STIMSON ] 
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PHRASE Ul RATING IS 824 

+++ 86 +++ TOKEN.PL 195 L 
+++ 87 +++ PREPP 195 L 
•«• H5 «•« pREpp ^5 L (2 . 132)=66 

+++ 88 +++ PREP 195 L 

(GENERAL.DYNAMICS) 
MM 
WHO BUILT THE HENRY.L.STIMSON 
82H 
SI UM 

NF WHO 15 
VP 43 

V BUILT 25 
NP 42 

DET THE 31» 
N HENRY.L.STIMSON 40 

Node 44 is the completed phrase. The system continues processing 

to determine if there are any other competing interpretations that could 

be better than this one. There are none, so the interpretation and its 

answer are accepted as correct. 

At the end of the example is the parse tree. It shows that the 

structure found is an S, which consists of an NP and a VP.  The VP 

consists of a V and another NP. This second NP consists of a DET and an 

N. 
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D.  AN HISTOPICAL PERSPECTIVE 

Reflecting our concern with the jmportance of implementing a 

complete system as early as possible, our first system adapted an 

existing language understanding program designed for text input (Walker, 

'i973a,b). However, although our initial results were positive, it 

became clear that for processing spoken utterances many more alternative 

possible interpretations of their structure have to be considered. The 

uncertainties associated with segmenting and labeling the acoustic input 

in continuous speech contrast markedly with the easy identiflability of 

words In texts. To provide the required flexibility, our second system 

featured a new parsing strategy that attempted to explore the most 

likely parse paths first (Paxton and Robinson, 1973; Paxton, 1975). We 

were able to reduce the size of the search space in thin way, thus 

avoiding the inefficiencies of both depth-first and breadth-first 

parsing. We also begat, the development of our work on performance 

grammars (Robinson, 1975a) and on the systematic analysis of task- 

oriented dialogs (Deutsch, 197^). A case subsystem was introduced to 

provide more sophisticated semantic processing, and functions were 

developed to resolve simple anaphoric reference and to correlate 

information from a primitive world model. Using programs for speech 

analysis and word verification developed by the SRI Sensory Science 

Research Center (Beoker and Poza, 1975), we were able to process 71 

utterances with an accuracy greater than 60$ (Walker, 197^, 1975). 
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Following the completion of this system and the mid-period review 

of the AFPA Program, we began our joint effort with SDC. (Walker et 

al., 1975; Paxton and Robinson, i9r?; itobinson, 1975b; Hendrix, 1975c; 

Deutsch, '975; Slocum, 1Q75; laxton, 'i976a, 1976b). The components of 

tne speech understanding system that were developed by SRI were 

programmed initially in INTERLISP-10 (Teitelman, 1975) on a PDP-10 

TENEX system. In the system implementation at SDC, the acoustic 

processing was performed on a PDP-11, and the rest of the system ran on 

an IBM 370/115 under the VM operating system. We were able to use 

INTERLISP/370 (Uppsala University, 1975)f for the SRI components, which 

simplified the transfer of programs. The mapper was programmed in CAP 

(Barnett and Pintar, 1971), an assembly language developed by SDC. 

The results of this cooperative effort culminated in the system 

that is described in this Final Report. However, immediately after we 

had brcught up an operational system, the SDC computer facility was 

removed and further refinement of the system as a whole no longer was 

possible. During the last week before the removal of the SDC computer, 

we were able to get data on the performance of the acoustic components 

of the system. Subsequently, we have conducted extensive tests of the 

system framework, simulating the unavailable acoustic components. These 

results also are presented here. 

• We are grateful to Jaak Urmi and the Uppsala University Computer 
Center for their help in installing INTERLISP-370 on the SDC Computer. 
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In the succession of speech understanding systems described above, 

we dealt with several domains that differed in size and complexity, in 

the systems developed wholly at SRI, we began with the blocks world, 

then worked on the repair of plumbing fixtures. With SDC, we were to 

have dealt both with the maintenance of electromechanical equipment 

(ta'.ing advantage of a companion project at SRI that was developing a 

computer-based consultant*) and with operations on a file contairing 

information about the attributes of ships in different naval fleets 

(which SDC had worked on earlier). We developed strategies for the 

maintenance problem, but a general reduction in ARPA funding limited our 

resources, and further activities ir, that area were postponed. Our 

current system uses the navy ships domain, and most of the work 

described in this report will reflect that context. 

The work on speech understanding at SRI has produced a system 

design concept and a set of natural language processing components that 

are well-suited for research on natural language understanding 

generally. Chapters II and III present detailed descriptions of the 

Definition System and the Executive System that provide overall 

integration and control. Chapter IV discusses the results of the 

experiments that we conducted to test alternative system control 

strategies. Chapters V, VI, and VII describe the representation of 

semantic knowledge, present a model of the domain, and show how 

semantic processing is used in the interpretation of an utterance. 

• See Nilsson et al., 1975; Hart, 1975. 
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Chapters VIII, IX, and X deal with discourse and include discussions of 

dialog collection and analysis, the resolution of definite noun phrases, 

and ellipsis. Chapters XI, XII, and XIII indicate how the system 

responds to the interpreted utterance, how deduction is used both to 

find an answer and in the interpretation process, and how the system 

generates replies in English to a user. Following the references is a 

complete list of publications and reports produced under the various 

ARPA contracts that, have supported our  research. 
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II  THE DEFINITION SYSTEM 

Prepared by William H. Paxton 

CONTENTS: 

A. Introduction 
B. The Metalanguage 

1. Composition Rules 
2. The Lexicon 
3. Global Declarations 
l|. Annotated Formal Syntax 

C. A Version of the SRI Language Definition 
1. Global Declarations 
2. Lexicon 
3. Composition Rules 

D. The Definition Compiler 
1. Category Records and the Lexicon 
2. Rule Records, Structure Graphs, and Procedures 
3. Details of Rule Compilation Algori^jms 
t. Lookahead Information 

E. Discussion 

A.  INTRODUCTION 

This chapter contains a detailed discussion of the Definition 

System. The Definition System consists of a metalanguage for writing 

definitions of the input language for the speech understanding system 

and a compiler to convert such definitions into a form fov use by the 

Executive System.* In this chapter, the metalanguage is described, and 

• We make the usual distinction between the metalanguage and the object 
language: the object language is the language being defined (in our 
case, it is the system's input language); the metalanguage is the 
language used to state the definition. The 'language definition' is 
written in the metalanguage and snecifies the object language. 
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its use Is illustrated by a sketch of the SRI language definition. The 

final part of the chapter, Section D, contains a discussion of the 

Definition Compiler, focusing on the process of rule translation and 

describing the internal representation of the structural and procedural 

information. The use of the translated language definition in 

understanding utterances is described in Chapter III, The Executive 

System. 

B.  THE METALANGUAGE 

The metalanguage is designed for specifying the definition of the 

input language for the speech-understanding system. Such a language 

definition consists of a lexicon containing the vocabulary, a set of 

composition rules for combining words into phrases and smaller phrases 

into larger ones, and some global declarations giving information needed 

by the Definition Compiler and the Executive. The lexicon is separated 

into categories, such as noun and verb, and the words in each category 

are assigned values for various attributes such as grammatical features 

and semantic representation. The composition rules are phrase structure 

rules augmented by a procedure which is executed whenever the rule 

constructs a phrase. Information provided by the procedure includes 

both attributes of the phrase based on the attributes of its 

constituents, and factors for use in judging the acceptability and 

likelihood of the phrase. The global declarations in a language 

definition give information such as lists of attributes for the 

different categories. 
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1.  COMPOSITION RULES 

A speech-understanding system uses several kinds of knowledge, 

each playing a particular role during the processing of an utterance. 

For example, our system employs knowledge about acoustics, syntax, 

semantics, and discourse. The composition rules in the language 

definition are the principal means by which these knowledge sources are 

integrated. In addition to defining the possible constituent structure 

for phrases, each rule has a procedure for calculating both attributes 

of phrases and factors for use in judging phrases. Phrases with their 

attributes and factors are the basic units for the integration of 

knowledge sources in our system. Because the rule procedures may call 

upon any or all of the sources of knowledge, the attributes and factors 

of a phrase can, and generally do, reflect decisions by each major 

component from acoustics to discourse. The following paragraphs 

describe the structure of composition rules; Section C.3 of this chapter 

contains more details about a complete set of rules for a small language 

definition. 

Part of a composition rule is shown in Figure II-1. The 

rule starts with the keyword RULE.DBF followed by the rule name (SI), 

the structure declaration, and the procedure. In the structure 

declaration, vertical bars separate alternatives, braces are used to 

delimit a set of alternatives, parentheses delimit optional items, and 

angle brackets mark an optional set of alternatives. Category names can 

be terminated with a number to provide unique names for different 
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RULE.DEF SI S = NP1 <(D0 NP2) VP1 I BE {VP2 I NP3 1 nTHERE}>; 

BEGIN 

MOOD = IF DEIX(NPI) EQ "WH THEN "WH 
ELSE IF DEIX(NP1) NO "UNDEFINED THEN "DEC 
ELSE "UNDEFINED; 

IF MOOD EQ "WH THEN F.MOOD = GOOD; 
IF OMITALL(VP1,BE) AND SUBCAT(NPn EQ "PRO AND MOOD EQ "DEC 

THEN F.REJECT(F.PROSENT); 

END; 

Figure II-1.  PART OF A COMPOSITION RULE 

occurrences in the rule of the same category (e.g., NP1, NP2, and NP3, 

are all noun phrases or NPs). A quote mark Indicates that the next word 

is to be taken literally rather than being interpreted as a category 

name. Thus, the phrase structure declaration in Figure II-1 states that 

a phrase of category S can bn composed of a noun phrase, NP1, optionally 

followed by either a predicate with a verb phrase, VP1, or a predicate 

with a BE verb (such as "is" or "are"). The constituent VP1 can 

optionally be preceded by a DO verb (such as "did" or "does") and a noun 

phrase, NP2. The BE verb must be followed by either a verb phrase, VP2, 

a noun phrase, NP3, or the word "there". 

The portion of Figure II-1 starting with trie wc-d "BEGIN" 

contains an excerpt from the procedure for <"he rule. The first 

statement assigns a value to the MOOD attribute. The expression 

DEIX(NPI) refers to the Attribute named DEIX of the constituent NP1.  If 

II-M 

. .;.^_.. . _ =_-.^__t_^. 



the value of the DEIX attribute of NP1 is WH, the MOOD attribute of the 

sentence is set to WH (indicating a question like "What ..." or "Who 

..."). The MOOD is set to DEC (indicating a declarative sentence) if 

DEIX of NP1 is not WH and is not UNDEFINED. (The default value of 

attributes is the special symbol UNDEFINED.) However, if DEIX of NP1 is 

UNDEFINED, MOOD is also set to UNDEFINED. The next statement sets the 

MOOD factor, F.MOOD, to GOOD if the MOOD attribute of the sentence is 

WH. This is a nonBoolean factor indicating a high expectation for WH 

questions. The last statement in the figure is a restriction blocking 

elliptical sentences formed of a single nonWH pronoun such as "we". In 

other words, if both kinds of predicates are omitted (0MITALL(VP1,BE)), 

if NP1 is a pronoun (SUBCATtNPI) EQ "PRO), and if the sentence is 

declarative (MOOD EQ "DEC), then the phrase is blocked 

(F.BEJECT(F.PROSENT)). The full procedure for the rule contains several 

pages of such attribute and factor statements. 

In this and other rules, there are attributes that specify 

acoustic properties related to the input signal, syntactic properties 

such as mood and number (singular or plural), semantic properties such 

as the semantic network representation of the meaning of the phrase, and 

discourse properties for anaphora and ellipsis. The values of 

constituent attributes are used in computing the attributes of larger 

phrases, and the attributes of complete interpretations are used in 

generating responses. 
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The factors also use acoustic, syntactic, semantic, and 

discourse information. Acoustic factors reflect how well the words 

match the actual input, syntactic factors deal with tests such as number 

agreement between various constituents, semantic factors ensure that the 

meaning of the phrase is reasonable, and discourse factors indicate 

whether an elliptical or anaphoric phrase makes sense in the «iven 

dialog context. The values of factors are included in a composite score 

for the phrase. The scores of constituents are combined with the factor 

scores to produce the scores of larger ohrases, and the scores of 

complete interpretations are used In setting Executive priorities. 

Attributes and factors either have constant values or have 

values that depend on attributes of constituents and global information 

(such as a model of the discourse or the results of preliminary, low- 

level acoustic processing). By design, the attributes and factors of a 

phrase are not allowed to depend on the context formed by other phrases 

that can combine with it to produce larger structures. This restriction 

makes it possible to share phrases among different contexts and reduces 

duplication of effort in the Executive. 

Another restriction on the rule attribute and factor 

definitions is that they must cover cases in which the value of a 

referenced attribute has the special value UNDEFINED. The primary 

reason for UNDEFINED attributes Is the desire to allow Executive control 

strategies that depend on information regarding incomplete phrases — 

phrases missing one or more constituents. With the attribute and factor 
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definitions required to handle UNDEFINED attributes of missing 

constituents, the Executive can execute the rule procedure with a 

partial set of constituents, and the results will be indicative of 

possible completions of the phrase. The use of this ability in setting 

priorities for the Executive is a topic of Chapter III, Section D.5. 

There is an emphasis on factors in the language definition 

because of the need to block bad phrases that might be incorrectly 

accepted by acoustic tests. A system with text input can usually 

toTo^ate a language definition that accepts a wide variety of st^anap 

combinations of words as long as the looseness of the definition doos 

not produce apparent ambiguities in actual user inputs. In other words, 

the text system can focus on what the user might say and generally 

ignore what he/she will not say. A language definition for a speech- 

understanding system should be general enough to allow the speaker to 

communicate naturally, but it must also block unacceptable phrases that 

might be incorrectly 'heard' due to errors in acoustic tests even though 

no speaker would actually say such phrases. 

2.   THE LEXICON 

Like the composition rulea described above, the lexicon 

combines declarative and procedural information. However, while the 

rules are predominantly procedural, the lexicon mainly contains static 

declarations of words and their attributes. The structure of the 

lexicon is illustrated by considering the information for the word 

"length". 
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WORDS.DEF N 

WORDFN LAMBDA(C) NÜLLDEFAULTATTRS(C,"(DETREQ MEAS RELN UNIT INDFLG)); 
SUBCATEGORY RELN.MEASURES 

ATTRIBUTES  MEAS=T, NBR=SG,  ; 
WORDS 

LENGTH 
PDGM=(S.HAVE.LENGTH PG.INVH), 
SUPSET=N.LENGTHS; 

SIZE 

END; 
ENDWORDS; 

Figure 11-2.  SAMPLE LEXICAL ENTRY 

Figure II-2 contains an extract from the SRI lexicon 

containing information related to "length". "Length" is in the 

subcategory RELN.MEASURES (relational measures) of the lexical category 

N (nouns). Some other RELN.MEASURES arc "size" and "speed". The noun 

subcategories correspond to semantic classes thst are important in the 

task domain of the speech system. Attributes declared for a subcategory 

are shared by all of its members. Thus, because it is a RELN.MEASURE, 

"length" is automatically given several attributes including one that 

marks it as a measure term (MSAS=T) and another that marks it as 

singular (NBR=SG). Dei'ault values for some other attributes are shared 

by all the N subcategories. For instance, because "length" is not 

marked otherwise, the WORDFN redundancy function for N sets attributes 

DETREQ, UNIT, and INDFLG, to the value NIL to indicate, respectively. 
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that "length" does not require a determiner, that it is not a unit of 

measurement (such as "feet"), and that it does noy. refer to an 

individual (such as "England"). Most of the attributes of "length" are 

set according to category and subcategory redundancies. The only 

attributes explicitly gi/en for* the particular word "length" are PDGM 

and SUPSET which relate to its meaning, the information that 

distinguishes "length" from other RELN.MEASURES. (Phonological 

information that would also distinguish "length" is stored separately 

since it is only used in acoustic processing.) 

In addition to word and attribute declarations, lexical 

categories have an associated procedure that is invoked whenever a word 

from the category is found in an utterance. For example, the lexical NP 

procedure, for words like "it" and "who"', calls semantic routines to 

build nodes in a semantic network and also calls discourse routines to 

find possible referents. 

3.  GLOBAL DECLARATIONS 

The glooal declarations at the start of a language definition 

provide information needed by the Definition Compiler and the Executive. 

This information includes a list of categories to be used in the 

definition and lists of attributes for the categories. The global 

declarations can also contain redundancy functions for rewriting 

category and rule definitions. These functions were included in the 

design because they provide ways to simplify the definition in much the 
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3ame way that macros can simplify a program; however, they have not been 

used in the current system. 

M.  ANNOTATED FORMAL SYNTAX 

As described above, a language definition contains a lexicon, 

composition rules, and global declarations. The lexicon groups words 

into categories and subcategories. The composition rules have a p.irase 

structure declaration augmented by a procedure specifying attributes and 

factors. The global declarations provide information needed by the 

Compiler and the Executive. The remainder of this section is devoted to 

a more formal statement of the structure of a language definition. 

An annotated formal syntax of the metalanguage is given below 

using phrase structure rules with the notation described previously. 

Vertical bars separate alternatives, braces delimit a set of 

alternatives, parentheses enclose an optional set of items, angle 

brackets bound an optional set of alternatives, and a single preceding 

quote mark indicates a literal. Any item whose name ends with the 

string "name" is an identifier, and items with names ending with the 

string "names" refer to a series of one or more identifiers separated by 

commas. In this formalism, the first part of a language definition is 

shown in Figure II-3. 

The global declarations include a list of categories, the name 

of the root category (typically the sentence category, S), specification 
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language.def = "LANGUAGE.DEF decls "END "; rules.and.categories 

decls = decl '*; (*»c1.s) 

decl = "CATEGOBIES categorynaiu.^ 1 "ROOT "CATEGORY categoryname ! 
d«!cl.function functionspec I 
"ATTRIBUTES attr.deols "ENDATTRS 

decl.function = "RESPONSEFN ! "SCOREFN I "WORDEN I 
"CATEGORYFN j "RULEFN 

functionspec = functionname I 
"LAMBDA "( (variablen, .es) ") expression 

attr.decls = attr.decl "; (attr.decls) 

attr.decl = "{categorynames I "ALL ("EXCEPT categorynames)} 
{"HAVE | "HAS} attributenames 

ri'Tes.and.categories = {lexical.category ! composition.rule) 
(rules.and.categories) 

Figure II-3.  DECLARATIONS 

of various functions, and declarations of attributes. The RESPONSEFN 

function is called by the Executi/e whenever a root category phrase is 

constructed or when some resource limit is reached. The SCOREFN 

function i3 responsible for combining individual factor values into a 

composite rating for the phrase. (The particular procedures used for 

RESPONSEFN and SCOREFN in the speech »..nderstanding system are described 

i.i Chapter III, Sections C.^ and D.5. ) The CATEGORYFN, RULEFN, nd 

WORDEN, are functions that make changes in '■.he definitions for lexical 

categories, composition rules, aril words, respectively, before the 

definitions are compiled. The expression appearing in the function 

specification is an arbitrary LISP expression written in an infix 

11-11 

,,. mj ^A  .-A^^, 



notation developed at SDC (see Barnett, 1973). The attribute 

declarations give Hats of the various categories and their attributes 

for use by the Compilsr. 

The syntax for the lexicon is shown in Figure II-U. The 

optional expression in the lexical category specifies the category 

procedure. Following it can come a WORDFN function to modify the word 

definitions in the category before they are compiled. A typical use of 

a WORDFN is to supply default values for attributes. A category 

definition can contain either a set of vords or a series of 

subcategories. Each word can have an arbitrary number of attribute- 

value pairs. Each subcatego^y can have a set of attribute-value pairs 

in addition to its set of words. Thsse attribute-value pairs provide 

defaults for the words in the subcategory. For example, if attribute A 

is listed with value B in the subcategory attributes, all words in the 

subcategory that do not explicitly assign a value to A get B as a 

default assignment. The attribute values in the lexicon are LISP data 

items such as atoms, numbers, or lists. 

The syntax for composition rules is shown in Figure II-5. 

The rule structure declarations use the same notation for phrase 

structure as is employed in this section. The rule subfunctions and the 

rule expression form the procedural part of the rule. They are written 

in a dialect of LISP (see Barnett, 1973) with extensions for testing 

constituent structure and computing attribute and factor values. The 

Definition Compiler recognizes references to attributes by means of the 
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lexical.category = "WORDS.DEF categoryname (expression ";) 
lexcatparts "END "; 

lexcatparts = {"WORDEN functionspeo I 
"WORDS catwords "ENDWORDS | 
"SUBCATEGORY subcatname 

("ATTRIBUTES catwordattrs ";) 
catwords "ENDWORDS1 

"; (lexcatparts) 

catwords •- lexentryname (catwordattrs) "; (catwords) 

catwordattrs s  attributename "= attributevalue (", catwordattrs) 

Figure II-U. LEXICON 

composition.rule = "RÜLE.DEF rulename structure 
(subfunctions) expression "END "; 

structure = categoryname "= rhsalts "; 

rhsalts = rhsserles ("I rhsalts) 

rhsseries = rhsitem (rhsseries) 

rbsitem = "( rhsseries ") I "{ rhsalts "} I "< rhaalts '■> | 
"" literalname 1 categoryname 

subfunctions = "RULE.SUEFN functionname 
"( (variablenames) ") expression "; 
(subfunctions) 

Figure II-5. RULES 

global declarations of their names. Factor names are identified by an 

"F." prefix. A rule application can be blocked by the statement 

"F.REJECT(factorname)". This statement causes immediate termination of 

the rule. Both attributes and factors can be used in express'-nt  and 
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can be assigned values. Attributes of constituents can be accessed by 

an expression of the form "attributenameCconstituentname)". Attributes 

are often set to the same value as an attribute of the same name in some 

constituent, so a special statement is provided for this operation: 

ÄATTRS attributenames FROM constituentnane. 

This statement produces for each attribute in the list an assignment 

statement of the form 

attributename=attributename(constituentname). 

The main forms for testing constituent structure are "HAVE 

constituentaame" and "OMIT constituentname". HAVE implies that the 

constituent position Is filled with a phrase. OMIT implies that the 

constituent position is not going to be filled because some other 

alternative has been selected. The rule procedures are sometimes 

invoked by the Executive with only a partial set of constituents, and it 

is possible in such cases for both HAVE and OMIT to be false for a 

missing constituent. Once the phrase is complete, however, either HAVE 

or OMIT, and not both, will be true for each constituent. For tests 

with HAVE and OMIT that refer to more than one constituent, logical 

connectives AND, OR, and NOT are available, or one of the following 

special operators can be used: HAVEALL, HAVEANY, OMITALL, and OMITANY. 

These operators take a list of constituent names as arguments and have 

the obvious meanings. 
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C.  A VERSION OF THE SRI LANGUAGE DEFINITION 

A version of the SRI language definition will serve as an 

illustration of the use of the Definition System. The definition 

described below is of moderate complexity: it is less complex than those 

used in some current natural language text systems, but more complex 

than the languages of most previous speech systems. It was derived from 

a larger definition and used in the series of experiments described in 

Chapter IV.» 

The domain of discourse for the language is a data base of 

information about ships of the U.S., Soviet, and British fleets. The 

oarticular domain of discourse determines a large portion of the 

vocabulary, and, hence, the lexicon. A change in the domain would 

i-equire corresponding changes in the vocabulary and lexicon. The 

composition rules, however, are quite general and the effect on them of 

a change in discoui "^ domain would be relatively small. Some attributes 

and factors in th* i'ules have been 'tuned' to the particular domain (see 

Robinson, 1975), but most of them deal with general features of English. 

There is information in the data base about several hundred ships 

and a large number of ship classes and categories. For each ship, the 

data base contains characteristics such as name, type, owner, builder. 

• The larger definition was developed by Jane Robinson and Ann Robinson, 
with assistance from Gary Hendrix, Joyce Friedman, and myself. As 
designer of the Definition System, I influenced the general structure of 
the definition but did not work out the details. After the definition 
was relatively complete, I extracted a subset, made some revisions, and 
used the result in a series of experiments. 
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length, beam, draft, displacement, speed, complement, and power. The 

language definition is designed to allow a user to get information from 

the data base by questions,, commands, and dialog sequences using 

incomplete sentences and pronouns. The 60 test sentences used in the 

experiments are listed at the end of Chapter IV. These sentences 

indicate the scope of the language in an informal way. The following 

paragraphs give a more precise description. 

1. GLOBAL DECLARATIONS 

Figure II-6 contains an abbreviated version of the global 

declarations. There are 18 categories with S as the root category. 

There are ^1 attributes, which can be divided into four sets: 12 

attributes for syntax, 13 for case semantics, 9 for semantic 

translation, and 7 for discourse. The category with the most attributes 

is NP with 24. On the average, each category has about eight 

attributes. The RULEFN and SCOREFN are not given explicitly since the 

system defaults are used. There are also no redundancy functions 

defined for category, word, or rule definitions. 

2. LEXICON 

The lexicon is divided into twelve categories.  There are 

three categories of verbs, BE, DO, and V, illustrated by "is", "does", 

and "own", respectively. All have attributes for number (singular or 

plural) and tense (present or past), and verbs in category V also have 
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LANGUAGE.DEFINITION 
CATEGORIES S,NP,VP,CLASSIFIER,PREPP,PREP,N,BE,DO,V, 

NUMBER,CENTI,SMALLNUM,TEEN,DIGIT,DET,WHDET,ADJ; 
ROOT CATEGORY S; 
ATTRIBUTES 

S HAS REPLY; 
V,VP,BE,DO HAVE TENSE; 
NP,ADJ,VP,WHDET,DET,PREPP,NP HAVE SUPSET,SUPCASE; 

ENDATTRS; 
END; 

Figure II-6. GLOBAL DECLARATIONS 

attributes for voice (active or passive) and case semantics that 

resemble the case grammar of Fillmore (1968) as adapted to computer use 

by Celce Murcia (1976) and others. There are two categories of numbers: 

^IGIT and TEEN. The TEENs ("ten", "eleven", and "twelve") are separate 

because they do not combine in the same manner as DIGITs to form larger 

numbers (for example, 31 cannot be said as "twenty eleven"). Both 

DIGITs and TEENs have attributes giving their numeric value and their 

grammatical attributes. Determiners are also split into separate groups 

to simplify the rules: declarative determiners like "the" are in the 

category DET; question (WH) determiners like "what" are in the category 

WHDET; and the indefinite "a" is Included as a literal in the noun 

phrase rule. The categories for adjective (ADJ) and prepositions (PREP) 

also appear in the lexicon, but are represented by only two words each: 

"of" and "by" for PREP, "fast" and "long" for ADJ. 
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The final three lexical categories (N, CLASSIFIER, and NP) are 

each divided into subcategories. There are two subcategories of NPs: 

countries (such as "Russia") and pronouns (like "it"). In both cases, 

the words have attributes similar to those for a noun phrase constructed 

by the NP composition rule. These attributes include number (singular 

or plural), case (nominative or accusative), and semantic 

interpretation. The lexical NP procedure also calls the discourse 

routines to find possible referents for the pronouns; it blocks use of 

the pronoun if no referent is found. 

Classifiers are prenominal modifiers. There are three 

subcategories of classifiers in the lexicon: countries (as in "British 

ships"), type designations (as in "nuclear submarine"), and predicates 

(as in "patrol sub"). All the classifiers have attributes indicating 

the kinds of nouns they can modify and their semantic translation. 

By far the largest lexical category is N, nouns. There are 10 

subcategories of N: units of measure (such as "ton"), parts of ships 

(such as "reactor"), classes of ships (such as "Nautilus"), individual 

ships ("Seal ion"), companies ("General Dynamics"), countries 

("England"), relational measures ("length"), two kinds of ship types 

("CGN", "submarine"), and a subcategory of miscellaneous nouns. Members 

of category N have grammatical attributes like number, semantic 

attributes such as pointers into a semantic network, and attributes used 

for both syntax and semantics such as information regarding whether the 

N is a measure, a unit, or a relation. 
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3.  COMPOSITION RULES 

In addition to the twelve lexical categories, the language 

definition includes ten composition rules. First to be discussed are 

the three number rules whose phrase structure declarations are given in 

Figure II-7. SMALLNUMs can be a DIGIT ("one"), a TEEN ("eleven"), a 

DIGIT followed by the suffix TEEN ("fourteen"), a DIGIT followed by the 

suffix TY ("seventy"), or a DIGIT TY DIGIT sequence ("sixty four"). The 

two occurrences of TEEN and DIGIT in the phrase structure are 

disarabiguated by use of numeric suffixes, "1" and "2". Thus, the rule 

procedure refers to the first (leftmost) DIGIT as DIGIT1, and the 

second, as DJGIT2. The SMALLNUM procedure checks attributes on the 

digits since some cannot be followed by TEEN or TY ("one" is acceptable, 

but not "oneteen" or "onety"), some can be followed by TY but not TEEN 

("twenty", but not "twenteen"), and some must be followed by either TEEN 

or TY ("thirteen" or "thirty", but not "thir"). 

SMALLNUM = TEEN1 1 DIGIT1 <"TEEN2 j "TY (DIGIT2)> 

CFNTI = (SMALLNUM1) ("HUNDRED (("AND) SMALLNUM2)) 

NUMBER = (CENTI1) ("THOUSAND (("AND) CENTI2)) 

Figure 11-7.  PHRASE STRUCTURE PARTS OF NUMBER RULES 

The CENTI rule allows numbers like 2235 to be said in various 

ways including "twenty two hundred and thirty five". The CENTI 

procedure blocks sequences like ^000 said as "forty hundred" and also 
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computes the numeric value of the CENTI phrase from the values of the 

constituents. The NUMBER rule can construct number phrases like "two 

thousand and one". The procedure blocks phrases like 8100 s?id as 

"eight thousand hundred" or as "one thousand and seventy one hundred". 

A language definition for text input might omit such restrictions on the 

Rrounds that no one would ever violate them in practice. However, as 

mentioned previously, difficulties in acoustic processing can cause the 

system to 'hear' almost anything, so the language definition must take 

advantage of every opportunity to block unacceptable phrases and 

downgrade unlikely ones. 

In the remainder of this section, the descriptions of rules 

are typically limited to simple sketches like the preceding ones. 

However, to give a better indication of how the rules are actually 

written, one rule procedure, for SMALLNUM, will be discussed in detail. 

The SMALLNUM rule definition is given in Figure II-8. The procedure 

body is a conditional statement with four main oases that depend on the 

constituent structure. 

In the first case, the SMALLNUM is a TEEN (TEEN1 in the 

structure declaration), a number from the lexical category including 

"ten", "eleven", and "twelve". The attributes NUM and NUMTYP are copied 

to the SMALLNUM phrase from the TEEN by the 'ATTRS statement. The 

second case for SMALLNUM occurs when the suffix TEEN is used (TEEN2 in 

the structure declaration). In this case, there are two statements to 

be performed (grouped together by square brackets and separated by a 
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RULE.DEF SMALLNUM SMALLNÜM = TEEN1 | DIGIT1 <WTEEN2 | "TY (DIGIT2)>; 
IF HAVE TEEN1 THEN 'ATTRS NUMTYP.NUM FROM TEEN1 
ELSE IF HAVE TEEN2 THEN 

[IF TEEN(DIGITI) EQ "NO THEN F.REJECT(F.DIGTYP1), 
IF COMPLETE.NODE THEN NÜM=NUM(DIGIT1)+10] 

ELSE IF HAVE TY THEN 
[IF TY(DIGITI) EQ "NO THEN F.REJECT(F.DIGTYP2), 
IF HAVE DIGIT2 THEN 

[IF ALONE(DIGIT2) EQ "NO THEN F.REJECT(F.DIGTYP3), 
IF COMPLETE.NODE THEN NUM=NUM(DIGIT1)»10+NUM(DIGIT2)] 

ELSE IF OMIT DIGIT2 THEN 
[NUMTYP=nDECADE2, 
IF COMPLETE.NODE THEN NÜM=NUM(DIGIT1)»10]] 

ELSE IF HAVE DIGIT1 AND 0MITALL(TEEN2,TY) THEN 
[IF ALONE(DIGITI) EQ "NO THEN F.REJECT(F.DIGTYP4), 
NUM=NUM(DIGIT1)]; 

Figure II-8.  SMALLNUM RULE DEFINITION 

comma). The first statement looks at the TEEN attribute of DIGIT1 and 

blocks the phrase if the attribute is NO by performing 

F.REJECT(F.DIGTYPI). This blocks bad DIGIT TEEN sequences such as 

"oneteen". The second statement tests the flaR named "COMPLETE.NODE" 

and, if the flag is true, sets the NUM attribute, which gives the 

numerical value of the phrase, to ten plus the NUM attribute of DIGIT1. 

(The Executive sets COMPLETE.NODE false when applying a rule with some 

of the constituents missing or for special tests.) The third main 

SMALLNUM case is executed when HAVE TY is true. The first statement 

checks the TY attribute of DIGIT1 and blocks the phrase if the attribute 

value is NO (eliminating phrases like "onety"). The second statement is 

another conditional depending on the phrase structure. If HAVE DIGIT2 

is true, two statements are performed: a check that DIGIT2 can occur 

11-21 

— - 



without a suffix -- that Is, AL0NE(DIGIT2) Is not NO — and an 

assignment statement setting the NUM attribute to NUM of DIGIT2 plus ten 

times NUM of DIGIT1. If HAVE DIGIT2 Is false but OMIT DIGIT2 Is true, 

the NÜMTYP attribute Is set to DECADE2. This attribute Is used In 

checks In the CENTI rule to block phrases like "forty hundred". The NUM 

of the SMALLNUM Is then set to ten times the NUM of DIGIT1. The fourth 

and final case for the SMALLNUM procedure occurs when the phrase has 

DIGIT1 and omits both suffixes. The ALONE attribute Is checked to block 

the phrase If DIGIT1 needs a suffix (for example, "thlr-" Is In the 

lexicon as a digit that needs a suffix). If that test Is passed, the 

NUM attribute Is copied from the digit. 

The SMALLNUM composition rule Illustrates several points. 

First, the use of options and alternatives in the phrase structure 

declaration makes it easy to specify the basic possibilities. Second, 

the rule procedure is organized as nested conditional statements 

depending on the particular phrase structure. Third, unwanted phrases 

are blocked by tests referring to constituent attributes. These tests 

are embedded in conditionals in a manner ensuring that as soon as the 

necessary constituents are available, the tests are made. The tests are 

independent of the presence or absence or other constituents and are 

also insensitive to the order in which the constituents are acquired. 

Finally, the conditionals testing the structure treat HAVF and OMIT for 

a particular constituent as separate possibilities. HAVE -jind OMIT can 

both be false for a missing constituent in certain cases, since the 
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Executive needs to apply the rules with incomplete sets of constituents. 

For example, if DIGIT1 and TY have been found for a SMALLNUM, then 

without waiting for a possible DIGIT2, the rule procedure will be 

executed to confirm that the DIGIT1 can occur with the TY suffix. 

As an example composition rule, SMALLNUM accurately reflects 

the general form, but it is atypically simple. In contrast to the one- 

third page size of the SMALLNUM rule, the average rule length is about 

one page, and the biggest rule, for noun phrases, is almost three pages. 

Consequently, the following disnussions are limited to sketches of rules 

rather than exhaustive, line-by-line documentation. 

The phase structure declaration for the noun ohrase rule is 

NP = {"HOW.MANY | <DET I WHDET 1 "A> (NUMBER)] 
((CLASSIFIER) N ("PL) (PFEPP)). 

The noun, N, can be optionally preceded by a CLASSIFIER and followed by 

a plural suffix (PL) and a prepositional phrase (PREPP). At the front 

of the noun phrase, there can optionally be "how many" or an optional 

choice ot DET, WHDET, or "a", followed by an optional number. This 

phrase structure allows many possibilities, sone of which must be 

blocked by the NP procedure. For instance, "a" must be blocked if it 

occurs without a following number or noun. Other structures are blocked 

in certain cases depending on the attributes of constituent phrases. 

For example, the NUMBER cannot be leftmost if it begins with "hundred" 

or "thousand".  On the other hand, if the NUMBER does not start with 

"hundred" or "thousand", it cannot be preceded by "a". 
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The NP procedure has a large number of statements related to 

the head noun, N. Several NP attributes are derived from corresponding 

N attributes, and many of the restrictions on poasible NPs depend on 

properties of the N. For example, if N refers to an individual such as 

a particular company, ship, or country, it cannot be preceded by "how 

many", "a", WHDET, OLASSIFIER, or NUMBER, and the only preceding DET 

allowed is "the". There are also case semantics checks for the noun 

with a CLASSIFIER or a PREPP, and number agreement tests for the noun 

with several other NP constituents. 

When the NP is complete, the proceaure invokes routines to 

construct a semantic net representation of its meaning. If the NP has a 

definite determiner (like "the" or "that"), there art also calls on 

discourse routines to look for possible referents. The phrase is 

rejected if the semantic translation cannot be made or the discourse 

referents cannot be determined. 

The phrase structure part of the verb phrase rule is 

7P = V «"SG ! "PAST> NP ! ("PPL) (PREPP)>. 

The constituents are verb (V), singular suffix (SG), past tense suffix 

(PAST), object noun phrase (NP), passive suffix (PPL), and prepositional 

phrase (PREPP). The VP pi :edure checks various attributes of the verb 

and other constituents to block unwanted combinations such as a verb 

marked as active (like "have") followed by a passive marker (PPL). 

There are similar syntactic checks regarding tense and number. Case 

semantics checks ensure that the verb is compatible with the object and 

the prepositional phrase. 
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The prepositional phrase rule is one of the simplest. The 

phrase structure i.s just PREP NP. The PREPP procedure blocks the phrase 

if the NP is nominative case (like "we"), or if the preposition and the 

noun phrase do not go together emantically. The phrase is given a low 

rating if the NP is marked WH, or if the Nx' contains a NUMBER and the 

noun is not a unit or a relation. (For example, "of ten knots" is ok.-'y, 

but "of ten ships" is considered unlikely in view of the expected 

questions.) 

The remaining rules are for the root category, S. Tr.e 

simplest S rule has the "irase structure HOW ADJ BE NP, illustrated by a 

sentence like "How fast is it?" The rule procedure checks the semantics 

of the adjective and the noun phrase for compatibility. Phrases are 

blocked if BE and NP do not agree in number, or if the NP is marked WH 

or accusative oase ("us"). The phrase is given a low -ating if the BE 

is past tense or the NP is indefinite and has a NUMBER. ("How fast are 

the ten ships?" is okay, but "How fast are ten ships?" is dubious.) 

The phrase is blocked if the NP is a unit or measure, or if the semantic 

translation f^ils for othe reasons. 

Another relatively simple S rule has the phrase structure 

S = (DO NP) VP. This rule handles imperatives and questions starting 

with a DO verb. If DO and NP are present, they must agree in number, 

the NP must not be marked as WH or accusative case, and the VP must not 

be imperative. If DO and N? are omitted, toe VP must be imperative and 

must not be marked WH. In either case, the VP must not be marked as 
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singular, past, or passive, and the phrase is blocked if semantic 

translation fails. 

The phrase structures for the last two S rules are 

S = BE N?1 {NP2 1 VP}, and 

S = NP1 <(D0 NP2) VP1 I BE {VP2 I NP3 I "THERE}>. 

These rules handle a variety of question types and elliptical sentences. 

Both make many tests concerning syntax, case semantics, and semantic 

translation. The procedure for the first rule is about one page long, 

and the second is about two pages in length. 

In sununary, the composition rules use the phrase structure 

declaration to give the basic constituent possibilities and use the 

procedure to block or downgrade unwanted combinations and upgrade 

expected ones. The procedures arc organized as nested conditionals 

depending on the constituent structure. Simple syntactic tests are made 

first, followed by case semantics, and, finally, by semantic translation 

and discourse processing. 
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D.  THE DEFINITION COMPILER 

The Definition Compiler translates a language definition into a 

form for use by the Executive System. Data structures called 'record.:', 

containing a variety of information, are constructed for each category 

and rule. An important component of the category records is the list 

holding the lexical entries. Major components of the rule records are 

the phrase structure information and the rule procedure. This section 

describes the internal form of a language definition in detail and 

sketches the principal Definition Compiler algorithms. 

1 CATEGORY RECORDS AND THE LEXICON 

The global declarations for a language definition include a 

list of the categories. In addition to these declared categories, the 

Compiler creates special one-word lexical categories for each distinct 

literal used in the composition rules. These special categories are 

constructed so that the Executive does not have to treat literals as a 

separate case. For each category, declared or specially created, the 

Compiler constructs a record containing several components, the most 

important of which are the following: 

• A list of attributes for the category. These are derived 
from the global declarations section of the language 
definition. 

• A list of rule records for the rules that produce phrases 
of this category. 

• A list of categories that can occur as the leftmost 
terminal phrase in a phrase of this category.  This 
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component, the next one, and the ones like it in the rule 
records, are used for "lookahead" by the Executive. 

• A list of categories that can occur as the rightmost 
terminal phrase in a phrase of this category. 

• A LISP function to set the attributes and factors of 
terminal phrases of this category. This function is 
created from the category procedure given in the language 
definition. 

• A list of lexical subcategory structures. 

Each lexical subcategory structure is a list containing the 

name of the subcategory, the default attribute-value pairs for members 

of the subcategory, and the list of members. Each member is represented 

by a list with the word, its attribute-value pairs, and a back-pointer 

to the category record. 

A lexical category declaration is compiled in a series of 

steps. It is first, converted into a list structure, and the language 

CATEGORYFN, if any, is called to modify the definition. The 

subcategories are then compiled with the global WORDEN and the category 

WORDEN applied to each word definition before its attributes are stored. 

In addition to the words declared in the language definition, 

the internal lexicon contains items called 'multiword lexical entries', 

or 'multiwords'. These items are treated as single units for acoustic 

processing but not for linguistic processing. For example, the phrases 

"of the" and "are the" are among thp multiwords used in the speech 

system. The use of multiwords improves the acoustic performance by 

providing larger units for testing.  However, the language definition 
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would become excessively complicated and lose linguistic generality if 

multiwords had to be treated as single words linguistically, so the 

Compiler and the Executive cooperate to hide the existence of the 

multiwords from the language definition. The Executive's treatment of 

multiwords is described in Chapter III, Section C.4. The Compiler's job 

is to add them to the lexicon so that a multiword phrase X starting with 

word A is included in all the lexical subcategories that include A. 

Thus, whenever the Executive considers A as a candidate word, X will be 

available for consideration also. Since the Executive can work in both 

directions in an utterance, the Compiler also adds multiwords Y that end 

in word B to all subcategories including B. The multiwords in the 

lexicon are marked to indicated whether they are to be considered in 

left-to-right tests (such as X) or right-to-left tests (such as Y). 

2.  RULE RECORDS, STRUCTURE GrAPHS, AND PROCEDURES 

The Compiler creates a record for each rule containing, among 

other things, the following components: 

• A graph representing the phrase structure possibilities for 
the rule. 

• A list of categories that can occur as the leftmost 
terminal phrase in a phrase constructed by this rule. 

• A list of categories that can occur as the rightmost 
terminal phrase in a phrase constructed by this rule. 

• A LISP function created from the rule procedure. 

• A back-pointer to the category record for this rule. 
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Rule compilation proceeds in a series of steps: (1) the rule 

is translated into a list structure, (2) the language RULEFN, if any, is 

applied to modify the rule definition, (3) the phrase 3tructure graph is 

created, and (U) the rule procedure is rewritten and compiled as a 

standard LISP function. 

The phrase structure information is represented by an acyclic, 

directed graph. The arcs in the graph are labeled with either a 

category or NIL. Recall that literals are replaced by special one-word 

categories, so there is no need for a special kind of arc for literals. 

NIL arcs are introduced to deal with optional elements in the graph.» 

There is a unique starting, or "leftmost", point in the graph, and a 

unique ending, or "rightmost", point. A path is a series of arcs 

A1,...Ak, such that the end point of Ai is the starting point of Ai+1. 

It is a complete path if the starting point of Al is the leftmost point 

in the graph, and the endpoint of Ak is the rightmost point. Two points 

are connected if there is a path between them; by convention, a point is 

considered to be connected to itself by a zero-length path. The 

category labels along any complete path indicate a valid sequence of 

constituents for the rule. Figure II-9 shows a phrase structure 

declaration and its corresponding graph. 

A phrase structure graph is stored as a collection of points 

and arcs. Each point is represented by lists of arcs coming in from the 

• NIL arcs are somewhat like JUMP arcs in an augmented transition 
network (see Woods, 1970). 
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S = NP1 <(D0 NP2) VP1 ! BE {VP2 I NP3 1 "THEFE}> 

• VP2 • 
i i 
i i 

.BE • NP3 • 

.THERE 
.NP1, 

i i 
i i 

 NIL • 
i 
i 

,D0 »...NP2 • ,.VP1 

 NIL  

Figure II-9.  A PHRASE STRUCTURE DECLARATION AND 
ITS CORRESPONDING GRAPH 

left and arcs going out to the right. The arc lists for each direction 

from a point are divided into separate sections for category arcs and 

NIL arcs so that the Executive does not have to test each arc every time 

it is used to see which kind it is. Each arc is represented by a list 

containing its starting point, its ending point, its label (a category 

or NIL), an index number, and a table indicating other arcs in the graph 

that cannot occur in complete paths that contain this arc (for instance, 

the BE arc above cannot occur in complete paths with DO, NP2, or VP1 

arcs or with either of the NIL arcs). Notice that this representation 

allows the Executive to search the graph in either direction from any 

arc or point. 

In processing an utterance,  the Executive tries to get a 

series of adjacent phrases corresponding to the category labels on a 
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complete path through the structure graph. As the subphrases of a 

phrase are acquired, they are stored in a constituent-array for the 

phrase in the position specified by the index number of the 

corresponding category arc. The constituent-array is initialized to 

contain NILs, so the Executive can check whether it has acquired a 

constituent for a particular category ?rc by a simple array reference 

using the arc index number. The "HAVE constituentname" expressions in 

the rule procedures are also implemented as constituent-array references 

(requiring only two instructions in the PDP-10 INTERLISP). NIL arcs are 

assigned index numbers larger than those for the category arcs in order 

to minimize the size of the constituent array. 

Since the Executive is often concerned with the relative order 

of constituents, the category arc index numbers are assigned such that 

if the index of category arc A is less than the index of category arc B, 

either A is to the left of B or they are mutually exclusive. (Arcs are 

mutually exclusive if there is no complete path that includes both of 

them.) As an example, the order of the category arc index numbers in 

the graph shown above is NP1, BE, VP2, Nt3, THERE, DO, NP2, and VP1. 

The Executive takes advantage of the orderirg of category arcs in many 

places. For instance, to find the first filled arc (an arc with an 

acquired constituent for the phrase under consideration) to the right of 

the arc with index number I, the Executive searches through the 

constituent-array for the first nonNIL entry at location 1+1 or above. 

The arcs are also stored in an array according to their index numbers, 
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so if a phrase is found in location J of the constituent-array, the same 

index J can be used to access the corresponding arc in the graph. In 

this way, the Executive substitutes array scans for graph searches. 

As constituents are acquired for a phrase, some arcs are 

filled, and others are blocked because they are mutually exclusive with 

the filled arcs. The Executive keeps track of which arcs are blocked by 

maintaining a bit table with each phrase. (The table is actually 

implemented as a single integer, thus limiting the total number of arcs 

in a graph to 36. This limit has not been a problem in practice.) Bit 

number I is turned on if and only if ttie arc with index number I is 

blocked. Part of the data stored for each arc is a bit table with the 

bits turned on for the arcs that are blocked by it. Whenever an arc is 

used, the Executive updates the bit table for the phrase by ORing it 

with the bit table for the arc. The Executive tests if an arc is 

blocked by checking the corresponding bit in the table (which takes 

seven instructions after the value of the arc index is loaded into a 

register). The "OMIT constituentnarae" expressions in the rule procedure 

also refer to the bit table. (The OMIT expression is compiled in only 

four instructions since the constituent index number is known at 

compile-tlme.) Similarly, OMITANY and OMITALL are implemented by 

creating a bit table for the constituents in question and ANDing it with 

the phrase bit table or its complement (taking a total of five 

instructions), 
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The operation of the Executive is simplified further by adding 

redundant NIL arcs to the graph so that it is never necessary to 

traverse two NIL arcs in a row. If two points, A and B, in the graph 

are connected by a path of two or more NIL arcs, but no single NIL arc 

connects them, the Compiler adds a new one to connect A and B directly. 

No redundant NIL arcs are added to the graph in Figure II-9, but in 

other cases, such as the NP rule, many are needed. Figure 11-10 

shows the NP graph before redundant NIL arcs are added. To this graph, 

the compiler adds five NIL arcs: (1) from the leftmost point to the 

point at the right of the NUMBER arc, (2) from the left of the NUhBER to 

the right of the CLASSIFIER, (3) from the leftmost point to the right of 

CLASSIFIER, CO from the left of NUMBER to the rightmost point, and (5) 

from the left of PL to the rightmost point. 

» HOW.MANY » 

•_JDET—• » NIL » 

• A «—NUMBER—» NIL »       »—PL—»-PREPP-» 

•-WHDET-» NIL «—CLASSIFIER—»—N » 
• n • ■ • 

»—NIL—« »-NIL—»—NIL—» 

Figure 11-10.  NP GRAPH BEFORE ADDITION OF EXTRA NIL ARCS 

The redundant arcs simplify the Executive algorithms by 

allowing iterative operations to replace recursive searches of 

arbitrarily long, and perhaps converging, paths of NIL arcs. For 

example, to check all the categories that can occur immediately to the 
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left of a given constituent, the Executive can fetch the point at the 

left of the arc for the constituent, check the incoming category arcs, 

and then for each incoming NIL arc, check the incoming category arcs for 

the point at the left of it. Because of the presence of redundant NIL 

arcs, this simple algorithm covers all the possibilities without 

duplication. For example, to the left of the N arc in the NP graph 

after the redundant NIL arcs have been added, there is an incoming 

category arc for CLASSIFIER and three incoming NIL arcs: one to NUMBER 

and HOW.MANY, a second to DET, WHDET, and A, and a third to the leftmost 

point in the graph. 

The Executive can acquire constituents of a phrase in any 

order, not Just left to right. Consequently, after each category arc is 

filled, tests are made to see if a complete path has been created. The 

tests succeed if there is a filled path from the left of the newly 

filled arc to the leftmost point in the graph and a filled path to the 

rightmost point. (A path is filled if all of its category arcs are 

filled.) NIL arcs are used in the search for filled paths If they are 

not marked as blocked. The Compiler makes this search more efficient by 

ordering the list of NIL arcs from each point so the Executive never 

needs to try more than one of them. The outgoing NIL arcs from a point 

are ordered such that if arc A precedes arc B in the list, no path from 

the endpoint of A leads to the endpoint of B. Similarly, the incoming 

arcs are ordered such that if A precedes B, no path leads from the 

starting point of B to the starting point of A. Basically, this means 
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putting the 'longest' arcs at the front of the lists. For example, the 

NIL arcs coming in to the loft of the N in the NP graph are ordered such 

that the first goes to the leftmost point, the second goes to the point 

at the left of NUMBER, and the third gees to the point at the left of 

CLASSIFIER. With the NIL arcs ordered in this way, the search for a 

filled path only needs to consider the first unblocked NIL arc. If the 

first one fails to lead to a filled path, none of the following ones can 

possibly succeed. To prove this, assume to the contrary that A precedes 

B in a list of outgoing arcs, both are unblocked, a search to the right 

starting with A fails to lead to a filled path, but a search using B 

succeeds. The point at the right of B cannot be the rightmost point in 

the graph, since A leads to the rightmost point, and A is before B in 

the lijt. Thus, there must be a filled category a>-c immediately 

following B. However, this contradicts the hypothesis that A is 

unbloc':ed since no path including A leads to the end of B where the 

filled arc begins. The proof for incoming NIL arcs is similar. 

To review, the phrase structure declaration for a rule is 

translated into an acyclic, directed graph. The arcs are labeled with a 

category or NIL and are assigned index numbers reflecting their left-to- 

right order. Arcs and constituents are stored in parallel arrays 

ordered by arc index number. A bit table is stored with each phrase to 

record which arcs are blocked. Other bit tables a-e stored with each 

arc to indicate the other arcs that are mutually exclusive with it. 

Redundant NIL arcs are added to the graph so that paths do not need to 
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include two NIL arcs in a row. Finally, the NIL arcs from a point are 

ordered so that a search for a filled path can stop after considering 

the first unblocked NIL arc. 

?   DETAILS OF RULE COMPILATION ALGORITHMS 

The following paragraphs sketch the Compiler algorithms for 

translating the phrase structure declarations into their internal form. 

The translation begins with the creation of an initial graph. Recall 

from the formal syntax given previously that a phrase structure is a set 

of alternatives, each alternative is an ordered series of elements, and 

each element is either a category, a literal, an optional series, a set 

of alternatives, or an optional set of alternatives. To create an 

initial graph for such a phrase structure declaration, the Compiler 

first creates the leftmost and rightmost points, and then, for each top- 

lavel alternative, it creates a graph for the series of elements in the 

alternative, starting at the leftmost point and ending at the rightmost. 

To create a graph for a series of elements El,.,.,En, from point A to 

point B, the Compiler creates n-1 intermediate points P1,...,Pn-1, and 

then creates graphs for El from A to PI, for E2 from PI to P2,..., and 

for En from Pn-1 to B. A graph for an element E from points A to B 

depends on what kind of element E is. If it is a category (or literal), 

a category arc from A to B is constructed. If it is a set of 

alternatives, a graph from A to B is created for each alternative series 

of elements. If it is an optional series, a graph from A to B for the 
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series is created, and then a NIL arc from A to B is added. Similarly, 

an optional set of alternatives is handled by creating the graphs for 

the alternatives and adding a parallel NIL arc. 

The next step is to add the redundant NIL arcs. The Comp-iler 

keeps adding NIL arcs as long as it finds two in sequence between points 

A and B, and no single NIL arc joins A and B. Aftei this process is 

complete, duplicate NIL arcs are deleted, as are any joinxug the 

leftmost point to the rightmost. 

The lists of incoming and outgoing NIL arcs for each point are 

then ordered. The lists are sorted by exchanging arcs A and B until it 

is the case that if A precedes B, then, for incoming arcs, there is no 

path from the starting point of B to the starting point of A, or, for 

outgoing arcs, there is no path from the end point of A to the end point 

of B. 

Arc index numbers are also assigned by a sorting procedure. 

If th re are N categories and literals in the phrase structure 

declaration, the category arcs get numbers 1 to N, and the NIL arcs get 

numbers above N. The numbers for category arcs are sorted by exchanging 

the numbers for arcs A and B until it is the case that if the index for 

A is less than the index for B, then there is no path from the right 

point, of B to the left point of A. 

The final operation is to irake a bit table for each arc A 

indicating the arcs that are blocked by the use of A. This table is 
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formed by turning on the bit for each other arc B such that no left-to- 

right path exists either from the right point of B to the left point of 

A or from the right point of A to the left point of B. 

The arcs are stored in an array acceding to their index 

number, and the arc-array is stored as part of the rule record. Also 

stored in the rule record are the leftmost and rightmost points in the 

graph and the number of category arcs. This additional information 

could be derived from the arra; of arcs, but the Executive benefits by 

having it directly available. 

After the phrase structure declaration is translated, the 

Compiler begins wt k on the rule procedure. The procedure statements 

dealing with attributes, factors, and constituent structure are 

iewritten as standard LISP statements that will work in the environment 

provided by the Executive. Before calling the rule procedure, the 

Executive sets up an environment containing: (1) the consticuent-array 

for the phrase, (2) the bit table showing blocked arcs, (3) the array of 

attribute values, and (4) the array of factor values. The Compiler 

converts "HAVE constitoertname" expressi ns to constituent-array 

references using the appropriate category arc index. Similarly, "CMiT 

constjtuent^ame" expr.jsions are converted to a test c,t the appropriate 

bit ^.n the bit table of blocked arcs. In both cases, the Compiler looks 

up the arc number corresponding to the constituent name, and a macro 

produces th" required ^ode. 
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References to attributes are converted to attribute-array 

references using as index the position of the attribute in the category 

attribute list. Factor references are converted to factor-array 

references using as index the position of the factor name in the list of 

factors for the rule. In both cases, the array indexes are constants 

known at compile-time, so efficient code is produced. For example, 

references to constituent attributes produce eight PDP-10 instructions 

to load an item from the constituent-array, and to give UNDEFINED if the 

item is NIL or, if it is not, get the attribute value from the 

attribute-array of the constituent. 

The statement employe I to abort a rule, 

MF.REJECT(factorname)", 

is converted to a call on a function named F.REJECT with two arguments: 

the name of the factor and the name of the rule procedure. The F.REJECT 

function calls a LISP subroutine C'RETFROM") to cause the rule function 

to return immediately with the value NIL as an indication of failure. 

The facccr name is passed to F.REJECT as an aid to debugging. If a rule 

is rejecting an input that the definition writer intended it to accept, 

it is often because of a bug in a factor statement. The offending 

statement can be easily located by watching calls on F.REJECT from the 

rule procedure. 

The 1?- step in compiling a rule is to create an empty phrase 

for it, a phrase with no constituents. The phrase is saved with the 

rule record and used by the Executive In ways described in the next 

chapter. 
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M.  LOOKAHEAD INFORMATION 

Both category records and rule records contain lists of the 

categories that can occur as the leftmost or rightmost terminal phrases 

of that category or rule. This information is used by the Executive to 

'look ahead' to avoid unnecessary work on a category or rule whose 

possible categories for boundary words do not intersect the categories 

of the word possibilities determined by acoustic tests. For example, 

before trying to construct a verb phrase starting at a particular 

location in the input, the Executive checks acoustic results for that 

location to ensure that the possibilities include at least one word that 

can occur as the leftmost word in a verb phrase. The next chapter 

contains more discussion of the use of lookahead by the Executive. 

The lookahead lists are constructed in the following way. 

Each category is first added to its own list of possible leftmost and 

rightmost categories. Then, for each rule producing a phrase of 

category A and for each constituent of category B that can occur as the 

leftmost immediate ccnstituent of the rule, the Compiler calls the 

procedure ADDLEFTCAT to add B to the list for A. If B is already on A's 

list, ADDLEFTCAT does nothing. Otherwise, it adds B and then propagates 

the addition in the following way: (1) for each category C that is a 

possible left category of B, ADDLEFTCAT calls Itself recursive:y to add 

C to the list for A, and (2) for each category D that includes A as one 

of its possible left categories, ADDLErTCAT calls itself recursively to 

r,dd B to the list for D. A similar operation is performed for rightmost 
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category lists. When this process Is completed for all the rules, the 

category lists are trimmed to eliminate categories with no lexical 

entries. The rule category lists are finally set to be the union of the 

lists for the categories that can occur as their leftmost or rightmost 

immediate constituents. 

E.  DISCUSSION 

As described in the preceding sections, the Definition System 

consists of a metalanguage and a compiler. The metalanguage is designed 

to provide a means for integrating the contributions of a variety of 

knowledge sources while avoiding commitment to a particular overall 

control strategy. The basic approach in the metalanguage is to use 

augmented phrase structure (APS) rules in which a structure declaration 

gives the constituent possibilities and an associated procedure defines 

attributes and factors for phrases built by the rule. A major job of 

the Definition Compiler is to contruct an internal representation of the 

definition for use by the Executive in processing sentences. Structure 

graphs are constructed by the Compiler from the phrase structure 

declarations, and LISP procedures are written and compiled to implement 

the rule procedures. The Compiler also builds an internal lexicon that 

includes special entries for 'multiwords.' Finally, lookahead 

information is computed and stored for categories and rules. In this 

section, we compare the Definition System to some alternative approaches 

that have been used in previous efforts. 
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The best known natural language understanding system Is undoubtedly 

Winograd's SHRDLU (Winograd, 1971). The language definition system used 

in SHRDLU is called PROGRAMMAR, and, like the other components of 

SHRDLU, emphasizes a procedural approach to representing knowledge. A 

PROGRAMMAR program is designed for top-down, left-to-right sentence 

processing. The structural possibilities for the defined language are 

encoded in the control structure of the program rather than being 

declared separately in a form such as phrase structure rules. This 

method reflects a desire to encode a great deal of special-case 

knowledge to guide processing as an alternative to relying on a uniform 

but weak algorithm. The emphasis on special-case knowledge and close 

cooperation among different knowledge sources during sentence processing 

is a aiajor contribution, but the particular method used in PROGRAMMAR 

makes it difficult to experiment with different overall control 

strategies. In earlier speech understanding work at SRI, we used a 

procedural approach in the PROGRAMMAR tradition (Walker, 1973a,h), but 

that approach was abandoned to aliow freer experimentation. Our current 

approach retains the PROGRAMMAR emphasis on special-case knowledge and 

close cooperation of knowledge sources, but it eliminates from the 

language definition the commitment to a particular control strategy. 

Procedural representation is limited to attribute and factor 

information; the structural possibilities for the defined language are 

declared separately rather than being encoded in the control structure 

of a program. Thus, the use o' APS rules attempts to keep the most 

valuable aspects of PROGRAMMAR's procedural representation while 

eliminating its constraints on system control options. 
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Another well-known approach is the use of augmented transition 

networks (ATNs) for language definition (Thome, Brat ley, and Dewar, 

1968; Bobrow and Fräser, 1969; Woods, 1970). ATMs are extended versions 

of finite-state machines of automata theory. The first extension is to 

allow state transitions to depend on the successful execution of an 

entire network rather than being limited to testing a single word. By 

this extension, context-free languages can be handled. The second 

extension is to allow each arc to have an arbitrary condition associated 

with it that must be satisfied for the arc to be used in a transition. 

This extension gives ATNs the theoretical power of Turing machines. 

ATNs have been used sucessfully in several large natural language 

understanding systems (such as LUNAR described in Woods, Kaplan, and 

Nash-Webber, 1972), and the approach is also used in the BBN speech- 

understanding system (see ..apers in the 197i* IEEE Symposium, Erman, 

1971*b). However, we prefer an appruach based on augmenting phrase- 

structure rules rather than transition networks. One reason for this is 

a personal preference for reading and writing rules rather than ATN 

networks,* but a less subjective reason concerns the relative freedom 

from control strategy commitments. Recall that our objection to 

Winograd's PROGRAMMAR approach centered around its commitment to a 

particular control strategy.  However, as Winograd notes, PROGRAMMAR 

• This preference appears to be shared by some users of ATNs. In a 
recent report, BBN comments that to document its grammar it has used a 
"semi-BNF" notation "which indicates much more c±aarly than the grammar 
listing what sorts of sentences are accepted by the grammar" (Woods et 
al., 1976a, p.10). 

II-H4 



programs ana ÄTNs "are just two different ways of talking about doing 

exactly the same thing" (Winograd, 1971, p.201). An ATN is conceptually 

a description of a nondeterministic machine. To process a sentence, the 

machine moves through a series of states specified by the structure and 

conditions of the ATN. The order of transitions is fixed, at least 

conceptually, by the left-to-right scan of the sentence, so tests and 

actions associated with arcs at the right of a network make use of 

information from previous arcs to the left. This left-to-right 

assumption affects f writing of augments on the arcs, but it is not an 

absolute barrier to the use of other control strategies. Unlike a 

PROGRAMMAR program, an ATN does separate the basic structure (i.e., the 

network) from the augments (the tests and actions associated with the 

arcs), so it is possible to use ATNs with non-left-to-right control 

strategies. The method for doing this depends on recognizing augments 

that use contextual information and delaying their execution until the 

necessary information is available (see Bates, 1975). Our APS rules 

avoid control commitments, conceptual or otherwise, by putting the 

augments in a single procedure rather than spreading them over a 

network; if a test or action uses information from several constituents, 

it is embedded in conditional statements that check for the relevant 

structure. The augments are thus organized in a way that avoids the 

left-to-right bias of ATNs. Although that bias can be circumvented, we 

prefer to use a representation that eliminates it rather than forcing 

the Executive to try to work around It. 
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As a final comment regarding ATNs, note that our internal 

representation for rules is like an augmented transition network with 

the augments collected in a single procedure. As mentioned above, the 

procedures are organized to avoid control strategy commitments, and the 

networks provide the Executive with explicit knowledge of the basic 

structural possibilities of the language in a form that is easy to use. 

The structure information is heavily used by the Executive in making 

predictions and constructing phrases (as discussed in Chapter III). 

Thus, in rejecting ATNs, we are not rejecting the value of networks as a 

representation. Instead, by changing the manner of adding augments and 

by constructing the networks automatically, we retain their internal 

efficiencies, and we also get an opportunity to optimize the network 

format during compilation (as in the addition of extra NIL arcs and the 

reordering of NIL zrcs). 

Our preference for AP3 rules over more procedural methods such as 

PROGRAMMAR and ATNs is shared by others. Such a preference appears, in 

fact, in early work on compilers for programming languages. The first 

programming language compilers were completely procedural; the 

definition of the language was embedded (lost) in the control structure 

of the compiler. In reaction to the obscurity of this method, "syntax- 

directed compiling" was developed by Irons and others (see, for 

instance, Irons, 1961; and Cheatham and Sattley, ^GU). The developers 

of the new method were explicitly concerned with separating the two 

functions of defining the language and translating it, functions which 
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are merged in procedural approaches (see opening comments in Irons, 

1961). Irons used a version of APS rules to state the syntax and 

semantics of n programming language. Each phrase structure rule had an 

associated semantic definition to form a 'translation' for a phrase 

constructed by the rule. The translation was the only attribute of the 

phrase and was formed from the translations of the constituents. Irons 

implemented a general translator program to operate on such language 

definitions and demonstrated the usefulness of the approach by 

developing an ALGOL 60 compiler. 

Irons' technique of using APS rules for programming languages was 

extended by Knuth in a paper on the "semantics of context-free 

languages" (Knuth, 1968). Knuth's first extension was to allow an 

arbitrary number of attributes with each phrase. A set of attribute- 

defining functions was associated with each phrase structure rule rather 

than the single translation function of Irons. The second and more 

significant extension was to allow both 'synthesized' and 'inherited' 

attributes. Synthesized attributes of a phrase are defined solely in 

terms of attributes of the constituents of the phrase. Irons' 

translation attributes and our rule attributes are of this type. 

Inherited attributes of a o^rase are defined by functions associated 

with phrases that include it as a constituent. In other words, these 

attributes are 'inherited' from the context rather than being 

'synthesized' from information local to the phrase. In this system, 

there is a danger of circular definitions of attributes (such as 
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inherited attribute A depending on attribute B, which is in turn 

synthesized by a function with A as an argument), but such circular 

definitions can at least be detected automatically by an algorithm 

sketched in Knuth's paper.* 

Knuth points out that inherited attributes do not provide greater 

theoretical power since "synthesized attributes alone are (in principle) 

sufficient to define any function of a derivation tree" (Knuth, 1968, 

P.1M2). However, he claims that in practice the use of both kinds of 

attributes can lead to important simplifications producing more 

"natural" definitions. To support this claim, he gives a small larKuage 

definition that makes use of both synthesized and inherited attributes. 

The inherited attributes are used for operations such as testing the 

agreement between the declaration and the use of variables. Knuth 

comments that "in general, inherited attributes are useful when part of 

the meaning of some construction is determined by the context in which 

the construction appears" (Knuth, 1968, p.1^2). 

Although Knuth's discussion is limited to programming languages, 

his system of inherited and synthesized attributes appears attactive for 

use in natural language processing. In fact, it has been used for 

semantic translation in the REQUEST system, which is an experimental 

question-answering system based on a transformational grammar of English 

• However, the problem of determining whether the grammar avoids 
circularity in all possible instances is very difficult computationally. 
See Jazayeri, Ogden, and Rounds (1975) for a proof that any correct 
algorithm for solving this problem must require time that grows 
exponentially with the size of the grammar. 
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(see Petrick, 1973, 1976). In REQUEST, an input is parsed aocording to a 

surface structure context-free grammar, the surface tree is converted to 

a deep-structure tree by reversed transformations, and the deep- 

structure tree is mapped into a "logical representation" by Knuth's 

translation technique, using both synthesized and inherited attributes. 

Faced with Knuth's claims supported by the example of REQUEST, we 

must explain our decision restricting the APS rules to use only 

synthesized attributes. In this case, as with our rejection of 

PROGRAMMAR-like procedural representations, the primary motivation is 

the desire to free the language definition from features that would 

excessively constrain the options for the Executive. Knuth states that 

his approach does not depend on any particular form of syntactic 

analysis. This is certainly true if the attributes are not to be 

computed until after a complete derivation tree is constructed, but we 

cannot afford to force the Executive to find complete context-free 

parses before drawing on attribute and factor information. The 

Executive must be free to use such information during sentence 

processing to limit and direct its efforts. Furthermore, inherited 

attributes make it difficult to share a phrase among several competing 

contexts. Such sharing is particularly important with s eel. 

understanding since acoustic uncertainty leads to a large number of 

alternative contexts. Inherited attributes are context dependent, so 

they, and all other attributes depending on them, would have to be 

duplicated for each context. Thus, we have restricted ourselves to 
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using only synthesized attributes because we cannot delay the use of 

augments until a complete parse is found, and we cannot afford to 

duplicate attribute and factor information for each context. The 

restriction to synthesized attributes and factors provides important 

flexibility in the Executive, and, to date, it has not been an 

impediment to the development of the SRI language definition. 

A variety of computer systems for processing natural language have 

used some form of APS rules (for example, Sager and Grishman, 1975; 

Hobbs, 197^; Heidorn, 1975, Pratt, 1975, Landsbergen, 1976). The first 

was the Linguistic String Parser implemented at New York University 

under Sager in 1961-1965. The system has been redesigned and 

reimplemented since then, but it has continued to use a two component 

grammar: context-free rules defining the broad construction patterns of 

sentences, and re?frictions covering detailed constraints. There is an 

emphasis on restrictions (corresponding to our Boolean factors), but the 

system does allow attributes to be set for nodes in the parse tree. In 

contrast with our approach, the restrictions for a rule are not 

organized into a single procedure. Instead, the approach foreshadows 

ATNs by associating restrictions with particular positions in the rules. 

As with ATNs, the positioning of restrictions assumes left-to-right 

sentence processing. For example, in a rule A=B C, a restriction might 

be positioned between B and C so it would be executed after the B phrase 

was acquired and before the C was tried. Finally, some of the 

'restrictions' are really optimizations for the top-down back-up parser. 
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so there is some blurring of the distinction betwten the language 

definition and the control strategy for applying the definition. From 

our standpoint, this blurring and the left-to-right bias caused by 

positioning restrictions within rules are both shortcomings of the 

approach.  However, the successful application of the approach to 

■ 

produce a grammar of very '.ide scope is evidence for the value of using 

APS rules for natural language. 

Other APS systems for natural language processing have avoided the 

shortcomings mentioned above. For example, PHLIQA1 uses APS rules each 

with a single procedure for augments to translate from English to the 

first of several levels of semantic translation (Landsberger., 1976; 

Scha, 1976), Our work was influenced by PHLIQA1 and differs mainly in 

allowing alternatives and options in structure declarations and in 

providing for nonBoolean factors in addition to Boolean restrictions. 

These additions are especially important in a system for speech 

understanding: the a1ternatives and optiom reduce the number of rules 

and hence decrease the storage requirements of the Executive, and the 

nonBoolean factors are of use in setting Executive priorities. 

To summarize the prec""^ng discussion, our Definition System 

continues a long-established line of systems using APS rules. We share 

with earlier developers, juch as Irons, the desire to keep the language 

definition free of control strategy commitments in order to make the 

definition simpler and to allow greater flexibility in experimenting 

with different system designs. Our system differs from previous ones in 
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having broader phrase structure declaration capabilities and in allowing 

nonBoolean factors. 

Up to this point the discussion has focused on the metalanguage and 

the choice of APS rules as a representation. The other major component 

of the Definition System is the Compiler. The Compiler creates an 

internal representation of a language definition for use by the 

Executive in sentence processing. The internal representation has 

several features that differentiate it from those used in previous 

systems. The networks representing the phrase structure declarations 

are reminiscent of ftTVs or charts (see papers by Kay, 1973; Kaplan, 

1973a) but they are distinguished from those systems by the presence of 

extra NIL arcs and the ordering of NIL arcs, both changes that 

contribute to Executive efficiency. Other distinctive features of the 

internal representation of the language are also concerned with 

efficiency of Executive operations. These features are (1) the use of 

parallel arrays for structure graph arcs and phrase constituents, with 

entries ordered to reflect the lv>ft-to-right structural possibilities, 

(2) the use of bit tables to keep track of blocked arcs and mutually 

exclusive arcs, (?) the translation of rule procedures into cooipiled 

LISP functions employing in-line instructions for efficient operations 

on attributes and factors and qulclc tests of constituent structure, and 

CO the construction of left and right lookahead information for both 

rules and categories. The internal representation is tied to the design 

of the Executive, so furt-ver discussinn of the representation is 

deferred to Chapter III. 
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A.   INTRODUCTION 

This chapter discusses the Executive System. The Executive in the 

speech understanding system has three main responsibilities: (1) it 

coordinates the work of the other components of the system by calling 

acoustic processes and applying language definition procedures, (2) it 

assigns priorities to the various tasks in the system, and (3) it 

organizes hypotheses and results so that information is shared and 

duplication of effort is avoided. In other words, the Executive carries 

out the functions of integrating and controlling the sytem components. 

Experimental results, to be discussed in Chapter IV, show that the 

manner in which the Executive performs these functions has a large 

effect on the overall performance of the system. For example, different 

techniques for setting priorities result in significant differences la 

average accuracy and runtime. 

In processing an utterance, the Executive performs a series of 

tasks to find words in the speech signal and to organize them into 

phrases of the input language with the ultimate goal of creating a root 

category phrase that spans the input. Thus, because we have designed 

the speech understanding system with the language definition as the 

primary mechanism for specifying knowledge source interactions, the 

Executive does the job of a parser in fulfilling Its responsibilities 

for system integration and control. We might have divided the Executive 

box in the system diagram (see Chapter I, Figure 1-2) into two boxes, 

perhaps calling one 'Control' and the other 'Parser', and then made 
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favorable comments about the modularity of our approach. However, that 

would belie the extent to which the parsing operations of the Executive 

have been shaped to serve its integration and control functions and 

would also fail to reflect the central place Li the system we have given 

to the language definition — system components are controlled via the 

language definition, so it is not accidental that the Executive does the 

parsing. Consequently, our system diagram has a single box for the 

Executive rather than two boxes for Control and Parser, and this chapter 

deals with both system control strategy and parsing. 

The following sections contain (1) a description of the main 

Executive data structure, called the 'parse net', (2) an overview of the 

Executive in sufficient detail to allow the reader to understand both 

the discussion in the last section of this chapter and the exoerimental 

results covered in Chapter IV, (3) a complete description of the 

Executive, and (4) a discussion comparing this approach to several 

others and sketching its evolution. This chapter presumes familiaricy 

with the internal representation of the language definition as described 

in Sections D.I and D.2 of Chapter II. 
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B. PARSE NET 

The 'parse net' is the principal data structure built by the 

Executive.1 This section describes the form and content of the parse 

net; following sections describe the procedures that operate on it. 

Nodes In the parse net are either 'phrases' or 'predictions.' Phrases 

correspond to words or composition rules from the language definition. 

Predictions are for particular categories of phrases at particular input 

locations. 'Terminal' phrases contain a single word and are formed when 

words are acquired by acoustic tests. 'Nonterminal' phrases are formed 

when a language definition rule is applied to a set of constituent 

phrases. If there are no unfilled, unblocked category arcs in the 

phrase's structure graph, the phrase is called 'complete' (for a 

description of structure graphs, see Section D.2 in Chapter IV). 

Otherwise, more constituents can be added, so the plirase is called 

'incomplete.' A complete phrase that is formed by adding missing 

constituents to an Incomplete phrase P is called a 'completion' of P. 

Predictions are made as part of the process of acquiring constituents to 

fill category arcs in incomplete, nonterminal phrases. An incomplete 

phrase is called 'empty' if none of its category arcs are filled. In 

this terminology, the parse net of predictions and phrases holds 

intermediate hypotheses and results while completions of empty, root- 

category phrases a^e constructed. Such complete root-category phrases 

with their attributes and factors are called 'interpretations' of the 

input. 

* The design of the parse net was inspired by Kaplan's multiprocessing 
consumer-producer approach (Kaplan, 1973b). 
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Phrases and predictions have time specifications indicating their 

position in the input. By analogy with written text, beginning and 

ending times are referred to as left and right, respectively. The times 

for terminal phrases are provided as part of the output of the word 

recognition routines. The times for nonterminal phrases come from the 

leftmost and rightmost constituents, if those constituents have been 

acquired for the phrase. An incomplete nonterminal phrase that is 

missing its boundary constituents has its times either 'fixed' or 

'unfixed'. Fixed times for a phrase P are either boundaries of the 

utterance or times from complete phrases that might be adjacent to 

completions of P. A fixed right time for a phrase P constrains possible 

rightmost constituents of P to end at or near the specified position. 

In contrast, an unfixed right time for a phrase means that there are no 

constraints on the ending time of possible rightmost constituents. 

Fixed or unfixed left times have similar results. Predictions also have 

fixed or unfixed times that determine which phrases fulfill them. For 

example, if a prediction has a fixed left time of 50, a phrase 

fulfilling the prediction must start at or near 50. (The details of how 

near is near enough are discussed later.) 

Other information saved with each phrase includes an array of 

attributes. For terminal phrases, the attributes come from the lexical 

entry for the word or are computed by the category procedure. For 

nonterminal phrases, the rule procedure computes attributes of the 

phrase from constituent attributes. Terminal phrases have a pointer to 
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the lexical entry that was used to construct them, and nonterminal 

phrases .nclude a pointer to their composition rule, a list of 

constituent phrases, and a bit table showing the blocked arcs in the 

structure graph. 

Each prediction in the parse net is for phrases of a particular 

category that meet particular time requirements. Stored with the 

prediction record, in addition to the category and times, are the 

following lists: 

• Instances — Complete phrases of the predicted category 
that meet the time requirements. These phrases fulfill the 
prediction. 

• Word sets — Sets containing words from the predicted 
category which, if accepted by acoustic tests, can be used 
to construct terminal phrases fulfilling the prediction. 

• Consumers — Incomplete phrases that can have a phrase that 
fulfills the prediction added to them as a new constituent. 
Thus, the phrases on this list can 'consume' instances of 
the prediction. 

• Producers — Incomplete phrases whose completions could be 
instances of this prediction. In other words, these 
phrases can 'produce' instances for the prediction. 

A prediction thus serves as an intermediary between two sets of 

incomplete phrases: consumer phrases that are all missing a constituent 

of the predicted category at the predicted location in the input, and 

producer phrases that all might supply the missing constituents. Note 

that a phrase can be a producer for one prediction and a consumer for 

another. Thus, 'producers' and 'consumers' are not names for distinct 

classes of phrases, but instead are names  reflecting structural 
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relations in the parse net. The full set of producer-consumer 

connections in the parse net make explicit the different sentential 

contexts for each phrase. This contextual information is used by the 

Executive in setting priorities and in lookahead. These operations and 

the operations that construct the parse net are sketched in the next 

section. 

C.  OVERVIEW OF THE EXECUTIVE 

The Executive carries out a series of tasks adding predictions and 

phrases to the parse net. There are two main types of tasks: the 

predict task, which operates in a top-down manner, and the word task, 

whic^ operates in a bottom-up manner.' This section sketches these 

tasks and briefly describes how the task priorities are established and 

how the series of tasks is started and stopped. The level of detail in 

the descriptions is minimal but adequate to provide the reader with the 

prerequisites for understanding both the discussion in Section E and the 

experiments reported in Chapter IV. For the reader who wants a detailed 

description of the Executive, this section provides an introduction that 

should make the details given later easier to understand. 

• See Aho and Ullman (1972) for a discussion of top-down and bottom-up 
parsing strategies. 
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1.  PREDICT TASK AND WORK TASK 

Figure III-1 shows the basic outline of the two main types 

of Executive tasks. The predict task takes incomplete phrases and adds 

a subnet of predictions and phrases to the parse net. The creation of 

predictions for categories with lexical entries causes the word task to 

be scheduled. Performing the word task entails getting an accepted word 

(one that has passed the acoustic tests), constructing a terminal 

phrase, and distributing it to consumers in the parse net. Adding the 

phrase to a consumer can result in a complete phrase P, in which case P 

is also distributed to consumers, or an incojiplete phrase Q, in which 

case the predict task is scheduled to make predictions for constituents 

that can be added to Q. The link in Figure III-1 from the cleanup 

stage of the preüct task to the add-constituent-to-consumer operation 

reflects the possibility of an old prediction with instances acquiring a 

new consumer. 

Both tasks are guided by lookahead* in other words, they avoid 

unnecessary operations by using information about the acoustically 

possible adjacent words. For example, if acoustic tests show that there 

are no adjectives starting to the right of a phrase P, then no 

structures are built using P that would require an adjective to its 

right. Both tasks can also work either left-to-right through an input 

or bidirectionally from words selected at arbitrary positions within an 

utterance. The system is designed to allow constituents of phrases to 

be added in any order, so experimentation with a variety of control 
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WORD TASK 

GET A WORD 

CREATE A TERMINAL PHRASE 

PREDICT TASK 

CREATE SUBNET 

ASSIGN RATINGS 

DISTRIBUTE PHRASE TO CONSUMERS .CLEANUP 

t   t ^    1 
ADD CONSTITUENT TO CONSUMER^        SCHEDULE WORD TASK 

I 
SCHEDULE PREDICT TASK. 

FIGURE 111-1  EXECUTIVE TASKS 

strategies has been possible. Most importantly from the system-control 

standpoint, each task does a limited amount of processing and then stops 

after scheduling further operations for later. The scheduling doss not 

specify a particular time for a future operation, but instead gives the 

operation a certain priority. The operation is performed when it 

becomes top priority. This organization allows the Executive to control 

the overall activity of the system by setting task priorities. 

We have experimented with two versions of the Executive tasks 

that differ in where the acoustic tests are performed. In the first 

version, called 'mappin  ne at a time', a word is tested as the first 

step of the word task, and only if the word passes the test is a 
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terminal phrase created. In this method, word priorities are primarily 

determined by consumer ratings (as described below). With the second 

method, called 'mapping all at once', all the word tests at a particular 

input location are performed before predictions are made at that 

location. The word priorities are then influenced by the results of the 

acoustic tests in addition to the consumer ratings. When a word becomes 

top priority, the word task goes directly to the step of creating a 

terminal phrase. Mapplr.c; all at once causes the system to test more 

words per location but yields better priorities since experimental 

results indicate that true hits tend to get higher scores than false 

alarms. The choice between mapping one at a time or mapping all at once 

is explored in tb« experiments reported in the next chapter. 

2.  SETTING vSlORITIBS 

The fundamental data for priority setting are the word scores 

provided by the acoustic mapper and the factors computed by the language 

definition procedures. Mapper scores indicate how well a word matches 

the input signal at a particular location in the input. Language 

definition factors reflect likelihood judgments from syntactic, 

semantic, and discourse sources of knowledge. The 'score' for a phrase 

combines mapper scores, language factors, and, for a nonterminal phrase, 

the scores of its constituents. The score is thus a local, context-free 

piece of information about how 'good' the phrase is. The score may 

reflect global data such as a discourse model, but it does not depend on 
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possible sentential contexts for the phrase. In contrast, the 'rating' 

of a phrase does depend on the other phrases in which it may be embedded 

to form a sentence. The rating of a phrase P is intended to provide an 

estimate of the best score for an interpretation that can be constructed 

using a completion of P. If P is itself a root category phrase, its 

score determines its rating directly. Otherwise, the rating for P is 

determined by reference to the consumers for P in the parse net. (The 

organization of the Executive guarantees that all non-root-category 

phraues have at least one consumer.) We have experimented with two 

techniques for using the consumer context in setting phrase ratings. In 

one method, the rating with respect to a particular consumer is formed 

by adding the phrase score and the consumer rating. (Whenever possible, 

ratings are assigned top-down in the parse net so that consumer ratings 

are directly available for use in this process.) The phrase rating is 

then the maximum rating with respect to any of its consumers. This 

method is fast, but it leaves the rating unaffected by the consumer 

restrictions that are expressed in rule procedures rather than in 

structure declarations. A phrase may satisfy the structural 

requirements of a consumer C but still be incompatible with C because of 

constraints encoded in C's factor statements. For example, if the only 

sentential context being considered is "Is it owned by —", the 

structural requirements will be satisfied by any noun phrase, but 

semantic factors will restrict the alternatives to possible owners. 
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The !»«cond method for setting phrase ratings takes into 

account the procedural information in the rules by exploring the paths 

in the parse net that show how a phrase might be used and executing the 

corresponding procedures to gather attribute and factor information. 

Each producer-consumer path from a phrase P to a root category phrase 

reflects a way of constructing an interpretation using P. To calculate 

a rating for P with respect to such a complete path, temoorary 

structures called 'virtual phrases' are built. For example, assume A Is 

a consumer for P, B is a consumer for A, and C is a root-category 

consumer for B (see Figure III-2). The virtual phrase A' is formed 

by placing P in the appropriate empty constituent position in A. The 

attributes and score of A' indicate possible completions of A-plus-P. 

The virtual phrase B' is constructed by adding A' to B, and C is 

constructed by adding E' to C. By assumption, C' is a root category 

phrase, so the score of C determines the rating of P with respect to 

the consumer path A-B-C. Various paths from P are formed in this way, 

and the rating for P is its best rating with respect to any of the 

constructed paths. 

To reciuce the cost of rating alternatives by this method, a 

heuristic search is made in the parse net for a near optimal path rather 

than exhaustively trying all possible paths. The heuristic exploits the 

fact that, typically, when a phrase is being rated the higher level 

phrases that form its context have already been rated. (The parse net 

is initialized so that a context of previously rated phrases exists even 
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when the system is doing bottom-up processing.) These prior ratings 

provide important heuristic information. The object is to find the path 

giving the best score, so the paths with the highest prior rating are 

explored first. When a complete psth 5.s found, one tnat leads to a 

root-category phrase, the score for that path sets a lower bound on the 

rating. This lower bound is used to prune paths whose prior ratings are 

low enough to suggest that they are unlikely to produce a rating higher 

than the lower bound already established. 

This method takes more computation per rating assignment than 

the first one, but it should produce batter phrase ratings since it 

gathers more information in forming them. Experimental results reported 

in the next chapter indicat« that the extra effort spent in the second 

method is worthwhile; it leads to better system performance in both 

accuracy and runtime. 

Phrase ratings are used to determine task priorities. The 

priority of the predict task comes from the highest rating of any phrase 

scheduled to make predictions. When the predict task is executed, it 

creates predictions and phrases only at the time and direction (left or 

right) that are determined by the best phrase scheduled to make 

predictions. Similarly, the priority of the word task is equal to the 

highest rating for any predicted word (the word rating is the rating of 

the terminal phrase that could be constructed from the word). When the 

word task is performed, it oniy operates on the highest r^ted word. 
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In the case where task priorities are directly determined by 

ratings, the control strategy is described as 'best-first'. We have 

experimented with modifying priorities to Implement other control 

strategies in addition to best-first. In particular, we have tried a 

method we call 'focus by inhibition' in which high scoring words are 

selected from the best phrases for the predict-task, and tasks that 

cannot use those words are inhibited by having their priorities lowered. 

The selected words are the focus of attention for the system in this 

method and are described as 'the focus' or as 'in focus'. A phrase 

conflicts with the focus if it contains a nonfocus word that overlaps 

some focus word. The tasks that would try to complete such phrases have 

their priori ies lowered. The priority reduction causes the system to 

be biased against working to complete phrases that conflict with the 

focus. If a task for a phrase P that is in conflict with the focus 

manages to overcome the system bias against it to become the task with 

the highest priority, the system shifts to a new focus by removing the 

words from focus that conflict with P and adding new words co focus from 

P. 

The technique of focus by inhibition is motivated by a desire 

to reduce the thrashing among closely rated alternatives that can happen 

with a best-first strategy. Thrashing is reduced with focus by 

inhibition because the best phrase inhibits its competition and thus 

keeps the system's attention focused on fulfilling its predictions. The 

inhibition is a relatively small decrease in priority, so the bias can 
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be overcome. Therefore, focus by inhibition does allow the system to 

recover from selecting an incorrect word for focus. However, if the 

system focuses on incorrect words too often, the net effect of the 

priority changes can be harmful rather than helpful. Experimental 

results showed that selecting incorrect words was in fact a r" 'ious 

problem for focus by inhibition, and, as a result, overall performance 

was not improved by this technique. Although this particular attempt to 

improve performance by adjusting priorities did not succeed, the basic 

approach still merits further study. As a method for adjusting 

priorities, it provides simple answers to how, when, and why to focus 

attention, while still maintalnlr.^ the completeness of the control 

strategy. (It does not discard alternatives, it simply revises their 

priorities.) Better success at selecting hits rather than false alarms 

for focus could result in a focus by inhibition that improved 

performance. 

3.  STARTING THE TASK CYCLE 

The Executive starts processing an utterance with an initial 

parse net already in existence. If the system is using a left-to-right 

control strategy, the Initial net contains: (1) for each root category 

rule, an empty phrase with times fixed at the beginning and end of the 

utterance, and (2) for each category that can occur at the left of an 

Input, a prediction with its associated empty producers, all with their 

left times fixed at the beginning of the utterance and their right times 
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unfixed. Each phrase P In the initial parse net is connected as a 

consumer to the predictions for categories of phrases that can occur in 

P as leftmost immediate constituents. The Executive task cycle starts 

by scheduling the word task for the predictions in the initial net. 

This task will find a word at the start of the utterance and the 

interplay of word task and predict task will start. 

As an alternative to left-to-right processing, the system can 

use 'island driving' in which phrases are constructed bi .rectionally 

around 'island' words selected at arbitrary locations in the input.* 

The motivation for island driving is that it allows the syster to begin 

processing an utterance where it is most confident that it has found a 

correct word. It can use that word to provide contextual guidance in 

processing other parts of the utterance where it is less confident. In 

contrast, left-to-right processing must start at the beginning of the 

utterance even if the system is not confident about any of the words 

there. 

For island driving, the initial parse net contains: empty root 

category phrases with times fixed at the beginning and end of the 

utterance, and, for each category in the language, a 'monitor' (which is 

a special kind of prediction) with its associated empty producers, all 

with both times unfixed.  Each phrase P in the initial parse net is 

• Island-driving is derived from Miller's 'locally organized parsing' 
based on 'islands of reliability' (see Miller, 1973). For examples of 
its use in speech understanding systems, see Ritea, 1974 and Bates, 
1975. 
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connected as a consumer to the monitors for categories of phrases that 

can be added as immediate constituents of P. The task cycle starts with 

the selection of an island word according to a criterion combining the 

word's mapper score and its estimated likelihood of being a false alarm. 

The word task is performed for this island word to create a terminal 

phrase. The terminal phrase is then passed to the distribute-phrase 

procedure. For island driving, this procedure is modified so that if 

the phrase being distributed does not fulfill any predictions, it is 

given to the consumers for the monitor of its category. In general, 

this operation can construct incomplete phrases that lead to predictions 

on either side of the island word. After the first island word is 

distributed, the Executive schedules a task to select a second island 

word in case the first one fails to lead to highly rated phrases. If 

this task is performed and starts a second island, it will reschedule 

itself to try a third in case the second runs into trouble. In this 

manner, a number of islands can be worked on simultaneously. The effect 

of Island driving on system performance is a topic of Chapter IV, 

Section E. 

14.  STOPPING THE TASK CYCLE 

«fter each execution of a task, the Executive cheeks several 

parameters to see if It should stop the task cycle. For instance, the 

Executive keeps track of the amount of storage in use and stops before 

the available rtorage is exhausted. Another stopping criterion is the 
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difference between the priority of the best remaining task and the 

processing time already ured for the utterance. The Executive stops if 

the value of this criterion falls below a certain threshold. The 

threshold is initialized to a lou v^lue, but whenever an interpretation 

is constructed, the threshold can be raised so that the system will not 

spend much more time looking for other interpretations unless the 

priorities are high. When the Executive decides to stop, it calls the 

language RESPONSEFN function. This function is also called whenever an 

interpretation is constructed, and it stores the interpretations and 

manipulates the priority-minus-processing-time threshold. When the 

Executive tells the RESPONSEFN that it is time to stop, the function 

initiates question answering using the highest rated Interpretation it 

has. 

This concludes the overview of the Executive. The reader has 

an option at this point of skipping ahead to the discussion section at 

the end of this chapter or to Chapter IV (which deals with a series of 

experiments concerning system performance and the Executive) before 

going on to the following detailed description of the Executive. 
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D.  DETAILS OF THE EXECUTIVE 

This section gives a detailed explanation of th«* Executive. The 

topics covered are the word task, adding a constituent to a consumer, 

the predict task, multiword lexical entries, and priority setting. To 

make the following descriptions complete, there is some repetition of 

information covered in the overview. 

1 WORD TASK 

The major operations in the word task are to acquire a word 

that is accepted by the acoustic tests, create a terminal phrase for it, 

distribute the phrase to consumers, and schedule the predict task for 

any incomplete phrases that result. Predicted words are organized into 

'word sets'. Each word set has a list of words from some lexical 

subcategory, time specifications like those for a prediction, and 

priority information. Word sets are typically created during the final 

step of a predict task, but they are also created at the start of a 

left-to-right parse. Like a prediction, a word set has one fixed time 

and one unfixed time • The creation of a word set begins by finding the 

subset of the lexicon that is worth considering at the fixed time. If 

the system is using the mapping-all-at-once control strategy, this 

subset contains the words actually accepted by the mapper at or near the 

time. Otherwise, the subset is created by a special acoustic process 

• Word sets for the root-category are exceptional in that both of their 
times are fixed. The algorithms take care of these as special cases. 

111-20 

»_, ^_,-i _ mm   



called lexical subsetting, which looks at local acouatie features to 

eliminate words that the mapper would not accept. In either case, the 

lexical subset is intersected with the set of words in the predicted 

lexical sutcategory to form the entries in the word set. (The word set 

is not created if the intercection is empty.) The word set is then 

assigned a priority and added to the list of word sets for use in the 

word task. The word set priority reflects the expected rating of 

terminal phrases constructed from words in the set. A single rating is 

computed for the entire set of words. If the system is mapping all at 

once, the priority of the word set is strongly influenced by the best 

mapper score for a word in the set. Otherwise, the priority is affected 

by the estimated false alarm likelihoods for words in the set, so that, 

other things being equal, the system will try words in an order that is 

expected to minimize false alarms. The priority of the word task is the 

highest priority of any word set. 

a.  GETTING A WORD AND CREATING A TERMINAL PHRASE 

When it is performed, the word task begins by selecting a 

word from the highest priority word set. The selected word is the one 

with the highest mapper score, if the system is mapping all at once, or 

the one with the lowest false alarm likelihood, if the system is mapping 

one at a time. If theia are no other words in the set, the set is 

deleted. Otherwise, the priority for the set is revised. If the system 

is not using the map-all strategy, the chosen word is now tested by the 

111-21 

"■-"^- - V^-äfa-na-i-rtifi 



mapper. If It Is rejected, the word task goes directly to its final 

stage. In that stage, the priority for further word tests is compared 

to the priority for other syatem tasks. If word testing is still the 

highest priority, the word task is directly reexecuted. Otherwise, it 

returns control to the top-level Executive procedure. 

If it is assumed that the word has been accepted by the 

mapper, the next operation is to create a terminal phrase (see Figure 

III-3). This operation begins by checking if a terminal phrase for 

the same word* in the same input location has already been created. For 

instance, the word might have been accepted as the result of a 

prediction from the opposite direction (right-to-left instead of left- 

to-right, say), or it might have been found following a prediction with 

a slightly different fixed time. If such a terminal phrase exists, the 

word task does not create a duplicate, but instead, it simply goes to 

its final stage. 

If there is a terminal phrase for the same word and place, quit. 

If there is a phrase for the same word at a different place, use 
the previous attributes and factors rather than recomputing 
them. 

Otherwise, call the category orocedure. 

Construct the phrase record. 

Distribute it to consumers. 

Figure III-3.  CREATE TERMINAL PHPASE 

• In this discussion, a 'word' is a lexical entry, so if there is a word 
in category X that happens to have the same spelling or pronunciation as 
another word in category Y, they are still different words. 
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If there is a phrase already created for the word in a 

different location in the input, the attributes and language factors for 

that phrase can be reused rather than recalculated. For example, after 

a phrase for "it" is created, other "it" phrases use the same array of 

attributes, including the semantic network representation and the list 

of possible discourse referents. The shared language factors are 

combined with the particular mapper scores to produce scores for the 

different "it" terminal phrases.* 

If the word has not been used for a previous terminal 

phrase, the category procedure is called to compute attributes and 

factors for it. If the category procedure does not reject the word, and 

the resulting phrase score is above a certain threshold, the terminal 

phrase record is constructed. The record holds the word's lexical 

entry, the times given by the mapper, the phrase score, and other 

information. The phrase Is now ready for distribution to consumers. 

b.  DISTRIBUTING A PHRASE TO CONSUMERS 

The procedure for distributing a phrase to consumers is 

the same for terminal and nonterminal phrases (see Figure III-4). It 

is called from the procedure that creates terminal phrases and from the 

procedure that adds a constituent to a consumer to create a complete 

• Acoustic attributes and factors are not shared. In the current 
system, the only attributes that depend on acoustic results are the 
phrase times, and the only acoustic factors are from mapping and phrase 
mapping. The acout'tic attributes and factors are treated specially by 
the system; there is not a general mechanism for dealing with them. 
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If it la a root-category phrase, give it to the PESPONSEFN. 

For each prediction fulfilled by the phrase, 

Record the phrase as an instance of the prediction, and 

Add the phrase to each consumer of the prediction. 

Figure III-»».  DISTRIBUTE A PHRASE TO CONSUMERS 

nonterminal phrase. If the category of the new phrase is the root 

category of the language, the phrase is passed to the language 

RESPONSEFN. This function saves the phrase for possible use in question 

answering and adjusts the Executive stopping parameters. If the 

category of the new phrase is not the root category, all predictions for 

the category are checked to see if the new phrase satisfies their time 

constraints. For example, if the phrase is an NP starting at location 

35 and ending at location 55, it satisfies an NP prediction with left 

time 35 and right unfixed, but it does not satisfy an NP prediction with 

left unfixed and right at 180. 

The actual algorithm for checking times takes two times 

as its input and decides whether or not they are compatible. For a 

phrase to satisfy a prediction, the left phrase time must be compatible 

with the left prediction time, and similarly for the right times. If a 

time is unfixed, it is compatible with any other time. Two fixed times 

are compatible if the gap between them is not too large. In the 

simulation experiments described in the next chapter, the allowed gap 
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was gi/en by a parameter — the standard size was 0.05 seconds, but tills 

was varied in one of the experiments. With real rather than simulated 

acoustic processing, syllable boundary information is used in the time 

check — the gap between two times must not contain an entire syllable. 

This test eliminates the obviously bad cases and leaves the more 

difficult ones to be handled by phrase mapping. Phrase mapping looks at 

a pair of words that have been accepted individually to see if they are 

acceptable as a sequence. Phrase mapping is done in the add-constituent 

operation when phrases are put together to form larger phrases (by a 

procedure discussed below). 

For each prediction that the new phrase fulfills, the 

phrase is added to the prediction's instances list and then given to the 

prediction's consumers. The instances list is maintained so that 

consumers arriving later can make use of previously constructed 

instances. The operation of giving the phrase to a consumer is the 

source of nonterminal phrases that have one or more constituents. 

2.  ADDING A CONSTITUENT TO A CONSUMER 

The add-constituent procedure (Figure 111-5) performs 

preliminary tests to ensure that the phrase and its consumer are 

compatible with respect to times, phrase mapping, and lookahead. The 

time checks in the distribute-phrase procedure described above ensure 

that the phrase satisfies the times of the consumer's prediction; the 

time checks for the add-constituent procedure are more detailed and take 
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If the preliminary tests fail, quit. 

Try to create a complete phrase, and distribute it If successful. 

Try to create an incomplete phrase, and if successful then 
assign its rating and schedule the predict task. 

Figure III-5. ADD CONSTITUENT TO CONSUMER 

into account other constituents of the consumer. If the preliminary 

tests succeed, the procedure goes on to try creating both complete and 

Incomplete phrases. 

The add-constituent procedure is called from tvro locations. 

It is called from the procedure that distributes new phrases, and it is 

called from the predict task when a new consume!1 is added for a 

prediction that has been previously fulfilled. Because of multiple 

consumers and multiple instances, a particular phrase can be added to 

many different consumers, and a single consumer can receive many 

different constituents. This multiple use is possible since 

constituents are not modified by their context, and consumers are copied 

before they are combined with a constituent. 

a.  PRELIMINARY TESTS 

Th«» add-constituent procedure begins with a series of 

tests to block certain bad constituent-consumer combinations. The first 

tests concern the time constraints on the new constituent imposed by the 
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time specifications of the consumer and its old constituents (see Figure 

III-6). The tests to the left of the new constituent will be 

described; similar tests are performed to the right. Let the indeir 

number for the constituent category arc be I. (This section assumes 

familiarity with the internal representation of the language definition. 

See Sections D.I and D.2 of Chapter II.) If the new constituent has a 

left neighbor constituent in the consumer, the neighbor can be found by 

scanning through the consumer's constituent-array, starting at position 

1-1 and going down to position 1 looking for the first nonNIL entry 

(recall that entries are ordered from j.eft to right in increasing 

positions of the array). If there is a neighbor, the following tests 

are made to ensure that it is time compatible with the new constituent. 

As an Initial check, the left neighbor must really be somewhat to the 

left of the new constituent. If neither of the left or right times of 

the new constituent is to the right of the corresponding time of the 

left neighbor, the preliminary tests fail. 

The next test depends on the structure graph relation 

between the new constituent and its left neighbor. If the consumer's 

structure graph Indicates that the two phrases must be immediately 

adjacent (i.e., the right point of the left arc is the left point of the 

right arc), the rightmost word in the left phrase and the leftmost word 

in the right phrase are passed to the phrase mapping procedure. The Job 

of the phrase mapper is to deal with coarticulation effects at word 

juncticns, and if it rejects the pair of words, the add-constituent 
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If find a neighboring constituent to the left, 

(1) quit if the neighbor is not to the left in the input, 

(2) if the neighbor must be adjacent, 
phrase map and quit if the test fails, 

else if the neighbor optionally can be adjacent, 
phrase map and block the NIL arc if the test fails. 

Otherwise, if the consumer phrase left time is fixed and 
the prediction left time is unfixed, then 

if the new constituent must be leftmost, 
check the left times and quit if the test fails 

else if the new constituent can be leftmost, 
check the left times and 
block the NIL arc if the teat faUs. 

Do the same tests to the right of the new constituent. 

Figure III-6. PART 1 OF PRELIMINARY ADD-CONSTITUENT TESTS 

procedure terminates without adding the phrase to the consumer,. 

Alternatively, the structure graph for the consumer may indicate that 

the phrases do not have to be adjacent, but that they can optionally be 

adjacent if an unblocked NIL arc is used. In this case, phrase mapping 

is performed, and if it fails, the NIL arc is blocked to record that the 

phrases cannot in fact be adjacent. (The arc is marked as blocked by 

turning on the appropriate bit in a copy of the consumer's blocked-arc 

bit table.) The last alternative is that the structure graph does not 

allow the neighbors to be immediately adjacent. No phrase mapping is 

done In this case. 
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If there la not a left neighbor for the new constituent, 

but the consumer's left time is fixed, a time check may be made like the 

time checks to see if a phrase satisfies a prediction. However, if the 

consumer and the constituent were brought together by a prediction with 

a fixed left time, a time cheok is not necessary here since it would 

duplicate the check made when the phrase was added as an Instance for 

the prediction. In case the prediction's left time is not fixed, but 

the consumer's left time is (which can happen if the consumer is a root 

category phrase), and the new phrase can be the leftmost constituent, a 

time check is made with the constituent's left time and the consumer's 

left time. If the test fails and the constituent must be leftmost, the 

add-constituent procedure terminates. If it can be leftmost by the use 

of an unblocked NIL arc and the time test fails, the NIL arc is blocked. 

These tests, and similar ones regarding the right side of the new 

constituent, ensure the acceptability of the times and word junctions 

between the new constituent and its consumer. 

The second group of preliminary add-constituent tests 

look at the lexical subsets adjacent to the new constituent to block 

various arcs in the consumer (see Figure III-7). The lexical subsets 

are determined by acoustic tests and indicate the words that may be 

found in the utterance at the specified location and direction. For 

example, if the constituent starts at location 70 and ends at 105, the 

subset to its left will contain words that can end around 70, and the 

subset to its right will contain words that can start around 105. Each 
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For each arc coming in to the left of the new constituent, 
block the arc if it is inconsistent with the lookahead. 

If all arcs to left are blocked, quit. 

Do similar tests to the right of the new constituent. 

Block any arcs that can no longer be in a complete path. 

Figure III-7.  PART 2 OF PRELIMINARY ADD-CONSTITUENT TESTS 

category in the language has a precomputed list of possible leftmost and 

rightmost terminal phrase categories. These lists are used to block 

arcs that are inconsistent with the lookahead provided by the lexical 

subsets. 

The details of the tests to the right of the new 

constituent are given below; similar tests are also made to the left. 

If the arc for the constituent ends at th« rightmost point of the graph, 

no lookahead tests are made at this point in the add-constituent 

operation (but more lookahead will be done at a later point in the 

operation if a complete phrase can be constructed). Otherwise, the arcs 

are checked that start directly to the right of the arc for the new 

constituent. If a category arc is blocked or filled, it does not need 

to be tested with respect to the lexical subsetting lookahead. Each 

unblocked, unfilled category arc is tested by intersecting the set of 

possible leftmost terminal categories for the arc with the lookahead set 

of categories for the lexical subset on the right of the constituent. 

If the intersection is empty, the arc is blocked. Next, each nblocked 
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NIL are is checked that starts directly to the right of the constituent 

arc. If it leads to the rightmost point in the graph or If it leads to 

a filled category arc or to an unblocked, unfilled one whose leftmost 

terminal categorlej? have ?i nonempty Intersection with the lookahead 

categories, the NIL arc remains unblocked. Otherwise, it is blocked. 

If these tests leave no arcs unblocked directly to the right of the 

constituent arc, the add-constituent procedure terminates. 

After the lookahead tests are completed to the left and 

right of the constituent, all the remaining unblocked arcs in the 

consumer are checked to make sure they can actually participate in a 

complete path through the structure graph. Arcs are blocked that are 

mutually exclusive with the arc for the new constituent. Any arc that 

cannot be in at least one complete path is also blocked by the following 

operation, which is done in two passes. The first pass goes through the 

consumer's array of arcs in increasing order so that all the left 

neighbors of an arc are considered before it is. If an arc does not 

start at the leftmost point in the graph and all of the arcs coming in 

to its left point are blocked, the arc is marked as blocked. The second 

pass goes through the arc-array in decreasing order. If an arc does not 

end at the rightmost point in the graph and if the arcs going out from 

its right are blocked, the arc is marked as blocked. To illustrate, 

assume that A has been adde^ to an empty consumer with structure 

A {B C I D), and lookahead to the right of A caused B to be blocked but 

left D unblocked. Arc C is marked as blocked during the first pass of 

this test becauie the only arc coming in to its left (arc B) is blocked. 
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The preliminary tests in the add-constituent procedure 

stop the procedure from trying to add t. constituent to a consumer that 

is incompatible with respect to times, phrase mapping, or lookahead. 

Even if the constituent and the consumer are actually compatible, the 

tests still provide useful information by blocking arcs in the structure 

graph to reduce the number of possibilities that must be considered in 

later operations. 

b.  CREATE COMPLETE NONTERMINAL PHRASE 

The procedure for constructing a complete nonterminal 

phrase (Figure III-8) starts with a test for a complete, filled path 

through the structure graph. If filled paths do not exist both from the 

right of the new constituent to the rightmost point in the graph and 

from its left to the leftmost point, the co-olete-phrase procedure 

terminates. The next test ensures that the new complete phrase will be 

compatible with its consumer context with respect to time constraints 

and lookahead. The details of this test are discussed below. If the 

test fails, construction of the new phrase is suspended pending the 

arrival cf a new, compatible consumer. Assuming the test succeeds, the 

procedure checks whether it has already constructed a complete phrase 

using the same rule and constituents. If so, it terminates. The same 

phrase can be arrived at in different ways when the system uses control 

strategies that do not fix the order of acquisition of constituents. 

For example, with island driving, a phrase could be built both from the 
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Check for a complete, filled path through the structure graph, 
and quit if there is none. 

Check consumers regarding lookahead next to the new constituent, 
and suspend construction if all consumers are blocked. 

Check if the same phrase already exists, and quit if it does. 

Check if a phrase with the same rule and equivalent constituents 
exists already: 

If it does, use the previous attributes and factors 
rather than recomputing them; 

Otherwise, call the rule procedure, and 

if it rejects the phrase or gives it a sub^hreshold 
score, quit. 

Create a phrase record. 

Distribute the new phrase to consumers. 

Figure III-8.  COMPLFTE-PHRASE PROCEDURE 

left and from the right.  This test is necessary, therefore,  to make 

sure that duplicate phrases are not constructed. 

Next, the procedure looks for a previously constructed 

complete phrase for the same rule and 'equivalent' constituents. Two 

terminal phrases are equivalent if they have the same lexical entry. 

Two nonterminal phrases are equivalent if they were constructed by the 

same rule and their constituents are equivalent. If two phrases are 

equivalent in this way, they will have the same values for their 

attributes and factors. Thus, if a phrase is found with the same rule 

and equivalent constituents, its attributes and factors can be reused 
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rather than recalculated. Recall that a similar test was made for 

terminal phrases, and, as a result, equivalent terminal phrases share 

the same attribute array. The current tests ensure ♦■hdt nonterminal, 

equivalent phrases also share the same attribute array. This sharing 

saves storage and processing, and it also provides a simple test for 

equivalence — two phrases a^e equivalent if their attribute arrays are 

the same. The search for a phrase with equivalent constituents is made 

more efficient by only considering one phrase from each class of 

equivalent phrases. If the new phrase is equivalent to a previous one, 

the old attribute array is used in the new phrase, and the old factors 

are combined with the new constituent scores and phrase mapping scores 

to produce a score for the new phrase. If no equivalent phrase exists, 

the rule procedure is executed to produce values for the attributes and 

factors, and the results are saved for future equivalence tests. If the 

rule procedure rejects the new phrase, or the phrase score is below a 

certain threshold, the complete-phrase procedure terminates. Otherwise, 

a record is constructed holding a pointer to the rule, the constituent 

list, the array of attributes, the score, and other information about 

the phrase. The newly made phrase is then distributed to consumers by 

the procedure described earlier. 

A major step in the complete-phrase procedure is the 

consumer-lookahead test. This test is similar to the lookahead tests 

performed in the preliminary add-constituent stage, but it considers 

lookahead with respect to the consumer context of the new phrase being 

III-3»! 



constructed rather than within the consumei that is getting a new 

constituent. The purpose of this check is to prevent construction of 

complete phrases that cannot be used in the existing context of 

consumers. Building a complete phrase can require expensive s^aantic 

and discourse operations, so the system tries to discover an 

incompatibility before the phrase is constructed. 

To illustrate the types of inccmpatibilities tested for 

by the consumer-lookahead check, assume that the new complete phrase A 

that is being constructed has a single consumer C. If the structure 

graph for C requires a phrase of category B to the right of A, but the 

set of categories that can occur as leftmost terminal phrases in a 

category B phrase do not irtersect the lookahead set of categories for 

words immediately to the right of A, the phrase A is not compatible with 

the consumer C. Alternatively, C might already have a B phrase whose 

left-time boundary did not fit the right-time boundary of A. This case 

also causes the consumer-lookahead check to reject the consumer C for 

the phrase A. If all the consumers for A are rejected, the construction 

of A is suspended (without executing its rule procedure) until a new 

consumer arrives that is compatible with it. 

The consumer-lookahead test looks both to the left and to 

the right of the new phrase, but the tests are similar, so only the 

right side tests are described in detail. The first step is to locate 

the arc in the consumer's structure graph tbet the new phrase would 

fill. (Remember that the new phrase we are talking about is the phrase 
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being constructed by the complete-phrase procedure, and the consumer now 

being discussed is a potential consumer of this new complete phrase.) 

The procedure looks to the right of the arc for either: (1) an unfilled, 

unblocked category arc that is not eliminated by lookahead, (2) a filled 

category arc with a constituent whose left time is compatible with the 

right time of the new phrase, or (3) an unblocked NIL arc that leads to 

a category arc satisfying case (1) or case (2).t In any of the three 

cases, the phrase and the consumer are compatible to the right. If none 

of the cases succeeds, the consumer C may still be compatible with the 

phrase P if P can be C'«* rightmost constituent and the phrase resulting 

from adding P to C would be all right. P can be rightmost in C if its 

are ends at the rightmost point in C's graph or if an unblocked NIL arc 

connects it to the rightmost point. If P can be rightmost, and the 

right boundary of C is fixed and compatible with the right boundary of 

P, P and C are compatible to the right. If P can be rightmost and the 

right boundary of C is unfixed, the consumer-lookahead procedure is 

called recursively to check consumers of C. For example, if C is of 

category X, the procedure checks consumers of C, which may have phrase 

structures such as W=X Y. In this particular case, the lookahead to the 

right of P would have to be compatible with a category Y phrase for the 

consumer-lookahead test to succeed. 

• We could have added phrase mapping in case (2) as a further test of 
consumer compatibility, but because phrase mapping it, an expensive 
operation in our system, we decided that the extra sensitivity at this 
point would not justify the cost. 
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The consumer-lookahead procedure can thn.a go through an 

arbitrarily long path of intermediate consumprs before getting to one 

that satisfies the lookahead requirements. Because of the structure of 

the parse net, these paths of consumers can form a network rather than a 

tree. To deal with this convergence, the procedure adds each prediction 

to a queue when the prediction's consumers are first reached. If the 

search returns to a prediction that is already on the queue, the 

consumers for that prediction are not checked again, 

c.  CREATE PARTIALLY FILLED NONTERMINAL PHRASE 

If the preliminary add-constituent tests indicate that 

there will be at least one unblocked, unfilled category arc remaining 

after the constituent is added to the consumer, the procedure to create 

a partially filled nonterminal phrase is called (see Figure III-9). 

The procedure first checks if it has already made an incomplete phrase 

for the same combination of rule, constituents, and time specifications. 

If it has, it stops rather than creating a duplicate. Otherwise, it 

calls the rule procedure tu compute the attribute and factor values.* 

If the rule rejects "".he phrase, or the score is subthreshjld, the 

incomplete-phrase procedure quits. Next, a phrase record is constructed 

which has a pointer to the rule, the constituent list, the attribute 

• We do not bother here to look for equivalent phrases as we did in the 
complete-phrase procedure because semantic translation and discourse 
processing are only done for complete phrases, and consequently the cost 
of recalculating the attributes and factors of an incomplete phrase is 
much less than the cost for a complete phrase. 
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Check for an unfilled, unblocked category arc; if none, quit. 

Check if a phrase for the same rule, constituents, and time 
specifications already exists; if so, quit. 

Call the rule procedure. 

If it rejects the rule or gives a subthreshold score, 
quit. 

Create a phrase record. 

Calculate the phrase rating. 

If the rating is above threshold, add the new phrase to the 
predict sets. 

Figure III-9.  CREATE AN INCOMPLETE PHRASE 

array, the score, and other information. If the consumer that was used 

in this operation is a producer for some prediction (as will be the case 

unless it is a root-category consumer), the new phrase is also added as 

a producer for that prediction. The new phrase is then assigned a 

rating using the techniques described in Sections C.2 and D.5.c. If the 

rating is above a certain threshold, the phrase is added tc the phrases 

scheduled to make predictions for missing constituents. 

The incomplete phrases scheduled to make predictions are 

organized into 'predict sets'. Each predict set contains incomplete 

phrases that can make predictions at a particular time in a particular 

direction. To illustrate, if a phrase has a constituent ending at 

position 75 and needs to acquire a constituent to the right of that one, 

the phrase could be in a predict set for time equal to 75 and direction 

111-38 

—  



equal to RIGHT. The priority of a predict set is initially set to the 

highest rating of any phrase in the set, but it can be modified in 

accordance with various strategies for focusing the system's attention. 

The priority of the predict task is the highest priority of any predict 

set. 

A single incomplete phrase can be in several predict sets 

if it can make predictions at different locations and directions. For 

example, if the phrase structure calls for three constituents, ABC, 

and only the B phrase has been acquired, the phrase can be in a predict 

set for time equal to the left time of B and direction equal LEFT (to 

predict A), and also in a predict set for time equal to the right of B 

and direction equal RIGHT (to predict C). 

The algorithm for adding an incomplete phrase to predict 

sets looks for all possible predictiors that the phrase can make such 

that either the left or right time of the prediction is ~<i.* For the 

purposes of this algorithm, a point in the. structure gra^n is called 

'open for predictions to the right' if there is an unfilled, unolocked 

category arc going out from the point to the right, or there is an 

unblocked NIL arc going out from the point that leads to an unfilled, 

unblocked category arc. First, if the left time of the phrase is fixed 

and the leftmost point in the graph is open for predictions to the 

• We decided against having predictions with both times fixed. This 
choice sacrifices the ability to make word tests with both times fixed 
(such tests might succeed where tests with only one time fixed would 
fail) but it simplifies the word task and the predict task as well as 
reducing storage requirements. 
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right, the phrase is added to the predict set for time equal to the left 

of the phrase and direction, RIGHT. Then, for each acquired 

constituent, if the right point of the constituent arc is open for 

predictions to the right, the phrase is added to the predict set for 

time equal to the right of the constituent and direction, RIGHT. If the 

Executive is using a control strategy such as island driving that allows 

right-to-left predictions, a similar set of operations is performed to 

add the phrase to predict sets for direction equal LEFT. 

3.  PREDICT TASK 

The predict task is divided into three main stages. In the 

first, a subnet of predictions and phrases is created for the highest 

priority predict set. The entire subnet is filled out at once: the 

predictions for the phrases in the predict set, the producer phrases for 

those predictions, the predictions for the new phrases, and so on. The 

second stage consists of going through the subnet assigning phrase 

ratings: whenever possible, all the consumers for a phrase are given 

ratings before the phrase rating is calculated. During the final stage, 

miscellaneous 'cleanup' operations are performed such as creating word 

sets for new predictions, revising priorities for old word sets, and 

adding old phrases to new consumers. The predict task is organized in 

this manner to reduce the processing time for rating phrases and patting 

priorities. The rating for a phrase is recalculated when its consumer 

context changes, and the rating calculation procedure uses the ratings 
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of consumers, so the predict task is designed to provide all of the 

consumers and finish giving them ratings before calculating the rating 

for a phrase. 

a CREATE SUBNET 

*i° creata-subnet procedure, which performs the first 

stage of the predict task, is outlined in Figure 111-10. While it 

creates the subnet, the p! oedure also set^ up several queues for use in 

later stages. For ',ne rating stage, it creates a queue, called PRQ, 

holding the predictions in the subnet that have up-to-date ratings for 

all of their •">nsumers, and a second queue, called WPRQ, holding the 

other subnet predictions. For the cleanup stage, it creates LEXQ with 

the new predictions that need to have word sets made for them, LEXQ2 

with old predictions that need to have the priorities for their word 

sets revised, INSTLIST holding new consumers for old predictions that 

have nonempty instances-lists, and OTHERINSTLIST holding consumers that 

prclde a new contoxt for phrases suspended in the complete-phrase 

procedure because of consumer-lookahead failure. 

The create-subnet stage of the predict task begins by 

removing ehe highest priority entry from the list of predict sets. This 

entry will determine the predictions to be made in the rest of ~ue task. 

The time and direction from the selected predict set are passed to the 

lexical subsetting procedure to retrieve the lookahead set of terminal 

categories.  (Often, the subset will have already been computed for 
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''«lect the best predict set. 

Get the lookahead information. 

For each phrase P in the predict set 

For each prediction PR made by P 

If PR is newly created, 
Add it to PRQ and fill out its subnet 

Otherwise 
If it is not on PRQ or WPRQ, add it to PRQ 

Traverse its subnet 

If it has instances, 
A<.d P as consumer for it to INSTLIST. 

Figure 111-10.  CREATE SUBNET PROCEDURE 

lookahead during an earlier operation, so the stored results can simply 

be reused.) This information is used to block the creation of 

predictions and phrases that are incompatible with the lookahead. Next, 

the subnet is filled out for each phrase in the predict set.*  As an 

• We do all of the phrases in the predict set at once rather than just 
doing the highest priority phrase. This is because we want to decrease 
the recalculation of priorities that is caused by changes in consumer 
contexts. This design decisir i was made before rules in our system 
c~uld have alternatives and options. At that time, there were several 
rules had similar- constituent structure possibilities (for example, five 
S rules with initial NPs), so it would often happen that several phrases 
with about the same priority would be waiting to make the same 
prediction in the same location. By creating the subnet for all of them 
at once, we can calculate ratings a single time rather than 
recalculating them each time one of the phrases makes its prediction 
which causes a change in the consumer context. However, with 
alternatives and options, predict sets are less likely to have several 
phrases that want to make the same prediction, so perhaps this design 
choice should be reconsidered in view of the fact that it does entail 
the risk of making unnecessary (i.e., not top-priority) predictions. 
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illustration of this process, assume the predict set time is 55 and the 

direction is RIGHT. Then, for each predict set phrase P, the procedure 

finds the structure graph point at the right of the rightmost 

constituent that has a right time of 55, if such a constituent exists. 

Otherwise, P must have its left time fixed at 55, and the leftmost point 

in the graph is used in the following operation. For each unblocked, 

unfilled category arc A leading out of the selected point or connected 

to it by an unblocked NIL arc, find or create a prediction PR for the 

category cf arc A, left time fixed at 55, and right time unfixed. If PR 

was newly created for P, the subnet below PR is filled out by a 

procedure described below, and PR ^s added to PRQ to record that all of 

its consumers have up-to-date ratings. Alternatively, if PR existed 

previously, then (1) it is put on PRQ unless it is already on a queue, 

(2) its subnet is traversed by a procedure described below, and (3) if 

PR has instances, P as a consumer for PR is added to INSTLIST. 

The procedure used to fill in the subnet below a 

prediction (Figure 111-11) begins by checking if the prediction is for 

a category with lexical entries. If it is, the prediction is added to 

LEXQ for further processing during the cleanup stage. The next step is 

to put a mark on the prediction so that if a later consumer arrives 

during this stage of the predict task, the subnet will not be 

reprocessed. The mark will be removed before the predict task is over. 

Then, in the case of a left-to-right prediction, for each rule that can 

produce a phrase of the predicted category,  if the possible leftmost 
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To fill out the subnet for prediction PR with new consumer P: 

If the category of PR has lexical entries, add PR to LEXQ. 

Mark PR. 

For each of the category rules 

Create an empty phrase P' as a producer for PR 

For each prediction PR' made by P' 

Add PR' to WPRQ and, if necessary, 
remove it from PRQ. 

If PR' is newly created, fill out its subnet 

Else traverse its subnet, and 

If PR' has instances, 
add P' (as a consumer for PR') to INSTLIST. 

Figure IXI-11.  FILL-OUT-SUBNET PROCEDURE 

terminal categories for the rule intersect the lookahead categories, an 

empty phrase P' is created for the rule with the same times as the 

prediction. The phrase is connected to the prediction as a producer, 

and then predictions are made in the following manner for the possible 

leftmost constituents of the phrase. For each category arc that can be 

leftmost and is okay with respect to the lookahead, a prediction PR' is 

found or created, and the phrase is added as a consrmer for it. The 

prediction is added to WPRQ and removed from PRQ if it was there. This 

operation records the fact that the prediction now has at least one 

consumer whose rating is not set. If PR' was created by this operation, 

the subnet below it is filled in by calling this procedure recursively. 
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Otherwise, the subnet below the prediction is traversed according to the 

procedure described in the next paragraph. If it has instances, P' aj a 

consumer for it is added to INSTLIST. Similar operations are performed 

to fill in right-to-left predictions. 

The procedure for traversing the subnet below a 

preexisting prediction (Figure 111-12) starts by checking for 

suspended construct-conplete-phrase operations. If there are any, the 

consumer that led to the current traversal is added to OTHERINSTLIST for 

spec;.al processing during the cleanup stage. The procedure then checks 

to see if the prediction is marked as already traversed. If so, the 

procedure returns. If not, it marks the prediction and continues. The 

mark is checked after the (possible) addition to INSTLIST rather than 

before in order to take care of cases in which more than one consumer 

changes for an old preaiction. If the prbdiction has word sets, it is 

added to LEXQ2 so that the word set priorities will be revised to 

reflect their new consumer context. Finally, for each producer phrase P 

for this prediction, each of the predictions made by P is put on WPRQ if 

it is not already there and traversed by calling this procedure 

recursively. 

At the completion of the first stage of the predict task, 

the subnet of predictions and phrases has been created for all the 

phrases in the highest priority predict &et. The queues PRQ and WPRQ 

have been created for the rating stage, the queues LEXQ and LEXQ2 are 

ready for use in creating or revising word sets, and INSTLIST and 
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To traverse the subnet for a prediction PR with a new consumer P: 

If PR has any suspended construct-complete-phrase operations, 
add P (as a consumer for PR) to OTHERINSTLIST. 

If PR is marked, quit. 

Mark PR. 

If PR has word sets, add it to LEXQ2. 

For each prediction PR' by a producer for PR 

Traverse subnet of PR' and put PR' on WPRQ. 

Figure 111-12.  TRAVERSE SUBNET PROCEDURE 

OTHERINSTLIST hold consumers that may lead to the creation of new 

phrases. 

To illustrate the create-subnet procedure, assume that 

the highest priority predict set has a time equal to the right boundary 

of the utterance, a direction equal to LEFT, and a single phrase PI 

which has a structure declaration S=BE NP (see Figure 111-13). The 

only prediction to be made by PI is for an NP ending at the right of the 

utterance. Assume that this prediction hes not been created by a 

previous predict task (if it had been, the traverse-subnet procedure 

would be called rather than the fill-out-subnet procedure). The 

prediction PR1 for the NP is created, added to PRQ, and passed to the 

fill-out-subnet procedure. The NP category has lexical entries such as 

"it", so PR1 is added to LEXQ for further processing in the cleanup 

stage.  The prediction is then marked so that it will  not be 
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S-PHRASE (P11 

NP-PREDICTION (PR1) — 

NP-PHRASE (P2) 

PREPP PREDICTION (PR2) 

PREPP-PHRASE (P3I- 

FIGURE 111-13  NP-PREPP PARSE NET LOOP 

reprocessed. An empty NP phrase P2 is created as a producer for PR1, 

and it makes a prediction PF2 for a PSEPP at the end of the utterance 

and adds PF2 to WPRQ. (Other predictions would be made by P2f but for 

simplicity we only consider PR2.) Again assuming PR2 did not exist 

before, it is passed recursively to the fill-out-subnet procedure. The 

PREPP category does not have lexical entries, so PR2 is not added to 

LEXQ. PR2 is marked, and a producer P3 is created for it. P3 makes a 

prediction for a noun phrase at the end of the utterance, but that is 

prediction PR1, which was already created. Therefore, PR1 is moved to 

WPRQ from PRQ to record that it has a consumer without an up-to-date 

rating. Then, PR1 is passed to the traverse subnet procedure which 

quits after noticing that PR1 is already marked. Assuming for 

simplicity that no other predictions or phrases are formed, the first 

stage ends with LEXQ holding PR1, WPRQ holding PR1 and PR2, and the 

other queues empty. 
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b.  ASSIGN RATINGS 

The second stage of the predict task takes cars of 

asbigning ratings to phrases in the subnet. The algorithm for 

calculating the rating of a particular phrase is aketched in Section C.2 

above and is described in detail in section D.5.c below. This section 

deals with the procedure that goes through the subnet visiting the 

phrases and calling the rating ptocedurp for ea:h one. In the simplest 

case, a single top-down pans i^ mcde tlitoug' the subnet, but the 

operation can be more complicated if ther-a .ire "oducer-consumer loops. 

A top-down pass is desirable because the calculation of ratings takes 

advantage of the ratings for the consumers fcr the phrase. The 

predictions placed on PRQ during th* first stage have up-to-date ratings 

for their consumers, so the producers for those predictions are ready to 

have their ratings calculated. When a phrase gets its rating, each of 

its predictions is checked, and, if all of the prediction's consumers 

now have up-to-date ratings, the prediction is moved to PRQ from WPRQ. 

If there are no loops in the subnet, repeated removal of predictions 

from PRQ followed by processing of their producers in the above manner, 

will eventually provide ratings for all the subnet phrases in the 

desired top-down way. If there is a loop in the net, it is not possible 

to assign ratings in a strictly top-down manner since phrases in the 

loop are consumers for themselves. When there is a loop, the algorithm 

goes as top-down as possible and makes a second pass to recalculate 

ratings in certain cases.  The following parsgraphs describe the 
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algorithm In detail and illustrate it by continuing with the example 

ffom the previous section. 

The first pass of the rating stage is an iterative 

operation that continues until both PRQ and WPRy are empty (see Figure 

III-IH). When both queues are empty at the start of an iteration, the 

second pass begins. If PRQ is not empty, the first prediction on it is 

removed and set aside for processing. If PRQ is empty, but WPRQ is not, 

the subnet has a loop that includes the WPRQ predictions. However, at 

least one of the WPRQ predictions must have one or more consumers that 

are not involved in the loop. If this were not the case, the 

predictions on WPRQ would not be reachable from the rest of the parse 

net, but they are in fact reachable from at least one of the phrases in 

the current predict set. A prediction on WPRQ with at least one rated 

consumer is removed and set aside for processing. The prediction is 

also marked as DONE so that it can be recognized when the first pass 

returns to it after completing the loop. The processing of the selected 

prediction is the same whether the prediction is from PRO or WPRQ. Each 

producer phrase P for it is given a rating, and then for each prediction 

P'.7. by P, (1) if PR is on WPRQ, then if all the consumers of PR now have 

up-to-date ratings, PR la moved to PRQ, else (2) PR is checked to see if 

it is marked DONE. If it is marked DONE and the rating just calculated 

for its 'looping' consumer is higher than the ratings of all of its 

other consumers, PR is added to PASS2Q for further processing in the 

second pass. At this point, control goes back to the start of the fi-st 

pass instructions to check again whether PRQ and WPRQ are empty. 
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If PRO and WPRO are both empty, go to pass 2. 

Pick a prediction from PRQ, or, 
If PRQ is empty, pick one from WPRQ that has at 

least one rated consumer. 
Mark it DONE. 

For each producer P of the selected prediction 

Assign a rating to P. 

For each prediction PR made by P 

If PR is on WPRQ, then, 
If all consumers of PR now have ratings, 

Move PR to PRQ 

Else if PR is marked DONE 

If the rating for P is higher than the 
rating of any other PR consumer 
Then add PR to PASS2Q 

Otherwise, there is an error. 

Figure III-1i».  PASS 1 OF RATING ASSIGNMENT 

The second pass is an iterative operation that continues 

until PASS2Q is empty (see Figure 111-15). If PASS2Q is not empty, a 

prediction is removed from it and marked as D0NE2 so that it will be 

recognized if the second pass returns to it. Each producer phras» for 

the prediction has its rating recalculated, and. If its rating changes, 

each prediction made by the phrase is added to PASS2Q if the prediction 

is not marked D0NE2 and the other consumers for P have lower ratings 

than the rerated consumer. When the second pans terminates, all the 

phrases in the subnet have up-to-date priorities. 
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If PASS2Q is empty, quit. 

Pick a prediction from PASS2Q. 

Mark it as D0NE2. 

For each producer P of the selected prediction 

Recalculate the rating for P. 

If the rating changed, 

For each prediction PR by P not marked D0NE2 

If P is now the highest rated consumer for PR, 
Add PR to PASS2Q. 

Figure 111-15.  PASS 2 OF RATING ASSIGNMENT 

The second pass is basically a patch to take care of 

loops in the subnet. If ther1 are no loops, the second pass is vacuous 

because no predictions are put on PASS2Q unless there is a loop. Even 

if there are loops, the second pass will only be lightly used if ratings 

tend to decrease as consumer paths get longer (which is plausible since 

longer paths represent more complex, and hence less likely, structures). 

This is because there is always a shorter alternative path to a looping 

path, and predictions are added to PASS2Q only if a looping path has a 

higher rating than any of the others. Activity in the second pass will 

also be slight if ratings do not change when they are recalculated in a 

context that is unchanged except for the ratings of one or more 

consumers (such stability will in fact be the case if the context- 

checking method is used for calculating ratings). 
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To Illustrate this stage of the predict task, we continue 

the previous example (see Figure 111-13). Recall that the first stage 

for the example ended with PRQ empty, and PR1 and ?R2 on WPRQ. At the 

start of the second stage, PR1 is selected from WPRQ since it has a 

rated consumer (PI) and PR2 does not. PR1 is marked DONE, and its 

producer P2 has its rating assigned. The only prediction for P2 is PR2, 

PR2 is on WPRQ and now has all of its consumers rtted, so it is moved to 

PRQ. Thus, the first iteration ends with PR2 on PRQ, P2 with a rating, 

and WPRQ empty. The second iteration starts by removing PR2 from PRQ 

and then assigning a rating to its producer P3. The only prediction by 

P? is PR1, which is not on WPRQ but which is marked DONE. Assuming that 

the rating of P3 is higher than the rating for PI, PR1 is added to 

PASS2Q. The second iteration ends with PR1 on PASS2Q, P2 and P3 with 

ratings, and both PRQ and WPRQ empty. At this point, the second pass 

begins by removing PR1 from PASS2Q, marking it as D0NE2, and 

recalculating the rating for P2. Assuming that the recalculation 

produces a higher rating for P2, its prediction PR2 is added to PASS2Q. 

Thus, the first iteration of pass two ends with PR1 marked D0NE2, P2 

rerated, and PR2 on PASS2Q. The second Iteration begins by removing PR2 

from PASS2Q, marking it D0NE2, and recalculating the rating for P3. The 

prediction mad« by P3 is marked D0Nfi2, so it is not processed further 

and the second pass ends. 
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c.  CLEANUP 

The final stage of the predict task performs various 

cleanup operations. It erases marks such as D0NE2, which may have been 

left by the previous stage. Predictions and phrases needing erasures 

are chained together through their records, so the erasing can be done 

quickly. LEXQ holds new predictions for categories with lexical 

entries. For each prediction on LEXQ, word sets are created in the 

manner described earlier (sea Section D.I). LEXQ2 holds old predictions 

with word sets that now have a modified consumer context. Each such 

word set has its priority recalculated. INSTLIST contains new consumers 

for old predictions that have been previously satisfied. Each phrase on 

the prediction's instances-list is added to the new consumer by the add- 

constituent procedure. OTHERINSTLIST contains consumers providing a new 

context for old predictions with suspended construct-complete-phrase 

operations. The consumers on OTHERINSTLIST may be new consumers that 

were created during the first stage or old consumers that had an 

addition made to their consumer context during the first stage. The 

traverse-subnet procedure takes care of both cases. During the cleanup 

stage, for each suspended operation with a new or modified consumer P, 

the consumer-lookahead test is performed. If the test succeeds, the 

construction of the phrase goes ahead. Otherwise, it remains suspended. 

After the cleanup stage, one cycle of the predict task is 

complete. However, there may still be other predict sets waiting to be 

processed. If there are, and the highest priority for them is highe- 
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than any of the tasks currently scheduled, the predict task goes ahead 

for another cycle. Otherwise, it schedules itself at the priority of 

the best predict set and returns control to the top level Executive 

procedure. 

d.  DEAD PHRASES AND PREDICTIONS 

During the predict task, certain phrases and predictions 

are marked as 'dead'. A prediction Is dead if no more phrases can 

possibly be constructed to fulfill it. A phrase is defined to be dead 

if it has no more predictions to make and all the predictions it has 

made are dead.* If a phrase is dead, no tasks exist to supply 

constituents for it, and, thus, no task priorities depend on its rating. 

Consequently, ratings do not need to be (reCalculated for dead phrases. 

Typically, the rating of a phrase is recalculated whenever the consumer 

context of the phrase changes. The purpose of marking phrases as dead 

is to avoid unnecessary rating recalculations. 

The marking of predictions and phrases as dead takes 

place during the first stage of the predict task. Whenever all the 

candidate words for a prediction are exhausted in the word task or one 

* Intuitively, a phrase is dead if there is no longer a chance to form 
new completions of it. In some cases, a phrase may be dead in this 
intuitive sense but not according to our definition. For example; a 
phrase with structure ABC that has acquired constituent B and has 
predicted A and C is intuitively dead as soon as eitner prediction dies, 
but it is not dead by our definition until both predictions die. Our 
definition was chosen in spite of this defect because it is simpler to 
test (It does not depend on the structure) and in practice it is usually 
equivalent to the intuitive sense. 
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of the the prediction's producers is killed by the procedure described 

below, the prediction is given a special marker indicating that it 

should be checked to see if it ..s still alive. The predict task 

procedure for traversing the subnet below a preexisting prediction looks 

for this marker. I cho marker is found, the procedure searches the 

pro^'icer subnet for a phrase that still can make more predictions or a 

prediction with candidate words remaining. This se^ch ♦dkes care of 

recognizing deao predictions even if they are part of consumer-producer 

loops. If the search fails, the prediction is 'killed'; in other words, 

it is marked as dead, and for each consumer of the prediction, if all of 

the consumer's predictions are now derd and the consumer has made all of 

its predictions, the consumer Is killed. A consumer is killed by 

marking it vs dead and if it is fi producer for a prediction PR, and PR 

does not have any remaining candidate words, then either PR is killed if 

all of its producers are now dead, or it is marked to indicate that it 

should be checked to see if it is still alive if a subsequent predict 

task encounters it. This method propagates markers up the parse net 

during the first stage of the predict task. During the second stage, 

ratings are not recalculated for phrases marked as dea^.. 

Dead phrases cannot be discarded f >m the parse net 

during the first stage of the predict task because they may be needed as 

consumers during the cleanup stage. For example, if a p! rase P makes a 

single prediction PR ar.a PR is dead but has instances, then P will be 

narked dead during the first stage, but it wij. ■ have the instances of PK 
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added to It during the last stage. It would be possible, of course, to 

keep a list of killed phrases and prune them at the enci of the cleanup 

stage, but we have not implemented such a scheme. 

4.  MULTIWORD LEXICAL ENTRIES 

Small words like "of", "are", "a", and "the" cause 

difficulties for a speech understanding system because they are often 

poorly articulated or reduced to a short duration remnant. In order to 

minimize false rejections for such words, the acoustic mapper must use 

very loose criteria in testing them. However, the loose criteria lead 

to a high false alarm rate. This creates a severe problem because the 

language definition often allows several small words to ojcur in a 

series. To reduce the bad effects of small words, we have introduced a 

mechanism allowing a series of small words to be processed acoustically 

as a single unit. With this approach, a series of words is combined to 

produce a larger 'multiword lexical entry', or 'multiword', which can be 

tested more reliably. Small words are tested individually only for 

contexts that do not put other small words beside them. A set of over 

50 multiword^ was used in the experimental tests of the system. They 

Included phrases such as "is the", "of a", and "what are the". 

This method does not eliminate the small-word problems, but 

preliminary results suggest that it does reduce them. Following the 

introduction of multiwords, the mapper criteria for small words were 

tightened to reduce their false alarm rate. Data collected on the 
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mapper performance (see the discussion in Chaptpr IV) included two cases 

in which small words were incorrectly rejected, perhaps because of this 

tightening. However, in both cases the missed words were part of a 

series of small words, and the multiword for the series matched well 

enough to be accepted in spite of the fact that one of its component 

words was rejected when mapped alone. Thus, the sentences could be 

understood correctly although one of the (small) words was incorrectly 

rejected. More tests are required to assess the effects of multiwords, 

but these initial results suggest that they may provide a means of 

raising the accuracy of acoustic processing. 

The multiwords are treated as single units for acoustics, but 

not for linguistic processing. The language definition would be badly 

distorted by an attempt to incorporate multiwords directly. Instead, 

the Executive breaks multiwords into their individual parts, and 

multiword entries like "is a" are analyzed by the linguistic knowledge 

sources as two separate words although recognized by the mapper as one. 

When a multiword with individual words W1,...,Wn is accepted from 

position PI to position P2 in the input, the Executive creates n-1 new 

'pseudo-positions', X1,...,Xn-1, which are distinct from positions in 

the actual input. The multiword is then analyzed as a series of regular 

words: W1 from PI to XI, W2 from X2 to X3,..., and Wn from Xn-1 to P2.• 

• This method is similar to the Kay and Kaplan method of representing 
the input as a 'chart' (see Kay, 1967, 1973). 
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The pseudo-positions must be treated as special cases in some 

of the Executive algorithms. The time compatibility tests that are used 

by the distribute-phrase and add-constituent procedures look for pseudo- 

positions. If both times being tested are fixed and one is a pseudo- 

position, the other must be the same pseudo-position or the times are 

incompatible. The phrase mapping procedure accepts without testing two 

adjacent words from the same multiword phrase. However, if the words 

for phrase mapping are not from the same multiword, either word that is 

from a multiword is replaced by the entire multiword before phrase 

mapping takes place. For example, if called with the pair "the" and 

"ship" for phrase mapping and "the" comes from the multiword "is the", 

the phras«? mapping is done using "is the ship". If the lexical 

subsetting procedure is called with a pseudo-position, it does not do 

any acoustic processing, but instead looks in a table of accepted 

multiwords to find the word from the multiword phrase at the given 

position. Thus, from the W1...Wn example, the subset to the right of XI 

contains just W2. 

Multiwords are standard sequences of words from the language, 

so there is a danger of wasted effort expended analyzing both a 

multiword and the individual words composing it. For instance, if the 

multiword phrase "of the" is accepted from position 35 to position 55, 

the mapper may also accept "of" from 35 to ^5 and "the" from M5 to 55. 

The Executive has two ways of blocking series of small words that 

duplicate a multiword. First, the phrase mapping routine rejects pairs 
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that together form a multiword. Thus, a phrase whose rightmost word is 

"of" cannot be put to the left of a phrase whose leftmost word is "the" 

unless the "of the" comes from a single multiword accepted by the 

mapper. The second block on small words that duplicate a multiword 

occurs in the word task. If "of" is the only word accepted ending at 

position 15, "the" will be excluded from the candidate words starting at 

45 because "of the" is one of the system multiwords. The exclusion is 

not permanent; it will stop if another word ending at U5 is later found 

and leads to a new execution of the predict task at position 15 and 

direction equal RIGHT. The exclusion is removed as part of the word set 

revisions during the cleanup phase of the predict task. 

Recall that the Definition Compiler adds the multiwords to the 

lexicon so that they are available for the word task algorithms. 

Multiwords beginning with word W are added to all lexical subcategories 

containing W and are marked for use in left-to-right word sets. 

Similarly, multiwords ending wif W are added also, and are marked for 

use in right-to-left word sets. The procedure that creates word sets 

eliminates multiwords that are marked for the wrong direction. The 

remaining multiwords are treated like standard words until they reach 

the procedure to create terminal phrases. This procedure recognizes the 

accepted word as a multiword, creates pseudo-positions for it, and then 

creates a terminal phrase for one of the standard words in the phrase. 

If the multiword lexical entry was marked for left-to-right use, the 

terminal phrase is constructed for the leftmost word in the multiword. 
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Otherwise, the terminal phrase is created for the rightmost word. The 

terminal phrase Is diatrlbuted and added to consumers in the standard 

manner. The resulting Incomplete phrases lead to predictions at the 

pseudo-position within the multiword. The standard parse net structure 

and task algorithms are used in analyzing the multiword, and the 

analysis benefits from the precise lookahead information available at 

the pseudo-positions. 

In summary, multiword lexical entries appear to offer a way to 

Improve acoustic accuracy and, by the methods outlined above, have been 

integrated into the system in a simple manner without requiring any 

changes in the language definition. 

5.  PRIORITY SETTING 

Newell and Simon (1976) conclude their 1975 Turing Award 

Lecture by stating: 

For all physical symbol systems, condemned as we are to 
serial search of the problem environment, the critical 
question is always: What to do next? (p.126) 

In our system, this critical question is answered according to 

task priorities, thereby replacing the original question by another 

difficult one: How to set priorities? The approach we have taken is to 

base priorities on phrase ratings that combine results from acoustic 

mapping and language factors. The predict task priority is the highest 
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rating for an incomplete phrase waiting to make a prediction. The word- 

task priority is the highest rating for a terminal phrase from the 

current word candidates. The priorities are initiall'1 derived from 

ratings, but they can be modified according to various strategies such 

as focus by inhibition. 

a.  FACTORS 

Phrase ratings are derived from phrase scores, and phrase 

scores are in turn derived from language factors and mapper factors. 

The language factors are defined in lexical-category procedures and rule 

procedures. Many of the language factors are Boolean. Such factors 

block the construction of a phrase if the phrase would have certain 

undesirable properties. If the properties are not present, the Boolean 

factor allows the phrase to be constructed and does not affect the 

phrase score. The remaining language factors are non-Boolean. They 

raise or lower the phrase score according to the results of various 

tests and are used to 'tune' the language definition (as discussed in 

Robinson, 1975b). For example, if questions are expected to be the 

predominant form of input to the system, non-Boolean factors can be 

added to raise scores for questions relative to other kinds of 

sentences. Such factors would bias the system toward looking for ways 

to interpret utterances as questions. 

Boolean language factors are implemented as calls on the 

F.REJECT procedure, which causes the construction of a phrase to be 
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immediately terminated. The non-Boolean factors are implemented as 

variables assigned integer values in the range 0 to 100 or pairs of 

integers, <WEIGHT T0TAL>, such that TOTAL divided by WEIGHT is between 0 

and 100. A factor value that is a single integer J is equivalent to the 

pair <1 J>. The factor WEIGHTS reflect relative importance; a factor 

with WEIGHT equal 2 has twice the effect on the phrase score as a factor 

with WEIGHT equal 1. 

Mapper factors are derived from mapper scores «nd thus 

are based on acoustic, phonetic, and phonological judgments. Mapper 

factors for individual words and multiword lexical entries directly 

contribute to the scores of terminal phrases. Similarly, phrase mapping 

factors contribute to the scores of nonterminal phrases. A nonterminal 

phrase with N constituents has N-1 phrase junctures and N-1 phrase 

mapping factors. For both word mapping and phrase mapping, the mapper 

score is an integer ranging from a top value of 100 down to a threshold 

of t5. 

Mapper scores are converted to mapper factor values 

according to the estimated likelihood that the word is a false alarm. 

Each word and multiword has a false alarm rating in the range 0 to 100, 

indicating the relative likelihood of producing a false alarm compared 

to the words in the vocabulary that are considered the most likely to 

produce false alarms. The most likely words get a false alarm rating of 

100, words half as likely get a rating of 50, and so on. The ratings 

are rough estimates originally provided by the implementors of the 
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mapper and revised upward in some cases according to experimental 

results. 

The false alarm rating provides a confidence measure for 

mapper results, and the system gives a greater weight to mapper factors 

for words with low false alarm ratings. The factor WEIGHT is 1 if the 

rating is above 90, 2 if it is between 81 and 90, 3 if it is between 71 

and 80, and similarly up to 10 for ratings between 0 and 10. Also, the 

range of mapper factor values is reduced for words with high false alarm 

ratings. This reduction causes the system to adopt a casual attitude 

toward very high mapper scores on small words like "a". The mapper 

scores are converted by a linear transformation with a slope that 

decreases as the false alarm rating of the word increases. For a 

minimum false alarm rating of 0, the result is 27 plus two-thirds of the 

mapper score; scores in the range 45 to 100 are converted to results in 

the range 57 to 9**. For a maximum rating of 100, the result is Mt plus 

one-third of the mapper score; scores in the range U5 to 100 produce 

results in the range 57 to 77. After the weight has been calculated and 

the score transformed, the mapper factor is constructed. It is a pair: 

the WEIGHT as determined by the false alarm rating of the word and the 

TOTAL equal to the product of the WEIGHT and the transformed score. 

Ideally, this ad hoc method would be replaced by a scoring technique 

based on greater information about the performance characteristics of 

the acoustic processor (perhaps like the probabilistic scoring described 

by Klovstad in Woods et al., 1975a, pp.33-39). 
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b.  PHRASE SCORES 

The score for a phrase combines factors to form a WEIGHT 

and TOTAL pair that can itself be used like a factor value. For a 

terminal phrase, the score combines language factors from the lexical- 

category procedure and the mapper factor for the word. For a 

nonterminal phrase, the score combines factors from the rule procedure, 

phrase-mapping factors, and constituent scores. In most cases, the 

score is simply a vector sum of the factors: the WEIGHT is the sum of 

the factor WEIGHTS, and the TOTAL is the sum of the factor TOTALa. 

To explain the cases in which the score is not Just a 

vector sum of the factors, we define the 'Q' of a score or factor to be 

the quotient of the TOTAL divided by the WEIGHT. The Q is important 

because it provides a 'quality' dimension for comparing factors and 

scores, and the Q of scores for root-category phrases is used in 

determining phrase ratings. In case the phrase score is a vector sum of 

the factors, the Q of the score is a weighted arithmetic mean of the Qs 

of the factors. Thus, the Q of the score is insensitive to the total 

number of factors; five factors with average Qs give a result that 

differs from that for ten factors with average Qs only in weight, not in 

Q. This insensitivity is desirable, because the factors in our system 

are not like independent probabilities and combining them by a technique 

that was sensitive to the total number of factors would be 

inappropriate. However, there would be a danger with using the 

arithmetic mean that a very low factor would fail to pull the score down 
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as much as it should. A possible solution would be to use a geometric 

mean instead (the geometric mean of N numbers la the Nth root of their 

product). We have taken a different course and treat low factors as 

special cases; if the Q of the factor is below a certain threshold by X 

percent, the TOTAL for the score is reduced by X percent. The threshold 

in the current implementation is 50, so a Q of 10 causes the TOTAL to be 

reduced by 20$. (Details of the algorithm for combining factors into 

scores were given in Section II of Walker et al., 1975). 

c.  PHRASE RATINGS 

The rating for a phrase P is a certain constant times the 

Q of the score for a root-category phrase that could be constructed 

using P. (The constant is chosen to spread the phrase ratings over a 

wide range of integers.) The rating for a root-category phrase comes 

directly from the Q of its score. The rating for a nonroot phrase is 

derived by operations that look at the consumer context of the phrase. 

As discussed ir the preceding overview, we have experimented with two 

techniques for calculating phrase ratings. The two methods for 

assigning nonroot phrase ratings are 'context checking', which entails 

the execution of consumer rule-procedures to gather factor information, 

and 'merging', which does not. Both methods take advantage of the fact 

that the system if. designed to assign ratings to the consumers of a 

phrase P before assigning a rating to P icself. Define the 'rating- 

score ' of the consumer to be the WEIGHT anc' TOTAL pair forming the score 

111-65 



used in calculating the consumer rating. Also, let the 'merged rating- 

score ' of P and a consumer C be the vector sum of the score of P and the 

rating-score of C. The rating of P with respect to the consumer C is 

determined from the Q of the merged rating-scoi-e of P and C. The rating 

of P, as calculated by merging, is the highest rating of P with respect 

to any of its consumers. (Recall that there is always at least one 

consumer for a nonroot phrase.) 

The merging method is fast and siraple. Moreover, it 

reflects both the quality of the phrase and the quality of the consumers 

of the phrase. However it does not indicate whether the phrcae is 

really compatible with its consumers. The phrase may have attributes 

that will cause any complete phrase built from it to be rejected by the 

consumers. There is nothing to be gained from working on such a phrase, 

but the merging method will not give it a low rating if its score is 

good and the consumers' ratings are good. The context-checking method 

is designed to avoid this defect. 

To start with a simple example, assume that the phrase f 

has a single consumer C, ind C is a root-category phrase. The context- 

checking method assigns a rating to P by creating a 'virtual' phrase C 

from C and P. Virtual phrases are only created during context checking 

and are deleted immediately afterward with all storage reclaimed. By 

assumption, C' is a root category phrase, so the score of C' is used to 

determine the rating of P. 
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If C is not root category, but has a single consumer D 

which is, the context-checking method adds C to D to form another 

virtual phrase D', and the score of D' determines the rating for P. In 

general, any path leading from P to a root-category consumer can be used 

to establish a rating. The phrase rating could be defined as the 

maximum rating with respect to any consumer path leading to a root- 

category phrase. However, there may be many such paths, and they would 

all have to '»e tried in order to guarantee finding the best one. The 

cost of such an exhaustive exploration of the consumer context could 

overshadow the potential benefits, so the system instead uses heuristic 

methods to find a near-optimal path without necessarily considering all 

of the paths. 

The details of the context-checking algorithm for setting 

phrase ratings are as follows. If the phrase P to be given a rating is 

a root-category phrase, its rating is calculated directly from its 

score. Otherwise, a lower bound for the rating is initialized and the 

consumers of F are scheduled for the creation of virtual phrases. The 

initial lower bound is zero if P is being rated for the first time. In 

case P is having its rating recalculated because of some addition to its 

consumer context, the lower bound is set to its prior rating. Each 

consumer C is scheduled at a priority equal to 98$ of the rating 

determined by merging the score of P with the rating-score of C. The 

98$ is included as a 'laziness' factor lo cause the process to stop 

sooner. (Note that the scheduling re/erred to here is internal to the 

rating algorithm; it is not part of the Executive task scheduling.) 
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After the lower tound is Initialized and the consumers 

scheduled, the path growing begins. It continues until there are no 

more extensions scheduled or the highest priority is lower than the 

lower bound. At each step in the growing, the highest priority 

extension is performed. A scheduled extension consists of a consumer C 

and a (possibly empty) path of virtual phrases. Let X be the most 

recently added virtual phrase in the path or P if the path is empty. In 

either case, C is a consumer for X, and the attributes and score of X 

are available for use in constructing a new virtual' phrase, C. If C 

is rejected by the rule procedure or if its score is subthreshold, this 

step In the path growing is terminated. Otherwise, if C is root 

category, its score is used to update the lower bound. If C is not 

root category, extensions are scheduled for each of its conjumers at a 

priority of 98$ of the rating determined by merging the consumer's 

rating-score and the score of C. The consumer is not scheduled if its 

priority is less than the lower bound, or if it already appears twice in 

the path leading to C (thus blocking paths fron going around consumer- 

producer loops more than once). 

The merging method and the context-checKing method give 

similar results for phrases that have no conflicts with their consumer 

contexts. However, when a phrase has attributes that would cause 

completions of it tu be rejected or downgraded by consumers, the 

context-checking method gives it a lower rating than the merging method. 

If the rule procedures are a major source of evaluative knowledge. 
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context-checking can produce more useful rat.lngs and hence better 

priorities. However, merging is a faster method and can produce results 

that are as useful if the rule procedures provide only limited 

constraints. In our system, the rule p'ocedures are in fact an 

important source of information, and experimental results s:ow that the 

use of the context-checking method has good effects on performance. 

One of the choices considered in the control strategy 

experiment (reported in Chapter IV, Section E) was whether or not to use 

contexc-checkjng in setting ratings. Some of our test systems used the 

merging method exclusively. Other ' >st systems used a mix cf the 

methods: context-checking for partially completed nonterminal phrases, 

and merging for empty ones. This mix is preferred to pure context- 

checking because empty phrases have so few attributes established that 

they are almost always compatible with their context. By mixing the 

methods, tl.e costlier checking is only done in cases where it is more 

likely to help. 

RELATION TO EXECUTIVE TASt'S 

Ratings are calculated at several points in the Executive 

tasks. When an incomplete phrase is created in the cdd-constituent 

operation, it is inserted in the parse net to establish its consumer 

context, and then its rating is calculated. If its rating is above a 

certain threshold, the phrase is added to the predict ^. s. Otherwise, 

the phrase will not De allowed to make any predictions unless its 

consumer context changes to raise its rating above the threshold. 
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During the second stage of the predict task, new phrases 

get initial ratings, and old phrases with modified consumer contexts get 

revised ratings. In the case of a revised rating, if the phrase had 

been kept out of predict sets previously, but now has an above threshold 

rating, it is added to the predict sets and becomes eligible to make 

predictions. Otherwise, if the phrase is a member of a predict set and 

was or is now the best phrase in the set, the priority of that set is 

updated to reflect the new phrase rating. These revisions ensure that a 

phrase that is given a low initial rating has a chance to get a higher 

rating later if its consumer context changes. The revisions also keep 

the priorities in step with the ratings. 

Like predict sets, word sets have priorities that depend 

on ratings. These ratings are calculated as part of the cleanup stage 

of the predict task. They are initially calculated when the word set is 

created and are revised when the consumer context changes. The 

consumers that are used in seating a word set rating come from the 

prediction that caused the creation of the word set. 

The details of setting word set ratings depend ou :hether 

the system is mapping all at once and also on the number of words In the 

set. When mapping all at once, the words in the set have mapper scores 

and corresponding mapper factors. The word set is assigned a score 

eqwl to the mapping factor with the highest Q. The rating of the word 

set is then determined by the merging method. 
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If the system is not doing mapping all at once, the word 

set rating is calculated either by merging (using a default score for 

the word set) or by context-checking. The context-checking makes 

virtual phrases using a default score and the default attributes of the 

word set lexical subcategory. The defaults are shared by all the words 

in the subcategory, so only one rating needs to be calculated for all 

the words in the word set. The savings resulting from this are the 

principal motivation for having lexical subcategories. The merging 

method is employed if the system is using a no-context-checking control 

strategy, or if there are few words in the word set (three or less, in 

the current implementation). 

The use of merging when there are few words in the word 

set represents a trade-off between processing time for context checking 

and processing time for acoustic tests. If the context checks are 

performed and result in a low rating, the system may avoid doing 

unnecessary acoustic processing. If merging is used and results in an 

inflated rating, extra acoustic tests may be done. The larger the word 

set, the more likely it is that the cost of the context checking will be 

offset by savings in acoustic processing since the context checking is 

done only once for the entire set but the acoustic tests are repeated 

for each word. 
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6.  ADJUSTING PRIORITIES AND FOCUS BY INHIBITION 

Phrase ratings determine initial priorities, but priorities 

can be adjusted according to a variety of strategies. If no adjustments 

are made, the system will work in a 'best-first' manner strictly 

following the ratings in moving from one task to another. Looking at 

the series of tasks performed by such a best-first method, one often 

observes the system shifting its activity among competing possibilities 

at a high rate. Such observations led to an experiment in adjusting 

priorities in hopes of making the system 'focus attention' better. The 

method of adjusting priorities is called 'focus by inhibition' because 

it affects the system focus of attention by inhibiting work cu certain 

alternatives. 

To explain the motivatation for focus by inhibition, assume, 

contrary to fact, that the system could find a word X in the input that 

was guaranteed not to be a false alarm. Having found X, the system 

would not want to waste time on any task that would try to replace it. 

In other words, the system should block word tasks that would produce 

words overlapping X and block predict tasks for phrases containing words 

that overlap X. In this way, the system would avoid wasting its effort 

on tasks that were in conflict with a word that was sure to be correct. 

In actual practice, the system is only relatively sure of words rather 

than being absolutely sure. Instead of being sure that X is correct, 

the system will have a certain confidence that X is correct. If it is 

highly confident in X, it will be reluctant to perform conflicting 
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tasks, but It will not absolutely refuse to perform them because X may 

be a false alarm. Focus by inhibition implements this reluctance as a 

reduction in priority of conflicting tasks. The priority reduction 

causes a system bias, but it is a bias that can be overcome — the task 

can still become top priority in spite of having its priority reuuced. 

In the implementation of focus by inhibition, the focus is 

represented by a set of time-compatible words (or multiwords) from the 

input. Two words are time-compatible if they do not overlap or have a 

small enough overlap that they could still be in the same phrase. Words 

are time-incompatible if they are not time-compatible — in other words, 

if they overlap so much that they cannot be in the same phrase. A 

phrase conflicts with focus if any word in the phrase is time- 

incompatible with some word that is in focus. The phrase priority is 

initialized to its rating and is lowered if the phrase conflicts with 

focus. The percentage amount by which the priority is lowered depends 

on the 'strength' of the focus word. The focus strength goes up 

according to the mapper score for the word and the ratings of the 

phrases putting the word in focus. The strength decreases acccording to 

the likelihood that the word is a false alarm. 

At the start of the predict task, the top priority phrase P is 

selected from the top priority predict set. It is possible that P 

became top priority in spite of being in conflict with some focus word 

W. If so, W is removed from focus and any task inhibited because of 

conflict with W has its priority raised to its preconflict level. Next, 
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the predict task checks for a conflict between P and the current focus 

set. (Even if P just causc-d the removal of a focus word, P may still be 

in conflict with a different focus word.) If P conflicts with a focus 

word X, the priority of P is set to its rating reduced according to the 

inhibition strength of X, and the predict task goes to the rescheduling 

stage without making any predictions. If there is no conflict, the 

words contained in P are added to the focus set, and the normal predict 

task begins. These operatiop1? at the start of the predict task take 

care of adding words to focus, removing them, and adjusting prediction 

priorities. 

The word task also has operations for focus by inhibition. A 

word set conflicts with a focus word X if any word from the set would be 

time-incompatible with X. For example, if X begins at position MO and 

the word set left time is also 40, there is a conflict. In case of a 

conflict, the word set priority is lowered according to the strength of 

the focus word. At the start of the word task, the highest priority 

word set WS is selected. It may have become the highest priority in 

spite of a conflict with a focus word X. If so, WS is marked as 

'immune' to inhibition by X. The word X is not removed from focus; 

however, if WS leads to the acquisition of a good word, a high priority 

prediction will remove X from focus later. Next, the word task checks 

for a conflict between WS and some focus word Y to which WS is not 

immune. If there is such a Y, the priority of WS is revised and the 

word-task is rescheduled. Otherwise, the normal word-task operations 

begin. 
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No other changes are involved in implementing focus by 

inhibition. The structure of the system makes it easy to try different 

methods for adjusting priorities, but, as mentioned earlier, the methods 

must be Justified experimentally. This particular technique did not 

improve system performance, but perhaps a related approach will. The 

strength of the method is that it provides simple answers to how, when, 

and why to focus attention, while maintaining the completeness of the 

system control strategy. The weakness of this particular attempt is its 

inability to focus primarily on hits rather than on false alarms; 

perhaps greater selectivity in adding words to focus would produce a 

focus by inhibition with a positive effect on system performance 

(evidence suggesting that this may be so is given in Chapter IV, Section 

E.3.) 

E.  DISCUSSION 

This section reviews the most significant features of our Executive 

System, compares our framework for speech understanding to some others, 

and sketches the evolution of our system over the last four years. 

1, REVIEW 

The primary functions of the Executive are system integration 

and control. The language definition is the principal mechanism for 

specifying knowledge source interactions, and phrases with their 

attributes and factors are the basic entities manipulated by the 
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Executive. Because of the central place given to the language 

definition, the Executive takes on the role of a parser in carrying out 

its integration and control functions. It builds a parse net data 

structure to hold intermediate results and hypotheses, and it uses the 

organization of the net to help eliminate wasteful duplication of 

effort. Two types of tasks interact to build the net: the predict task, 

which leads to predictions for words in the input, and the word task, 

which gets words and uses them to construct new phrases. The predict 

task operates in a top-down manner and ends by scheduling the word task; 

the word task operates in a bottom-up manner and ends by scheduling the 

predict task. Both tasks can operate bidirectionally through the input 

and are guided by a lookahead mechanism to avoid unnecessary operations. 

The Executive controls the overall activity of the system by 

setting priorities. The fundamental data for setting priorities are 

factors based on both acoustic and linguistic information. Factors are 

combined to form scores and ratings. A phrase score reflects a quality 

judgment that is independent of the context of the phrase. For example, 

the score of a nonterminal phrase depends on the scores of its 

constituents and the factors that indicate how well the constituents go 

together, but it does not depend on higher level phrases that might 

include this one as a constituent. Because phrase scores are 

Independent of context, they do not have to be recalculated for each 

possible use of the phrase. If a phrase gets a subthreshold score, it 

can be discarded without concern that in a different context it might do 
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better. Moreover, the language definition allows scores to be 

calculated for incomplete phrases, so the Executive has access to 

quality Judgments from scores at each step as it adds constituents. 

The score gives useful local information about a phrase, but 

in setting priorities we want to make use of global information 

concerning the sentential context; ideally, we do not want to waste time 

working on a phrase that is not part of the best current hypothesis 

about the entire utterance. In designing a method to make use of 

contextual constraints, we must consider the way the constraints are 

expressed. Our language definition is written in a style that 

represents a large part of the information procedu-'ally rather than 

structurally. We use general structure declarations, with categories 

like noun phrase and verb phrase, and then use factor statements in the 

rule procedures to specify the detailed constraints. To get early and 

efficient access to the contextual information, we have developed a 

special technique for calculating phrase ratings. The rating of a 

phrase is intended to provide an estimate of the best score for an 

interpretation that can be constructed using the phrase. Phrase ratings 

are calculated by a heuristic search of the consumer tree for the 

phrase. The search is guided by previous ratings and by the results of 

executing consumer rules to gather factor information, and the phrase 

rating is determined by the score for the best complete consumer path 

constructed in the search. This technique provides the Executive with 

an effective way of estimating how well the phrase fits its possible 
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sentential contexts while avoiding an exhaustive search of the consumer 

tree. Experiments show that this context-checking method results in 

significant improvements in system performance. 

Experiments such as the one just mentioned are important for 

evaluating a complex system design such as ours. It is not enough 

simply to demonstrate that a system with certain features can be 

implemented; a working system shows that the features are not 

disastrous, but it does not show what good effects, if any, the features 

have on performance. Experiments must be carried out in order to 

discover the actual effects and interactions of the design features. A 

useful method, which we have used in several experiments, is to evaluate 

system features by comparing the performance using a particular feature 

to the performance using a simpler alternative instead of that feature. 

The performance difference indicates the importance of the feature. 

Also, by testing different combinations of features, interactions 

between features are revealed. Using this method, we have carried out a 

large experiment concerning context checking, mapping all at once, 

island driving, and focus by inhibition. The results of the and other 

experiments regarding the system design are reported in Chapter IV. 

The remainder of this section deals primarily with system 

integration and control in some other speech-understanding systems. The 

purpose is to clarify further the SRI system design rather than to give 

a complete review of the literature (for a good survey of recent speech 

recognition research, see Reddy, 1976). We consider systems developed 
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at Carnegie-Mellon University (CMU), at Bolt Beranek and Newman (BBN), 

and earlier at SRI. 

2.  CMU: HARPY AND HEARSAY-II 

Two lines of speech research have been carried out at CMU in 

the last few years. One is based on the use of a simple dynamic 

programming model with all system knowledge represented in a state 

transition network. The other is based on a more complex design using 

multiple, cooperating knowledge sources. Both lines of research have 

been very productive, and there has been significant cross-fertilization 

between them. We discuss the most recent (and most successful) systems 

in each line: HARPY in the dynamic programming line and HEARSAY-II in 

the multiple knowledge source line. 

The HARPY system has the oest performance statistics of any 

existing system for understanding connected speech (lowerre, 1976). The 

design for HARPY evolved from a comparative study of two previous CMU 

systems, Hearsay-I (see Erman, 1974a) and Dragon (see Baker, 1975). 

HARPY uses a state transition network to represent all possible 

pronunciations of all legal input language sentences. The network thus 

embodies the entire systec knowledge of syntax, word pronunciations, and 

interword coarticulation effects. To process an utterance, HARPY looks 

for the path through the network that best matches the input. The 

search proceeds left-to-right, segment by segment across the utterance. 

At eac^  segment, all paths are discarded that are more than a threshold 
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amount worce than the best path. This heuristic means that the system 

is not guaranteed to find the optimal path (the best one may be dropped 

if it starts out poorly), but the threshold for dropping paths is chosen 

so that in practice the optimal path is found in nearly all cases. 

Compared with an exharstive search of all paths, there is a small 

sacrifice in accuracy for a large improvement in processing time. The 

performance achieved is impressive — on a 1011 word vocabulary, HARPY 

got 92% correct of a test set of 100 sentences with an average of a 

little over 20 seconds of processing per second of speech on a 1.3 

million Instructions fer second computer (DEC KL-10; these results were 

reported at a system demonstration at CMU on September 8, 1976). Because 

of its one-pass search strategy, HARPY has a low variance in its speed 

which is also an important feature for a useful system. Finally, in con- 

trast to most other speech-understanding systems, HARPY is conceptually 

simple and has been well-studied. For example, there is a good under- 

standing of how its recognition time depends on parameters such as the 

number of samples in the input, the number of phonetic-classification 

templates, and the size of the recognition network. 

HARPY achieves good performance with simple means, but it does 

so by sacrificing generality. With its reliance on a finite-state 

network for syntax, HARPY can only deal with very restricted input 

languages. The network representation also makes it difficult to deal 

with dynamic changes such as take place in natural connected discourse. 

For example, the use of anaphora and ellipsis depends on the preceding 
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sentences, and what is acceptable in one context may not be in another. 

The performance of HARPY appears to be largely dependent on its use of 

an extremely constrained input language. The average branching factor, 

the number of alternatives at each word, is about 9.5 for the grammar 

with which HARPY achieved the results mentioned above. Preliminary 

tests she« a drop in accuracy to about 85$ when the branching factor is 

increased to 25 (see Goodman et al., 1976). Based on measurements of 

our SRI language definition, we feel that a more natural input language 

with a 1000+ word vocabulary could easily have a branching factor well 

over 200 (see the discussion of our experiments in Chapter IV, Section 

H), so these results suggest that HARPY may be limited to very 

restricted languages unless there is a big improvement in acoustic 

accuracy. In addition, HARPY's strictly left-to-right search for a 

complete path through its network prevents it from dealing with 

incomplete sentences or inputs that in any way deviate from the 

predefined grammar. A more flexible control structure would allow it to 

build partial interpretations of such inputs from which an appropriate 

response could be inferred. In summary, on the limited tasks HARPY was 

designed for, it does very well. However, it does not represent or 

claim to be a general technique for speech understanding with a wide 

range of input languages. Undoubtedly, applications exist where a 

carefully constrained, artificial input language can be useful, and in 

these applications, HARPY offers a viable approach. For more general 

applications that may require a closer approximation to natural language 

input, the simple approach used by HARPY seems unlikely to succeed. 
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Another system developed at CMU, Hearsay-II (HS-II), has taken 

a more general approach (see Lesser et al., 1975). HS-II is based on 

many interesting design concepts. Perhaps the most distinctive is the 

representation of knowledge as self-activating, asychronous, parallel 

processes that communicate with each other through a global data 

structure, called the 'blackboard'. There is an emphasis throughout HS- 

II on generality and uniformity in representation and control. The same 

approach is proposed for all levels of the system from signal processing 

to semantics. This search for generality is reminiscent of CMU efforts 

in other research areas such as problem solving. In fact. Lesser et al 

suggest viewing HS-II as a production system that is executed 

asynchronously.* They go on to state that in this uniform framework 

there are to be many small knowledge sources, each independent of the 

others. Knowledge source communication is to be through the generation 

and modification of globally accessible hypotheses on the blackboard. 

Changes on the blackboard are also to control the activation of 

knowledge sources. Each knowledge source is to have a precondition that 

is a descriptios: of some partial state of the blackboard. The knowledge 

source process can be run when the precondition is satisfied. The 

blackboard modifications made by one knowledge source trigger other 

knowledge sources by satisfying their preconditions. In addition to 

preconditions, each knowledge source has a specification of the kinds of 

changes it makes (information used in scheduling knowledge source 

activations), and a program which accomplishes those changes. There are 

' See Newell (1973) for a discussion of production syrtems, 
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to be no separate data structures or state information for the 

individual knowledge sources; everything is to be done uniformly by 

means of the blackboard. 

In the following discussion, we comment first on the HS-II 

goals and compare them to our system design. Later, we consider how 

close the actual HS-II system that was demonstrated in September 1976, 

approached tne design goals given in the IQ?1* paper. HS-II as described 

above is an elegant and ambitious system. I* is more general than 

HARPY, for instance, in that it does not force all knowledge into a 

state transition network representation. AIPO, it can hope to deal with 

sentence fragments that do not fit the predefined language. It is not 

limited to a left-to-rit'ht search and can build up phrases anywhere in 

the input in any order. HS-II and our system share the features just 

mentioned, but, in spite of that similarity, there are significant 

design contrasts between HS-II and our systea with respect to system 

integration and control. First, unlike HS-II, we are not trying to use 

? uniform approach throughout the system for representing partial 

results and for controlling knowledge source operations. We feel it is 

very unlikely that a uniform method can produce satisfactor results for 

disparate operations surh as semantic interpretation and acoustic 

labeling. Second, we emphasize explicit, direct knowledge source 

interactions througn the procedural parta of rules rather than trying to 

keep all knowledge source interactions indirect through a global data 

structure. It is cle^r tl it some of the interactions must be indirect 
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to allow the Executive to determine dynamically the order in which t^ks 

will be perfonned as it searches for an interpretation. This 

flexibility is necessary because of the inefficiencies associated with a 

fixed order of search (see Paxton, 1975, for further discussion of this 

point). We provide for indirect interactions by means of the phrases in 

the parse net and achieve modularity at the level of rules in the 

language definition. However, within a rule, the knowledge source 

interactions are explicitly stated in the procedure. There are several 

reasons for such a mix of direct and indirect interactions. One major 

consideration is to encourage interactions by providing a low-cost mode 

of communication. We feel that there is a large potential for mutual 

guidance that would not be realized ;'f all knowledge source 

communication was indirect; the cost of modifying the global data 

structure and triggering the relevant preconditions would inhibit the 

interactions. In addition to being more efficient, direct interactions 

are often simpler to specify than the indirect ones. The simplicity 

further encourages the development of knowledge sources that cooperate 

closely. Another consideration is the inevitable overhead associated 

with scheduling and activating tasks. If every knowledge source 

interaction had this overhead, the system performance would suffer. 

Moreover, efficiency considerations would limit the algorithms for 

determining task priorities to simple operations such as merging local 

scores. By reducing the number of tasks, we are able to use a more 

complex scheduling algorithm and still keep the total scheduling cost 

small relative to the time spent actually performing the tasks. Tasks 
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in our system are thus substantial operations such as making entire sets 

of predictions or performing the acoustic processing needed to look for 

words at a particular location in the input. This relatively large task 

size is another difference between our system and HS-II as described in 

the 1971* paper. We also have a few large knowledge sources where they 

call for many small ones, and we have separate data structures for 

special uae by the different knowledge sources rather than enforcing the 

uniform use of a single global data structure. Finally, we have 

developed techniques suitable for natural input languages, while HS-II 

has used word templates of a linguistically simple form (patterned after 

those developed for PARRY by Cnlby ~ see Colby et al., 1974; see Hayes- 

Roth and Mostow, 1975, for a description of the HS-II template grammar). 

In September 1976, a version of HS-II was demonstrated at CMU 

that was somewhat different in design from the deacription given in the 

M7U paper. (The 1976 system is briefly described in Reddy et al., 

1976). The 1976 HS-II has a few large knowledge sources rather than 

many small ones. One component does parameter extraction, acoustic 

analysis, segmentation, and labeling. Another does bottom-up word 

recognition based on syllables. A third is a word verification process 

using HARPY techniques. This verifier checks words found by the bottom- 

up recognizer or words predicted by the syntactic component. A fourth 

knowledge source process is a word-pair adjacency tester. It looks at 

the speech data in a word-pair gap or overlap and decides if the pair is 

acceptable or not on the basis of the phonetic spellings and various 
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word juncture rules. A fifth knowledge source process Is the word- 

sequence hypothesizer, which provides multiword seeds for an island 

driving control strategy. This process uses a bit matrix indicating 

allowable word-pairs in the language to ensure that the words in the 

multiword island are at least pairwise grammatically acceptable. It 

also calls the word-pair adjacency tester to make sure that the words in 

the island can be adjacent acoustically. The sixth and final knowledge 

source process is the parser. It has a template grammar for use in 

parsing word sequences, predicting words that can be syntactically 

adjacent to the ends of the sequence, and constructing larger sequences 

when predicted words are verified. The performance of HS-II on the same 

1011 word vocabulary and input language as used in the tests of HARPY 

was SH sentence accuracy (versus 92% for HARPY) and processing times of 

about 2 to 20 times longer than HARPY (results reported at a system 

demonstration at CMU on September 8, 1976). The poorer performance 

relative to HARPY is probably a result of the very restricted input 

language used for the tests; with such a language, HARPY's fast, simple 

techniques are adequate and give better accuracy by considering more 

alternatives before making a choice. 

In many ways, the 1976 HS-II moved away from the description 

given in the 1971* paper and closer to our system design. As mentioned 

above, the demonstrated HS-II has a few large knowledge sources rather 

than many small ones. It makes use of direct, explicit knowledge source 

interactions: the word verifier is called directly from the bottom-up 
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word recognizer and the word Junction tester is called from the word 

sequence hypothesizer. The knowledge sources maintain private data 

structures and state information rather than always using the 

blackboard, presumably because of the inefficiencies of doing everything 

in a uniform representation structure. As in our system, data-direc'ed 

invocation is used for higher level processes but not for lower level 

ones. For example, the word verifier uses a HARPY control structure 

rather than the event-driven technique. Thus, the system uses varying 

control strategies rather than always using a precondition-activation 

scheme, again presumably because of the inefficiencies of the uniform 

method. Finally, along with giving the knowledge sources their own data 

structures and control structures, the size of the individual tasks 

performed by the knowledge sources were made relatively large to reduce 

scheduling costs. 

All of the above changes bring HS-II closer in design to our 

system; however, differences still remain. For example, HS-II has 

adopted a multiword seed technique for island driving that apparently 

improves its ability to get started correctly. We have not tried that 

method, but it could be added to our system easily and might result in 

better island driving performance for us also. However, the technique 

may depend on having a restricted grammar to make the pairwise 

grammaticality tests sufficiently restrictive; with our more general 

language, such a test would be much less useful since so many word-pairs 

are possible. A more significant difference is the emphasis HS-II has 
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placed on parallel processing. The results of future experiments with 

HS-II on the special C.mmp multiprocessor system will be interesting as 

an indication of whether or not the potential parallelism can be 

effectively utilized (see Fennell and Lesser, 1975). On the other hand, 

we have emphasized natural input languages while HS-II has not. This 

emphasis has led us to develop special techniques such as context 

checking in setting phrase ratings. To the extent that the systems have 

converged, it indicates a growing consensus regarding system 

architecture for general speech understanding; the differences between 

the systems reflect the different research goals of the projects such as 

parallel processing in the case of H3~II and natural language processing 

in our case. 

3.  BRN: SPEECHLIS AND HWIM 

SPEECHLIS and HWIM do not represent parallel speech projects 

in the way HARPY and HEAPSAY-II do. Rather, the names refe»- to systems 

developed during two relatively distinct phases in the speech 

understanding research at BBN. In the first phase, from lyH until 

1975, BBN produced SPEECHLIS. In the second phase, 1975 to 1976, the 

BBN system was changed significantly in both its components and its 

overall organization. The changes merited the adoption of a . JW name, 

HWIM. The two systems are particularly different with respect to system 

integration and control, so it is appropriate for us to discuss both of 

them. 
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The SPEECHLIS system has an interesting design that evolved 

through the use of 'incremental simulation' combining computer programs 

and human simulators [see Woods and Makhoul, 1971», regarding incremental 

simulation; see the BBN papers in the 1971* IEEE Proceedings (Erman, 

197Mb) regarding SPEECHLIS]. In processing an utterance, SPEECHLIS 

starts with acoustic-phonetic analysis to produce a segment lattice 

representing all of the alternative segmentations of the utterance and 

the alternative phonetic identities of the segments. A lexical 

retrieval component th^n searches through the segment lattice for good 

matches for words of three or more phonemes. Such matches are added to 

a word lattice. A semantic component constructs sets of nonoverlapping 

words from the lattice by selecting semantically related words. These 

word sets, and information regarding their syntactic and semantic 

analysis, are called 'theories.' When semantic association can add no 

more words to a theory, the theory is passed to a syntactic component, 

called SPARSER — "speech parser" (see Bates, 1975). SPARSER postulates 

grammatical structures for the words in the theory and proposes words to 

fill gaps between the words. The SPEECHLIS control component keeps 

track of different theories, proposals, ami events (such as the 

retrieval of a word satisfying some proposal), and decides what to do 

next on the basis of a weighted sum of scores 'Vom lexical retrieval, 

syntax, and semantics. 

SPARSER in particular is worth discussing in more detail. It 

uses an augmented transition network (ATN) formalism and a grammar that 
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was derived from earlier work at BBN (see Woods, Kaplan, and Nash- 

Webber, 1972). SPARSER is activated by the control component to process 

a set of nonoverlapping words, each contiguous word sequence being 

called an 'island.' The parser's job is to create parse paths through 

the island? and to predict syntactically acceptable words to fill the 

gaps between them. Each island is processed left-to-right. The first 

step is to find axl the places in the grammar where the leftmost word of 

the island can ociur. This and similar operations make use of 

precompiled grammatical indexes. The second step is to find all the 

transitions thct lead to the arc for the first word but do not use the 

previous word of input (e.g., JUMP transitions). The grammar states 

that are reachable from the left cf the first word by these lead-in 

transitions are used in making predictions for words to the left of the 

island. The third and last step in parsing an island is for paths to be 

extended through the island in preparation for making predictions at the 

right end. The parse paths are extended to the right Jn a best-first 

manner according to scores that reflect the likelihood of the arcs. If 

no paths can be found through the island, the theory is rejected. 

Otherwise, the ends of the paths determine states for predictions to the 

right of the island. (Notice that predictions on the right correspond 

to the end of a path leading completely through the island, but 

predictions on the left are constrained only by the leftmost word.) 

After all the islands in the theory have been processed, SPARSER looks 

for predictions to fill the gaps. In particular, it looks for small 

gaps that could be filled by a single word.  If a prediction is made 
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from both sides of such a gap, a proposal is made for the lexical 

retrieval component to search for the predicted words. While SPARSER is 

making proposals, it can return to an island and try to extend more 

paths through it to get more predictions on the right. This is done in 

hopes of producing a common prediction to fill a gap. 

The ability to use pairs of islands to make predictions to 

fill gaps is one of the most interesting features of SPARSER. Miller's 

LPARS (see Miller, 1973) also made predictions to fill gaps between 

islands, but it used an exhaustive search strategy and so was probably 

impractical for large vocabularies and grammars. SPARSER appears to 

have been the first to provide a combinatorially feasible control 

strategy for multi-island processing. Another noteworthy feature of 

SPARSER is the large amount of merging of alternatives resulting in the 

sharing of information among different theories. For instance, only one 

instance of a particular state and input-location configuration is ever 

created and it is shared by all theories. However, there are problems 

in the SPARSER design. FirTt, there is not enough communication with 

other components, especially semantics. For example, SPARSER's 

proposals are not constrained by semantic information and so they may 

lead to wasted effort looking for words that are acceptable 

syntactically but bad semantically. Second, th? use of multi-island 

theories probably costs more than it is worth. There are no inter- 

island consistency checks; the only interaction among islands is in 

making predictions at gaps that are small enough to be filled by a 
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Single word. Even when there is such an interaction, it is simply to 

look for common predictions, and failure to find one does not disqualify 

the theory since the gap might be filled by more than one word. The 

overall result is tnat there is relatively little gain from having 

multi-island theories. 

In contrast to the small gain from having multi-island 

theories, the costs are significant. The same island may occur in many 

different theories, and, although SPARSER does share Information among 

theories, there is a nontrivial overhead for reprocessing an island in 

each theory.» A final and especially serious problem with SPARSER is its 

failure to make good use of the available grammatical constraints to 

limit its operation. We mentioned above that predictions on the left of 

islands depend only on the leftmost word and are therefore not taking 

advantage of possible constraints provided by the other words in the 

island. Another failure to use the available information relates to the 

restrictions on arcs. The grammar operations on arcs are explicitly 

divided into local ones, which depend only on the word or constituent 

for the particular arc, and context sensitive ones, which depend en 

informatlor from some other arc. SPARSER performs local operations when 

it creates arc transitions, but it does not do any context sensitive 

operations until it has a complete path through a network allowing a 

constituent to be formed.  When such a complete path is acquired, 

• The time for reprocessing is about one-third the time for Initial 
processing; Bates (1975, p.111) reports 16.5 CPU seconds for 
reprocessing a theory that took 47.5 seconds to process originally. 
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SPARSER goes through the path left-to-right executing the context 

sensitive operations, thus making sure that the required information is 

available when it is needed. This is a simple solution to the problem 

of context sensitive operations, but it fails to prevent SPARSER from 

working on partial paths that are bad syntactically. Bates acknowledges 

this problem and comments to the effect, that the parser could take 

context into account more easily if the grammar had less of a left-to- 

right orientation (Bates, 1975, p.190). This comment supports our 

decision to use a language definition representation that is more 

neutral than ATNs with raspect to control strategies. 

SPEECHLIS has other problems in addition to those mentioned 

above regarding SPARSER. First, the use of semantic associations does 

not seem to be sufficiently selective to help in producing a few good 

starting theories for the system. In a limited task domain, most words 

will be semantically related, so almost any set of words found by 

lexical retrieval will oe accepted by semantics.* If lexical retrieval 

is very accurate and only finds a few outstanding matches, the poor 

selectivity of semantics will not hurt, but semantic association will be 

an unnecessary step. However, if lexical retrieval produces many rfords 

that match equally well, semantic association seems likely to swamp the 

system with theories. Given the problems with acoustic recognition, the 

• However, Nash-Webber and Bruce suggest that in the lunar rocks task 
domain used in SPEECHLIS, the possible semantic relationships among the 
entities were so limited that this was not a problem (Woods et al., 
'.976b, p.U?). Apparently it became a problem when the task domain was 
changed to travel budgets (see comnients in Woods et al., 1975b, p.MM). 
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latter alternative seems more probable. A second problem with SPEECHLIS 

is the generally poor communication among knowledge sources. We 

mentioned that syntax makes proposals that may be bad semantically. The 

converse is also true; semantics makes proposals that may be bad 

syntactically In general, any component in SPEECHLIS is free to make 

proposals, but there is inadequate communication to ensure that such 

proposals are mutually satisfactory. There is a need for closer 

cooperation among the components. 

The performance of SPEECHLIS seems to support these 

criticisms. There has been no report of systematic tests of its 

performance, but comments appear in various publications (especially 

Nash-Webber and Bruce in Woods et al., 1976b; also in Woods et al., 

1975b). The processing time required by SPEECHLIS may have prevented 

extensive testing. For example, SPARSER reportedly can take over UO 

seconds of processing on a single theory if much bottom up processing is 

necessary (Bates, 1975, p.111). It is difficult to do much testing at 

that rate. Also, storage demands apparently made it impossible to run 

tests to completion in many cases. There is a comment (in Woods et al., 

1975b, p.M) that, as a result of space problems during thrj semantic 

association phrase, the system was unable to complete processing any 

utterances. (The comment referred to tests with the travel budget task, 

which may have had worse space problems for semantic association than 

the previous lunar rocks task.) By 1976, SPEECHLIS was replaced at BBN 

by a new system called HWIM ("Hear What I Mean"). In the change, the 
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control strategy was replaced, the semantic association component was 

dropped, and SPARSER was dropped. 

The HWIM system is in several respects a reaction to the 

problems of SPEECHLIS. For instance, it attacks the problems related to 

coordinating knowledge sources by embedding much of its syntactic, 

semantic, and pragmatic knowledge in a transition network 

representation. The result is called a 'pragmatic grammar' and has much 

in common with the 'task oriented grammars' of HARPY and Hearsay-II. 

General categories like noun phrase and verb phrase are replaced by task 

specific ones like 'meetings,' 'trips,' and 'expenses' (Woods et al., 

1976b, p.54). The grammar has more states and arcs than the more 

general SPEECHLIS grammar because gen3ral categories have been split 

into special ones and also because many word arcs have been added. Like 

the CMU template grammars, large portions of the BBN pragmatic grammar 

would have to be rewritten for a different task domain (as they admit; 

Woods, et al., 197^, p.23). 

Another problem in SPEECHLIS was SPARSER's failure to use 

context sensitive restrictions until it had a complete constituent. 

HWIM has a partial solution to this problem base^ on the jpeciflcation 

with each arc operation of the scope of its context dependency. For 

example, if arc A has a test that depends on a '"eature set by an action 

on arc B, the test on A is marked to show th.-.t its scope includes B. 

The HWIM parser executes context sensitive actions ^s soon as the parse 

path covers the necessary scope. This method is an improvement over 
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SPARSER, but it still is not as thorough in its use of contextual 

Information as our technique of exploring the sentential context to set 

ratings. HWIM is better than SPARSER because it does not wait to 

complete a constituent before testing the relations among its 

subphrases. However, HWIM does wait until it has acquired complete 

phrases for the arcs in the scope of the operation, and often it is not 

necessary to wait that long. The tests often depend on pnrase 

attributes that are determined long before the phrase is complete. To 

use an example from our system, the number attribute of a noun phrase 

can frequently be inferred from its determiner without waiting for the 

entire phrase to be built. If the sentential context calls for a 

singular noun phrase but the determiner indicates a plural one, our 

method of context checking recognizes the inconsistency when it sets the 

rating for the incomplete noun phrase, whereas the HWIM method would not 

notice the conflict until it had a complete noun phrase a.id tried to use 

it in the sentence phrase. 

A third problem in SPEECHLIS was inefficiency caused by 

theories with multiple Islands. The same island could occur in many 

different theories resulting in substantial duplication of effort. HWiM 

resolves this problem by limiting theories to a single island. 

Duplication of effort is reduced by this method, but not eliminated. 

There is still a problem of forming the same Island in many different 

ways depending on the order in which words are added. HWIM reduces this 

problem somewhat by a technique called  'island collisions'. Before 
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explaining this technique, we sketch th? KirflM  lexical retrieval 

component that plays a vital role in the systea. 

HWIM defends on the existence of an efficient and effective 

lexical retrieval component. In providing one, Klovstad has produced a 

particularly interesting part of the system (see Klovstad in Wood*? et 

al., 1976b). Significant features of the lexical retrieval program 

include the following: 

• It finds the n best matching words without requiring 
exhaustive testing of all the words in the vocabulary. 
(The processing time varies with the lof ■?' the vocabulary 
size rather than linearly.) 

• It can take advantage of syntactic predictions to constrain 
its search for matches. 

• It makes effective use of phonological word boundary rules 
by precomputing their possible effects. This technique 
eliminates the need to make very loose judgments at word 
boundaries to compensate for possible coarticulation 
effects. 

The internal dictionary for lexical retrieval is stored as a 

tree structure merging common phonetic sequences. A tree with initial 

sequences merged is used for left-to-right searches; another tree 

merging final sequences is used for right-to-left searches. Word 

boundary rules are applied to the trees to reflect the possible 

coarticulation effects. To allow selective retrieval according to 

syntactic category, each node in the dictionary tree is tagged with a 

bit mask showing the categories of words in that branch. The lookup 

procedure matches paths through the dictionary tree against phonemes in 
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the segment lattice. When a path reaches the end of a word spelling, a 

match has been found. The matching operation allows for 'merges' and 

'splits' to take care of possible segmentation errors. In a merge, a 

single phoneme accounts for two adjacent acoustic segments. In a split, 

two adjacent phonemes map onto a single acoustic segment. Path scoring 

penalizes matches that require splits or merges. Paths are eliminated 

from consideration by three operations: (1) syntactic selection — if 

no words in the selected syntactic categories are reachable by the path, 

eliminate it; (2) forward pruning — if the path is judged unlikely to 

produce words with scores better tuan soa^ threshold, eliminate it; and 

(3) finite memory — if the path score falls relative to the others so 

that the path is no longer among the k best paths (where k is a 

parameter), eliminate it. 

The lexical retrieval component was tested or 99 sentences 

with a dictionary of 702 words. Directed to return up to 15 matches per 

sentence, it selected an average of 9.'<8 distinct matches per sentence. 

Overall, 23.7$ of the words returned were correct, and in about 70$ of 

the sentences the best match was correct. In only about H% of the 

sentences did the lexical retrieval process fail to find at least one 

correct word.*  The processing times for these unanchored scans is 

• Klovstad suggests (in Woods et al., 1976b, p.106) using the average 
ratio of correct to incorrect words as a measure of lexical retrieval 
performance. He reports a ratio of 0.3112; however, this is actually 
the ratio of the average number of correct words per scan (2.25) to the 
average number of Incorrect words per scan (7.23). The average of 
ratios is not equivalent to the ratio of averages, so Klovstad is 
apparently suggesting one measure and reporting another. 
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reported to be about one CPU minute for a 2.5 second utterance (Nash- 

Webber and Bruce, in Woods et al., 1976b, p.^6). They also report that 

to do a search at a given position in the segment lattice with a 448- 

word vocabulary takes an average of 6.83 CPU seconds (Woods et al., 

1976b, p.49). We ar^ especially interested in the lexical retrieval 

component because it presents an efficient alternative to our map-all- 

words-at-once control strategy. 

The HWIM island driving control strategy makes heavy use of 

the lexical retrieval component. HWIM starts processing an utterance by 

creating a segment lattice. Lexical retrieval then does an unanchored 

scan to find up to 15 of the best matching words. A one word theory is 

created from tht best match, and the other matches are reserved for 

later use if the first one runs into trouble. There is no attempt to 

use semantic associations to form multiword theories as was done in 

SPEECHLIS. Instead, syntax is immediately called with the theory to 

make predictions to extend it. New theories are formed by adding words 

to old ones or by starting another one-word theory using one of the 

original words from lexical retrieval. There is little sharing of 

information among islands. One exception occurs if two islands 

'collide' by growing together. In this case, the words from the two 

islands are joined together in a single operation. Other than this, the 

different islands do not interact, and there is none of the merging of 

work on common subparts that we have in cur parse net or that SPARSER 

had in its shared configurations and transitions.  By giving up sharing. 
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the parsing becomes simpler, but there are combinatorial problems If a 

large number of Islands must be considered. 

In the areas of scoring and priority setting, HWIM is more 

sophisticated than SPEECHLIS. HWIM uses experimentally determined 

statistical scoring. The use of probabilities provides a uniform 

scoring technique so that scores from different sources can be compared 

and combined in a theoretically sound manner.* On the basis of these 

scores, HWIM uses a 'shortfall density' technique for setting 

priorities. This technique depends on having a lexical retrieval 

component that can find the best matchirg words spanning the input. The 

shortfall method begins by finding the best spanning words and uses them 

to set an upper bound score for each segment of speech. The 'shortfall 

score' for an island Is the difference between the sum of the upper 

bounds for segments in the island and the actual scores for words in the 

island. (Scores are additive in HWIM.) The 'shortfall density' for an 

island is its shortlall score divided by its length. The priority for 

working on an island is determined by the island's shortfall density: 

the smaller the shortfall density, the higher the priority. The control 

strategy using shortfall density priorities is guaranteed to find the 

optimal interpretation as its first soannirg island. In the terminology 

of heuristic search, this is an 'admissible' strategy (see Hart, 

Nilsson, and Raphael, 1968). However, the price of admissiblllty for 

this method appears to be a relatively breadth-first search.  BBN has 

• The change to probabilistic scoring began during the end of the 
SPEECHLIS period at BBN (see Klovstad in Woods et al., 1975a, pp.33-39). 

III-100 

" "  -MI 
BHiÜBbäi^BEMlBiäBti 



explored a number of variations to try to get better performance, and, 

as of September 1976, their favorite variant sacrifices the guarantee of 

finding the optimal island first. It restricts the island seeds to be 

near the left end of the utterance. After a seed word is selected, the 

island is first extended to the left boundary of the utteraroe and then 

to the right. This method results in primarily Left-to-right 

processing, so there is less chance of duplicating effor . by creating 

the same island in different ways. It avoids the potential problems of 

a strictly left-to-right method because it can Jump o* ar the start of 

the sentence to pick a seed word. This compromise may offer a way 

around some of the problems with island driving that we report in the 

next chapter. 

To summarize, HWIM has introduced a variety of interesting 

design concepts. In particular, we refer to the work on lexical 

retrieval, island parsing, probabilistic scoring, and shortfall density 

priorities. However, most of these concepts still need to be tested to 

determine their effect on the performance of the system. In our own 

work, we have discovered that intuitively appealing design features can 

sometimes have distressing effects on actual performance. 

Some final comments are required regarding the use of a 

'pragmatic' grammar in HWIM. Nash-Webber and Bruce state that the 

overall performance of HWIM is improved by fusing syntactic, semantic, 

and pragmatic knowledge sources, and that the improvement "comes from 

being able to constrain as soon and as tightly as possible the 
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acceptable ways in wliich a given theory can be extended" (Woods et al., 

1976b, p.53)- Tney go on to say that "a naive conception of KS 

[knowledge source] interaction, which assumes that if communication 

channels exist, they will be used effectively, is wrong, at least in 

terms of currently realizable systems of HWIM's size and complexity" 

(Woods et al., 1976b, p.55). On this basis, they propose a principle 

that they dub "WORK TOGETHER": 

If it is found that one must frequently consider 
simultaneously information from several KSs, then the activity 
of those KSs should be tightly coupled,  (p.55) 

We agree that tight coupling of knowledge sources is 

important; we have emphasized that fact in the design of our systems 

sines we began working on speech understanding (see, for example, 

comments in Walker, 1973). We are willing to believe that pragmatic 

grammar improves HWIM's performance (although Nash-Webber and Bruce 

offer no evidence supporting the claim). It may also be true that the 

improvement comes from the source they sutrgest — namely, from being 

able to apply constraints as soon and as tightly as possible (again, no 

evidence is given). An alternative explanation is that the pragmatic 

grammar improves performance by greatly reducing the generality of the 

input language: fewer choices, so better results. However, if Nash- 

Webber and Bruce are correct in their claim that the improvement is 

caused by better use of constraints, then the improved performance can 

be attained without resorting to a pragmatic grammar. In our system, 
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explicit checking of the sentential context as part of setting r^ings 

leads to early and effective use of constraints from all relevant 

sources of knowledge. Constraints are actually applied earlier by our 

technique than in HWIM since we do not require completinK constituents 

before considering their interrelations. 

The use of a pragmatic grammar may improve efficiency, but at 

a cost of increased size and complexity and decreased generality. Using 

our techniques, knowledge sources can be used effectively without being 

fused in the BBN manner. We get tight coupling of knowledge sources «nd 

early, thorough application of constraints without giving up the 

integrity or generality of the different knowledge sourceo. 

k.       EARLIER SRI SYSTEMS 

It may be useful to give a brief sketch of the evolution of 

our system design and mention some of the techniques that were tried and 

then modified or discarded. The emphasis of the sketch is on 

unpublished material, but we also review work discussed more fully in 

earlier publications. 

Our 1972 system (see Paxton and Robinson, 1973) tried to 

minimize the demands on acoustics by restricting the acoustic processing 

to testing words that had been hypothesized on the basis of other 

knowledge. The hope was that by hypothesizing words in roughly the 

order of their likelihood in a particular context, we could reduce the 
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average number of errors In acoustic recognition. To achieve 

flexibility in ordering hypotheses, the system used a best-first 

strategy rather than depth-first with backtracking. The language 

definition was written in a procedural style following Winograd (1971; 

in fact, an earlier version of our system had been constructed by making 

modifications to Winograd's SHRDLU; see Walker 1973). There was some 

effort to share information among different attempts to parse an input, 

but sharing was limited to successes rather than failures or partial 

results. Rating of alternatives was done by associating priority 

functions with alternatives at choice points. The original intention 

was to implement the system using 'spaghetti stacks' (see Bobrow and 

Wegbreit, 1973), but since that facility was not available in time, an 

interpreter was written instead. 

During 1973 wo increased the amount of interparse cooperation 

in the system by introducing a limited version of Kaplan's producer- 

consumer scheme (Paxton, 1975; also see Kaplan, 1973b). It was 

restricted to a single level of producers; in other words, the producers 

could not be consumers too. Also, the context dependency within 

producers was restricted to the lexical level. Global control was still 

embedded in the procedural grammar. Performance results for this system 

are reported in Walker (1971*, 1975). With a 5^ word vocabulary, the 

system got MM of 71 sentences correct {62%). 

In 1971> we began working with SDC on a joint project. This 

change led to a major redesign influenced by SDC's previous work (see 
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Barnett, 1973; Rltea, ig?1*) and the new Hearsay-II design (Lesser et 

al., 1975). The SDC parser was able to work top-down, bottom-up, and 

bidirectionally, and we decided to provide that much flexibility in our 

new system also. This decision required a change in the language 

definition methodology and resulted In the adoption of augmented phrase 

structure rules. From HS-II, we got the idea of distinguishing between 

ratings (reflecting 'goodness') and priorities (reflecting 

'importance'). However, we still thought of focus of attention in terms 

of suspending and reawakening processes and had trouble specifying why, 

when, and how, such operations should take place. By the end of the 

year, we replaced the ideas of suspending and reawakening by the idea of 

changing priorities and designed focus by inhibition in essentially its 

current form. The original -version used entire phrases for foous, but 

when that resulted in a great number of incorrect phrases in focus, we 

shifted to focusing on words selected from phrases. Also during this 

period, discussions with Barnett at SDC led to the ideas of phrase 

mapping and lexical subsetting, the former to deal with coarticulation 

effects and the latter to give the system more guidance from acoustics. 

By late 1971, a system was Implemented based on augmented 

phrase structure rules and a general producer-consumer structure for 

parsing (see sections II and III in Walker et al., 1975). However, the 

rules did not allow options or alternatives, and the attributes and 

factors were defined by simple lists of assignment statements. The 

produce^ consumer structure for the parse net took care of cooperation 
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among different attempts to parse an utterance, but it increased the 

problem of using contextual restrictions in setting priorities. From 

the beginning, we felt we had to take the context into account, but our 

first effort was a failure. Rather than searching up the consumer tree 

as we do now, we tried passing restrictions down the tree from consumers 

to producers. To illustrate, let C be a consumer phrase with an 

acquired constituent A and a missing constituent B. A factor expression 

for C is ir general a function F of attributes of A and B. A new 

function F' can be formed by fixing the arguments of F that depend on A 

to the actual values from A; thus, F' depends on attributes of B only 

and can be passed down to B-producers as a restriction from C. 

Simila-'ly, B-producers can further modify the arguments of F' to yield 

restrictions to pass down to their producers. This method was 

implemented and debugged, but as soon as it was tried on tests 

simulating speech input, its extravagant use of storage for propagating 

restrictions showed that it would have to be replaced. 

The system design steadily evolved during 1975. The tree 

search context checking technique was developed for setting ratings. 

The first version searched the entire consumer tree to find the best 

path; later, the current technique was developed to do a heuristic 

search for a near optimal path. The system had a relatively small task 

size; for example, the prediction task added only the immediate 

oroducers for th highest priority phrase rather than adding the entire 

subnet of producers. The small task size was intended to give a great 
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deal of control over the operation of the system; it did that, but it 

also caused the system to spend over hilf of its time calculating and 

recalculating priorities. By adopting a larger task size, the 

scheduling overhead has now been reduced to about 1211 of the Executive 

nrocesslng time. Another problem was the lack of alternatives and 

options in rules. Without them, it was impossible to merge related 

rules. For instance, there were 10 S rules, 5 of which had initial NPs. 

There were five emotv S ohrase consumers to consider when setting 

ratings for initial NPs, and whenever an initial NP was found, five 

incomplete S phrases had to be constructed. After we redesigned the 

language definition using rules with alternatives and options, there was 

only one S rule with an initial NP. The use of alternatives and options 

in rules complicates the Executive, but it provides an important 

reduce on in the number of rules and hence in the processing and storage 

requirements of the system. 

Also during 1975, we added multiword lexical entries, 

lookahead, word task scheduling by lexical subcategories rather than by 

individual words, and gap/overlap testing by syllables rather than by 

fixed duration. To improve efficiency, we began to use a preconstructed 

initial parse net and preconstructed empty phrases. The monitor subnet 

for island driving was added as more than Just an efficiency measure; it 

provides the necessary consumer context for island driving so that all 

consumer paths lead to a root-category phrase. 
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In late 1975 and early 1976, we put together a version of our 

system on the SDC IBM 370/145." Before thorough testing could be done, 

SDC's computer was removed for administrative reasons, t.nd our Joint 

effort with SDC came to an end. However, enough information about their 

acoustic processing routines was collected so that we could test our 

parts of the system on our own computer by using a simulation. The 

results of those simulation experiments are reported in Chapter IV. 

• Ann Robinson was primarily responsible for transferring the system 
from our PDP-10 to the SDC IBM/370. 
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IV      EXPEPIMEMTAL STUDIES 

Prcpered by williak    . Prrt'dn 

CONTENTS: 
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H.     DetailM Measureaers of Ereeutive Operation 
I.    Conclusion 
J.    Test Sentences 

A.       INTRODUCTION 

This chapter discusses ^ se.ies of experiments concerning our 

sp'ecf-understanding system. Information regarding the acoustic 

processing is reported in <.he first experiment. Ai well as being cf 

interest in its own right, this informatior was used in simulating the 

acoustic processing for the other experiments. The second experiment 

d 'Is with the 'f&nout,' the number of alternatives at each word, both 

for the language alone and in cc binatlon with the acoustics. Fanout 

provides a quantitative measure of the difficulty of the speech- 

understanding taslc.     In the third experiment,  the main experiment of the 
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series, the standard speech system is tested on a set of 60 sentences 

for all combinations of four control strategy design choices. The best 

configuration from Experiment ? is tested again in the fourth 

experiment, allowing different sizes of gaps and overlaps between words 

in the simulated acoustic processing. The fifth experiment •■"•\dies the 

performance of the two most promising system configurai,j.vns from 

Experiment 3, vhile varying vocabulary size and acoustic processing 

accuracy. The final study deals with detailed measurements of the 

Executive's performance for the best version of the system on Experiment 

?. The following sections assume familiarity with the Executive System, 

at least to the level of detail given in the overview (Section C) in 

Chapter III. 

B. EXPERIMENT 1 — MAPPER PERFORMANCE 

The first experiment deals with the performance of the system 

component called the 'mapper' (described in Chapter I, Section B, and in 

Bernstein, 197'>). To review, the mapper carries out acoustic tests: 

given a predicted word and location in the input, the mapper either 

rejects the word or accepts it and reports its beginning and ending 

boundaries rounded to the nearest 0.05 second. If the word Is accepted, 

the mapper also i?ives it a score between 0 and 100, indicating how well 

it matches the input (100 indicates a perfect match). Worjs accepted by 

the mapper are either 'hits', words really in the inpuv. sentence, or 

false alarms, words accepted although not in the input. 
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The mapper was tested by calling it for all of the words in the 

vocabulary at the start of an utterance and then ?t each position where 

a previously accepted word ended (independent of whether the previous 

word was a hit or a false alarm). This procedure resulted in testing 

the entire vocabulary at an average of about 16 out of the 20 possible 

positions per second of speech (recall that word boundaries are rounded 

to multiples of 0.05 second, so there are 20 possible ending positions 

per second).* Overall, tests were made at 160 positions in 11 test 

utterances. For the ?05-word vocabulary used in the following 

experiments, the mapper had 48 hits and 1564 false alarms. The false 

alarms were distributed throughout the vocabulary [229 of the 305 words 

(75%) were falsely accepted at least once], with small worols like "a" 

and "the" each accounting for more than 30 false alarms. 

The false-alarm rate for the mapper vras determined by counting the 

number of false alarms that fell entirely within a section of the input. 

For the 305-word vocabulary, the average rate was 114 false alarms per 

second of speech. Since there were about 3 hits per second of speech, 

this rate indicates that the mapper produced an average of almost 40 

false alarms for each hit. Figure IV-1 summarizes the results for 

three vocabulary sizes. 

• This experiment was originally designed to record the results of all 
mapper calls that might be made in a left-to-right parse. The intention 
was to use this information in place of the mapper in tests of the 
entire system. However, technical and administrative difficulties made 
it impossible to gather enough information to satisfy the original goal. 
If the original goal had been to provide data for a simulation of the 
mapper, the mapper would have simply been tested on the entire 
vocabulary across each utterance at 0.05-second intervals. The change 
in goals may have resulted in missing some potential false alarms 
because of the untested positions where no word ended. 
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VOCABULARY SIZE (words) 
305     «»51      823 

False Alarm (FA) Rate IIH 1M2 360 
Mean FA Score 59 58 58 
Total FAs in sample 156U 2Ü26 1*989 
Words with FAs 229 326 651 
Words with no FAs 76 125 169 

Figure IV-1.  MAPPER PERFORMANCE 

As partial compensation for the high false-alarm rate, there were 

no 'misses' (cases in which the mapper failed to accept a correct word), 

and the mean hit score was higher than the mean false alarm score (73.5 

versus 59.D, although both score distributions spread over the entire 

range, from near 100 down to the threshold of '45. The score 

distributions are shown in Figure IV-2. 

The cumulative percentage distributions for the scores are shown in 

Figure IV-3 Note that a threshold of 55 instead of 45 would 

eliminate '4511 of the false alarms but only 6% of the hits. We are not 

suggesting such an increase in the threshold, but it illustrates the 

extent to which the false alarms are found at low scores. 
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C.  MAPPER SIMULATION 

The following experiments use a simulation of the mapper based on 

the data gathered in the first experiment. To simulate the performance 

of the mapper on a particular sentence, the words of the sentence were 

first assigned lengths in seconds of speech. Each word was then 

assigned a score picked at random from the total collection of hit 
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scores actually produced by the mapper. The words were concatenated to 

determine the length of the utterance, and the length was multiplied by 

the false alarm rate (111» false alarms per second of speech) to give the 

total number of false alfrms to be simulated. The false alarms were 

selected randomly from the 156*1 false alarms produced by the mapper, and 

then positioned randomly in the sentence. 

IV-6 



In computing the simulated processing time for the tapper in later 

experiments, we used figures of 0.30-second processing per word tested, 

1.0 second p^r position for lexical subsetting,» and 10.0 seconds per 

second of speech in the sentence if 'island driving' was being simulated 

(see discussion of Experiment 3). These timing figures are based on 

rough measurements of the mapper running on an IBM System/370 Model 1M5. 

This simulation reproduces the observed mapper performance 

statistics for the false-alarm rate, the hit scores, and the particular 

false-alarm words and scores. Because of insufficient data, we cannot 

use a simulation that reproduces more complex statistics such as the co- 

occurrence of various hits and false alarms or possible dependence of 

scores on the position within the utterance. We cannot say with 

certainty that these more complex statistics are unimportant, and, 

consequently, we do not claim that the particular oerformance levels in 

the following simulation tests will be precise estimates of the system's 

actual performance with a real mapper. In view of this limitation, the 

following experiments that use the simulation are designed to emphasize 

comparisons between performance levels rather than basing judgments on 

absolute performance levels. For example, to judge some design feature 

F, we look at the difference in performance with F versus without It, 

• Recall that the lexical subsetting component uses local, robust 
acoustic cues to select a subset of the lexicon for further testing at a 
particular Input location. To simulate this component, the system 
creates a subset containing the simulated hits and false alarms at or 
near the specified location and then adds randomly selected words to 
Increase the size of the subset to & specified value. For the 351-word 
vocabulary, the subset size was set at 50 reflecting the expected 
performance of a well-tuned version of the lexical subsetting component. 
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rather than simply reporting the absolute perforniance observed with F. 

Such a comparative experiment is always appropriate as a way to judge 

the effects of a design feature, but it is particularly important when 

simulating a major component of the system. For instance, if some 

property P of the actual mapper is not reflected in the simulation, that 

lack may affect the performance levels of the versions of the system 

with and without some design feature F.  However, as long as both 

versions are affected in roughly the same way, conclusions drawn from 

significant differences in performance in the simulation tests will 

probably be valid regarding performance with the actual mapper. Iu 

short, tbe simulation experiments should be good for making design 

decisions based on comparative judgments, but the absolute performance 

levels in the experiments must be taken with a grain of salt. 

In spite of this limitation, there were compelling reasons for 

doing simulation experiments rather than testing the system with the 

actual mapper.  First, it would have been impossible to do extensive 

testing with the actual mapper — the time required would have been too 

great, both because of increased processing time and because of 

increased memoiy demands (leading to large delays for 'page swapping' by 

the time-sharing system). By using a simulation, we were able to do a 

large number of tests because the processing and memory demands of the 

mapper were eliminated. Also, we were able to study interesting control 

strategies, such as mapping all at once, which would be too slow for use 

with the actual mapper, but which otherwise have good effects on system 

performance and suggest new system designs. 
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Another reason for doing simulation experiments was that our access 

to the actual mapper was cut off when the SDC speech project computer 

was removed in March 1976. (This reason is certainly not a scientific 

one, but it illustrates the fact that not all decisions in research are 

determined by scientific considerations.) Luckily, there was a week 

between the time that the mapper started working well enough to be 

tested and the time that the SDC computer was removed. During that week 

th^ first experiment was performed. The other experiments were carried 

out on the SRI computer using a simulated mapper. 

D.  EXPERIMENT 2 — FANOUT 

The second experiment deals with the fanout in the language, with 

and without acoustic constraints. 'Fanout' is defined as the number of 

words that can be successfully appended to an initial substring of some 

sentence, to produce either a complete sentence or a string that can 

potentially be completed to form a sentence. The average fanout over a 

large number of initial substrings provides a measure of the uncertainty 

of each word, as indicated by the number of alternatives open to the 

system.* 

The fanout wan measured for 11 sentences, together containing a 

total of 67 words. The fanout was measured only for initial substrings 

• Goodman (1976) considers a variety of measures of language complexity. 
Our fanout measure roughly corresponds to his 'dynamic branching 
factor ' However, his methods deal only with finite-state grammars, so 
the correspondence between the measures is not exact. 
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of the actual sentences: it was not measured along false paths. The 

distribution of the size of the fanout was roughly bimodal (see Figure 

IV-M). Using the ?05-word vocabulary and ignoring acoustic 

constraints, 2H positions (36$) had a fanout of less than 30 words, 

while 33 positions (49$) had a fanout of more than 173 words. The small 

fanout positions were places allowing only vocabulary classes with a 

small number cf members, classes such as preposition or verb. The large 

fanout poslticrts corresponded to places where a noun could be expected. 

The mean fanout was 117, with a standard deviation of 90 and a maximum 

of 219. The fanout at the beginning ol sentences was 206; the average 

fanout at nonlnitial positions was 100. 

The fanout with acoustic constraints is based on the simulated 

mapper data. It is calculated by counting the number of words that are 

accepted by the simulated mapper at a position starting plus or minus 

0.05 second from the end of an initial substring of hits, and that are 

also in the fanout set without acoustic constraints for that substring. 

In addition to recording the size of the fanout, we ordered the set of 

words by increasing mapper scores and computed the rank of the hit. For 

example, if two false alarms had scores higher than the hit, the rank of 

the hit would be three. For the 305-word vocabulary, the mean fanout 

with speech was 18, the hit had the best score in 28$ of the cases, and 

the average hit rank was 3-7. The fact that the hit rank is much 

smaller than half of the fanout reflects the previously mentioned 

difference between the score distributions for hits and false alarms. 
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The results of this experiment help to show why tne control 

strategy problem for speech understanding is so difficult. The results 

suggest that, on the average, there will be between two and three false 

alarms with higher scores than the actual hit to tempt the system down 

false paths. Also, the hit had the best score in only 28$ of the cases, 

which appears to imply that the probability of correctly answering a 

sentence n words long is 0.28 raised to the nth power.  However, the 
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accuracy of the system in the following experiments is actually much 

higher than that, so there must be compensating factors tending to bring 

the system back to the correct path. For example, the fanout follovdng 

a false alarm is probably smaller than the fanout following a hit, 

causing false paths to be dead ends. The decrease in fanout should be 

most pronounced near the boundaries of an utterance, where many words 

are eliminated because their minimum duration is greater than «.he 

available time. Similarly, false paths may be impossible to complete 

because too much speech remains. For instance, a path will be a dead 

end if it requires a one-syllable word to fill a four-syllable sectior 

of the input. Finally, even if there are complete false paths, the 

system may still get the sentence right if the correct path is found and 

is given a higher overall score than any incorrect path. The difference 

in hit and false-alarm score distributions makes this more likely. 

These factors, and perhaps others not yet recognized, may offset the 

effect of the large number of high-scoring false alarms, but speech 

understanding is still a difficult task, as indicated by the results of 

the next experiment. 
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E,  EXPERIMENT 3 ~ CONTROL STRATEGY DESIGN CHOICES 

In the third experiment, the performance of the standard speech 

system was measured on a set of 60 test sentences, while varying four 

major control-strategy design choices. The sentences covered a wide 

range of vocabulary and included questions, commands, and elliptical 

sentence fragments (see Section J at the end of this chapter for a list 

of the test sentences). There were 10 sentences at each length of 

simulated speech ranging from 0.8 to 2.? seconds at intervals of 0.3 

second. The sentences averaged 5.9 words in length, with a maximum of 9 

words. The choices used as experimental variables were the following:* 

Island Drive or Not — Go in both directions from arbitrary 
starting points in the input versus proceed strictly 
left-to-right from the beginning: Island criving allows 
the system tc use words that match well anywhere in an 
input and to build up an interpretation around them. 
Left-to-right processing is simpler and less flexible but 
may still be more accurate and efficient than island 
driving. 

■ 

Map All or One — Test all the words at once at a given 
location versus try them one at a time and delay further 
testing when a good match is fout'«d: Mapping all at once 
lets the system know the best candidates from the 
acoustics and reduces the chances of following a false 
path. Mapping one at a time avoids exhaustive testing 
and will be more efficient than mapping all at once if 
the system does not encounter too many false alarms. 

Context Checks — Take into account the restrictions of the 
possible sentential contents as part of setting 
priorities versus ignore the contextual restrictions 
except for use in eliminating already formed structures: 
Context checking should give more information for setting 
priorities and should lead to better predictions. 
However, the checks can be expensive and therefore may 
not lead to an overall improvement in performance. 

• These choices are described in more detail in Chapter III, Section C. 
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Focus by Inhibition — Focus the system on selected 
alternatives by inhibiting competition versus employ an 
unbiased best-first strategy: Focusing allows the system 
to concentrate on a particular set of potential 
interpretations rather than thrashing among a large 
number of alternatives. However, if the focus of 
attention is too often wrong, the net effect may be 
harmful to system performance. 

All combinations of the four control-strategy variables were tested 

on the 60 sentences. This experimental design allows us to compare the 

16 combinations of control choices and to evaluate, by analysis of 

variance, the main effects and interactions of the control strategy 

variables. The main effect of a variable is the change in performance 

it produces, averaged over all the possibilities for the other 

variables. The interaction of two variables tells whether the effect of 

one variable is the same for all possiDilities of the other. The 

interaction of three variables tells whether the interaction of two of 

them is the same for all possibilities of the third, and so on. 

Analysis of variance io a statistical technique for computing the 

probability that the observed effects or interactions are really caused 

by the experimental variables, rather than the result of random 

variation (see e.g., Winer, 1971; also, see Cox, 1958, for an excellent 

introduction to experimental design). In other words, this method aids 

in evaluating results of experiments influenced by substantial random 

factors. In our case, the random factors include the random choices of 

false alarms and hit scores in simulating the mapper, and the selection 

of a particular sample of sentences from the much larger population of 

possible sentences.  The statistical results for a main effect or 
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interaction are given in a form such as "F(1,5)=6.9, P < .05." This 

means that the F ratio (a statistic for comparing variances) for the 

effect or interaction has 1 and 5 degrees of freedom and has a value 

equal to 6.9. ThJs in -.urn implies that the probability is less than 

.05 thaö the observed effect or interaction was caused by random 

variation alone. If the probability is given by itself in uhe following 

discussion, it is based on the these values: FO,5)>=16.3 for p < .01, 

F(1,5)>=6.6 for p < .05, and Fd ,5)>.U. 1 for p < .10. 

The most importanc perfc-mance meaoves for the system are accuracy 

(the percentage of sentences for which the correct sequence of w^rds is 

found) and runtime (the computation required by the system, including 

simulated acoustic processing time). For these measures, the control 

strategy variables had large, significant effects. Beiore discussing 

the effects, we need to introduce a notation for naming the experimental 

designs. The capital letter "F" will refer to focus by inhibition, 

lower case "f" to no focus by inhibition; "C" stands for context checks, 

"e" for no context checks; "M" for map all at once, "m" for not map all 

at once; "I" for island driving, and "i" for no island driving. This 

notation will indicate the different combinations of choices. For 

example, "fCMi" refers to the system that does not use focus by 

inhibition, does use context checks, does map all at once, and does not 

island drive. Using this notation, Figure IV-5 shows the accuracy 

and runtime of the 16 experimental systems. 
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FIGURE IV-5  ACCURACY AND RUNTIME OF THE 16 DESIGNS 

Notice the range of values for both measures, from H6.7% to 73.3t 

for accuracy, and from 221 to 559 seconds processing per sentence for 

runtime. These wide ranges confirm the importance of control strategy 

in determining system performance. With respect to the individual 

control variables, comparing the C-.^ystems to the corresponding c- 

systems shows that context checks fur priority setting result in better 

accuracy ^nd faster runtimes (see Figure IV-6).  Similar comparisons 
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FIGURE IV-6  CONTEXT CHECKING — MAIN EFFECTS 

show that mapping all at once improves accuracy bu*. increases runtime 

(see Figure IV-7), while focus by inhibition and island driving both 

reduce the accuracy and increase the runtime (see Figure IV-8 and 

Figure IV-9). In the remainder of this section, we discuss theso 

effects and propose explsritions for them. 
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1.  ACCURACY 

Figure IV-10 shows the effect of the control variables on 

accuracy. For the purposes of analysis of variance, we pooled the 

results on each set of 10 sentences of equal length to get six accuracy 

measures per system. The interaction with length was then used as the 

error term for calculating statistical significance. 
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WITH WITHOUT DIFFERENCE 

F 57.5 62.9 -5.M • 
C 66.0 51.11 11.6 * 
M 6M.6 55.8 8.8 ■ 
I 58.1 

•    p < 

62.3 

0.05 

-4.2 

Figure IV-ID. MAIN EFFECTS OF VARIABLES ON PERCENT CORRECT 

As previously mentioned, context checks and map all improve 

eccuraoy, while focus and island driving make it worse. The island 

driving effect was not significant statistically because of a large 

interaction with sentence length. For the long sentences, 1.7 to 2.3 

seconds, island driving decreased accuracy by 15.8$, but for the short 

ones, 0.8 to 1.1 seconds, it actually increased accuracy by 7.5$ (see 

Figure IV-11). There was a significant interaction (p < 0.05) 

between focus and island driving. As shown in Figure IV-12, the 

effect of island driving is less with focus, and the effect of focus is 

less with island driving. To explain this collection of results we must 

first consider how accuracy is influenced by control strategy. 

The control strategy affects accuracy indirectly. All the 

strategies are 'complete' in the sense that they only reorder, and never 

eliminate, alternatives. If there were no false alarms, all the systems 

would get 100$ of the test sentences correct. Even with false alarms, 

the strategies would get an equal percent correct, if all the possible 
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FIGURE IV 
.,1      ACCURACY VERSUS LENGTH FOR ISLAND-DRIVING 

F 
f 
F-f 

56.7 58.3 
59-6 66.3 
-2.9    -8.0 

I-i 

-1.6 
-6.7 

5.1 

(percent correct) 

Figure IV-12. FOCUS AND ISLAND-DRIVING INTERACTION 
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alternatives could b» tried before the system picked an interpretation. 

Errors would only occur when false alarms had high enough scores to 

displace hits in the highest rated interpretations. However, in the 

actual system, the large number of alternatives roatfes it impossible to 

consider all of them in the space dnd time available. As a result, the 

order in which the alternatives are considered can affect the accuracy, 

and so can the demands on space and time. Control strategy thus affects 

accuracy indirectly by reordering alternatives and by modifying space 

and time requirements. To explain the acnuracy effects, we must look at 

these other factors. 

In this experiment, the storage limit was an important factor 

for accuracy.  In the 960 tests (60 sentences times 16 systems), 578 

I 
(60.211) were correct and ?82 (39.8$) were wrong.  Of the errors, 175 

(1610 had an incorrect interpretation, while 207 (51$) had no 

interpretation at all. Since the systems could potentially get the 

correct answer, and no time limit was imposed until at least one 

interpretation had been found, all of the 207 tentences with no 

interpretation were a result of running out of storage. 

The storage limit used in the tests was based on the number of 

phrases constructed. When the tjtal reached 500, the system would stop 

trying new alternatives and, if any interpretation had been found, pick 

the highest rated interpretation as its answer. The average number of 

phrases constructed was 20H nonterminal and 63 terminal. The system 

with the best accuracy, fCMi, had the lowest average (113 nonterminals 
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and MS terminals), while the system with the worst accuracy, Fcmi, had 

one of the highest averages (260 nonterminals and 68 terminals). 

Overall, there was a strong negative correlation (-.93) between system 

accuracy and average number of phrases constructed (see Figure 

IV-1?); the accuracy drops by about 1% for an increase of 6 phrase in 

the average storage requirements. 

76 

72 

68 

64 

I 
1    60 

m 
tr c 
O    56 

52 

48 

44 

Accuracy  Drops  1% 
for increase of 
6 Phrases 

100 200 300 400 

STORAGE phrases 

FIGURE IV-13      STORAGE AND ACCURACY FOR THE 16 SYSTEMS 

Figure IV-lM    shows the    effects of   the control    variables on 

the number of phrases.    The pattern is the same as for accuracy; context 
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WITH WITHOUT DIFFERENCE 

F 281 253 28 • 
C 2U0 291 -51 •• 
M 211 290 -16 •• 
I 287 217 10 

(number of phrases) 

•• p < .01  » p < .05 

Figure IV-11. MAIN EFFllCTS ON STORAGE 

checks and map all have good effects, while focus ar.d island driving 

have bad effects. Again, because of a large interaction with length, 

the island driving effect is not significant statistically. There are 

significant interactions, p < 0.05, between focus and island driving for 

storage, as seen in Figure IV-15, and between context checking and 

mapping all at once, as seen in Figure IV-16. 

I   i    I-t 

F 290 272 18 
f 281 222 62 
P-f     6  50   -11 

(number of phrases) 

Figure IV-15. FOCUS AND ISLAND-DRIVING 

The beneficial effects of mapping all at once are caujed by a 

reduction in the proportion of false alarm terminal phrasea. Mapping 

all at once significantly reduces the proportion of terminal phrases 
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M m M-m 

c 221 259 -38 
c 267 322 -55 
C-c -46 -63 17 

(number of phrases) 

Figure IV-16.  CONTEXT AND MAP-ALL INTERACTION 

that are false alarms ~ from 88.0$ to 85.7$, P < .01. The false 

terminal proportion is in turn significantly correlated with the number 

of phrases (.72) and the accuracy (-.75). When the words are all mapped 

at once, the system is able to take advantage of the difference in false 

alarm and hit score distributions to reduce the likelihood of 

constructing false terminal phrases. Notice that a relatively small 

change in false terminal percentage has a large effect on system 

performance. 

Surprisingly, context checking also results in a significant 

reduction in the false terminal percentage — from 87.5$ to 86.2$, 

p < .01. This reduction may be evidence that context checking is giving 

lower priority to looking for words adjacent to false alarms than it 

gives to looking next to hits. This change could affect the false 

terminal likelihood, since there is always a hit adjacent to a hit, 

while false alarms often have nothing but other false alarms next to 

them. In addition to its effect on false terminals, context checking 

may also be improving the storage requirements and accuracy by generally 
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improving the priority setting, thereby reducing the likelihood of 

following false paths. 

Focus by inhibition sligh-ly increases the proportion of false 

alarm terminal phrases (from 86.3$ to 87.3if). but this increase is not 

statistically significant. The explanation of the ill effects of focus 

is essentially the converse of the explanation of the effects of context 

checking. Context checking makes performance better by improving 

priorities, while focus makes it worse by distorting priorities. Focus 

too often changes priorities to bias the system in favor of a false 

alarm instead of a hit. In the systems that used focus by inhibition, 

there was an average of 3.5 hits put in focus per sentence compared to 

12.9 false alarms. FOJUS conflicts changed priorities in favor of a 

false alarm 112 times per sentence and in favor of a hit, only 15 times 

per sentence. Thus the priorities, and the system performance, were 

better with the unbiased best-first strategy than with focus by 

Inhibition. 

Island driving did not affect the false terminal proportion, 

but it did have bad effects on storage and accuracy for the longer 

sentences. To get a sentence correct, island driving must start at 

least one island with a hit. If all the oeeds — words selected to 

start islands — are false alarms, the sentence will not be interpreted 

correctly. The overall average was 3.7 false alarm seeds per sentence 

and 0.9 hit seeds. There were one or more hit seeds in 82% of the tests 

uping island driving.  The bad effects of island driving on long 

IV-27 

:.^^£^^--.^f,i^^MMrtrjriii;TBäiii i ■■   ■ -^-"-^ rniihi '■! i iiiir r" i   mtiiiMatm\Tr     -HthMafr   —■—-——--    _.^^.^..J-^ 



sentences was not caused by an increase in the number of false alarm 

seeds. The average rank of the first hit in the sequence of words for 

use in forming islands was M.8, and the rank did not increase with 

sentence length. (The correlation between rank and length was .CO. 

For sentences 1.7 seconds or longer, instead of an increase in the 

number of seeds necessary to get a hit, there was an increase in the 

amount of storage consumed per island. Perhaps the greater length 

allowed islands to grow in r>oth directions, whereas in shorter sentences 

the sentence boundaries blocked one direction or the other. 

The interaction of focus and I«1and driving can be explained 

as the result of the storage limit. The limit put a ceiling on the size 

of the possible combined effect. Thus the combined effect was less than 

the sum of the individual effects. Similarly, the interaction between 

context checking and mapping all at once is a result of overlapping good 

effects, which consequently fail to add. The same pattern of context 

and map-all interaction appears in false terminal proportion, p < .05, 

and in accuracy, F^.OO versus F(1,5)=1*.06 for p < .10. 

We now turn to a brief analysis of the sentences tha g> ^ one 

or more interpretations but were incorrect because their highest r^ted 

interpretation was wrong. As mentioned previously, this happened in 175 

tests. In 109 of these (621), the chosen interpret?*ion was reasonable 

linguistically but contained incorrect words. In 10 tests (6$), the 

chosen interpretation could have been eliminated by a better language 

definition ("Was feet one builder of the Farragut?" is an example from 
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these 10). Finally, 56 of the errors (32%) were harmless, in that the 

system 4<ould probably produce the same answer as if it had found the 

correct sequence of words (e.g., "What reactor does it have?" instead 

of "What reactors does it have?" was one of these harmless errors). If 

the harmless errors are counted as correct in calculating the accuracy, 

most accurate system, fCMi, increases in percent correct from 73.3/t 

to 6l.7/f, and the average accuracy for all the systems goes up about 

5.8?. 

The accuracy effects have been explained in terms of storage 

requirements, proportions of false terminal phrases, and priorities. 

The important role of the storage limit raises the question of whether 

the accuracy effects would have disappeared if uore storage h^d been 

available. We believe that the effects would have been smaller but 

still important. The effects on the proportion of false terminal 

phrases would remain, as would the presumed effects on priorities. A 

smaller percentage of false terminals and better priorities will cause 

the system to find the correct interpretation sooner, and, even if the 

sto -age limit were relaxed, the limit on runtime would remain to 

penalize systems that were slow to find the right answer. The effects 

of control strategy choices on accuracy would only vanish if space and 

runtime limitations were both removed, an unlikely ^vent in view o^ the 

current performance of speech-understanding systems. 
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2.  RUNTIME 

The systeui runtime is another important performance measure. 

Here, we will use the phrase 'tot^l runtime' to refer to the simulated 

acoustic processing, plus the actual processing time (on a DEC PDP KA- 

10) for th- executive and the semantic components. The executive time 

is mainly spent setting priorities and parsing. The semantics time is 

used in constructing semantic translations and in dealing with anaphoric 

references and ellipsis. The reported total runtime does not include 

acoustic preprocessing or ques^on answering, since neither is affected 

by the experimental variables.* We report results only for total, 

Executive, and acoustic times; semantic times are not reported, both 

because they are redundant given the other three measures, and because 

they are relatively small in comparison to the others. In analysis of 

variance of the ».'untimes, interaction with length was used as the error 

term. 

The main effects of the control variables on total runtime are 

given in Figure IV-17. All the variables except context checking 

increate the runtime. Dividing the sentences into a short group (0.8 to 

1.1| second?) and a long group (1.7 to 2.3 seconds) shows that island 

driving has a much worse effect on runtime for long than for short 

sentences.  For short sentences, island driving increased the mean 

• Acoustic preprocessing takes about 160 CPU seconds per second of 
speech on a PDP 11/^0 (according to personal communication with Iris 
Kameny at SDC). The time for question answering varies great]y with the 
complexity of the request. 
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WITH WITHOUT DIFFERENCE 

F in? 386 31 ■ 
C 383 121 -38 «« 

M i<98 305 193 «• 

I W 359 85 # 

(seconds per sentence) 

» p < .05  »• p < .01 # p < .10 

Figure IV-17. MAIN EFFECTS ON TOTAL RUNTIME 

runtime from 262 to 290 seconds, a difference of 28. For Ion; 

sentences, the increase was from 1157 to 598 seconds, a difference of 

111. Recall that for long sentences island driving also had worse 

effects on accuracy and storage. 

Figure IV-18 and Figure IV-19 show the main effects on 

executive runtime and acoustic runtime, respectively. In both cases, 

context checks decrease the runtime, while focus and island driving 

increase it. Mapping all at once improves the executive runtime but 

leads to a huge increase in acoustic processing time. As usual, 

examination of the results according to sentence length shows that 

island driving is worse for longer sentences. The average executive and 

acoustic times together account for 95$ of the average total, so, as 

mentioned previously, we do not report separate effects for semantics. 

Analysis of variance for total, executive, and acoustic 

runtimes reveals a significant interaction between context checking and 
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WITH WITHOUT DIFFERENCE 

F 120 106 in •• 

C 109 117 -8 # 
M 90 135 -M5 •t 

I 127 98 29 i 

(seconds per sentence) 

•• p < .01   # p < .10 

Figure IV-18. EFFECTS ON EXECUTIVE RUNTIME 

WITH WITHOUT DIFFERENCE 

F 276 260 16 # 
C 25«* 282 -28 •• 
M 389 1M7 2U2    •* 
I 295 241 5H    # 

(seconds per sentence) 

•• p < .01   # p < .10 

Figure IV-19.  EFFECTS ON ACOUSTIC RUNTIME 

mapping all at once (p < .01 for total and acoustics; p < .05 for 

executive). For total and acoustic runtime, the good effect of contex:. 

checking was reduced when words were mapped all at once, and the 

increase in runtim? caused by map-all was greater when also context 

checking. For executive runtime, both cnntext and map-all had good 

effects, and there was actually a synergistic relation; nontext checking 

helped more when mapping all at once, and vice versa. 
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There was also a significant three-way interaction among 

focus, map-all, and island driving (p < .01 for total and acoustic 

runtimes; p < .05 for Executive). When not mapping all at once, there 

was negligible interaction between focus and island driving. However, 

when mapping all at once, the combined bad effect of focus and island 

driving was significantly less than the sum of their individual bad 

effects. 

The runtime results follow basically the same pattern as the 

accuracy and storage results. Focus and island driving have bad 

effects, with worse results from island driving for longer sentences, 

while context checking has consistently good effects. Map-all has a 

good effect on Executive runtime, but, unfortunately, it causes large 

increases in acoustic and total runtimes. The only inconsistency with 

the previous pattern of effects for accuracy and storage is the bad 

effect of map-all on the acoustic runtime. This fact is explained by 

pointing out that the mapper was designed for mapping words one at a 

time and, in the simulation, does not accumulate or share information to 

make subsequent tests more efficient. Finally, it is noteworthy that 

the extra effort for context checking resulted in a net decrease in 

processing time. For example, fCMi spent an average of 6.3 seconds more 

per sentence doing extra processing for context checks, but it was still 

11 seconds per sentence faster than fcMi. 

The runtime figures above are in units of seconds used to 

process a sentence.  A more common unit for runtime is seconds per 
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second of speech. This is a reasonable scale if th«; runtime can be 

approximated by a linear function of sentence length with a zero 

intercept. Both assumptions, linearity and zero intercept, are 

consistent with our data. No significant nonlinearity was found by an F 

test of the variance of the mean for each length about the regression 

line, relative to the combined variance of the sentences within a given 

length (for instance, the data for fCMi gave Frl.37 versus F(4,510=1.Ml 

for p < .25). Moreover, the 95% confidence interval for the intercept 

of the regression line included the origin. With this justification, we 

used zero-intercept linear regression to calculate the processing times 

per second of speech and their 95%  confidence intervals. 

The results for the fastest system, fCmi, were 111, plus or 

minus IM seconds processing per second of speech for total runtime; 66, 

plus or minus 9 for executive runtime; and 63, plus or minus 7 for 

acoustic runtime. The results for the most accurate system, fCMi, were 

247, plus or minus 21 for total runtime; 34, plus or minus 6 for 

executive runtime; and 205, plus or minus 14 for acoustic runtime. 

Thus, for fCMi, 8311 of the total runtime slope comes from acoustic 

processing, 14$ from the executive, and the remaining 3$ from the 

semantics. Clearly, the best approach to improving fCMi runtime is to 

redesign the mapper for mapping all at once. The potential is large for 

sharing work to improve efficiency in the mapper, since the data show 

that fCMi is mapping all the words at an average of 13 out of the 20 

possible positions per second of speech. 
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?.  REVIEW OF THE EFFECTS 

The only control strategy choice with mixed effects in 

Experiment ? is whether or not to map all at once. Mapping all at once 

improves accuracy and executive runtime, but at a large cost in acoustic 

and total runtime. Redesign of the mapper, perhaps along the lines of 

the BBN lexical retrieval component (see Klovstad in Woods et al., 

1976b), could undoubtedly resolve this choice in favor of mapping all at 

once. For example. Just cutting the acoustic processing in half would 

make the fCMi system about as fast as the fCmi system. The choice, 

whether to map all or not, is explored further in Experiment 5. 

The overall effects of island driving were bad, and they were 

particularly bad for longer sentences. Island driving was hurt by false 

alarm seeds, especially when the sentence was long enough for the 

islands to grow in both directions. Pri-haps island driving can be 

modified to overcome this problem. For example, a multiword seed 

technique like Hearsay-II's (see Chapter III, Sectiot, E.2) might reduce 

the number of false alarm seeds, and a restriction like the one used by 

BBN to keep seeds near the start of the utterance might reduce the 

storage needed per island. Another alternative would be to pick seeds 

anywhere In the utterance but to restrict them to growing in one 

direction to an utterance boundary before allowing them to grow in the 

other direction. Island driving did give higher accuracy for the 

shorter sentences and correctly answered some of the sentences that fCMi 

missed (see Section H), so further effort is Justified to look for 
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versions of island driving that have good effecta for long sentences as 

well as for short ones. 

The effects of focus by inhibition were bad on all measures. 

The cause of the bad effects was too much focusing on false alarms, so 

we have tried a modified version that is much more conservative about 

which words to put in focus. It uses the false-alarm likelihood 

estimates as a primary orit^^ioii in selecting words for focus. The 

modified focu? method yas tested an the 60 utterances using the FCMi 

system, which was the best of the orib-'ial focus systems. The results 

are shown in Figure IV-?0 Th«. rwdificr.tion greatly reduced the number 

of false alarms in focu.i and improved the FCFi p^rforiuance of all 

measures. In fact, the oodififtd-fCMi is he nost accurate of all the 

systems tested; it correctly answered all the sentences that fCMi did, 

plus one more. However, it is still slightly worse than fCMi in storage 

and runtime. The differ mces between fCMi and the modified-FCMi are 

small (oecause so few words are put in focus by the modified technique), 

but tiiey suggest that focus by inhibition might have significant good 

effects if further effort was devoted to tuning the algorithm for 

selecting focus words. 

Context checking had uniformly good effects. For both 

accuracy and runtime, it was worth the extra effort to get better 

priority setting. This result clearly depends or. the fact that we put a 

large amount of the system's knowledge into the rule procedures of the 

language definition rather than into the structural declarations. It 
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new-FCMi old-FCMi fCMi 

Words in Focus 
Hits 1.3 3.9 0.0 
False Harms 1.6 8.2 0.0 

Focus Conflicts 
Hits 4.0 13.3 0.0 
False Alarms 12.8 75.8 0.0 

Raw Accuracy, % 75.0 71.7 73.3 
Forgiving, % 81.7 76.7 81.7 
Runtime (sec/sent) 392 U77 385 
Executive  " 60 83 53 
Acoustic   " 321 377 320 
Storage (phrases) 165 231 158 

Figure TV-20.  EFFECTS OF MODIFIED FOCUS BY INHIBITION 

would be interesting to repeat these tests with different language 

definitions that had the same linguistic scope but put more inforration 

into the structure and less in the procedures. 

F.  EXPERIMENT H —  GAPS AND OVERLAPS 

The data from Experiment 1 do not aid us in simulating the mapper's 

performance when called on to test whether two words it has accepted 

individually are also acceptable as a contiguous pair. Such tests, 

referred to as "phrase mapping', are necessary whenever words and 

phrases are combined to form larger units. In the experimental 

simulation of the mapper, we replaced phrase mapping by a simple 

threshold test; we allowed gaps and overlaps of up to 0.05 second of 

speech, but rejected those that were larger. Experiment h tests the 

effect of different values of the gap-overlap parameter  on the 
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Fanout with acoustics (words) 
Rank of hit in fanout 
Raw accuracy, t 
Forgiving accuracy, % 
False terminal, % 
Number of nonterminals 
Total runtime (sec/sec-speech) 
Executive runtime  " 
Acoustic runtime   " 

GAP- -OVERLAP SIZE 
0.00 0.05 0.10 

6.6 18.0 29.t 
1.9 3.7 5.6 

96.7 73.3 48.3 
98.3 81.7 58.3 
58.2 83.2 89.1 

31 113 217 
1H0 247 333 
10 34 69 

128 205 243 

Figure IV-21. EFFECTS OF GAP-OVERLAP PARAMETER 

performance of the fCMi system from Experiment 3. Figure IV-21 gives 

tha results for a variety of measures with gap-overlap sizes of 0.00, 

0.05, and 0.10 second. 

The performance is much better for 0.00 and much worse for 0.10 

second of gap or overlap. The observed distribution of gaps and 

overlaps is shown in Figure IV-22. Notice thac a technique using a 

simple threshold on the size of gaps and overlaps would not be 

acceptable in practice; the threshold would have to be at least 15 

oentiseconds, and the data reported in Figure IV-21 suggest that the 

resulting performance would be terrible. This is strong evidence for 

the importance of special acoustic tests to verify word-pair junctions. 

Such tests can lead to a large reduction in the average hit rank and, 

consequently, to significant improvements in both accuracy and runtime. 
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FIGURE IV-22  OBSERVED DISTRIBUTION OF GAPS 
AND OVERLAPS 

G.  EXPERIMENT 5 — INCREASED VOCABULARY AND IMPROVED ACOUSTICS 

Experiment 5 studies the effects of increased vocabulary size and 

improved acoustic-processing accuracy. As test systems, we use fCMi and 

fCmi from Experiment 3. These are the best systems for accuracy and 

speed, respectively, and they also give us more information about the 

map-all control strategy choice. Thus there are three experimental 

variables: vocabulary size, acoustic accuracy, and map-all. Data for 

two of the eight combinations, map-all or not for smaller vocabulary and 

regular acoustic accuracy, come from Experiment 3. For Experiment 5, 

the other six combinations were tested to provide a complete set of data 

for analysis of the effects of the variables. 
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The large vocabulary is a 451-word superset of the 305-word 

vocabulary used in the other experiments. The data gathered in 

Experiment 1 showed that, with the U51-word vocabulary, the mapper made 

2026 false alarms and had a false alarm rate of 1^2 false alarms per 

second of speech (compared with IT» for the 305-word vocabulary). Using 

the Experiment 1 information, the mapper performance was simulated for 

the large vocabulary on the same set of 60 test, sentences. 

Improved acoustic-processing accuracy was simulated by a 7% 

downward stretch of the false alarm score distribution, while leaving 

the hit scores unchanged. In other words, a false alarm score X, in the 

range 45 to 100, was replaced by 1.07X-7. If the result was below the 

threshold of 45, the false alarm was eliminated. This process reduced 

the number of false alarms for the 305-word vocabulary from 1564 to 

1204, and for the 451-word vocabulary, from 2026 to 1541. Because the 

aubthreshold scores were eliminated, the simulated improvement left the 

average false alarm score almost unchanged: for the 305-word vocabulary, 

it went from 59.4 to 60.2, and for the 451-word vocabulary, it went from 

58.2 to 58.8. We feel that an improvement ivi acoustic accuracy of the 

magnitude simulated here could have been achieved by careful tuning of 

the mapper. 

Figure IV-23 records the accuracy results using the notation "M" 

for tests with mapping all at once, "m" for those without, "A" for 

systems with improved acoustic accuracy, "a" for thoac without, "V" lor 

systems with increased vocabulary, and "v" for those without. Improved 
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AMv  Amv  aMv  AMV  amv  AmV  aMV  amV 

Faw, t 85.0 78.3 73.3 71.6 70.0 68.3 68.3 53.3 
forgiving, %       95.0 85.0 81.7 78.3 76.7 76.7 75.0 53.3 

Figure IV-23.  ACCURACY RESULTS 

acoustics raises fCMi accuracy from 73.3? to 85.0$, or from 81.7$ to 

95.0$ if harmless errors are forgiven. However, if vocabulary size is 

also increased, accuracy drops slightly from 73.3$ to 71.6$. Tl.us, in 

this experiment, a 7$ improvement in acoustic accuracy almost 

compensates for a 48$ increase in vocabulary. Comparison of the M- 

results to the m-results shows that map-all consistently helps accuracy. 

The main effects on accuracy and several other measures are given 

in Figure IV-2'4. Improved acoustics leads to big gains in accuracy, 

storage, and runtime. Increased vocabulary makes performance worse, but 

at least the system does not collapse. As in Experiment 3, mapping all 

at once improves everything except acoustic and total runtimes. 

There were few significant interactions. Vocabulary size and 

mapping all at once interacted significantly for acoustic runtime 

(p < .05) and for total runtime (p < .10). Figure IV-25 shows that 

the increase caused by map-all is greater for the bigger vocabulary, 

and, surprisingly, that the increase in vocabulary ^ize leads to a 

reduction in processing, if the system is not mapping all at once. 
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WITH WITHOUT DIFFERENCE 

Raw Accuracy (percent) 

Phrases (total 

A 
V 
A 
number 
A 
V 
M 

75.8 66.3 
65."4 7o.7 
74.6 67.5 
terminal and 
155 
204 
156 

208 
159 
206 

False Terminals (percent) 
A    80.6 85, 

82, 
84, 

Total Runtime 
A 
V 
M 

Acoustic Runtime 
A 
V 
M 

Executive Runtime 
A 
V 
M 

9.5 " 
-11.3 # 

7.1 • 
nonterminal) 

V    84.3 
M    81.7 
(seconds/sentence) 

266   320 
312   275 
383   204 

(seconds/sentence) 

187   213 
205   195 
315    84 

(seconds/sentence) 
66    89 
88   67 
55   101 

-53 
45 

-51 

-5.3 
2.2 

-3.1 

-54 

37 
179 

-26 
10 

231 

-23 
21 

-46 

• t 

«f 

•• 

»« 

•« 

• • 

»» 

•• 
»• 
»« 

• • p < .01  • p < .05  # p < .10 

Figure IV-24. MAIN EFFECTS OF ACOUSTICS, VOCABMLARY, AND MAP-ALL 

M m M-m 

V 335 75 260 
v 296 94 202 
V-v    39 -19    58 

(seconds/sentence) 

Figure IV-25.  VOCABULARY AND MAP-ALL INTERACTION FOR ACOUSTIC RUNTIME 
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Mapping all at once also interacted significantly with acoustics 

for acoustic runtime (p < .01), total runtime (p < .01), and false 

terminal percentage (p ' .05). All eases were similar to the one shown 

in Figure 17-26. There was a synergistic interaction causing mapping 

all at once to be more effective with better acoustics, and vice versa. 

This result is readily explained since map-all is designed to take 

advantage of the difference between false-alaro and hit-score 

distributions, and improving the acou ics enhances that difference by 

reducing the number of high scoring false alarms. 

M   m    M-m 

A 78.6 82.6 -1.0 
a 8U.8 87.0 -2.2 
A-a   -6.2 -u.!; -1.8 

(percent) 

Figure IV-26.  ACOUSTICS AND MAP-ALL INTERACTION FOR FALSE TERMINALS 

In iddition to the .uain tests for Experiment 5, we also ran another 

tent to study the effect of improved acoustics on a system using island 

driving. The best island driving system from Experiment 3 was fCMI. 

When tested on the 305-word vocabular-' with 7$ simulated improvement in 

acoustics, fCMI gained in accuracy f" m 68.3$ to 78.3$. It was >till 

below the non-island driving fCMi, and the gap between them reüiäined 

large. (Recall that fCMi went from 73.3$ to 85.0$.) Thus, improvements 

in acoustics alone appear unlikely to be able to solve the problems wich 

this version of island driving. 
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In summary, this experiment has given us information about how 

badly the system is hurt by increased vocabulary, and how much it is 

helped by improved acoustics. With respect to the control-strategy 

design choices, further evidence appeared in favor of mapping all at 

once, and against the current versicn of island driving. 

H.  DETAILED MEASUREMENTS OF EXECUTIVE OPERATION 

This section gives a detailed breakdown of the statistics for the 

most accurate of the Experiment 3 systems, fCMi. Based on the 

performance for fCMi on the 60 test se-itences in Experiment 3, we report 

information regarding the composition of the parse net, the effects of 

lookahead, the performance of the context-checking procedures, the 

processing time for the major Executive procedures, and the breakdown of 

the accuracy results according to the existence and relative scores of 

correct and incorrect interpretations. Because of its level of detail, 

this section presupposes familiarity with the description of the 

Executive given in Section D of Chapter III. 

Figure IV-27 shows the average composition of the parse net at 

the end of processing an utterance. Notice that there are t. 9 

consumer-to-prediction links than there are predictions (78 versus 61), 

so there is some sharing taking place. To estimate the amount of 

sharing, we computed what the total size would be if the parse net were 

a tree instead of a network and all of the shared structures were 
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133  Nonterminal phrases per sentence 
38 complete, 50 partial, 25 empty 

15  Terminal phrases per sentence 

61  Predicticns per sentence 

78  Consumer-to-prediction links per sentence 

Figure IV-27. COMPOSITION OF THE PARSE NET 

duplicated.* The average number of phrases plus predictions was 220 in 

the actual parse net; expanding the net into a tree increased the 

average to 101, an 83? increase. Thus, while only 1? out of the 78 

consumer-links (22$ of them) went to another consumer's prediction, the 

overall savings were quite large. 

Whereas Figure IV-27 shows the number of phrases aud predictions 

that were actually constructed, Figure IV-28 shows how many were 

blocked for various reasons. There were 12.3 phrases per sentence 

rejected by language factor statements, and of these, syntactic factors, 

which are usually tested first because they are less expensive 

computationally, accounted for over 90$. The preliminary tests in the 

add-constituent procedure (times, phrase mapping, and lookahead) blocked 

5.1 phrases per sentence. In 17.8 cases per sentence, the same terminal 

or nonterminal phrase already existed, so the construction of a 

» The fCMi system works left-to-right and there is no left-recursion in 
the rules of the language, so the parse net does not have loops and can 
be converted to a finite tree. 
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M2.3 Factor Rejections 
38.3 (90.3$) by syntactic factors 
1.5 (3-5%)  by case-grammar factors 
0.3 (0.7$) by semantic translation factors 
2.^ (5.1»$) by discourse factors 

5.1 Add-Constituent Preliminary Tests 
3.1 in Part 1 
2.0 in Part 2 

17.8 Same Phrase Already Existed 
4.5 Nonterminal 

13.3 Terminal 

31.^ Phrases and Predictions Blocked by Lookahead 
in the Predict Task 

96.6 Total 

(per sentence) 

Figure IV-28.  BLOCKING OF PHRASES AND PREDICTIONS 

duplicate was blocked.* The final type of blocking is lookahead in the 

oredict task, which accounted for 31.I blocked phrases and predictions 

per sentence. 

The data in Figure IV-28 show that the lookahead mechanism is 

providing a substantial constraint, so it is of interest to compare the 

performance of the system with and without lookahead (see Figure 

IV-29). Lookahead has good effects on accuracy, storage, and 

Executive runtime, but not on acoustic runtime or total runtime. The 

• It is possible to have such duplication even with a left-to-right 
control strategy because of the looseness in the time constraints. For 
example, a word starting at position U5 can be found by predictions 10, 
^5, and 50, leading to two blocked duplicates. 
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WITH WITHOUT DIFFERENCE 

73.3 71.7 1.6 
81.7 76.7 5.0 
335 287 98 
53 64 -11 

320 208 112 
158 192 -34 

Raw Accuracy, % 
Forgiving, % 
Total Runtime (sec/sent) 
Exec Runtime (sec/sent) 
Acoustic Runtime (sec/sent) 
Storage (phrases) 

Figure IV-29.  EFFECTS OF LOOKAHEAD 

bad effects result from an increase in the number of places per sentence 

where words were tested — up from 13 without lookahead, to 20 with. 

Lookahead is causing the system to 'peek' at places that without 

lookahead it would simply ignore. The extra testing done with lookahead 

would be less expensive with a redesigned mapper, but the cost 

undoubtedly would not decrease enough to compensate for the existing 

difference.* Lookahead appears to help accuracy somewhat, so rather than 

simply discard it, we feel that further effort is called for to design a 

version of the system that uses lookahead in a more efficient way. 

unlike lookahead, context checking has uniformly good effects. As 

mentioned previously, an average of about 6.3 seconds of processing per 

sentence was spent doing context checking, and this effort resulted in a 

net decrease of 41 seconds per sentence in the total runtime (based on 

comparision with the results for the best system without context- 

• Based on the data in Figure IV-29 the acoustic runtime would have to 
drop to one-eighth of Its current level to cause the total runtimes to 
be the same (subtract seven-eighths of the acoustic runtime from the 
total runtime: with lookahead, ?85-320»7/8=105; without lookahead, 287- 

208»7/8=105). 
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checking (fcMi) — the savings were '\9.H seconds in Executive 

processing, 17.3 seconds in acoustics, and *i.2 in semantics). There was 

an average of 50 rating assignments made by context checking per 

sentence, with the construction of 78 virtual phrases and ?8 complete 

consumer paths (average length of a complete path, 1.5 virtual phrases). 

The rejection of a virtual phrase by rule factors caused 35 paths to be 

terminated per sentence. Ten paths per sentence were blocked by the 

heuristic search procedure because their priority was less than the 

established lower bound. Note that the number of rating assigments by 

context checking equals the number of partial nonterminal phrases (given 

in Figure 1V-27). Thus, there was no recalculation of ratings for 

partial nonterminal phrases after the first assignment. Also, since 

there were only 28 complete paths, at most 28 of the partial 

nonterminals were allowed to make predictions.» The ones without a 

complete consumer path received a rating of zero and were not added to 

predict-sets. This result helps to explain the value of context 

checking; about half of the partial nonterminals that were all right 

with respect to local tests and fit their consumers' structural 

requirements were rejected by their consumers' factor statements and, 

therefore, were given a zero rating. 

The processing time for context checking appears to be well spent, 

but how was the time spent for the rest of the Executive procedures? 

figure IV-30 shows the total time per sentence, the number of calls 

• It may have been fewer than 28 if some rating assignments created more 
than one complete path. 
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FUNCTION TOTAL TIME CALLS PER CALL PERCENT OF 
(seconds) (millisecs) EXECUTIVE 

Word Task 
Create-word-set 6.1 48 127 10.8 
Get-a-word 1.5 18 83 2.7 
Create-terminal 3.9 70 56 6.9 

Diatribute-phrase 1.5 65 23 2.7 
Add-constituent 

Top-level 2.5 112 22 4.4 
Prelim-part-1 1.5 112 13 2.7 
Prelim-part-2 a».2 109 39 7.5 
Complete-phrase 6.0 107 56 10.7 

Rule procedure 3.2 41 78 5.7 
Consumer-checks 3.3 156 21 5.9 
Incomplete-phrase 3.8 71 54 6.7 

Rule procedure 1.7 71 24 3.0 
Add-predict-sets 1.1 35 31 2.0 

Predict-taak 
Create-Subnet 5.3 19 279 9.4 
Assign-Ratings 1.6 19 84 2.8 
Cleanup 0.5 19 26 0.9 

Context-checking 
Virtual-phrase 3.U 78 44 6.0 

Rule procedure 1.9 78 24 3.4 
Search 1.7 50 34 3.0 

Top level 1.6 1 1584 2.8 

(per sentence) 

Figure IV-30. TIMING BREAKDOWN 

per sentence, the time per call, and the percentage of Executive 

runtime, for the major Executive routines. Notice that the combined 

rule procedure execution time for complete, incomplete, and virtual 

phrases is only 12.1$ of the Executive processing. The time for the 

rule procedure with a complete phrase is about 78 milliseconds, while 

with an incomplete or virtual phrase the time is only 24 milliseconds. 

Given the size of the rule procedures and the capabilities of the 
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IHTERLISP compiler and the PUP KA-10, thess times probably cannot be 

improved significantly. The create-subnet procedure stands out as 

taking the moat time per call, 279 milliseconds on the average. 

However, it is a complex operation and that amount of time does not seem 

unreasonable for it. Perhaps the main conclusion to be drawn from the 

timing data in Figure IV-30 is that big improvements In processing time 

will not come from discovering and correcting implementation blunders in 

the Executive — instead, nontrivial design innovations will be needed. 

The final measurements to be discussed deal with the accuracy of 

the fCMi system. Figure IV-31 shows the accuracy breakdown in terms 

of the existence and relative scores of correct and incorrect 

interpretations. Overall, fCMi got W sentences correct and missed 16. 

Of the 16 errors, five were 'harmless'. Three of the harmless errors 

consisted of leaving out a plural morpheme. These accounted for all of 

the cases in which an interpretation was found but had a worse score 

than an incorrect interpretation that was also found. The other two 

harmless errors were among the cases In which only incorrect 

interpretations were found. In one, the system picked an interpretation 

containing "has" instead of a plural morpheme followed by "have". In 

the other, a singular verb suffix was acceptei] instead of a past tense 

suffix. In both cases, the incorrect interpretation had a higher score 

than would have been given to the correct interpretation (if it had been 

found). Thus, because of high scoring false alarms, the optimal 

solution (the interpretation with the highest score possible) was not 

the correct solution. 
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32 times only got correct interpretation 
8 times only got incorrect interpretation 
3 times got no interpretation 

12 times correct score better than bad score 
2 times correct score same as bad score 
3 times correct score worse than bad score 

60 total — Hk  correct and 16 errors. 

Figure IV-31. ACCURACY BREAKDOWN 

The two cases having correct and Incorrect interpretations with 

equal scores were caused by the presence of false alarms that could not 

be rejected by linguistic considerations alone. The three cases getting 

no interpretation all had a low scoring word in either the first or 

second position (mapper scores of 59 or less), and in two of the cases, 

island driving (by the fCMI system) succeeded in finding the correct 

answer. 

The eight cases in which only an incorrect interpretation was found 

can be divided into three categories: forgiven errors, optimcl but not 

correct, and suboptimal. As mentioned previously, two of the eight with 

no correct interpretation were forgiven errors. Th-ee were the result 

of finding an optimal interpretation that was not correct. 

[Surprisingly, island driving (fCMI) got one of these correct by 

stopping with a suboptimal, correct interpretation.] The final three 

were the result of stopping with a suboptimal, incorrect interpretation. 

In these last three, the correct interpretation started with either a 

bad score (56) or a small word ("how" or "the"). In each case, island 

driving (fCMI) got the correct answer. 
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Of the 16 sentences that fCMi missed, five were forgivable acoustic 

errors, six were correctly interpreted by an island driving system 

(fCMI), four were the result of finding optimal but incorrect 

interpretations, and one had so many attractive false paths that it 

could not be handled within the storage limits by any of the systems. 

These results indicate that a different control-strategy might have 

correctly answered at least five sentences more than fCMi did: three for 

which fCMi picked a suboptimal interpretation and two for which fCMi 

found no interpretation although fCMI found the correct one. Such an 

improved strategy would have an 81.7$ accuracy (90.0$ forgiving), with 

'nonforgiven' errors traceable to either acoustics (five cases) or 

storage limits (one case). This result gives a rough upper bound for 

improvements by modifying the control strategy versus modifying the 

acoustics. Of the 16 errors by fCMi, five were the result of the 

control-strategy failing to find the optimal interpretation, and 11 were 

the result of acoustic errors — but five of the 11 acoustic errors 

could be forgiven. 
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I.  CONCLUSION 

Reviewing the series of experiments, the first experiment showed 

that the acoustic processing component called the 'mapper' had a high 

false-alarm rate, but tended to give better scores to hits than to false 

alarms. In the second experiment, we measured the number of 

alternatives open to the syatem for extending segments of sentences. 

The size of the fanout helps to explain the difficulty of speech 

understanding. The third experiment studied the effects on system 

performance of four control-strategy design choices. Focus by 

inhibition and island driving had bad effects, while context checks for 

priority setting had good effects. Mapping all at once had good effects 

on everything except acoustic and total runtime, and these bad effects 

could probably be eliminated by redesign of the mapper. The fourth 

experiment varied the size of allowed gaps and overlaps between words 

and showed the potential value of special acoustics tests to verify 

word-pair junctions. The fifth experiment gave quantitative measures of 

how badly the system is hurt by increased vocabulary, and how much it is 

helped by improved acoustic accuracy. The experiment also provided more 

information about the control, choices. The final study considered 

detailed measurements of the Executive performance and provided insights 

into the use of time and storage and the kinds of errors made by the 

system. 

Overall, the series of experiments gives a better understanding of 

the system performance and suggests new Dossibilities for further 
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research. With respect to methodology for analyzing complex systems, 

the results indicate that experimentation using analysis of variance is 

a useful technique in computer science (as suggested by Newell, 1975;. 

It is a technique that has been widely used in other areas of science 

and technology, but it has seen almost no use in computer science.* Our 

experience shows that analysis of variance and related statistical 

methods can provide a productive paradigm for the study of complex 

computer systems. 

J.  TEST SENTENCES 

The 60 sentences listed below were used in the control strategy 

experiments. The sentences are grouped according to their simulated 

length in seconds of speech. Processing for all of the sentences 

assumed a dialog context in which the preceding utterance was "What is 

the speed of the Batfish?". For example, the test utterance "Submerged 

displacement?" wa'i interpreted by the system as meaning "What is the 

submerged displacement of the Batfish?". 

2.3 seconds 

Is the size of the Hammerhead 2000 tons? 
Was Portsmouth Naval Shipyard the builder of the Seadragon? 
Which subs have a length of ?00 feet? 
How many subs did Puget JJound Naval Yard manufacture? 
What engine wa? manufactured by General Dynamics? 
Whose ships did the Electric Boat Company construct? 
Which destroyers were constructed by Cammell Laird Company? 
Which AGFF did H. M. Dockyard construct? 

• However, Gillogy (Carnegie-Mellon University, Computer Science 
Department Ph.D. thesis, in progress) applies analysis of variance to 
the study of a chess program. 
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How many diesel  frigates does Great Britain have? 
Did Bethlehem Steel Company manufacture a cruiser? 

2.0 seconds 

Were the Lafayettes built by Todd Pacific Shipyards? 
Which countries have conventional submarines? 
Which frigates were built by Newport News Shipyard? 
Does the Swordfish have a speed of 30 knots? 
What is the surface displacement of the Queenfish? 
What categories of submarines are there? 
Did Vickers Armstrongs Limited construct the Olympus? 
Does the united States own that submarine? 
What standard displacement does the Seahorse have? 
What training submarines does England own? 

1.7 seconds 

Who constructed the English cruisers? 
How many frigates are owned by the U.S.? 
How many oruisers does England own? 
How many classes of subs are there? 
Do Resolutions have two reactors? 
Is Britain the owner of the Conqueror? 
Is the Renown a British pubmarine? 
How many patrol submarines are there? 
How many countries have CGNs? 
Name the owners of aircraft carriers. 

1.^ seconds 

What country owns the Superb? 
Who was the builder of the Jack? 
Was Its builder Avondale Shipyards? 
Do we have ten dieael carriers? 
How fast are the Graybacks? 
What reactors does it have? 
Was it built by Norfolk Navy Yard? 
How many turbines do Brookes have? 
Which nuclear carriers do we own? 
Print the draft of the Scamp. 

1.1 seconds 

List the CHGs. 
How many Darters are the-e? 
Is it a research sub? 
Who is the owner of it? 
The speed of the Onslaught? 
How fast is the Trout? 
How many CGs are there? 
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Speed of the Bluefish? 
What engines are there? 
Is a Cv a submarine? 

0.8 seconds 

Submerged displacement? 
How long is it? 
Whose ship is it? 
Is it owned by us? 
The Constellation? 
Its surface spef;d? 
Who constructed it? 
What is its size? 
What displacement? 
Displacement of it? 
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A.  INTHODUCTION 

This chapter describes the framework for knowledge representation 

that underlies those semantic-oriented components of the SRI speech 

understanding system that deal with the content of communication as 

opposed to (or in addition to) its surface form. The representation 

scheme embodies the system's knowledge about the nature of the task 

domain (that portion of the outside world with which the system is 

conversant) and serves as the medium for recording and communicating 

semantic information among the relevant system components during the 

interpretation of an utterance. The components that make use of the 

representation scheme and encoded knowledge include the semantic 

composition routines, the discourse component, the deduction component, 

and the English generator. Tha development of the representation has 

been strongly influenced by the requirements of the components; 

correspondingly, the representation has helped, at a fundamental level, 

to shape the des^n of all components dealing with content and plays a 

central role in their coordination.* 

The representation scheme builds upon and extends the notion of 

semantic networks as described by Simmons (197?), Shapiro (1971), 

Rumelhart arJ Norman (1972), and Schänk (1973). However, the network 

structure used in the SFI speech understanding system differs from that 

of other nets in that nodes and arcs are partitioned into 'spaces' 

• The rost recent editions of the computer primitives for constructing 
and manipulating procedurally augmented partitioned semantic networks 
were progrcTmed by uonathan Slocum and Ann Robinson. 
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(Hendrix, 1975a,b). These spaces, playing a role in networks roughly 

analogous to that played by parentheses in strings and lists, group 

information into bundles that help to condense and organize the 

network's encoding of information. In particular, partitioning is used 

in the speech understanding system: 

• To encode .logical connectives and higher-order predicates, 
especially quantifiers. 

• To encode the association between surface and deep 
structure. Each syntactic unit of an input utterance is 
cross-indexed with its translation image in the network. 

• To interrelate new inputs with previous network knowledge 
while maintaining a definite boundary between the new and 
the old. 

• To simultaneously encode in one network structure the 
multiple hypotheses concerning alternative incorporations 
of a given constituent into larger phrases. 

• To allow sharing of network representations among competing 
hypotheses. 

• To maintain intermediate results and hypotheses during the 
question answering process. 

• To define hierarchies of local contexts for discourse 
analysis. 

Details concerning the encoding of various types of information in 

partitioned semantic networks are presented below. 
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B.  THE ROLE OF SEMANTIC REPRESENTATION 

Before considering the actual formalisms and conventions of the 

semantic representation, it will be helpful to gain a perspective on the 

utilization of the representation by various speech understanding system 

components. More comprehensive discussions concerning how each 

component uses partitioned semantic net structures are contained in 

other chapters of this report. Here, the goal is simply to provide a 

summary of the variouü interactions between the components and the 

network while processing an input. 

Connections to the partitioned semantic network from other system 

components are pictured in Figure V-1 by broken lines. During 

system operations, the actual flow of semantic information is realized 

as the transfer of pointers into the net from one system component to 

another. The flow of network pointers, and of system control, is 

indicated in the figure by arrows. Heavy arrows labeled 'exec' indicate 

that control flows through the speech executive and not directly from 

one component to another. 

As Figure V-1 shows, the network itself includes an encoding 

of knowledge about the domain of discourse. This encoding, called the 

domain model, includes descriptions of the objects and situations in the 

external world. All semantic processing performed by the system builds 

upon this model. For the ship domain, the model holds information about 

various ships and their properties. 
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FIGURE V-1       FLOW OF SEMANTIC  INFORMATION 
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The domain model serves three primary functions in the speech 

system. First, it is the source of information for answering user 

queries once the queries have been understood. Second, when language 

definition rules administered by the system executive discover a 

sequence of input utterance constituents that are syntactically capable 

of combining to form a larger phrase, knowledge from the network model 

is used to judge the feasibility of unifying the constituents to form a 

larger unit that has a meaningful interpretation in the task domain. In 

this capacity, the domain model serves as a parse time semantic filter. 

Third, the domain model serves as a foundation upon which structures 

encoding new inputs are built. This use of the model is in keeping with 

the fundamental principle that inputs are understood through an appeal 

to existing knowledge. 

As anchor points for language understanding, the encoding in the 

network model of those concepts in the domain that can be referenced 

directly by individual words are referred to by records in the sys'.em's 

lexicon.* It is through these representations of basic concepts that 

interpretations of all inputs are understood. As the system executive 

attempts to combine lexical items into phrases and phrases into larger 

phrase units, references to the network are passed by the executive from 

the lexicon to the semantic composition routines. In the composition 

routines, the network structures referenced by phrase components are 

used in the construction of new netwo"k structures that represent the 

• See the discussion of the lexicon in Chapter II, 
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meanings of the composite phrase. These new structures encode new 

instances or new combinations of concepts in the original network 

(domain model). Information concerning these newly created structures 

is then given back to the executive for use in combining the new phrase 

with other constituents (from the lexicon or composition routines) to 

form still larger structures. Tnis process continues to combine network 

structures and to extend the net until an interpretation for the entire 

utterance has been constructed. The interpretation takes the form of a 

network fragment that is anchored to concepts in the original domain 

model but that is nevertheless external to and distinct from the domain 

model. 

During the construction of an interpretation of an input utterance, 

any output from the semantic composition routines that constitutes the 

internal semantic description of a definite noun phrase is given to the 

drscourse component for determination of the referent. The resolution 

of definite noun phrases may be viewed as the substitution of one 

network structure for another. The input network indicates the 

description (with respect to context) of some object in terms of other 

concepts. The output provided by the discourse component is a pointer 

directly referencing the network encoding of the object itself. 

For elliptical utterances (ones that do not form complete 

sentences), the output from the semantic composition routines indicating 

the interpretation of the fragmentary input is given to the discourse 

component for expansion into an interpretation of a complete statement 
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or query. Here, a newly created complete interpretation is substituted 

for the network encoding of a partial interpretation. 

The network structures that ar3 built up by the semantic 

composition routines and the discourse component to represent the 

meanings of utterances do not directly indicate the scoping of (either 

implicit or explicit) quantifiers that appear in the input. Rather, 

because the determination of scopes is highly context sensitive, this 

task is performed by the quantifier module only after a (still 

unquantified) interpretation has been assigned to the total input. The 

quantification process makes no changes in the topology of nodes and 

arcs in the network fragment encoding the interpretation of an input. 

Instead, scoping is accomplished by adding new partitioning to the 

existing structure. 

Once a network structure encoding a fully quantified interpretation 

of an input has been formulated, (a pointer to) it is passed to the 

responder module. The responder examines the interpretation and 

determines an appropriate course of action for producing a response that 

will satisfy the user. For the current system, inputs are expected to 

be questions or commands requesting information. For these types of 

inputs, the responder generates appropriate calls to the logical 

deduction component to retrieve (or derive) requested information from 

the network encoding of the domain model. In the deduction component, 

both the request for information and the collection of known facts are 

expressed in network notation. 
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The ras.jonder component can produce answers to YES/NO questions 

directly from the output of deduction. However, the deduction component 

answers WH questions by returning pointers to nodes in the semantic 

network that encode the appropriate answers. The responder component 

passes such pointers to the English generator, which produces phrases or 

sentences answering the original questions in ordinary language. The 

responder component then returns these English strings to the user as 

output. 

To summarize, the original net encodes a model of the external 

world that provides the seeds for subsequent understanding. Translation 

involves building up network structures on top of this base net to 

represent the meanings of individual inputs. Answers to user questions 

are found by matching the net fragments encoding the translation of 

queries against the network encoding of domain knowledge in the system. 

When an answer is found, its network encoding is translated into 

English. 
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C.  BASIC NETWORK NOTIONS 

In its simplest form, a semantic network consists of a collection 

of nodes interconnected by an accompanying set of arcs. Each node 

represents an object (a physical object, situation, event, set, and 

others), and each arc represents an instance of a binary relation. 

Typical of the binary relations used in networks are set membership and 

'deep case relations. ' A deep case relationship is a relationship 

between a situation (or other gestalt concept) and a participant in the 

situation. For example, there is an 'obj' case relationship between an 

owning situation and the object that is owned. (The notion of a 'deep' 

case, which is a relationship between semantic objects, contrasts with 

the notion of a 'surface' case, which is a relationship between 

syntactic units.) 

1.  A PRELIMINARY EXAMPLE 

Figure V-2 provides an indication of how the 

interconnections among nodes and arcs may be used in the encoding of 

knowledge. At the top of the figure is the node 'UNIVERSAL'. (Single 

quotes denote node names.) This node represents the set UNIVERSAL, the 

universal set of objects. Arcs labeled ,,s", called "s arcs", are used 

to indicate subset relationships that exist between UNIVERSAL and other 

sets. In particular, the s arc from 'CORPORATIONS' to 'UNIVERSAL' 

indicates that CORPORATIONS, the set of all corporations, is a subset of 

UNIVERSAL.  (Again note the use of single quotes: 'CORPORATIONS' is a 
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FIGURE V-2  AN EXAMPLE SEMANTIC NETWORK 

node that represents CORPORATIONS.) Similarly, SITUATIONS, TIMES, and 

PHYSOBJS (the set of all pnysical objects) are also indicated as being 

subsets of UNIVERSAL. At the next lower level, SUBMARINES, the set of 

all subs, is shown to be a subset of PHYSOBJS. 
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Set membership is encoded in the- network through the use of "e 

arcs". For example, the e arc from node 'Henry.L.Stimson' to node 

'SUBMAKINES' indicates that the Henry.^.Stimson is an element of 

SUBMARINES and is thus some particular sub. Similarly, General.Dynamics 

is a corporation and tl and t2 are instants in time. 

The node 'B' represents an element of the set BUILDINGS, the 

set of all building situations in which an agent constructs an object 

over some time period. (BUILDINGS is not the set of all roofed and 

walled structures.) In turn, BUILDINGS is a subset of SITUATIONS, the 

set of all static conditions and dynamic events. For the particular 

situation B, General.Dynamics is the agent that built the object, the 

Henry.L.Stimson, during the period from time tl until t2. The 

components of situation B are associated with it through deep case 

relationships, which are encoded by case arcs emanating from node 'B'. 

For example, the agent of situation B is indicated by the agt arc from 

'B' to 'General.Dynamics'. The other deep case relationships are 

encodeö by obj, start-time, and end-time «res. 

2.  RESTRICTIONS ON NODES AND ARCS 

Proponents of network structures have adopted a number of 

different conventions concerning what types of concepts may be encoded 

by nodes and what types of relationships may or should be encoded by 

arcs.* In creating encoding structures for the SRI speech understanding 

* For a useful perspective on these issues, see Woods, 1975. 
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system, an atterapt is always made to use constructs that are easily 

understood by appealing to such familiar mathematical systems as set 

theory, predicate calculus, and case logic. (See Bruce, 1973» for a 

description of case logic.) The SRI system places no restrictions on 

the types of objects that may be represented by nodes. However, arcs 

are restricted to the encoding of hierarchical (element and subset) 

information and case relationships. Arcs are never, for example, 

allowed to encode relationships, such as ownership; that are time 

i^'Med. 

The reason for this restriction on arcs arises from the fact 

that arcs are much less flexible than nodes. Arcs directly relate only 

three pieces of information (from-node, to-node, and arc label), and one 

of these (the label) is not back-indexed (i.e., most network schemes 

provide no easy mechanism for finding all arcs of a given label). Also, 

(omitting the new concept of a space, presented below) other network 

structures cannot point to an arc. Thus, for example, an arc does not 

have enough handles to relate the concept of ownership with an agt, obj, 

start-time, and end-time. 

In contrast, a node may interrelate an arbitrary number of 

concepts simply by using multiple outgoing case arcs. Moreover, a node 

may be pointed to by an arc dnd hence may be modified by the arc and its 

from-node. When used to encode a relationship, a node will typically 

have an e arc to the set of all relationships of the same type (e.g., an 

e arc to  'OWNINGS') and case arcs pointing to each of its known 
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participants. All such relationships are members of the set SITUATIONS. 

Each member of this set relates some state of affairs or state of flux 

in affairs. Interpreted quite broadly, the elements of this important 

set each encompass the idea of a circumstance, or a set of 

circumstances, or an event, or a set of related evento with their 

corresponding changes in circumstances, or a relationship, or a set of 

interdependent relationships. 

Although some network systems (e.g., Sowa, 1976) attach 

significance to node labels, we do not. (Indeed, in the actual 

implementation, most nodes have no labels and are referenced only by 

location.) Names such as "SUBMARINES" may have significance to the 

system users but mean nothing to the network system itself. 

Some network systems have a fixed number of arc labels with 

each having a special meaning to the network processor. While hierarchy 

encoding arcs are especially known to our processor, case names may be 

invented freely and do little more in the network than distinguish the 

various corponent parts of a complex object from one another. (The use 

of case arcs in language translation is a separate issue.) Routines 

that retrieve information from the network are actually made more 

efficient by the use of more case names, since an increase in the number 

of esses decreases the grain' size for searches. 
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3.  THE HIEHAPCHICAL TAXONOMY 

The presence of e and s arcs in a network serves to taxonomi/.e 

the concepts represented by the variois /odes in hierarchical form and 

is a key featur of the SRI notation. The significance of the taxonony 

lies in the fact that many sets have associated wi*h them a collection 

of properties common to all of their members. Any property that is 

characteristic of ALL members of a given set may be described at the set 

level arc" need not be repeated in the encoding of each individual set 

member. This set level encoding 1 ids to great savings in storage. The 

actual encoding of properties common to all members of a set is 

dependent on the use of quantification, which is discussed later. Of 

importance here is tY > lealination that the knowledge of whether or not 

an item belongs lo a given set is of central relevance in question 

answering and fact retrieval. 

To enhance the precision of the network encoding of 

taxonomies, the standard set-theory notions of set membership and set 

inclusion, which are expressed by e and s arcs, may be supplemented by 

the more restrictive concepts of disjoint subsets and distinct elements 

When certain subsets of a given parent set are disjoint (i.e.! 

have no elements in common), this fact may be represented by ds arcs. 

As Fieure V-3 shows, suppose that 'X', 'Y1', 'Y2',...,'Yn' are 

nodes in some particular network N representing the sets X, Y1, Y2,..., 

Yn, respectively, and t\,at  for every i from 1 to n there is a ds arc 
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FIGURE V-3  ABSTRACTED USE OF ds ARCS 

from 'Yi' to 'X'. The network N indicates that each Yi is a subset of 

X. Further, the use of ds arcs rather than s arcs indicates that for 

unequal i and j, the xutersection ^f Yi and Yj is the empty set. [Note: 

The empty set is the only set that is disjoint from itself. Thus, the 

set of unicorns (which in extension in the real world is the empty set) 

is disjoint from the set of chickens that have teeth (which also is 

empty).] 

Whenever the need arises to show that the intersection of two 

sets SI and S2 is nil, a parent set SO (which is the union of S1 and S2) 

may be constructed. SI and S2 are then indicated to be disjoint subsets 

of this set. 

IT u and v are known to be elements of some parent set, it 

does not necessarily follow that u and v are distinct objects. That is, 

the symbols "u" ana "v" may be references to the same object. To show 

that two nodes representing elements of a common set do in fact 
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represent two distinct entities, de arcs may be used. As shown in 

Figure V-U, suppose 'X', 'Yl', '¥2',...,'Yn' a.'e nodes in some 

network N representing the set X and the items Yl, Y2,..., Yn, 

respectively. Suppose further that for every 'Yi' there is a de arc 

from 'Yi' to 'X'. The network N then indicates that each Yi is an 

element of X. Further, for unequal i and j, Yi is distinct from Y j. 

FIGURE V-4  ABSTRACTED USE OF de ARCS 

To see the useful interplay between de arcs and e arcs, 

suppose Tom, Dick, and Harry went for a drive, and the driver wore a red 

cap. Tom, Dick, and Harry are distinct elements of the set of people 

who went for the drive, and their membership in the set would be 

recorded by three de arcs. The driver is also in this set, but could be 

any one of the three. Using a normal e arc to show the membership of 

the driver allows information about the driver {<-.g., he wore a red cap) 

to be recorded while maintaining the uncertainty as to which of the 

three set members the driver really is. 
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The use of e, s, de, and ds arcs in a more extended example is 

shown in Figure V-5. This network indicates that CARRIERS, 

SUBMARINES, and P.SHIPS are all subsets of SHIPS. CARRIERS and 

SUBMARINES are indicated (by the ds arcs) to be disjoint sets. However, 

P.SHIPS is simply indicated to be a subset of SHIPS (by an s arc) and 

thus may intersect with CARRIERS or SUBMARINES or both. 

FIGURE V-5  THE USE OF ds AND de ARCS 
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P.SHIPS is itself shown to have the disjoint subsets NUKES 

(the set of nuclear powered ships) and DIESELS, whose intersections with 

CARRIERS and SUBMARINES might or might not be empty. (Figure V-5 

actually indicates that the intersection of SUBMARINES and NUKES must 

include set NUKE.SUBS, which has at least two memtors.) The node 

P.SHIPS was used in this network solely to allow twc independent 

divisions of SHIPS into disjoint subsets. To show the equivalence of 

SHIPS and P.SHIPS, an s arc may be drawn from 'SHIPS' to 'P.SHIPS'. 

Set NUKE.SUBS is a subset of both SUBMARINES and NUKES. Its 

members include the Whale, the Henry.L.Stimson, and X. The Whale and 

the Henry.L.Stimson are known to be distinct. X might be either of 

these or yet some other nuclear sub. 

The cardinality of the set NUKE.SUBS is indicated by the card 

arc» from 'WUKE.SUBS' to 'n'. If n were 2, then it would be possible to 

deduce that X is either the Whale or the Henry.L.Stimson. The very 

ambiguity of X (as shown in the Tom, Dick, and Harry example above) is 

attractive for some applications. 

The use of ds and de arcs increases the power of the taxonomy 

by making it possible to prove negative assertions. For example, with 

CARRIERS and SUBMARINES known to be disjoint, it is possible to show 

• Cardinality should probably be encoded by a node rather than an arc. 
This node, whic!: would represent the relationship between a set and its 
cardinality, would have an e arc to 'HAS-CARDINALITY', a set arc to the 
set node, and a num (number) arr to the number node. The card arcs of 
the figures should be thought of as abbreviations for this larger 
structure. 
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that the Whale (or X) is not a carrier. Information about 

noninteraection and nonequivalence can be encoded by other means, but 

the de and ds arcs allow much of this information to be encoded for the 

price of the hierarchical information alone. 

D.  PARTITIONING 

1.  SPACES 

To add a new dimension to the organizational and expressive 

power of semantic networks, the basic concept of a network as a 

collection of nodes and arcs may be extended to include the notion of 

partitioning (see Hendrix, 1975a,b). The central idea of partitioning 

is to allow groups of nodes and arcs to be bundled together into units. 

Each such bundle is defined by a new network construct called a "space". 

Spaces are fundamental entities in partitioned networks, on the same 

level as nodes and arcs. 

Every node and every arc of the network belongs to (or lies 

in/on) one or more spaces. Spaces are fully cross-inuexed with nodes 

and arcs. Given a space, all nodes and arcs lying within it are 

immediately determinable. Likewise, given a node or arc, all spaces on 

which it lies are directly available. Nodes and arcs of different 

spaces may be linked, but the linkage between such entities may be 

thought of as passing through boundaries that partition spaces. Nodes 

and arcs may be created in (initially empty) spaces, may be transferred 
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or 'copied' (at a fraction of creation cost) from one space to another, 

and may be removed from a space. 

Spaces are useful in a variety of applications, including the 

encoding of quantifiers and other higher-order predicates. An important 

application of spaces in the SRI speech understanding system, which may 

be helpful to consider as an introduction to the partitioning concept, 

is in grouping togttber subparts of a semantic network that are capable 

of being expressed by a single syntactic unit. For example. Figure 

V-6 shows a netwv. .: containing three spaces, t,o of which 

correspond to syntactic units. Fach space is represented by a rectangle 

that contains the name of the space in the upper right corner. Thus, 

space SI is at the top of the figure. Diagrammatically, a node or arc 

is indicated as belonging to a space if its label is written within the 

rectangle associated with the space. So, node 'C and the e arc from 

'C to 'CORPORATIONS' lie only in S2. Spaces SI, S2, and S3 may be 

given concrete interpretations in the context of the sentence 

"A corporation C built a submarine S." 

Space SI encodes background information (about corporations, building 

events, and submarines) for the understanding of this sentence. Space 

S? encodes "a corporation C", the information that would be conveyed by 

the syntactic subject of tt ■- sentence. Space S3 encodes a building 

evert in which a submarine S is the object of the building. This 

corresponds to the verb phrase of the sentence ("built a submarine S"). 

Figure V-6 does not in fact indicate that C was the agent in 

building event B, but this omission is corrected below. 
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FIGURE V-6      SPACES SHOWING SYNTACTIC GROUPINGS 

2.       VISTAS 

In using partitioned networks, it is often convenient to 

combine several spaces to form a composite bundle of nodes and arcs 

representing the aggrega -> of the bundles of the individual spaces. 

Such a combination of s.nces is called a "vista". Most operations 

involving a partitioned semantic network are performed from the vantage 

of one of these vistas with the effect that the operations behave as if 

the entire network were composed solely of those nodes and arcs that lie 

in the spaces of the given vista. All structures lying outside the 

vista are ignored. To use an analogy with vision, when viewing the 
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network from a given vista Vr only those nodes and arcs are visible that 

lie in one of the spaces comprising V. 

The mechanics of partitioning alloy vistas to be created 

freely from arbitrary combinations of spaces. However, this freedom is 

seldom used. Rather, vistas are typically created in a hierarchical 

fashion by adding one naw space to an existing vista or by adding a new 

space to the union of multiple existing vistas. The new vista created 

in this fashion inherits a view of the information in the parent 

vista(s) and adds a new space for extending locally available 

information without altering the view of the parent(s). Such 

hierarchically created vistas are analogous to programming contexts with 

global and local variables. Information structures in the spaces of the 

parent vistaCs) are global relative to the new space, while structures 

created in the new space are local. 

If space Si is created to be the local space of vista Vi 

following the hierarchical pattern of vista growth described above, then 

Si is called the "bottom space" or "lowest space" of Vi, and Vi is 

called the "orthodox vista" (or, when there is no confusion, simply the 

"vista") of Si. Since Si and Vi are so closely related, it will be 

convenient to talk about "viewing the net from the vantage of Si" when 

t^ie viewing is actually from Vi. 

When new vistas are created hierarchically, they form a 

partial ordering of viewing capability. An example of such a partial 
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v; - (s7 s4 S,) 

FIGURE V-7  ABSTRACTION OF VISTA ORDERING 

ordering is depicted in Figure V-7. The spaces that are included 

in the various vistas are represented by rectangles as before. To the 

right of each rectangle is a list notation (vistas are actually 

implemented as LISP lists) indicating the orthodox vista of the space. 

Heavy arrows indicate the inheritance of viewing capability. That is, 

from any point in the partial ordering, information is visible on any 

space that ma/ be reached by following up heavy arrows. 
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Space SI at the top of the figure is associated with orthodox 

vista VI, which contains only space SI. From the vantage of VI, only 

the information in SI is visible. Since this information is the most 

global information in the hierarchy, SI and VI are called the "root 

space" and "root vista", respectively. 

The orthodox vista of S2 is V2, which contains both S2 and SI. 

Thus, from the vantage of V2, all the information in both S2 and S1 is 

visible. However, the information in S3 is not visible from V2 (except 

to the extent that SI or S2 contain some of the same nodes and arcs as 

S3). From the vantage of V5 it is possible to see all the information 

in both S2 and S3, as well as the information in 35 and SI. 

Figure V-d provides some indication of how vista 

hierarchies may be usad in a practical way. Again, the heavy arrows 

indicate which spaces are included in the (orvhodox) vista of any of the 

spaces. From the vista of space VP, it is possible to see information 

on spaces VP, V, NP2, and BACKGROUND. Thus, from the vantage f VP, it 

is possible to see the background information and the structures used in 

creating a network interpretation of the verb phrase (VP) in the 

sentence "A corporation built a submarine." This view includes the 

information of space V (which encodes the verb alone), space NP2 (which 

encodes the direct object alone), and space VP (which encodes the 

relationship between the verb and object). From this same vantage, the 

structures in spaces NP1 and S are invisible. 
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FIGURE V-8  USE OF VISTAS IN SYNTAX ENCODING 

In subsequent diagrams, when a rectangle representing a space 

S is drawn completely within a rectangle representing a second space S', 

then the orthodox vista of S is an extension of the orthodox vis+a of 

S'. for example, A and B in Figure V-9 represent equivalent 

structures.  If two rectangles overlap, but neither contains the other, 
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FIGURE V-9      EQUIVALENCE OF  ENCLOSURE AND HEAVY 
ARROW NOTATION 

thjn structures appearing in    the overlap lie on buth    spaces.    Examples 

üf such overlaps occur in the section on quantification below. 
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?.  SUPERNODES 

By bundling together a collection of structures, a space may 

be used to represent a complex concept th. t is in some way related to 

the aggregate of information encoded by its internal nodes and arcs. 

For example, a certain space S might bundle together a collection of 

nodes and arcs which, when taken together, represent the set of things 

that some person has reported to be true, or believes to be true, or 

wishes to have happen. Each node and each arc represents some aspect of 

the belief (report, wish), but only the space represents the belief 

structure (report, wished-for condition) itself. 

Since it is often necessary to relate other concepts in the 

semantic network to the complex concept encoded by a space, spaces are 

(but only when necessary) given all the properties normally associated 

with nodes. In particular, arcs from ordinary nodes may point to 

spaces. This situation is shown abstractly in ""igure V-10. Node 

'X' represents a believing situation in which the believer (agt = agent,) 

is JOHN and the thing believed (thm = theme) is a complex uf information 

encoded by space S. The structures inside S (omitted in the figure) may 

be thought of as describing a hypothetical world (HYPO.WORLD) in whicu 

JOHN believes. (How to represent what the system itself believes it 

believes is an interesting, solvable problem that the reader may wish to 

consider after completing this section.) 
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FIGURE V-10  THE BELIEFS OF JOHN 

When spaces are given node-like properties, they are called 

"supernodes". In the SRI speech understanding system, the primary use 

of supernodes is in encoding higher-order structures (including logical 

connectives and quantification), which is the subject of the next 

section. 
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E.  HIGHER-ORDER STRUCTURES 

A primary reason for developing the concept of network partitioning 

was to provide an efficient and uniform mechanism for dealing with 

higher-order logical constructs. This section discusses the application 

of partitioning to the encoding of logical connectives, quantifiers, 

questions, and other concepts that are encoded only clumsily (if at all) 

by networks lacking partitioning. 

In discussing higher-order encoding structures, it is important to 

bear in mind that logical connectives, quantifiers, and other 

mathematical formalisms are simply tools that are useful in the 

construction of models. The goal of developing a network encoding 

structure is not to represent higher-order mathematical formalisms 

(although this is possible and is important in some task domains) but 

rather to represent the types of knowledge that typically require such 

formalisms for their representation in other formal logics. 

It is also important to bear in mind that formal statements may be 

regarded from either of two perspectives. From the first perspective, a 

statement represents a proposition whose truth or falsity may be tested 

in arbitrary worlds W. From the other perspective, a statement 

designates a set of conditions. This designation in turn provides a 

partial description of all worlds in which those conditions hold. In 

building network models, the latter is usually the perspective from 

which network formalisms are most easily understood. 
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1 LOGICAL CONNECTIVES 

Rather than cover possible network encodings for a wide 

variety of logical connectives (there are 16 binary connectives alone), 

attention will be focused on CONJUNCTION, DISJUNCTION, and NEGATION. 

From the network encodings of these three, encodings for any logical 

connective may be constructed. (Indeed, NEGATION In combination with 

either CONJUNCTION or DISJUNCTION forms a logically complete set.) The 

IMPLICATION connective, because of its importance in the network 

encoding of quantification, also will be considered. 

a,  CONJUNCTION 

As the first logical connective, consider CONJUNCTION. 

From one perspective, a conjunction is a proposition that relates a 

number of component statements called 'terms' or 'conjuncts'. The 

proposition is itself true if and only if each of the individual 

conjuncts Is true. From the standpoint of model building, it is useful 

to think of each conjunct as a description of some condition. The 

conjunction itself then becomes a complex description of the situation 

in which the conditions described by each of the individual conjuncts 

exist in unison. From either perspective, a conjunction bundles 

together multiple conjunctive terms. If the bundle is accepted (as 

being true or as providing a partial description of some world), then 

the various terms must be accepted collectively. Conversely, if any 

term In the bundle is not accepted, then the bundle itself is rejected. 
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The inherent bundling capability of spaces makes the 

space fopmalism a convenient mechanism for the network encoding of 

conjunction. In particular, a conjunction C may be represented by a 

space S upon which each conjunct of C (and only the conjuncts of C) is 

encoded as a net structure. Space S2 of Figure V-11, for example, 

encodes the conjunction "The Henry.L.Stimson was built by 

General.Dynamics AND the Henry.L.Stimson is owned by the U.S." 

si 

FIGURE V-11      THE CONJUNCTION "THE HENRY.L.STIMSON WAS BUILT BY 
GENERAL.DYNAMICS AND THE HENRY.L.STIMSON IS OWNED 
BY THE U.S." 
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The subordination of S2 under SI in the viewing hierarchy 

is rather artificial and was done here solely for exposition. Except 

for delimiting the conjunction (X & Y), the structures of S2 might just 

as well have been encoded directly in SI. This ability to remove S2 

after moving its structures to SI is the network analog of the ability 

to remove the embedded parentheses in the formula 

(A & B 4 (X & Y) & C) 

to form 

(A&B&X&Y&C) . 

The merit of placing the terms of a conjunction on their own space will 

become apparent when the conjunction is dominated by a structure other 

than another conjunction (such as a .isjunction). 

b.  DISJUNCTION 

As the second logical connective, consider DISJUNCTION. 

Unlike a conjunction, which groups together a set of statements for 

consideration as a unified whole, a disjunction separates out a number 

of alternative statements. The disjunction is accepted into a belief 

system or model if any of the individual statements (disjuncts) is 

accepted. The inherent separating ability of spaces makes the space 

formalism a convenient mechanism for the network encoding of 

disjunctions. In particular, each of the n disjuncts of a disjunction D 

may be encoded on different spaces and so kept in (relative) isolation. 
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SI 

FIGURE V-12      THE DISJUNCT "EITHER THE HENRY.L.STIMSON WAS BUILT 
BY GENERAL.DYNAMICS OR THE HENRY.L.STIMSON IS OWNED 
BY THE U.S.S.R." 
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i 
Figure V-12, for example, shows the network encoding 

of the disjunction D = "Either the Henry.L.Stimson was built by 

General.Dynamics, OR the Henry.L.Stimson is owned by the U.S.3.R." Node 

'D' represents the disjunction itself, an element of DISJUNCTIONS, the 

set of all disjunctions. The disjuncts of D are represented by spaces 

(supernodes) S2 and S3. Since a dislunction may be regarded as a SET of 

alternative disjuncts, the disjuncts of D are shown as distinct elements 

of D. Whenever a disjunction appears in the network, it is assumed that 

all members of the disjunctive set are explicitly encoded. [A more 

elaborate encoding scheme might encode a disjunction by a node 'D' with 

a case arc (a disjuncts are) to a node 'S' representing the set of 

disjuncts. Such a structure would separate the notion of a disjunction 

from the notion of a set of statements. For the SRI speech 

understanding system, this distinction Mas not considered worth the 

extra structure.] Since the disjuncts of D are represented as spaces, 

each disjunct is an implicit conjunction (which might, however, 

"conjoin" only a single conjunctive term). 

The entire disjunction structure is embedded in the 

conjunction encoded by SI. From the modeling perspective, 31 represents 

some world and each structure in SI represents some object or situation 

that occurs in that world. So, in viewing the network from the vantage 

of (the orthodox vista of) SI, such entities as General.Dynamics and D 

are seen to occur. However, the structures in spaces S2 and S3 are not 

seen from the vantage of SI and are thus not asserted in the world 

\ 

\ 

■\ 

\ 
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modeled by SI. Since D does appear in the world vf SI, it is known that 

the world of SI includes the situations described by at least one of the 

d.isjuncts of D. If S2, for example, were included, then the modeled 

world would include all situations described by structures that are 

visible from the vantage of S2. This view includes structures in S2 and 

SI, but excludes structures in S3. 

The encoding of "The Henry.L.Stimson is owned by either 

the U.S. or the U.S.S.B." that is shown in Figure V-13 has the 

following interesting feature. From the vantage of SI, it is possible 

to see that there is an owning situation involving the Henry.L.Stimson 

as an object. However, the agt arcs from 'X" are not visible in S1, so 

the owner is not known. But in viewing the network from the vantage of 

either of the disjuncts of D, the agent of the owning is specified. 

[There are several other ways to encode the information of Figure 

V-13j but the structure shown ir, one of the least expensive. Other 

methods include (1) using two nodes with e arcs to 'OWNINGS', and (2) 

making the agt aotne dummy node 'I' with an e arc to a node 'S' that 

represents a set of cardinality two "ith distinct elements The.Ü.S,S.R. 

and The.U.S.] 

c.  NEGATION 

The network encoding of NEGATION, like the network 

encoding of disjunction, uses the separating aspect of spaces. But 

rather than separating multiple alternatives, negation uses spaces to 
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SI 

FIGURE V-13  THE HENRY.L.STIMSON IS OWNED BY EITHER THE U.S. OR THE U.S.S.R 

separate the negative froai the positive. Figure V-IM shows the 

network encoding of the negation "The Ü.S.S.R. does NOT own the 

Henry.L.Stimson." The negation, an element of NEGATIONS, is encoded by 

space (supernode) S2. S2 is an (implicit) conjunction describing a set 

of situations that cannot occur simultaneously in the context of the 

situations described in SI. As in the disjunction example, the negated 

structures inside S2 are not visible when viewing the network from the 

vantage of SI, although the negation itself is visible. 

V~37 



NEGATIONS 

FIGURE V-14  THE U.S.S.R. DOES NOT OWN THE HENRY.L.STiMSON 

d.  IMPLICATION 

Using the formalisms developed for conjunction, 

disjunction, and negation, it is possible to construct network encodings 

carrying the force of any logical connective. Note in particular that 

the implication 

P => Q 

is equivalent to 
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-P v Q 

which uses only disjunction and negation.  The network of Figure 

V-15  takes  advantage  of this  transformation  to  express the 

implication 

"If General.Dynamics built the Henry.L.Stimson, 
then the U.3. owns it" 

as the disjunction 

"Either General.Dynamics didn't build the Henry.L.Stimson, 
OR the U.S owns it." 

Since the notion of implication is closely tied to the 

expression of general rules and, as will be seen subsequently, to the 

use of universal quantifiers, it is important that implications be 

expressed both simply and economically. As might be expected, if both P 

and Q are positive, it is more economical to express {P => Q] directly 

as an implication than it is to transform it into a disjunction. (If 

P = ~R, then {R v Q} is the economical encoding. If Q = ~S, then 

~{P & S} is economical. If P = ~R and Q = ~S, then {S => R} is 

economical.) An implicational encoding of the information of Figure 

V-15 is presented in Figure V-16. In the new figure, node 'I' 

encodes the implication. Each implication has two component parts, an 

ante (antecedent) and a conse (consequent), which are encoded as spaces. 

It is the situations of the ante that imply the situations of the conse. 

The positive alternative (S?) of disjunction D corresponds to the conse 

(T3) of I. The ante (T2) of I corresponds to the negated alternative 

(SH)  of D. 
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SI 

FIGURE V-15  EITHER GENERAL.DYNAMICS DID NOT BUH 0 THE HENRY.L.STIMSON, 
OR THE U.S. OWNS IT 

To further decrease the costs associated with the 

encoding of implications, the abbreviation shown in Figure V-17 may 

be used. Antecedents of implications are placed in trie set 

IMPLICATIONS» and associated with their corresponding consequence«? 
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T1 

FIGURE V-)S    IF GENFflAL DYNAMICS BUJLT THE HENHY.L.STIWSON, 
THEN THE US  OWNS IT 

through conse arcs. Since the abbreviition is rather ugly and saves 

oiily on»* node and one arc per iaplication, it is probably worthwhile 

only in systems with severe storage lim.  ations. 
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( IMPLICATIONS» 

i 

1 

conse 

^ 

T1 

T2 13 

FIGURE V-17 COMPACT IMPLICATION NOTATION 

e.  SPACES AS CONJUNCTIONS 

For understanding subsequent sections, it is important to 

look back at the spaces used in forming logical connectives and to 

aalize that these spaces always act as conjunctions. CONJUNCTIONS are 

themselves simply encoded as spaces. DISJUNCTIONS are encoded by a set 

of spaces, each of which represents an alternative conjunction. 

NEGATIONS are encoded by spaces that represent negated conjunctions, and 

both the ante and conse of IMPLICATIONS are conjunctions. 
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2.  QUANTIFICATION 

In addition to handling the encoding of individual pieces of 

information and Joining individuals by logical connectives, a system for 

representing knowledge should be able to deal with quantified 

information. Partitioning offers a number of alternatives for the 

encoding of quantified information. The more interesting of these use 

spaces to group together collections of universal or existential 

variables whose scopes are -ommutative. Nestings of scopes (and the 

dependency of existentials on higher universals) is then encoded by 

using an appropriate hierarchy of orthodox vistas. Details for two 

schemes using this general approach are presented in subsections below. 

a.  THE IMPLICIT EXISTENTIALS OF Pr>0P0SITT0NS 

Before actually getting into the details of 

quantification in nets, it is necessary to consider one aspect of 

quantification that is often overlooked in dealing with formulas in 

first order predicate calculus. This aspect is the implicit existential 

quantification carried by propositions. 

Letting the symbol "A" represent "FOR-ALL" and the symbol 

"3" represent "THERE-EXISTS," an ordinary formula in first order 

predicate calculus such as 

AxEytpfx.y)] 

may be read as "for all x there exists a y such that p(x,y)." Although 
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it may appear that all the quantification information of this formula is 

encoded in the prefix (i.e., in "AxEy"), the proposition p(x,y) itself 

implicitly encodes existential information. That is, proposition p(x,y) 

proposes that THERE EXISTS a particular type of situation involving x 

and y. 

One way of thinking about predicate p is that it models a 

set of situations S.* Each situation in the set has two participants. 

To distinguish the participants, they may be given names such as "easel" 

and "case2." For any two entities x and y, p(x,y) will be true if and 

only if there is a particular situation i in S such that x is the casef 

of i and y is the case2. Thus, one interpretation of p(x,y) is "there 

exists situation i, an element of S, whose easel is x and whose case2 is 

y." 

Using the interpretation cited above, p(x,y) carries at 

least four pieces of information: 

1. THERE EXISTS i 
2. i is an element of situation set S 
3. the easel of i is x 
k.  the case2 of i is y 

* There is a chicken-and-egg problem concerning whether p models S or 
vice versa. Although it is possible to think of S as being a set 
defined by predicate p, it is probably more useful and realistic to 
think of S as existing prior to p and to thi.ik of p as being a 
mathematical modei of situation set S. To see this interpretation, 
consider the set of owning situations existing in our everyday world. 
This set exists whether or not anyone cares to invent a predicate called 
"owns" to model it. Note carefully that S is a set of situations and is 
not a set of n-tuples composing a formal mathematical relation. In 
particular, S is distinct from the set R of pairs (x, y) where (x, y) is 
in R if and only if p(x,y). Predicates, sets of tuples and network 
structures only se-ve to model S. 



For certain applications (as shown below), it is important to separate 

out or.e of these four pieces. Since predicate calculus notation bundles 

these pieces together, some new notational conventions are needed. 

Hence, let the notation 

<q xl x2 ... xn> 

indicate a situation of type q over the participants xl through xn. For 

each situation type q, case names will be defined for each of the 

positions xl through xn. Further, the q designating the situation type 

may be either the associated predicate ("p" in the example above) or the 

associated situation set ("S"). In discussions of predicates in which 

the associated set is not explicitly named, the capitalization of the 

predicate symbol may be used as the name of the set. Thus, were S not 

explicitly narnod, the set associated with p would be P. 

Since a situation designator q may be either a predicate 

Oi set name, the expressions ,,<p x y>" and <S x y>" are equivalent, both 

denoting a situation from the set S with easel x and case2 y. Using 

situation notation, the proposition 

P(x,y) 

may be expressed as 

E<S x y> 

(or, equivalently, as E<p x y>). That is, p(x,y) means "there exists 

<S x y>," or "there exists an element of S with participants x and y." 

Thus, the formula 

AxEy[p(x,y)] 

may be restated in the form 
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AxEyE<S x y> 

which explicitly indicates the existential quantification  of the 

situation. 

Recalling that E<S x y> means that there exists an 

element i of S with easel x and case2 y, the formula 

E<S x y> 

may be thought of as a shorthand for 

EiE<e i S>E<case1 i x>E<case2 i y> 

where <e i s> is the situation of i being an element of S and 

<ca3e1 i x> is the situation of x being the easel of i. 

In existentially quantifying a situation 

<q xl x2 ... xn>, it has been assumed that the situation participants xl 

through xn were either constants or already quantified. Should the 

expression E<q x1 x2 ... xn> ever appear with some xi unquantified, it 

is to be interpreted as a shorthand for ExiE<q xl x2 ... xn>. 

b.  THE ORTHOGONAL PARTITIONING APPROACH TO QtlANTIFICATIGN 

(Note: This section presents an approach to 

quantification that was not used in the SRI speech understanding system, 

and may be skipped. However, the approach provides a clear encoding for 

branching quantifiers and a clean separation between quantification and 

the use of logical connectives.) 
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The most straightforward technique for encoding 

quantification based on partitioning is called the "orthogonal 

partitioning approach." By using this technique, the network is 

partitioned (at least) twice. One partitioning is used to encode 

logical connectives and similar structures. The other partitioning is 

used solely for the purpose of encoding quantification. A typical node 

in the network will lie on two spaces, with one space, called the 

"matrix" space, showing the node's relationship to the logical 

connectives and the other space, called the "quantification" space, 

showing the node's quantification. Similarly, arcs lie on two spaces. 

The matrix spaces are arranged in the hierarchy thau is 

used by the logical connectives (as discussed previously). The 

quantification spaces are arranged in a hierarchy such as that shown in 

Figure V-18. Each space is associated with either existential 

information (spaces whose labels begin with "E") or universal 

information (labels with "A"). At the top of Figure V-18 is space 

EO, encoding the top-level existentials. These are the system's 

constants. Directly below EO are spaces associated with universals. 

Then at the next level, there are more existential spaces, and so on. 

All of the semantic networks presented in illustrations 

thus far were intended to encode purely existential information, 

although no explicit indication of quantification was used. In the 

orthogonal approach to quantification, an explicit indication of the 

existential nature of the information in the previous nets could be 
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FIGURE V-18 A HIERARCHY OF QUANTIFICATION SPACES 

realized by placing every node and every arc of these networks on space 

EO of the quantification partitioning. Universal quantification is 

introduced by using vistas that contain more than the single space EC. 

The vista (El Al EO) is typical of the vistas in the 

quantification hierarchy.  The nodes and arcs lying on El are to be 
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considered as existential variables that are dependent upon the 

universals specified at higher levels in the hierarchy. In particular, 

the structures of El are dependent on the universal structures of Al. 

So, if A1 contains x and El contains y, the encoded quantification might 

be expressed as 

AxEy 

Matrix spaces overlapping spaces of the; vista of El will be presented 

shortly to complete the encoding of a quantified statement. 

For a more complex quantification vista, consider the 

vista of E6. The existential structures on E6 are dependent upon the 

universal structures in A5 and A2. The existential structures of E2 are 

dependent only upon the universal structures in A2. If A2 contains 

structure u, E2 structure v, A5 structure w, and E6 structure x, then 

the quantification might be written as 

AuEvAwEx . 

The vista associated with E5 encodes a "branching 

quantification." For every A3 and A4, there exist E3, E4, and E5. But 

the E3 depend only on A3, and the E4 depend only on A4. The E5 depend 

on both A3 and A4. Hintikka (1974,' presents an interesting discussion 

of branching quantifiers. One of his examples that fits vista E5 is 

"every writer likes a book of his almost as much as every critic 

dislikes some book he has reviewed." The disliked book depends only on 

the critic, the liked book only on the author, and the relation between 

the like and dislike on both the author and the critic. 
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To see how orthogonal partitioning is used in the 

encoding of an actual expression, consider 

AxEy[p(x,y)] , 

which is encodeo by the network of Figure V-19. Since two 

partitiorings have been used, the figure presents two displays of the 

net with the top display showing the matrix partitioning and the bottom 

display showing the quantification partitioning. The quantification 

vista (El Al EO) also appeared in Figure V-18. 

Thinking of p(x,y) in terms of an instance i of situation 

set P (see the previous subsection), the quantified expression may be 

restated as 

AxEyE<P x y> 

or "33 

AxEyEiE<e i P>E<case1 i x>E<ca3e2 i y> . 

The matrix space MO encodes the situation 

<P x y> 

or, equivalently, the conjunction of subsituations 

<e i P> & <ca3e1 i x> & <case2 i y> . 

The quantification spaces El, Al, and EO then add quantification 

information to this conjunction of situations. 

Looking at the vista (El Al EO), nodes 'i' and 'y' an<l 

associated arc structures lie on existential space El and are therefore 

within the scope of (and dependent upon) all universal variables 

specified on universal spaces above E1 in the hierarchy.  For this 
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FIGURE V-19      THE ENCODING OF  AxEy  [p(x,y)]   BY THE ORTHOGONAL 
PARTITION METHOD 
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example, the only such universal space is Al, which specifies the 

universal variable x. Appearing on space EO, the space of top-level 

constants. is node 'P'. Hence, the network encodes P as a constant, x 

as a universal, and y and i as existentials within the scope of x. The 

various arcs that lie on El may also be interpreted as existentials 

within the scope of x. Each ouch arc indicates an instance of a 

relationship that depends on x. For example, consider the e arc from 

"i' to '?'. Each x determines a new i and therefore a new instance of 

the element-of relation between that i and P. <e i P>. 

Even without considering mort difficult examples or 

constructing formal proofs, it should be clear that quantified 

statements of arbitrary complexity may be encoded using this scheme. 

The scheme has a number of appealing features. Node and arc structures 

are not needed to explicitly encode quantifiers and scopes (as would be 

the case in any nonpartitioned network; see Shapiro, 1971). This leaves 

the nodes and arcs free to encode only matrix-type information, thus 

simplifying pattern-matching algorithms. The placing of quantification 

information in a separate partitioning i-j attractive in that it is 

analogous to "moving quantifiers to the left" in predicate calculus. 

Branching quantifiers are handled easily. Further, by consulting the 

vista of the quantification space upon which a node or arc lies, all 

variables of higher scope may be found easily. 

However, the orthogonal partitioning approach to 

quantification adds new quantification spaces to the spaces encoding 
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logical connectives and therefore makes additional storage demands on 

the system. If the matrix spaces could themselves carry quantification 

information, then the quantification spaces could be eliminated, 

resulting in simpler networks, demanding less storage. 

c.  THE IMPLICIT EXISTENTIAL APPROACH TO QUANTIFICATION 

The technique for encoding quantification that was 

actually employed in the SRI speech understanding system is called the 

"implicit existential (IE) approach." Using this technique, the spaces 

created to encode logical connectives serve double duty by also encoding 

quantification information. 

The basic idea of the IE approach is to let each space 

used by the logical connectives implicitly carry an existential 

quantifier. Each connective space, it will be recalled, encodes a 

conjunctive situation incorporating a number of subsituations. When a 

connective space carries an existential quantification, it not only 

encodes this conjunctive situation but also asserts its existence.* 

Universal quantification is achieved indirectly in the IE approach 

through the use of the identity 

Ax[p(x)J <=> -Ex[~p(x)] , 

which may be restated in English as "{for every x, p(x) is true} is 

equivalent with (there does not exist an x for which p(x) is false}." 

• In the orthogonal approach, the connective space (the matrix space) 
encoded the conjunction situation, but information regarding its 
existence was encoded on quantification spaces. 
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That is, the  IE approach transforms all  universally quantified 

statements into statements involving only existentials and NEGATIONS. 

As an example of the implicit existential approach to 

quantification, reconsider Figure V-12, assuming that each connective 

space implicitly carries an existential quantifier. Space SI models the 

conjoined existences of such entities as General.Dynamics, BUILDINGS, 

and the like . It also models the existence of disjunction D and the 

membership of D in the set DISJUNCTIONS. Further, SI encodes the 

existence of the two alternative disjuncts of D, S2, and S3. (Note 

carefully that the existence of ai'-.ernatives does not imply the 

existence of situations specified in the alternatives.) 

If one of the alternative disjuncts of D is accepted, 

then the information encoded by that alternative extends the model 

formed by SI. For example, if S2 is accepted, the model is extended to 

include the existence of entities matching the structure of S2. In 

particular, the acceptance of alternative S2 implies the acceptance of 

the existence of a building situation S whose agent is General.Dynamics 

and whose object is the Henry.L.Stimson. 

The information encoded by the network of Figure V-12 is 

purely existential and therefore lends itself easily to the IE approach. 

For a general description of how universal quantification may be encoded 

in the IE approach, consider the abstract statement 

AxEy[p(x,y)] , 

which may be transformed an  follows: 
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AxEyE<P x y> 
~~AxEyE<P x y> 
-(-Ax)EyE<P x y> 
-Ex[-{EyE<P x y>n . 

Since ühe last statement involves only existentials  and logical 

connectives, It may be encoded directly by the IE approach, as shown in 

Figure V-?0.  The relationship between Figure V-20 and the last 

statement above should be clear.  To understand better  how the 

relationship {Ax[p(x)] <=> -Ex[~p(x)]} is used in Figure V-20, note 

the parallelism between vista (S3 S2 SI) of that figure and vista 

(El A1 EO) of Figure V-19. 

si 

S2 

FlbURE V-CO  AN ENCODING OF AxEy !p(x,y)] BY THE IMPLICIT 
EXISTENTIAL METHOD 

V-55 



d.  STREAMLINING THE IMPLICIT EXISTENTIAL APPROACH 

Although the encoding of universal quantification as the 

negation of existential quantification is well-founded mathematically, 

it is not. particularly intuitive and the resulting networks (such as 

Figure V-20) seem unnecessarily complex. To streamline the implicit 

existential approach, a shorthand notation based on the IMPLICATION 

connective may be adopted. This shorthand will both simplify the 

networks and increase their intuitive appeal. 

Working toward this streamlining of universal 

quantification, consider the statement 

Ax[p(x)] . 

Although this statement looks extremely simple, it is the canonical form 

of all universals and may in fact encode quite complex information. The 

x, for example, may be a whole vector of variables, and p may carry 

additional universal and existential information. And, of course, this 

statement might be embedded in a more complex expression. The point is 

that if this statement can be analyzed and if an efficient means can be 

found for encoding it in a partitioned network, then similar techniques 

will apply to all universals. 

For natural language systems (and probably for any system 

modeling a piece of the real world), the p(x) in Ax[p(x)] may almost 

always be restated as an implication of the form 

p(x) - {q(x) => r(x)} . 
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This is because variables such as x are almost always quantified over 

some set (i.e., typed) when used in natural language.* The antecedent 

q(x) of the implication serves to restrict the universally quantified 

variable, confining its range to some fixed set. 

A given q(x) or r(x) might predicate the existence of 

other entities that interact with x. For example, it might be that 

q(x) = Ey[u(x,y)] 

and 

r(x) = Ez[v(x,z)] . 

If x, y, and z are thought of as (possibly empty) seta of variables and 

u and v are thought of as arbitrary formulas, then a statement of the 

form Ax[p(x)] or, equivalent!}, 

Ax[{Ey[u(x,y)]} => {Ez[v(x,z)]}] 

is completely general. After making the transformation 

-Ex[-HEy[u(x,y)]} => {EzCvU.z)}} ] 

the statement may be directly encoded as shown in the forbidding network 

of Figure V-21. 

However, using a shorthand notation, the same information 

may be encoded by the simpler network of Figure V-22.  Use of the 

• That is, since there is so very little that is true or interesting 
about everything, almost all universally quantified statements concern 
only the members of some subset of the universal set. For example, q 
may restrict x to only range over the set of COUNTRIES or over the set 
of SHIPS. Quantified English sentences encoding these restrictions 
might begin with "all countries ..." or "every ship ..." (Note that 
even the morphology of the word "everything" suggests the analyses "for 
all x, if x is a THING, then ...") 

V-57 



1                               /^    ^N 
SO 

f\                                             (     NEGATIONS      ) 

( 
V 

) 
—\ 

\          /      \ / 

i" 

y A 

\ A\ ./ 
\     /     \ / S2 

\      /   S31 
\ .-, / easel        ( JK/ 

S4 

(0 iy 
case2 \^           i U easel o u 

ante Nw   f         \ ^f   conse 

e 

L^^^ 
[     IMPLICATIONS j 
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FIGURE V-22 A SHORTHAND ENCODING OF Ax[(Ev[u(x,y)]}^ {Ez[v(x,z)l} ] 

shorthand is indicated by the overlapping of the ante and oonse spaces 

of an implication. Whenever such an overlap occurs, the structures in 

the overlap are to be considered as being universally quantified and the 

remainder of the implication is to be considered within the scope of 

these universals. 

[The deduction procedures that operate on partitioned 

semantic networks (see the Chapter XII on the deduction component) 
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actually consider all of the ante space structures, including the 

overlap, to be universally quantified.  The justification for this 

arises from the following analysis: 

Ax[{Ey[u(x,y)]} => {Ez[v(x,z)]}] 
Ax[-{Ey[u(x,y)]} V {Ez[v(x,z)]}] 
Ax[{Ay[-u(x,y)]} V {Ez[v(x,z)]}] 
AxAy[-u(x,y) V {Ez[v(x,z)]l] 
AxAy[u(x,y) => {Ez[v(x,z)]}] 

The ability to include {Ez[v(x,z)]} within the scope of y in the next to 

last step derives from the fact that (Ez[v(x,z)]} is independent of y.] 

The correspondences between the nets of Figure V-21 and 

Figure V-2.? are as follows: Space SI corresponds to the overlap of T1 

and T2. S3 corresponds to T1 less the overlap. Si» corresponds to T2 

less the overlap. Note that when the negations are ignored, the view of 

the network from the vantage of S3 (or, alternatively, SM) is identical 

to the view from T1 (T2). But rather than inherit a view of node 'X' as 

in vista (S3 S2 SI SO), the view from vista (T1 TO) includes 'X' because 

'X' appears directly in T1. 

Since spaces S3 and S*! and the implication are within a 

double negative in Figure V-21, their corresponding structures in Figure 

V-P2 are allowed to appear at the top level. It is this elimination of 

a double negative th?t results in the simplification of structure. 

Intuitively, the implication structure of Figure V-22 may 

be interpreted as meaning 

for the existence of any entities matching the structure of 

V-60 



space T1f there will exist entities to match the structure of 
T2 as well, with the match for structures in the overlap being 
the same for both T1 and T2. 

e.  EXAMPLES OF THE OVERLAP SHORTHAND 

Since the shorthand presented above provides the 

principal means for encoding universal quantification in the SRI speech 

understanding system, this subsection provides four examples that 

further expound and clarify its use. 

As the first example, consider 

"Every submarine is owned by a/some country." 

which may be formalized as 

AxEc[member(x,SUBMARINES) => 
{member(c,COUNTRIES) & owns(c,x)}] . 

The network encoding of this statement appears in Figure V-23. The 

universal quantification of x is indicated by its appearance in the 

ante/conse overlap. The dependence of country c on submarine x is 

indicated by the appearence of c in the conse space S3, within the 

(shorthand implied) scope of x. 

The example of Figu; e V-23 may be contrasted with the 

example of Figure V-21, which encodes 

"Every Lafayette (class sub) ii*  owned by the U.S." 

or 

Ax[member(x,LAFAyETTES) => ownstThe.U.S,,x)] . 
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FIGURE V-23 EVERY SUBMARINE IS OWNED BY SOME COUNTRY 

Unlike the c above, the agent of these ownings is not within the scope 

of x and so lies on the higher space S1. The quantification expression 

might well have begun "THERE-EXISTS The.U.S and FOR-ALL x ..." 

To show the nesting of scopes and the alternation of 

universal and existential quantifiers, consider the statement 

"All the ships in any given class have the same length." 
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FIGURE V-24    EVERY LAFAYETTE IS OWNED BY THE U.S. 

If a class of ships a.s thought of as a set  (whose members belong    to the 

class), then the statement may be formalized as 

AcElAs[member(c.CLASSES)  =>  {memberd.LENGTHS) 
& {member{s.c) => has.lengthCs.D)}] 

or as 

Ac[member(c.CLASSES) => {El[member(1.LENGTHS) 
& A3[member(s,c) => has.lengthCs.D]]}] , 
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The network of Figure V-25 encodes this information, 

closely paralleling the last formal expression. Note that the universal 

variables c and s lie in overlaps and that 1 lies in S3, within the 

scope of c. 

Since all the antecedents presented thus far have encoded 

only simple membership relationships, the fourth example, encoded by the 

net uf Figure V-26, has a more complex ante. The example statement 

is 

"All ships built by General..Dynamics belong to the U.S." 

or 

Ax[member(x,SHIPS) & built(General.Dynamics,x) 
=> owns(The,U.S.,x)] . 

In this example, the set restricting the values of x is not explicitly 

encoded in the network. Nevertheless, the antecedent of the implication 

restricts x to be taken from the set of ships that were built by 

General.Dynamics. 

f.  QUANTIFICATION IN THE HIERARCHICAL TAXONOMY 

The use of s and ds arcs for creating a hierarchical 

taxonomy of objects was presented as a basic network concept. The 

taxonomic information alone provides answers to element/set/subset 

questions such as 

"Is the Henry.L.Stimson a ship?" 

"Are destroyers ships?" 

"Is a submarine a destroyer?" 
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FIGURE V-25    ALL THE SHIPS IN ANY GIVEN CLASS HAVE THE SAME LENGTH 
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FIGURE V-26    ALL SHIPS BUILT BY GENERAL.DYNAMICS BELONG TO THE U.S. 
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However, taxonomic information takes on added significance when the 

various sets of the taxonomy are associated with general rules (i.e., 

quantified statements). For example, if the rule 

Ax[member(x,S) => p(x)] 

is included in the system, then knowing that some individual i is a 

memi/jr of set S is enough to establish that i hao property p. 

Furthermore (and this is the important point), there is no need to 

explicitly record the fact that individual i has property p since it may 

be easily derived. If set S has n members, the encoding of the one 

general rule and the various set memberships (many of which may be 

derived in the taxonomy through chains of s arcs) saves n reencodings of 

p for the various members. 

In the domain of the SFI speech understanding system, it 

happens that the ships that belong to a particular class have many 

properties in common. These common properties have been encoded in 

general rules to avoid replication of data. As an example of one such 

general rule, reconsider the network of Figure V-21», which states that 

all ships of the Lafayette class (all members of LAFAYETTES) have the 

property of being owned by The.U.S. 

g.  DELINEATIONS 

By indiccting some of the common properties p of members 

of a set S, a universally quantified statement serves to partially bound 

S. That is, by stating that all members of S have property p, a general 
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rule indicates that ONLY individuals having property p are in S. Thus, 

the general rule provides an indication of a limitation on the 

membership of S. Formally, this limitation arises as a consequence of 

the fact that 

{Ax[member(x,S) => p(x)]} <=> {Ax[~p(x) => "member(x,3)]} . 

For purposes of understanding natural language inputs, 

general rules serving to .'.imjt the membership of situation sets are very 

important. In particular, it is useful for each situation set to have a 

general rule, called the set "delineation" rule, that names an" 

restricts the participants of situations in the set. For example, the 

delineation rule of the set OWNINGS is shown in Figure V-27. This 

general ru]* indicates that all owning situations have an agt, obj, 

start-time, and end-time. Further, the agt must be a member of 

LEGAL.PERSONS, the obj must be (in this system) a member of PHYSOBJS, 

and the start-time and end-time must be elements of TIMES. More complex 

restrictions could also be added. For example, the start-time could be 

restricted to precede the end-time. 

By using delineation rules, the semantic composition 

rules (which are discussed in detail in the Chapter VII) are able to 

reject certain anomalous combinations of phrases that nevertheless meet 

syntactic and acoustic criteria for being Joined. For example, if 

various indicators suggest the hypothesis that, the input utterance 

mentions an ownership situation in which the role of obj (not agt) is 

played by a country, then the delineation of OWNINGS may be used to 
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FIGURE V-27    THE DEUNEAT'ON THEOREM OF OWNINGS 
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reject the hypothesis on the grounds that tue role of obj may be filled 

~ily by elements of PhYSOBJS. (The fact that no country is a physical 

object follows immediately from the taxonomy.) 

Since delineations are a common commodity in the SRI 

speech unaerstanding system, their structure is sometimes abbreviated in 

figures to simplify the notation. Such an abbreviation is shown in the 

drawing of Figure V-28, which is intended to convey the same 

information as the drawing of Figure V-27. Unlike the implication 

shorthand discussed earlier, the delineation abbreviation is used only 

in pictures and is not actually reflected in the internal computer 

structures. 

3   OTHER HIGHER-ORDER STRUCTURES 

In addition to encoding quantification and logical 

connectives, partitioning may be used in the encoding of other higher- 

order structures as well. The need for additional higher-order 

structures is, of course, dependent upon the task that the system is to 

perform and the domain to be modeled. 

For example, if a system is to deal with beliefs, then some 

second-order constructs for encoding beliefs must be devised. One 

possibility for encoding a belief system has already been presented in 

Figure V-10 (and is being pursued by Cohen and Perrault, 1976). 
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FIGURE V-28 ABBREVIATED DELINEATION OF OWNINGS 

If a system were to be able to discuss the semantics of 

natural language, higher-order predicates would be needed to show the 

relationships between sentences (and parts of sentences) and their 

semartic interpretations. This might be done as in Figure V-29, 

which shows an interpretation situation X existing between the syntactic 

entity 
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"General.Dynamics built the Henry.L.Stimson." 

and its semantic interpretation in the net. 

In the SRI speech understanding system, the task to be 

performed was that of andersLanding and responding to spoken inputs, 

most of which turned out to be questions. Hence, the principal need for 

new higneicder structures was for encoding queries. 

a.  REPRESENTING YES/NO QUERIES 

Questions may be regarded as requests (or commands) for 

the delivery of information, with each such request carrying an 

indication of the nature of the sought data. YES/NO questions seek 

information regarding the validity of a proposition and supply the 

proposition itself as an indicator. For example, the question 

"Did General.Dynamics build the Henry.L.Stimson?" 

may be restated as the request 

"Tell me if the statement 'General.Dynamics built the 
Henry.L.Stimson' is true." 

Figure V-30 shows a network encoding of this query. 

The query itself is represented by node 'Q'. Q is shown to be an 

element of REQUESTS.YN, the set of all requests for YES/NO-type 

information. Each such request has one component part, the proposition 

(prop) whose validity is being sought. Hence, the prop arc from 'Q' 

points to space S2, which encodes the proposition 

built(General.Dynamics,Henry.L.Stimson). 
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SI 

FIGURE V-30 DID GENERAL.DYNAMICS BUILD THE HENRY.L.STIMS0N7 

Figure  V-31  shows the  network  encoding  of the 

question 

"Did General.Dynamics build all U.S. destroyers?" 

whose associated proposition contains a universal quantification. 
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(To save storage, it would be possible to eliminate the 

'Q' node and the prop arc by encoding the proposition itself as an 

element of REQUESTS.YN.) 

b.  REPRESENTING WH QUERIES 

Like YES/NO queries, WH queries (queries concerning WHO, 

WHAT, WHICH, WHERE, HOW-MANY) are requests for information. But rather 

than simply querying the truth or falsity of a proposition, a WH query 

seeks to determine what bindings of existential variables will make a 

proposition true. For example, the WH query 

"Who built the Henry.L.Stimson?" 

is associated with the proposition 

Ex[built(x,Henry.L.Stimson)] . 

Working under the assumption that "some x built the Henry.L.Stimson", 

the query seeks bindings for existential variable x. A restatement of 

the query as a request might go something like this: 

"Tell me what bindings of variable x will make the statement 
'x buiit the Henry.L.Stimson' be true." 

Figure V-32 shows a network encoding of this 

query/request. 0 is the query itself, an element of the set 

REQUESTS.WH, the set of all requests for WH-type information. Each such 

reauest has two component parts, a proposition (prop) and an index. The 

index indicates those existential variables appearing in the proposition 

whose bindings are sought as answers to the query. The index is encoded 
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FIGURE V-32    WHO BUILT THE HENRY.L.STIMSON? 
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as a apace that overlaps the spaceCs) representing the proposition and 

that includes only those nodes representing sought-after existentials. 

The translation of the word "who" in this example is 

worth noting. The "who", of course, corresponds to node 'x'. But note 

that x is shown to be an element of LEGAL.PERSONS, the set of all 

humans, countries, companies, and the like. Thus, "who" translates 

roughly into "what member of the set of legal persons". Note also that 

"who" may be either singular or plural. A conscious decision has been 

made to treat these cases identically and to treat each WH request as a 

request for a set of answers. This set, which may contain zero, one, or 

multiple members, is generated one item at a time by the deduction 

component of the speech understanding system. (The deduction component, 

described in Chapter XII, sets up a generator-type coroutine. The first 

pulse of this generator produces one answer. More answers, if any, may 

be found by pulsing again.) A distinction between the plural and 

singular cases could easily be made. For example, elements of 

RKQUESTS.WH.SG might request one binding of existential variaoles. 

Elements of REQUESTS.WH.PL might request all bindings of the 

existentials. 

[Should storage becomt tight, it would be possible to 

eliminate the 'Q' node and prop arc (Just as in YES/NO) by encoding the 

proposition itself as an element of REQUESTS.WH and by using the 

proposition space, in its role as supernode, as the tail of the index 

arc. ] 
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The network of Figure V-33 encodes one reading of the 

English question 

"Who built every destroyer?" 

In particular, this network encodes the reading that assumes there exist 

one or more y, each of whom has individually built all of the 

destroyers, and that it is the identity of these y that is sought. (The 

uniqueness of the builder of an object is another matter which is not 

addressed in this example. If it were, the interpretation would then be 

that there is a unique y who built all of the destroyers.) Formally, a 

binding is sought for the y of 

EyAx[member(x,DESTROYERS) r> built(y,x)] . 

(If the interpretation placed upon this question proves troublesome, 

consider "who answered every questior correctly?") 

The Ldtwork of Figure V-33 may be contrasted with the 

network of Figure 7-3^, which encodes one reading of the English 

question 

"Who built each destroyer?" 

The network of Figure V-3^ places the request for information within 

the scope of a universal variable x that ranges over the set of 

DESTROYERS. That is, for each destroyer x, there is a new request for 

information. In particular, for each x, it is Jissumed that there exists 

a y who built x and the identity of this y is sought. An appropriate 

answer to this query would be sorcsthing like "the xl was built by yl, 

the x2 by y2, ..." 
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FIGURE V-34    WHO BUILT EACH DESTROYER? 
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FIGURE V-35 WHAT COMPANIES BUILT WHAT DESTROYERS? 

Figure  V-35  shows the  network  encoding  of the 

multiplt WH question 

"Whai. companies built what destroyers?" 

The underlying proposition is 

ExEy[men)ber(x,COMPANIES) & 
memberCy,DESTROYERS) & built(x,y)] . 

Bindings (all sets of bindings) are sought nairwise for both x and y. 

Hence, both node 'x' and node 'y' lie on the index space. 
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c.  REPRESENTING HOW-MANY QUERIES 

A HOW-MANY question may be regarded as a special type of 

WH question that queries the  -ardinality of a set. For example, the 

HOW-MANY question 

"How many . ..ps did General .Dynamics build?" 

may be rephrased as the WH question 

"Wbit is the cardinality (n) of the set (z) of 
ships (x) that were built by General.Dynami ?" 

Formally, the associated proposition is 

EzEn[subset(z,SHIPS) i member(n,NUMBERS) & cardinality(z,n) i 
Ax[member(x,z) <=> {member(x,SHIPS) & 
built(General.Dynamics,x)}]] . 

It is the bi.'dir.g of n that .z    nought by the query.  Figure V-36 

shows the networl: encoding that parallels this analysis. 

One of the interesting features of the proposition in 

this question is the specification of set z. Set z is defined by 

stating a necessary and sufficient condition for set membership. 

Namely, "x is a member of z IF AND ONLY IF z is a ship and was built by 

General.Dynamics." This nece?sary and sufficient condition is encoded 

both in the predicate calculus formula and in the network as a two-way 

implication. Note in particular that im. lications I and J of the 

network make dual use of spaces 54 and S5. 
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F.   AUGMENTATIONS 

Since partitioned semantic networks are capable of encoding 

arbitrary logical statements, they have a high degree of completeness. 

Nevertheless, it may be more economical or convenient to encode certain 

types of information on property lists or in procedures. Therefore, the 

following features are offered as augmentations of the basic 

capabilities. 

1, PROPERTY LISTS 

Each of the various network entities (nodes, arcs, and spaces) 

has one or more property lists. Nodes and spaces have so-called 

"global" property lists that are like the property lists of atoms in 

LISP. In addition, arcs and nodes (including supernodes, i.e., spaces 

that have been given node-like features) have context-sensitive property 

lists resembling (and modeled after) the property lists of QLISP (Reboh 

and Sacerdoti, 1973). The context sensitivity of these property lists 

has been designed to parallel the visibility hierarchy of vistas 

described earlier. In particular, each item on one of these lists has a 

double key consisting of a property name and a space in a stratified 

configuration. All GETs and PUTs are made with respect to a vista. If 

a value V is stored under property P with respect to vista (SI S2 ...), 

then the value is indexed by both P and and the bottom space of the 

vista, SI. To GET the value of property P with respect to vista (SI S2 

...), the system first checks to see if P has a value on space SI. If 
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it has, that value is taken. Otherwise, the other spaces in the vista 

are considered in order. 

2.  PROCEDURAL AUGMENTATION 

There are a number of ways in which procedures may be linked 

with partitioned net structures to form procedurally augmented, 

partitioned semantic networks. Perhaps the most overt of these is the 

method used in the SRI speech understanding system. To see what this 

method is, consider the set SUMS, the set of all situations with three 

participants, addend 1, addend2, and total, in which the total is the sum 

of the addends. Certain elements of this set might be represented 

explicitly in the network, but it would be impossible to explicitly 

encode the entire set. On the other hand, the INTERLISP function PLUS 

comes very close to modeling all the instances of practical interest. 

What is needed, then, is some way to use PLUS to create instances of 

SUMS on the fly. 

Moving in this direction, let APPLICATIONS be the set of all 

situations in which an INTERLISP function is applied to an ordered set 

of arguments to produce a result. Then the general rule encoded in 

Figure V-37 shows the interrelation of PLUS and SUMS. Namely, for 

every x, y, and z, if z is the result of applying PLUS to x and y, then 

z is the total, x is the addend 1, and y is the addend2 of a SUMS 

situation j. (A more cautious formulation would restrict x and y to be 

numbers.) 
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Now the general rule of Figure V-37 merely transforms the 

pr )blem of finding a SUMS situation into the problem of finding an 

AFPLICATIONS situation. Vere there no special mechanism for finding 

APPLICATIONS, one unsolvable problem would simply be replaced by 

another. But the algorithms that perform logical deduction in networks 

(described in Chapter XII) have special knowledge of the set 

APPLICATIONS. In particular, they know how to apply the function to the 

arguments to produce both a result and £ new member of the APPLICATIONS 

set. 

The bulk of specific information about the physical attributes 

of ships that is maintained by the SRI speech understanding system is 

kept on files and retrieved upon demand by file access functions.* These 

access functions are typical of a large class of functions that take an 

A-list as their only argument and return an A-list (or, more generally, 

a possibly empty list of A-lists) as their result. For example, the 

retrieval function SHIPDATA might be applied to tne argument 

(NAME Henry.L.Stimson OWNER ? BUILDER ?) 

and return the resulting A-list 

(OWNER The.U.S BUILDER General.Dynamics). 

This application would then correspond to thai  depicted in Figure 

V-?8.  In this figure, the A-lists are encoded by  nodes, with 

attribute/value pairs being encoded by outgoing arcs. Each arc's label 

carries the attribute and the arc's to-ncde carries the value. 

• The file access system and its link to the network were written by 
Jonathan Slocum. 

V-88 

■- --- 



FIGURE V-38 AN APPLICATION OF SHIPDATA 

Function SHIPDATA turns out to be very flexible. In fact, it 

is capable of taking just about any A-li.st of the form 

(C1 VI C2 V2 ...  Cn Vn) 

where the Ci are the names of colurms on the file records and the Vi are 

either values to be matched or question marks. The function returns an 

A-list with entries for those i whose Vi were originally question marks. 
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Since the flexibility of SHIPDATA makes possible a large 

number of different calling configurations, the following expediency 

(i.e., hack) was used to compress the number of necessary general rules. 

A new situation set called KEYED-APPLICATIONS was defined. Each member 

of this set was associated with a function (usually SHIPDATA) and a 

number of cases. Furthermore, and this is the expediency, on the 

property list of each member there was placed a set of keys, where each 

key is a list of case names. The deduction algorithms were especially 

programmed to know about members of KEYED-APPLICATIONS. In particular, 

they were given the knowledge that the function could be called if all 

the cases listed in any key had values. The A-list to be used in this 

call consisted of all case/value pairs for which the values were known, 

supplemented by case/question-mark pairs for cases with unknown values. 

Thus, a general rule involving a KEYED-APPLICATIONS situation 

with n keys could take the place of n general rules. For example, the 

general rule of Figure V-39 carries the force of three general 

rules, the first of which is shown in Figure V-UO. 
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FIGURE V-40    THEOREM IMPLIED BY FIRST KEY 
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SUPPORTS FOR DIVERSE TASKS 

The discussion of partitioned semantic networks presented thus far 

has emphasized mechanisms for encoding logical statements in nets, but 

the representation scheme supports other tasks as well. 

1 FOCUS 

One of these tasks is that of establishing local contents for 

discourse analysis. Developed by Barbara Deutsch and described more 

fully in Chapter IX, the basic concept is to introduce a second 

partitioning of the network that complements the partitioning used in 

the encoding of logical connectives. Spaces in this second 

partitioning, called "focus spaces," are used to group together objects 

that have either been mentioned recently in the dialog or that are 

closely related to objects that have been mentioned. 

By creating vistas of focus spaces, it becomes possible to 

define various levels of focus. Search algorithms may then begin with 

the most local information and proceed stepwise into larger and larger 

contexts. 

2.  SCRATCH SPACES 

In the process of solving problems posed in the network 

formalism, it is often necessary to set up subproblems, consider 

alternative  assumptions,  and derive  intermediate  facts.  (Such 
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intermediate facts typically consist of instantiations of quantified 

statements.) Although the network structures used to encode such 

intermediate information are of central interest, during the problem 

solving process, such structures are of little value afterwards. Rather 

than clutter the network with intermediate results, the hypotheses and 

bits of derived information are placed in scratch spaces that serve as 

temporary extensions to the central model. After completing a problem 

solving activity, the "bottom line" may be moved to the central net and 

the extension forgotten. Details concerning the use of extension spaces 

are contained in Chapter XII. 

3.  RELATING SYNTAX TO SEMANTICS 

As Figure V-8 shows, partitioning may be used to show the 

relationship between the syntax of an input and the input's translation 

in the net. This ability, as described in Chapter VII, is of central 

importance in the tran&lation of quantified expressions and in allowing 

multiple parse-time hypotheses concerning the interrretation of an input 

to share network translations of subphrases. It is also crucial to the 

approach to processing elliptical expressions that is described in 

Chapter X. 
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H. LINEARIZED NET NOTATION 

To communicate network structures to the computer, a linearized net 

notation, called the "LN2" language, has been devised as an extension of 

INTERLISP. The eyntax of LN2 wao inspired by and bears some resemblance 

to the syntax of KRL, the knowledge representation language of Bobrow 

and Winograd (1976). 

To give an indication of the flavor of this language, an LN2 

statement describing the network of Figure V-Hl 

is presented in Figure V-1*2. Altnough this example illustrates only 

a fraction of the features of LN2, the central capabilities are covered. 

The total statement is a call to function !SPACE of the form 

(!SPACE name el e2 ... en). Its first argument is a name to be given 

to a newly created space. All subsequent arguments are expressions to 

be executed in the context of the new space. 

The first such expression is "[UNIVERSAL]", which read macros 

expand into "(!N0DE UNIVERSAL)." In general, calls to !N0DE are of the 

form (!NODE optional-name el e2 ... en). The function creates a new 

node on the current space, assigns it the optional-name (if any) and 

then evaluates the various expressions ei. Thus, [UNIVERSAL] Just 

creates a node named UNIVERSAL. 

"[SITUATIONS (APE UNIVERSAL)]" creates a node named SITUATIONS and 

then executes the expression "(ARE UNIVERSAL)," which creates a da arc 
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FIGURE V-41       NETWORK CREATED BY  LN2 
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(ISPACE SI 
[UNIVERSAL] 
["r TU AT IONS (ARE UNIVERSAL)] 
[IMPLICATIONS (ARE SITUATIONS^] 
[OWNINGS (ARE SITUATIONS)] 
[SUBMARINES (ARE UNIVERSAL)] 
[LAFAYETTES (ARE SUBMARINES)] 
[Henry.L.Strsson (A .AFAYETTE)] 
[COUNTRIEd (ARE UNIVERSAL) 

(SINGULAR COUNTRY)] 
[The.U.S. (A COUNTRY)] 
[x (AN OWNING) 

Ugt The.U.S.) 
(obj Henry.L.Stitnson} ] 

(TURN.OFF.D) 
(IMPLICATION 

(tu (A SUBMARINE)]) 
([(AN OWNTWG) 

{obj u} 
{agt (A COUNTRY^])) 

(DEC.SIT 
owns (OWNER OWNEE) 

[(AN OWNING) 
{agt OWNER} 
{obj OWNEE}]) 

(IMPLICATION 
([y (A LAFAYETTE)]) 
(<owns The.U.S. y>))  ) 

figure V-142.  AN LN2 STATEMENT 

from the current node to 'UNIVERSAL'.  Tne next four  !NODE expressions 

are similar. 

"[Henry.L.Stimson (A LAFAYETTE)]" causes a node to be created named 

Henry.L.Stimson. Function A produces a de arc from thid node to the 

node whose name is fo.'ined by adding "S" or "ES" to the argument of A. 

Hence, the de arc from 'Henry.L.Stimson' to 'LAFAYETTE'. 
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Since COUNTRY has an irregular plural, the expression creating node 

'COUNTRIES' has a call to function SINGULAR to note this fact. SINGULAR 

does the necessary bookkeeping so that the call to A in "[The.U.S. (A 

COUNTRY)]" works properly. (Note: words and spellings used by LN2 have 

nothing to do with the lexicon of the SRI speech understanding system.) 

"tx (AN OWNING) {agt The.U.S.} {obj Henry.L.Stimson}]" creates node 

'x', encodes x as a distinct element of OWNINGS, and then creates an agt 

arc to 'The.U.S.' and an obj arc to 'Henry.L.Stimson'. 

The expression "(TURN.OFF.D)" changes the operation of functions A 

and ARE so that de and ds arcs are replaced subsequently by e and s 

arcs. 

Function lilPLICATION takes two arguments: a list of expressions for 

creating structures inside an implication ante space and a similar list 

for the conse space. IMPLICATION builds a new element of IMPLICATIONS 

with appropriate new spaces and then executes the lists of expressions. 

New structures created or referred to by both ante and conse are placed 

in the overlap. 

In the first IMPLICATION of the e/ample, the ante space expressions 

(there is only one) cause a node labeled "u" to be created witn an e arc 

to SUBMARINES. The sole conse space expression calls for a node to be 

created and assigned a gensym name. The node represents an element of 

OWNINGS. The obj of this element is u. The agt is to be encoded by a 

newly created, gensym named node with an e arc to COUNTRIES. 
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Function DEC.SIT (= declare situation) creates no structure itself 

but defines shorthands for subsequent use. The example shown defines 

"owns" situations in terms of the local variables (formal parameters) 

OWNER and OWNEE. The remaining arguments to DEC.SIT are expressions to 

be evaluated when an owns situation is invoked. That is, this call to 

DEC.SIT defines a type of subroutine for creating network encodings of 

owns situations. 

An invocation of owns occurs in the conse of the last IMPLICATION. 

The delimiters •*<" and ">" indicate that a situation is to be 

instantiated. The first argument within the delimiters is the situation 

name (which must have been previously declared in a DEC.SIT) and the 

other arguments are actual parameters for the situation subroutine. 

I.  APPLYING THE REPRESENTATION 

This chapter has outlined a method for encoding a variety of types 

of information in procedurally augmented, partitioned semantic networks. 

However, this is only the first half of a two-part story. As important 

as the ability to represent information is the ability to apply the 

information to the performance of tasks. This other half of the story, 

in particular, is the subject of the chapters on semantic translation 

(Chapter VII) and on deduction (Chapter XII). 
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VI  THE MODEL OF THE DOMAIN 

Prepared by Gary G. Hendrix 

Using the partitioned semantic network formalisms described in 

Chapter V, a model was constructed for the data base-oriented domain the 

SRI speech understanding system. This model consists almost entirely of 

information about ships in the U.S., Soviet, and Br-tish fleets. 

Seventy-six classes of ships are included, covering 7'40 individual 

ships, over 200 of which are known by name. Such characteristics as the 

owner, builder, length, beam, draft, displacement, number in crew, 

speeds (surface and submerged), class, and type are available for each 

ship.  In all, more than 30 relationships about ships are considered. 

At the top level, this domain model is encoded as a large 

conjunction of individual facts and general rules. A small portion of 

the space, called the "KNOWLEDGE" space, that encodes this top-level 

conjunction is shown in Figure VI-1. In particular, this figure 

shows the top levels of the model's hierarchical taxonomy. The model 

divides the UNIVERSAL set into seven major disjoint subsets, which will 

be discussed below. 
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Several of the ship properties considered in the task domain are 

physical characteristics, such as length and weight, that are 

quantitative in nature. To deal with such dimensioned quantities, the 

sets UNITS.OF.MEASURE, NUMBERS, and MEASURES are included in the model. 

As Figure VI-2 shows, the delineation of MEASURES indicates a close 

relationship between these three sets. In particular, any D.MEASURE, an 

element of MEASURES, will be associated with two component parts: a num 

(= number) n taken from the set NUMBERS, and a unit u taken from 

UNITS.OF.MEASURE. 

Certain subsets of MEASURES particularize the units. For example, 

the delineation of LENGTHS shows the unit to be restricted to FOOT. (A 

more general system would allow INCHES, METERS, and the like.) Since 

the number of numbers and measures is infinite, only those numbers and 

measures that are needed to encode other relationships are included in 

the network. Routines that do translation, numeric computations, and 

retrieval from files can produce new number and measure nodes on demand. 

Returning to the hierarchy shown in Figure VI-1, consider the set 

PHY.LP, whose principal reason for inclusion in the model is to show 

(through s and ds arcs) the relationships between PHYSOBJS (the set of 

physical objects), IAPHYS0BJ3 (the set of inanimate physical objects), 

and LEGAL.PERSONS (the set of HUMANS, COMPANIES, COUNTRIES, and the 

like). IAPHYSOBJS and LEGAL.PERSONS, being disjoint subsets of PHY.LP, 

have no elements in common. PHYS0B.JS is a subset of PHY.LP that 

includes all of IAPHYSOBJS and that shares HUMANS in common with 
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KNOWLEDGE 

FIGURE  VI-2      DELINEATIONS OF  MEASURES AND SPEEDS 
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LEGAL.PERSONS.  IAPHYSOBJS includes SHIP.PARTS and SHIPS.  SHIP.PARTS, 

not shown in Figure VI-1. includes POWER-PLANTS, REACTORS, TURBINES, 

TORPEDO.LAUNCHERS, and the like. Also not shown are 21 elements of 

COMPANIES. 

Since the focus of the task domain is ships, the set SHIPS is of 

central importance in the model, and most of the nodes of the network 

are used in encoding its subsets or elements. Of equal importance with 

SHIPS is SHIP.GROUPS, the power set (set of all subsets) of SHIPS. A 

small but illustrative fraction of the overlapping taxonomies of these 

two sets is shown in Figure VI-3. 

The set SHIP.GROUPS is divided into three major disjoint subsets: 

CLASSES, TYPES, and MACRO.GROUPS. The set of classes is composed of 

members that are sets of ships that are all basically identical. In 

particular, for this data base all the members of a given class are 

considered to have been made by the same manufacturer to the same 

specifications. TYPES are more general sets, grouping together ships 

that have similar (but not identical) characteristics and purposes. For 

example, the type SSBN is a set containing all ballistic missile 

submarines that are nu'lear powered. This type includes all members of 

the ETHAN.ALLEN, GEORGE.WASHINGTON, LAFAYETTE, and RESOLUTION classes. 

While ships of the same type are by no means identical (a Lafayette is 

65 feet longer than a Resolution), their military characteristics are 

closely related. Nodes representing the various types are labeled with 

the abbreviations comr.ionly used by the Navy.  Even more general sets 
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than TYPES are MACRO.GROUPS. These include broad categories such as 

DESTROYERS and SUBMARINES. 

The model includes 67 classes and 23 types, covering over 700 

individual ships. Of these, 201 are explicitly recorded in the network 

by nodes with de arcs into one of the classes.   For example, 

'Henry.L.Stimson' has a de arc to 'LAFAYETTES', which indicates that the 

Henry.L.Stimson is a member of the Lafayette class. Tracing the 

membership of the Henry.L.Stimson through the more general sets provides 

the following information: it is of the SSBN type; it is a ballistic 

missile sub; it is a submarine; and it is a ship. Taking the second ds 

arc from 'SSBN', the Henry.L.Stimson is also shown to be a nuke (nuclear 

powered). 

Although the types and macro.groups form disjoint subsets, the 

network encodes no explicit explanation of criteria used to define (and 

hence to distinguish) these sets. For example, there is no indication 

that the set of aircraft carriers is exactly that set of ships providing 

runways for airplanes. Although the network formalism is fully capable 

of encoding such information, the kinds of interactions with the dati 

base in the current oomain did not require it, so it is not included in 

the current model. 

As indicated by the two s arcs that together connect 'SHIPS' and 

'P.SHIPS' in both directions, these nodes of Figure VI-1 and Figure VI-3 

represent the same set. The inclusion of two nodes is to allow ds arcs 
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to encode two divisions of the ships into disjoint subsets. The first 

group of disjoint subsets (those with ds arcs into 'SHIPS') includes 

DESTROYERS, SUBMARINES, FRIGATES, CARRIERS, and CRUISERS. This HiVi310n 

is based on ship function. The second group (those with ds arcs into 

'P.SHIPS') includes DIESELS and NUKES. This division is based on the 

kind of fuel that supplies power to the ships. 

Let us return to Figure VI-1 for a final look; the last two major 

subsets of UNIVERSAL are COMPUTER.PROCEDURES and SITUATIONS. 

COMPUTER.PROCEDURES includes those computer codes that are used in 

connection with the APPLICATIONS feature of network procedural 

augmentation (as described in Chapter V, Section F.2). SITUATIONS is 

the set of all situations (relationships) existing in the ship domain. 

Almost forty subsets of SITUATIONS are included in the model. Some of 

these are used for internal purposes, including IMPLICATIONS, 

DISJUNCTIONS, NEGATIONS, REQUESTS.YN, REQUESTS.WH, APPLICATIONS, and 

KEYED-APPLICATIONS. The remainder of the sets model categories of 

situations that may be talked about in the language accepted by the 

SRI speech understanding system. These include such categories as 

OWNINGS, BUILDINGS, HAVE.PART, GREATER.THAN, HAVE,LENGTH, HAVE.SURFACE. 

DISPLACEMENT, and PRED.TRAINING. All sets in the last group have 

delineations to aid the translation process. 

The several situation sets having names of the furm 

"HAVE.<dimension>" are used to encode the situations of a physical 

object having a certain dimension to its character that is asrociated 
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with a quantitative measure. For example, Figure VI-4 shows the 

delineation of HAVE.BEAM. This delineation indicates that members of 

HAVE.BEAM relate a physical object p io  a length q. 

The several situation sets having names of the form 

"PRED.<property>" are used to encode situations in which some object has 

the property <property>. For example, members of PRED.TRAINING indicate 

that the participant filling their "pobj" case is used in training. 

(The system currently has no detailed model of what training is.) 

All of the situations in this task domain turned out to be either 

binary or unary. A limitation to such simple situations was neither 

planned nor desired; it just happened. The networks themselves are 

capable of handling situations with arbitrary numbers of participants 

and actually become more efficient as the number of participants 

increases. 

The encoding of information about the participation of particular 

ships in the "arious categories of situations is handled almost 

exclusively by universally quantified statements. Some of these 

statements make no appeal to sources of knowledge outside the network. 

For example, the statement of Figure VI-5 makes no appeal to 

external knowledge in indicating that every ship of type CVT is used in 

training. But most of the quantified statements used in the model rely 

on the KEYED-APPLICATIONS feature to access information in a relational 

data base. For example, the general rule of Figure VI-6 indicates 
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FIGURE  VI-5      ALL CVTs ARE  TRAINING SHIPS 
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that a number giving the beam of a ship in feet may be found by calling 

function SHIPDATA with the argument 

(NAME x BEAM ? CLASS ?), 

where x is the ship whose beam is to be found. (The keys indicate two 

other possible calls: given a class, beams and individual ships may be 

retrieved; given a beam, classes and individuals in the class may be 

retrie.ed.) Not all of the KEYED-APPLICATIONS use function SHIPDATA. 

For example, the set GREATER.THAN is linked to an arithmetic procedure. 

The construction of a model for the navy ships domain that has some 

degree of completeness was undertaken primarily to provide a foundation 

for semantic processing in the speech understanding system. However, 

this detailed development of a particular model provided a test of the 

representation scheme described in Chapter V and suggested some useful 

extensions. In particular, the notion of KEYED-APPLICATIONS and the use 

of de and ds arcs were directly motivated by the experience of building 

a model for the ship data. In earlier stages of the project, the 

representational •■heme also was used in building a fragmentary model of 

the steps involved in assembling and disassembling an air compressor. 
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A.  INTRODUCTION 

The subject of this chapter is the utilization of semantic 

knowledge in the process of understanding spoken inputs as practiced in 

the SRI speech understanding system. Basically, there are three 

functions that a semantic component may perform during the understanding 

process. First, it may filter out phrase combinations that, although 

syntactically and acoustically acceptable, do not meet semantic criteria 

for meaningful unification. Second, for combinations that are 

acceptable, the semantic component may build deep, internal structures 

representing the meaning of the input (or portions of the input) in the 

context of a particular task domain. Third, by considering the meaning 

of a phrase that constitutes a fragment of the utterance, the semantic 

component may make predictions concerning what words or syntactic 

constructions are likely to occur in other parts of the utterance. In 

the current implementation of the speech understanding system, the first 

two of these functions, filtering and structure building, are performed 

in a single module; prediction of likely words (but not of syntactic 

constructions) is carried out in a separate procedure. In this chapter, 

the major emphasis will be on the first two; prediction will be treated 

briefly at the end. 

To understand the details of semantic filtering and structure 

building, it will be helpful to consider first some of the higher-level 

design features of the system. 
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1. INTEGRATION OF FILTERING AND STRUCTURE BUILDING 

One of the system design features to note is that filtering 

and structure building are not handled as individual processes but are 

treated c ectively. It would be convenient to have semantic filtering 

guide the parsing while saving the relatively expensive structure 

building task for a postparsing phase ir. which the syntactic analysis of 

an input would be known in total and the building of structures for 

spurious phrases could be omitted. However, it turns out that filtaring 

(by both semantics and discourse) is dependent upon the structures 

assigned to subphrases of th^ input. Therefore, filtering and structure 

building are combined. When a phrase combination is proposed to the 

semantic system, the system attempts to build up a structure encoding 

the meaning of the new phrase. If any of various checks and 

restrictions in the structure-building process recognize an anomalous 

condition, the structure building fails, and this failure, acting as a 

filter, serves to reject the phrase combination. 

2. TIMELY SEMANTIC FILTERING 

Most text-based understanding systems (e.g.. Woods et al,, 

1972) perform a complete syntactic analysis of an input before taking 

any but the most superficial semantic considerations (e.g., number 

agreement) into account. This approach is quite reasonable, since, for 

processing text, semantic analysis tends to be far more expensive than 

reading words from the input buffer or manipulating the grammar. 
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However, when dealing with the added costs and uncertainties of acoustic 

input, the early use of semantic filtering (and, consequently, structure 

building) to prune misheard words and false paths through the grammar 

becomes more attractive. Therefore, in the SRI speech understanding 

system, the semantic component is given the opportunity to reject each 

new phrase when it is first proposed. 

3-  A TWO-PHASE SYSTEM 

An additional design feature, which has had a great influence 

on the overall structure of the semantic system, is that the scoping of 

quantified variables is saved for a postparsing phase. There are two 

reasons for this postponement. First, the determination of scopes is 

extremely context sensitive, making it difficult (or impossible) to 

perform in a bottom-up fashion, one phrase at a time. Second, the 

information that scoping adds to the structures representing the 

semantic interpretations of phrases provides few (if any) new clues that 

are helpful in filtering. Thus, it is also more efficient to delay the 

quantification process. 

H.       COOPERATION WITH DISCOURSE 

The semantic and discourse components of the speech 

understanding system are closely coordinated and should be studied as a 

pair. Both components build and evaluate networks that describe the 

system's interpretation of phrases in the input.  Interpretations for 
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some ph»ases (e.g., pronouns) are built by discourse alone. Some types 

of phrases (e.g., indefinite noun phrases, verb phrases, prepositional 

phrases) have interpretations constructed by the semantic component 

alone. But some phrases (e.g., definitely determined noun phrases) are 

interpreted by a cooperative effort in which the semantic component 

builds an intentional description of the phrase's meaning, and discourse 

relates this intentional description to a particular object in the 

domain model. In forming an Interpretation for a new composite phrase, 

the semantic module uses the interpretations for each of the phrase's 

constituent subphrases. Tu. interpretations may have been produced 

either by semantics or discourse (or have come directly from the 

lexicon). 

As another point of cooperation between discourse and 

semantics, after discourse expands an elliptical input into a sentence 

level interpretation, the semantic system is used to add quantification. 

B.   PHASE I: SEMANTIC COMPOSITION 

As indicated above, the operations of the semantic component may be 

separated into two phases. The first of these phases, called the 

'composition' phase, is the subject of this section. The second (or 

'quantification') phase is discussed in Section C. 

The task of ehe composition phase is to provide semantic filtering 

and (unquantified) structure building in support of the parsing process. 
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This task is performed by a battery of semantic composition routines 

(SCRs) that are tightly coordinated with the language definition of the 

system (see Chapter II). Whenever a language definition rule suggests 

the feasibility of combining a number of components of the input to 

produce a larger or more general phrase, one of these SCRs is invoked. 

Acting as a filter, the SCR may reject the combination on semantic 

grounds. If the combination is accepted, then the SCR builds a network 

structure representing the (unquantified) interpretation of the phrase. 

In building up such structures, the SCRs are in fact COMPOSING network 

paraphrases of the input phrases. Hence the name 'composition routine.' 

Since different SCRs are associated with different rules of the 

language definition, each SCR constitutes a procedural encoding of the 

knowledge concerning the semantic import of the associated syntactic 

production(s). This procedural specification references and coordinates 

the declarative semantic knowledge in the system's lexicon and in the 

network-encoded domain model. Bringing these sources of semantic 

information to bear on a proposed phrase combination, an SCR creates an 

interpretation structure meeting a number of highly interdependent 

criteria. These include: 

• Creating an interpretation structure that accurately models 
the (unquantified) meaning of the phrase. 

• Reusing the network structures of components in building 
interpretations of the composite phrase. (This 
consideration, which is nontrivial in bidirectional 
networks, makes the building of the composite phrase less 
expensive.) 
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• Building structures that allow multiple hypotheses 
concerning the proper incorporation of a given utterance 
component in larger phrases to be encoded simultaneously. 
(This makes possible the handling of ambiguous situations.) 

• Allowing competing users of a subphrase to share a single 
network structure representing the interpretation of that 
subphrase.  (Recycling increases efficiency.) 

• Incorporating special quantification markers into the 
structure that are effectively invisible to other parts of 
the speech understanding system. (These markers are needed 
by the quantification phase but must be so encoded that 
they do not change the meaning of the unquantified 
structures.) 

• Indicating the association between each syntactic unit of 
the composite phrase and its contribution to the network 
interpretation structure. (This association is needed both 
by the quantification phase and by that portion of the 
discourse component that expands elliptical inputs.) 

The ability to use the structures of subphrases in the building of 

composite structures and the complications of simultaneously maintaining 

multiple hypotheses make the interactions of the JCRs both more 

important and more interesting than the operation of any one SCR in 

isolation. Therefore, the operations of the SCRs will oe presented by a 

series of examples in which many SCRs participate in the construction of 

an interpretation of a complete utterance. 

1.   AN INTRODUCTORY EXAMPLE 

To introduce most of the important features of the SCRs while 

postponing side issues, consider, for the purposes of simplicity, the 

parsing of the following, rather unlikely, sentence: 

"A power plant of a submarine was ouilt by a company." 
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The ultimate result of the semantic interpretation process for this 

sentence is the network structure recorded in the SCRATCH space of 

Figure VII-1. Structures representing new inputs are constructed in 

a scratch space (or spaces) to prevent them from becoming confused with 

the system's model of the task domain, which is recorded on the 

KNOWLEDGE space. Since the SCRATCH space of the example is immediately 

below the KNOWLEDGE space in the viewing hierarchy (as shown by the 

heavy arrow), the view from the SCRATCH space includes the structures in 

the KNOWLEDGE space. In Figure VII-1, the scratch space is presented 

in its entirety, but only a fraction of the structures in the KNOWLEDGE 

space have been shown. 

SA-3804-35R 

FIGURE  VII-1      PARSE TARGET STRUCTURE  FOR  "A-POWER-PLANT OF   A-SUBMARINE 
WAS-BUILT BY A-COMPANY" 
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Since the system interprets new inputs by calling on previous 

knowledge, there are several links from the SCRATCH space into the 

KNOWLEDGE space. The interpretation of the network in the SCRATCH space 

is as follows: Node 'B' represents an element of the set BUILDINGS, the 

set of all building events. In the particular event B, an agt (agent) C 

is the builder of an obj (object) P. The agent C of the building event 

is an element of COMPANIES. The object built by C is P, an element of 

the set POWER.PLANTS. Node 'H' encodes the proposition that power plant 

P is the subpart in a HAVE.PART situation in which S, some member of the 

set of SUBMARINES, is the suppart (super part). 

To suppress syntactic technicalities while concentrating on 

the semantic aspects of the construction of this interpretation 

structure from the original English input, assume the highly simplified 

language definition: 

GRAMMAR 
R1:    S => NP VP 
R2:   NP => NP PREPP 
R3:   VP => VP PREPP 
RJk PREPP => PREP NP 

LEXICON 
NP: a-power-plant, 

a-submarine, a-company 
VP: was-built 

PREP: of, by 

(NOTE: "a-power-plant" is not treated as an NP in the actual system. 

Rather, "power plant" is first combined with PREPP "of a submarine" and 

only afterward is "a" appended to produce the NP "a power plant of a 

submarine".) 
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In the translation process, spaces are created to represent 

the semantics of each grammatically defined constituent of the total 

utterance. These spaces are shown in Figure VII-2, with heavy arrows 

indicating the visibility hierarchy. 

At the start of processing, space KNOWLEDGE contains knowledge 

about power plants, HAVE.PART situations, submarines, building events, 

and companies. Upon spotting the noun phrase "a-power-plant", an SCR is 

called to set up a structure representing the meaning of the phrase. In 

particular, the SCP creates a new space, NP1, below the KNOWLEDGE space 

in the viewing hierarchy. Within this space, a node 'P' is created with 

an e arc to 'POWER-PLANTS'. Thus, node '?' represents some power-plant 

and the e arc makes its membership in POWER-PLANTS explicit. The new 

space NP1 separates the structures built to represent the phrase from 

structures that are in the KNOWLEDGE space. Similarly, new spaces 

PREP2, NP2, V?1, PPEP1, and N03 are set up to encode other utterance 

constituents that correspond to explicit lexical entries (terminals). 

As language definition rules suggest the grouping of 

subphrases into larger .'nits, SCRs are called to aid in the process. 

Using rule RU, PREP1 ("by") and NP3 ("a-company") are combined to form 

PREPP1 ("by a-company"). PREPP1 is allocated its own space, but no new 

structures are created within it. 

When syntactic considerations suggest combining VP1 (^was- 

built") with PREPP1, the appropriate SCR is called.  Consulting a 
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SA-3804-1991 

FIGURE VII-2      MULTIPLE SCRATCH SPACES FOR  "A-POWER-PLANT OF 
A-SUBMARINE WAS-BUILT BY A-COMPANV" 
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surface-to-deep-case map associated with the lexical entry for the verb 

"build",» the SCR determines that a "by" P^EPP following the verb often 

signals the deep agt case in a passive constructior;. Operating under 

this hypothesis, the SCR checks the voice of VP1. Passing this test, 

the SCR ne-tt checks the semantic feasibility of the NP of PREPP1 serving 

as the agt in a BUILDINGS event. To make this check, the SCR consults 

the delineation of BUILDINGS, which indicates that any agt of a 

BUILDINGS situation must be an element of LEGAL.PERSONS (Delineations 

are discussed in Chapters V and VI.) The candidate for the agt position 

is C of space NP3. Since C is an element of COMPANIES, and COMPANIES is 

a subset of LEGAL.PERSONS, C is accepted. A combination such as "built 

by a submarine" would have been rejected. 

Once VP1 and PREPP1 have passed the accf-ptability tests, a new 

space, VP2, is constructed to encode the resultant VP. This new space 

links node 'B' of VP1 with node 'C of NP3 via an agt arc. Tnis new arc 

is visible from space VP2 (and lower spaces in the hierarchy), but is 

not visible from eithor VP1 or NP3, leaving the components encoded in 

VPl and NP3 free to combine in alternatives to VP2 if necessary. 

Continuing the parse, NP2 ("a-submanne") is combined with VP2 

("was-built by a-oompany") to form SI, after passing tests similar to 

those above. The ob/i arc linking the coastituent phrases of 31 is 

contained In space SI and hence is not  seen from the spaces of the 

• The use of case information is descrioed in greater detail in Section 
D at, the end of this chapter. 
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constituents NP2 and VP2. Notice that the construct "a-submarine was- 

built by a-compa y", which is encoded by SI, is a spurious 

interpretation of utterance components. The creation of this spurious 

phrase could have been avoided by strict left-to-right parsing. 

However, in a system for understanding speech, it may be desirable for 

parsing to proceed from the right or from the middle (island driving/. 

In any case, the purpose of this presentation is to show how spurious 

constructions arising either from misheard words or local ambiguities 

are handled by the SCRs. 

Using rule R4, PREP2 ("of") may be combined with NP2 ("a- 

submarine") to form PREPP2. The network structures that are visible 

from space PREPP2 do not include the (spurious) obj arc from 'B' to 'S' 

that lies in space SI. 

When the syntax of rule R2 suggests combining NP1 and PREPP2 

to form a new NP ("a-power-plant of a-submarine"), an SCR is called. 

The SCR checks NP1 to see if it is relational in nature (as is "length" 

in "length of the Henry.L.Stimson" or "length of 425 feet") and hence 

expecting an argument to be supplied. Since NP1 fails this test, the 

SCR checks the properties of the PREP "of" and discovers that it may be 

used to encode HAVE.PART siuations. Calling upon the delineation of 

HAVE.PART and appropriate surface-to-deep-case maps, the SCR determines 

that the HAVE.PART hypothesis provides a feasible interpretation for the 

NP and hence builds space NP4 with node ''I* and three arcs as shown. 

Although these new constructs are visible from space NP^, they are not 
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visible from constituents NP1 and PREPP2 (and NP2). Furthermore, they 

cannot be seen from spurious space SI. Thus, the construction of NP4 

has not altered the view of the net from SI. This is an important 

feature, since at this point in the processing SI is just as likely a 

hypothesis as NPH. While these two hypotheses are incompatible, they 

are nevertheless able to share the structure of NP2 without interfering 

with one another. 

Using rule R1, S2 is constructed from NPI and VP2. In 

addition to the obj arc contained in c.,ace S2 itself, the view of the 

net from S2 includes all the information accessible from either space 

NP1» or space VP2, and hence is identical to the view from space SCRATCH 

of Figure VII-1. Since the parse corresponding to space SI does not 

successfully account for the total input, it is rejected, and S2 is 

accepted as expressing the meaning of the input. 

As will be described later, during the quantification phase, 

the structures on space S2 and those spaces that are above S2 but below 

KNOWLEDGE are quantified. The result of this process is exactly the 

SCRATCH space of Figure VII-1. 

The partial ordering of spaces from S2 to KNOWLEDGE indicated 

in Figure VII-2 is identical to that represented more clearly in Figure 

VII-3 which, because of the choice of space labels, may be recognized 

as the parse tree of the input sentence. Consequently, the syntax of 

the input and the association between each syntactic unit and its 
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NP1 PREP2 NP2 VP1 PREP1 NP3 

SA-3804-23R1 

FIGURE VII-3  VIEWING HIERARCHY ABOVE S2 

corresponding semantics have been captured in the structures built by 

the SCRs. As discussed below in Section C on quantification and in 

relation to discourse analysis in Chapter X, this association plays a 

central role in determining the scopes of higher-order predicates and in 

analyzing elliptical utterances. 

2.  TECHNICAL COMMENTS ON THE EXAMPLE 

In the discussion of the example, a few technical points were 

suppressed to simplify the exposition. These will now be considered. 
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a.  SHARING NETWORK STRUCTURES 

As seen in the example, partitioning enables networks to 

maintain alternative hypotheses (e.g., SI and S2) concerning the use of 

utterance constituents and enables such competing hypotheses to share 

network substructures (e.g., V2). Since partitioned structures, 

together with the associated feature of multiple vistas which allows 

alternative views of the network, make sharing so natural and 

straightforward, it is worthwhile to reflect upon the problem of sharing 

that arises in unpartitioned networks. 

The root of the problem is that networks, unlike simpler 

list structures, are cross-linked by two-way pointers. To see the 

distinction, let X be some S-expression and let LI and L2 be two list 

structures that contain pointers to X. In establishing pointers from LI 

and L2 to X, no change is made in X itself. In particular, the creation 

of a pointer to X does not result in the creation of an inverse pointer 

from X. So both LI and L2 may point to X without any complications 

since X does not point back to either structure. 

In ordinary networks, the situation is different. If 

arcs are established to (or from) a node Y from (to) other nodes N1 and 

N2, then pointers are established in N1 and N2 that point to Y and 

pointers are established in Y that point to Nl and N2. Now, if N1 and 

N2 are alternatives, the following problem arises. By taking 

alternatlva Nl, the structures pointed to by Nl must be taken also 
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(since they form a part of the extended meaning of N1). In particular, 

Y must be taken, and in turn the structures pointed to by Y. But this 

includes IJ2, which, being the other alternative, was to have been 

excluded. The point is that N1 and N2 become linked when they attempt 

to share the same substructure Y. This contrasts with the list 

structures above in which LI and L2 could both point to X without 

establishing a path from LI to L2. 

There are two solutions to the sharing problem in 

networks. The first is not to share at all. That is, all structures 

that would have been shared are instead copied. This solution is 

expensive and, ultimately, unworkable, since there is usually some path 

between Just about any two nodes in the network. The other solution is 

to establish a bookkeeping procedure that will maintain a number of 

different points of view. For each point of view, the bookkeeping must 

indicate exactly which network structures are to be included and which 

are not. Such bookkeeping, of course, constitutes a type of network 

partitioning. 

b.  SYNTACTIC ORDER 

The visibility hierarchies shown in Figure VII-3 appear 

to maintain the syntactic order of constituents of a phrase. For 

example, these figures show that NPI and VP2 are immediately above S2 

and seem to indicate that NPH is to the left of VP2. In reality, the 

orthodox vista of S2 is guaranteed to contain both space NPJ* and space 
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VP2, but the vista itself says nothing about the!'' relative order. 

Therefore, any space created by an SCR that has more than one direct 

parent will have a property, called PARENT.ORDER, indicating the left to 

right order of its parents. For example, the PARENT.ORDER of S2 is (NPU 

VP2). Because of quantification considerations, the order is reversed 

if ono of the parents is a prepositional phrase. This result reflects 

the quantification rule that "the scoping power of a higher-order 

predicate decreases from left to right except when embedded in a 

prepositional phrase." 

c.  CONCEPTUAL SPACES 

Actually, it is not necessary for the system to create 

new spaces for all syntactic units (even though it could). For example, 

the spaces PREP1, PREPP1, PREP2, and PREPP2 of the example exist only 

conceptually. The space really associated with the synt&ctic unit 

PREPP1 is NP3. This reflects the fact that, in isolation, the 

prepositional phrase determines no more network structure than the NP 

alone. 

However, empty spaces sometimes are created by the SCRs. 

Typically, this occurs when a new phrase has the same unquantified 

network structure as one of its constituents but differs from the 

constituent because of quantification. A new space is created in order 

to attach a quantifyjation property that is to belong to the new phrase 

but not to the constituent. 
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d.  COMMUNICATING WITH THE SYSTEM EXECUTIVE 

Each SCR has Its own set of input parameters. Typically, 

these include the semantic interpretations of phrase constituents and a 

few syntactic attributes. If any constituent is ambiguous, multiple 

unambiguous calls are made to SCRs. If the results of an SCR are 

ambiguous, a list of interpretations is returned. The interpretations 

returned by the SCRs are typically communicated by pairs of the form 

(node . vista). For example, the interpretation of the VP "was-built by 

a-company" is passed to the executive by the pair 

CB' . (VP2 VP1 [PREPP1] [PREP1] NP3 KNOWLEDGE)). 

(Recall that [PREPPi] and [PREP1] are only conceptual.) Discounting the 

KNOWLEDGE space, the vista of a pair Include» all spaces upon which 

structures have been created to encode the unquantified interpretation 

of the phrase. (As will be seen in a subsequent example, this vista 

sometimes consists of the KNOWLEDGE space alone.) The node of the pair 

is the so-called "head node" of the structure. It in at this node that 

the structure will typically be joined to other structures in creating 

larger phrases. 

For simplicity of writing, a node-space pair may be used 

to represent the node-vista pair in which the vista is the orthodox 

vista of the space. Thus, the pair above may be abbreviated as 

('B' . VP2) . 

Using this notation, the results of the various calls to the SCRs may be 

summarized as follows: 
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PHRASE INTERPRETATION 

NP1 CP' . NPD 
NP2 ('S' . NP2) 
NP3 CC . NP3) 
NP4 CP' . NP4) 
PREP1 pre net 
PREP2 pre net 
PREPP1 CC . NP3) 
PREPP2 CS' . NP2) 
SI CB' . SI) 
S2 CB' . S2) 
VP1 ('3' . VP1) 
VP2 CB' . VP2) 

3.  INTERACTING WITH DISCOURSE: DETERMINED NOUN PHRASES 

The example utterance considered above was carefully 

constructed to avoid complications arising from quantification or from 

interactions with the discourse component of the speech understanding 

system. However, both quantification and interaction with discourse 

have major impacts on the semantic aspects of the translation process. 

By considering a second example sentence 

"General.Dynamics built the American submarine," 

new facets of the semantic system, particularly its interaction with 

discourse, may be highlighted while still avoiding the complications of 

quantification. 

The principal distinction between the first example sentence 

and the current sentence is that the former contained only indefinitely 

determined noun phrases whereas the latter contains definitely 

determined NPs. Thus, the first example concerns "a company," but the 
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current example concerns the particular company "Genera? .Dynamics." 

Likewise, the first example concerns "a submarine," but the current 

example concerns a particular submarine that is designated as "the 

American submarine." 

The phrase "the American submarine" is intended for use in a 

context in which the partial descrlptior "an American submarine" is 

sufficient for distinguishing a particular individual. Assuming that 

the current conversation concerns the Henry.L.Stirason, which is an 

American submarine, and the Churchili, which is a British submarine, 

then the phrase "the American submarine" designates ehe Henry.L.Stimson, 

and the example sentence is equivalent to the following: 

"General.Dynamics built the Henry.L.Stimson." 

The actual task of relating "the American submarine" to the 

Henry.L.Stimson is performed by the discourse component and is described 

more fully In Chapter IX. As will be shown in this section, SCRs create 

the network descriptions that discourse uses in finding the referents of 

determined noun phrases. Further, onoe a referent is found, SCRs are 

used to incorporate the particular individuals returned by discourse 

when building larger structures. 

Turning now to the details of translating the example 

sentence, the target structure which is to be produced by the parsing 

process is shown in Figure VII--'*. Note that the SCRATCH space 

contains only the building node and its associated arcs. These elements 

cor  itute the new  information conveyed by the  sentence.  Both 
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FIGURE Vli-4      CONTEXT DEPENDENT PARSE TARGET STRUCTURE FOR 
"GENERALDYNAMICS BUILT THE AMERICAN SUBMARINE' 

"General.Dynamics"      and      "the      American      submarine"        (i.e.,      "the 

Henry.L.Stimson") were already known to the system. 

To    perform the    translation with   minimal syntax,    assume the 

following simplified language definition: 

GRAMMAR 

R1 S => NP VP 
R2 VP => VP NP 
R3 NP => N 
m NP => ART MOD N 
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N 
VP 

MOD 
ART 

LEXICON 

General.Dynamics, submarine 
built 
American 
a, an, the 

Using this language definition, the parsing process will produce the 

various subphrases shown in Figure VII-5. The semantic and discourse 

interpretations of these phrases are indicated by node-space pairs that 

refer to the network of Figure VI1-6. Figure VII-6 shows a 

portion of the KNOWLEDGE space and all network structures that are 

produced in the translation of the example sentence. 

PHRASE ENGLISH EXPRESSION 

ART1 the 
MODI American 
N1 General,Dynamics 
N2 submarine 
NP1 General.Dynamics 
NP2 the American submarine 

VP1    built 
VP2    built the submarine 
SI    General.Dynamics bui.lt 

the American submarine 

INTERPRETATION 

('P' . MODI) 
('General.Dynamics' . KNOWLEDGE) 
CS' . N2) 
{'General.Dynamics' . KNOWLEDGE) 
('S' . NP2-S) 

from semantics 
('Henry.L.Stimson' . NP2-D) 

from discourse 
('B' . VP1) 
('B' . VP2) 

CB SI) 

Figure VII-5. NODE-SPACE PAIRS FOR PHRASE? IN "GENERAL.DYNAMICS 
BUILT THE AMERICAN SUBMnRINE" 

The first word of the sentence is the N "General.Dynamics". 

When this word is identified in the acoustics, an SCR is called to 

construct an interpretation.   Typically, SCRs build  new network 
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FIGURE VII-6      SCRATCH SPACES FOR  "GENERAL.DYNAMICS BUILT THE 
AMERICAN SUBMARINE" 
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structures, but since Inforaation tn tht lexicon indicates that 

"General.Dynauics" has a unique referent, which is uodeled by the node 

'General .Dynamics' of the KNOWLEDGE space, no new netwo.'k structures 

nee-' be created, .-mher, the SCR simply returns the node-space pair 

f't^eneral.Dynaaiw.-   moWLEDGE). 

It has item stated previously that the interpretations 

oroduced by the semantics system indicate the association between each 

phrase of an utterance and its network translation (if any). This 

association is usually indicated by spaces. Since phrases typically 

cause new structures to be constructed, and since these structures 

usually involve more than a single node or arc, spaces (or vistas) are 

us«d to encircle the collection of structures created for the phrase. 

But spaces need not -iwayt, be used. Since "General .Dypamlcs" already 

has a representation in the KNOWLEDGE space, no new strctures are 

created. Furthe-, since "Genial. Dynamics* " represented by a single 

node, a new space is not needed to bundle together a number of network 

structures, «s seen in Figure VI1-5, the semantic interpretation of 

"Genaral.Dynamics" is designated by the node-space pair 

('General.Dynamics . KNOWLEDGE). In general, wherever the 

interpretation of a phrase is expressed by a pair in which the node is 

in the KNOWLEDGE space, the network translation of the phrase is simply 

the node of the pair. 

By applying rule R3 i f the grammar, the N "General.Dynamics" 

may be   eneralized to  an KP.  The  SCR associated  with this 
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transformation is an identity function. That is, the interpretation of 

the NP is the same as the interpretation of the N. 

It is worth emphasizing that the SCR that associates the N 

"General.Dynamics" with the node 'General.Dynamics' makes this 

association because the lexicon indicates that the no . is a unique 

referent that is independent of context. That is, there is only one 

General.Dynamics and hence the interoretation of the N 

"General.Dynamics" does not vary with context. A proper (and hence 

definitely determined) noun such as "John" is typically used to refer to 

some particular object, but since there may be many Johns, the object 

referred to depends upoa the context in which the noui is us^d. Finding 

the referents of determined noun phrases with respect to context is the 

task of discourse and wi]1 be illustrated shortly. 

Moving to the next word in the sentence, an SCR is called when 

the VP "built" is recognized. As was the case for the previous example 

sentence, this SCR creates a new space, VP1, to encode the 

interpretation of the VP. Within this space, a node 'B' with an e arc 

to BUILDINGS is created to represent a building event. 

The recognition of the word "the" as an ART (article) leads to 

no significant processing by SCRs. 

The next word, "American", has only one meaning in the speech 

understanding system: "owned by the.U.S." (Were other interpretations 

allowed, the following analysis would simply be one among many.) The 
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SCR that is called to build an interpretation for this MOD (modifier) 

creates the space MODI shown in Figure VII-6. Within this space, a node 

'?' is created to represent the ownership situation and an agt arc is 

created from '?' to 'The.U.S.' to indicate that the U.S. is the owner. 

These structures are built in accordance with information taken from the 

lexical entry for "American". The lexical entry also indicates that the 

thing to be modified by this MOD must fill the obj case of the OWNINGS 

situation. The obj case is said to be the "open" case of the MOD. 

The last word, "submarine", causes a space N2 to be created, 

upon which lies a node 'S' with an e arc to 'SUBMARINES'. 

Consider now the application of rule RU to produce the NP 

phrase "the American submarine" froir the phrases ART1, MODI, and N2. 

The SCR associated with this rule tests to see if the head of the N 

phrase (represented by node 'S') is a feasible candidate to fill the 

open case of the MOD. To do this, the SCR uses the delineation of set 

OWNINGS, as described previously. Once this test is satisfied, an obj 

arc is created from '?' to 'S' on a new space NP2-S. This space, in 

combination with the spaces MODI and N2 of its orthodox vista, encodes 

the semantic interpretation of the phrase. Specifically, it describes 

what may be paraphrased as "A submarine that is owned by the U.S." Note 

particularly that it does not really represent "THE submarine that is 

owned by the U.S." 
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If the ART of the production were "a" or "an", then the 

description of an American submarine that is produced by the SCR would 

be an appropriate final interpretation of the new NP. But, since the 

ART is in fact "the", the description produced by semantics is only the 

first step in the process of properly interpreting the NP. The presence 

of "the" signals that the NP is definitely determined. In terms of the 

system, this result means that the description built by the SCR should 

be sufficiently specific to uniquely identify some particular object 

that is currently in context. It J3 the task of the discourse component 

to use the description built by the SCR to find this object. 

(Note: There are othe;* meanings conveyed by definitely 

determined NPs, and discourse must determine which is intended. For 

example, there is the generic meaning, as in "the dog is man's best 

friend." Also, the context is sometimes universal as in "the moon is 

full." With no context, "the moon" refers to the moon of earth, but in 

a special context might refer to one of the moons of Mars. The 

resolution of a determined NP sometimes depends upon the context defined 

by the embedding sentence itself, as in "the composer that I like best 

is Bach." But the case under consideration, the case in which discourse 

looks for an object in local context, is the only important case for the 

current SRI speech understanding system.) 

Assuming that both the Churchill and the Henry.L.Stimson have 

been mentioned recently, the discourse system will determine that "the 

American submarine" is the Henry.L.Stimson.  At a technical level. 
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discourse creates an interpretation that is expressed by the node-space 

pair 

('Henry.L.Stimson' . NP2-D). 

Paralleling ('General.Dynamics' . KNOWLEDJE), since 'Henry.L.Stimson' is 

on the KNOWLEDGE space, the final network translation of the NP "the 

American submarine" is the single node 'Henry.L.Stimson'. The space 

NP2-D contains no structure. Its purpose is simply to hold the place of 

the space NP2-S that was created by semantics. Subsequent compositions 

that would have used space NP2-S will now use NP2-D. To show taatt NP2-D 

has replaced NP2-S, the property list of NP2-D contains a REPLACED 

property whose value is ('S' . NP2-S), the displaced semantic 

interpretation. Property lists and LISP pointers are shown in Figure 

VII-6 by dashed arrows. 

The next rule to be applied is R2, which indicates that a new 

VP may be created from VP1 ("built") and NP2 ("the American submarine"). 

The SCR for this rule uses the surface-to-deep-case map associated with 

the lexical entry for "built" in determining that the syntactic direct 

object should map onto the deep obj case. The delineation of BUILDINGS 

is then used to test the feasibility of the Henry.L.Stimson filling this 

case. When this test is passed, an obj arc from 'B' to 

'Henry.L.Stimson' is created or a new space "VP". 

Similarly, rule R1 is used to establish an agt arc from 'B' to 

'General.Dynamics' on new space SI, completing the parsing process. The 

quantification phase then transforms the interpretation of the total 
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sentence into the network of the SCRATCH space of Figure VII-4. The 

structures on this SCRATCH space are exactly those structures that lie 

on the spaces of the orthodox vista of S1, omitting space KNOWLEDGE. 

4.  OTHER ASPECTS OF THE SCRS 

With the exception of quantification, the examples presented 

above have introduced all of the major aspects cf the semantic 

composition routines. However, a few of the less central aspects are 

worth mentioning. 

a.  MULTIPLE NODE LEXICAL ENTRIES 

All of the lexical items presented thus far have produced 

at most one node in the scratch spaces used by the SCRs. However, the 

MOD "American" may really be thought of as a two-node lexical item since 

it designates both an element of OWNINGS and fills the deep agt case of 

the owning situation with The.U.S. 

Some relational nouns are entered in the lexicon as two 

node entries. For example, the interpretation of the isolated noun 

"beam" is shown in Figure VII-7. This word imports both the concept 

of a length L and the concept of this L filling the measure case of a 

HAVE.BEAM situation H. Since "beam", "draft", and "length" all 

designate elements of LENGTHS, it is the situation part that 

distinguishes these words from one another. 
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FIGURE VII-7      THE TWO NODE  INTERPRETATION OF "BEAM' 

b.       EQUIV ARCS 

In the network representing the domain model, if two 

nodes N1 and N2 are known to represent the same thing, then N1 and N2 

are the same node. (Note carefully that two different nodes may still 

represent the same object because the objects represented by the nodes 

are not KNOWN to be equivalent — even though they are equivalent.) In 

processing inputs, objects that heve been described differently are 

often asserted to be equivalent. To show this equivalence, the objects 

may be connected by an equiv arc. The direction of the equiv arc is 

irrelevant. 
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For example, consider the sentence 

"The Henry.L.Stimson is a ship." 

The scratch spaces created in translating this sentence are shown in 

Figure VII-8. The first NP of this sentence ("The Henry.L.Stimson") 

is interpreted as designating node 'Henry.L.Stimson' of KNOWLEDGE. The 

second NP results in the creation of a node 'X' to represent some 

element of SHIPS. The copula "is" links these two concepts by asserting 

that they are equivalent. That is, some ship X is equivalent to the 

Henry.L.Stimson. Using this identity, the Henry.L.Stimson must itself 

be an element of SHIPS. The result of eliminating the equiv arc and 

substituting 'Henry.L.Stimson' for 'X' is shown in Figure VII-9. 

As described in Chapter XII, the deduction component of 

the speech understanding system makes use of equiv arcs. In particular, 

an equiv arc is matched against a dummy entity, and the from- and to- 

nodes of the arc are paired. 

5.  MORE ON DELINEATIONS 

Above, in processing example sentences, delineations were used 

as semantic tests to determine whether a given object could play a given 

role in a situation of a given type. In a speech understanding system, 

the principal contribution of such tests is to throw out spurious 

combinations which, typically, are proposed as a result of misheard 

words. But these delineation tests can also clear up certain 

ambiguities. 
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KNOWLEDGE 

FIGURE VII-8  SCRATCH SPACES Wl ^ EQUIV ARC FOR "THE HENRY.L.STIMSON 
!S A SHIP" 

Given the skeletal sentence 

"X built Y", 

it is clear that, if the sentence makes sense at all, X designates the 

deep agt of a building event and Y designates the deep obj. However, 

for the skeletal noun phrase, 
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FIGURE VII-9  SIMPLIFIED INTERPRETATION OF "THE HENRY.L.STIMSON 
IS A SHIP" 

"beam of Z", 

the Z right be either the obj of a HAVE.BEAM relationship (as in "beam 

of the Henry.L.Stimson") or the measure of such a relationship (as in 

"beam of 33 feet"). The delineation of HAVE.BEAM, by indicating that 

the obj must be a physical object and the measure must be a length, 

provides sufficient information to determine the role played by the Z. 

6.  SEMANTIC COMPOSITION RULE SUMMARY 

The operations of the semantic composition rules may be 

summarized as follows. When a content word is identified in the 

acoustic stream, an SCR is called to interpret the  word.  The 
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interpretation structure is a network fragment that describes the input 

by relating it to concepts in the KNOWLEDGE space (which encodes the 

system's domain model). Information concerning how to interpret a given 

isolated word comes largely from the lexicon. 

Information concerning if and how subphrases may be combined 

to form larger units is encoded procedurally in the various SCRs and 

declaratively in the delineations of sets. 

For determined noun phrases, the indefinite interpretations 

constructed by the SCRs are typically replaced by discourse 

interpretations referencing particular items in the domain model. The 

interpretations built by SCRs are used by the discourse system in 

finding the appropriate referent. The interpretations from the 

discourse system may be combined into larger combinations in the same 

manner as the interpretations created by the SCRs themselves. 

The network interpretation of a total utterance is divided 

among a number of scratch spaces. Each syntactic unit of the input may 

be identified either with a single node on the KNOWLEDGE space or with 

some set (i.e., vista) of these scratch spaces. The syntactic phrase 

structuring of the input is reflected in the vista hierarchy relating 

ehe various spaces. 

In addition to the node and arc structures, the various spaces 

created by SCRs may carry information on their property lists concerning 

quantification. The nature of this information and its role in 

completing the translation process are the subjects treated next. 
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C.  PHASE II: QUANTIFICATION 

The quantification procedure perfonned by the semantic component 

and described in this section is the final step in the construction of a 

structure representing the meaning of an input. This operation is 

performed on the (as yet unquantified) interpretation structure of a 

complete utterance that was produced either by an SCR (in the case of a 

complete sentence) or by the discourse component (in the case of 

elliptical expansion). 

The task of the quantification phase is to introduce higher-order 

predicates and their associated scopes into the structure produced by 

the composition phase. Although the scoping of all higher-order 

predicates is performed during this process, the procedure is called the 

"quantification phase" because most of the higher-order predicates that 

have been considered are, in fact, quantifiers. 

The introduction of scopes into the translation net is delayed 

until a postphase because of the highly context-sensitive nature of 

scope determination. While quantifiers are frequently indicated within 

noun phrases, their influence is generally not confined to the noun 

phrase itself, but rather is brought to bear on higher constituents in 

which the noun phrase is embedded. Furthermore, the scopes of most 

English quantifiers are affected by otner quantifiers that appear in the 

utterance. The interaction of quantifiers is influenced by the syntax 

of the higher level constituents that incorporate them, by the relative 
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scoping strengthj of the actual English words used, and by the physical 

feasibility of readings. 

The qu:.:tl float ion process Is largely performed by repar itioning 

the nodes and arcs of the unquantified interpretation structures. That 

is, while leaving the original partitioning in place to save the 

syntactic history of the input for discourse analysis (i.e., for the 

expansion of future elliptical inputs), nodes and arcs are placed in new 

spaces that are ordered hierarchically to indicate the nesting of 

higher-order predicates. For example, a typical new space might define 

the boundaries of the scope of a universal variable. In addition to 

repartitioning, some new nodes also may be introduced into the 

translation structure to represent such logical connectives as 

IMPLICATIONS and NEGATIONS. 

Information for deciding how to define the new "quantification" 

spaces and how to order the spaces is taken from the network structures 

built earlier in the semantic composition phase. In particular, the 

syntactic structure of the input, as shown in the hierarchy of scratch 

spaces, plays an important role. Heavy reliance is also placed on 

information (not yet discussed) that is encoded on the property lists of 

the sciatch spaces. 

The approach to determining the scopes of quantifiers that is 

presented in this section has been influenced by the game theory 

technique advanced by Hintikka (197^).  However, certain engineering 
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expediencies have been used in applying portions of his technique to an 

operational system based on partitioned semantic networks. 

1.  OVERVIEW 

To gain a perspective on the overall quantification procedure, 

consider the processing of the example query 

"Did General.Dynamics build every Lafayette?" 

(The Lafayettes compose one class of nuclear submarines.)  The scratch 

spaces for this query that wers built by the SCRs during the composition 

phase are shown in Figure VII-10. 

Simply put, the node and arc structure created by semantic 

composition is the same as would have been created for 

"General.Dynamics built a Lafayette." 

However, two of the spaces have special properties  relating to 

quantification (or, more generally, higher-order predicates). Space NP3 

includes information about the English quantifier "every" and space S1h 

includes information about the special YN (i.e., yes/no) quantifier." 

In more detail, the noun phrase "General.Dynamics" is 

interoreted by the single node 'General.Dynamics' of the KNOWLEDGE 

space. The VP "built" results in space VP1, as in previous examples. 

Also paralleling previous examples, the noun "Lafayette" results in a 

node 'L' with e arc to 'LAFAYETTES' being created in a new space N2. 

The quantifier "every" is combined with this noun to form a new noun 
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L_ QUANT  YN 

FIGURE VII-10      SCR SPACES FOR "DID GENERAL.DYNAMICS BUILD  EVERY LAFAYETTE?' 

VII-39 



phrase, "every Lafayette." This NP is represented by the vista from new 

space NP2. The view fron NP2 inherits the noun structure of N2. But, 

through the property list of space NP2, there is added to this noun 

structure the information that the English quantifier "every" was used 

in the fonnation of the NP. The empty space NP2 is created solely to 

provide a place to attach this property list. If the properties were 

hung from space N2, then the interpretation of the noun in isolation 

would be altered and would not be available for incorporation in 

alternative hypotheses. (There may, for example, be a hypothesis in 

which the acoustic signal preceding "Lafayette" is interpreted as 

containing some word other than "every.") 

VP1 and NP2 are combined to form VP2, "built every Lafayette," 

in a fashion analogous to previous examples. In the last stage of 

composition, the AUXD (the auxiliary verb of the "do" family) "did" is 

combined with the NP "General.Dynamics" and VP2 to form a complete 

query. The building operations for node and arc structures are the same 

as if the NP and VP were being combined to form an assertion. But the 

pattern 

AUXD NP VP 

signals that the validity of the assertion 

NP VP 

is to be tested by a YES/NO query.  Since a test involving a proposition 

is second-order, the request for a test is not translated into a network 

structure by the SCR.  Ratner, the creation of a (second-order) network 
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structure to encode the YES/NO query involving the proposition NP-VP is 

delayed until the quantification phase. Tc indicate that this structure 

is to be built, the space Sib is created below Sla and is marked by the 

property value pair (QUANT . YN). (Space S1a with its vista is the 

interpretation of proposition NP-VP.) In general, a QUANT property is 

assigned to a space whenever a quantification or other higher-order 

structure must be built during the second phase of semantic processing. 

Using the structure built during the composition phase as its 

sole input, the quantification phase builds a network structure that 

provides a complete (literal) interpretation of the original input 

utterance, which includes all higher-order structures. For the example 

query, the structure of Figure VII-10 is transformed into the structure 

of Figure VII-11 (while the structure of Figure VII-1C is preserved 

for subsequent discourse analysis). 

Space T of Figure VII-11 is the target translation space for 

the query. At the top level, T encodes a request R for information of 

the YES/NO type.  (See the discussion of REQUESTS.YN in Chapter V, 

Section E.3.a, and Chapter XI, Section B.I.) The proposition of this 

request, whose validity determines the answer to the query, is encoded 

on space P. In particular, P encodes the proposition 

"For every L, if L ia CP element of WFAYETTES, 
then L was built by General.Dynamics." 

Note that this proposition contains the universally quantified variable 

L and that the quantification is encoded in accordance with the 

techniques described in Chapter V, Section E.2. 

VII-41 



FIGURE Vll-11       ULTIMATE TRANSLATION OF  "DID GENERAL.DYNAMICS BUILD 
EVERY  LAFAYETTE?" 
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The conversion of & semantic composition structure (i.e., the 

final product of the SCRs) into a fully quantified translation is 

performed by applying "quantification" functions (Q functions) to the 

various spaces created by the SCRs, Exactly one Q function is applied 

to each space, and the process is completed when the last space has been 

processed. The Q functions that are applied determine the types of 

higher-order structures that are produced, and the order in which spaces 

are selected for the application of a Q function determines the nesting 

of predicate scopes. Only a small number of Q functions are ujed. 

The particular Q function to be applied to a giver sptce is 

determined solely by the QUANT value of the space. (Spaces with no 

QUANT property are understood to have the value NIL.) Th«; order in 

which the functions are applied is determined by calculations involving 

the syntax of the utterance and the relative scoping strength of those 

quantifiers that occur in the semantic composition structure. 

Omitting the details of the order of space selection, the 

conversion of the example query proceeds as follows: First, an empty 

translation space T is created below the KNOWLEDGE spice. This space is 

designated as the current active space for the creation of new 

structures by subsequent calls to Q functions. Then, space Sib is 

selected and the value of its QUANT property is mapped onto the Q 

function Q.YN. Q.YN is then applied to space Sib. 
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Q.YN builds structures to represent a YES/NO request on the 

active translation space, T. In particular, the structures of space T 

shown in Figure VII-12 are created by Q.YN. These structures consist 

of a node 'R', an e arc from 'R' to 'REQUESTS.YN', a new supernode '?', 

and a prop arc from 'R' to 'P'. Upon completing this structure building 

operation, Q.YN designates the new space P as the active space for the 

application of Q functions to any space above Sib in the viewing 

hierarchy. For the current example, this includes all other spaces 

created during the composition phase. 

The next space that is selected is space NP2. After the value 

of its QUANT property has been mapped onto the function Q.UNIV, Q.UNIV 

is called to build structures in the currently active translation space, 

P. The structures built by this call to Q.UNIV are shown in Figure 

VII-13. These include an implication node 'I' with its corresponding 

ante and conse spaces, A and C. After creating these structures, Q.UNIV 

copies node '1/ from composition space N2 onto both A and C. Q.UNIV 

copies 'L' because it is marked as the HEAD node of NP2. This copying, 

which is relatively inexpensive, does not alter the structure of N2, 

leaving it intact for use in discourse analysis. However, the copying 

does cause spaces A and C to overlap and hence, by the overlapping 

convencion of IMPLICATIONS (presented in Chapter V, Section E.2.d), 

establishes L as a universal variable. 

Upon completion of its building and copying operations, Q.UNIV 

splits  the remainder  of  the quantification  process  into two 
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KNOWLEDGE 

prop 
H      I » (balance of interpretation 

to be constructed here) 

FIGURE VII-12      RESULT OF O.YN SCOPING PROCEDURE 
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(components 
of NP2 go here) 

c 

(balance of 
Interpretation 
goes here) 

o 

FIGURE VII-13      RESULT OF Q.UNIV SCOPING PROCEDURE 
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subprocesses. In the first of these subprocesses, the spaces above NP2 

(the space that activated the function) are to be considered, using 

space A as the active space. In the second subprocess, all other spaces 

currently pending are to be considered, using space C as the active 

space. 

In the first of these subprocesses, only space N2 remains to 

be prcoessed. Since this space has no QUANT value, the default, function 

Q.EXISTS is applied. This function simply copies all the structures of 

NP2 onto the currently active translation space, A. Since '1/ already 

exists on A, this copy operation acts as a no-op. But the e arc from 

'L' to 'LAFAYETTES' is transferred. 

In the second of the subprocesses, spaces Sla, VP2, and VP1 

are considered, using C as the active space. Since none of these spaces 

have a QUANT property, Q.EXISTS is applied to each with the result that 

their structures are copied onto space C. This copying process in no 

way alters the structures created during semantic composition. 

With Sib, VP2, and VP1 processed, all the semantic composition 

spaces have had a Q function applied, and the quantification phase of 

translation is completed. 

2.  THE QUANTIFIERS 

A list of the quantifiers used in the system with their 

associated Q functions and strengths is presented in Figure VII-lU, 
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QUANTIFIER Q FUNCTION STRENGTH 

ALL Q.UNIV 2 
ANY Q.UNIV 7 
BOTH Q.UNIV 2 
(CONSTANT) — infinite 

EACH Q.UNIV 6 
EITHER Q.UNIV 2 
EVERY Q.UNIV 2 
NEITHER Q.NO-EXIST 3 
(NIL) Q.EXISTS 0 
NO Q.NO-EXIST 3 
NONE Q.NO-EXIST 2 
NOT Q.NEG «1 
PL-DEF Q.UNIV 3 
PL-NUMBERED Q.SET 1 
PL-OPEN Q. EXISTS 0 
SOME Q. EXISTS 1 
WH Q.WH 5 
YN Q.YN 8 

Figure VII-1U.  THE Q FUNCTIONS AND STRENGTHS OF QUANTIFIERS 

(The word "quantifier," as used here means "any MARKER denoting a 

higher-order predicate and its strength.") The quantifiers include both 

English words (all, any, both, each, either, every, neither, no, none, 

not, and some) and quantifiers derived from structure (CONSTANT, NIL, 

PL-DEF, PL-NUMBERED, PL-OPEN, WH, and YN). 

The quantifiers associated with English words are typically 

found during the composition phase by spotting constructions of the form 

quantifier-word noun-structure 

as in "all submarines", "every destroyer", "no torpedo launchers".  The 

structural quantifiers are found by noting the structure of inputs. For 

example, the YN quantifier is signaled by the construction 

is X Y? 
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Whenever a quantifier is found in the composition process, it becomes 

the value of the QUANT property of one of the composition spaces. 

Each quantifier denotes two separate pieces of information: a 

higher-order predicate and the relative scoping strength with which that 

predicate is to be used. In the speech understanding system, a 

different Q function is used for each of the higher-order predicates 

recognized by the system, and it is this Q function, rather than the 

predicate itself, that is directly associated with a quantifier. 

The interpretations placed on the English word quantifiers are 

quite straightforward. ALL, ANY, BOTH, EACH, EITHER, and EVERY are all 

interpreted as denoting universal quantification. In particular, the 

quantifier ANY is never used in the existential interpretation. The 

quantifiers are only applied to count (as opposed to mass) nouns and the 

individual (as opposed to the collective) interpretation is always 

assumed. Thus "John saw all the men" is interpreted as "For every man, 

John saw him" as opposed to "John saw the group of men." 

The English word quantifier SOME is interpreted as denoting 

existential quantification. NO, NONE, and NEITHER denote "there does 

not exi't." NOT denotes negation. 

The structural quantifiers denote some of the more exotic 

higher-order predicates. WH (signaled by words such as "who," "what," 

"which," and "how many") is used to identify a WH-type request for 

information. Similarly, the YN quantifier denotes a YES/NO query. 
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The PL-DEF quantifier arises from plural, definitely 

determined noun phrases such as "those five ships" in "General.Dynamics 

built those five ships." During the composition phase, the discourse 

component resolves plural, determined NPs to nodes on the KNOWLEDGE 

space representing sets. The PL-DEF denotes a universal quantification 

over one of these resolved sets. For example, "for every member of the 

set consisting of <those five 3hips>, General.Dynamics built it." 

PL-NUMBERED arises from plural noun ph-ases that explicitly 

designate a number (e.g., "five men", "two of the submarines", "how many 

engines"). This quantifier is associated with a predicate over two 

objects N and P that may be paraphrased as 

"N is the cardinality of the set defined by the predicate P." 

For examols, consider the statement 

"General.Dynamics built 31 Lafayettes." 

During the composition phase, the phrase "3i Lafayettes" signals the PL- 

NÜMBFRED quantifier. In the quantification phase, this results in the 

creation of a structure encoding 

"31 is the cardinality of set S, where x is an element of S if and 
only if x is a Lafayette and x was built by General.Dynamics." 

If a plural noun phrase contains no English quantifier, no 

definite determiner, and no number designation, then it signals a PL- 

OPEN quantification. For example, "submarines" in "General.Dynamic3 

built submarines" signals a PL-OPEN. Under normal circumstances, PL- 

OPEN simply indicates existential quantification. For the example just 

cited the interpretation would be 
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"There exists a submarine that General.Dynamics built." 

(This interpretation loses the information that more than one submarine 

was built, but the structure for the more complete interpretation was 

considered more  expensive than  it was  worth for  the present 

implementation.) 

Unlike any other quantifier in the syste-«, the effect of PL- 

OPEN can sometimes be superseded by stronger quantifiers. In 

particular, if a PL-OPEN type of NP is the subject of a sentence, then 

an ALL quantifier is created by the sentence-level SCR to supersede the 

PL-OPEN. For example, in 

"Ships are built by corporations" 

both "ships" and "corporations" are PL-OPEN NPs. But since "ships" is 

the subject, an ALL quantifier at the sentence level supersedes the PL- 

OPEN. Thus the interpretation is 

"For every ship there exists a corporation that built it." 

Most spaces created during semantic composition are not marked 

as being quantified at all and may be thought of as having a QUANT value 

of NIL. This NIL value signals existential quantification. The 

sentence 

"A power plant of a submarine was built by a company", 

which was the first example considered under semantic composition, is 

purely existential. 
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Some types of phraser are mapped directly onto the KNOWLEDGE 

space during the composition phase. For example, phrases with unique 

referents such as "General.Dynamics" and (in context) "the American 

submarine" are so mapped. Such KNOWLEDGE space nodes are tantamount to 

CONSTANTS and are therefore unaffected by quantification. 

3.  SPACE ORDERING 

The nesting of scopes by Q functions is critically dependent 

upon the order in which spaces are selected for Q-function application. 

It has been suggested that this order would best be established by game 

theory considerations as outlined by Hintikka (197U). However, the game 

theory approach did ^ot appear suitable for immediate adaptation to a 

computational system. Therefore, a more engineering-oriented approach, 

based on syntax ana quantifier strength, has been used in the SRI speech 

understanding system. 

The ordering of spaces for Q function applications conforms to 

the following ruler^ 

GIVEN any two composition spaces, 

IF e;.ther has a QUANT of greater strength than the other, 
then the stronger is taken first. 

• Doug Appelt and I are currently working on a revised version of this 
rule. Appelt has observed that when an English-word quantifier is the 
first word of a sentence, its strength relative to other English-word 
quantifiers is greatly increased. We have also observed that 
quantifiers in fronted adverbial phrases outscope quantifiers in the 
balance of the sentence, and that when an "ANV" falls within the scope 
of a WH or YN, it behaves existentially. Updates to the system based on 
these observations are pending. 
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OTHERWISE, if either is in the orthodox vista of the other, 
then the space in whose vista the other lies is taken first 
(i.e., compounds dominate their constituents). 

OTHERWISE, that spac^ corresponding to the logically leftmost 
syntactic constituent is taken first. 

With one exception, a syntactic unit X is to the logical left of 

vncactic unit Y if X appears before Y in the sentence.  The exception 

ij. the case in which X and Y combine with a preposition to form a new 

syntactic unit Z as in the production 

Z => ' PREP Y . 

For tnis case only, Y is considered to be to the logical left of X. 

(Example: "Every engine of every submarine" is roughly equivalent with 

"For every submarine, for every engine of that sub" ) 

Applying the above rule to the example input of Figure VII-10 

yields the following analysis: Space Sib is the first space for Q- 

function application l-ocöi'se its QuANT strength, at 8 Tor a YN, is 

greater than any other. Space NP2 comes next with a QUANT strength cf 2 

for EVERY. The other spaces (Sla, VP2, VP1, and N2) all have strength 

0. Since all of these other spaces are in the orthodox vista of Sla, 

Sla comes next. Similarly, tfP2 comes before VP1 or N2. VP2 comes 

before K2 because it is to the left of N2, ond N2 comes last. 

As was the case in the introductory e '^mple, the application 

of some Q functions may cause the quantification process to be split 

into multiple subprocesses, each with its own active target space. When 

this happens, those spaces that remain unconsidered are divided ai     T 
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the suhprocesses. But in each subprocess, the spaces are considered in 

the same order as they would have been had the subprocess remained 

joined. 

To gain a better feel for the influence of quantifier stiv'jth 

over the scoping of predicates, consider the two queries 

"Who built every X?" 

and 

"Who built each X?" 

These queries are of interest because the WH quantifier signaled by the 

word "who" has a strength of 5, which lies between the strength of EVERY 

(strength 2) and EACH (strength 6). 

Since WH outscopes EVERY, the interpretation of the first 

query goes something like this: "Who is that one builder B such that for 

all x in X, B built x?" Since WH is outscoped by EACH, the 

interpretation of the second query goes something like this: "For all x 

in X, who built x?" The network structures representing these two 

queries are ahown in Chapter V, Section E.3-b. 

Another pair of sentences whose interpretations differ only 

with respect to scope are 

"All the men didn't go." 

and 

"Each of the men didn't go." 

In the first, not all went.  In the second, not any went.  (Of course, 

"not all went" versus "not any went" is just another case in point.) 
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The scoping scheme as outlined above is far from perfect and 

should be regarded as merely a first cut at a difficult but fascinating 

problem. 

D.  THE USE OF CASE INFORMATION 

Case information establishes a link between certain syntactic and 

semantic constructions.* It serves two purposes: First, it provide." a 

basis for using information from a syntactic structure in determining 

what semantic relationships hold in a particular phrase. Second, it is 

a relatively simple mechanism for eliminating incorrect interpretations 

by rejecting unallowable semantic relationships and by blocking 

syntactic predictions for words that cannot possibly fit in the current 

semantic context. Both uses of case information have already figured in 

examples earlier in this chapter. Here we will describe the mechanism 

involved and illustrate its application. 

Every word that conveys the concept of a situation has contained in 

its lexical entry (1) a pointer to the semantic net representation for 

the set of similar situations, and (2) a statement of the syntactic 

attributes that signal which syntactic units specify which semantic 

roles in situations of that type Verbs, certain prepositions, 

modifiers, adjectives, and certain nouns are interpreted semantically in 

terms of situations and have this information associated with them in 

the lexicon. When a word or phrase conveying situation data is added to 

• This section was prepared by Ann Robinson. 

VII-55 

i—^nrfTTntirrT^^" 



a phrase, this information is used along with the syntactic attributes 

of the phrase to determine the case relations allowed among particular 

constituents. If the phrase satisfies the relations, the information is 

used by the semantic composition routines to build the semantic 

structure representing it. The information also is used to eliminate 

interpretations where these relations cannot hold. 

Since many verbs map the same surface constituents into the saune 

case relations, with the only difference between verbs being the 

particular situation types, these verbs are grouped together and 

described by common paradigms (see Celce-Murcia, 1976). Thus, verbs 

like 'build', 'own', and 'construct' all follow a common paradigm which 

indicates that in the active voice., the syntactic subject fills the agt 

(agent) case and the syntactic object fills the obj (object) case, and 

that they are reversed in the passive voice. Cases may be obligatory or 

optional, and all the obligatory ones must be filled for a sentence 

interpretation to be accepted. 

To see in more detail how this information is used to check 

possible phrases and to block predictions of words by the executive that 

would otherwise be made on the basis of syntactic information, it is 

necessary to look more closely at what information is available. As has 

been described in Chapter V, Section E.2.g, each situation has a 

delineating element that has case arcs connecting it to other nodes in 

the network. As a result, it is possible to determine for each case arc 

the set of items that can be in the case relation. Structures 
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indicating a particular instance of that situation must correspond to 

the restrictions that are specified. For example, semantic structures 

can not be built for phrases like 'The Henry L. Stimson owns the U.S.' 

because submarines cannot own countries. 

To save the time that would be otherwise be required to compute for 

each noun whether its possible referents are included in a specific set, 

nouns are predivided into subcategories that correspond to the sets 

allowed in particular case relations. When a word that refers to a 

situation is added to a phrase, the information associated with that 

word is used along with syntactic information to determine which case 

relations the other constituents in the phrase can fill. If other 

constituents have been found and are compatible, then the phrase is 

built. If the other constituents have not yet been found, then the 

inforiuation indicating what case each constituent can fill is used to 

determine what subcategory or subcateories of nouns can occur in that 

constituent. When the executive is ready to predict nouns for each 

subcategory, it first checks the attributes of that subcategory in the 

current context. If that subcategory is not allowed semantically 

because of the case (or other) constraints, then that prediction is 

eliminated. If that subcategory is allowable then the predictions for 

individual words are made. 

As an example, consider the sentence "Who owns the Henry L. 

Stimson?" as shown in Figure VII-15. The verb "owns" corresponds t") 

the semantic situation set OWNINGS. This has two associated case arcs: 
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FIGURE VII-15  SEMANTIC NET REPRESENTATION 
OF THE OWNING SITUATION 

agt and obj. The agt arc indicates the the set of all possible owners, 

and the obj arc indicates the set of all things that can be owned. In 

this domain, the owners are all the legal persons: companies and 

countries. When the verb "owns" is found, and a partial verb phrase is 

constructed, the case information is used to restrict the nouns that can 

follow it. The verb "owns" is active, so the verb phrase must be of the 

form VNP. i.e.. a noun phrase must follow the verb.  The case 

information restricts the NP to include one of the nouns in the 
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subcategory of nouns that is associated with the set of ships. If any 

complete noun phrases have been found to the right of the verb, they 

will be combined with the verb only if they meet the 'case' criteria, 

namely, that the head noun reference a ship. If a successful 

interpretation has not been found, when the executive is ready to 

predict nouns for the Nr» constituent, it will first check each noun 

subcategory to see if that subcategory could fit at that place. In this 

example, the only allowable subcategory is ships. Companies, countries, 

measures, and the like are not allowed. The executive will only predict 

the individual words in that subcategory. Henry.L.Stimson is a 

submarine, and thus the noun "Henry L. Stimson" is in that subcategory. 

When the phrase "the Henry L. Stimson1' is found and specifed as a noun 

phrase, the information that it is likely to fit the obj case in the 

semantic representation is given to the semantic composition routines 

along with the semantic structures for "own" and "the Henry L. 

Stimson". With the VP thus completed, the information is used in the S 

rule to determine what possible cases the surface subject can fill. 

Since the obj case is filled, the remaining NP must fill the agt case. 

"Who" is consistent with the constraint on agt, that it be a reference 

to a legal person, so it is combined with the VP and the information 

given to the semantic composition routines to complete the semantic 

interpretation. 
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A.  INTRODUCTION 

Discourse processing deals with the problems arising from the 

necessity of relating utterances to the context in which they occur. 

Utterances are not spoken in isolation. Attempts to interpret an 

utterance in isolation often yield ambiguities that disappear once the 

surrounding context in which the utterance occurs is considered. Both 

the preceding discourse context — the utterances that have already 

occured — and the situational context — the environment in which an 

utterance occurs — affect the interpretation of the utterance. 

Development of the discourse component of the SRI speech 

understanding system began with the collection and analysis of several 

dialogs. Dialog is the most natural mode of language interaction with 

computers. Furthermore, from the system building and testing points of 

view, dialog provides the possibility of checking the system's 

understanding as the discourse progresses (and hence, the opportunity 

for clarification before errors compound themselves) and enables the 

system to influence the discourse. Finally, since dialog is a primary 

use of language, the study of dialog reveals many of the basic 

mechanisms in language communication. 

Two kinds of dialogs we^e collected: a set of task-oriented dialogs 

involving communication between two people cooperating to complete a 

task; and a set of data-base-oriented dialogs involving communication 

directed toward obtaining information from a computer data base. The 
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remainder of this chapter describes the differences between these two 

kinds of dialog and the procedures for collecting them and gives 

analyses of the dialogs collected. The analyses were directed toward 

determining the range of phenomena present in the dialogs. In 

particular, we were interested in determining those characteristics of 

the dialogs that ware amenable to formalization and incorporation in a 

language understanding system and in determining ways of encoding and 

using the information present in both the dialog itself and in the 

surrounding task context to aid in interpretation of successive 

utterances. 

The dialog analysis revealed that contextual influences operate at 

two different levels in a discourse. First, the global context in which 

an utterance occurs — the total discourse and situational setting — 

provides one set of constraints on interpretation of the utterance. For 

example, choices between word senses are influenced by context at this 

level. The second set of constraints is provided by the immediate 

context of closely preceding utterances. A natural language- 

understanding system must provide for interpretation of utterances (and 

their parts) in terms of both of these levels of context. 

The discourse component of the speech understanding system keeps 

representations of both levels of context and contains routines for 

using them in handling two discourse-level phenomena that were common in 

the dialogs we collected. First, the global dialog context is used in 

the resolution of definite noun phrases; i.e., in identifying those 
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concepts referred to by the noun phrases in an utterance that are 

definitely determined (e.g., tl?e nuclear sub). Secondly, the immediate 

context of an utterance — syntactic and semantic information from the 

preceding utterance — are used in the interpretation of elliptical 

expressions.; e.g., in expanding a noun phrase (the submarine?) in 

context (Who owns the carrier?) into a full utterance (Who owns the 

submarine?). 

Encoding global context consists, in essence, of separating out 

that subset of a system's total knowledge base that is relevant at a 

given point in a dialog. The goal is to determine and represent what is 

in the user's focus of attention. For a semantic network knowledge 

representation, what is required is to change the homogeneous nature of 

the network by highlighting certain nodes and arcs. In the SRI speech- 

understanding system this highlighting is achieved by partitioning the 

semantic network into focus spaces. Chapter IX includes a brief 

description of this representation and describes its use in resolving 

definite noun phrases. 

The immediately preceding utterance provides the context needed for 

interpreting an jlliptical utterance (or phrase). In the speech 

understanding system the syntactic and semantic frameworks needed for 

building an interpretation of an elliptical utterance are provided by 

attributes recorded in the parse tree of the preceding utterance. 

Chapter X describes several forms of ellipsis and the mechanisms for 

handling ellipsis in the system.  Of particular interest is the use of 
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the parse-time semantic network partition in limiting the work done for 

interpretation of elliptical utterances. 

B.  DIALOG COLLECTION AND ANALYSIS 

'Task-oriented dialogs' are dialogs between two people cooperating 

to complete some task, where 'task' encompasses real-life activities 

that are directed toward achieving a particular goal and that can be 

broken down into small steps, each having its own goal. Examples of 

tasks include repairing faulty equipment, building a house, carrying out 

a chemistry experiment, and solving algebra word problems. Task- 

oriented dialogs occur normally as a master craftsman instructs an 

apprentice, two mechanics work together to repair a car, and as a 

teacher guides a student in a chemistry lab. The major characteristics 

of these dialogs are that both participants are aware of the. task to be 

performed and that communication between the participants is necessary 

for accomplishing it. 

The tasks considered in this research have one further 

characteristic: they are tasks for which it is feasible to consider a 

computer taking the role of one of the participants sometime in the not 

too distant future. In particular, we have investigated situations in 

which the computer guides a person performing a task. Interest in such 

dialogs arose in part from considering the language requirements yf s 

computer-based consultant system. A description of initial steps toward 

building such a system may be found in Hart (1975). 
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In addition to the task-oriented dialogs, we collected a set of 

'question-answering' dialogs. Question-answering dialogs occur when one 

person asks another (or a computer system) a series of questions in 

order to help solve some problem. They are distinguished from task 

dialogs mostly in that the answerer cannot be viewed as sharing a goal 

in common with the questioner. Although short question-answering 

dialogs are common in everyday conversation, extended ones (more than 

five or so questions) are more frequent in communications with 

computers, for example, in a sequence of queries to a computer data 

base. In the dialogs that were collected, a person queried a data base 

in order to solve an assigned problem. Solution required interaction 

with the data base. To avoid confusion with other kinds of question- 

answering dialogs, these dialogs will be referred to as data base 

dialogs in the remainder of the discussion. Date base dialogs differ 

from task-oriented dialogs both in the degree of structure present and 

in the influence of the task or problem on that structure. As a result 

of the differences in amount and kind of problen.' structure, there are 

significant differences in the kind of language occurring in the two 

kinds of dialog. 

Task-oriented dialogs are a good source of unbiased data on 

discourse. Concentration on the performance of a task keeps the 

participants from becoming self-conscious about their language. The 

resulting dialogs are spontaneous and unrehearsed. The data base 

dialogs are somewhat less spontaneous. The less realistic nature of the 
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assigned problems contributed to the subjects in these dialogs being 

more self-conscious than those in the task dialogs. 

The dialogs aescribed in '■his report were both written and spoken. 

To simplify the following discussion, the term 'speaker' will be used to 

refer to the transmitter of a message and 'hearer' to the receiver even 

though some of the transmissions were typed. 

Section C contains a description of the method of dialog 

collection. Section D presents an analysis of the dialogs; the major 

emphasis here will be on the task-oriented dialogs; the data base 

dialogs will be used to provide contrast. Finally, some other natural 

language data are examined and future areas of analysis indicated. 

C.   COLLECTION OF THE DIALOGS 

1.  PURPOSE 

The main purpose of dialog collection «as to provide data for 

determining characteristics of the language used when people communicate 

fc!' the purpose of solving a problem. Since the goal of the dialog 

analysis was to determine the language demands a person would make on a 

computer system, the ideal context for collection would be one in w^ioh 

a person was interacting with a computer. But this is a 'Catch-22' 

situation: data are needed to guide the design of the system. The best 

that can be done is to simulate this setup. At the start it was not 

clear whether the language people use in communicating with one another 
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would differ from the language they might use in communicating with a 

computer. We expected that people's ideas of the capabilities of 

computers would ■■'flMence the language they used, even if they were told 

that the system understood ^.glish. In the task situation we were able 

t collect data both of the language used when two people were 

interacting directly and of the language used when one peraon thought 

the other dialog participant was a computer. Our intuition proved 

correct: the language used in ommunicating with a 'computer' was 

different. 

Chapanis (1975) has been interested in characterizing 

differ ..^es in language use across different modes of communication. 

For example, he investigated differences in measures such as number of 

sentences, number of wrn-ds, and number of "nounlike" words across modes 

such as handwriting, typing, and speaking. In addition, he examined the 

differences in time raquired for problem solution across the different 

modes of communica'ion. His analyses are statistical; they provide 

information about how the language used in the various modes differs. 

Although such statistical measures provide some indication of the 

desirability of one mode over another and of the effect of the mode on 

the language used, they do net provide the information required for 

building a computer langu?.ge-understanding system. For that, 

information is needed on the particular words ussd and on how th«y are 

put together in utterances to provide meaningful communicdtion. 
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The analysis reported here is of a different sort: it is 

concerned with taking a single mode (actually a small number of very 

similar modes) of communication and characterizing the range of language 

devices used to achieve successful commmunication of an idea. A large 

number of different questions can be asked along these lines. They 

include sentence-level questions like "How many different sentence 

structures occur?", "Do some occur more frequently than others?", and 

"In what context?"; intersentential questions like "What links are there 

from one utterance to another?"; and more global questions like "Does a 

dialog have some overall structure?" These questions must be answered 

before a complete language-understanding system can be built. 

The emphasis of the analysis presented here will be on 

discourse-level phenomena, and in particular, on the structure of the 

dialogs, the relation between dialog and task, and the kinds of 

references used for identifying objects. 

2.  TASK DIALOGS 

The main task used for collection of data on task-oriented 

language was assembly of part of an air compressor. In addition, two 

dialogs were collected in which an expert plumber provided guidance in 

the repair of a leaky faucet. A sketch of an aircompressor is shown in 

Figure VIII-1 For the purposes of understanding the dialog fragments 

in this report, it is important to note the pump, the pump pulley, the 

platform, the aftercooler, the belt-housing frame and cover, and the 

VIII-9 

i r r fin MW '■ 



DC 
O 
8 
LLI 
a: 
Q- 

o 
u 
oc 
< 

< 
CO 

m 
OC 

VIII-10 



connections between these parts. Tasks involving both high-level 

assembly — installing the pump and belt — and lower-level assembly — 

putting the pump together — were used. 

The participants in each of the dialogs ware an 'expert' (E) 

and an 'apprentice' (A). The experts, in addition to being skilled at 

mechanical tasks, were familiar with the compressor and the tools used 

in assembling and disassembling it. Before participating in the 

dialogs, the experts performed the task themselves and then had a 

practice session instructing someone else. None of the apprentices was 

familiar with the air compressor; in general mechanical knowledge, they 

ranged from complete novices to amateur auto mechanics. 

Dialogs were collected under a variety of conditions. The 

visual contact between participants was varied to determine the effects 

of limited vision and to collect data on descriptions. In the first 

experiments, E and A were allowed to communicate freely; they 

interrupted each other frequently. For the next set of experiments, the 

ability to interrupt was removed to see what effect this would have on 

communication and task accomplishment. Finally, the information given 

to A about E was varied. 

The dialogs fall into four classes: 

(a) Free, with vision: E and A were in the same 

room; they were able to see each other; verbal communication 

was spoken; no restrictions were placed on language use. The 
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only instructions were to complete the task. The only 

restriction was that E could only instruct A; he could not 

help DO the task. In this setup, then, E could see A, monitor 

what A was doing, and notice where A put tools and parts. E 

and A were free to interrupt one another. 

(b) Free, with no vision: the conditions were the 

same as (a) except that E was not able to see what A was 

doing. 

(c) Restricted and aware: both visual and verbal 

communication were restricted in these protocols. The 

experimental set-up is shown in Figure VIII-2. Verbal 

communication passed through a monitor who was responsible for 

assuring that E and A did not interrupt each other. In these 

dialogs A spoke, and the monitor typed the message; E typed a 

responsf. and the monitor read it to A. Computer terminals 

were U3( 3 solely so that transcripts could be easily obtained. 

E was able to get 'still' pictures from the television camera. 

They had to be requested; normally, the camera was focused on 

a blank wall. In these experiments, A was informed that the 

experiment was a simulation of a computer system. Hence, A 

was airfare that E was a person. 

(d) Restricted and unaware: the experimental setup 

was the same as in Condition (c), but A was told that E was a 
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FIGURE VIII-2  EXPERIMENTAL SETUP FOR RESTRICTED DIALOGS 

computer system.  In each case we determined after the 

protocol was collected and before explaining the true nature 

of the experiment that A believed that a computer system was 

serving as expert. 

3-  DATA BASE DIALOGS 

The data base experiments were designed to collect data u the 

language people would use if they had verbal access to a data base. In 

order to collect realistic data, it was necessary to provide people with 

a specific problem, requiring information from the data base. Again the 

purpose was to make their language as unself-conscious as possible. 
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Detailed descriptions of the procedures for collecting the data together 

with examples are in Deutsch (197^) and Silva (1975). 

The data base used for these dialog experiments contained 

information about the ships of the United States, British, and Russian 

fleets. In the first set of dialogs, the subjects were given charts 

(similar to the ones found in naval reports) to fill out, and two short 

problems to solve. They were instructed to ask for information from an 

analyst, who answered using material from the data base. The subjects 

and analysts were in the same room but were not allowed to interrupt one 

another or to view each other's materials. For these problems, no 

additional information can be obtained from the subject and the analyst 

being able to see one another. 

The second set of dialogs used a revised data base containing 

information on U.S. and Russian ships in the Mediterranean. Subjects 

were given one long problem to solve for which they needed information 

in the data base. The subjects were not restricted in their use of 

language. Thexr queries were translated into data base queries and 

typed to a computer data base system by an 'operator'. The answers were 

read back to the subject. 
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ANALYSIS OF THE DIALOGS 

1 OVERVIEW 

This section presents analyses of the data gathered. There 

were marked contrasts between the task dialogs and the data base dialogs 

in word use, utterance structure, and overall dialog structure. These 

differences stemmed from the fact that in the task situation, both 

participants knew and were responsible for the 'solution' of the task, 

but in the data base dialogs, only the subject was responsible for the 

problem solution. Furthermore, the task dialogs involved tasks that 

break down into subtasks. The relationship between subtasks is well- 

defined. As a result, successive utterances in the task dialogs had 

strong links. In contrast, the information needed for solution of the 

data base problems could be asked for in a variety of ways (i.e., a 

variety of question sequences). There was no necessary dependence of a 

query on what preceded or followed it. 

Ten task dialogs were collected: one under Condition (a), and 

three each under Conditions (b), (c), and (d). The major difference in 

language between the free dialogs and the restricted dialogs was the 

frequent occurrence of interruptions in the free dialogs. Expert and 

apprentice cooperated on completing utterances as well as en completing 

the task. The dialog segments in Figure VIII-3 illustrate this 

cooperative aspect of the interruption. Lines (5)-(6), (9)-(13), and 

(17)-'18) are the most direct examples. In the first two cases, E is 
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(1) E:  ... and those are to be inserted in the side of the 
motor ...  in the side of the rear of the motor 

(2) A: üh hm. 

(3) E:  . . . and . . . 

(4) A: ... I see it . . . 

(5) E:  O.K. and each wire is to be attached to a 

(6) A: One of those bolt things here? 

(7) E: bolt? . . . yes. 

* « » 

(8) A; . . now should I unscrew the nuts from the bolts? 

(9) E: No. The wire goes on top of that ... on top of the 
nuts that ar^ on there . . . 

(10) A 

(11) E 

(12) A 

(13) E 

I see . . . 

. . . and there're . . . 

Other nuts. 

. . . there are other nuts 

(14) E: The washer will be the last thing that . . . 

(15) A: The washer will be last , . . 

(16) E: The last item that will be on it. 

(17) A: O.K. Then this little plastic thing 

(18) E: With the holes in it. 

Figure VIII-3. FRAGMENTS OF COOPERATIVE DIALOGS 
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pausing in search of the 'right' phrase when A fills it in. In (17)- 

(18), E gives a similar kind of aid to A. Lines (2) and (4) are typical 

of the kind of ongoing mutual support of the two participants. A 

indicates an understanding of what has been said so far, so E may 

continue. This support is also evident in the echoing of (14)-(16). 

The kind of fragment resulting from these interruptions was more than we 

wanted to attempt to handle in an initial speech understanding system. 

We surmised that not allowing the participants to interrupt would not 

seriously hamper problem solution. Chapanis (1973) has evidence that 

supports this hypothesis. The restricted dialogs were designed to 

eliminate interruptions. The design of the experiment for restricted 

dialogs closely resembles Chapanis' setup but was designed 

independently. 

The different visibility conditions had several different 

effects on the dialog. Robinson (1975a) discusses some of these. The 

most pronounced difference was in the kind of descriptions that 

resulted. Figure VIII-'* shows the most blatant contrast found in the 

dialogs. 

If visual informdtion i3 shared, that common information can 

be used in descriptions. In the protocols with restricted dialog and 

limited vision, E often asked for a still picture in order to use this 

kind of information. The dialog fragment in Figure VIII-5 is an 

example. 
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WITH VISION: 

E: You have a top piece with a KNURLED section that you 
can take ahold of. 

A: What's a knurled section? 

E: You've got your fingers on it. 

WITHOUT VISION: 

E: Now underneath is what they call a cap assembly. It 
has a KNURLED face around it. 

A: What does knurled mean? 

E: Little lines running up and down on it so you can 
take ahold of it. 

Figure VIII-1. DESCRIPTION OF "KNURLED" WITH AND WITHOUT VISION 

E: Use the ratchet wrench on the top and hold the nut 
stationary on the bottom with a box wrench. 

A: What is a ratchet wrench? 

E: Show me the table. 

E: The ratchet wrench is the object lying between the wheel 
puller and the box wrenches on the table. 

Figure VIII-5. USING VISION TO HELP WITH A DESCRIPTION 

The difficulty of giving descriptions without the aid of 

shared visual information is best illustrated by the fragment in Figure 

VIII-6. A more extensive discussion of the descriptions found in the 

dialogs and some of their characteristics is presented later in Section 

D.7. 
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E: O.K., uh . . now, we need to attach the um . . conduit 
to the motor, .. the conduit is the uh . . the covering 
around the wire that you . .  uh . . were working with 
earlier. Um, there is a small part urn . . oh brother 

A: Now, wait as... the conduit is tvie cover to the 
wires? 

E: Yes. and . . . 

A: Oh, I see, there's a part that . . a part that's supposed 
to go over it . . . 

E: Yes . . 

A: I see . . it looks just the right shape, too.  Ah hah! 
yes . . . 

E: Wonderful, since I did not know how to describe the part! 

Figure VIII-6.  DIFFICULTIES IN EXPLAINING AN UNFAMILIAR 
COMPLEX OBJECT 

Four of the tea task dialogs form the core data of the 

analysis: two each of the dialogs occurring unaer the two restricted 

language conditions [Conditions (c) and (d)]. These conditions were 

selected because they were closest to the situations that would occur in 

any person-computer interaction in th. ..car future. Since each of the 

dialogs took between ^0 minutes and two hours and consisted of between 

120 and 250 line^, this constitutes a large body of data. 

Most of the attributes discussed below occurred to some extent 

in all of the dialogs. Interesting phenomena that occurred in isolated 

dialogs also will be pointed out. 
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In addition to the ten task-oriented dialogs, five data base 

dialogs were analyzed. Two dialogs were chosen as representative of the 

dialogs collected during the first experiment. All three dialogs from 

the second set were analyzed. Again, although the number of dialogs is 

small, the amount of data in each dialog is quite large. The dialogs in 

the first set are over 100 lines long and represent approximately 30 

minutes of speaking time. The dialogs from the second set each 

represent over an hour of dialog. It was necessary to look at long 

segments of dialog to get the data needed, since the range of discourse 

phenomena was of interest rather than statistics on what occurs most 

often. 

2.       THE STRUCTURE OF THE DIALOGS 

a.  TASK-ORIENTED DIALOGS 

The most interesting characteristic of task-oriented 

dialogs is that they have a structure that closely parallels the 

structure of the task „eing performed. The '/hole dialog is segmsnted 

into subdialogs, which themselves may break down into subdialogs, just 

as the task breaks down into subtasks, which themselves may be 

decomposable. For example, the 'task' of making a cake has subtasks of 

preparing the batter, actually baking the cake, and icing the cake. A 

recipe (or television cooking program description) contains distinct 

parts for each of these subtasks. Likewise, the compressor task of 

installing the pump breaks down into attaching the pump, attaching the 
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pump pulley, attaching the belt, and several other tisks. Attaching the 

pump breaks down into positioning the pump and actually attaching it. 

An analysis of the dialogs for the pump installation task reveals that 

they fall into subdialogs paralleling these subtasks. The 

correspondence between task structure and dialog structure plays a 

crucial role in determining tho context in which an utterance is 

interpreted. It is particularly important for the interpretation of 

references (see Section D.3). 

Several linguistic devices indicate the segmentation of a 

dialog. As an example, consider the use of "when". The subdialog 

corresponding to a task ends, or is 'closed', when the tark it parallels 

is completed. If reference needs to be made later to an object or 

action in that subdialog, the subdialog must be reopened. "When" 

provides one means jf accouiplishing this. The utterance, "A little 

metal semicircle fell off when I took the wheel off" is meant to 

reinvoke the entire context of taking the wheel off in order to 

determine the meaning of the metal semicircle falling out. 

Thsre are different ways to open and close subdialogs. 

The most common opening is a statement of the goal of the task. 

Frequently this is preced ' by "next" or "the next step is". If A opens 

the task, just the plain task description may be used. For example, 

"I'm tightening the motor mount bolts". Correspondingly, the most 

frequent kind of task closure is a report of completion of the task. 

Frequently, this is preceded by an "O.K." Section D.2.d contains mo-e 

examples. 
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Another indication of the segmentation phenomenon comes 

from the use of pronouns to refer back over long portions of discourse. 

After a subdialog is closed, a pronoun may be used to refer to objects 

in the higher level task t ^at contains the subtask corresponding to the 

subdialog. T'.iis is the case in the dia1og example of Figure VIII-7. 

E: Good morning. I would like for you to reassemble tae 
compressor. 

E: I suggest you begin by attaching the pump to the platform 

. . . (otl- :r subtaaks) 

E: Good. All that remains then is to attach the belt housing 
cover to the belt housing frame. 

A: All right. I assume the hole in the housing cover opens 
to fie pump pulley rather than to the motor pulley. 

E: Yes that is correct.  The pump pulley alsc acts ^s a fan 
to cool the pump. 

A: Fine.  Thank you. 

A: All right the belt housing cover is on and tightened down. 

(30 minutes + 60 utterances after beginning) 

E: Fine. Now let's see if it works. 

Figure VIII-7.  FSONOUN USE REFLECTING DIALOG STRUCTURE 

The completion of the belt housing cover attachment 

closes the jubtask of installing the cover. The "it" in the last 

utterance refers to the air compressor last mentioned over a half-hour 
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before. This use of "it" is not unique. In fact, similar expressions 

containing "it" references to the air compressor occurred in three of 

the four core dialogs. There were also several instances of pronoun 

references skipping over smaller pieces of dialog. In every case, the 

pieces skipped over were whole segments relating to some distinct 

subtask or subtasks. 

This segmentation is a reflection of an important 

underlying phenomenon: as different parts of the task are performed, 

different objects and actions come into 'focus'. The segmentation of 

dialogs is a reflection of the shifts of focus with time. When t 

subtask is ccmpleted, it fades from focus. However, the higher level 

(parent) task remains in focus. Hence, when a sibling subtask is 

performed, the concepts in the parent — but not those in the completed 

subtask — are in focus and affect the use of referring expressions like 

pronouns. This notion of focus is closely related to Chafe's notion of 

'foregrounding' (Chafe, 1972). Both are discussed in more detail in 

Chapter IX and in Grosz (1977). 

b.  THE DATA BASE DIALOGS 

The data base dialogs did not exhibit the same kind of 

segmentation, but there was definite evidence of groups of closely 

related utterances. Tho amount of segmentation evident in these dialogs 

differed according to the problem being solved. 
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The dialogs for the ohart-filling-out problems had no 

global structure although there were sequences of related utterances. 

The sentence-to-sentence links were most evident from the use of 

elliptical sentence fragments. The sequence in Figure VIII-8 

illustrates one utterance providing context so that only a phrase 

suffices as a complete utterance in that it conveys a whole question. 

As Chapter X shows, the use of ellipses is a local discourse feature; it 

operates only between adjacent utterances. 

What's the surface displacement of the Lafayette class? 

7300 tons. 

What's the submerged displacement? 

8200 tons. 

The length? 

425 feet. 

Nucbex' of torpedo tubes? 

Figure VIII-8.  A SEQUENCE OF ELLIPTICAL SENTENCE FRAGMENTS 

The dialogs for the short problems exhibit a slightly 

larger grouping of utterances. Some evidence of shifting of focus over 

subprobleras appears. The dialog fragment in Figure VIII-9 is a self- 

contained unit. The immediately preceding utterance was about British 

diesel patrol submarines. The utterances following this subdialog were 

about submarines other than the Yankee and the Hotel II.  The subdialog 
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S: What classes of USSR submarines are there? 

A: <answer> 

S: How many of tho  are nuclear ballistic missile sub- 
marines? 

A: Two. 

S: What are they? 

A: Yankee, Hotel II. 

S: How many tubes does the Yankee have? 

A: Eight. 

S: "That's torpedo tubes, right? 

A: «Eight. 

S: And, how many torpedo tubes and missile launchers for the 
Hotel II? 

A: Ten torpedo tubes, three missile launchers. 

S: What is the submerged speed for the Yankee and Hotel II? 

\:    <answer> 

Figure VIII-9.  A DATA BASE QUERY SUBDIALOG 

itself narrows from considering all Soviet submarines to asking about 

attributes of two particular submarines. There is a short subdialog 

inside the subdialog itself. The two starred utterances form a 

clarification-question/answer pair. Although such segments appear in 

these dialogs, there are not very many of them. This is the longest 

sequence that appeared; the others were only six to eight utterances 
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long. Most of the dialog still consisted of sequences of utterances 

related locally but without structure. 

The dialogs for the longer problems exhibit more 

structuring. Figure VIII-9 gives an example. The questioning moves 

from determining elements of a particular class of submarines to a 

subdialog covering attributes of two of those ships. Openings and 

closings of these subdialogs are less clear than those for the task 

dialogs. As a result, the segmentation is harder to detect. 

What distinguishes the data base dialogs most from the 

task dialogs is the lack of any intermediate structure. There are local 

discourse phenomena tying adjacent utterances together, and there is 

some structure provided by the overall problem, but there is little 

relating the local segments together into bigger segments. As the 

problems posed to the subjects get larger, intermediate level 

organization appears. What seems to happen with these problems is that 

a solution breaks down into some recognizable substeps and the dialogs 

fall into segments according to these substeps. There is a continuum, 

then, of which we have only a few sample points, from the totally 

unstructured chart-filling dialogs to the highly structured task 

dialogs. 
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c.  KINDS OF SUBDIALOGS 

The subdialogs we have discussed so far are task or 

problem related; they can be linked directly to some substep of the task 

being attempted. Several other kinds of subdialogs occur: g^ eral 

question answering, clarification, and communication channel related. 

Some of these an» quite short, only a pair of utterances, but they are 

all distinguishable as separate from the surrounding dialog and cohesive 

as a unit. 

General question-and-answer subdialogs include subdialogs 

related to identifying objects in the domain (e.g., "What's a motor 

bolt?"), describing tool use ["How is this (wheelpuller) used?"], 

identifying the right tool to be used or seeing if a better tool is 

available (e.g., the expert asking "What tools are you using?"), making 

sure no blatant error occurs in performing the task (e.g., the 

apprentice asking, "Will this require some effort?"), and testing 

whether a task was performed correctly (e.g., "How tight should the 

bc1cs be?"). The data base dialogs contain only a few general question- 

answering dialogs; they are all concerned with terminology, e.g., "What 

do you mean by deployment?" 

Two kinds of subdialogs fall in-between subtask and 

general question answering. They are clearly related to the task being 

done but are also general questions. First, there are questions about 

why a certain part or step is needed (e.g., "What is the key for?"). 
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Second, there are requests by the apprentice for alternative ways of 

doing some task (e.g., "Do you have another way to get the nuts in 

underneath the platform?"). 

Both the task and the data base dialogs contain pairs of 

exchanges whose purpose is to determine that the previous message was 

heard correctly or to have a missed message resent. The middle two 

lines of the dialog in Figure VIII-10 are an example of this kind of 

subdialog. Requests for retransmission include statements like "What 

was that again?" and "Please repeat the last instruction." 

A: One of them is at 14 degrees E, 31* degrees N. 

S: 34 degrees you said? 

A: Yes. 

S: O.K. 

Figure VIII-10.  A SUBDIALOG CHECKING PREVIOUS MESSAGE 

There are also subdialogs where one participant wants to 

make sure that the other participant means the same thing as he does. 

This kind occurs in the starred sequence of the dialog fragment of 

Figure VIII-9. 

VIII-28 



d,  OPENING AND CLOSING OF SUBDIALOGS 

Task subdialogs may be opened by either expert or 

apprentice. In the dialogs that were examined, expert openings were 

always statements of the subtask goal. Sometimes the statement was 

augmented by a sequencing expression such as "next" or "now". 

Subdialogs opened by apprentices also included subtask goal statements, 

but these could be embedded either in statements indicating the task was 

being, or about to be, performed, or in statements requesting 

information on how to perform the task. Frequently, a pair of 

utterances serves to open a subtask. This happens when A asks for the 

next task, as in the following: 

A: What should I do now? 

E: Remove the pump. 

Alternatively, a pair may result rrom A asking how to do some task, 

leading to E giving a subtask specification, as in the pair: 

A: How do I remove the pump? 

E: First removs the flywheel. 

Such pairs occurred both when A knew what task was next but not how to 

do it and when E gave the task and A needed more specification.  As an 

example, consider the preceding four utterances as part of a single 

dialog. 

Task subdialogs that occurred when the apprentice ran 

into trouble were opened by a statement of the problem. Similarly, 

subdialogs for checking task performance were opened by the expert 
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asking if some goal had been achieved or was in the process of being 

achieved. 

The most typical closings of subdialogs were through 

statements like "O.K." or ones indicating that a task goal was 

completed. Often a combination of these was used. These closings are 

explicit; implicit closings also occurred quite frequently. Typically, 

A would indicate that a subtask was finished by asking for the next 

subtask. In these cases, the same statement might serve both to close 

an old subdialog and to open a new one. 

Question-answering subdialogs are always opened by a 

question about some part, tool, task, or proolem. In the protocols 

collected, some of these subdialogs were closed with a direct antwer. 

In other cases, a long series of exchanges occurred before the answer 

was arrived at. Only some short sequences contained a closing "O.K." 

or other explicit indication from A. Almost all of the longer sequences 

ended with such a communication. 

e.  MULTIPLE USES OF O.K. 

Robinson (1975a) pointed out the use of "O.K." as an 

acknowledgment that the preceding message has been received. This is 

only one of four meanings this small word took on in the dialogs. In 

particular, "O.K." was used at different times to mean: 
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• I heard you 

• I heard you and I understand 

• I heard you, I understand, and I am now doing (or will do) 
what you said 

»I'm finished (O.K. what next?) 

Figure VIII-11 contains examples of each of these meanings. 

O.K. -- I HEARD YOU: 

E: Loosen the motor bolts and slide the motor toward the 
pump. 

A: O.K. What's a motor bolt. 

O.K. -- I HEARD YOU AND I UNDERSTAND: 

E: That's the center portion of the wheel. Point at where 
you think it is. Show it to me please. 

A: O.K. Just a sec. 

O.K. — I HEARD YOU, I UNDERSTAND, AND I'M DOING WHAT YOU SAID: 

E: First loosen the two alien head setscrews holding it 
to the shaft, then pull it off. 

A: O.K. 

A: I can only find one setscrew. Where's the other one. 

O.K. — I'M FINISHED: 

A: O.K. All the bolts are off. 

Figure VIII-11.  DIFFERENT USES OF "O.K." 

Each of these uses of "O.K." requires a different 

response from the hearer. Often the indication of which one is meant 

comes from the next statement in the dialog. Although the time between 
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the preceding statement and the "O.K." is often a clue to which meaning 

is intended, it is not always a reliable indication. 

The main problem for building a computer system comes 

from distinguishing the first three levels of "O.K." from the fourth. 

In the task domain, level 2 never occurred where level 3 was applicable 

(though one can imagine it in some situations, like a child being told 

to make his bed). The distinction between level 1 and levels 2 and 3 

will be immediately evident from the utterance following the "O.K." 

Furthermore, no ambiguity problems can arise from this distincton since 

it does not have any impact on charge of focus. Level 4, on the other 

hand, does indicate a change of focus: 2 once a task is completed, focus 

shifts to a new task. At present, the best strategy for intarpreting 

"O.K." seems to be to wait for the next utterance to determine if a 

shift of focus is intended. 

Figure VIII-12 contains a dialog fragment illustrating 

one of the problems that arise from the use of "O.K." for closing a 

subdialog. In line (4), A indicates completion of part of the 'open- 

valve' task. In line (5), E gives the next task; he has closed the 

whole 'open-valve' task. However, from line (6) it is clear that A 

thinks another subtask may be involved in the 'open-valve task'. To 

answer (6), E must re-open the closed (for him) 'open-valve' task and 

its corresponding subdialog. 
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(1) E: Open the top of the valve and let the water out. Just 
open the faucet up on top. Just like you were going to 
turn the water on. 

(2) A: Oh, like I'm going to turn the water on. O.K. 

(S'1 E: Now, that'll relieve the pressure. 

(4) A: O.K. some water came out. 

(5) E: Now the next thing you do, you take an alien wrench . 

(6) A: Do I leave it on or turn it back off? 

(7) E: It doesn't make any dfference. 

(8) A: O.K. 

Figure VIII-12.  A MISUNDERSTOOD "O.K." 

f.  MULTIPLE OPEN 3UBTASKS 

The preceding discussion has centered around the idea of 

only one task being under discussion at any time and hence providing 

focus for the dialog. However, some examples of more than one focus 

were encountered in the dialogs analyzed. These fell into two 

categories: 'hypothetical' and 'competition'. In the hypothetical case, 

one task was being performed, but a future one was being considered. 

Although the task being performed was a lengthy one, there were no 

problems, so *:he apprentice asked about how to perform some future task, 

or what would happen if some task were performed differently. In all 

such instances, both A and E seemed comfortable with the multiple foci. 
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In the competition case, however, E and A appeared to be competing for 

who would determine what would get discussed. Although both could 

handle the dual foci, at least one of the two always seemed annoyed. 

The annoyance was manifest both through repetition of statements and 

from the tone of message communicated orally. In all cases, the 

maintenance of multiple foci did not last more than two or three 

exchanges. 

3.  REFERENCE 

The importance of the link between task structure and dialog 

structure and the need for representing focus of attention are most 

clearly seen when examining the use of 'referring expressions'. The 

utterances in a dialog (or any discourse) comprise two kinds or 

information. Some of the information has been introduced previously 

into the discourse; in previous research, such information has been 

labeled 'given' or 'old'. Other information is 'new'; it is being 

introduced into the discourse by this utterance. Understanding an 

utterance requires identifying the given concepts in memory and 

attaching the new information to them. The term 'referring expression' 

denotes those parts of an utterance that communicate given information. 

Determining the information and processes needed to identify 

the object meant by a referring expression, resolving, that is, a 

reference, was a primary goal of the dialog analysis. Because definite 

noun phrases are the most common form of referring expression, the 
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analysis focused on the use of these phrases. For some of the analysis 

it will be useful to distinguish two kinds of definite noun phrases: 

pronouns and nonpronominal definite noun phrases. In the following 

discussion, the term 'DEFNP' wll be used to refer to nonprcnominal 

definite noun phrases only. The basis of this distinction arises from 

the different processes needed for resolving pronoun references and 

DEFNPs. 

Resolution of DEFNPs is basically a retrieval process. The 

context in which an utterance appears — both the surrounding non- 

linguistic environment and the global linguistic context of the 

preceding discourse — is crucial to the resolution process for the 

DEFNPs in the utterance. The immediate linguistic context and, 

especially, the sentential context of the referent itsalf, are not 

important. For most pronouns, the opposite is true. Unlike DEFNPs, 

pronouns carry alnost no information themselves. The immediate 

linguistic context of the preceding utterance (and preceding clauses in 

the same utterance) supplies candidates for the referents; sentential 

context provides restrictions for choosing among them. Global context 

is not very important. The exception for pronouns is the previously 

mentioned use of pronouns tc refer back over long portions of dialog. 

In these instances, the global context supplies candidates. The process 

is basically one of retrieval. However, the lack of samantic 

information in the pronoun makes sentential context necessary for 

choosing among the candidates. This use of pronouns is similar to the 
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'pragmatic anaphora' in Har.kamer and Sag (l976). In essence, resolution 

of these pronouns, like DEFNPs, is basically a global semantic process. 

Resolution of other pronouns is mo-"^ local and more syntactic. 

There are several ways in which the object referred to by a 

DEFNP may be evident in the discourse contexc. The simplest case is 

when the object was explicitly mentioned in a preceding utterance. 

Chafe (1972) pointed out another use of DEFNPs: to refer to objects that 

-i^e foregrounded'. These are objects that are not explicitly mentioned 

in the discourse but are so closely coupled to some objoct which has 

been that they may be considered "in the consciousness of the hearer" 

(Chafe, 197^) and, hen-.e, may Ka referred to definitely. For example, 

in the sequence, 

E: Are you using the socket wrench? 

Ä:  Yes.  The socket fell off ... 

"the 'jocket" has not been previously mentioned but is foregrounded when 

"the socket wrench" is ident .led. 

A problem of particular interest in resolving references is 

determining '-'..ere to search for referents: how far back in the dialog is 

it necessary to go? Searching the whcie preceding discourse may be 

quite time consuming. The necessity of considering foregrounded 

concepts as well as those explicitly mentioned wakes searching the whole 

dialog unreasonable. 
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Chafe (1972) noted that the time (or, its analog, distance, in 

a text) between utterances affected whether or not a definite reference 

could be used. He also remarked that it was not clear how much 

discourse could occur before an object ceased to be foregrounded. Most 

language understandinc systems use some time measure as the sole basis 

for considering objects as referents cf definite noun phrases. The 

system of Norman et al. (1975) has a concept of 'working memory', but 

objects must be explicitly reraentioned in order to stay in this memory. 

The examples presented in Section D.2 illustrate that time alone is not 

a sufficient determiner. Whole segments of dialog may be skipped over, 

and objects not mentioned for a long time may be referred to by definite 

noun phrases (even pro^uns!) . 

Examination of the references occurring in the task dialogs 

showed that references operate inside of subdialogs. That is, a? long 

as a subdialog is open, objects introduced into it are referred to by 

definite noun phrases. We consider these objects 'in focus'. When a 

subdialoi is closed, the objects inside it leave focus and require 

different references (unless the whole subdialog is reopened ur they are 

first reintroduced in some other subdialog). When a subtask is 

completed, the definite noun phrases may refer to objects in higher 

level tasks. For illustrative purposes, consider the simple tree task 

structure of Figure VIII-13 When task T6 is completed, there is a 

return to the context of T2 and possibly directly to T1, but there can 

be no references to objects c"ly in T4 or T5. Objects in T4-T6 cannot 
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FIGURE VIII-13  A SIMPLE TASK MODEL FOR ILLUSTRATING DIALOG "POPS" 

be directly referenced from T7 or T8. When T8 is completed, there may 

be a 'pop' up to T3 or T1. 

Most references can be resolved in terms of the preceding 

utterances in the subdialog, but this is not of itself sufficient for 

establishing the existence of segmentation mentioned previously. Those 

utterances are also the most recent ones. A simpler explanation of the 

reference retrieval process can be made in terms of the referent being 

closest in time. If we consider the references that occur after a 

subdialog has been closed, we can see a place wherQ the subdialog 

explariation is more powerful than this 'closest in time' explanation. 

When a subdialog is closed and focus shifts back to a higher level task, 
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the cbjects in that higher task get referred to definitely even though 

they have not been mentioned recently. The use of DEFNPs in this way 

might be expected, but the use of pronouns for objects not recently 

mentioned is certainly striking. The example in Section D.2.a is hard 

to account for if task and dialog structure are ignored. 

A secord indication of structure comes from the use of plural 

DEFNPs. Consider again the task structure of Figure VIII-13 and suppose 

that some bolts B1 are involved in task T2 and another set B2 in task 

T3. Then, even if some utterance in the end of the subdialog for T2 

contains the phrase "the bolts", any reference to "the bolts" once T2 is 

closed and T3 opened will be taken to mean the set B2. This is true 

with a combination of singular and plurals also. So if T2 involves a 

single bolt B, the phrase "the bolts" inside of T3 will not be taken to 

include B. 

In this connection, it is important to point out tnat people 

are sensitive to the distinction between singulars and plurals. In the 

subdialog of Figure VIII-ll, E indicates the ambiguity of the phrase 

"the alien screw" by pointing out the fact that there are two (in 

addition he indicates that they both need to be tightened). 

This subdialog may be contrasted with ^he one of Figure 

VIII-1q,. Here even though the two screws have been mentioned within 

one exchange of the wheelpuller screw, the phrase "the screw" is totally 

unambiguous. Completion of the tightening task has closed one subdialog 

and removed those two screws from focus. 
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Check the alignment of the two pulleys before you tighten 
the setscrews. 

Yes. I'm doing that now. 

O.K. 

Tightening the alien screw now. 

O.K. Thank you. 

That's finished. 

By the way, there are two setscrews. 

Figure VIII-14. SINGULAR/PLURAL DISTINCTIONS 

A: How do I remove the flywheel? 

E: First loosen the two alien head setscrews holding it to 
the shaft, then pull it off. 

A: The two screws are loose but I'm having trouble getting 
the wheel off. 

E: Use the wheel puller. Do you know how to use it? 

A:  No. 

E: Loosen the screw in the center and place the jaws around 
the hub of the wheel, then tighten the screw . . . 

Figure VIII-15.  EFFECT OF SHIFT IN SUBDIALOG ON DEFNPS 

Another indication of dialog structure and segmentation comes 

from consiJering a dialog with groups of lines removed. If a whole 

subdialog is removed, the dialog remains coherent.  Although it is 
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sometimes possible to delete some utterances that are not whole 

subdialogs without damaging coherency, such removals often result in 

dialog fragments that do not make sense. Removing a question and its 

answer may not affect coherency. Removing a subdialog opening or 

closing does. 

The one point where definite references in one subdialog get 

resolved in terms of objects in a closed subdialog is at the crossover 

point, the set of utterances that provide the transition from one 

subdialog to the next. The use of "them" in the sequence 

A: I've got all four bolts in place. 

E: Good. Now tighten thetL up. 

is net only acceptable, but practically necessary. "The bolts" does as 

well, but "the (four) pump mounting bolts" is confusing; it seems to 

indicate another set of bolts. This confusion is present even though 

A's statement with E's "good" ends ono subtisk (cl sing the 

corresponding subdialog) and the remainder of E's statement opens a new 

subdialog. The objects in the just closed subtask are still in focus 

through the transition to the new subtask because the two tasks are 

contiguous in time. Hence, at such transition points 'closeness in 

tin.3' provides focus. 

In a structured discourse, both time and structure need to be 

taken into account in resolving references. Previous systems have been 

able to rely on time as the sole basis of definite noun phrase 

resolution because they heve been concerned with unstructured tasks.  In 
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Winograd's (1971) blocks task any instruction can be followed by any 

other. Although there is utterance-to-utterance cohesion, there is no 

global cohesion (other than everything being about blocks). This is 

exactly what happens in the data base domain, too. Norman et al. 

(1975) report that the time-based algorithm used in their system work? 

on most references in texts. But textual material is edited according 

to a set of rules that emphasizes the time aspect of reference. To that 

extent, texts are atypical of the kinds of language people use in direct 

communication. The dialogs are perfectly comprehensible when being 

read; it is cletu that segmentation is usable in processing text as well 

as in interactive forms of communication. 

4.   KINDS OF UTTERANCES 

There are marked differences in the kinds of utterances 

occurring in the task dialogs and in the data base dialogs. Syntactic 

differences include such things as differences in the number and kinds 

of WH-questions and differences in the ratios of questions, imperatives, 

and declaratives. Several of these are enumerated in Section IV, The 

Langu ge Definition, in Walker et al. (1975). There were al^o distinct 

differences in the kinds of utterances in these two sets of dialogs. 

These differences are manifest on two levels: 'utterance purpose', the 

overall reason for the utterance (e.g., to convey task information); and 

'utterance type' — the form in which the utterance conveys information 

(e.g., a request or a response). 
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Almost all of the utterances in the data base dialogs are 

questions whose purpose is to get information out of the data base (that 

being the nature of data base query). In the task domain, there was a 

wider variety of utterance purposes and also of utterance types. 

Utterances served three purposes. The majority were 'task related'; 

they involved such things as describing task steps, identifying parts 

and tools, and describing progress on a task. Secondly, utterances 

served as 'sensory substitutes'; these included requests from E, such as 

"Show me ...", and Statements by A, such as "I'm pointing at ...". 

Finally, some utterances served to establish that the communication 

channel was still open, for example, the question "Can you hear me?" In 

addition, several of the "O.K.s" served as channel checkers as well as 

providing task information. 

There were five types of utterances. Most of the utterances 

were 'requests' for information or 'responses' to such requests. These 

types include questions about task steps, which tool to use, and how a 

task step was progressing, and the answers to such questions. Often, 

however, information was offered without such requests. Some aoprentice 

utterances were 'reports' of progress. These are quite similar to 

answers to requests like "What are you doing now?" but differ in that 

they also indicate A's need to communicate his progress. Similarly, E 

'imperatives' are quite similar to answers to the question "What should 

I do next?" but convey E's feeling of task progress rather than A's. 

Both reports and imperatives are often followed by utterances that serve 

VIII-Ü3 



merely to 'acknowledge' that a message has been received.  "O.K." and 

"Yes" often function in this way. 

Each type of utterance may be followed only by a subset of the 

other types. Imperatives and reports may be followed by either 

acknowledgments or combinations of an acknowledgment and a request. In 

the latter case, if the request immediately follows the imperative or 

report, the acknowledgment is implicit and may be omitted. Typical 

requests following imperatives involve questions about parts of the 

task; typical requests following reportc involve checking that some 

subtask has been done correctly. Reports may also be followed by 

imperatives.  Again, the acknowledgment is implicit. 

With one exception, requests and responses come in pairs. In 

the usual case, requests must be followed by a response. The response 

may be followed by anything other than another response. The exception 

occurs •■'ith erabeddings of questions and answers as in the dialog of 

Figure VIII-16. In this case a request is followed by another request. 

Correspondingly, the response is followed by another response. Finally, 

acknowledgments may be followed by imperatives, requests, or reports. 

In a sense, an acknowledgment signals that the acknowledging person is 

ready to receive another message. 

Figure VIII-17 contains a segment of dialog containing the 

five types of task utterances. In this example, each of the imperatives 

and reports is followed by an acknowledgment.  In several cases, the 
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A: Should I put the bolt on next? 

E' Are the setacrews tight? 

A: Yes. 

E: (OK)(Then) you can put on the belt. 

Figure VIII-16,  EMBEDDINGS OF REQUESTS AND RESPONSES 

acknowledgment is immediately followed by a request. In these cases, 

the acknowledgment itself is optional. There are examples, in other 

places, of  similar imperatives being  followed by  requests for 

information. A similar situation holds for reports; although in this 

fragment all reports are followed only by acknowledgments, it  is also 

possible to follow the\ with requests or with a combination of 
v 

acknowledgment and request. 

The utterances in the dialogs vary somewhat along another 

dimension, that might be called 'response influence': the amount of 

influence an utterance has on the form and content of the utterance that 

follows. It is difficult to point at all of the factors influencing 

this dimension and many utterances are neutral with respect to it, but 

others are clearly marked. Consider the two sots of utterances in 

Figure VIII-18. Utterance Al is neutral with respect to influence. 

Either party could take over the dialog at this point; neither the form 

nor the content of the next utterance is indicated, utterance B1, on 

the other hand, puts responsibility for the form of the following 

VIII-H5 

- -, ^ i ■ - ■ 



E: The pump pulley should be next. 
IMPERATIVE (this direction follows a report indicating 
completion of the preceding task) 

A^ Yes uh does the side of the pump pulley with the 
holes face away from the pump or towards it? 
ACKNOWLEDGMENT FOLLOWED BY A REQUEST FOR INFORMATION 

E: Away from the pump. 
RESPONSE 

A: All right. 
ACKNOWLEDGMENT 

E: Did you insert the key, i.e., the half-moon shaped 
piece? 
REQUEST 

A: Yes I did. 
RESPONSE 

E: Be sure and check the alignment of the twc pulleys 
before you tighten the setscrews. 
IMPERATIVE 

A: Yes I'm just now fiddling with that. 
ACKNOWLEDGMENT FOLLOWED BY A REPORT 

E:  O.K. 
ACKNOWLEDGMENT 

A: Tightening the alien screw now. 
'REPORT 

E:  O.K. Thank you. 
ACKNOWLEDGMENT 

A:  That's finished. 
REPORT 

Figure VIII-17. UTTERANCE TYPES IN A SAMPLE DIALOG FRAGMENT 
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Set A:  1. A: I'vo finished installing the strap. 

2. E: The pump pulley should be next. 

3. A: Yes. Does the side of the pump pulley with the 
holes face away from the pump or towards it? 

Set B:  1. A: Now what should I do? 

?..  E: Install the pulley on the shaft. 

3. A: What is the first thing to do in installing the 
pulley? 

Figure VIII-18. TWO SIMILAR DIALOG FRAGMENTS FOR COMPARING 
RESPONSE INFLUENCE 

utterance on E. Both utterances A2 and B2 are neutral; they are quite 

similar in what they convey. The responses to them are quite different, 

though. Utterance A3 exhibits strong influence over the response to it. 

One of the two alternatives must be picked or some explanation of why 

neither war given. The preferred response is a simple phrase choosing 

one of the two opticis. Utterance B3 is harder to classify. It does 

not seem entirely neutral since it indicates no choice or narrowing of 

alternatives by A, but it is not as clearly an abdication as is B1. 

Imperatives and yes/no questions exhibit strong influence over the form 

of responses to them. 

Subjective evaluation of the dialogs indicates the lack of 

response-influencing 'itterancea from As who were unsure of the task, and 

a higher presence in the dialogs with experienced As. Before this kind 
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of information can get used in a language understanding system, more 

analysis is needed both on how the information is conveyed and how it is 

used. One clear use, though, is to indicate familiarity or lack of 

familiarity with a problem. 

5.  ELLIPSIS 

Elliptical sentence fragments are phrases that function in 

context as full sentences, although they are only parts of what would 

constitute a complete sentence. The use of fragments in the task 

dialogs was quite different from that in the data base dialogs. In the 

data base dialogs, the fragments all formed part of a series of 

questions. In each case, the meaning of the fragment could be obtained 

by finding a similar phrase in the preceding question and substituting 

the new phrase for the old. An algorithm for handling this kind of 

fragment is presented in Chapter X. In the task dialogs, fragments 

occurred as * .^sponses to previous requests for information and as 

qualifying phrases on immediately preceding utterances. As a result, 

the fragments in the task dialog were patterned on and needed to be 

interpreted in terrrs of the immediately preceding utterance. 

The most common form of fragment used in reponse to a request 

was the one that f^u into Uic '»H phrase of the preceding question. This 

occurs, for example, in 

E: What tools are you using? 

A: My fingers. 
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A's response "my fingers" matches the phrase "what tools".  Arriving at 

a  complete  utterance  requires  a  set  of  standard syntactic 

transformations like chang: ig the "you" to an "I".  Robinson (1975a) 

contains a description of the transformations required to interpret this 

kind of fragment.  Secondly, a fragment may occur in response to a 

choice question. This is the case in the pair 

E: Does the side of the pump pulley with the holes face 
away from the pump or towards it? 

A:  Away from the pump. 

(In a sense, this is a restricted form of a WH-question.  The WH-phrase 

is replaced by a choice phrase.  This could be phrased as a "Which way 

..." question). 

The use of a fragment to qualify a preceding utterance is 

illustrated by the sequence 

E:  Place the key in the slot. 

A:  Flat side upward? 

In each of these cases, the full sentence needed to get an 

interpretation of the fragment can be derived from transformations on 

the preceding utterance. When fragments appear as answers to questions 

(the first two examples), the questions themselves provide an indication 

of where the fragment, fits in. In the last example, this is not the 

case. There i? no place marked by a WH-phrase to indicate a slot for 

the fragment. Instead, the fragment fills an optional slot in the 

sentence structure (for verb complements), which was not used in the 

first utterance of the pair. 
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6.  LEXICON 

Analysis of the words occurring in the dialogs is necessary to 

determine both the size of lexicon and the breadth of concepts present. 

Section IV, The Language Definition, in Walker et al. (1975) contain 

a description of the kinds of words found in the data base dialogs. In 

this section, only the task-oriented dialogs will be considered. It the 

following analysis, different forms of the same root were not 

distinguished. For example, "bolt", "bolted", and "bolts" were treated 

as identical. 

One of the most interesting results was that only 520 

different words occurred in the four core dialogs. (There were 

approximately 8000 words in the dialogs — not including occurrences of 

the articles "a" and "the"). Malhotra's (1975) results confirm our 

finding that only a small number of words seem to be required for 

communication in a limited domair. 

Of the 520 words occurring in the four core dialogs, only 100 

are used more than ten times. Although this suggests thr.t most of the 

communication is achieved by a small core lexicon, it is important to 

realize that many words occurring only once or twice are crucial to 

conveying events that occur and objects that are used only a few times. 

Half of the words are unique to a particular dialog. However, many of 

these words are just differences in expressing similar concepts. 

However, 90 words occur in all four of the dialogs. Of these 90, 7^4 are 
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among the 100 words used over ten times. The list appears in Figure 

VIII-19. The starred words were used fewer than ten times. Since the 

number of different words in each dialog ranged from 236 to 303, 

approximately one-third of the words in each dialog occurred in each of 

the other three dialogs as well. If the dialogs are separated into 

pairs according to task, then the pairs in each grouping share over half 

of their words (U2 and 15^). These results suggest both a large 

overlap in concepts, and a large variety in how concepts are expressed. 

a ■again all alien •also and at back 
be belt bolt box by cai. do •^asy 
•enough »fit from get go good •hand •hard 
have hold how I if in it just 
key know •like •long loose •more motor no 
not now of off ok on one or 
out •over place plate please pulley pump put 
screw see •seem should show slide so •some 
tank that the then there they tight to 
top •toward turn two up use way we 
what •when where which will with •work wrench 
you yes 

Figure VIII-19. WORDS OCCURRING IN ALL FOUR DIALOGS 

The two 'naive apprentice' dialogs share 60$ of their words. 

Correspondingly, only 20% of the words in each of the naive apprentice 

dialogs are unique to that dialog. The other two dialogs each had 

approximately 30$ unique words. 

It is dangerous to generalize from such a limited sample; 

speaker idiosyncrasies cannot be filtered out. However, there are some 

clear trends, giving indications for system building and suggestions for 
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future studies. Approximately 140 of the words in the dialogs were 

task-dependent words; as the task shifts, the need for these words 

changes. The overlap between the two naive apprentice dialogs suggests 

that words applicable to low level task descriptions (e.g., specific 

simple tools, like screwdrivers) get used more often in these dialogs. 

If we add a fifth dialog to the analysis that covered a 

different task but also used an inexperienced apprentice, similar 

results occur. The number of words increases to 580. Again, over half 

of the words are unique to some particular dialog. Only 61 words are 

shared by all of tbo dialogs. These words, grouped by category, appear 

in Figure VIII-20. If we consider the three naive apprentice dialogs, 

the nimber of shared words is 88. Twenty-six of these words, listed in 

Figure VIII-21, are missing from at least one of the experienced 

apprentice dialogs. The number of words stored by the naive apprentice 

dialogs is less than the number shared by the four 'task-in-common' 

dialogs, but many of the additions are clearly from more detailed advice 

being given (e.g., "screwdriver", "align", and "tool"). 

Although the overlap of words is interesting, it is important 

not to ignore the large number of words that are unique to some one of 

the dialogs. The overlap means that, for a given task, a relatively 

itmall number of words (significantly less than 1000!) will suffice to 

cover almost all of what almost every speaker says. The 'unique words' 

indicate that although many of the concepts being expressed by the 

performers of the task are the same, there is a wide variability in just 
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AUXILIARY AND PRO-VERBS 
be     can    do 

DOMAIN-RELATED WORDS 

have should  will 

bolt   box fit go hold place 
plate   pump put show tight top 
turn   use 

FUNCTION WORDS 
a      also and by from how 
if     in no not now of 
on     out over so that the 
then   there to up what when 
which   with 

MISCELLANEOUS 
good    just 
see    two 

like 
way 

ok 
yes 

one please 

PRONOUNS 
it they 

SPEAKER/HEARER IDENTIFIERS 
I      we     you 

Figure VIII-20. WORDS OCCURRING IN ALL FIVE DIALOGS, 
GROUPED BY CATEGORY 

align around both bottom but 
down end face first groove 
hammer metal onto other remove 
right round screwdriver shaft side 
slot sure take thing took 
wheelpuller 

Figure VIII-21. WORDS IN ALL NAIVE APPRENTICE DIALOGS BUT 
MISSING IN AT LEAST ONE OF THE OTHERS 

how to express those concepts. Analysis at the lexical level is 

important, but it must be used in conjunction with higher-level 

syntactic, semantic, and discourse analyses. 
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7.  DESCRIPTIONS 

The section on references (Section D.3) concentrated on the 

identification of objects from the point of view of context, pointing 

out how such context shifts with task and with time. The linguistic 

description of an object must distinguish it from all others in the 

context of speaker and hearer in order for any communication to be 

possible. The problem of identifying an object mentioned in an 

utterance on the basis of its description and the problem of generating 

reasonable descriptions to guide the user are of equal importance in a 

language understanding system. For this reason, the descriptions in all 

of the dialogs were examined in an initial attempt at characterizing 

descriptions. 

a.  SPECIFICATION 

Uison (1970) has shown that the description of an object 

changes depending on the surrounding objects from which it must be 

distinguished. So, for example, the same flat round white object was 

described as "the round one" when a flat square object of similar size 

and material was present, but as "the white one" when a similarly shaped 

but black object w,\3 present. However, it is clear from the task 

dialogs and from other data (Freedle, 1972) that description of an 

object seldom contains only the minimal amount of information necessary 

to distinguish the object. Descriptions, like tha rest of language, are 

redundant. (Olson, p.266, comments on this phenomenon and the need for 

further investigation of it.) 
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What appears to be the case is that the speaker describes 

an object not in the minimum number of 'bits' of information, but rather 

in a manner that will enable the hearer to locate the object meant as 

quickly as possible. Clear distinguishing features (e.g., color, size, 

and shape) are part, of a description precisely because they enable 

eliminating large numbers of objects as wrong and hence help the hearer 

to isolate the correct object more quickly. 

The use of redundant information (and not just 

distinguishing information) to speed up the search for a referent can be 

easily seen from an example. If A asks "What tool should I use?", the 

response, "The red-handled one." is not satisfactory even if there is 

only one red-handled tool in the workstation. Processing such a 

description requires considering too many alternatives. Although A 

might eventually find the tool, he would certainly question S's choice 

of description. "The red-handled screwdriver" is more helpful, because 

it limits the search to screwdrivers. Olson's descriptions were 

probably as minimal as they were because of the bare environment in 

which the distinguishing had to be done. In giving a description that 

minimizes search time, a balance must be reached. Too much information 

is as harmful as too little. Ail parts of the description must be 

processed to make sure the object is the correct one. Furthermore, the 

hearer may wonder whether he is mistaken, if he thinks he has found the 

object but there is more description coming. Rather than minimize 

either just the communication time (including processing  of the 
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description) or just the search time, the combination of communication 

time and search time must be minimized. 

Because the goal of most descriptions in the task dialogs 

was to enable the hearer to locate an object, the descriptions in the 

task dialogs were, to some extent, 'procedural'. Either implicitly or 

explicitly, they described how to locate an object, rather than what the 

object was in general.  For example, the response to "What's a 

nutdriver?" was "It looks like a screwdriver and is in the yellow case 
j 

by the wall", rather than the (nonprocedural) definition description, "A 

tool with a handle on one end and the end shaped to fit over a nut, used 

for tightening and loosening nuts," This combination of description of 

the object itself coupled with looational information was quite common 

in response to qus^tions (e.g., "What's an x?"). In a sense, the 

speaker was saying, "Keep these properties in mind and look at olace Y." 

It is interesting that the descriptions of the object itself preceded 

the locational information more often than following it. The location 

provides a narrowing of focus. What is not clear is why this narrowing 

occurs after and not before the object properties are given. Possibly, 

even though narrowing of focus is useful for identification, the 

question "What is an x?" demands some description of an object's 

properties first. 
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b.  CATKGOHIES OF FEATURES 

The features used in the descriptions of objects in the 

dialogs fell into four categories: physical characteristics, location, 

analogies, and function. A class name of the object always appeared in 

initial introductions, but it is not included in this list. Otherwise, 

the list contains items used in initial introductions as well as in 

response to questions concerning object identification. 

The physical characteristics of the object itself 

included color, shape (often including the word "shape" as in "the 

little half-moon shaped part"), size (either absolute or relative), and 

material of which the object is composed (e.g., "metal"). 

Location, both physical and in time, of the object were 

often used. Physical location was specified in response to a "What's a" 

question. Time references occurred when an object description was 

embedded in some higher-level statement. For example, "Use the two 

screws you mentioned earlier", "... the cover to the vires you were 

working with earlier". 

Analogy provides a lot of information in a small package. 

It occurred most often when any other description would have been long 

and involved. In addition to the above screwdriver example, there was 

"it looks like a pocketknife", "it looks like ears sticking out", or "It 

looks like a y". 

VIII-57 

■"^"^"-   —■■-"- itlMIt 



Closely related to analogy is the use of "function'' to 

describe an object. Functional descriptions also enable bypassing other 

more complex descriptions (e.g., of shape). The combination of analogy 

and functional description often occurs with the phrase "it locks like 

it does x" (and, in fact it does do x!). Functional descriptions 

implicitly convey this concept of "looks like" even when it is 

explicitly stated. 

Finally, there is a set of miscellaneous distinguishing 

features that are best characterized as the absence of something usual 

or the presence of something atypical. For example, "[you can tell 

where it goes] by where there is no paint", or "the side with writing on 

it". 

c.  PERSPECTIVE 

In order for a description to work, it is o-ucial that it 

take into account the hearer's point of view. The role of the hearer's 

physical location is well established. The well-known "Empire State 

Building" question (you give a different answer to the question "Where 

JS it" to a person in Moscow and a person in New York City) is meant to 

illustrate this point. In the task domain, words like "left" and 

"front" must take into account both canonical orientations (the front of 

a car is the same no matter where you stand relative to it) and hearer 

orientation. 
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There is also a nonlocational aspect of the hearer's 

orientation. Descriptions must be given to a level of detail pertinent 

for the hearer's skill level. Concepts unfamiliar to the hearer may be 

introduced, but they must be explained in terms familiar to him. 

Evidence of such sensitivity to user skill in the dialogs came both from 

the level of detail of task described and from the description of parts 

and tools. 

8.  MISCELLANEOUS OBSERVATIONS 

There were several areas in which only limited data are 

available from the dialogs but which are important for understanding the 

choice? made in generating an utterance and the information conveyed by 

an u*- ^ance. There were clear indications of the influence of one 

speaker on another, deficiencies in formality, and influence of 

apprentice skill level. 

One question of importance in constructing natural language- 

understanding systems is the influence of the way the system states 

things on the language with which it has to deal. Since only two 

different experts were used in the task dialogs, only one of whom worked 

with more than two As, it in hard to conclude much from the dialogs. 

Still there are indications of A's adapting E's language. Adoption of 

GOmmon names is the most common example. "The half-moon shaped piece" 

gets referred to as "the (woodruff) key" once the name is introduced by 

E.  Similarly "the screws holding the pulley on" become "th« (alien 
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head) aetscrews". The transference may be from A to E as well. In one 

dialog with an experienced A, E adopted terms (such as "pressure 

register") used by A. 

One of the confounding factors in  determining language 

influences is that in the case of two of the dialogs, A thought that E 

was a computer. In both, the language is more 'formal' than in the 

other dialogs.  In the one that is the most formal, E responded more 

formally. It is not clear in this case how much of the difference is 

due to E's speech and how much ti A's image of what a computer expert 

could understand. Although there are clear differences between the 

'computer-expert' dialogs and the others, it is hard to point at exactly 

what aspect of an utterance makes it seem more formal. For example, the 

utterance, 

"Is it correct that the strap is attached to the pump "oy one 
of the cylinder head bolts?" 

seems more formal than a question that starts simply, "Is the strap 

...". Similarly, "I've finished attaching the tubing to the elbow." is 

less formal than "The elbow and tubing installation is completed." 

Unfortunately, there are too few data here to decide what is speaker- 

idiosyncratic and what comes from anticipated computer capabilities. 

Still, there are enough indications of differences when a computer is 

thought to be a participant in the dialog that this is an important area 

for study. Furthermore, that although the As thought they were being 

helpful by being more formal, in fact the resulting sentences often were 

more complex. 
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E's instructions to As varied according to the skill level of 

A In almost all cases, E diu not know how skilled A was to start with. 

Although the initial instructions to all As were quite similar, 

instructions at the end varied substantially. Not only is the amount of 

detail oresented different but also the way in which instructions are 

given. Dialogs with inexperienced apprentices contain more requests and 

fewer spontaneous reports. In the dialogs with more experienoed 

apprentices, there are more imperatives to check that steps have been 

done and fewer giving directions. The clearest example of E moderating 

his interactions as he determines the skill level of A is in a dialog 

with an experienced A. Up to a particular point in the dialog, most of 

E's utterances are directions or answers to requests. Then E starts to 

givs a direction and changes his 'tone'. R types 

"OK. Tig XXX OK. Make sure ... are tight." 

(The XXX indicates an erasure to the monitor). The important question 

for builders of computer systems is what information the human expert is 

using to base his impressions of skill level on. There are clearly 

several factors involved. A comparison of the few dialogs we have 

indicates that A's terminology, the level of detail of instruction A 

asks for, and A's own indication of skill level contribute. More data 

need to be collected and examined to determine how skill impressions are 

transmitted and generalized. 

Finally, there were a few examples in the dialogs of the kinds 

of ambiguity that people are and are not willing to tolerate. For 
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example, the phrase "alien bolts" in the context of attaching the pump 

pulley was accepted as meaning "alien haad screws". Quite often the use 

of "nut" and "bol*" interchangeably was accepted, but in the dialog of 

Figure VIII-22 the ii;»use of "bolt" is not acceptable since it causes 

or fusion about which task is being done. 

A:    Should    I unscrew    at the    top of    the airhose    or    at the 
bc'tom and which, of the bolts at the bottom? 

(oy bolts,  A means nuts) 

S;    Loosen the pipe    ^t the tank    (b^tom)  end and    unscrew it 
completely at th« top end. 

A:     End of what,  the  pipe or the bolts? 

("bolts",  really nuts) 

E:  i'e're working en the pipe now.  Don't worry about the 
bolts yet. 

Figure VIII-22.  BOLT/NUT CONrüoION 

It is clear that the dialog analyses reported here are really 

just a begirning. There are »any dimensions along which much further 

analysis must be done. As stated in the introduction to this chapter, 

the purpose of this part of the research war to determine the scope of 

discourse nhenomena in dialogs with computers, and to provide a basis 

for initial attempts to incorpora*« discourse capabilities in a language 

understanding system. 
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IX  RESOLVING DEFINITE NOUN PHRASES 

Prepared by Barbara J. Grosz 

CONTbwTS: 

A. Introduction 
1. Sentential and Dialog Context 
2. The Inference Problem 

B. The Focus Space Encoding of Context 
1. Extending the Notion of Partitioning 
2. Matching in Focus 

C. DEFNP Resolution in Context 
1. From Semantics to Discourse 
2. Interpreting Complete NPS 

a. Singular NPS 
b. Plural NPS 
c. Modified NPS 
d. üenJ tives 
e. Quantified DEFHPs. 

3. Augmenting Focus 

A.   INTRODUCTION 

The presence of both old and new information in the utterances 

comprising a dialog was discussed in Chapter VIII, Section D.3. The 

speaker expeots tho hearer to know the old information but to be 

unfamiliar with the new. Comprehension entails identifying the old 

concepts in memory and attaching the new information to them. Hence, 

identification of the old information in memory is an important part of 

the comprehension process. There are several syntactic devices for 

expressing old  information (e.g.,  definite noun  phrases, cleft 

IX-1 



sentences, adverbials such as "too" and "still"). In this chapter we 

will be concerned with the processing needed to handle definite noun 

phrases since they are the most frequently used means of expressing old 

information. We will refer to the process of identifying the concept 

referred to by a definite noun phrase as "resolving the reference" or 

"resolving the definite noun phrase". Since context plays a crucial 

role in this identification process, a major concern of this section 

will be on using a representation of context to aid in resolving 

references. 

The remainder of this section describes the role of context in 

reference resolution. Section B provides an overview of the use of a 

focus space partition of a network to represent context. Section C 

discusses several categories of definite noun phrase references and 

procedures for interpreting them. These procedures depend on the 

existence of a representation of focus of attention. The point of the 

section is to show the processing that must be done to build a 

representation of a particular definite noun phrase, given that noun 

phrase and a representation of the context in which it appears. 

1 SENTENTIAL AND DIALOG CONTEXT 

As in Chapter VIII, it will be useful here to divide definite 

noun phrase references into two categories: pronouns and nonpronominal 

definite noun phrases (DEFNPs). Although referring expressions in both 

categories depend on the context in which they occur for their 
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interpretation, the nature of this dependence is quite different in each 

case. Similarly, although some of the processing required for building 

interpretations of pronouns and DEFNPs may be shared, there is other 

processing that is unique to each of these forms of reference. Both the 

global dialog context and the immediate context of the preceding 

utterance play roles in interpreting each of these forms cf rei rence, 

but the former is more important for DEFNPs, the latter for pronouns. 

The major differences between these two kinds of reference 

stem from differences in the amount of information contained in the two 

kinds of referring expressions. DEFNPs contain more information in 

themselves than pronouns. The head noun of a DEFNP specifies the class 

of the object being referred to (in elliptical NPs and NPs with "one" as 

the head, the specification must be found contextually), and additional 

descriptive and distinguishing information is provided by modifiers. 

The global discourse context in which a DEFNP occurs plays a crucial 

role in resolving its reference. This context delineates the set of 

objects from which the object referred to must be distinguished. 

Sentential context, however, does not play a role in DEFNP resolution. 

In contrast, pronouns carry little information in themselves. They are 

really slot fillers and usually depend only on the sentential context in 

which they occur to provide most of the clues needed for identifying the 

referent. The exception to this — pronouns that refer back over long 

pieces of discourse — are discussed in the Section D.3 of Chapter VIII. 
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The relative role of sentential context in resolving DEFNPs 

and pronoun references can be seen by considering an example from 

Charniak (1972) and some variations of it. The original dialog is 

presented in Figure IX-1. The "it" in (7) can be resolved only when 

the context of "take ... back" is considered (and even then a large 

amount of inferencing must be performed; e.g., see Charniak; Hobbs, 

1976). 

(1) Today was Jack's birthday. 

(2) Penny and Janet went to the store. 

(3) They were going to get presents. 

CO Janet decided to get a top. 

(5) "Don't dp that" said Penny. 

(6) "Jack has a top. 

(7) He will make you take it back." 

Figure IX-1.  THE KITE STORY 

Note, however, that this "it" cannot be replaced by the DEFNP 

"the top".  The problem stems from the fact that the context in which 

the utterance appears includes two tops, but use of the phrase "the top" 

implies there is only one.  The sentential context of "take ... back" 

does not help eliminate one top as a possible referent when the DEFNP is 

used, as it does when the pronoun is.  Finally, if instead of (7) the 

sentence were 

"If you get Jack a top, he will make you take (it / the top) 
back" , 
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either "it" or "the top" may be used and the reference to the 

hypothetioal top of the if-clause is clear. The difference between the 

use of "the top" here and in (7) is that here the if-clause sets up a 

new context in which there is only one top: the hypothetical one. 

In many respects pronoun reference is closer to ellipsis, 

which will be discussed in the next chapter, than to DEFNP reference, 

and in a sense, the use of pronouns and ellipsis are duals. To see 

this, consider a sentence (S) composed of constituents A,B,C, i.e., 

assume that a context free part of a language Definition rule for S is 

S->A B C. Let a, b, c be respective instances of the particular phrase 

types A, B, C. Pronoun reference entails substituting a pronoun for one 

of these constituents; the remaining constituents are used to provide 

selectional restrictions on what the referent of the pronoun is. For 

example, in the 'sentence', "it b c", properties of b and c are used to 

find the object referred to by "it". Ellipsis, on the other hand, 

entails using only one of the constituents and, depending on context, to 

supply the others. So, if a' is also an instance of A, the 'sentence' 

"a'" in the context of the previous utterance, "ab c", may be expanded 

to "a' b c". Elliptical expressions can always be resolved in terms of 

the immediately preceding utterance. Elliptical DEFNPs (e.g., "the four 

by the door") and DEFNPs with the word "one" substituted fcr the head 

noun are like pronouns in that a slot (or a slot holder) is given, and 

the immediate sentential context and the preceding utterance are used to 

"fill out" the phrase, but they are like DEFNPs in the role played by 

the global dialog context. 
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2.  THE INFERENCE PROBLEM 

The simplest form of DEFNP resolution occurs when a phrase is 

matched with an object that has been described the same way previously 

in a discourse. This form occurs in the reference to a wrench in the 

sequence: 

I bought a new wrench today. 

The wrench is on the table. 

However, restricting the use of DEFNPs to sach cases results in rather 

boring discourse since it requires explicit statement of obvious facts. 

For example, the second sentence of the following sequence 

Susan bought a car today. 

The car has seats. 

The seats . . . 

is totally unnecessary and makes for awkward reading. Such redundant 

information usually is left out of a discourse. Comprehension then 

requires that the hearer be able to fill in the missing information from 

what he knows about the objects and actions being discussed. As a 

result, the resolution of DEFNPs often requires inferencing on the part 

of the listener. 

There are two kinds of inferences that are needed for 

resolving DEFNPs. First, a reference may entail establishing additional 

properties of an object already in focus. Second, a reference may refer 

to an object that has been brought into focus only implicitly. As an 

example of the first case, consider the sequence 

I took your coats to the cleaners. 
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The blue coat will be ready tomorrow. 

To understand the DEFNP, the hearer must infer that one of the coats is 

blue. More frequently, an object once in focus may be referred to in 

more general terms than those in the description first used to bring it 

into focus. Resolving the reference entails establishing that the new 

description is true of the old object. In the sequence: 

I bought a novel toda,. 

The book ... 

the fact that novels are books must be inferred. 

The problem posed for resolution here is not the difficulty of 

the inferences themselves, but rather restricting the number of objects 

considered. That is, it is not the chain of inferencing that is the 

problem, but the number of times that chaining roust be done. For 

example, in the preceding example, the inference chain relating novel 

and book is not long. The question is whether to look at all books and 

see which has been mentioned recently (doing the inferencing from book 

to novel), or to look at all objects mentioned recently and see which is 

a book (doing the inferencing from novel to book). 

The second kind of inferencing required for DEFNP resolution 

arises because an object implicitly brings certain of its subparts into 

focus when it is brought into focus. For example, mention cf "the 

living room" brings into focus items such as "the ceiling" and "the 

furniture". In the ensuing discourse, these objects may be referred to 

by DEFNPs. In the sequence: 
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E: Use the crescent wrench. 

A: The handle is too long, 

the phrase "the handle" can be resolved because the handle of a wrench 

is brought into focus when the wrench is. Parts of actions as well as 

objects may become focused in this way. For example, in the sequence: 

E: Attach the pump to the platform. 

A: Where are the bolts? 

"the bolts" become focused because they are a part (namely the 

fasteners) of this attaching operation. 

Chafe (1972, 1974) has pointed out the necessity for 

'foregrounding' more than what is explicitly mentioned. His concept of 

'being in consciousness' is similar to the notion presented here of 

being in focus in the discourse. The problem in handling this kind of 

inference is deciding how much information related to an object should 

get brought into fcous when that object is. This issue is clearly 

related to the qViestion of what goes into the 'frame' (Minsky, 1974; 

Winograd, 1975) for a concept. This kind of inferencing was not handled 

in the speech understanding system because of the lack of structure in 

the data base dialogs. In the task domain, the hierarchical structure 

of the task and the correspondence between task structure and dialog can 

be used to provide both explicit and implicit focusing (see Grosz, 

1977). 
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3.  THE FOCuS SPACE ENCODING OF CONTEXT 

Several of the preceding examples, as well as examples presented in 

Chapter VIII, point out the need for a representation of the global 

discourse context in which an utterance appears. This section provides 

a brief overview of an approach developed in the framework of a semantic 

network knowledge representation. The representation chosen has several 

distinguishing features. It highlights that part of the semantic 

network relevant at a given point in a dialog, grouping together those 

concepts whioh are in the focus of attention of the dialog participants. 

The ability to link the context representation with representat._ons of 

surrounding task situations also is provided. The representation itself 

is structured so that the structure of the dialog (see Chapter VIII, 

Section D.2). can be mirrored and used in discourse processing. 

Finally, the representation has the potential for extensions in two 

directions closely related to context: focusing on different attributes 

of the same object under different circumstances and forgetting 

information no longer relevant to a discourse. 

1.  EXTENDING THE NOTION OF PARTITIONING 

To encode context, or focus of attention, we will extend the 

notion of partitioning of networks described in Chapter V, Section D, 

and in Hendrix (1975a,b). We will now allow a network to be partitioned 

along multiple dimensions. Each partition will be independent in the 

sense that the spaces on which a node or arc lies in one partition 
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neither determines nor depends on the spaces it lies on in any other 

partition. In particular, in addition to partitioning the network along 

'logical' lines, we will partition it along 'focus' lines. The logical 

partition will remain as described previously: every node or arc lies on 

at least one space in the logical partition. In addition, nodes and 

arcs may lie on spaces in the focus partition. 

Network partitioning will be used both for its ability to 

separate entities into spaces and for its ability to relate different 

spaces hierarchically. We note here that although we are using a 

network representation, the use of partitioning of memory structures for 

the purpose of reflecting focus of attention is a general one and may be 

used in other representation schemes. 

The focus partition is not a partition in the mathematical 

sense, since nodes and arcs may lie on ary number of focus spaces, or on 

no focus space at all. At any point in a dialog, one focus space will 

be 'active', but several may be considered 'open'. The active focus 

space will reflect the focus of attention of the dialog at that point in 

the dialog. The open focus spaces will reflect previous active spaces 

that contain some unfinished topics and hence may become active again; 

they are possible areas for the dialog to shift back to. Hence, the 

focus partition enables the portions of the network that are relevant to 

a dialog to be spotlighted and a trace of the spotlighting to be kept. 
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When the same object enters the dialog twice, in two different 

subdialogs (e.g., a tool used in two distinct subtasks), the node 

corresponding to that object will appear in two distinct focus spaces. 

If different aspects of the object are focused on in the two subdialogs, 

different relations in which the object participates will be in the two 

focus spaces. Hence, focusing also allows the particular way of looking 

at a conceot that is germane to a given point in a dialog to b"e 

spotlighted. 

The main reason for providing the ability to focus on 

different attributes of an object is to allow differential access to the 

properties of the object, and hence to the facts that may be derived 

about that object. Using the arcs in focus for differential access does 

not rule out considering a concept differently than it has already been 

portrayed. Instead, it orders the way in which aspects of the concept 

are to be examined in looking for new (to the dialog) information about 

the concept. 

Differential access is important for actions as well as 

physical objects. For example, when quilting is considered as a kind of 

sewing, the subactions of cutting and pinning are directly accesible, 

but when quilting is considered as a social gathering then the 

subactions of talking and eating are more important, and more 

accessible. 
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2.  MATCHING IN FOCUS 

The basic process involved in resolving DEFNPs is iiatGliing 

structures in the memory representation. In the case of a system with a 

semantic network knowledge base, the problem is that of finding a 

network structure matching the structure of the noun phrase. This 

S'sction Describes the role of focus spaces in this matching process. 

The prBsentation assumes that items get moved in and out of focus as 

needed. The shifting of focus in the data base dialogs is basically 

linear with time. As a result, the implementation in the speech 

understanding system assumed a linear shift in focus. Concepts 

mentioned in one utterance were moved into focus and kept there until a 

small fixed number of other utterances had been processed. This is a 

minimal use of focus. It corresponds directly to tho linear history and 

working space models in other systems (see Norman et al., 1975). As 

pointed out in Chapter VIII, Section D.2, the task dialogs are mach more 

structured than the data base dialogs. As a result, much more 

sophisticated handling of focus can be done for the task dialogs. In 

particular, focus spaces can be used to relate snifts in focus to the 

dynamics of the task (see Grosz, 1977). 

In the speech understanding system, this matching procedure is 

performed by the deduction component (described in detail in Chapter 

XII). The deduction component is called with a QVISTA (question vista) 

and a KVISTA (knowledge vista). The QVISTA is a set of spaces 

containing a piece of network for which a match is sought.  The KVISTA 
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represents the set of all knowledge in which the match is sought. In 

the process of arriving at a match, the deduction component binds the 

arcs and nodes in the QVISTA to arcs and nodes in the KVISTA. When a 

match is found, the node in the KVISTA bound to the node corresponding 

to the head noun of the DEFNP in tho QVISTA represents the object 

referred to by the DEFNP. 

The focus representation can aid the leduction component in 

two ways: by focusing on particular nodes, and by focusing on particular 

arcs from those nodes. By focusing on certain nodes, the deduction 

component can be constrained to consider only objects germane to the 

dialog. Focusing on an arc guides the deduction component in 

establishing properties about nodes being matchea. We have some 

experience in directing the deduction component to match nodes in focus; 

this will be described in some detail. Details of focusing on arcs is 

described in Grosz (1977). For the resolution of DEFNPs (the discourse 

use of the deduction component), the QVISTA is the vista constructed at 

parse time for i.he DEFNP and the KVISTA is the knowledge space. In 

addition, matching in focus currently entails passing the deduction 

component a focus vista and a list of nodes to be matched in focus. 

Matching in focus means the bindings made by the matcher are restricted 

to the items in focus; however, deductions can be made using any 

Information An KVISTA. The focus vista represents the set of nodes and 

arcsi considered to be 'in focus'. In DEFNP cases the nods corresponding 

to the head noun of the NP is forced to be in focus. This corresponds 

to saying the referrent of a DEFNP is sought (first) in focus. 
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The simplest use of a focus match is to arrive at the correct 

match. Consider the situation portrayed in Figure IX-2. There are 

several wrenches: W1 is a box-end wench that is in focus FS1; W2 is a 

bcx-end wrench in focus FS2', W3 is an open-end wrench also in focus FS2; 

W4 is another open-end wrench not in focus at all. There is another 

object, 01, with a bcx-end. Space q.wl of Figure IX-3 shows the 

QVISTA corresponding to the DEFNP "the wrench". If the deduction 

component were asked to find a match without focus for thi.n query, any 

of the W nodes would do. This corresponds to the fact that, without 

focus, the phrase "the wrench" is four ways ambiguous. However, if the 

deduction component is provided with QVISTA q.wl and focus vista FS1 

(and the node QW1), it will find that W1 is the only match. In arriving 

at this solution, it uay consider HI but will discard this possibility 

when realizing that hammers and wrenches are mutually distinct subsets 

of tools. The attempt to match "the wrench" in focus space FS2 will 

result in both W2 and W3 matching, reflecting the fact that, for the 

discussion at that point, two wrenches were relevant, and the phrase is 

ambiguous. 

The second use of focus is to reduce ths amount of computation 

done in arriving at a match. Most QVISTAs are not as simple as q.wl. 

Space q.w2 of Figure IX-3 shows the QVISTA of the DEFNP "the box-end 

wrench". Consider what could happen in an unconstrained match. The 

deduction component would consider all of the nodes with 'e' arcs to 

wrenches or all of the nodes with 'endtype' arcs to BOX-END (depending 
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FIGURE  IX-2      A SIMPLE  KVISTA WITH TWO  FOCUS SPACES 

I I I I 

FIGURE IX-3  OVISTAS FOR "THE WRENCH" AND "THE BOX-END WRENCH" 

on which set is smaller) until it tried W1 or W2. If asked for a second 

match, it would (eventually) determine that both W1 and W2 matched. 

Note that in tnt worst case this could entail one node and two arc 

bindings for each of the nodes in the set selected. 
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The constrained match is able to avoid all this hunting. If 

focus space FS1 is used, only nodes HI and W1 are oonsidered (as 

before). With focus space FS2 as the constraint, both W3 and W2 would 

be considered but W3 eliminated. In the worst case, one set (one 'e' 

arc and one node) of unnecessary bindings would be made. 

The advantage of focus spaces in terms of the number of 

bindings attempted depends on having fewer items 'in focus' at any one 

time than are in a typical set in the knowledge vista. But this is 

exactly the purpose of focus — to highlight those few items relevant to 

a given point in the dialog. 

A similar computational advantage is gained when deduction is 

necessary to achieve a match; i.e., when theorems — information stored 

in the net as general rales applicable to whole sets of concepts — must 

be applied. To illustrate such a match, consider the KVISTA of Figure 

IX-M. Here the set of wrenches has two subsets, 'B-E', the set of 

all box-end wrenches, and '0-E', the set of all open-end wrenches. 

Finding matches for the QVISTA q.wl in this KVISTA entails following the 

e and s chain from, say W1, to 'WRENCHES'. This process is the simplest 

form of deduction. Even assuming that all of the elements of 'WRENCHES' 

were represented as elements of sets that were subsets of 'WRENCHES', 

finding some match for QW1 would not be too complicated. (We still have 

the problem of finding the right match, given that inhere is more than 

one). 
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FIGURE IX-4  A KVISTA WITH THE SET OF WRENCHES DIVIDED INTO SEVERAL SUBSETS 

The situation gets more complicated when we consider finding a 

match for QVISTA q.w2. For purposes of this discussion, assume that 

'WRENCHES' has fewer elements than 'BOX-END'. (This assumption 

simplifies the discussion, and is reasonable, considering that objects 

other than wrenches may be classified as "box-end".) The match for 

'QW2' proceeds by considering all nodes with 'e' arcs to 'WRENCHES', 

The 'e' arcs are all implicit in this case; they must be derived by 

following e-and-s chains. For each element of wrenches proposed as a 

match for 'QW2', the deduction component attempts to establish an 

'endtypa' arc to 'BOX-END'. In particular the delineating element 

descriptions for 'B-E' and '0-E', contained in the logical spaces 
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bew.desc and oew.desc, respectively, represent applicable theorems. If 

'W2' is tried as a match, the deduction component will establish the e- 

link to wrenches. The relevant theorem in this case is in the box 

labeled oew.desc. A tentative endtype arc from W2 to 'OPEN-END' will be 

constructed and only then will the deduction component realize 'OPEN- 

END' is not 'BOX-END', and hence W2 will not match. In general, there 

will be many nodes like W2 that appear to be candidates but do not 

match, and many theorems that will apply. The work done before 

considering W1 may be extensive. By constraining the search to nodes in 

focus, a considerable reduction can be achieved. In particular, suppose 

there are n elements of wrenches, of which m are box-end. In the worst 

case, n-m incorrect bindings and unnecessary theorem invocations will be 

computed. (Even the average of n-m/2 is significant if n is much larger 

than m.) However, if there are k nodes in focus of which W1 and W2 are 

the only ones that are wrenches, then at worst k wrong bindings and one 

unnecessary theorem will be tried. Since the cost of a theorem is 

typically much greater than the cost of establishing a binding — even 

following e and s chains — and typically k<<n, the savings are 

substantial. 

A further computational advantage of focus may be seen from 

the modified version of the wrenches situation portrayed in Figure 

IX-5 A focus space, FS, has been added. In addition to containing 

the nodes W1 and W2 (which we are assuming are already in focus), it 

contains the 'endtype' arc from W1 to 'BOX-END' and an explicit 'e' arc 
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FIGURE IX-5  THE WRENCHES KVISTA WITH FOCUS ADDED 

from 'Wl' to 'WRENCHES'. Any matches sought for "the box-end wrench" 

while the focus is FS will be able to ta! j advantage of this explicitly 

stored information. This information is redundant; ideally, the arcs 

would disappear as soon as FS was closed. Incorporating this feature 

would have the desirable results of both having the information 

available when it was relevant and allowing it to be 'garbage collected' 

or 'forgotten' after it ceased to be relevant. This is one possible 

extension of the focus space mechanism. 
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DEFNP RESOLUTION IN CONTEXT 

The typical noun phrase has several constituents. For the purposes 

of this discussion we will consider the structure of an NP to follow one 

of the patterns 

(1) (DET/QUANT)[NUM] NOM 
(2) (DET/QUANT)[NUM] 
(3) NUM 

(These rules do not correspond to the actual rules in the SRI speech 

understanding system language definition. However, the grouping is 

convenient for purposes of discussing discourse processing.) In this 

notation, the slanted line indicates a choice of one or the other 

constituent, parentheses are used for grouping, and brackets indicate an 

optional constituent. DET is the category containing determiners; it 

contains words such as "the", "this", and "which". QUANT is the 

category of all quantifiers; e.g., "all", "any", "some". NUM is the set 

of number expressions; e.g., "one" and "three hundred fifty." NOM, the 

set of nominal expressions, contains unmodified nouns, premodified, 

postmodified nouns, and nouns both pre- and postmodified. Respective 

examples of such NOMs are "wrench", "box-end wrench", "wrench with the 

red handle", and "box-end wrench with the red handle." Form (1) is the 

form of NP with which we will he most concerned; forms (2) and (3) are 

both elliptical and are not handled in the speech understanding system. 

There are many syntactic and semantic problems associated with 

parsing and building representations for the group of phrases in the 

category NOM. Some of these are discussed in Chapter VIII, Section B. 
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For example, it takes semantic knowledge to determine the difference 

between "the big ship" and "the German ship". For the purposes of this 

section, these problems can be ignored. We will assume that any NOM has 

been checked syntactically and that a semantic representation has been 

built for it. It is only when looking for the concept described by the 

NOM that discourse processing is really needed. 

1.  FROM SEMANTICS TO DISCOURSE 

The semantic interpretation for the NOM constituent of a noun 

phrase encodes the relationships among the concepts that are conveyed by 

the constituents of the NOM in the underlying knowledge representation. 

In essence, it provides a representation of the typical item described 

by the NP. For example, the representation for "American sub" in the 

partitioned semantic network notation is shown in SPACE PI of Figure 

IX-6. Note that the 'ownership' relation conveyed by "American" in 

this particular construction is represented in this network structure. 

The discourse component oont .'ibutes to building an interpretation of an 

NP only if the determiner or quantifier for the NP indicates 

definiteness. [The elliptical form (3) of the NP constituent structure 

implicitly conveys definiteness.] The basic problem for the discourse 

routines is to locate the object or set currently in focus which 

corresponds to the description Jn the NOM part of the NP. When an 

instance of NUM is included in the NP, discourse processing is 

influenced only insofar as a check on the set found is required to be 
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FIGURE IX-6  PARSE LEVEL SEMANTIC NET REPRESENTATION FOR 
"AMERICAN SUB" 

sure the set has the correct cardinality. "One" is an exception and is 

treated like "a" rather than other, plural, NUMs, For the NP, "the 

American sub", an individual submarine owned by the U.S. must be found 

in focus. For the NP, "all six American subs", a set of (exactly) six 

subs, all owned by the U.S., must be found. 
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2.  INTERPRETING COMPLETE NPS 

Tne deduction component, when augmented for focus matches as 

described in the preceding section, performs the central function in the 

process of interpreting complete NPs. Given the semantic Interpretation 

of a DSFNP and the current focus vista, it determines which, if any, 

object iri focus matches the DEFNP. Note that the first kind of 

inferencing discussed in the overview occurs at this stage of the 

processing. The deduction component, in determining whether a given 

object in focus is the referent of the DEFNP, follows the subset 

hierarchy and deduces information from theorems in the network. The 

restriction of the search to the focus space is crucial; generally, the 

number of objects in focus is quite small and contradictions (e.g., if 

the candidate focus space node and the node corresponding to the head of 

the DEFNP are elements of mutually exclusive sets) can be reached 

quickly for many of the objects. At present, this matching procedure is 

carried on depth-first. In the limited data base domain for which 

resolution has been done, this strategy is sufficient. A parallel 

search has the advantage of finding the match more quickly, on the 

average. However, it is still necessary to establish that no other 

object matches in order to rule out ambiguities. 

a.  SINGULAR NPS 

If the DEFNP is singular and a match is found, the node 

matching the node corresponding to the head noun is the referent. The 
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only further processing is to check that all relevant relationships are 

in focus. This process is described below in Section C.3. If a match 

is not found, one of three possibilities still exists (assuming the NP 

can be resolved!): the object may be unique (e.g., "the sun"); the DEFNP 

may refer to an object implicitly, but not explicitly, in focus (the 

foregrounding problem); or the DEFNP may contain a genitive or a 

modifier containing new information (e.g., the DEFNP, "John'.', car" when 

John is in focus but his car is not). 

The uniqueness check requires determining whether more 

than one object fitting the DEFNP description exists. This check is 

done after the focus space check, because context may in fact overrule 

the usual uniqueness conditions. The phrase "the sun" in the sequence, 

Mary has a beautiful sunset picture. 

The sun is teetering above the mountain, 

refers to the image of the sun in the picture, not the real sun; i.e., 

the sunset picture creates a context with a special sun. For relational 

DEFNPs, a unique result always is obtained, and the focus mechanism is 

not used. 

References to objects implicitly in focus will not be 

considered here. Extensions to current routines necessary for handling 

modifiers and genitives are discussed after the section on plural NPs. 
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b. PLURAL NPS 

A plural DEFNP may create a new set by grouping together 

objects already in focus. In the sequence, 

You will need the wrench, the screwdriver, and the hammer. 

Should I put those tools in the toolbox? 

the DEFNP "those tools" (note that the pronoun "them" could also have 

been used) refers to the set of three individual tools in focus. The 

set itself, however, does not exist as a node in the network. 

The resolution routines handle this problem by looking 

for individual objects in focus that satisfy the DFTPIP. (Since the 

deduction component does not yet handle sets, Vnis is the only kind of 

plural resolution that is done in ths current system implementation.) 

If it finds more than one such object, a new set is created and added to 

focus. Future references to the set, either by pronoun or DEFNP, will 

lead the deduction component to find the set. 

c. MODIFIED NPS 

Modifiers may be used in three ways. The simplest case 

is the use of modifiers to select among individual objects in focus. 

This case entails a straightforward match (although some inferencing may 

be required). Problems arise only when a modifier is used to select an 

element of a set in focus (when the individual elements of the set are 

not in focus) or when modifiers are used to supply new information about 

some objects in focus. An example of the former occurs in the sequence, 
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A high school class came to visit the hospital. 

The brightest student . . . 

The DEFNP "the brightest student" singles out an element of the high 

school class. An example of new information being added by the DEFNP 

occurs in the third sentence of the sequence, 

Jane got some books today. 

They're on the coffee table. 

The new book by Haley is on top. 

The DEFNP "the new book by Haley" singles out one of the set of books. 

The information that Haley wrote it and that it is new is introduced by 

the DEFNP. 

The existing DEFNP routines will fail to find a match in 

these two cases. What needs to be added is the ability to remove 

modifiers from the DEFNP until a (unique) match can be found, i.e., to 

try successively less restrictive matches. The use of network 

partitioning to reflect the parse structure in the semantic 

interpretation of phrases provider « means of removing modifiers from 

DEFNPs.  It also is crucial for handling ellipsis (see Chapter X). 

d.  GENITIVES 

Genitives may cause two kinds of problems. First, the 

genitive may be used to supply new information about an element or set 

already in focus. When used this way, a genitive is like any other 

modifier. As an example, consider the use of the DEFNP "Peter's car" 
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when a set of cars, one of which is owned by Peter, is in focus. 

Assuming "Peter" is unique, ownership by Peter can be asserted of one of 

the cars. This use of the genitive may be handled exactly like other 

modifiers. 

The second and more interesting problem arises when a 

genitive is used to supply the old information in a phrase. That is, 

the genitive constituent of a DEFNP may refer to an object in focus, 

while the object referred to by the complete DEFNP may not be in focus. 

For example, assume a focus in which there are two people, a boy and a 

girl. Then the phrase "the boy's mother" is unambiguous and resolvable 

because the boy is in focus and mother is a unique relation. That is, 

even though there is no mother in focus, there is a boy in focus, and 

the rel tion conveyed by the genitive can be used to determine, via the 

link to the boy, which person is being referred to. Note that 

foregrounding is not the issue here; the phrase "the boy's school" is 

equally resolvable. In a sense, a DEFNP with a genitive has two heads: 

the head of the genitive, as well as what is usually considered to be 

the head noun. For this reason, if a DEFNP with a genitive connot be 

resolved, the processing must proceed in two stages. If the whole DEFNP 

cannot be resolved, the genitive alone must be considered. The genitive 

must be resolvable. If the remainder of the NP is not resolvable in 

focus, then the genitive relationship must be used to determine 

uniqueness. For example, if some boy is in focus, "the boy's school" is 

resolvable by accessing what is known about the boy and determining if 

school is unique. 

IX-27 

^r-^^-W^-^r^ iMMiriiT r'ifüio 



e.  QUANTIFIED DEFNPS 

The processing of quantified DEFNPs is the same as that 

for unquantified plural DEFNPa except for the consideration of a generic 

interpretation. There are several cases, depending both on the 

particular quantifier used and on whether the optional NUM (number) 

constituent is present in the DEFNP. If the optional NUM is included in 

the NP, then the generic is never intended. Insteaa, it is always tl.e 

case that a local set must be found, with the correct cardinality, over 

which the quantification holds. To see this, contrast "All subs have 

beams over 30 feet." with "All five subs have beams over 30 feet." In 

the first utterance, the generic interpretation is clearly preferred. 

In the second, the generic interpretation is not possible; a local 

(nongeneric) set must be identified. Although this construction (i.e^, 

QUANT NUM NOM) can be used witn "any" (end to a lesser extent with 

"some") as the quantifier, its most common use is with "all"; hence, 

"all" is the only quantifier allowed in this construction by the current 

language definition. However, the nongeneric meaning of the 

construction holds for the other quantifiers as well. 

For constructions not including NUM, the question of 

interpreting a phrase generically depends on the quantifier. 

Quantifiers implicitly conveying a set of siz two "both", "either", 

"neither" are never generic. There must be a local set matching the NOM 

and with exactly two members, for 'hese quantifiers to be meaningful. 

In contrast, "all" always conveys the generic; the construction "all 
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the x" is useu to limit the restriction of "all" to some local set.» 

"Some" and "every" also tend to convey the generic, but 

less strongly than "all". The heuristic we currently use is to assume 

the generic use if the NOM is unmodified and otherwise o check first 

for a local set i eeting the specifications of the MOii. If no such set 

exists, then the generic is assumed. There are clear counter-examples 

to this rule; e.g., in the utterance, "Some tall trees are killed by 

lightning", the generic is intended even if there is some particular set 

of trees in focus. This case is not currently handled by the discourse 

routines. For the remainder of the quantifiers a local set is checked 

for first. If none exists, the generic is used. 

3-  AUGMENTING FOCUS 

Once an utterctuue has been parsed, the concepts occurring in 

the utterance must be added to focus. When the matcher returns a match 

for a DEFNP, more information than the node corresponding to the NP is 

returned. Recall that the semantic interpretation for an NP is a set of 

nodes and arcs encoding the relationships expressed in the NP. For the 

DEFNP, "the red box-end wrench", the encoding, shown in Figure IX-7, 

includes an element arc to the set of wrenches, an endtype arc to box- 

end, and a node representing the relationship of being colored red 

At first there seems to be some ambiguity between expressions involving 
"all" meaning "all in the computer knowledge base" and "all in the 
world". However, this ambiguity can be seen only from a frame of 
reference outside the computer model. Inside, the two are, by 
definition, equivalent. 
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FIGURE IX-7  SEMANTIC REPRESENTATION FOR "RED BOX-END WRENCH' 

("red" and "box-end" are represented differently because the color of a 

wrench can change but the endtype cannot). To see what happens when a 

match is made for the DEFNP, consider the focus setup of Figure 

IX-8. Focus space FSi contains three wrenches. Two of them are in 

set 3EW, a subset of all wrenches that includes only box-end wrenches. 

Of these, one is red, the other green. In the process of identifying 

"the red box-end wrench" with W1, two new arcs will be created: an 

element arc from W1 to wrenches and an endtype arc from W1 to BOX-END. 

These are the result of various network deductions using information in 

the net of Figure IX-8. In addition to returning the correspondence 

between Node 01 and W1, the deduction component returns correspondences 

between Ci and CW1 and a set of arc correspondences. The latter 

includes the correspondence between the e-arc out of Oi and the newly 

created e-arc from W1 and the correspondence between the endtype arc 

from Oi and the newly created endtype arc. 
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FIGURE IX-8  ORIGINAL FOCUS SPACE 

Updating the focus space entails moving each node c* arc that 

corresponds to a node or arc in the NP space to the focus space. The 

result, for this NP, is shown in Figure IX-9. 
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FIGURE  IX-9      NEW FOCUS SPACE 
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ELLIPSIS 

Prepared by Barbara J. Grosz 

CONTENTS: 

A. Overview 
B. Slot Determination 

1. Syntax 
2. Semantics 

C  Completing the Utterance 
D. Elliptical Relational Noun Phrases 
E. Limitations and Extensions 

A.  OVERVIEW 

The content of an utterance not only provides the semantic 

framework for resolution of definite noun phrases, but also the 

syntactic and semantic framework for interpreting elliptical utterances. 

Ellipsis refers to the use of incomplete grammatical units in a 

discourse (the items left out are 'elided'). Although such a unit is 

ill-formed by itself (in the traditional competence grammar sense), if 

the context in which it appears supplies the elided items, it is well- 

formed. For example, the utterance. 

The crescent wrench 

is an incomplete sentence, but if it appears in the context of the 

question. 

What tool are you using to loosen the bolts? 
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then it is easy to construct the complete sentence it is meant to 

convey, namely, 

I am using the crescent wrench. 

"The crescent wrench" is an example of ellipsis at the sentence (or 

clause) level.  Ellipses may occur at the noun phrase or verb phrase 

level as well. The following sequence is an example of noun phrase 

ellipsis: 

Which box should I use for the tools? 
Only the largest will hold all the tools. 

Verb pnrase ellipsis is shown in the following sequence: 

Has the pump been tightened down? 
No, but the motor has been. 

Halliday and Hasan (1976) present many examples of each of the 

three forms of ellipsis (clausil, noun phrase, and verb phrase) and the 

means by which they can be used to link successive sentences in a 

discourse. The emphasis of this section will be on ellipsis at the 

sentence level, because it is the form of ellipsis that occurred most 

frequently in the dialogs. 

It is important to note that if the constituents missing from an 

elliptical phrase can be found at all, they can be found in the 

immediately preceding utterance. If there is a sequence of three 

utterances u1, u2, and u3, then the structure of u2 can be matched 

against ul, and u3 can only be matched against that of u2, but the 

presence of u2 precludes matching u3 against ul.  In the long sequences 
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of questions to be discussed shortly, although it appears that u3 is 

patterned on ul, in fact u2 is expanded to a form similar to ul and then 

u3 is patterned on u2. It is in this regard that ellipsis is a more 

local phenomenon than reference. Only the immediate focus of an 

utterance contributes to expansion of any elliptical phrases in the 

utterance. The global discourse context is not significant. 

The process of building an interpretation of an elliptical phrase 

entails two steps once the ellipsis has been detected. First, the items 

missing from the utterance must be found in the preceding utterance (or, 

equivalently, the slot the elliptical phrase fills in the preceding 

utterance must be determined). Second, a complete phrase must be built 

using the elliptical phrase and the missing constituents found in the 

previous (old) utterance. In the remainder of the discussion, the first 

step will be referred to as "determining the slot", the second as 

"expanding the utterance". 

The use of ellipsis was different in the task dialogs and the data 

base dialogs (see Chapter VIII, Section D.M). In the task dialogs, 

elliptical utterances appeared as responses to questions. In the data 

base dialogs, elliptical utterances were used in long sequences of 

questions. For purposes of building an interpretation of an utterance, 

the difference has most impact on the slot-determining phase of 

processing. In the question-and-answer pairs of the task dialogs, the 

slot filled by the elliptical answer is often marked in the question by 

a WH-phrase.  Determining the slot filled by the ellipses in the 
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question sequences of the data base dialogs is not so straightforward; 

syntactic and semantic clues must be used as explained below. Expansion 

of the utterance entails similar procedures in the two domains, but some 

preliminary transformations are required for the ellipses in the task 

domain (see Robinson, 1975a). 

I 
The remainder of this section concentrates on capabilities in the 

discourse component for handling the elliptical utterances that occurrea 

in the data base dialogs. The procedure for interpreting the elliptical 

utterances (EU) in the context of the preceding pattern utterance (PU) 

will be presented. In question-and-answer sequences, both the answer 

following a question and the next question itself may be elliptical. 

The PU for an elliptical answer is the preceding question. Expansion of 

this elliptical answer requires many of the same transformations as the 

elliptical utterances in the task dialogs. The PU for an elliptical 

question also is the preceding question, which is really two utterances 

back. This treatment is actually equivalent to using the immediately 

preceding utterance, the answer, since its  structure corresponds 

directly to that of the question. The two utterances differ only in 

that one is marked as a question. 

We limited the iange of elliptical expressions we would handle in 

the speech-understanding system o noun phrases functioning as complete 

sentences, as in our initial example. This set oovered most of the 

ellipses encountered in our protocols. More importantly, allowing more 

extensive noun phrase and verb phrase ellipses would have meant greatly 
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increasing the alternatives considered for these lower level 

constituents during the interpretation of an utterance. Expanding an 

elliptical phrase is a relatively expensive operation when compared, for 

example, with syntactic checks or semantic case checks. Doing it at the 

utterance level seems worth the cost since complete utterances are 

relatively infrequent compared with other constituents being proposed 

and found. If we had bean working with error-free test input rather 

than speech, the overhead requirements would have been less extreme and 

other forms of ellipsis might have been allowed. Extensions and 

raodif cations needed to do more complete ellipsis handling are descrioed 

in Section E. 

B.  SLOT DETERMINATION 

1 SYNTAX 

Syntax plays a major role in determining the slot filled by an 

elliptical utterance (EU). Usually, for an El to make sense th^re must 

be a structural unit of the same type in the pattern utterance (PU). 

(This is not completely true: there may be an unfilled slot in the 

syntactic pattern for the PU that the EU fills. This case, and 

extensions to the algorithms for handling it, are discussed in Section 

E.) In addition to defining the category of phrase an EU can match, 

syntax also provides filters on the basis of definiteness and syntactic 

role . 
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If an EU consists solely of a noun phrase (NP), the determiner 

of that NP must match the determiner of the slot phrase in the PU.  If 

the NP of the EU is definitely determined, it can match only definite 

NPs in the pattern; if it is indefinite, it can match only indefinitely 

determined phrases.  The sequence PU ~ EÜ1 is fine, but PU - EU2 is 

awkward. 

PU: Does England own a submarine. 
EU1: A destroyer? 
EU2: The destroyer? 

It is possible to have a sequence of questions with indefinite NPs 

culminating in a definite NP, but this is an exceptional case; it occurs 

only when the definite NP refers to some truly unique object, or the 

questioner and answerer are playing a game.  The following sequence 

showing an interchange between two people is an example of the former: 

PI: Do you know what John got at the auction? 
P2: "as it a document? 
PI: Yes. 
P2: An old one? 
PI: Yes. 

P2: The Constitution? / A copy of the Constitution? 

The question-answering dialogs of the game "20 Questions" are 

an example of the latter. The same phenomenon happens with plurals. So 

the sequence PU - EU1 is fine, but PU - EU2 is not. 

PU: Does England own any submarines? 
EU1: Any patrol boats? 
EU2: The patrol boats? 

One can construct situations in which EU2 is reasonable, but again the 

set denoted by the NP must be unique.  So, for a data base in which 
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there was only one set of patrol boats (and these are a subset of 

submarines), the sequence PU - EU2 might be acceptable. This use of the 

definite at the end of a series of indefinites is sufficiently rare that 

we have not modified the algorithm to handle it. 

The parallelism of definites and indefinites is most clear 

when we consider utterances  with two NPs that differ  only in 

definitenesb. Contrast the two sets of question sequences. 

PU: Did the cat hurt a bird? 
EU1: The dog? 
EU2: A mouse? 

PU: Did the cat hurt the bird? 
EU1: The dog? 
EU2: A mouse? 

Without any preceding context , in the first sequence both EU1 and EU2 

are unambiguous; the NPs match the correspondingly determined NPs. In 

the second sequence, EU1 is ambiguous; it could either be a question 

about the cat and the dog or one about the dog and the bird. The 

preference is to resolve the ambiguity on a semantic basis, but there is 

clearly some confusion that does not arise in the first sequence. 

Utterance EU2, in the second sequence, really does not make sense 

without some imputed context. Even then, there could be an ambiguity 

similar to the one for EU1. 

The algorithm for determining the slot filled by an elliptical 

utterance uses the parallelism of determiners to filter out phrases to 

be considered as matches. The determiner of each NP in the PU is 

checked.  If it is the same as that of the NP constituting the EU, then 
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the NP is a candidate for a match; the slot it fills is a candidate slot 

for the EU. 

A problem arises when considering EUs consisting solely of 

norainals — NPs without any determiners. Some default determiner must 

be chosen for the EU so that the filtering process can be done. The 

default currently used is definite for singular NPs and indefinite for 

plural NPs. This treatment is adequate for the kinds of questions in 

the data base domain seen in the following three examples from the data 

base protocols: 

PU: What is the length of the Ethan Allen? 
EU: Draft? 

PU: Does Britain own any submarines? 
EU: Patrol boats? 

PU: Does the U.S. own the Ethan Allen? 
EU: George Washington? 

In general, however, there are cases that do not work undetermined: 

PU: Did you drive the Cadillac today? 
EU: Volkswagen? 

"Volkswagen" alone is just not enough; "the Volkswagen" is.  This pair 

actually points up the idiosyncratic nature of the preceding pair. 

Other nouns require no determiner and can be matched  by u her 

undetermined nouns or by definitely determined ones: 

PU 
EU 
EU 

Did he write about pollution? 
Ecology? 
The environment. 

X-8 

:   '     i     mr'urTiTiTtrti -   ■ -■  r liirVfPir f-   riTii  i" j-r^^-^-'-'-.Mii 



The syntactic role of a noun phrase is important in choosing 

between candidate slots that are filled by phrases which are otherwise 

semantically and syntactically equivalent. Consider the sequence: 

PU: Is the Ethan Allen longer than the George Washington? 
EU: The Churchill? 

The EU is ambiguous since "The Churchill" could replace either "the 

Ethan Allen" or "the George Washington".  However, both "Is the 

Churchill" and "Than the Churchill" are unambiguous.  In each case a 

syntactic role is assigned to "the Churchill" that can be used to 

eliminate one of the two candidate slots. 

In summary, syntax is used to limit the candidates considered 

for finding slots of NPs serving as EUs. First, only NPs with matching 

determiners are considered. If '.-.here is more tnan one candidate, 

syncactic role is used to eliminate choices. If at either step of the 

process there are no candidates, there is the option of relaxing 

syntactic constraints. This option was not pursued in the speech 

understanding system because of the need to restrict, rather than 

increase, potential interpretations. 

2.  SEMANTICS 

Although syntactic restrictions often eliminate all but ot.^ 

choice, there are cases when an appeal must be made to semantic 

attributes of the phrases filling candidate slots in the pattern 

utterance. The role of semantics in filtering out candidates may be 

seen by considering the sequence. 
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PU: Ts the chicken in the co ler? 
RU: The potato salad? 

Syntactically, "the potato salad" matches both "the chicken" and "the 

cooler". Semantical1:- it is 'closer' to "the chicken": they are both 

foods. Therefore, the ellipsis ptocedures should establish that as the 

candid . .e slot. 

Semantic closeness in a system with a semantic network 

knowledge representation is determin( from the element and superset 

hierarchy of the network. Given some collection of nodes N and a node 

m, the node n in N is most closely related to m if n and m belong to a 

common set (in the network) that does not include any other nodes of N. 

In network terms, nodt, n is closest to m if, considering only element 

(e) and subset (a) arcs, n and m have the closest common ancestor. This 

closeness measure is a relative one. It can only be used to decide 

among a set of alternatives. 

For each of the concepts in an utterance, a piece of semantic 

network is built. In particular, a noun phrase co. responds to a set of 

nodes and relations in the network. For each noun phrase, a single node 

in the network can be distinguished as central to the concept expressed 

in the noun phrase. The node corr spending to a definite NP is the node 

representing the object (or other ^jncept) identified with U c NP. 

(Intensional referents are an exception — they may be treated like 

indefinif-s for the purposes of tlllpsls.) For indefinite NPs, one node 

of the structure built for tne NP is the  'head node'; the concept it 
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represents corresponds to the head noun of the noun phrase. Hence, 

corresponding to each candidate slot that passes through the syntactic 

constraints, there is a candidate node. The candidate node that is 

closest to the node corresponding to the EU is chosen as the matching 

node; the slot filled by itr concept is the slot the EU is taken to 

fill. 

To find the candidate node that shares the closest common 

ancestor with the EU-node, paths are grown by recursively following e 

and s arcs from each candidate node and the EU node. Having paths from 

two different starting nodes reach a common node indicates that the two 

nodes are elements of a common superset.  If one of them is the EU node, 

the match h?s ^een found and the slot determined.  Since all paths 

eventually reach the node UNIVERSAL (the top of the semantic net 

hierarchy), any path  that reaches UNIVERSAL is  eliminated from 

consideration. The paths traced for the sequence, 

PU: Is the box-end wrench used to loosen the bolt? 
EU:  The socket wrench? 

are shown in Figure X-1.  Paths from the PU candidate nodes, which 

correspond to the DEFNPs, '"the box-end wrench" and "the bolt" are shown 

with dashed lines.  The path from the node corresponding to the EU is 

shown with a dotted line.  The paths from 'W1' and 'W2' meet at 

'wrenches'.  It is important to note that the intermediate subsets, 

'socket-wrenches' and  'box-end wrenches' are not needed  for the 

algorithm to work (in fact, it works faster without them). 
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FIGURE X-1  PATH-GROWING ALGORITHM 

Problems arise only when paths from two (or more) candidate 

nodes intersect with the path from the EU node at the same iteration of 

the algorithm. This can happen either because the paths all intersect 

(for the first time) at the same node, or because the paths from the 

candidates have intersected at some node and the path from that node 

intersects with the EU node's path.  In either case the EU is ambiguous. 

Consider the following examples: 

PU:  Is the submarine faster than the carrier? 
EU: The patrol boat? 
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PU: Is the patrol boat faster than the carrier? 
EU: The nuclear sub? 

PU: Is the nuke faster than the diesel sub? 
EU: The carrier? 

PU: Is the nuclear sub faster than the patrol boat? 
EU: The guided missile carrier? 

PU: Is the patrol boat slower than the Ethan Allen? 
EU: The guided missile carrier? 

Since syntactic clues have already been used as a filter, discourse has 

no further '.-.'zy of disambiguating the utterance.  A possibility, not 

explored in the current implementation, is to examine the syntactic 

roles of all of the candidates and see what keys to disambiguation might 

be asked of the speaker. 

After a candidate is selected, there is also a need for 

semantic checking. This need is especially strong in a speech- 

understanding environment. Even though the phrase constituting an EU 

syntactically and seraantically matches some phrase in the PU, it may not 

make sense seraantically to substitute the EU for this phrase. For 

example, in 

PU: Does Britain own a sub? 
EU:  A commander? 

the EU matches the phrase "a sub" (they are both physical objects) but 

the substitution does not make sense (note that it would if the PU were, 

"Is there a sub in Naples?"). For this reason, a semantic check on the 

suitability of substituting the EU in the selected slot is always done. 

This check is in essence the same one that is done by the semantic 

composition routines when the original utterance (i.e., the PU) is 
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interpreted and the matching (slot) phrase is embedded in some higher 

level phrase. In building the PU, the semantic routines check the 

suitability of this embedding. In the above example, the phrase "own a 

sub" is checked. Before trying to substitute an EU, the discourse 

routines perform the same check with the EU. In the example, the 

plausibility of "own a commander" is checked and rejected. Such 

possibilities must be provided for in a system with speech input, since 

the acoustic routines may confuse "a commander" with "a Carpenter" (the 

name of a ship). 

C.  COMPLETING THE UTTERANCE 

Completion of the elliptical utterance entails fitting it into the 

slot in the pattern utterance selected by the slot determination phase 

of the process. Semantic checks already have ensured that it is 

reasonable to substitute the EU for the NP that occupies the slot in the 

PU. The remainir£ step is to build a new structure using pieces of the 

PU and the EU. use of a network partition to reflect the parse 

structure for an utterance is crucial to limiting the computing done in 

this expansion. 

Elliptical expansion in an earlier version of the speech 

understanding system (see Walker et al., 1975) depended on having 

available a representation of the semantic interpretation of the 

complete PU in terms of the semantic representation of each of its 

constituents. The utterance expansion routines built a new net around 
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the semantic representation of the EU using all of the information from 

the semantic interpretation of the PU not superseded by information in 

the EU. But, in a. speech system environment, interpretations of 

utterances are built up from partial interpretations. Eaca partial 

interpretation has been processed by both semantics and discourse to 

allow assignment of scores for determining which of the competing 

interpretations to work on next. As a result, the final semantic 

interpretation of an utterance is a combination of semantic 

representations of some constituents, discourse representations of other 

constituents, and semantic processing to handle quantification. The 

simple surgery of the original system no longer works because there is 

no complete semantic template available. For example, when a definite 

noun phrase is resolved, the node identified with the resolution, rather 

than the original semantic interpretation, is used in building 

representations for higher (embedding) phrases. 

It would be possible for the semantic component of the system to 

build dual representations, one using semantics and one using discourse 

results, each time phrases were merged to make a higher level phrase. 

This duplication would make available a final semantic interpretation 

built only from semantic constituents. However, this solution would 

double the most expensive work done by semantics in building an 

interpretation. This doubling of effort would have to be done for all 

phrases that include NPs, even the false attempts that were not part of 

the final interpretation. Furthermore, such an expansion algorithm 
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requires copying all portions of the PU being used with the EU. In 

contrast, the algorithm described in this section overcomes both of 

these problems: it works using the combination of semantic and discourse 

representations, and it copies only those portions of an utterance that 

embed the slot filled by the EU. 

To illustrate the basic algorithm we will consider the sequence 

PU: What is the speed of the submarine? 
EU: The carrier? 

Figure X-2 shows the final semantic interpretation of the PU along 

with the semantic interpretation for each of the constituent phrases and 

the discourse interpretation of the NPs. The semantic representation of 

each constituent is in a separate space in the network.  (The hierarchy 

of these spaces, shown by the heavy arrows, directly mirrors the parse 

structure of the utterance.) 

As soon as the NP "the submarine" is encountered and semantics has 

built an interpretation for it, discourse is called. The submarine 

Churchill is found in focus (Chapter IX, Section B) and hence identified 

as the object referred to by the NP. Note that the node for the 

particular ship is used in the higher level (embedding) NP "the speed of 

the Churchill". Similarly, once the semantic interpretation for this NP 

is built, discourse is called and determines the node corresponding to 

the speed of the Churchill (which may or may not exist explicitly in the 

net; see Chapter IX, Section C). This node is then used in building the 

semantics for the whole utterance. 
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Now consider what happens when the EU is encountered. The match of 

"the carrier" with the slot filled by "the submarine" is found as 

described in the preceding section. But the node for the Churchill is 

nowhere to be found in the utterance level semantics, which consists 

solely of the nodes and arcs in the vista of Spaces SI and N3 of Figure 

X-2 (and of the knowledgespace nodes touched by those arcs). However, 

it is easy to find how any node was used in building a final 

interpretation of an utterance if enough information from the parse of 

that utterance is kept. 

After an utterance is accepted, the discourse routines collect 

information about each of the NPs and VPs in history lists. In 

particular for NPs, the semantic interpretation, the discourse 

interpretation (which in some cases is identical to the semantic 

interpretation tut ^ always different for definite NPs), the phrase of 

which the NP is a constituent (or in which it is "embedded"), and 

syntactic factors such as number and determination are noted in a table. 

For VPs, only the semantic interpretation and the embedding phrase need 

to be collected. 

When an EU is encountered and the candidate slot found, the 

embedding phrase for the EU can be constructed from the embedding phrase 

for the phrase filling the slot in the PU. In the example, the 

embedding phrase for "the carrier" is NP2. The first step of 

substituting the EL in the slot is to copy the space(s) created when the 

embedding phrase was formed from its constituents and to substitute arcs 
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to the EU node for any arcs to the corresponding PU node. In the 

example, a new space NP3 corresponding to NP2 must be built with an arc 

to the Midway instead of the Churchill, as shown in Figure X-3 Note 

that it is not necessary to copy any of the structure built for other 

constituents of the embedding phrase. Network partitioning, in 

particular the visibility restrictions it imposes, enables each of these 

constituents to be viewed from the perspective of the new space. The 

result of this step js a new constituent for some higher level embedding 

phrase. Again the embedding phrase can be determined easily from the 

history lists. The process continues recursively until the embedding 

phrase is the utterance. Resolution of definite noun phrases (in 

particular, relational NPs) is performed, if relevant, when the new 

constituent is built. In the example, NP3 is built as shown in Figure 

X-B- Because this is a relational NP, it is passed to the 

resolution routines and the actual "speed of the Midway" is computed. 

Finally, this node is emuedded in a copy of the utterance level 

semantics as shown in Figure X-1. 

Notice that the visibility restrictions of network partitioning 

enable restricting the copying of constituents of the P'J to those 

phrases embedding the slot filled by the EU.  Looked at another way, 

only those phrases on the path from the slot to the root of the parse 

tree were copied.  This attribute of the procedure may be seen ever, more 

clearly by considering the sequence 

PU:  Does Britain own the carrier? 
EU:  The U.S.? 
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and  examining  Figure X-5  and  Figure X-6.   The  phrase "the 

U.S."  corresponds to "Britain", a top-level constituent  of the 

sentence. Only the space SI and the 'agent' arc need to be copied in 

building the interpretation of the EU. 

In the two examples presented so far, the EU is a definite NP. The 

only difference in handling indefinite NPs is that the head node (and 

other nodes and arcs) of the NP lie on spaces below the KNOWLEDGESPACE 

and these spaces must be copied in the first step of the substitution. 

Again, network partitioning minimizes the work; the whole collection of 

spaces for the EU becomes visible (and the spaces for the NP that fill 

the slot in the PU become invisible) when the new space is created for 

the embedding phrase. 

A final problem occurs with quantified NPs. Consider the sequence: 

PU: Does Britain own all of the subs? 
EU: The carriers? 

The quantifier "all" operates on the NP "the carriers" in the most 

natural interpretation of the EU. To obtain thi3 result, some record 

must be kept of what quantifier, if any, applies to a phrase.  But this 

is exactly what the semantic component does in the first step of 

handling quantifiers. When the NP "all of the subs" is constructed, the 

only thing that happens is the recording of the quantifier "all" on a 

space in the network of the NP. The actual rearrangement of the 

structure into one tha4- corresponds to the network  encoding of 

quantified statements (see Chapter V, Section E.2) does not occur until 
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after the entire utterance is processed.  Semantic processing must 

operate this way to capture the proper scoping  of quantifiers. 

Discourse uses the tracks left at the parse structure level to transfer 

relevant quantifiers to elliptical utterances. In the sequence 

PU* Does Britain own both carriers? 
EU: Either carrier? 

the EU is already quantified and the expansion process does not transfer 

the quantifier from the PU.  The two-step process  for handling 

quantifiers also means that an elliptical utterance when expanded may 

have different scoping than the PU. This difference in scoping occurs 

in the sequence 

PU: Who built all ballistic missile submarines? 
EU:  Each Nuke? 

The PU asks for the single builder of all ballistic missile s ^marines. 

The scope of "all" is inside of the scope of "who".  In the EU, the 

scope of the "who" moves inside the scope of the quantifier, "each". 

For each nuke, the particular builder of that ship must be identified. 
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D.  ELLIPTICAL RELATIONAL NOUN PHRASES 

The ellipses discussed so far have all been structural in the sense 

that some syntactic pieces of an utterance have been left out; the 

structure of the utterance is incomplete. As a result, syntactic clues 

may be used to detect tha ellipsis and to guide interpretation of it. 

The data base dialogs also contain elliptical utterances for which there 

are no syntactic clues. Consider the utterance: "What is the ler.gth?"; 

the ellipsis here is semantic. The utterance is syntactically, but not 

semantically, complete. "The length" is a well-formed NP; however, 

semantically, "length" assumes some object for which length is a 

relevant measure and implicitly conveys the relation of "having a 

length". The combination of this 'relational' attribute and 

definiteness indicates the need for an object. (If the utterance had 

been "What is a length", then no object would be required. The use of 

the indefinite determiner distinguishes this case.) 

In essence, the verb like characteristics of the relational nouns 

cause a situation in which a phrase that appears to be syntactically 

complete is not. The object of the 'verb' is missing, but, since ^.he 

verb is expressed through a noun, no syntactic indications of 

incompleteness occur. Case information appearing with the semantics of 

relational nouns can be used to detect this kind of ellipsis. 

When a definitely determined relational NP (RELNP) is encountered, 

the discourse routines first check to see if all of the cases required 
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by the RELNP are present. If any are missing, ellipsis handling is 

invoked. The preceding utterance is examined to find objects for the 

empty slots. The procedure for finding candidate slots in the case of 

structural ellipsis can be used to determine which object in the PU best 

fills the missing case slot. Expansion of the elliptical RELNP is 

straightforward: a new space is created below the space for the RELNP 

and the space(s) containing the slot filler(s), and the case arcs are 

jdded to this space. 

A compound case of structural and RELNP ellipsis occurs in the 

sequence 

PU: What is the draft of the submarine? 
EU: The length? 

In processing this EU, the RELNP ellipsis is handled at the noun phrase 

level resulting in  the structure of  (a) in Figure  X-7 being 

transformed into the structure of (b). The structural ellipsis is 

handled at the utterance level. At this point the problem is equivalent 

to processing the EU, "the length of the submarine". The result appears 

in (c) of Figure X-7. 
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E.   LIMITATIONS AND EXTENSIONS 

The ellipsis-handling capabilities described in this section are 

limited in at least two ways. First, the slot-determining procedures 

depend on the presence of a matching phrase in the pattern utterance. 

However, an elliptical utterance may be a modifying phrase to be added 

to the PU; in this case, there will be no matching phrase, but rather a 

raissipg (optional) constituent. Second, we restricted our treatment to 

isolated noun phrases (and nominals) serving as utterances and 

seraantically elliptical RELNPs, both because we wanted to reduce the 

number of competing hypotheses that would have to be considered in the 

interpretation of a spoken utterance and because no other instances 

occurred in the dialogs. However, the algorithm for expanding an 

elliptical utterance is general. In the remainder of this section we 

discuss these limitations and present the extensions necessary for 

handling less restricted forms of ellipsis. 

The major limitation of the current ellipsis routines stems from 

the assumption that the EU will fill a single slot in the PU, which is 

not true of ellipsis in general.  At the utterance level, the general 

case is that any number of constituents may be present or missing in the 

EU.  In the sequence, 

PU:  Did you take the coat to the cleaners? 
EU: The shoes to the shoemaker? 

the EU contains an object NP and an adverbial prepositional phrase. The 

subject NP and the VP must be retrieved from the PU. This kind of 
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ellipsis is even more common when more complex sentences are considered. 

In particular, when two clauses or phrases are conjoined, the second is 

often elliptical; consider the above sequence joined by "and". Rather 

than looking for a single slot filled by the EU, the ellipsis routines 

should determine the constituents missing from the PU and then build the 

full utterance (the latter stop would be quite similar to the work done 

by the semantic composition routines). 

The mechanism for handling ellipsis this way would entail a closer 

coupling of syntax and discourse and ■•ould proceed basically as follows. 

The parsing routines would determine which constituents of the utterance 

were present in the EU and which were missing, on the basis of the 

context-free structural description associated with each rule in the 

language definition. Using this information and the parse of the PU, 

the discourse routines would build the complete utterance in a manner 

similar to the one now used for expansion. The only difference would be 

that several components might get replaced at once. Both semantic and 

syntactic checking could be done based on the mapping between the 

structure of the PU and that of the completed EU. 

Adopting such a strategy eliminates two major limitations of the 

current approach. First, the EU may consist of any number of 

constituents, not just a single NP (the only exception to this 

restriction in the current routines is with RELMP ellipsis). In 

particular, the EU may consist solely of a modifying phrase not present 
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in the PU, as in the sequence,* 

PU: Plot the distribution of soybeans. 
EU:  In the year 2000. 

Second, the extension to handling NP and VP ellipsis is straightforward. 

The only additional step needed is to determine the NP (or VP) in the PU 

that matches the elliptical phrase.  The PU phrase then takes the role 

of the PU and the elliptical phrase takes the role of the EU in the 

above description. The result of the processing is a complete NP (or 

VP) to be used in building the rest of the utterance. For example, in 

the sequence, 

PU:  Is the Churchill the smallest sub? 
EU:  Is the Lafayette the largest? 

the elliptical NP "the largest" gets matched with the PU phraae "the 

smallest sub", and is then expanded to "the largest sub". This complete 

NP can then be used in the (now complete) EU. 

Processing the kinds of ellipsis occurring in  the question 

answering pairs of the task dialogs also entails only one additional 

step. The question (PU) must be transformed before it can be used as a 

template.  As an example, consider the sequence 

PU: Which bolts did you tighten? 
EU:  The front bolts. 

The PU must get transformed to "You did tighten which bolts",  then an 

I/you transformation must be dene.  Then the EU can be placed in the 

slot (nicely indicated by the WH-phrase). A means of expanding the 

» Thanks to W. H. P?xton for this example and for a suggestion of how to 
handle it. The content of this section was greatly influenced by 
discussions with him. 
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language definition to facilitate this kind of processing is currently 

being explored. 
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XI  RESPONDING ON THE BASIS OF THE SEMANTIC TRANSLATION 

Prepared by Gary G. Hendrix 

CONTENTS: 

A. Perspective 
B. Interactions with the Deduction Component and the 

English Generator 
1. Yes/No Queries 
2. WH Queries 

A.   PERSPECTIVE 

Once a semantic translation has been constructed for an utterance, 

a language understanding system will respond in accordance with the 

nature of its interpretation of the input and within its abilities to 

perform tasks. The range of sophistication in response ability is 

potentially quite broad. At one extreme, a system might be able to 

build literal interpretations of inputs but be completely unable to act 

upon them. At the other extreme, a system might record who uttered the 

input; consider what the meaning of the input is in terms of the 

system's perspective on the knowledge, beliefs, goals, and social 

behavior of the speaker; and then consider how to act upon the input in 

such a way as to maximize the system's own potential for reward, as 

determined by its own value system, goals, aspirations, and predictions 

concerning how its actions will affect future states of the world. 
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Possible actions to be performed by a sophisticated system would include 

updating its world model to reflect new input information; supplementing 

the model by making inferences and deductions; both finding answers 

logically or even performing physical experiments to determine them; 

taking physical action in response to commands and requests; and 

planning and executing sequences of actions to achieve or maintain goals 

in the face of new input data. 

The response component of the SRI speech understanding system is 

rather limited in its scope, reflecting the project's emphasis on an 

intelligent interpretation of the utterance as opposed to subsequent 

processing. The resources that may be marshalled by the responder 

include a component that performs logical deduction (see Chapter XII), a 

natural language generator that converts network structures into 

appropriate English expressions (see Chapter XIII), and a routine for 

drawing partitioned network structures.* No resources for permanently 

augmenting the task domain model, doing planning, reasoning about goals 

and beliefs, or performing motor activities are available. 

Given its current set of resources, the task of the responder is to 

determine which inputs are requests for information that may be acted 

upon by the deduction component and which are not. For those that are 

not, a representation of the corresponding partitioned network structure 

is drawn to express the system's interpretation of the utterance. For 

• This routine was programmed by Par Emanuelson of Linkoeping University 
in Sweden while he was a visiting research engineer at Sfll. It is 
illustrated in thb example presented in Chapter I, Section C. 
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those inputs that are suitable for deductive processing, the responder 

formats a call to deduction and interprets the results returned by it. 

Depending upon the type of information requested and the results 

returned, the responder will either produce a specified response, like 

YES or NO, or will invoke thf. English generator to express the results 

of the deduction processing. 

B.  INTERACTIONS WITH THE DEDUCTION COMPONENT AND THE ENGLISH GENERATOR 

The input to the response component is a space T that represents 

the interpretation of the spoken utterance. Such translation spaces are 

produced by the quantification phase of the semantic translation 

process. To determine what action is to be taken in response to an 

input, the re^onder examines space T, looking for either the structure 

of Figure XI-1 or the structure of Figure XI-2. For question 

answering to be performed, space T must contain exactly the structures 

shown and contain no additional structures. The special sets 

REQUESTS.YN and REQUESTS.WH are used in the encoding of YES/NO and WH 

questions, respectively, and are discussed in Chapter V, Section E 3. 

The structures of Figure XI-1 and Figure XI-2 are not 

necessarily the interpretations of questions. For example, the command 

"Give me the speed of the Henry.L.Stimson." 

translates into the same request for information that would be produced 

for 

"What is the speed of the Henry.L.Stimson?" 
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FIGURE XI-1 SCHEMATIC OF YES/NO QUESTION 

On the other hand, not all queries fall into one of these two forms. 

For example, the query 

"Who built each destroyer?" 

which is interpreted as 

"For each destroyer, who was its builder?" 

does not fall in either category but rather embeds the request structure 

of  Figure XI-2  in a  universally quantified  expression.  Some 

questions involving quantifiers are accepted- For example, 

"Did General.Dynamics build all of the Lafayettes?" 
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FIGURE XI-2 SCHEMATIC OF WH QUESTION 

follows the fo!.n of Figure XI-1. 

The system's understanding of any utterance that does not follow 

one of the forms cited above is expressed by printing out a drawing of 

the network of the utterance's translation space T (and the structures 

of spaces embedded ss supernodes In T, and so on). 
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1.   YES/NO QUERIES 

For top-level YES/NO questions, which follow the form of 

Figure XI-1, the responder calTs '■■he deduction component (sse the 

discussion in Chapter XII for an explanation of its input/output 

charaoteris:ics) with a QVISTA and a KVISTA. The QVISTA used in this 

call is a one item list containing only space P, and the KVISTA is a 

one-item list containing only space KNOWLEDGE of the system's task 

domain model.* 

Essentially, space P (and its embedded spaces if it contains 

logical connectives such as IMPLICATIONS, NEGATIONS, or DISJUNCTIONS) 

represents a proposition upon whose truth rests the answer to the YES/NO 

query. The job of deduction is to test the truth of P against the 

domain model encoded in the KNOWLEDGE space. Conceptually, this is done 

by pattern matching the structures of P against the structures of 

KNOWLEDGE. 

If the proposition can be proved true, then deduction returns 

an association list describing how structures in P may be instantiated 

by rtructures in KNOWLEDGE.  If the proposition can be proved false, 

deduction provides a counterexample (that is, an instantiation in a 

egation space). In addition to associations between P structures and 

» KVISTA is the orthodox vista of KNOWLEDGE, but QVISTA is created by 
the responder. The orthodox vista of P is the list (P T KNOWLEDGE). In 
general, the QVISTA and KVISTA supplied to deduction may contain an 
arbitrary number of -paces. In fact, calls to deduction from discourse 
typically use QVISTAS containing multiple spaces created by the semantic 
composition routines. 
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KNOWLEDGE structures, the association list contains a pair of the form 

(ANSWER . value). For YES/NO questions, the responder returns this 

value to the speech understanding system executive for printing. The 

value will be YES, or NO, or, in those cases where deduction can neither 

prove nor disprove the proposition, UNKNOWN. 

2.  WH QUERIES 

Top-level WH questions have a prop space P just like YES/NO 

questions. The responder uses this space to set up a call to deduction 

that is identical to the call for YES/NO questions. If the ANSWER value 

on the returned association list is NO, then the responder reports that 

the underlying proposition was faulty. For example, the report "NO SUCH 

PERSON OR THING" would be produced for the queries 

,:What submarine is a destroyer?" 

and (more convincingly) 

"Which destroyers are nukes?" 

(There are T nuclear destroyers.) If users are not expected to ask WH 

questions wiVii false propositions, then the language definition may 

include a proviso that if this condition arises, the executive's score 

of the querj will be lowered and parsing resumed in search of a higher 

scoring interpretation of the input. 

If the ANSWER value on the association list is UNKNOWN, then 

deduction could neither prove nor disprove the proposition of the 

question.  The responder returns an appropriate message. 
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If the ANSWER value on the association list returned by 

deduction for a WH query is YES, then the association list contains a 

mapping from the query's proposition onto one of the proposition's 

(possibly many) instantiations. This map holds the (an) answer to the 

query. For example, upon receiving the translation of the query 

"Who built the Henry.L.Stimson?" 

which is shown in Figure XI-3, the responder calls deduction with a 

QVISTA of (P). Then deduction returns an association list whose form is 

approximately as follows: 

[(ANSWER . YES) 
(VISTA . (KEXTENSION KNOWLEDGE)) 
(X . General.Dynamics) 
(Y . DERIVED.031) 
(<e X LEGAL.PERS0NS> . <e General.Dynamics LEGAL.PERS0NS>) 
(<e Y BUILDINGS> . <e DERIVED.031 BUILDINGS>) 
(<agt Y X> . <agt DERIVED.031 General.Dynamics>) 
Kobj Y Henry.L.Stimson> . <obj DERIVED.031 Henry.L.Stimson>)] 

This association list shows the mapping between the original 

proposition P, which may be paraphrased as: 

There is some legal person X, 
and there is some building situation Y, 
and the agt of Y is X, 
and the obj of Y is the Henry.L.Stimson. 

and its instantiation 

General.Dynamics is a legal person, 
and DERIVED.031 is a building situation, 
and the agt of DERIVED.031 is General.Dynamics, 
and the obj of DERIVED.031 is the Henry.L.Stimson. 

In particular, 'X' is associated with 'General.Dynamics',  Since  'X' is 

the ncde of the WH query's indox space I, its image, 'General.Dynamics', 

is the answer to the question. 
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FIGURE XI-3 TRANSLATION OF "WHO BUILT THE HENRY.L.STIMSON?" 

The way in whicn the responder expresses answers to WH queries 

depends upon the setting of system variable SENTENCEFLG and the nature 

of the query's index space. If SENTENCEFLG is NIL and the index space 

contains exactly one node, then the image of that node is passed to the 

English generator for translation into an English phrase.  In the 
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example above, the node 'General.Dynamics' would be passed to the 

generator and the list (General Dynamics Corporation) would be returned. 

The vista that is the value of VISTA on the association list — for the 

example, (KEXTENSION KNOWLEDGE) — is passed as a second argument to the 

generator. This vista contains not only the KNOWLEDGE space, but other 

spaces that have been created by deduction to encode nodesi and arcs 

(e.g., 'DERIVED.031') that were derived in the process of instantiating 

the proposition of space P. Since the answer to a WH question might be 

a derived node, this vista may be needed by the gene.-ator to provide a 

sufficient vantage from which to view the node. In the example, the 

instantiation of 'X' is not derived, but lies on the KNOWLEDGE space. 

(The instantiation of 'Y' is derived.) 

If the SENTENCEFLG is set to TRUE or if multiple nodes lie on 

the index space I, then a complete sentence (or sequence of sentences) 

describing the instantiation of P in KNOWLEDGE (and its extensions) is 

generated as an answer to the query. To do this, the responder creates 

a new (scratch) space G below KNOWLEDGE and copies all the 

instantiations of the structures of P onto this space. That is, each 

network structure appearing on the right side of a pair on the 

association list returned by deduction is copied onto G. (This copying 

onto a new space is performed at a fraction of the cost of creating new 

structures.) The new space G partitions off the instantiations of P 

irom other network structures. This space is then passed to the English 

generator, which is responsible for expressing all the concepts encoded 
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on the space.  For the example query, that set of concepts may be 

expressed as 

"The General Dynamics Corporation built the Henry.L.Stirason." 
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A.   INTRODUCTION 

Thia chapter is a progress report on the deduction component, a 

facility for retrieving information from procedurally augmented, 

partitioned semantic networks. Several ccmplete implementations have 

been constructed during the last two years, each incorporating major 

design changes from its predecessor, anJ our exploration of new design 

ideas continues. We describe here a set of facilitiej» embodying the 

major design ideas that have evolved from our experience with these 

systems.• 

When the response component determines that an utterance is a 

request for information, the deduction component is called to process 

the net structure corresponding to the utterance, relating it to other 

information stored in the domain model. The deduction component is 

capable of retrieving inf^.jation explicitly stored in the nets, 

deriving information using general statements stored as theorems in the 

net, and calling user supplied functions pointed to in the net that 

obtain information f'-om knowledge sources other than the net such as 

data files. 

• Many people in the SRI Artificial Intelligence Center have contributed 
to the development of the deduction component. Gar>' Hendrix has been a 
major partner in the design effort throughout the project. Nils Nilsson 
has been an important contributor to the deductive machinery, and 
Jonathan Slocum both designed and implemented the data base interface. 
Mjke Wilber and Rene Reboh were major participants in the overall 
implementation effort. 
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For example, if a user asks "Who built fne Henry L. Stimson?" and 

the knowledge net contains the fact 'General Dynamics built the Henry L. 

Stimson', then the answer would be determined by simply retrieving that 

fact. If the knowledge net did not. contain that fact but instead 

contained the theorem 'General Dynamics built all of the Lafayettes' and 

the fact 'The Henry L. Stimson is a Lafayette', thon the same query 

would be answered by using that theorem and that face to deduce the 

answer. Alternatively, if the knowledge net did not contain those facts 

or that theorem, but instead contained the theorem 'Function SHIPDATA 

can be called tc determine the builder of any given ship' and the fact 

'The Henry L. Stimson is a sh^p', then the same query would be answered 

by determining that the Henry L. Stimson is a ship and then callitg the 

function SHIPDATA. 

The deduction component accepts as input a vista called QVISTA 

containing the network translation of an English query and a vista 

called KVISTA containing the knowledge base from which answers to the 

query are to be retrieved. The QVISTA is the 'proposition' portion of 

the query (see Chapter V, Section E.3) and can be thought of as 

representing a 'pattern', with the QVISTA elements (i.e., arcs and 

nodes) being the pattern's variables. Processing entails seeking a 

'match' in the KVISTA for the query pattern. A successful match 

produces a list containing a 'binding' for each QVISTA element to a 

corresponding KVISTA element. For example, if the query is "What 

submarines did General Dynamics build?", then the QVISTA would be as 
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shown in Figure XII-1. The KVISTA would be examined for elements of 

the BUILDINGS set that have an outgoing agt (agent) arc to 

GENERAL.DYNAMICS and that have an outgoing obj (object) arc to a node 

that has an outgoing e (element) or de (distinct elements) arc to 

SUBMARINES. The to-node of the obj arc of each such element of 

BUILDINGS represents an answer to the query. 

The deduction component is a 'generator' of answers, ea.ch answer 

being in the form of a list containing a binding for each QVISTA 

element. After a bindings list is returned, it can be repeatedly 

'pulsed' to find as many different answers to the query as desired. 

Hence, in the previous example, each time it iz pulsed, it will indicate 

another submarine that General Dynamics built. 

Included on the bindings list produced is an 'answer pair' whose 

first member is "ANSWER" and whose second member is either "YES", "NO", 

or "UNKNOWN". Each time a binding is found for each QVISTA element, the 

answer pair in the generated bindings list indicates a "Yes" answer. If 

it has been proved that no possible set of bindings exists for the 

elements in QVISTA, then the answer pair will indicate a "No" answer to 

the query. When it is not possible to find either another set of 

bindings for the QVISTA or any set of bindings for the negation of the 

QVISTA, then a one-element bindings list is generated, indicating an 

answer of "Unknown". 
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FIGURE XII-1       KVISTA AND QVISTA FOR THE EXAMPLE QUERY "WHAT 
SUBMARINES DID GENERAL.DYNAMICS BUILD?" 
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The deduction component retrieves information directly from the 

KVISTA using the indexing properties of the nets. It contains 

derivational machinery that provides the equivalent of a logically 

complete first-order predicate calculus theorem prover. It also 

contains procedural augmentation facilities for applying user-supplied 

semantics-based deduction functions. The following examples indicate 

how these capabilities contribute to the answe-ing of queries. 

Consider the KVISTA and OVISTA shown in Figure XII-2.  The 

indexing properties of the net would be used to find the following 

bindings: 

node Y to node B, 
node X to node General.Dynamics, 
arc Y~obj—>Henry.L.Stimson to arc B—obj—>Henry.L.Stimson, 
arc Y—agt—>X to arc B—agt—>General.Dynamics, and 
arc Y—e—>BUILDINGS to arc B—e—>BUILDINGS. 

A binding for arc X—e—>LEGAL.PERSONS must be derived since no e arc 

exists  in the  KVISTA  between node  General.Dynamics  and node 

LEGAL.PERSONS.  The required arc is easily derived by finding the 

'chain' of de and c's arcs that connects the two nodes. 

Another example is ohown in Figure XII-3. To answer this query, 

it is necessary to carry out a derivation using the Implication in the 

KVISTA that represents the statement "General Dynamics built all of the 

Lafayettes". The derivation will proceed by setting up a subproblem to 

find bindings for the instance of the implication's antecedent that 

requires the Henry L. Stirason to be a member of the set of Lafayettes. 

When that subproblem is solved, a new member of the BUILDINGS set will 

be added to the KVISTA that will provide the desired bindings. 
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KNOWLEDGE 

FIGURE  XII-2    AN  EXAMPLE  QUERY, "WHO BUILT THE HENRY.L.STIMSON'' 
WHOSE   ANSWER  IS EXPLICITLY AVAILABLE 
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KNOWLEDGE 

FIGURE   XII-3      AN  LXAMPLE   QUEHY.    WHO  BUILT  THE   HENRY LSTIM30N'-, WHOSE 

ANSWKR   IS  INTERNALLY  DERIVABLE 
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Figure XII-4 shows an example with a KVISTft that contains a 

theorem indicating that the user-supplied data base access function 

SHIPDATA can be used to produce new members of the BUILDINGS set. This 

theorem would be used in a derivation, as in the previous example, by 

creating a subproblem consisting of an instance of the theorem's 

antecedent. SHIPDATA will be called to produce in the KVISTA a new 

member of KEYED.APPLICATI0N3 that will provide the bindings needed to 

solve the subproblem. A new member of the BUILDINGS set will then be 

created, as before, to supply the desired bindings for the original 

query. 

In this chapter, we will describe the major constituents of the 

deduction component and how they interact to answer queries. We begin 

with a discussion of our concept of "parity", a description cf the case 

analysis tree that defines the alternative answers being constructed, 

and a presentation of the flow of control in the deduction executive. 

B. ELEMENT PARITY 

The derivational and retrieval machinery in the deduction component 

does not require that queries and KVISTA facts and theorems be 

translated into a canonical form such as prenex normal form cr clause 

form. This Tlexibility saves statement translation time, reduces the 

need to keep both an 'internal' and an 'external' form of statements, 

and allows a user to make entries into the knowledge base in a form that 

is most advantageous for the class of queries to  be answered. 
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FIGURE  XII-4      AN  EXAMPLE QUERY, "WHO OWNS THE HcNRY.L.STIMSON?" 
WHOSE ANSWER  IS EXTERNALLY DERIVABLE 
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Therefore, it is necessary to be able to work with arbitrary nestings of 

negations, implications, and disjunctions containing arbitrary 

quantifiers both in the KVISTA and in the QVISTA. 

One of the problems that this lack of canonicalization presents is 

determining whether a variable would be universally or exfstentially 

quantified if the statement in which the variable appears were 

transformed so that all the quantifiers occurred at the beginning of the 

statement (i.e., if the statement were put into prenex normal form). 

This information can be used, for example, when matching (i.e., 

unifying) two structures to reject matches that would require binding 

two distinct existentially quantified elements. 

A second problem is that of determining the 'logical sign' 

(positive or negative) that a KViSTA or QVISTA element has. An 

element's logical sign corresponds to the sign that the term in which 

the element occurs would have if the statement in which the element 

appears were put into disjunctive normal form. This information is 

important since a QVISTA element and its binding must have the same 

logical sign. When the derivational machinery is looking for an element 

in a KVISTA theorem that could produce a binding for some given QVISTA 

element, it can determine that the derivation cannot possibly produce a 

binding for the given QVISTA element if the theorem's element does not 

have the same logical sign. 
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As an example, elements in the consequent of an implication that is 

visible in the KVISTA have a positive logical sign and can produce 

bindings for elements that are visible in the QVISTA (using a derivation 

that proves an instance of the implication's antecedent), and elements 

in the antecedent of the implication have a negative logical sign and 

can provide bindings for elements in a negation space that is visible in 

the QVISTA (using a derivation t'»it proves the negation of the 

implication's consequent).* Similarly, a QVISTA element will require a 

binding that is either visible in the KVISTA or in a negation space that 

is visible in the KVISTA, depending on how the QVISTA is embedded in 

negations, implications, and disjunctions. 

The 'implicit existential' representation of quantification that we 

are using (See Chapter V, Section E.2.c) has the interesting property 

that in the KVISTA all existentially quantified elements have a positive 

logical sign and all universally quantified elements have a negative 

logical sign. This correspondence can be understood intuitively by 

observing that negation changes a universal quantifier into an 

existential quantifier (and vice versa), and that all universal 

quantification in our representation is derived from negated existential 

* A space being 'in a vista' means that the space is one of the spaces 
on the list that defines the vista. An element being 'visible in a 
vista' or 'in the top level of the vista' means that the element is in a 
space that is in the vista. An element being 'embedded in a vista V 
means that the element is not visible in the vista and that the vista of 
the space that the element is in includes one of the spaces that is in 
vista V. Hence, for example, the consequent of an implication can be 
'visible in the KVISTA', but the elements of the consequent would be 
'embedded in the KVISTA'. 
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quantification. Similarly, with respect to matching QVISTA structures 

against KVISTA structures, QVISTA elements with a positive logical sign 

can be thought of as being universally quantified, and QVISTA elements 

with a negative logical sign can be thought of as being existentially 

quantified. 

Hence, a single device can be used to deal with the tv;o problems 

discussed above. Namely, functions are available for computing a 

'parity' of either 'positive' or 'negative' for each element that is 

either visible or embedded in either the KVISTA or the QVISTA. Parity 

corresponds to logical sign and is defined as follows All elements in 

the vista have positive parity. All elements in a negation or 

antecedent space have parity opposite that of the space (supernode) they 

are in. All elements of any other space (such as a disjunct or 

consequent space) that are not also elements of a negation space or an 

antecedent space have parity the same as that of the space they are in. 

Parity is used to ensure that anticipated bindings will be legal 

with respect to quantification and that both elements in a binding will 

either be visiDle in the vista or will be in a negation space that is 

visible in the vista. 
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C.  THE ENVIRONMENT 7REE 

The deduc* ion component proceeds by growing a case analysis search 

tree each node of which represents a set of choices, asoumptions, and 

subproblems called an 'environment'. All of the retrieval and deduction 

acti'/itles are done with respect to some environment in this tree. 

A typical choice that causes creation of a new environment is the 

binding of a QVISTA element. Such a choice can be used to derive a 

contradiction or to restrict possible bindings of other QVISTA element.? 

and therefore is a 'case' that must be considered separately from 

situations where a different binding is selected for the same QVISTA 

element. Another typical choice that causes the creation of a new 

environment is that of a derivational strategy for determining bindings 

for some construct such as an implication occurring in the QVISTA. The 

selected strategy may, for example, create a subproblem in which an 

implication's antecedent is assumed to be true and bindings are sought 

for the implication's consequent. 

Subproblems are formed by adding newly created spaces called 

"extension spaces" to QVISTA. Similarly, assumptions are made and the 

results of derivations are stored in newly created extension spaces 

added to KVISTA. At any given time, the extension space most recently 

added to KVISTA or QVISTA in a given environment is called the "current" 

KVISTA or QVISTA extension space for that environment, and the most 

recently added set of spaces is called the current KVISTA or QVISTA 

extension vista. 
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Each time the deduction component Is called with a new query, it 

attaches an empty space to KVISTA and considers it to be the current 

extension space and the current extension vista to KVISTA. Whenever a 

new ne'„ element is därived in the KVISTA, it is added to the current 

KVISTA extension space. When a subproblem is being created that 

involves making assumptions, a new KVISTA extension vista is created and 

the assumptions are made in the new vista. When the subproblem is 

completed, the new extension vista is deleted from KVISTA, thereby 

removing the assumptions and any results derived from them. 

The current QVISTA extension vista contains the most recently 

created subproblems, and bindings are always being sought for the net 

elements in the current QVISTA extension vista. Associated with each 

QVISTA extension space in the KVISTA that was current when the extension 

space was created. Bindings for elements in a QVISTA extension space 

must be elements of the KVISTA associated with the extension space. 

This restriction prevents the use during the solution of a subproblem of 

derived results that depend on assumptions made after the subproblem is 

created. Initially, all of QVISTA is considered as the current QVISTA 

extension vista. 

Extension spaces are added to KVISTA and QVISTA with respect to an 

environment, so that KVISTA and QVISTA trees of spaces are grown that 

map onto the environment tree. The network partitioning facilities 

provide a natural and efficient mechanism for administering these 

alternative cases, including their subproblems, assumptions, and derived 

results. 
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Extension spaces would be used, for example, to find bindings for 

an implication occurring in the QVISTA. A typical derivation would 

assume the implication's antecedent in a newly created KVISTA extension 

space and put a copy of the consequent into a newly created QVISTA 

extension space. Bindings would then be sought for the consequent copy, 

and when a complete set was found, the extension spaces created for this 

subproblem would be deleted from the KVISTA and QVISTA, a copy would be 

created of the QVISTA implication in the current KVISTA extension space, 

and bindings would be formed between the elements of the QVISTA 

implication and its newly derived KVISTA copy. 

An environment is represented by an association list that pairs 

variable names with their values. A new environment is created as an 

offspring of an existing environment in the tree. The new environment 

effectively 'inherits' its own copy of each of the variable values from 

its parent. Whenever possible, the values are not copied and changes in 

the new environment are made in such a manner as not to affect the 

values in the parent. For example, if a value Is a list and is not 

copied, then in the offspring environment elements might be added to the 

front of the list, but the existing list and its elements would not be 

changed, 

In the version of the deduction component described in this 

chapter, the following variables are included in an environment: 

(1) BINDINGS -- The ll.'jt of bindings of QVISTA elements 
to KVISTA elements. 
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(2) QVISTA — The list of spaces in QVISTA. This list 
includes all the extension spaces that are a part of QVISTA in 
this environment. The first element of this list is the 
current QVISTA extension space. 

(3) QVISTA.EXTENSION.VISTAS — A list of the extension 
vistas that are part of QVISTA in this environment. The list 
is orderecl so that its first element is always the current 
QVISTA extension vista. 

(4) KVISTA -- The list of spaces in KVISTA. This list 
includes all the extension spaces that are a part of KVISTA in 
this environment. The first element of this list is the 
current KVISTA extension space. 

(5) KVISTA.EXTENSION.VISTAS -- A list of the extension 
vistas that are part of KVISTA in this environment. The list 
is ordered so that its first element is always the current 
KVISTA extension vista. 

(6) EXTRACTED.Q.ELEMENTS — The list of QVISTA elements 
that have been extracted in this environment and its ancestors 
(see Section K on the QVISTA Extractor). 

(7) CANDIDATE.GENERATORS — The generator functions that 
produce possible bindings for QVISTA elements (See Section D 
on the Executive). An offspring environment that inherits a 
generator from its parent environment must effectively have a 
copy of the generator, since the generator may be 
independently pulsed in both environments. The 'spaghetti 
stack' features of INTERLISP (leitelman, 1975) allow such 
'copying' to be done efficiently. 

(8) WAITING.Q.ELEMENTS ~ The list of QVISTA elements 
whose candidate generators are waiting for new bindings to 
occur. No attempt will be made to find a binding for a QVISTA 
element while it if; on this list. 

(9) BINDING.DEMONS — The lists of demons that are 
associated with each unbound QVISTA element. When a QVISTA 
element is bound, each of the demons associated with it is 
given control. In the version of the deduction component 
described in this chapter, these demons are placed on QVISTA 
nodes by generators of candidate bindings when those 
generators cannot proceed until further bindings are made. As 
is the case with generators of candidate bindings, an 
offspring environment that inherits demons from its parent 
must effectively have a "' py of the demons so that they can be 
independently activated  s both environments. 
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D.  THE EXECUTIVE FOR THE DEDUCTIVE COMPONENT 

The facilities that we have designed for the deductive component 

allow for a variety of control and selection strategies to guide the 

searcn for bindings. We present in this section a simple control 

strategy that we will assume to be in effect for our discussions in this 

chapter. 

The deduction, component i.^ a generator function and it depends 

heavily on the use of generator functions (See Teitelraan, 1975, Section 

12). Generator functions are designed to produce sequentially members 

of some set (as defined by the parameters of each call). When a 

generator function is called, it creates an entity called s 'generator' 

that maintains its own <* .;? and control environment and can be 'pulsed' 

(i.e., restarted) an arbi'.-ary number of times. Each time a generator 

is pulsed, it returns as a value a member of the set it is generating. 

Generators are a useful control device when some unknown number of a 

set's members need to be computed. 

Control begins in the executive at step SELECT.ENVIRONMENT (shown 

below) witn a single node in the environment tree. In that environment, 

which is 'active', the bindings list is initialized to ((ANSWER . YES)), 

the entire QVISTA is considered to be the current QVISTA extension 

space, and an empty extension space has been created and added to 

KVISTA. 
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The deduction component proceeds by selecting ar. environment and a 

QVISTA element. It then uses a 'candidate generator' function to 

produce KVISTA elements that are potential bindings for the selected 

QVISTA element in the selected environment. A function called RAMIFY is 

given each potential binding suggested by the candidate generators to 

determine what other bindings would be directly implied by the suggested 

binding. For example, a binding for an arc implies bindings for the 

arc's frora-node and to-node. If a binding is implied that contradicts 

an existing binding, then RAMIFY will reject the potential binding. 

Once a potential binding has been accepted by RAMIFY, control is 

passed to the Binder to make the binding. If either the selected QVISTA 

element or the potential binding are elements of an implication, 

disjunction, or negation, then a derivation may be required before the 

binding can be made. The Binder tests to determine whether a derivation 

is required. If not, it makes the bindings; if so, it calls the KVISTA 

Extractor and/or the QVISTA Extractor to create the subproblems and make 

the assumptions that define the derivation. If an answer to the 

original query has been produced when control is returned to the top 

level, then a bindings list is generated; otherwise, the selection cycle 

is repeated. 

"No" answers to questions are produced by creating an offspring 

environment of the top (first) node in the environment tree. In that 

environment, the value of ANSWER on the bindings list is changed to NO, 

and a new QVISTA is created containing only a negation relation. The 
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elements of this relation's negation space are all the elements of the 

original QVISTA. This offspring environment can be created and it or 

any of its offspring can b selected in step SELECT.ENVIRONMENT at any 

time before a bindings list has been generated with a "Yes" answer pair. 

The following is a description of basic control cyols of the 

deduction component: 

SELECT.FNVIRONMENT: 

Select an 'active' environment and call it 
"CURRENT.ENVIRONMENT". If no active environments remain in 
the tree, then generate a final bindings list consisting of 
((ANSWER . UNKNOWN)). If an active environment is found and 
selected, then continue. 

GENERATE.CANDIDATE: 

Select an unbound QVISTA element for which a binding is 
to be sought, and call the selected element "Q.SELECTION". If 
a generator of candidate bindings for Q.SELECTION does not 
exist in CURRENT.ENVIRONMENT, then create one. Pulse the 
candidate generator to produce a candidate binding for 
Q.SELECTION. If the generator produces a candidate binding, 
then go to step PROCESS.CANDIDATE. 

If either Q.SELECTION is in the top QVISTA level or 
Q.SELECTION is the only element in a negation space that is in 

top QVISTA level, then deactivate CURRENT.ENVIRONMENT th 
(because    there 
CURRENT.ENVIRONMENT). 

PROCESS.CANDIDATE: 

is    no   possible    aolution 
Go to step SELECT.ENVIRONMENT. 

in 

Call the candidate binding produced by the generator 
"TARGET.ELEMENT", and apply RAMIFY to Q.SELECTION and 
TARGET.ELEMENT in CURRENT.ENVIRONMENT. If RAMIFY determines 
that Q.SELECTION cannot be bound to TARGET.ELEMENT, then go to 
step GENERATE.CANDIDATE. 

If RAMIFY does not reject the binding of Q.SELECTION to 
TARGET.ELEMENT, create an offspring environment of 
CURRENT.ENVIRONMENT fo»' TARGET.ELEMENT, call the offspring 
"NEW.ENVIRONMENT", and give control to the Binder.  If, when 
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the Binder returns control, not all the QVISTA elements have 
been bound in NEW.ENVIRONMENT, then go to step 
SELECT.ENVIRONMENT. 

If all 0VI5TA elements have "een bound In NEW.ENVIRONMENT 
(i.e., a soluticr, has been found), then generate 
NSW. ENVIRONMENT'S b'r.dlngs list. If a "Yes" answer was 
prodiceci, then the deduction coapone t c: n be pulsed again to 
produce another s» , -r.f bindings. If It is pulsed again, then 
deactivate NEW.ENVi;-ONMENT and go to step SELECT. ENVIRONMENT. 

The basic goal of Li« QVISTA elenent selection process that occurs 

in step GENERATE.CANDIDATE is :o select the QVISTA element that will 

have the mi..iflua n'jnber of candidate bindings (i.e., the most 

constrpined element), and thereby "Biniaize the number of ases t-he 

executive must 3onsi(l*r. This selection is necessarily a guess that can 

be guided by heuristics auch as "Select a node having an outgoing arc 

whose to-node i3 bound t^ a node with a small number of incoming arcs". 

The beiector considers only those elements that are in or are embedded 

in the current QVISTA extension vista and that, are not on " 2 

environment's W«rTTNG.Q.ELEMENTS list. (See Section L on Procedural 

Augrentation for a discussion of the WAITING.Q.ELEMENTS list). A node 

cannot be selected until the to-ncde of one of its outgoing arcs is 

bound, and an arc cannot be selected until either its from-node or its 

to-node is bound, since those bindings are needed to provide an index 

into 'ehe i(VISTA. Nodes that represent disjunctions, negations, or 

implications, their o-, going e arcs, their case arcs, and the to-nodes 

of their case arcs are not selected because they reee se bindings from 

the Binder as a by-product rf binding the elements inside the 

disjunction, negation, or implication. 

XJ.I-21 

  - ■  ■ .■   ...—    '■       ,....— 



E.  GENERATING CANDIDATE BINDINGS FOR A SELECTED QVISTA ELEMENT 

When the executive selects a QVISTA element to bind, it pulses a 

generator that produces KVISTA elements having the same parity as the 

QVISTA element that are potential bindings for the QVISTA element. The 

standard generate- function that is used to produce the potential 

bindinjja uses the indexing features of the semantic r»et in a straight- 

forward way to find potential bindings. A collection of special purpose 

generator functions also is available that will be used in preference to 

the standard generator function whenever possible. These special- 

purpose functions will be discussed below in Section L. In this section 

we will describe the standard function that is used when no others 

apply. 

The standard candidate generating function works in the following 

manner. If the selected QVISTA element is a node, say QNO, then each 

outgoing arc QNO—R—>QNi (where R is any relation) from node QNO that 

has a bound to-node is an index to potential bindings. In particular, 

if node QNi is bound to KVISTA node KNi, then the from-node of each 

Incoming arc to node KNi with relation R is a potential binding for node 

QNO. If the indexing arc's relation is e or s, then the special 

'chaining' functions described below in Section H are used to produce 

aerived incoming e or s arcs to node KNi. 

If the selected QVISTA element is an arc QN0--R~>QNi (where R is 

any relation) and node QNO is bound to node KNO, then each outgoing 
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KVISTA arc from node KNO with relation R is a candidate match for the 

selected arc. If the selected arc's relation is s or e, then the 

special 'chaining' functions are used to produce derived outgoing e or s 

arcs from node KNO. If node QNi is bound, then potential bindings can 

also be found in the same manner as if the arc's from-node had been 

selected (i.e., the selected arc is an index). 

The order in which candidate bindings are generated is an important 

factor in the effectivenass of the procedure. In general, candidates 

that do not require a derivation are preferred. A useful first-order 

heuristic is to sort the candidates based on their level of embedding in 

KVISTA. Candidates at the top level require no derivation and are 

generated first. "Sach level of embedding implies the need for a 

derivation to "extract" the candidate. Hence, the level of embedding 

provides a first-order approximation to the number of derivational steps 

that will be required. 

F.   RAMIFICATIONS OF A PROPOSED BINDING 

RAMIFY is a function that plays a role similar to that of 

unification in predicate calculus theorem provers in that it deternines 

the set of 'substitutions' necessary for a match to occur. It takes as 

input a QVISTA element and a KVISTA element and determines the set of 

bindings, couplings, and Instantiations that would be implied by binding 

the QVISTA element to the KVISTA element. For example, if a node 

representing an element of the set of owning situations is bound to a 
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QVISTA node, then typically that binding will imply bindings for the 

QVISTA node's e arc to OWNINGS, its agt and obj case arcs, and to-nodes 

of the case arcs'. If an inconsistency or 'illegal' binding, coupling, 

or instantiation is itnpltec. (fcr example, two different bindings are 

implied for the same element), then RAMIFY will indicate that the input 

KVISTA element is not a possible binding for the input QVISTA element. 

A 'binding' is a pairing of a QVISTA element with a KVISTA element 

of equal parity. An 'instdntiation' is a pairing of a KVISTA element 

having negative parity with a KVISTA element having positive parity 

(i.e., an instantiation of the universally quantified negative parity 

KVISTA element). A 'coupling' is any other legal pairing of QVISTA and 

KVISTA elements (typically a requirement that two universally quantified 

variables must take the same binding or instantiation). 

A binding of some QVISTA element Qi to some KVISTA element Ki is 

legal only if it satisfies the following requirements. Let KV denote 

the KVISTA associated with the QVISTA space that Qi is an element of. 

Then, element Ki must either be a top level element of KV, an element of 

a negation space that is a top level element of KV, or the current 

KVISTA extension space must be a member of KV. 

All other pairings are legal except those that combine a positive 

parity KVISTA elemen*- with a negative parity QVISTA element, a positive 

parity KVISTA element with another positive parity KVISTA element, or a 

negative parity QVISTA element with another negative parity QVISTA 
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element  (i.e., if it pairs two distinct existentially quantified 

elements). 

RAMIFY proceeds by applying the following rules to each node Ni 

that must be paired with a node Nj. For each such pair, first consider 

each outgoing case arc Nj—Rx—>Nk from node Nj for any case relation 

Rx. If node Ni also has an outgoing case arc Ni—Rx—>N1, then arc Ni— 

Rx—>N1 must be pairable with arc Nj—Rx—>Nk and node NI must be 

pairable with node Nk. Second, check to see if the entity represented 

by node Ni is constrained to be an element (T a subset) of a set that 

is disjoint from any set that the entity represented by node Nj is 

constrained to be an element (or a subset) of. 

An inconsistency is reported if a universally quantified element 

(i.e., a positive parity QVISTA element or a negative parity KVISTA 

element) is forced to nave two different bindings or instantiations, or 

if a node is shown to represent a member (subset) of a set that is 

aisjoint from a set that the entity represented by the node's binding is 

a member (subset) of. 
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G.  THE BINDER 

The Binder described in this section is called when a QVISTA 

element has been selected in some environment, a candidate binding 

(i.e., a target element) in the KVISTA has been found, and RAMIFY has 

been successfully applied to the selected QVISTA element and the 

candidate binding. The rules described below make the bindings 

determined by RAMIFY if a derivation is not required. If a derivation 

is required before the bindings can be made, then the rules invoke the 

QVISTA Extractor or the KVISTA Extractor to carry out the derivation. 

The rules used by the Binder can be thought of in propositional 

form as being the following: 

"x" is implied by "x". 
"x OR y" is implied by "x". 
"y IMPLIES x" is implied by "x". 
"(x AND y) IMPLIES z" is implied by "~x". 
"-(x AND y)" is implied by "~x". 

A detailed description of the rules as actually applied by the Binder 

follows. 

1 QVISTA TOP LEVEL ELEMENTS 

Consider the case where the selected QVISTA element is in the 

top level of the QVISTA. If the target element is a top-level KVISTA 

element, then in the offspring environment created for the target 

element ""ake the bindings determined by RAMIFY (see the 

PROCESS.CANDIDATE step of the basic control cycle, described above in 
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Section D on the Executive). If the target element Is not a top level 

KVISTA element, then call the KVISTA Extractor to derive a copy of the 

target element in the top level of the KVISTA that can be a binding for 

the selected QVISTA element. 

2.  QVISTA DISJUNCTIONS 

Consider the case where the selected QVISTA element is in some 

disjunct space DS. If bindings have been found for all the elements of 

space DS, then bindings can be assigned to the entire disjunction (i.e., 

"x OR y" is implied by "x"). 

The Binder determines whether all elements in space DS 

received bindings to top-level KVISTA elements during RAMIFY. If so, 

then in the offspring environment created for the target element it 

makes the bindings produced by RAMIFY and assigns dummy bindings to the 

disjunction and to all elements in the other disjuncts. If not all the 

elements in space DS received bindings to top-level KVISTA elements 

during RAMIFY, then the QVISTA Extractor is called to carry out a 

derivation in which bindings are sought for the elements of space DS 

while assuming the negation of each of the disjunction's other disjuncts 

(using the rule that "x OR y" can be proved by assuming "~y" and proving 

"x"). 
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3.       QVISTA IMPLICATIONS 

a. CONSEQUENT MATCH 

Consider the case where the selected QVISTA element is in 

some consequent apace CS. If bindings have been found for all the 

elements of space CS, then bindings can be assigned to the entire 

implication (i.e., "y IMPLIES x" is implied by "x"). 

The Binder determines whether all elements in space CS 

received bindings to top level KVISTA elements during RAMIFY. If so, 

then in the offspring environment created for the target element, it 

makes the bindings produced by RAMIFY and assigns dummy bindings to the 

implication, the antecedent space, the consequent space, and to all 

unbound elements in the antecedent. If not, all the elements in space 

CS received bindings to top level KVISTA elements during RAMIFY, then 

the QVISTA Extractor is called to carry out a derivation in which 

bindings are sought for the elements of space CS while assuming the 

disjunction's antecedent (using the rule that "x IMPLIES y" can be 

proved by assuming "x" and proving "y"). 

b. ANTECEDENT MATCH 

Consider the case where the selected QViSTA element is in 

some antecedent space AS. If -the bindings found for trie elements of 

space AS include all the elements of a negation space, then bindings can 

be assigned to the entire implication [i.e., "(x and y) IMPLIES z" is 

implied by "~x"]. 
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The Binder determines whether during RAMIFY all elements 

in some top-level KVISTA negation space either became the bindings for 

elements of the antecedent space AS or were instantiated to top level 

KVISTA elements. If so, then in the offspring environment created for 

the target element it makes the bindings produced by RAMIFY, binds space 

AS to the KVISTA negation space, and assigns dummy bindings to the 

implication, the consequent space, and to all unbound elements in the 

consequent and the antecedent. If during RAMIFY not all the elements in 

a top level KVISTA negation space were either the bindings for elements 

of the antecedent space AS or were instantiated to top level KVISTA 

elements, then the ÜVISTA Extractor is called to carry out a derivation 

in which bindings are sought for a negation in which AS is the negation 

space while assuming the negation of the implication's consequent (using 

the rule that "x IMPLIES y" can be proved by assuming "~y" and proving 

"-x"). 

4.  QVISTA NEGATIONS 

Consider the case where the selected QVISTA element is in some 

negation space NS. If the bindings found for the elements of space NS 

include all the elements of a negation space, then bindings can be 

assigned to the entire negation [i.e., "~(x AND y)" is implied by "~x"]. 

The Binder determines whether during RAMIFY all elements in 

some top-level KVISTA negation space either were designated to be the 

bindings for elements of space NS or were instantiated to top-level 
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KVISTA elements. If so, then in the offspring environnent created for 

the target element it makes the bindings from RAMIFY, binds space NS and 

its outgoing e arc to the KVISTA negation space and its outgoing e arc, 

and assigns dummy bindings to all unbound elements in space NS. 

If during RAMIFY not all the elements ir a top-level KVISTA 

negation space were either designated to be bindings for elecrents of 

space NS or were instantiated to top-level KVISTA elements, then one of 

the extractors is called to carry out a derivation as follows. If space 

NS contains either more than one node or contains arcs that do not share 

a common from-node, then space NS is considered to contain a conjunction 

and the QVISTA extractor is called to carry out a derivation in which 

bindings are sought for the negation of the conjunct containing the 

selected QVISTA element while assuming the other conjuncts. Otherwise, 

the KVISTA Extractor is called to derive a copy of the target element in 

the top level of the KVISTA that can be a binding for the selected 

QVISTA element. 
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H.   DERIVING ELEMENT-OF AND SUBSET RELATIONS USING TAXONOMIES 

Partitioned semantic networks are particularly well suited for 

representing taxonomies of sets using s, ds, e, and de arcs. The 

deduction component has special purpose facilities designed to extract 

set element and subset information from the taxonomy representation. 

These facilities make use of the following rules. 

Disjoint Sets: 

The sets represented by nodes Nx and Ny are disjoint if 
either: 

(1) there exist ans Nx—ds—>Nz and Ny—ds—>Nz for 
some Nz; or 

(2) there exist nodes Nu and Nv ruch that the Nx set is 
a subset of the set represented by Nu, the Ny set is a subset 
of the set represented by Nv, and the Nu and Nv sets are 
disjoint. 

Subsets; 

The set represented by a node Nx is a subset of the set 
represented by a node Ny if either: 

(1) Nx and Ny are the same node; 

(2) there exists an arc Nx—s—>Ny; 

(3) there exists an arc Nx—ds—>Nv; or 

(4) there exists a node Nz such that the Nx set is a 
subset of the set represented by Nz and the Nz set is a subset 
of the Ny set. 

The set represented by a node Nx is not a suoset of the set 
represented by a node Ny if the Nx and Ny sets are disjoint. 
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Set Elements: 

The entity represented by a node Nx is an element of the set 
represented hy a node Ny if either: 

(1) there exists an arc Nx—e—>Ny; 

(2) there exists an arc Nx—de—>Ny; or 

(3) there exists a node Nz such that the Nx set is an. 
element of the set represented by Nz, and the Nz set is a 
subset of the Ny set. 

The entity represented by a node Nx is not an element of the 
set represented by a node Ny if there exists a node Nz such 
that entity Nx is an element of the set represented by Nz, and 
the Ny and Nz sets are disjoint. 

The basic function, called S:CHAIN, that makes use of these rules 

searches for chains of s or ds arcs in the KVISTA from a given from-node 

and/or a given to-ncde. For example, if from-node Nx and to-node Ny are 

given, then S:CHAIN will look at all of the supersets of Nx, all of the 

supersets of those supersets, etc., until Ny is encountered or until no 

new supersets can be found. If Ny is encountered, then S:CHAIN will 

have found a sequence of nodes N1,N2,...,Nk such that there exist arcs 

Nx~s—>N1 (or Nx—ds—>N1), N1—s—>N2 (or N1—ds~>N2), ..., Nk~s— 

>Ny (or Nk~d3~>Ny), and S:CHAIN can conclude that the set represented 

by Nx is a subset of the set represented by Ny. If only a from-node is 

given to S:CHAIN, then it acts as a generator of supersets of the given 

node. If only a to-node is given, then S:CHAIN acts as a generator of 

subsets of the given node. 

Simple functions have been written that use S:CHA.IN to generate the 

sets that a given node is an element of, to determine whether or not a 
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given node represents an element of the set represented by a second 

given node, and to determine whether or not the set represented by a 

given node is a subset of the set represented by a second given node. 

These functions provide general service facilities to the major 

constituents of the deduction component. For example, they are used by 

RAMIFY to test whether the entity represented by the binding of a given 

QVISTA node could possibly be an element of the set represented by the 

binding of the to-node of the given QVISTA node's outgoing e arc, and by 

the generators of candidate bindings for QVISTA. nodes. 

I.  SIMPLIFICATION OF NEGATIONS 

The derivational machinery of the deduction component creates 

subproblems, makes assumptions, and derives r.cw net structures during 

the course of a derivation. All of the functions that apply the 

derivational rules assume that whenever a QVISTA or KVISTA negation 

space is produced that contains only a disjunction, negation, or 

implication, the following transformations are performed: 

(1) If a negation contains only another negation, then 
delete both negation relations leaving only the elements of 
the embedded negation space; i.e., "~(~x)" becomes "x". 

(2) If a negation contains only a disjunction, then 
delete the negation and disjunction relations and transform 
each disjunct into a negation; i.e., "~(x OR y)" becomes "~x" 
and "~y". 

(3) If a negation contains only an implication, then 
delete the negation and implication relations, delete the 
antecedent space leaving only its elements, and transform the 
consequent into a negation relation; i.e., "~(x IMPLIES y)" 
becomes "x" and "~y". 

XII-33 

 ""tiiMiii 



J.   THE KVISTA EXTRACTOR 

Typically, KVISTA elements occurring in negations, disjunctions, or 

implications can be used to produce bindings for QVISTA elements only if 

suitable derivations are carried out.  The derivational machinery 

applies the rules given in this section to 'extract' such desirable 

KVISTA elements from negations, disjunctions, and implications so that 

they can be asserted or denied in the top level of KVISTA.  Th; rules 

can be thought of in prepositional form as being the following: 

To extract "x" from "x OR y", prove "~y". 
To extract "x" from "y IMPLIES x", prove "y". 
To extract "~x" from "x IMPLIES y", prove "~y". 
To extract "~x" from "~(x AND y)", prove "y". 

When the Binder is unable to bind a selected QVISTA element to a 

KVISTA target element and the selected QVISTA element cannot be further 

extracted, then the KVISTA Extractor described in this section is called 

to carry out a derivation that is directed toward creating subproblems 

whose solution will allow the creation of the target element either in a 

top-level KVISTA space or in a negation space that is a top level KVISTA 

element. For example, if the target element is "x" in the expression "z 

IMPLIES (x OR y)", then the KVISTA Extractor will initiate a subproblem 

in wr.ich an attempt is made to prove "z" and "~y". Solution of this 

subproblem will allow "x" to be asserted. 

TVe derivation is carried out in the offspring environment created 

for the target element (see Section D above on the Executive). It is 

begun by creating an empty space and calling it the "conclusion space", 
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making a copy in the conclusion space of the disjunction, implication, 

or negation relation in the top level of the KVISTA that the target 

element is embedded in, and calling the copy of the target element 

"TARGET.COPY". When creating the copy of the disjunction, implication, 

0" negation, if an element ',,as instantiated or coupled by RAMIFY, then 

the instantiation or coupling is useu in the copy. 

The appropriate subproblem is created in new QVISTA extension 

spaces by repeatedly applying the extraction rules given below to the 

conclusion space as long as any of them are applicable. The new QVISTA 

extension spaces containing the subproblem are then designated as the 

current QVISTA extension vista, control is returned to the executive, 

and whenever the offspring environment is selected, bindings are sought 

for the subproblem in the QVISTA extension v^sta. 

When bindings for all the elements of the QVISTA extension vista 

are found, the derivation is completed by deleting the extension spaces 

added to QVISTA and KVISTA, adding to the current KVISTA extension space 

the elements from the deleted KVISTA extension spaces, ^nd adding the 

elements of the conclusion space to the current KVISTA extension space. 

When adding a?emen.s tc KVISTA, if the to-node or the from-node of a 

conclr.slcn space arc is in the QVISTA, then instead of adding the arc to 

KVISTA, a copy of the arc is added using the binding cf the QVISTA from- 

node or to-node. 
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1.       KVISTA  EXTRACTION RULES 

a. KVISTA DISJUNCTIONS 

If TARGET.COPY occurs in or is embedded in a disjunction 

that is a node in the conclusion space, then the next step in the 

extraction process uses the rule that "x" can be proved by knowing "x OR 

y" and proving "~y". The extraction proceeds as follows. Delete from 

the conclusion space the disjunction relation that TARGET.COPY occurs 

in, add the conclusion space to the KVISTA as a new extension space, 

call the disjunct space that TARGET.COPY occurs in the new conclusion 

space, create a space containing negations of each of the other 

disjunct^, and add the newly created space to QVISTA as a new extension 

space. 

b. KVISTA IMPLICATIONS 

i.  CONSEQUENT MATCH 

If TARGET.COPY occurs in or is embedded in the 

consequent space CS of an implication IMP that is a node in the 

conclusion space, then the next step in the extraction process uses the 

rule that "x" can be proved by knowing "y IMPLIES x" and proving "y". 

The extraction proceeds as follows. Delete from the conclusion space 

the implication relation that TARGET.COPY occurs in, add the conclusion 

space to the KVISTA as a new ext2n3ion space, create a new conclusion 

space containing the elements of space CS that are not also elements of 
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IMF's antecedent space, and add IMF's antecedent space to QVISTA as a 

new extension space. 

ii.  ANTECEDENT MATCH 

If TARGET.COPY occurs in the antecedent space AS of 

an implication IMP that is a node of the conclusion space and 

TARGET.COPY does not also occur in the consequent space CS of IMP, then 

the next step in the extraction process uses the rule that "~x" can be 

proved by knowing "x IMPLIES y" and proving "~y". The extraction 

proceeds as follows. Delete from the conclusion space the implication 

relation that TARGET.COPY occurs in. Add the conclusion space to the 

KVISTA as a new extension space. Create a new conclusion space 

containing a negation relation whose negation space has as elements 

those elements of space AS that are not in the overlap with space AS. 

Then create a space containing the elements in the over1ap and a newly 

created negation relation whose negation space contains those elements 

of space CS that are not in the overlap with space AS. Then add the 

newly created space to QVISTA as a new extension space. 

c.  KVISTA NEGATIONS 

If TARGET.COPY occurs in or is embedded in the negation 

space NS of a negation relation that is a node in the conclusion space, 

and space NS either contains more than one node or contains arcs that do 

not share the same from-node (i.e., space NS contains a conjunction). 
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then the next step in the extraction process uses the rule that "~x" can 

be proved by knowing "~(x AND y)" and proving "y". The extraction 

proceeds as follows. If TARGET.COPY occurs In or Is embedded In a 

negation, disjunction, or implication that is an element of space NS, 

then delete all elements of space NS except that negation, disjunction, 

or implication relation. If TARGET.COPY is a node that is an element of 

space NS, then delete all elements of space NS except TARGET.COPY and 

its outgoing arcs. If TARGET.COPY is an arc that is an element of space 

NS, then delete all elements of space NS except the from-node of 

TARGET.COPY and all the outgoing arcs of the from-node. In all cases, 

add the elements deleted from space NS to the QVISTA extension space. 

2.   AN EXAMPLE 

Consider how the KVISTA Extractor would behave  in the 

following example situation.  Assume that the KVISTA contains the 

theorem shown in Figure XII-5 and that node "r" in that theorem is 

the  target  element.   The following  is  a  predicate calculus 

representation of the theorem: 

M(k) OR (Au){[(u IN N) AND (Ax)[(x IN P) IMPLIES (Ey)((y IN Q) 
AND R(u,x,y))]] IMPLIES (Ez)[(z IN S) AND T(u,z)]}. 

To see the outline of the extraction proc33S, consider the following 

propositlonal representation of the theorem; 

M OR {[N AND (P IMPLIES (Q AND R))] IMPLIES (S and T)}. 

The extraction proceeds by setting up M as a subproblem to allow the 

conclusion of the remainder of the theorem. ~(S and T) is then added to 
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FIGURE XII-5  EXAMPLE KVISTA THEOREM 

the subproblem to allow the conclusion ~[N AND (P IMPLIES (Q AND R))]. 

"N" is then added to the subproblem to allow the conclusion ~[P IMPLIES 

(Q AND R)]. This conclusion is transformed into [P AND ~(Q AND R)]. 

"P" is then added to KVISTA and "Q" is added to the subproblem to allow 

the conclusion of ~R. The final conclusion of the derivation is (~R AND 
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P). Figure XII-6 shows the conclusion spaces and the extension 

spaces that are created as the fully quantified extraction takes place, 

and Figure XII-7 shows the QVISTA and KVISTA extension spaces at the 

end of the extraction. Note that the universally quantified variable 

"u" becomes a node in a QVISTA extension space and all subexpressions 

that contain "u" point to that QVISTA node. Placing "u" in the QVISTA 

allows an arbitrary KVISTA binding to be selected for it and restricts 

all subexpressions containing "u" to accept that binding. 

K.  THE QVISTA EXTRACTOR 

Finding bindings for negations, disjunctions, or implications 

occurring in the QVISTA typically requires a derivation. When the 

Binder is unable to bind a selected QVISTA element to a KVISTA target 

element because the selected QVISTA element is em^dded in a 

disjunction, implication, or negation, then the QVISTA Extractor 

described in this section is called to carry out a derivation. 

In this derivation, a subproblem is created in which the selected 

QVISTA element has been 'extracted' and can be bound to the target 

element. The subproblem is constructed so that its solution will imply 

bindings for the original disjunction, implication, or negation. For 

example, if the selected element is "x" in the expression "z IMPLIES (x 

OR y)", then the extractor will initiate a subproblem in which "z" and 

it~yii are assumed in the KVISTA and an attempt is made to prove "x" in 

the QVISTA. 
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CONCLUSION SPACE 

Initially: 
M(k) OR (Au){[(u IN N) AND (Ax)[(x IN P) IMPLIES 
(Ey)((y IN Q) AND R(u,x,y))]] IMPLIES (Ez)[(z IN S) 
AND T(u,z)]} 

After step 1 (Disjunction Rule): 
(Au){[(u IN N) AND (Ax)[(x IN P) IMPLIES 
(Ey)((y IN Q) AND R(u,x,y))]] IMPLIES (Ez)[(z IN S) 
AND T(u,z)]} 

After step 2 (Implication Rule, Antecedent Match): 
-{[(u IN N) AND (Ax)[(x IN P) IMPLIES (Ey) ((y IN Q) 
AND R(u,x,y))]} 

After step 3 (Negation Rule): 
-(Ax)[(x IN P) IMPLIES (Ey)((y IN Q) AND R(u,x,y))] 

After step 4 (negation simplification): 
x, (x IN P), ~(Ey)[(y IN Q) AND R(u,x,y)] 

After step 5 (Negation Rule): 
~R(u,x,y) 

EXTENSION SPACES 

KVISTA  K1: 

QVISTA  Q1; 

x, (x IN P) 
(added during step 5) 

-M(k) 
(added during step 1; accepts bindings from 
initial KVISTA) 

Q2: u, -[(z IN S) AND T(u,z)] 
(added during step 2; accepts bindings from 
initial KVISTA) 

Q3:  (u IN N) 
(added during step 3; accepts bindings from 
initial KVISTA) 

Q4: y, (y IN Q) 
(added during step 5; accepts bindings from 
K1 and the initial KVISTA) 

Derivation conclusion added to KVISTA after deleting K1: 
x, (x IN P), ~R(<binding of u>,x,<binding of y>) 

Figure XII-6.  EXAMPLE OF KVISTA EXTRACTION 
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FIGURE  XII-7      EXTENSION SPACES FOR  KVISTA EXTRACTION  EXAMPLE 

XII-42 

 !_ «.-, ^    ■■■■.„.!-. 



The rules used by the QVISTA Extractor can be thought of in 

proposltional form as being the following: 

To prove "x OR y", assume "~y" and prove "x". 
To prove "x IMPLIES y", either assume "x" and prove "y" or 

assume "~y" and prove ""x". 
To prove "~(x AND y)", assume "y" and prove "~x". 

If the QVISTA element given to the QVISTA Extractor occurs on the 

environment's list of already extracted QVISTA elements, then the 

extractor deactivates the offspring environment created for the target 

element and returns. Otherwise, the extractor adds the QVISTA element 

to the list and initiates the derivation. 

The derivation is carried out in the offspring environment created 

for the target element. It is begun by calling the top-level 

disjunction, implication, or negation relation that the selected QVISTA 

element is embedded in in the "original embedding", making a copy of the 

original embedding, calling that copy the "current extraction", and 

calling the copy of the selected QVISTA element "Q.SELECTION.COPY". 

When making the copy of the original embedding, if an element is bound, 

then its binding is used in the copy. 

The desired subproblems are created and assumptions made by 

repeatedly applying the extraction rules given below to the current 

extraction as long as any of them are applicable. The set of new QVISTA 

extension spaces added to QVISTA by the extraction rules is then 

designated as the current QVISTA extension vista, control is returned to 

the executive, and whenever the offspring environment is selected. 
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bindings are sougnt for the subprobleras in the newly created QVISTA 

extension vista. 

When bindings are found for all the elements of the vista added to 

QVISTA by the extraction rules, the derivation is completed as follows. 

The extension spaces added to QVISTA and to KVISTA by the extraction 

rules are deleted, a copy of the original embedding is added to the 

current KVISTA extension, and bindings are created between the original 

embedding and the newly derived KVISTA copy. 

1.  QVISTA EXTRACTION RULES 

a.  QVISTA DISJUNCTIONS 

If the current extraction is a disjunction, then the next 

step in the extraction process u »es the rule that a disjunction "x OR y,! 

can be proved by assuming ""x1 and then proving "y". The extraction 

proceeds as follows. Let DS denote the disjunct space that 

Q.SELECTION.COPY occurs in. If Q.SELECTION.COPY occurs in or is 

embedded in a negation, disjunction, or implication that is a node in 

space DS, then delete from space DS that negation, disjunction, or 

implication relation, and call the deleted relation the current 

extraction; otherwise, call Q.SELECTION.COPY the current extraction. 

Add to KVISTA a new extension space containing negations of each of the 

disjuncts other than space DS. Then add space DS to QVISTA as a new 

extension space. 
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b.  QVISTA IMPLICATIONS 

i.  CONSEQUENT MATCH 

If the current extraction is an implication IMP and 

Q.SELECTION.COPY occurs in or is embedded in the consequent space CS of 

that implication, then the next step in the extraction process uses the 

rule that an implication "x IMPLIES y" can be proved by assuming "x" and 

then proving "y". The extraction proceeds as follows. If 

Q.SELECTION.COPY occurs in a negation, disjunction, or implication that 

is a node in space CS, then delete from space CS that negation, 

disjunction, or implication relation, and call the deleted relation the 

current extraction; otherwise, call Q.SELECTION.COPY the current 

extraction. Add to KVISTA as a new extension space the IMP's antecedent 

space. Then add to QVISTA as a new extension space those elements of 

space CS that are not in the overlap with the antecedent space. 

ii.  ANTECEDENT MATCH 

If the current extraction is an implication and 

Q.SELECTION.COPY occurs in or is embedded in the antecedent space AS of 

that implication and does not also occur in the consequent space CS of 

that implication, then the next step in the extraction process uses the 

rule that an implication "x IMPLIES y" can be proved by assuming "~y" 

and then proving "~x" . 
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The extraction proceeds as follows. Create a new 

space QS containing a negation relation whose negation space contains 

tnose elemants of space AS that are not in the overlap with space CS, 

and apply the negation simplification rules to the new negation. If 

after the simplification Q.SELECTION.COPY occurs in a negation, 

disjunction, or implication that is a node in space QS, then delete from 

space QS that negation, disjunction, or implication relation, and call 

the deleted relation the current extraction; otherwise, call 

Q.SELECTION.COPY the current extraction. Add to KVISTA a new extension 

space containing those elements that are in th" overlap of spaces AS and 

CS, and a newly created negation relation whose negation space contains 

those elements of space CS that are not elements of the overlap with 

space AS. Then add space NS to QVISTA as a new extension space. 

c.  QVISTA NEGATIONS 

If the current extraction is a negation relation and the 

relation's negation space NS contains not more than one node and no arcs 

that do not share a common from-node (I.e., space NS does not contain a 

conjunction), then add the entire current extraction to the current 

QVISTA extension space since no more extraction need be done. 

Otherwise, space NS is considered to contai.i a conjunction and the next 

step in the extraction process uses the rule that a negated conjunction 

"~(x AND y)" can be proved by assuming "x" and then proving ""y". 
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There are three cases to consider in describing the 

extraction process. The first case is where Q.SELECTION.COPY occurs in 

or is embedded in a negation, disjunction, or implication that is a noac 

in space NS. In that case, delete all elements of space NS except that 

negation, disjunction, or implication relation. Then, create a new 

space ES containing the current extraction, and apply the negation 

simplification rules to the current extraction. After the 

simplification, if Q.SELECTION.COPY occurs in or is embedded in a 

negation, disjunction, or implication that is a node in space ES, then 

delete from space ES that negation, disjunction, or implication 

relation, and call the deleted relation the current extraction; 

otherwise, call Q.SELECTION.COPY the current extraction. Create a new 

extension space for KVISTA containing the elements deleted from space NS 

and then add space ES to QVISTA as a new extension space. 

The second case is where Q.SELECTION.COPY is a node that 

is an element of space NS. In that case, delete all elements of space 

N3 except Q.SELECTION.COPY and its outgoing arcs, and create a new 

extension KVISTA space containing the elements deleted from space NS. 

Then add the current extraction to QVISTA as a new extension space and 

call Q.SELECTION.COPY the new current extraction. 

The third case is where Q.SELECTION.COPY is an arc that 

is an element of space NS. In that case, delete all elements cf space 

NS except the from-node of Q.SELECTION.COPY and all the outgoing arcs of 

the from-node, and create a new KVISTA extension space containing the 
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elements deleted from space NS. Then add the current extraction to 

QVISTA as a new extension space and call Q.SELECTION.COPY the new 

current extraction. 

2.   AN EXAMPLE 

Consider how the QVISTA Extractor would behave  in the 

following example situation.  Assume that the QVISTA contains the 

theorem shown in Figure XII-5 and that node "r" in that theorem is the 

selected QVISTA element.  We repeat here the  predicate calculus 

representation of the theorem: 

M(k) OR (Au){[(u IN N) AND (Ax)[(x IN P) IMPLIES (Ey)((y IN Q) 
AND R(u,x,y))]] IMPLIES (Ez;[(z IN S) AND T(u,z)]}. 

To see the outline of the extraction process, again consider the 

following prepositional representation of the theorem: 

M OR {[N AMD (P IMPLIES (Q AND R))] IMPLIES (S and T)}. 

The extraction proceeds by making the assumption ""M" for use while 

proving the remainder of the theorem. The assumption "~(S AND T)" is 

then made, which can be used while proving ""[N AND (P IMPLIES (Q AND 

R))]". The assumption "N" is then made to be used while proving n~[P 

IMPLIES (Q AND R)]". This subproblem is transformed into "P AND "(Q AND 

R)". The assumption "Q" is then made to be used while proving "~R". 

The extraction ends leaving the subproblems "~R" and "P" to be solved. 

Figure XII-8 shows the current extractions and the extension spaces 

that are created as the fully quantified extraction takes place, and 

Figure XII-9 shows the QVISTA and KVISTA extension spaces at the end 

of the extraction. 
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CURRENT EXTRACTIONS 

Initially: 
M(k) OR (AuH[(u IN N) AND (Ax)[(x IN P) IMPLIE3 
(Ey)((y IN Ci) AND R(u,x,y))]] IMPLIES (F»U(2 IN S) 
AND T(u,z)]} 

After s i 1 (Dipjunction Rule): 
(Au   u IN N) AND (Ax)[(x IN P) IMPLIES (Ey)((y IN Q) 
AND    x,y))]] IMPLIES (Ez)[(z IN S) AND T(u,z)]} 

After step 2 (Implication Rule, Antecedent Match): 
~{[(u IN N) AND U>:)[(x IN P) IMPLIES (Ey)((y IN Q) 
AND R(u,x,y))]} 

After step 3 (the portion of the Negation Rule that 
precedes simplification): 
-(A:.)[(x IN P) IMPLIES (Ey)((y IN Q) AND R(u,x,y))] 

After «tep M (the r-mainder of the Negation Rule): 
-(Ey)[(y IN Q) AND R(u,x,y)] 

After step 5 (Negation Rule): 
~R(u,x,y) 

EXTENSION SPACES 

QVISTA  Q1:  x, (x IN P) 
(added during step 4; accepts bindings from 
K3, K2, K1, and the initial KVISTA): 

Q2:  -R(u,x,y) 
(added during step 5; accepts bindings from 
K4, K3, K2, K1, and the initial KVISTA): 

KVISTA  K1:  ~M(k) 
(added during step 1) 

K2:  u, ~(Ez)[(z IN S) AND T(u,z)] 
(added durinc step 2) 

K3:  (u IN N) 
(added during step 4) 

K4:  y, (y IN Q) 
(added during step 5) 

Figure XII-8.  EXAMPLE OF QVISTA EXTRACTION 
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FIGURE XII-9      LXTENSION SPACES FOR QVISTA  F.XTRACTION  EXAMPLE 
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L.   PROCEDURAL AUGMENTATION 

We are experimenting with various facilities for allowing the 

deduction component to be augmented with procedures embodying additional 

derivational rules and strategies. In our discussion here, we will 

focus on augmentation in the form of special-purpose functions for 

generating candidate bindings. These functions are used in preference 

to the standard function for generating candidates whenever possible. 

(The standard generator function is described above in Section E). The 

following subsections describe a basic set of such special-purpose 

generators. 

1 E ARC WITH BOUND NODES 

If the selected QVISTA element is an e or s arc having a bound 

from-node and a bound to-node, then look for a binding by calling one of 

the derivation functions that chains through the taxonomies. If the 

derivation function returns a "Yes" answer and the selected arc has 

positive parity, then create the derived arc in the current KVISTA 

extension space and generate it as the only candidate binding. If the 

derivation function returns a "No" answer and the selected arc has 

negative parity, then create a negation relation in the current KVISTA 

extension space with a negation space containing only the derived arc 

and generate the derived arc as the only candidate binding. Otherwise 

(.i.e., if the derivation function returns an "Unknown" answer or the 

arc's parity prevents a binding), call the standard candidate bindings 

generator. 
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2.  SETS DEFINED IN THE QVISTA 

A query may specify a set and then ask about some property of 

that set. For example, the query "Did General Electric build any of the 

nuclear submarines owned by the U.S.?" might be interpreted as "Let 

US.NUCS be the set of all nuclear submarines owned by the U.S.; did 

General Electric build any member of US.NUCS?" Such sets that are 

specified in the query can be arbitrarily created in the KVISTA along 

with a collection of necessary conditions for membership, a collection 

of sufficient conditions for membership, or a single condition that is 

both necessary and sufficient for membership. 

A necessary condition for membership in some set represented 

by a node X is expressed as an implication whose antecedent space 

contains only a single node with a single outgoing e arc to node X. A 

sufficient condition for membership in the X set is expressed as an 

implication whose consequent space contains only a single node with a 

single outgoing e arc to node X. 

The function in the deduction component that creates these 

KVISTA subsets proceeds as follows. If the selected Q.ISTA element ic a 

node, QN, that has no outgoing e arcs and that has an outgoing s arc 

whose to-node is bound to some KVISTA node KX, then create in the 

current KVISTA extension space a new node, KN, to be the binding for 

node QN and a new arc KN—s—>KX. In addition, there are three 

alternative ways in which necessary and/or sufficient conditions c^n be 

created for the KN set. 
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The first option is to create in the current KVI3TA extension 

a copy of any implications in the QVISTA that represent necessary 

conditions for membership in the set represented by node QN. 

The second option can be taken only if KX is the node 

UNIVERSAL. In that case, copies can be created in the current KVISTA 

extension space of any implications in the QVISTA that represent 

sufficient conditions for membership in the QN set. 

The third option can be taken only if KX is the node 

UNIVERSAL. In that case, a copy can be created in the current KVISTA 

extension space of any double implication in the QVISTA that is both a 

necessary and a sufficient condition for membership in the QN set. 

When making these copies, if an element is bound, then its 

binding is used in the copy. The generator completes its work by 

generating a set of bindings for node QN, the outgoing s arc for QN, and 

all the unbound QVISTA elements that are part of copied implications. 

3.   APPLICATIONS AND KEYED-APPLICATIONS 

Special-purpose generator functions Pvist to create elements 

of the APPLICATIONS and KEYED-APPLICATIONS sets when they are needed by 

calling the appropriate functions. For example, if the KVISTA Extractor 

adds to the QVISTA the antecedent of the implication shown in Figure 

XII-10 and the to-nodes of the "addendl" and "addenda" arcs are bound, 

then the "plus" function can be called to obtain a sum and create in the 
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IMPLICATIONS 

SUMS 

FIGURE  XII-10      RELATING SUMS SITUATIONS TO  FUNCTION PLUS 
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KVISTA an element of APPLICATIONS that will provide bindings for the 

corresponding nodes and arcs in the antecedent. This example is 

discussed in Chapter V, Section F.2, in connection with the same figure. 

When a QVISTA node is selected that has an outgoing e arc 

whose to-node is bound to APPLICATIONS, a special purpose generator of 

candidate bindings for APPLICATIONS is called. This generator checks to 

see if all the to-nodes of the selected node's "ARGi" case arcs are 

bound. If they are, then it calls the indicated function with the 

bindings of the "ARGi" arcs' to-nodes as arguments, creates a new 

element of the APPLICATIONS set in the current KVISTA extension space 

using ths result produced by the function, and generates a binding of 

the selected QVISTA node to the newly created APPLICATIONS set element. 

If not all of the to-nodes of the ARGi arcs are bound, then the selected 

QVISTA node is added to the current environment's WAITING.Q.ELEMENTS and 

a "demon" is attached to one of the unbound to-nodes. 

Demons are INTERLISP forms or stack pointers (Teitelman, 1975, 

Section 12) that can be associated with any QVISTA element in an 

environment. Whenever a QVISTA element is bound, any demons that are 

associated with that element in the current environment are called. The 

demons attached to the to-nodes of ARGi arcs by the candidate bindings 

generator of the APPLICATIONS set check to see if the to-nodes of the 

other ARGi arcs are bound. If they are, the demon removes the from-node 

of the ARGi arcs from the WAITING.Q.ELEMENTS list. Otherwise, it 

attaches itself to an unbound to-node of an ARGi arc and pauses. 
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When a QVISTA node is selected that has an outgoing e arc 

whose to-node Is bound to KEYED-APPLICATIONS, a special-purpose 

generator of candidate bindings for KEYED-APPLICATIONS Is called. The 

generator conducts a 'key set bindings test' to determine If the to- 

nodes of all the ARG1 aros 1»; any of the key sets are bound. If they 

are, then It calls the KEYED-APPLICATION element's functlor with an a- 

11st containing the available bindings of ARG1 arcs' to-nodes and 

indicating with question marks the desired missing bindings, creates a 

new element of the KEYED-APPLICATIONS set in the current KVISTA 

extension space using the results generated by the function, and 

generates a binding of the selected QVISTA node to the newly created 

KEYED-APPLICATIONS set element. If not all of the to-nodes of the ARGi 

arcs in any key set are bound, then the selected QVISTA node is added to 

the current environment's WAITING.Q.ELEMENTS and a demon is attached to 

the tc-nodes of at least one ARGI arc in each key set. These demons 

when called, repeat the key set bindings test on ARGi to-nodes. If the 

to-nodes of all the ARGi arcs in some key set are bound, then the ARGi 

arcs' from-node is removed from the WAITING.Q.ELEMENTS list. Otherwise, 

demons are attached as before.* 

If the function called by the APPLICATIONS or KEY-APPLICATIONS 

candidate binding generator is a generator, then each time the candidate 

binding generator is pulsed, it pulses the function to produce a new 

element of either the APPLICATIONS or KEY-APPLICATIONS set. 

• This KEYED-APPLICATIONS mechanism was motivated by a desire to 
interface the deduction component with a data base management system. 
Jonathan Slocum designed and implemented the interface. 
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4.   EFFICIENCY CONSIDERATIONS 

The special-purpose generators for the APPLICATIONS and KEY- 

APPLICATUNS sets are an adequate facility for dealing with 'evaluable 

predicates' (Green, 1969) in the deduction component. The mechanism is 

simple, and the representation explicitly indicates the functions, their 

arguments, their results, and the additional knowledge provided by their 

results. 

However, a significant gain in efficiency can be obtained at 

the expense of the representation's explicitness by allowing functions 

for generating candidate bindings to be attached to any KVISTA node that 

represents a set. These functions would be used as generators of 

candidate bindings for QVISTA nodes that are constrained to be elements 

of the set the function is attached to. For example, the APPLICATIONS 

and KEYED-APPLICATIONS generators would be attached to the APPLICATIONS 

and KEYED-APPLICATIONS nodes and would be called by this mechanism. 

This facility would allow computations such as data base accesses, sums, 

and products to be done directly by the generators without the need to 

apply the deduction component's derivational machinery to KVISTA 

theorems. The degree to which one should sacrifice the explicitness and 

"purity" of the representation with this mechanism in order to gain 

derivational efficiency, it seems, must be decided by considering the 

goals for each particular use of the system. 
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M.  TWO EXAMPLES 

Consider again how the deduction component would answer the example 

query "Who built the Henry L. Stimson?" in Figure XII-2. An initial 

environment, EO, would be created in the environment tree and selected 

as the "CURRENT.ENVIRONMENT". A QVISTA element, say node Y, would be 

selected as the "Q.SELECTION", and the standard function for generating 

candidate bindings would be used to create a candidate bindings 

generator for Y. The generator would consider as candidate bindings the 

from-nodes of either incoming obj arcs to node Henry.L.Stimson or 

incoming "e" arcs to node BUILDINGS. For the KVISTA shown, node B would 

be generated as the "TARGET.ELEMENT". 

RAMIFY would be given the (Y,B) binding and would determine that 

unique bindings are implied for the remainder of the elements in QVISTA 

as follows. Since both Y and B have outgoing agt and obj case arcs, Y's 

case arcs must be bound to B's corresponding case arcs, which implies 

bindings for the case arcs' to-nodes. In particular, node X must be 

bound to node General.Dynamics. Since both nodes X and Y have outgoing 

"e" arcs with bound to-nodes, RAMIFY will test whether the set 

membership of those nodes is consistent with the set membership of their 

bindings. This test employs the derivation functions that follow subset 

chains, and therefore the required "e" arc between General.Dynamics and 

LEGAL.PERSONS is derived. 
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RAMIFY would output its set of implied bindings, and control would 

be given to the Binder. Since both Y and B are in the top level of 

their vistas, all the bindings would be made and control would return to 

the executive. When no further unbound QVISTA elements can be found by 

the executive, the set of bindings with a "Yes" answer would be 

generated. 

Now consider how the deduction component would answer the same 

example query given the KVISTA shown in Figure XII-3. In this case the 

candidate bindings generator for node Y would generate node "b" as a 

candidate. Given the (Y,b) binding, RAMIFY would determine bindings for 

node Y'» outgoing arcs, a binding of node X to node General.Dynamics, 

and an instantiation of node Z to node Henry.L.Stimson. 

Since the candidate binding for node Y (namely, node b) is not in 

the top level of the KVISTA, the Binder would call the KVISTA Extractor 

to derive a binding for node Y. Node "b" is the target and it occurs in 

the consequent of an implication. Hence, the KVISTA Extractor would add 

an extension vista to QVISTA consisting of one space containing an "e" 

arc from node Henry.L.Stimson (the instantiation of node Z) to node 

LAFAYETTES, and would then return control to the executive. 

When the executive selects environment El as the current 

environment, the arc Henry.L.Stimson—e~>LAFAYETTES would be selected 

and the special-purpose candidate bindings generator for "e" arcs with 

bound to- and from-nodes would be used to find a matching arc. RAMIFY 
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would not find any additional bindings implied by the binding of the "e" 

arc, and the Binder would be able to make the arc binding. 

The binding of the "e" arc would complete the binding of the 

extension vista (i.e., the subproblem) added to QVISTA by the KVISTA 

Extractor, and therefore would cause the QVISTA extension vista to be 

deleted and an addition to be made to the current KVISTA extension 

space. The addition would be a copy of the elements in the 

implication's consequent space with the to-node of the obj arc in the 

copy being node Henry.L.Stiuison. The KVISTA would then contain an 

explicit match for the QVISTA elements and the deduction component would 

find the matches as in the first example, binding the QVISTA elements to 

the newly derived copy of the implication's consequent. 
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XIII  GENERATING VERBAL RESPONSES 

Prepared by Jonathan Slocum 

CONTENTS: 

A. Introduction 
B. Generation Templates 
C. Noun Phrases 
D. Discussion 
E. Looking Ahead 

A.   INTRODUCTION 

When an input utterance has been analyzed and the semantic content 

of an appropriate response has been developed (for example, the answer 

to a question), the problem of formulating this response for 

presentation to the user remains. It is the responsibility of the 

generator, interpreting a grammar, to produce an English output from the 

given semantic information. This program determines exactly how the 

response may be formulated — as a noun phrase, a sentence, or a 

sequence of sentences. It chooses words and phrases with which to 

express the semantic content, as well as a syntactic frame for their 

organization, and it produces the response in 'text' form. This text 

string can be transformed into a sequence of phonemes via a word 

pronunciation dictionary and output by a VOTRAX speech synthesizer. 

However, in the current system, no sentence intonation or stress 
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contouring is performed; that is, the word pronunciation is context- 

free. Therefore, the production of speech per se is relatively 

uninteresting and will not be mentioned further. 

B.  GENERATION TEMPLATES 

In the semantic component of the speech understanding system, 

situations and events are verb-dominated. By this, we mean that events 

and situations are expressed by means of verbs or verb-like constructs; 

they take as 'arguments' entitles that are usually expressed by nouns or 

noun-like constructs.  As a result, the grammar rules that generate 

sentences depend primarily on the verb, and secondarily on its 

arguments. 

Even a cursory study of a few hundred English verbs shows that they 

impose definite, regular constraints on the syntactic forms of their 

arguments in sentences. These syntactic constraints depend on 

particular senses of particular verbs; thus, it seems inappropriate io 

maintain a global, monolithic grammar for the purposes of geneiation. 

This fact has not been noted in previous work on language generation In 

which verbs were studied whose arguinents were exclusively noun phrases 

(NP) or prepositional phrases (PP). However, there are many instances 

of constructs other than NP or PP. Examples Include: choose "to go", 

authorize "there to be a demonstration", consider "it easy", see "her 

drive away", imagine "him laughing", find "her murdered", wonder "how to 

do it", ask "why I believe", suggest "sending them  away".  In 
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particular, consider the difference between "stop to help" and "stop 

helping": Tie different senses of "stop" demand different syntactic 

realizations. For this reasc , we associate verbs and grammar rules (in 

the form of templates) with specific worr! senses (prototypical nodes) in 

the net. 

Our examples will employ simplified semantic net structures. In 

the net fragment in Figure XIII-1, the U.S. and the U.K. are 

elements (e) of the ^et of countries. At agents (agt) they each 

participc s in OWNing situations involving as OLjects (obj) particular 

ships; each ship is an element of a particular oc-t [class] of ships; 

each class is a subset is) of a particular set [type] of ships; each 

type is a subset of the set of all ships. 

Now, consider the node in Figure XIII-1 labeled S.OWN.  This node 

is the prototypical OWN, in that it incorporates the meaning of the 

situation of owning  (including any semantic constraints  on its 

arguments), and in that all instances of owni j situations are related 

to it. With this node we associate the appropriate verbs (OWN, POSSESS, 

HAVE, BELONG) and their  'generation templates.' One template will not 

suffice for all pour verbs;  for instance, the syntactic sublet of the 

verb BELONG is the OBJect case argument, while jn the otY   r  (active) 

verbs the subject is the AGenT: 

»Cf owns OBJ ; OBJ is owned by AGT 
AGT possesses „.3J ; OBJ is possessed by AGT 
AGT has OBJ ; OBJ belongs .0 AGT 
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FIGURE XIII-1     FRAGMENT OF A SEMANTIC NETWORK 
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So we employ the corresponding templates: 

[OWN ((NP AGT) Vact (NP OBJ)) ((NP OBJ) Vpas BY (NP ACT))] 
[POSSESS ((NP AGT) Vact (NP OBJ)) ((NP OBJ) Vpas BY (NP AGT))] 
[HAVE ((NP AGT) Vact (NP OBJ))] 
[BELONG ((NP OBJ) Vact TO (NP AGT))] 

A set of templates like these is associated with every 'prototype 

verb' node in the semantic net. The sentence generation algorithms are 

then fairly simple (see Figure XIII-2), and constituent functions 

(e.g., NP) are responsible for controlling subcomponents of the grammar 

— generally, through appropriate recursive calls to the interpreter. 

For example, in order to speak about a particular owning situation (such 

as OWN.2), we pursue the hierarchy to find the 'canonical' S.OWN, choose 

a verb (say, BELONG) and an associated template [(NP OBJ) Vact TO (NP 

AGT)], and generate the constituents: 

verb [OWN.2 ~> S.OWN] —> belong 

template —> [(NP OBJ) Vact TO (NP AGT)] 

(NP OBJ) —> [NP WHALE] —> the Whale 
Vact —> belongs 

TO ~> to 
(NP AGT) ~> [NP U.S.] —> the United States 
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I 

TO GENERATE A RESPONSE: 
1. Generate-a-sentence; if succeed, return sentence 
2. Generate-an-NP; if succeed, return noun phrase 
3. Else FAIL 

TO GENERATE-A-SENTENCE: 
1. Generate-a-clause 

TO GENERATE-A-CLAUSE: 
1. Choose-a-verb; if none available, FAIL 
2. Choose-a-template; if none available, go to step 1 
3. Apply-the-template; if fail, go to step 2 
4. Generate-verb-string 
'J. Concatenate the subject, verb string, and predicate 
6. Return results 

TO CHOOSE-A-VERB (-NOUN): 
1. Ret-ieve a verb (noun) associated with current node; 

if fcund, return it 
2. Take i step up hierarchy for new current node 
3. If succeed, go to step 1; else FAIL 

TO CHOOSE-A-TEMPLA^E: 
1. Retrieve a template associated with current node and word 
2. If found, retirn it; else FAIL 

TO APPLY-THE-TEMPLATE: 
1. Initialize RESULTS to be empty 
2. If template is empty, return RESULTS 
3. Evaluate-first-constituent; if unsuccessful, FAIL 
M. Concatenate RESULTS and answer from step 3 
5. niscard first constituent from template 
6. Go to step 2 

TO EVALUATE-FIRST-CONSTITUENT: 
1. If constituent is atomic, return it (unevaluated) 
2. (Constituent is a list); apply function named as first 

item in constituent to network nodes indicated by rest 
of constituent 

3. Return results of step 2 

TO GENERATE-AN-NP: 
1. Choose-a-noun; if none available, FAIL 
2. Choose-a-template; if none available, go to step 1 
3. Apply-the-template; if fail, go to step 2 
4. Return results of step 3 

Figure XIII-2.  THE BASIC GENERATION ALGORITHMS 
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C.  NOUN PHRASES 

In the current generator, noun templates are used to control noun 

phrase generation. Much like verb templates, noun templates order the 

constituents in the phrase and indicate how each constituent is to be 

generated by naming a function to be called with the network 

constituent. For example, with the node WHALE we associate the template 

[WHALE (THE (N))], which enables us to speak of the particular submarine 

named "Whale" as "the Whale." Associating, e.g., [STURGEON ((DET) (N))] 

with the node STURGEONS (the set of all "Sturgeon class" submarines) 

allows us to speak of an indeterminate member of that class as "a 

Sturgeon," or of a subset of that class as "the Sturgeons." And 

associating, e.g., [SUBMARINE ((DET) (N))] with the node SUBMARINES (the 

set of all submarines) allows us to speak of an indeterminate submarine 

as "a submarine," or of a subset of submarines as "the submarines." NP 

templates like this are distributed throughout the network hierarchy. 

We do not consider this method to be entirely sufficient, but it handles 

all current requirements. 
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D. DISCUSSION 

In theory, the set of possible English sentences is infinite. The 

obvious question then arises, "If one tries to account for them with 

templates, won't there be an infinite number of templates?" The simple 

answer is, "No, for some of the same reasons that allow a finite grammar 

to generate an infinite number of strings." Sentences of arbitrary 

lengtn are produced by arbitrary embedding and arbitrary conjunction, 

not uy including arbitrary numbers of distinct case arguments. Even so, 

the number of basic syntactic patterns (devoid of case names and 

particular prepositions) might seem to be extremely large. Evidence, 

however, is to the contrary. Hornby and his colleagues (1948, 195^) 

show the number of patterns to be small. The eventual number of 

templates would appear to be several times the number of patterns, owing 

to the substitution of particular prepositions for 'prep' in the 

syntactic patterns, and the assignment of different case names to a 

particular constituent, depending on the particular verb used. 

One may question whether templates should be stored for passives; 

certainly, they could be derived. On the other hand, neglecting to 

store them would force us to indicate with each verb (sense), whether it 

can (or, sometimes, must) be passivized. Specifying 'transitive' is not 

enough since there are transitive verbs (i.e., verbs that take an 

object) that cannot be passivized. Since we have to store the 

information anyway, we can save some code and computing time by storing 

the passive template. 
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There are several reasons for generating the verb after the major 

arguments. First, the subject must be generated so that the verb can be 

made to agree in number. Second, certain word senses are true of verb- 

particle combinations while not of the isolated verb. Sinne particles 

must appear after objects that are short (like pronouns) but before 

objects that are long (like noun phrases), the particle must be 

positioned after the object phrase is generated. Finally, insertion of 

some adverbials (e.g., "not") requires an auxiliary verb; thus verb 

generation must follow adverbial generation, so that any use of mid- 

position adverbials will affect the generation of the verb string. 

E.   LOOKING AHEAD 

There are some sources of potential template proliferation, an 

important one being the combinatorial arrangements of the case arguments 

of time, manner, and other adverbials, as well as other (possibly non- 

adverbial) case arguments like source, goal, and instrument. Some of 

these arguments are rather constrained in their positions in the 

sentence, but others may appear almost anywhere: 

"Yesterday the ship sailed from the lighthouse to the dock." 
"The ship sailed from the lighthouse to the dock yesterday." 
"From the lighthouse the ship sailed yesterday to the dock." 

It is of course unreasonable to try to cover all these cases with 

templates; instead we will leave insertion of these adverbial arguments 

to a single heuristic routine. There are several justifications for 

this solution, among them: the particular form of the verb cannot be 
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generated until the subject, object(s), and complement(s) have been 

generated; these adverbials are so universal as to appear in almost any 

of the templates and in several possible places; and there are heuristic 

constraints involved in the placement of arguments. 

There are no well-formulated rules accounting for noun phrases in 

English; indeed, there are few well-established guidelines other than 

that the hearer must be able to resolve the pronouns and neun phrases to 

their referents. The speaker should employ anaphora in ord^r to avoid 

repetition, but only when his 'model of the hearer' indicates chat there 

will be no ambiguity. Problems include: whether to use a proper noun 

(name) if the referent has one, or whether to employ a pronoun or common 

noun; in the latter case, which of the available common nouns, vhat 

determiners to use, what adjectives and postmodifiers, etc. The 

generator should piece these constituents together in some reasonable 

order, performing appropriate lexical transformations, and recursively 

expanding any constituent phrases. 

Some low-power pronominalization rules can be directly incorporated 

in a grammar — reflexivization, for example. Otherwise, a grammar 

should not determine the components of a constituent phrase independent 

of the conversational context. This situation has not been universally 

recognized, but it is becoming increasingly clear that a discourse 

module, operating on some model of the hearer, must be consulted during 

the generation phase. The generator should pass any 'noun' constituent 

to the discourse module (perhaps with its recommendation about how to 
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produce the constituent); the module must determine if a pronoun or bare 

noun is ambiguous to the hearer, and, if so, what to add to the noun in 

order to make the desired referent clear. In the future, more general 

templates, for example, 

[(DET) (Adj QUAD (Adj SIZE) (Adj SHAPE) (Adj COLOR) (N)] , 

may be employed, and a discourse module will decide for each template 

constituent whether it is to appear in the phrase. 

It would appear that, for generation purposes at least, our modular 

grammar has an important advantage over a 'monolithic' grammar: it 

clearly indicates the syntactic idiosyncracies imposed by particular 

word choices. The storage requirements of the two formalisms are 

probably similar. The modular grammar will probably require more rules, 

but a monolithic grammar must in turn incorporate many 'applicability 

tests' for each of its rules. In effect, these tests are precomputed 

during the construction of the modular grammar. Further research should 

enable us to verify these claims. 
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