
r
U.S. DEPARTMENT OF COMMERCE
National Technical Information Strata

AD-A03i| 606

SPEECH UNDERSTANDING RESEARCH

STANFORD RESEARCH INSTITUTE

MENLO PARK, CALIFORNIA

OCTOBER 1976

"^,I'-**"' ■ li„J.-««„J,iJ(JI-Ur4J-,U._.J. L_4JlJllH|il8|B»!P^"1iü.„LLt . . .11., .,I.III..1J!_»II ■

C24Q99

Final Technical Report
Covering the Period 15 October 1975 through 14 October 1976

SPEECH UNDERSTANDING RESEARCH

Edited by: DONALD E. WALKER

With Contributions by: WILLIAM H. PAXTON
GARY G. HENDRIX
BARBARA J. GROSZ
RICHARD E. FIKES

JONATHAN SLOCUM
ANN E. ROBINSON
JANE J. ROBINSON
DONALD E. WALKER

Prepared for:

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
ARLINGTON, VIRGINIA 22209

CONTRACT DAAG29-76-C-0011
ARPA Order No. 2903
Program Element Code 62706E

Approved for public release; distribution unlimited.

D D C
irpf?sr?nn nr?|

JA« 81 tsn

IEI5EU
D

DTE u

^EID STANFORD RESEARCH INSTITUTE
Menlo Park. California 94025 • U.S.A.

REPRODUCED BY
NATIONAL TECHNICAL

INFORMATION SERVICE
U. S. DEPARTMENT OF COMMERCE

SPRINQFIELD, VA. 221U

±=^ "~=-^^-—^

fi.gw.'MHn^^'.mv.n . mm •*- •-■■■Ji.'ril-JMfcJ

STANFORD RESEARCH INSTITUTE
Menlo Park, C?llfornl? 9*025

Approved for public releese;
distribution unlimited.

October 1976

Final Technicpl Report
Covering the Period 15 October 1975 through IM October 1976

Stanford Research Institute Project 1I762

SPEECH UNDERSTANDING RESEARCH

Edited By

Donald E. Walker
Project Leader

(415) 326-6200, Ext. 3071

With Contributions by

D D C
ISEQÜJ2C
JAN 21 1977

EISMTTE
D

William H. Paxton, Gary G. Hendrix, Barbara J. Grosz, Eichard E. Fikes,
Jonathan Slocum, Ann E. Robinson, Jane J. Robinson, and Donald E. Walker

CONTRACT DAAG29-76-C-0011
ARPA Order No. 2903
Program Element Code 62706E

Effective Date: 15 October 1975
Expiration Date: 14 October 1976

Amount of CoPtraets $307,710

Prepared for

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
ARLIUGTON, VIRGINIA 22209

The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the
U.S. Government.

Approved by:

PETER. E. HART, Director
Artificial Intelligence Cent

EARLE D. JONES, Associate Executive Director
Information Science and Engineering Division 4**A$*r*

BLANK PAGES
IN THIS
DOCUMENT
WERE NOT
FILMED

IT»

Mr

wtimiMMi ^1
IK : ti MM n
iM<!«r'j- "i a
mmi .'■•

r M4. -.I

•ttWlKTiW VM.;'.'.i'Y GNB

ll«~" .r STKiAL

ABSTRACT

This report Is the final report In a series describing research
performed by Stanford Research Institute over the past five years to
develop the technology that will allow speech understanding systems to
be designed and implemented for a variety of different task domains and
environmental constraints.

Chapter I provides an overview of the speech understanding system
we have developed, together with an example showing how an utterance is
processed and some historical background. Chapters II and III present
detailed desriptions of the definition system and the executive system
that provide overall integration and control. Chapter IV discusses the
results of experiments conducted to test alternative system control
strategies. Chapters V, VI, and VII describe the representation of
semantic knowledge, present a model of the problem domain, and show how
semantic processing is used in the interpretation of an utterance.
Chapters VIII, IX, and X deal with discourse and include discussions of
dialog collection and analysis, the resolution of definite noun phrases,
and ellipsis. Chapters XI, XII, and XIII indicate how the system
responds to the interpreted utterance, how deduction is used both to
find an answer and in the interpretation process, and how the system
generates replies In English to a user. A final chapter lists
publications and reports documenting the research we have performed
on speech understanding during the past five years.

Preceding page blank

in

CONTENTS

LIST OF ILLUSTRATIONS ix

I INTRODUCTION 1-1

A. ORIENTATION 1-1

B. AN OVERVIEW OF THE SPEECH UNDERSTANDING SYSTEM . . I-i»

C. AN EXAMPLE TO ILLUSTRATE PROCESSING IN THE SYSTEM . I-1H

D. AN HISTORICAL PERSPECTIVE 1-25

II THE DEFINITION SYSTEM II-1

A. INTRODUCTION II-1

B. THE METALANGUAGE II-2

C. A VERSION OF THE SRI LANGUAGE DEFINITION 11-15

D. THE DEFINITION COMPILER . 11-27

E. DISCUSSION 11-12

III THE EXECUTIVE SYSTEM III-1

A. INTRODUCTION 111-2

B. PARSE NET III-M

C. OVERVIEW OF THE EXECUTIVE III-7

D. DETAILS OF THE EXECUTIVE ... 111-20

2. DISCUSSION 111-75

Preceding page blank

msmmmM.-**

IV EXPERIMENTAL STUDIES IV-1

A. INTRODUCTION IV-1

B. EXPERIMENT 1 — MAPPER PERFORMANCE IV-2

C. MAPPER SIMULATION IV-5

D. EXPERIMENT 2 — FANOUT IV-9

E. EXPERIMENT 3 — CONTROL STRATEGY DESIGN CHOICES . . IV-13

?. EXPERIMENT k — GAPS AND OVERLAPS IV-37

G. EXPERIMENT 5 ~ INCREASED VOCABULARY AND IMPROVED
ACOUSTICS IV~39

H. DETAILED MEASUREMENTS OF EXECUTIVE OPERATION . , . IV-4U

I. CONCLUSION IV-53

J. TEST SENTENCES IV-5M

V THE REPRESENTATION OF SEMANTIC KNOWLEDGE V-1

A. INTRODUCTION V-2

B. THE ROLE OF SEMANTIC REPRESENTATION V-4

C. BASIC NETWORK FOTIONS V-10

D. PARTITIONING V-20

E. HIGHER-ORDER STRUCTURES V-30

F. AUGMENTATIONS V-85

G. SUPPORTS FOR DIVERSE TASKS V-93

H. LINEARIZED NET NOTATION V-95

I. APPLYING THE REPRESENTATION V-99

VI THE MODEL OF THE DOMAIN VI-1

vl

VII SEMANTIC ASPECTS OF TFANSLATION VII-1

A. INTRODUCTION VII-2

B. PHASE I: SISMftNTIC COMPOSITION VII-5

C. PHASE II: QUANTIFICATION VII-36

D. THE USE OF CASE INFORMATION VII-55

VIII DISCOURSE ANALYSIS . VIII-1

A. INTRODUCTION VIII-2

B. DIALOG COLLECTION AND ANALYSIS VIII-5

C. COLLECTION OF THE DIALOGS VIiI-7

D. ANALYSIS OF THE DIALOGS VIII-15

IX RESOLVING DEFINITE NOUN PHRASES IX-1

A. INTRODUCTION IX-1

B. THE FOCUS SPACE ENCODING OF CONTEXT IX-9

C. DEFNP RESOLUTION IN CONTEXT IX-20

X ELLIPSIS X-1

A. OVERVIEW X-1

B. SLOT DETERMINATION X-5

C. COMPLETING THE UTTERANCE X-11

D. ELLIPTICAL RELATIONAL NOUN PHRASES X-26

E. LIMITATIONS AND EXTENSIONS X-29

XI RESPONDING ON THE BASIS OF THE SEMANTIC TRANSLATION . . XI-1

A. PERSPECTIVE XI-1

B. INTERACTIONS WITH THE DEDUCTION COMPONENT AND THE
ENGLISH GENERATOR XI-3

vll

: i

I

XII THE DEDUCTION COMPONENT XII-1

A. INTRODUCTION XII-2

B. ELEMENT PARITY XII-10

C. THE ENVIRONMENT TREE XII-14

D. THE EXECUTIVE FOR THE DEDUCTIVE COMPONENT XII-18

E. GENERATING CANDIDATE BINDINGS FOR A SELECTED QVISTA
ELEMENT XII-22

F. RAMIFICATIONS OF A PROPOSED BINDING XII-23

G. THE BINDER XII-26

H. DERIVING ELEMENT-OF AND SUBSET RELATIONS USING
TAXONOMIES XII-31

I. SIMPLIFICATION OF NEGATIONS XII-33

J. THE KVISTA EXTRACTOR XII-31»

K. THE OVISTA EXTRACTOR XII-»n

L. PROCEDURAL AUGMENTATION XII-51

M. TWO EXAMPLES XII-58

XIII GENERATING VERBAL RESPONSES XIII-1

A. INTRODUCTION XIII-1

B. GENERATION TEMPLATES XIII-2

C. NOUN PHRASES XIII-7

D. DISCUSSION XIII-8

E. LOCKING AHEAD XIII-9

XIV REFERENCES XIV-1

XV SRI SPEECH UNDERSTANDING RESEARCH PUBLICATIONS AND REPORTS XV-1

vlil

- .-.. --^^ ^ _, - ^-^.-■..^-^^

ILLUSTRATIONS

1-1. SRI CONTRIBUTIONS TO SPEECH UNDERSTANDING 1-4

1-2. SYSTEM ORGANIZATION 1-5

II-1. PART OF A COMPOSITION RULE II-U

II-2. SAMPLE LEXICAL ENTRY II-8

II-3. DECLARATIONS 11-11

II-4. LEXICON 11-12

II-5. RULES 11-11

II-6. GLOBAL DECLARATIONS 11-17

II-7. PHRASE STRUCTURE PAPIS OF NUMBER RULES 11-19

II-8. SMALLNUM RULE DEFINITION 11-21

II-9. A PHRASE STRUCTURE DECLARATION AND
ITS CORRESPONDING GRAPH 11-31

11-10,. NP GRAPH BEFORE ADDITION OF EXTRA NIL ARCS II-3M

III-1. EXECUTIVE TASKS III-9

I1I-2. A CONSUMER PATH III-13

III-3. CREATE TERMINAL PHRASE 111-22

III-1. DISTRIBUTE A PHRASE TO CONSUMERS 111-24

III-5. ADD CONSTITUENT TO CONSUMER 111-26

III-6. PART 1 OF PRELIMINARY ADD-CONSTITUENT TESTS . . . 111-28

III-7. PART 2 OF PRELIMINARY ADD-CONSTITUENT TESTS . . . 111-30

III-8. COMPLETE-PHRASE PROCEDURE 111-33

III-9. CREATE AN INCOMPLETE PHRASE 1X1-38

ix
i

■3

■^■fcfct^.-WiU.

111-11. FILL-OUT-SUBNET PROCEDURE III-'lU

III-IO. CREATE SUBNET PROCEDURE 111-42

111-12. TRAVERSE SUBNET PROCEDURE 111-16

III-1?. NP-PREPP PARSE NET LOOP III-1»7

111-14. PASS 1 OF RATING ASSIGNMENT 111-50

111-15. PASS 2 OF RATING ASSIGNMENT . 111-51

IV-1. MAPPER PERFORMANCE IV-4

IV-2. SCORE DISTRIBUTIONS FOR FALSE ALARMS AND HITS . . IV-5

IV-3. CUMULATIVE DISTRIBUTIONS OF HIT AND FALSE-ALARM SCORES IV-6

IV-ll. FANOUT HISTOGRAM IV-11

IV-5. ACCURACY AND RUNTIME OF THE 16 DESIGNS IV-16

rr-6. CONTEXT CHECKING — MAIN EFFECTS IV-17

I' -7. MAPPING ALL AT ONCE — MAIN EFFECTS IV-18

IV-fi. FOCUS BY INHIBITION — MAIN EFFECTS IV-19

IV-9. ISLAND DRIVING — MAIN EFFECTS IV-20

IV-10. MAIN EFFECTS OF VARIABLES ON PERCENT CORRECT . . . IV-21

IV-11. ACCURACY VERSUS LENGTH FOR ISLAND DRIVING IV-22

IV-12. FOCUS AND ISLAND-DRIVING INTERACTION IV-22

IV-1?. STORAGE AND ACCURACY FOR THE 16 SYSTEMS IV-2i»

IV-m. MAIN EFFECTS ON STORAGE IV-25

IV-15. FOCUS AND ISLAND-DRIVING IV-25

IV-16. CONTEXT AND MAP-ALL INTERACTION IV-26

IV-17. MAIN FTECTS ON TOTAL RUNTIME IV-31

IV-18. EFFECTS ON EXECUTIVE RUNTIME IV-32

IV-19. EFFECTS ON ACOUSTIC RUNTIME IV-32

IV-20. EFFECTS OF MODIFIED FOCUS BY INHIBITION IV-37

x

TV-21. EFFECTS OF GAP-OVERLAP PARAMETER IV-38

IV-22. OBSERVED DISTRIBUTION OF GAPS AND OVERLAPS IV-39

IV-23. ACCURACY RESULTS IV-Ml

IV-2n. MAIN EFFECTS OF ACOUSTICS, VOCABULARY, AND MAP-ALL . IV-12

IV-2,5. VOCABULARY AND MAP-ALL INTERACTION FOR ACOUSTIC
RUNTIME IV-il2

IV-26. ACOUSTICS AND MAP-ALL INTERACTION FOR FALSE TERMINALS IV-13

IV-27. COMPOSITION OF THE PARSE NET IV-1|5

IV-28. BLOCKING OF PHRASES AND PREDICTIONS IV-1|6

IV-29. EFFECTS OF LOOKAHEAD IV-M?

IV-30. TIMING BREAKDOWN . IV-19

IV-31. ACCURACY BREAKDOWN IV-51

V-1. FLOW OF SEMANTIC INFORMATION V-5

V-2. AN EXAMPLE SEMANTIC NETWORK V-11

V-3. ABSTRACTED USE OF DS ARCS V-16

V-4. ABSTRACTED USE OF DE ARCS V-17

V-5. THE USE OF DS AND DE ARCS V-18

V-6. SPACES SHOWING SYNTACTIC GROUPINGS V-22

V-7. ABSTRACTION OF VISTA ORDERING V-2it

V-8. USE OF VISTA IN SYNTAX ENCODING V-26

V-9. EQUIVALENCE; OF ENCLOSURE AND HEAVY ARROW NOTATION . . V-27

V-10. THE BELIEFS OF JOHN . V-29

V-11. THE CONJUNCTION "THE HENRY.L.STIMSON WAS BUILT BY
GENERAL.DYNAMICS AND THE HENRY.L.STIMSON IS
OWNED BY THE U.S." V-32

V-12. THE DISJUNCTION "EITHER THE HENRY.L.STIMSON WAS BUILT
BY GENERAL.DYNAMICS, OR THE HENRY.L.STIMSON IS
OWNED BY THE U.S.S.R." V-3'»

xi

■ ' " —-»-—■■ ätmmMBmmmm - ■■-^—- ■ ^^- ^Tir'm~B --^-»

V-13. THE HENRY.L.STIMSON IS OWNED BY EITHER
THE U.S. OR THE U.S.S.R V-37

V-U. T'E U.S.S.R. DOES NOT OWN THE HENRY.L.STIMSON . . . V-38

V-15. EITHER GENERAL.DYNAMICS DIDN'T BUILD THE
HENRY.L.STIMSON OR THE U.S. OWNS IT V-^O

V-16. IF GENERAL.DYNAMICS BUILT THE HENRY.L.STIMSON,
THEN THE U.S. OWNS IT V-ll

V-17. COMPACT IMPLICATION NOTATION V-H2

V-18. A HIERARCHY OF QUANTIFICATION SPACES V-M8

V-19. THE ENCODING OF AxEy[p(x,y)] BY THE ORTHOGONAL
PARTITION METHOD V-51

V-20. AN ENCODING OF AxEy[p(x,y)] BY THE IMPLTCIT
EXISTENTIAL METHOD V-55

V-21. AN ENCODING OF Ax[fEy[u(x,y)]} => {Ez[v(x,z)]}] . . V-58

V-22. A SHORTHAND ENCODING OF Ax[{Ey[u(x,y)]} =>
{Ez[v{x,z)]}] V-59

V-23. EVERY SUBMARINE 13 OWNED BY SOME COUNTRY V-62

V-2M. EVERY LAFAYFTTE IS OWNED BY THE U.S V-63

V-25. ALL THE SHIPS IN ANY GIVEN CLASS HAVE THE SAME LENGTH V-65

V-26. ALL SHIPS BUILT BY GENERAL.DYNAMICS BELONG TO THE U.S. V-66

V-27. THE DELINEATION THEOREM OF OWNINGS V-69

V-28. ABBREVIATED DELINEATION OF OWNINGS V-71

V-29. RELATING A SENTENCE TO ITS MEANING V-72

V-?0. DID GENERAL.DYNAMICS BUILD THE HENRY.L.STIMSON? . . V-T^

V-31. DID GENERAL.DYNAMICS BUILD ALL U.S. DESTROYERS? . . V-75

V-32. WHO BUILT THE HENRY.L.STIMSON? V-77

V~33. WHO BUILT EVERY DESTROYER? V-80

V-3M. WHO BUILT EACH DESTROYER? V-8l

V-35. WHAT COMPANIES BUILT WHAT DESTROYERS? V-8^

xli

V-36.

V-37.

V-?8.

V-"«9.

v-m.

VI-- .

VI-2.

VI-?.

VI-H.

VI-5.

VI 6.

VIT-1.

VII-?.

VII-?.

V:I-ü.

VII-5.

VIT-6.

VIT-7.

VII-8.

VII-9.

HOW MANY SHIPS DID GENERAL.DYNAMICS BUILD?

RELATTNG SUMS SITUATION TO FUNCTION PLUS

AN APPLICATION OF SHIPDATA

A KEYED-AF,- 1CATIONS SITUATION

THEOREM DVUO BY FIRST KEY

NETWORK CRFA'TD BY LN2

AN LN? STATEMENT

TO'1 OF DOMAIN MODEL . . .

DELINEATIONS OF MEASURES AND SPEEDS . .

THE OVERLAPPING TAXCHOMIES OF SH' S AND SHIP

THE DELINEATION OF HAVE.BEAM

ALL CVTS ARE TRAINING SHIPS

LINKING HAVE.BEAM SITUATIONS TO RELATIONAL FILES

PARSE TARGET STRUCTURE FOR "A-h ireR-PLAHT OF
A SUBMARINE MAS -BUILT BY A-CCK ^lY" . .

MULTIPLE SCRATCH SPACES FOR "A-PCWEH-PLAhT OF
^-SUBMARINE WAS-BUILT BY A-COMPANY" . .

GROUPS

VIEWING HIERARCHY ABOVE S2

CONTEXT-DEPHIDENT PARSE TARGET STRUCTURE FOR
"GENFViL.DYNAMICS BUILT THE AMERICAN
SUBMARINE"

NODE-SPACE PAIRS FOR PHRASES IN "GENERAL.DYNAMICS
BUILT THE AMERICAN SUBMARINE"

SCRATCH SPACES ft* "GENERAL.DYNAMICS BUILT
THE AMERICAN SUBMARINE"

THE TWO-NODE INTERPRETAT? ,1 OF BEAM

SCRATCH SPACES WITH EOUI. ARC FOR
"THE HENRY.L.STTMSON IS A SHIP"

SIMPLIFIED INTERPRETATION OF
"THE HENRY.L.STIMSON IS A SHIP"

xlll

V-8«»

V-87

V-89

V-91

V-92

V-96

V-97

VI-2

VI-U

VI-6

VI-10

VI-11

VI-12

VII-8

VII-11

VI1-15

VII-22

VII-23

VII-2«)

VII-31

VI1-33

VII^^

mm ■ --

VII-10. SCR SPACES FOR "DID GENERAL.DYNAMICS BUILD
EVERY LAFAYETTE?" VII-39

VII-11. ULTIMATE TRANSLATION OF "DID GENERAL.DYNAMICS
BUILD EVERY LAFAYETTE?" VII-12

VII-12. RESULT OF Q.YN SCOPING PROCEDURE VII-»I5

VII-13. RESULT OF Q.UNIV SCOPING PROCEDURE VII-U6

VII-U. THE Q FUNCTIONS AND STRENGTHS OF QUANTIFIERS . . VII-U8

VIl-15. SEMANTIC NET REPRESENTATION OF THE OWNING SITUATION VII-58

VIII-1. A SMALL AIR COMPRESSOR VIII-10

VIII-2. EXPERIMENTAL SETUP FOR RESTRICTED DIALOGS . . VIII-13

VIII-3. FRAGMENTS OF COOPERATIVE DIALOGS VIII-16

VIII-M. DESCRIPTION OF "KNURLED" WITH AN'J WITHOUT VlilON VIII-18

VIII-5. USING VISION TO HELP WITH A DESCRIPTION . . . VIII-18

VIII-6. DIFFICULTIES IN EXPLAINING AN UNFAMILIAR
COMPLEX OBJECT VIII-19

VIII-7. PRONOUN USE REFLECTING DIALOG STRUCTURE . . . VIIT-22

VIII-8. A SEQUENCE OF ELLIPTICAL SENTENCE FRAGMENTS . . VIII-2»»

VIII-9. A DATA BASE QUERY SUBDIALOG VIII-25

VIII-10. A SUBDIALOG CHECKING PREVIOUS MESSAGE VIII-28

VIII-11. DIFFERENT USES OF "O.K." VIII-31

VIII-12. A MISUNDERSTOOD "O.K." VIi;-33

VIII-1?.. A SIMPLE TASK MODEL FOR ILLUSTRATING DIALOG POPS VIII-38

VIII-11». SINGULAR/PLURAL DISTINCTIONS VIII-»»0

VIII-15. EFFECT OF SHIFT IN SÜBDIALOG ON DEFNPS . . . VIII-UQ

VIII-16. EMBEDDINGS OF REQUESTS AND RESPONSES VIII-M5

VI11-17. UTTERANCE TYPES IN A SAMPLE DIALOG FRAGMENT . . VIII-U6

VIII-18. TWO SIMILAR DIALOG FRAGMENTS FOR COMPARING
RESPONSE INFLUENCE VIII-»<7

xiv

-—

VIIT-19. WORDS OCCURRING IN ALL FOUR DIALOGS VIII-51

VIII-20, WORDS OCCURRING IN ALL FIVE DIALOGS,
GROUPED BY CATEGORY VIII-53

VIII-21. WORDS IN ALL NAIVE APPRENTICE DIALOGS BUT
MISSING IN AT LEAST ONE OF THE OTHERS . VIII-53

VIII-22. BOLT/NUT CONFUSION VIII-62

IX-1. THE KITE STORY TX-M

IX-2. A SIMPLE KVISTA WITH TWO FOCUS SPACES IX-15

IX-3. QVISTAS FOP "THE WRENCH" AND "THE BOX-END WRENCH" . IX-15

IX-H. A KVISTA WITH THE SET OF WRENCHES DIVIDED INTO
SEVERAL SUBSETS IX-17

IX-5. THE WRENCHES KVISTA WITH FOCUS ADDED IX-19

IX-6. PARSE LEVEL SEMANTIC NET REPRESENTATION
FOR "AMERICAN SUB" IX-22

IX-7. SEMANTIC REPRESENTATION FOR "RED BOX-END WRENCH" . IX-30

IX-8. ORIGINAL FOCUS SPACE IX-31

IX-9. NEW FOCUS SPACE IX-32

X-1. PATH-GROWING ALGORITHM X-12

X-2, REPRESENTATIONS FOR "WHAT IS THE SPEED OF THE
SUBK«RINE?" X-17

X-?. RESOLVING "THE CARRIER" AND FIRST LEVEL EXPANSION
OF ELLIPSIS TO "THE SPEED OF THE CARRIER" . X-20

X-'4. FINAL EXPANSION OF ELLIPTICAL UTTERANCE TO
"WHAT IS THE SPEED OF THE CARRIER?" ... X-21

X-5- REPRESENTATIONS FOR "DOES BRITAIN OWN THE CARRIER?" X-23

X-6. EXPANSION OF THE ELLIPTICAL UTTERANCE, "THE U.S." . X-2»»

X-7. EXPANSION OF THE ELLIPTICAL UTTERANCE, "THE LENGTH" X-28

XI-1. SCHEMATIC OF YES/NO QUESTION XI-4

XI-2. SCHEMATIC OF WH QUESTION XI-5

xv

mam

XI-3.

XII-1.

XII-2.

XTI-?.

XII-it.

XII-5.

XII-6.

XII-7.

XII-8.

XII-9.

XII-10.

XTII-1.

XIII-2.

TRANSLATION OF "WHO BUILT THE HENHY.L.STIMSON?"

KVISTA AND QVISTA FOR THE EXAMPLE QUERY "WHAT
SUBMARINES DID GENERAL.DYNAMICS BUILD?"

AN EXAMPLE QUERY, "WHO BUILT THE HENRY.L.STIMSON?",
WHOSE ANSWER IS EXPLICITLY AVAILABLE

AN EXAMPLE QUERY, "WHO BUILT THE HENRY.L.STIMSON?",
WHOSE ANSWER IS INTERNALLY DERIVABLE

AN EXAMPLE QUERY, "WHO OWNS THE HENHY.L.STIMSON?"
WHOSE ANSWER IS EXTERNALLY DERIVABLE

EXAMPLE KVISTA THEOREM

EXAMPLE OF KVISTA EXTRACTION

EXTENSION SPACES FOR KVISTA EXTRACTION EXAMPLE

EXAMPLE OF QVISTA EXTRACTION

EXTENSION SPACES FOR QVISTA EXTRACTION EXAMPLE

RELATING SUMS SITUATION TO FUNCTION PLUS . .

A SEMANTIC NETWORK FRAGMENT

THE BASIC GENERATION ALGORITHMS

XI-9

XII-5

XII-7

XII-8

XII-10

XII-39

XII-41

XII-H2

XII-U9

XII-50

XII-51»

XIII-M

XIII-6

xvi

INTRODUCTION

Prepared by Ann E. Robinson, Donald E. Walker, William H. Paxton,
and Jane J. Robinson

CONTENTS:

A. Orientation
B. An Overview of the Speech Understanding System

1. Components Developed by SDC
2. The Language Definition
3. Syntax
4. Semantics
5. Discourse
6. Deduction
7. Generation
8. Executive

C. An Example to Illustrate Processing in the System
D. An Historical Perspective

Ä. ORIENTATION

For the past five years, SRI has been a part of the Speech

Understanding Research Program sponsored by the Advanced Research

Projects Agency of the Department of Defense.* The program, begun in

1971 following a thorough assessment of its feasibility by a study group

(Newell et al., 1973)» launched a multl-diacipllnary effort based on

state-of-the-art advances in computational linguistics, artificial

intelligence, systems programming, and speech science. A set of

• This research has been funded under the following ÄRPA contracts, all
administered through the Army Research Office: DAHC0il-72-C-0009, DAHCOM-
75-C-0006, and DAAG29-76-C-0011.

coordinated, cooperative projects was established to focus further

research both in the development of these source knowledge areas and in

their effective integration in the context of a complex computer-based

system. The goal was to develop one or more systems that would

recognize continuous speech uttered in the context of some well

specified domain by making extensive use of grammatical, semantic, and

contextual contraints. A system emphasizing such linguistic constraints

is called a 'speech understanding system' to distinguish it from speech

recognition systems, which rely on acoustic information alone.

From the beginning of our participation in the Speech Understanding

Research Program, our work at SRI has demonstrated two characteristic

features. First, we have approached the problem of natural language

processing from the perspectives of artificial intelligence and

computational linguistics. Second, we have stressed the importance of

having a functioning system guide the progressive elaboration of the

various system constituents (Walker, 1973a,b). Following the 1973

midterm review of the ARPA program, we began a joint effort with System

Development Corporation (SDC). We were responsible for overall system

control and for developing components to handle syntax, semantics, and

discourse. SDC was responsible for the acoustic components — signal

processing, acoustic-phonetics, and phonology (see Bernstein, 1975;

Ritea, 1975; and Barnett, 1976). This report will concentrate on the

SRI contributions both to the operational system that resulted from the

joint SRI-SDC «ffort and to the goal of the ARPA speech understanding

program.

1-2

Figure 1-1 lists the major contributions made by SRI together

with the characteristics that distinguish our system from others in the

program. These contributions are elaborsted further in the following

overview of the speech understanding system.

B. AN OVERVIEW OF THE SPEECH UNDERSTANDING SYSTEM

This section contains brief descriptions of the various components

of the speech understanding system, including those developed by SDC,

and of their coordination by the system executive. Details regarding

the components developed by SRI are given in the rest of this report.

The domain for the speech understanding system J.S information about

the ships of the U.S., Soviet, and British fleets. The system data base

contains characteristics such as owner, builder, size, and speed for

several hundred ships. The user can get information from the system by

simple English questions, commands, and dialog sequences using

incomplete sentences and pronouns. The internal organlzati^ of the

system is shown in Figure 1-2. The direction of the arrows in the

figure indicates the general flow of information as an utterance is

interpreted by the system and an appropriate response returned to the

speaker.

1-3

DEFINITION OF INPUT LANGUAGE
• Defines the input language by means of linguistically

motivated rules that are general and extensible over a
variety of domains

• Provides a means for adjusting ('tuning') the language
definition to particular domains without loss cf gener-
ality

• Combines syntactic, semantic, and discourse information
within the ruled that define words and phrases

espec tally

SEMANTx^S
• Us^s partitioned semantic networks
• Handles higher-order logical predicates,

quantifiers
• Provides deduction routines for retrieval and infe ence

that can access supplementary relational data bane in
in responding to a user's query

• Provides a network substructure that is converted to an
English sentence or phrase to answer a user's question

DISCOURSE MODELING
• Is based on in-depth studies of domain-oriented dialogs
• Encodes model of dialog context by using semantic

partitions
• Finds meanings of elliptical expressions and referents

of definite noun phrases by using dialog context

SYSTEM INTEGMTION
• Provides for interaction of information from various

sources of knowledge — syntax, semantics, discourse —
as part of the language definition itself

• Avoids commitment to particular system control strategy,
allowing flexible use of various strategies for putting
together words and phrases out of incomplete and
uncertain fragments

SYSTEM CONTROL
• Provides special techniques to assign priorities by the

use of contextual constraints
• Allows combinations of top-down, bottom-upj, and bidirec-

rectional strategies
• Organizes data structures for testing hypotheses about

utterances in a manner that avoids duplication of effort
• Used in extensive experimental studies to evaluate

design alternatives

Figure 1-1. SRI CONTRIBUTIONS TO SPEECH UNDERSTANDING

I-»»

ilnTMir^ -- - - -^ - _- _-

< tu
r

t !2
< < a a

U)
M 1 DC 1 D » O
u _,

Z

E
M

A
N

T
IC
 M

O
D

E

A
N

D

D
E

D
U

C
T

IO
N

 5
tu O

is
M tu
tu z

Z
o

fr tu i
u. ^"^

M z
<

tu
Q

A tu i Q
tu <
M 3

_l

X
<
K

i z
>-
(0

tu E
tu >
^ K
< 3
tu O
Q. Ü
CO

tu

L_
i

-1
GC <

-I tu CC o _

si
tu m
-1 D

tu
a.
a.
<
S

§8
o^
la to o
X
a.

1 ,

1 r

öyo X

A
C

O
U

S
T

I
P

H
O

N
E

T

P
R

O
C

E
S

S

1 i
t
<

z
o

§
N
z
<
o
O

Figure 1-2. SYSTEM ORGANIZATION

1-5

1 COMPONENTS DEVELOPED BY SDC

The acoustic-phonetic processor, the A-matrix, the mapper, the

phonological lexicon, and the lexical subsetter were developed by SDC

and are described more fully in their publications referenced above.

The acoustic processor digitizes and records the input from

the human speaker at a rate of 20,000 samples per second. RMS-energy

values are calculated for each 10 millisecond frame of speech, followed

by fundamental frequency extraction, formant frequency analysis,

syllab?e segmentation, phrase segmentation, and other analyses. From

these parameters, rough segment labels are derived; subsequent processes

use the information available to segment the speech into phoneme-like

units, assign feature bits such as nasal or retroflexed, and generate

phonemic labels with associated merit scores for each segment. All of

the acoustic-phonetic information is stored as an A-matrix for the

utterance.

A mapper carries out acoustic tests using the A-matrix data.

Given a word predicted by the executive together with a location in the

speech input, the mapper compares alternative possible pronunciations of

the word with the acoustic data at that point. The location can be

specified with a left time, a right time, or both. The mapper assigns a

score between 0 and 100 that indicates how well the word matches the

input. If the value exceeds a given threshold, the mapper reports the

beginning and ending times of the word together with the score.

1-6

■aaamltw^a,^., ,- jj -^-_,i. "iMlTr J^J,-. .:

The lexical subsetter performs an analysis of the A-matrix at

a specified location in the utterance and returns a list of words that

could begin (or end) at that time. This capability reduces the number

of words that otherwise would have to be checked by the mapper.

2. THE LANGUAGE DEFINITION

The input language is a subset of natural, colloquial English

that is suitable for carrying on a dialog between a user and the system

regarding information in the data base. The definition of this language

is based on augmented phrase structure rules. A rule consists of a

phrase structure declaration, which specifies the possible constituents

of a phrase category, and an augmentation. The augmentation is a

procedure containing two principal kinds of statements called

'attributes' and 'factors'. The attribute statements determine the

properties of particular instances of a phrase constructed by the rule.

An attribute statement may compute values for attributes that relate to

syntax, semantics, or discourse. The factor statements compute

acceptability ratings for an Instance of the phrase. The scores for

factors are non-Boolean; that is, they may assume a wide range of

values. As a result, a proposed instance of a phrase is not necessarily

simply accepted or rejected; it may be rated a more or less acceptable

or as more or less 'likely', depending on a combination of factor

values. Like attributes, factors may be syr':actlc, semantic, or

discourse related. One of the distinctive features of the language

1-7

MiiMMiiiifTfrfifi ■!■ I ■-■■■='-■ | r- ^ j^^äB - -■ --— —^ .

^^^^_—_^—

definition is its integration of the syntactic, semantic, and discourse

sources of knowledge through the attribute and factor statements.

Another is the provision of non-Boolean factors.

The form of the rules is designed to avoid commitments to

particular system control strategies. For cypmple, the rule procedures

can be executed with any subset of constituents, so incomplete phrases

can be constructed to provide intermediate results, and it is not-

necessary to acquire constituents In a strlrcly left-to-right order.

3. SYNTAX

The syntactic knowledge in bhe system is represented both in

the phrase structure part of the language definition rules and in the

attribute and factor statements in the procedure part of the rules.

Syntax provides computationally inexpensive information about which

words or phrases may combine and how well they go together. In testing

word or phrase combinations, syntactic Information alone often can

reject an incorrect phrase without requiring costly semantic and

discourse analysis. Factors are used for traditional syntactic tests

such as agreement for person or number, but factors also are used to

reduce the scores of unlikely phrases. For example, WH-questions that

are negative (e.g., "What submarine doesn't the U.S. own?") are

unlikely to occur. A factor statement lowers the value for this

interpretation but does not eliminate it completely, so that if no

better hypothesis can be formed to account for the input utterance, this

1-8

m

Interpretation will be accepted. Since the language definition system

provides the capability for evaluating phrases in context by means of

non-Boolean f. "tors, the grammar can be tuned to particular discourse

situations and language users simply by adjusting factors that enhance

or diminish the acceptability of particular interpretations. It is not

necessary to rewrite the language definition for each new domain.

t. SEMANTICS

The system's knowledge about the domain is embodied in a

partitioned semantic network. A semantic network consists of a

collection of nodes and arcs where each node represents an object (a

physical object, situation, event, set, or the like) and each arc

represents a binary relation. The structure of our network differs from

that of conventional nets in that nodes and arcs are partitioned into

spaces. These spaces, playing in networks a role roughly analogous to

that played by parentheses in logical notation, group information into

bundles that help to condense and organize the network's knowledge.

Our semantic network also serves as the medium for recording

and communicating semantic information among the relevant system

components. Djring the interpretation of an utterance, semantic

composition routines, which are called directly from the language

definition rules, relate the constituents of a phrase to the network

model. These routines build new network structures to reflect the

underlying meanings of those phrases that are acceptable and to

eliminate those phrases that do not satisfy semantic criteria.

I-9

.^i-^ 1-^.- ■. --ili ^^L. .

To supplement the knowledge encoded in the network, a

relational data base is maintained. It can be accessed directly from

the network, which contains a representation of the contents of the data

base.

5. DISCOURSE

The discourse component of the speech understanding system

relates a given utterance (or a portion of it) to the overall dialog

context and to entitles and structures in the domain. The current

domain of the speech understanding system provides for Interacting with

information in a data base. In this domain, the discourse context is

limited to s linear history of the preceding interactions. For complex

task-oriented dialogs, the linear discourse history can be replaced by a

structured history mirroring the organization of the task execution.

An important function of the discourse component is to expand

elliptical expressions into their full meaning. In our system, a single

neun ohrase can be accepted as a complete utterance if it can be

expanded into a meaningful sentence using information from the previous

dialog context. For example, the phrase "The George Washington" is

unacceptable in isolation, but following "What is the speed of the

Lafayette?", it can be expanded to mean "What is the speed of the George

Washington?"

I-10

Another important capability is the identification of the

referents of definite noun phrases. Partitions in the semantic network

are employed to focus the attention of deductive procedures on those

items that have been mentioned previously in the dialog. A

-epresentatlon of the referent of a definite noun phrase is kept as the

ciscourse attribute of the phrase. If no referent ia found, the phrase

is given a low score.

6. DEDUCTION

The deduction component of the system provides an inierence

mechanism for retrieving information from the semantic network. This

component serves a dual purpose. During the Interpretation of an

utterance, it supplies information needed both by the semantic

composition routines and by the discourse procedures. When an

interpretation has been found for a question, the deduction component is

used to find an answer.

7. GENERATION

The generation component of the speech understanding system

contains procedures to produce an English phrase or sentence

corresponding to a semantic network substructure. Usually, this

substructure is the answer to a question asked by the user. Using a

distributed generation grammar, the generator expresses the content of

the Input nodes and arcs by employing the closest applicable templates

1-11

—-—-—----

(rules) In the superset hierarchy of those nodes. The answer to a WH

question, for example, can be either a noun phrase or a complete

sentence, depending on the exact content of the input. The generator

can produce a variety of paraphrases of a constituent (e.g.t "General

Dynamics built the Whale."; "The Whsle was manufactured by General

Dynamics."). At present, the particular paraphrase is chosen at random.

8. EXECUTIVE

The executive is responsible for coordinating the various

components of the system. It uses the language definition and the

acoustic components to find an interpretation for the input. When a

successful interpretation has been found, the executive invokes the

response functions which produce a reply.

The principal data structure used by the executive is called

the 'parse net'. It is a network with two types of nodes: phrases and

predictions. Phrases in the parse net can be complete, containing all

their constituents, or incomplete, with some or all of their

constituents missing. A prediction is for a particular category of

phrase. Each phrase or prediction is associated with a particular time

span in the utterance. As the Interpretation of an utterance

proptresses, new phrases that have been constructed from existing phrases

or from words found in the utterance are added to the parse net. At the

Fame time, new predictions are made as more information is obtained.

Thus, the parse net grows as the interpretation process advances.

1-12

— -■ ■ —

There are two tasks involved in maintaining and evolving this

parse net: the 'word' task and the 'predict' task. The role of the word

tijsk is to look for a particular word in a particular location in the

utterance. If the mapper has not been called previously for that word

in that location, the word task calls it. If a word is found

successfully in the specified location, the word is used to build a new

phrases.

The role of the predict task is to make a prediction for a

word or phrase that can help complete an incomplete phrase. Whenever a

new constituent is inserted into an incomplete phrase, any adjacent

constituents that had been missing can be predicted. Of course, new

predictions can include predictions for particular words, leading to new

instances of calls on the word task.

Besides creating these tasks, the executive must have a means

of determlnin/z: which one to perform next. Establishing the priority of

a task begins with determining the 'score' of the phrase involved. The

score is computed from the results of the acoustic mapping of any of the

words contained in the phrase, from the factor statements for the

phrase, and from the scores of the constituents. After the score is

determined, the phrase is given a rating which is an estimate of the

best score for a phrase of the root (sentence) category that uses that

phrase. This rating is then modified depending on the control strategy

being used, and the result is the priority cf the task to be performed

for that phrase.

1-1?

C. AN EXAMPLE TO ILLUSTRATE PROCESSING IN THE SYSTEM

We present in this section a partial trace of the successful

processing by the system of the question "Who built the

Henry L. Stimson?". The utterance is 190 centiseconds (cs) long,

extending from 10 to 200 in the A-matrix containing the acoustic-

phonetic data for it. To simplify the presentation, interactions with

the mapper are not shown.

Lines in the trace beginning with ••• indicate nodes that are built

into the parse net for complete or partial phrases. If the line ends

with ..., the phrase is partial; that is, not all of the constituents

are present. Lines beginning with +++ identify nodes in the parse net

that specify predictions for the presence of particular categories.

Nodes 1 through 10 for phrases and 1 through 1»9 for predictions do not

appear in the trace. These nodes and predictions represent categories

that can begin an utterance, and include determiners, nouns, noun

phrases, and auxiliaries. They are pre-computed at the time when the

language definition is compiled.

In the following presentation, blocks of lines from the trace will

be followed by explications of the notation as well as of the processing

that takes place.

I-1U

I

•»• 11 ••• (N WHALE) 15 25 (9 . 691)=76
•»• 12 ••• NP UBEG L (17 . 1219)=71 RHS 11 ...

[WHALE]

CALLING ROUTINE SEMRNP1

RESULT IS NET FRAGMENT (6BM (686 683 D)

16851 \6BH\
II ! !683!

■ i
i i

E<«««

«•• 13 «•• Np i5 25 (17 • I219)=71 RHS 11

[WHALE]

The first line of the t^ace shows that a node (node 11) is built in

the parse net for a complete phrase. (A phrase may be a single word.)

The (N WHALE) of the first lint indicates that the first prediction for

which the mapper finds a likely candidate is for a noun (N), and that

the candidate was the word "whale". The following pair of numbers, 15

and 25, identify the beginning and ending times, in centiseconds,

corresponding to the possible location of the candidate in the

utterance. The remaining numbers are parts of the information used for

rating the phrase. There are 9 factors whose sum is 691. Therefore,

the score is 691 and the quotient is 76. (See Chapter II for an

explanation of these terms.)

This complete node is then used by the word task to build a new

phrase at node 12 for an NP. In the general case, it is possible to

extend a partial phrase by adding constituents on either side. In this

case, however, It is not possible to add constituents on the left

1-15

tiitÄj,. - ^- ■.-^^^^1Vf-^,-.^^^^^-^^ = ^^^^^.^=^=^=^^^^^=^^^---^-^-^Mr^i;ir-v

because the left anchor coincides within 5 centiseconds of the beginning

of the utterance. Thus, the phrase can be extended only to the right,

as shown by the UBEG L, which means that the phrase is left anchored at

utterance beginning. RHS 11 means that the right-hand-side of the NP

production rule to be completed uses the phrase built at node 11 as the

first, right-hand-side constituent. Following entries for non-terminal

nodes, there is a line specifying the terminal words found for it. In

this case, there is one word — "whale" — for the NP of node 12.

The next step is to build node 13 for a complete NP, using node 11

and the single word "whale". As described in the text, semantic

structures are built for a complete phrase as part of applying the rule

for that phrase. For this reason, the call on the semantic routine and

the results of that call appear before the line for the node.

Similarly, discourse calls (e.g., PRC.iRES for pronoun resolution) appear

before the phrases that result from them.

The line CALLING SEMRNP1 indicates that the semantic composition

routine SEMRNP1 has been called; the following lines show the resulting

semantic net structure built for node 13. The numbers specify the node

in the semantic network corresponding to the noun phrase (681) and the

space containing the nodes and arcs to which that node is connected (686

68? 1), as determined by the composition routine. The boxes contain a

node number and, below it, the space the node is on. In this case, the

semantic structure of the noun phrase of node 13 is a node in the

semantic network numbered 68M on space 683, which is an element of the

set 685 on space 1, the set of submarines of the Whale class.

1-16

■■HHHaWatlliHiili^HilSibtrili

PHRASE 12 RATING IS 810

+++ 50 +++ TOKEN.PL 25 L
+++ 51 +++ PREP? 25 L
■•• m •«• pREPP 25 L (2 .
+++ 52 +++ PREP 25 L

132)=66

CALLING ROUTINE SEMRNP5

RESULT IS NET FRAGMENT (690 (689 D)
N.LEGAL.PERSONS

16901 MO 1
1689! M !

i i

E»»»>

After node 13 is built for a phrase consisting solely of the word

"whale", the previous incomplete phrase built at node 12 receives a

rating. Subsequently, the executive makes predictions for a plural

(TOKEN.PL) and for a prepositional phrase (PREPr') to the right of the

noun phrase in node 12. These predictions, 50 and 51, begin at time 25

in the input. A parse net node (U) for an Incomplete phrase (with no

constituents) is built for the PREPP prediction. It causes another

prediction to occur for a prepositior (PREP) at the left of the phrase,

corresponding to the phrase structure part of the preposition rule,

wnich is PREPP = PFEP NP. The preposition "by" is found in the input by

the mapper (this is not shown in the trace), and so a new node is built,

which is partially completed by the addition of "by". However, when

this phrase Is evaluated in the context of the NP from node 12 which

caused this prediction, the attribute and factor statements determine

that "by" is not a valid preposition to follow the noun "whale", and so

the phrase built in node 12 is rejected.

1-17

■'*■■■ ** IH

•«• T5 ••» (NP WHO) 15 25 (3 • 213)=71
••« i6 »»• SI UBEG UEND (11 . 755)=68 RHS 15 ...

[WHO]
PHRASE 16 RATING IS 823

CALLING ROUTINE PRONRES
RESULT IS NET FRAGMENT (15 (1))
N.THE.US

N.COUNTRIES

115 I 112 1
II I II I

i i
i i

E»>»»
••» i7 Mt (NP WE) 15 25 (3 . 195)=65
+++ 53 +++ BE 25 L
+++ 511 +++ DO 25 L

+++ 55 +++ VP 25 L
••«-18 •»» VP 25 L (6 . 396)=66
+++ 56 +++ V 25 L
(DO.THEY (8 . 511) 30 (1 . 1) 75)
»«A 19 it« (DO DO) 30 (1 . 1) (8 . 511)=63
ttt 20 ••• SI UBEG UEND (18 . 1200)=66 RHS 15 19

[WHO DO]
PHRASE 20 RATING IS 800

+++ ty +++ NP (1 . 1) L
CALLING ROUTINE PRONRES
RESULT IS NIL: REJECT!

The next word found ("who") satisfies an initial prediction for a

noun phrase. It extends from 15 to 25. A semantic structure is built

for it (node .5) which Indicates that it refers to some unspecified

member of the set of legal persons. Node 16 is built for an incomplete

S (sentence) phrase with the NP "who" at the beginning.

The next word found is "we". A discourse routine (PRONRES) is

called to find a referent for it, and "the U.S.", which is an element of

the set of countries, is found. Thus, another noun phrase is found for

the initial portion of the utterance.

1-18

The next predictions made, numbers 5j 15, are for the various

constituents that can complete phrases starting with an NP. They are

provided by the rule SI in the grammar, which allows the following

patterns:

S = NP DO NP VP
S = NP VP
S = NP BE {VP I NP ! "THERE]

The VP prediction leads to the construction of a node for a verb phrase

and to the further prediction of a V. The multi-word "do.they" is found

satisfying prediction 5^, and a node is constructed using "do". This is

distributed to the S rule, and a new S node (20) is constructed with the

words "who do" in it. The discourse routines reject the attempt to use

"they" to construct an NP.

»• 22 ••• (V BUILT) 30 70 (9 . 572)=63
««• 23 ••» VP 25 L (Til . 902)=6U RH3 22 .

[BUILT]
PHRASE 23 RATING IS 0

•i« 25 ••• (V BUILT) 30 70 (9 . 572)=63
••• 26 ••• VP 25 L (11» . 902)=6l» RHS 25 .

[BUILT]
•*• 27 ••• VP 30 70 (14 . 902)=64 RHS 25

[BUILT]
PHRASE 26 RATING IS 795

+++ 58 +++ TOKEN.PPL 70 L
+++ 59 +++ TOKEN.PAST 70 L

+++ 60 +++ TOKEN.SG 70 L
+++ 61 +++ PREPP 70 L
»«« 28 ••• PREPP 70 L (2 . 132)=66
+++ 62 +++ PREP 70 L
+++ 63 +++ NP 70 L
••• 29 ••• NP 70 L (9 . 5910=66
+++ 64 +++ TOKEN.A 70 L
+++ 65 +++ WHDET 70 L
+++ 66 +++ DET 70 L

+++ 67 ++♦ TOKEN.HOW.MANY 70 L
+++ 68 +++ N 70 L
+++ 69 +++ CLASSIFIER 70 L
+++ 70 +♦+ NUMBER 70 L
■•l 30 ••• NUMBER 70 L (4 . 264)=66

1-19

——-- - - - ■■■-^ —- -—- —"-iiiinin tiirrwuir'nr'" ,——^--.-i. — --—„-■-,..--,,„ ,.— ,_._, . ,. .

•«t
71 +++ CENTI 70
31 ••• (1 . 26U)=65

(5 . 330)=66

CENTI 70
+++ 72 +++ SMALLNUM 70 L
e«t 32 •« SMALLNUM 70 L

+++ 73 +++ DIGIT 70 L
+++ 71» +++ TEEN 70 L
+++ 75 +++ TOKEN.HUNDRED 70 L
+++ 76 +++ TOKEN.THOUSAND 70 L

CALLING ROUTINE PRONRES
RESU1T IS NIL: REJECT!

•ttfl 3U ••• (DET THE) 70 75 (1 . 6l)=6l
««« 35 «•« NP 70 L (9 . 589)=65 RHS 3M

[THE]
PHRASE 35 RATING If, 792

+++ 77 +++ NUMBER 75 L
••• NUMBER 75 L (H . 26U)=66
+++ CEKTI 75 L
»•• CENTI 75 L (U . 26U)=66

+++ 79 +++ SMALLNUM 75 L
•«• 39 #•• SMALLNUM 75 L (5 . 330)=66

+++ 80 +++ DIGIT 75 L
+++ 81 +++ TEEN 75 L

+++ 82 ++♦ TOKEN.HUNDRED 75 L
+++ 83 +++ TOKEN.THOUSAND 75 L
+++ 84 +++ N 75 L

++H 85 +++ CLASSIFIER 75 L

•it»

37
78
38

• ft 10
11

••• (N HENRY.L.STIMSON)
••• NP 70 L (19 . 1359)

[THE HENRY.L.STIMSON]
CALLING ROUTINE S01RNP1
RESULT IS NET FRAGMENT (301 (69H 693 D)
HENRY.L.STIMSON

N.CLASS.LAFAYETTE

1301! 11091

80 195 (11 . 836)=76
71 RHS 31» W ...

11 11

E»»»>

••• H2 ••• NP 70 195 (19 . 1359)=71 RHS S1* '»O
[THE HENRY.L.STIMSON]

1-20

^^

The next successful mapping of a predicted word is "built". It

occurs twice because It has two senses, past and passive. The passive

form is quickly rejected by the case factors but the past is retained.

Two VP phrases are constructed, nodes 26 and 27. Node 27 can include

only the verb since its boundaries coinclie with that of the word, but

26 can have another constituent. Predictions 58 through 76 are

predictions for constituents following the V In phrase 26. Note that

nodes 28-32 also are constructed In the process of making these

predictions in turn, lead to predictions.

After these predictions are made, the mapper is called to look for

possible words beginning at 70, and the mapper finds the word "it" (not

shown in the trace). The discourse routines reject "it", because there

is no referent for it in the current context.

The word "the" is then found; phrases 3H and 35 are constructed;

and predictions 77 through 85 are made for possible next constituents in

the NP phrase. "Henry L. Stimson" is found after "the". The semantic

structure built for the phrase "the Henry L. Stimson" contains a pointer

to the node for the individual ship the "'lenry L. Stimson" and

identifies It as an element of the "Lafayette" class.

CALLING ROUTINE SEMRVP1
RESULT IS NET FRAGMENT (697 (698 696 691* 693 D)

HENRY.L.STIMSON
S.BUILD

1697! 1301! 11871
16961 II ! 11 !

0BJ»»>
■ i
■ i

1-21

-"■- ^^ i i Ma mmm

£>»»»>»»»
«•« t|3 »»« VP ?0 195 (32 . 2195)=68 RHS 25 ^2

[BUILT THE HENRY.L.STIMSON]
CALLING ROUTINE SEMRS1
RESULT IS NET FRAGMENT (697 (701 700 698 696 691* 693 689 D)

S.BUILD
N.LEGAL.PERSONS

HENRY.L.STIMSON

16971 1690! 13011 1187! !10 I
1696! 1689! M ! II 1

OBJ»»»»»»

E»»»»»»»»»»>

AGT»>»

E»»»»»»»»»»>

When the NP la combined with the VP for the complete VP phrase,

number ^3, a new fragment of semantic neLwork is constructed,

representing an instance of the situation of building where the object

(OBJ) of that action, that which has been built, is the

"Henry L. Stimson". Thi.'s complete VP node is combined with the NP node

17 to complete an S phrase. The result is an expansion of the last

semantic network fragment in which the agent (AGT) Is also specified for

the building situation.

CALLING ROUTINE REPLY
ENTERING QUANTIFY. PREQUANTIFIED PARSE NET IS

S.BUILD
N.LEGAL.PERSONS

HENRY.L.STIMSON

1697! !690! I301| mil HO !
!696! 1689! M I M I 11 I

£»»»»»»»»»»>

i-22

m-l,Tm.m„ ri. -^- ^

™si^E^^.i^«:^IW«wggffis *

OBJ>»»»»»>
(iiii
i i i i i

AGT»>»
i i i i i
i i i i i

E»»»»»»»»»»>
LEAVING QUANTIFY. REPARTITIONED PARSE NET IS

S.REQUESTS.WH
HENRY.L.STIMSON N.LEGAL.PERSONS

S.BUILD

1705! I70M! J697! 1690! !?0l! [187! 11*51 HO i
17031 17031 1696! !689! M I M I II ! 11 I

INDEX«<
IIII

E>»>»»»»>»>>»»»>»»»»>»

£>»»»»»»»»»»

0BJ»>»>>>>»>

AGT»>»
■ i i

E>>>>>>>>>>>>>»>>>>>>>>>>>>>

RESULT IS NET FRAGMENT (GENERAL.DYNAMICS)
(GENERAL.DYNAMICS)

Since a successful interpretation spanning the utterance is found,

that interpretation is given to the quantification routines to make any

adjustments necessary for quantification and to change the structure

into a form that indicates to the deduction component what is to be

done. In this case the node corresponding to the interrogative "who" Is

INDFXed as the answer to be returned.

The network resulting from the application of the quantification

routines is shown, a.-.d following it is the answer, "General Dynamics".

• •• i,n «•» si 15 195 (12 . 288J|)=68 RHS 15 13
[WHO BUILT THE HENRY.L.STIMSON]

1-23

*

PHRASE Ul RATING IS 824

+++ 86 +++ TOKEN.PL 195 L
+++ 87 +++ PREPP 195 L
•«• H5 «•« pREpp ^5 L (2 . 132)=66

+++ 88 +++ PREP 195 L

(GENERAL.DYNAMICS)
MM
WHO BUILT THE HENRY.L.STIMSON
82H
SI UM

NF WHO 15
VP 43

V BUILT 25
NP 42

DET THE 31»
N HENRY.L.STIMSON 40

Node 44 is the completed phrase. The system continues processing

to determine if there are any other competing interpretations that could

be better than this one. There are none, so the interpretation and its

answer are accepted as correct.

At the end of the example is the parse tree. It shows that the

structure found is an S, which consists of an NP and a VP. The VP

consists of a V and another NP. This second NP consists of a DET and an

N.

1-24

D. AN HISTOPICAL PERSPECTIVE

Reflecting our concern with the jmportance of implementing a

complete system as early as possible, our first system adapted an

existing language understanding program designed for text input (Walker,

'i973a,b). However, although our initial results were positive, it

became clear that for processing spoken utterances many more alternative

possible interpretations of their structure have to be considered. The

uncertainties associated with segmenting and labeling the acoustic input

in continuous speech contrast markedly with the easy identiflability of

words In texts. To provide the required flexibility, our second system

featured a new parsing strategy that attempted to explore the most

likely parse paths first (Paxton and Robinson, 1973; Paxton, 1975). We

were able to reduce the size of the search space in thin way, thus

avoiding the inefficiencies of both depth-first and breadth-first

parsing. We also begat, the development of our work on performance

grammars (Robinson, 1975a) and on the systematic analysis of task-

oriented dialogs (Deutsch, 197^). A case subsystem was introduced to

provide more sophisticated semantic processing, and functions were

developed to resolve simple anaphoric reference and to correlate

information from a primitive world model. Using programs for speech

analysis and word verification developed by the SRI Sensory Science

Research Center (Beoker and Poza, 1975), we were able to process 71

utterances with an accuracy greater than 60$ (Walker, 197^, 1975).

1-25

 ---.-,.... - ■ - --

Following the completion of this system and the mid-period review

of the AFPA Program, we began our joint effort with SDC. (Walker et

al., 1975; Paxton and Robinson, i9r?; itobinson, 1975b; Hendrix, 1975c;

Deutsch, '975; Slocum, 1Q75; laxton, 'i976a, 1976b). The components of

tne speech understanding system that were developed by SRI were

programmed initially in INTERLISP-10 (Teitelman, 1975) on a PDP-10

TENEX system. In the system implementation at SDC, the acoustic

processing was performed on a PDP-11, and the rest of the system ran on

an IBM 370/115 under the VM operating system. We were able to use

INTERLISP/370 (Uppsala University, 1975)f for the SRI components, which

simplified the transfer of programs. The mapper was programmed in CAP

(Barnett and Pintar, 1971), an assembly language developed by SDC.

The results of this cooperative effort culminated in the system

that is described in this Final Report. However, immediately after we

had brcught up an operational system, the SDC computer facility was

removed and further refinement of the system as a whole no longer was

possible. During the last week before the removal of the SDC computer,

we were able to get data on the performance of the acoustic components

of the system. Subsequently, we have conducted extensive tests of the

system framework, simulating the unavailable acoustic components. These

results also are presented here.

• We are grateful to Jaak Urmi and the Uppsala University Computer
Center for their help in installing INTERLISP-370 on the SDC Computer.

1-26

In the succession of speech understanding systems described above,

we dealt with several domains that differed in size and complexity, in

the systems developed wholly at SRI, we began with the blocks world,

then worked on the repair of plumbing fixtures. With SDC, we were to

have dealt both with the maintenance of electromechanical equipment

(ta'.ing advantage of a companion project at SRI that was developing a

computer-based consultant*) and with operations on a file contairing

information about the attributes of ships in different naval fleets

(which SDC had worked on earlier). We developed strategies for the

maintenance problem, but a general reduction in ARPA funding limited our

resources, and further activities ir, that area were postponed. Our

current system uses the navy ships domain, and most of the work

described in this report will reflect that context.

The work on speech understanding at SRI has produced a system

design concept and a set of natural language processing components that

are well-suited for research on natural language understanding

generally. Chapters II and III present detailed descriptions of the

Definition System and the Executive System that provide overall

integration and control. Chapter IV discusses the results of the

experiments that we conducted to test alternative system control

strategies. Chapters V, VI, and VII describe the representation of

semantic knowledge, present a model of the domain, and show how

semantic processing is used in the interpretation of an utterance.

• See Nilsson et al., 1975; Hart, 1975.

1-27

'II n ilT^ln 11 if ■■■

Chapters VIII, IX, and X deal with discourse and include discussions of

dialog collection and analysis, the resolution of definite noun phrases,

and ellipsis. Chapters XI, XII, and XIII indicate how the system

responds to the interpreted utterance, how deduction is used both to

find an answer and in the interpretation process, and how the system

generates replies in English to a user. Following the references is a

complete list of publications and reports produced under the various

ARPA contracts that, have supported our research.

1-28

'v^^mm W'^rjwil JU-iLl^ugiii I I I11 ^ ^^^^^^^^™

II THE DEFINITION SYSTEM

Prepared by William H. Paxton

CONTENTS:

A. Introduction
B. The Metalanguage

1. Composition Rules
2. The Lexicon
3. Global Declarations
l|. Annotated Formal Syntax

C. A Version of the SRI Language Definition
1. Global Declarations
2. Lexicon
3. Composition Rules

D. The Definition Compiler
1. Category Records and the Lexicon
2. Rule Records, Structure Graphs, and Procedures
3. Details of Rule Compilation Algori^jms
t. Lookahead Information

E. Discussion

A. INTRODUCTION

This chapter contains a detailed discussion of the Definition

System. The Definition System consists of a metalanguage for writing

definitions of the input language for the speech understanding system

and a compiler to convert such definitions into a form fov use by the

Executive System.* In this chapter, the metalanguage is described, and

• We make the usual distinction between the metalanguage and the object
language: the object language is the language being defined (in our
case, it is the system's input language); the metalanguage is the
language used to state the definition. The 'language definition' is
written in the metalanguage and snecifies the object language.

- — ______

its use Is illustrated by a sketch of the SRI language definition. The

final part of the chapter, Section D, contains a discussion of the

Definition Compiler, focusing on the process of rule translation and

describing the internal representation of the structural and procedural

information. The use of the translated language definition in

understanding utterances is described in Chapter III, The Executive

System.

B. THE METALANGUAGE

The metalanguage is designed for specifying the definition of the

input language for the speech-understanding system. Such a language

definition consists of a lexicon containing the vocabulary, a set of

composition rules for combining words into phrases and smaller phrases

into larger ones, and some global declarations giving information needed

by the Definition Compiler and the Executive. The lexicon is separated

into categories, such as noun and verb, and the words in each category

are assigned values for various attributes such as grammatical features

and semantic representation. The composition rules are phrase structure

rules augmented by a procedure which is executed whenever the rule

constructs a phrase. Information provided by the procedure includes

both attributes of the phrase based on the attributes of its

constituents, and factors for use in judging the acceptability and

likelihood of the phrase. The global declarations in a language

definition give information such as lists of attributes for the

different categories.

II-2

üIüI

1. COMPOSITION RULES

A speech-understanding system uses several kinds of knowledge,

each playing a particular role during the processing of an utterance.

For example, our system employs knowledge about acoustics, syntax,

semantics, and discourse. The composition rules in the language

definition are the principal means by which these knowledge sources are

integrated. In addition to defining the possible constituent structure

for phrases, each rule has a procedure for calculating both attributes

of phrases and factors for use in judging phrases. Phrases with their

attributes and factors are the basic units for the integration of

knowledge sources in our system. Because the rule procedures may call

upon any or all of the sources of knowledge, the attributes and factors

of a phrase can, and generally do, reflect decisions by each major

component from acoustics to discourse. The following paragraphs

describe the structure of composition rules; Section C.3 of this chapter

contains more details about a complete set of rules for a small language

definition.

Part of a composition rule is shown in Figure II-1. The

rule starts with the keyword RULE.DBF followed by the rule name (SI),

the structure declaration, and the procedure. In the structure

declaration, vertical bars separate alternatives, braces are used to

delimit a set of alternatives, parentheses delimit optional items, and

angle brackets mark an optional set of alternatives. Category names can

be terminated with a number to provide unique names for different

II-3

 - - - - .

RULE.DEF SI S = NP1 <(D0 NP2) VP1 I BE {VP2 I NP3 1 nTHERE}>;

BEGIN

MOOD = IF DEIX(NPI) EQ "WH THEN "WH
ELSE IF DEIX(NP1) NO "UNDEFINED THEN "DEC
ELSE "UNDEFINED;

IF MOOD EQ "WH THEN F.MOOD = GOOD;
IF OMITALL(VP1,BE) AND SUBCAT(NPn EQ "PRO AND MOOD EQ "DEC

THEN F.REJECT(F.PROSENT);

END;

Figure II-1. PART OF A COMPOSITION RULE

occurrences in the rule of the same category (e.g., NP1, NP2, and NP3,

are all noun phrases or NPs). A quote mark Indicates that the next word

is to be taken literally rather than being interpreted as a category

name. Thus, the phrase structure declaration in Figure II-1 states that

a phrase of category S can bn composed of a noun phrase, NP1, optionally

followed by either a predicate with a verb phrase, VP1, or a predicate

with a BE verb (such as "is" or "are"). The constituent VP1 can

optionally be preceded by a DO verb (such as "did" or "does") and a noun

phrase, NP2. The BE verb must be followed by either a verb phrase, VP2,

a noun phrase, NP3, or the word "there".

The portion of Figure II-1 starting with trie wc-d "BEGIN"

contains an excerpt from the procedure for <"he rule. The first

statement assigns a value to the MOOD attribute. The expression

DEIX(NPI) refers to the Attribute named DEIX of the constituent NP1. If

II-M

. .;.^_.. . _ =_-.^__t_^.

the value of the DEIX attribute of NP1 is WH, the MOOD attribute of the

sentence is set to WH (indicating a question like "What ..." or "Who

..."). The MOOD is set to DEC (indicating a declarative sentence) if

DEIX of NP1 is not WH and is not UNDEFINED. (The default value of

attributes is the special symbol UNDEFINED.) However, if DEIX of NP1 is

UNDEFINED, MOOD is also set to UNDEFINED. The next statement sets the

MOOD factor, F.MOOD, to GOOD if the MOOD attribute of the sentence is

WH. This is a nonBoolean factor indicating a high expectation for WH

questions. The last statement in the figure is a restriction blocking

elliptical sentences formed of a single nonWH pronoun such as "we". In

other words, if both kinds of predicates are omitted (0MITALL(VP1,BE)),

if NP1 is a pronoun (SUBCATtNPI) EQ "PRO), and if the sentence is

declarative (MOOD EQ "DEC), then the phrase is blocked

(F.BEJECT(F.PROSENT)). The full procedure for the rule contains several

pages of such attribute and factor statements.

In this and other rules, there are attributes that specify

acoustic properties related to the input signal, syntactic properties

such as mood and number (singular or plural), semantic properties such

as the semantic network representation of the meaning of the phrase, and

discourse properties for anaphora and ellipsis. The values of

constituent attributes are used in computing the attributes of larger

phrases, and the attributes of complete interpretations are used in

generating responses.

II-5

The factors also use acoustic, syntactic, semantic, and

discourse information. Acoustic factors reflect how well the words

match the actual input, syntactic factors deal with tests such as number

agreement between various constituents, semantic factors ensure that the

meaning of the phrase is reasonable, and discourse factors indicate

whether an elliptical or anaphoric phrase makes sense in the «iven

dialog context. The values of factors are included in a composite score

for the phrase. The scores of constituents are combined with the factor

scores to produce the scores of larger ohrases, and the scores of

complete interpretations are used In setting Executive priorities.

Attributes and factors either have constant values or have

values that depend on attributes of constituents and global information

(such as a model of the discourse or the results of preliminary, low-

level acoustic processing). By design, the attributes and factors of a

phrase are not allowed to depend on the context formed by other phrases

that can combine with it to produce larger structures. This restriction

makes it possible to share phrases among different contexts and reduces

duplication of effort in the Executive.

Another restriction on the rule attribute and factor

definitions is that they must cover cases in which the value of a

referenced attribute has the special value UNDEFINED. The primary

reason for UNDEFINED attributes Is the desire to allow Executive control

strategies that depend on information regarding incomplete phrases —

phrases missing one or more constituents. With the attribute and factor

II-6

iiäTMiJi**!! "i r "

definitions required to handle UNDEFINED attributes of missing

constituents, the Executive can execute the rule procedure with a

partial set of constituents, and the results will be indicative of

possible completions of the phrase. The use of this ability in setting

priorities for the Executive is a topic of Chapter III, Section D.5.

There is an emphasis on factors in the language definition

because of the need to block bad phrases that might be incorrectly

accepted by acoustic tests. A system with text input can usually

toTo^ate a language definition that accepts a wide variety of st^anap

combinations of words as long as the looseness of the definition doos

not produce apparent ambiguities in actual user inputs. In other words,

the text system can focus on what the user might say and generally

ignore what he/she will not say. A language definition for a speech-

understanding system should be general enough to allow the speaker to

communicate naturally, but it must also block unacceptable phrases that

might be incorrectly 'heard' due to errors in acoustic tests even though

no speaker would actually say such phrases.

2. THE LEXICON

Like the composition rulea described above, the lexicon

combines declarative and procedural information. However, while the

rules are predominantly procedural, the lexicon mainly contains static

declarations of words and their attributes. The structure of the

lexicon is illustrated by considering the information for the word

"length".

II-7

MirrirTTr ■ Tn-—"■"■--»-^J-J">—»-

WORDS.DEF N

WORDFN LAMBDA(C) NÜLLDEFAULTATTRS(C,"(DETREQ MEAS RELN UNIT INDFLG));
SUBCATEGORY RELN.MEASURES

ATTRIBUTES MEAS=T, NBR=SG, ;
WORDS

LENGTH
PDGM=(S.HAVE.LENGTH PG.INVH),
SUPSET=N.LENGTHS;

SIZE

END;
ENDWORDS;

Figure 11-2. SAMPLE LEXICAL ENTRY

Figure II-2 contains an extract from the SRI lexicon

containing information related to "length". "Length" is in the

subcategory RELN.MEASURES (relational measures) of the lexical category

N (nouns). Some other RELN.MEASURES arc "size" and "speed". The noun

subcategories correspond to semantic classes thst are important in the

task domain of the speech system. Attributes declared for a subcategory

are shared by all of its members. Thus, because it is a RELN.MEASURE,

"length" is automatically given several attributes including one that

marks it as a measure term (MSAS=T) and another that marks it as

singular (NBR=SG). Dei'ault values for some other attributes are shared

by all the N subcategories. For instance, because "length" is not

marked otherwise, the WORDFN redundancy function for N sets attributes

DETREQ, UNIT, and INDFLG, to the value NIL to indicate, respectively.

II-8

..i.-.i-irv.. i.-,, , , ^, ^_,

that "length" does not require a determiner, that it is not a unit of

measurement (such as "feet"), and that it does noy. refer to an

individual (such as "England"). Most of the attributes of "length" are

set according to category and subcategory redundancies. The only

attributes explicitly gi/en for* the particular word "length" are PDGM

and SUPSET which relate to its meaning, the information that

distinguishes "length" from other RELN.MEASURES. (Phonological

information that would also distinguish "length" is stored separately

since it is only used in acoustic processing.)

In addition to word and attribute declarations, lexical

categories have an associated procedure that is invoked whenever a word

from the category is found in an utterance. For example, the lexical NP

procedure, for words like "it" and "who"', calls semantic routines to

build nodes in a semantic network and also calls discourse routines to

find possible referents.

3. GLOBAL DECLARATIONS

The glooal declarations at the start of a language definition

provide information needed by the Definition Compiler and the Executive.

This information includes a list of categories to be used in the

definition and lists of attributes for the categories. The global

declarations can also contain redundancy functions for rewriting

category and rule definitions. These functions were included in the

design because they provide ways to simplify the definition in much the

II-9

■ii.rrf»rJ^"TfT; ■äi-iiil'Tif -'TruMiirirMr-- -^---^—^-

3ame way that macros can simplify a program; however, they have not been

used in the current system.

M. ANNOTATED FORMAL SYNTAX

As described above, a language definition contains a lexicon,

composition rules, and global declarations. The lexicon groups words

into categories and subcategories. The composition rules have a p.irase

structure declaration augmented by a procedure specifying attributes and

factors. The global declarations provide information needed by the

Compiler and the Executive. The remainder of this section is devoted to

a more formal statement of the structure of a language definition.

An annotated formal syntax of the metalanguage is given below

using phrase structure rules with the notation described previously.

Vertical bars separate alternatives, braces delimit a set of

alternatives, parentheses enclose an optional set of items, angle

brackets bound an optional set of alternatives, and a single preceding

quote mark indicates a literal. Any item whose name ends with the

string "name" is an identifier, and items with names ending with the

string "names" refer to a series of one or more identifiers separated by

commas. In this formalism, the first part of a language definition is

shown in Figure II-3.

The global declarations include a list of categories, the name

of the root category (typically the sentence category, S), specification

11-10

■iiMiiiin i"a""^-—~ ^-n-iifirrr TI n 11 11^ ir^iirg*f--äi^^^^aaraiS^M^^:'-; -:: -^m^ ^^-■■' 11 ifirgfik rrrJIT"11 n 11 - T- ^^- - - -■ n^ ^j—^z—afc-—-- r, r ._- , - .-^-^ - ^—-. - ■... . _ ,- - - ■ - 3^^^^

language.def = "LANGUAGE.DEF decls "END "; rules.and.categories

decls = decl '*; (*»c1.s)

decl = "CATEGOBIES categorynaiu.^ 1 "ROOT "CATEGORY categoryname !
d«!cl.function functionspec I
"ATTRIBUTES attr.deols "ENDATTRS

decl.function = "RESPONSEFN ! "SCOREFN I "WORDEN I
"CATEGORYFN j "RULEFN

functionspec = functionname I
"LAMBDA "((variablen, .es) ") expression

attr.decls = attr.decl "; (attr.decls)

attr.decl = "{categorynames I "ALL ("EXCEPT categorynames)}
{"HAVE | "HAS} attributenames

ri'Tes.and.categories = {lexical.category ! composition.rule)
(rules.and.categories)

Figure II-3. DECLARATIONS

of various functions, and declarations of attributes. The RESPONSEFN

function is called by the Executi/e whenever a root category phrase is

constructed or when some resource limit is reached. The SCOREFN

function i3 responsible for combining individual factor values into a

composite rating for the phrase. (The particular procedures used for

RESPONSEFN and SCOREFN in the speech »..nderstanding system are described

i.i Chapter III, Sections C.^ and D.5.) The CATEGORYFN, RULEFN, nd

WORDEN, are functions that make changes in '■.he definitions for lexical

categories, composition rules, aril words, respectively, before the

definitions are compiled. The expression appearing in the function

specification is an arbitrary LISP expression written in an infix

11-11

,,. mj ^A .-A^^,

notation developed at SDC (see Barnett, 1973). The attribute

declarations give Hats of the various categories and their attributes

for use by the Compilsr.

The syntax for the lexicon is shown in Figure II-U. The

optional expression in the lexical category specifies the category

procedure. Following it can come a WORDFN function to modify the word

definitions in the category before they are compiled. A typical use of

a WORDFN is to supply default values for attributes. A category

definition can contain either a set of vords or a series of

subcategories. Each word can have an arbitrary number of attribute-

value pairs. Each subcatego^y can have a set of attribute-value pairs

in addition to its set of words. Thsse attribute-value pairs provide

defaults for the words in the subcategory. For example, if attribute A

is listed with value B in the subcategory attributes, all words in the

subcategory that do not explicitly assign a value to A get B as a

default assignment. The attribute values in the lexicon are LISP data

items such as atoms, numbers, or lists.

The syntax for composition rules is shown in Figure II-5.

The rule structure declarations use the same notation for phrase

structure as is employed in this section. The rule subfunctions and the

rule expression form the procedural part of the rule. They are written

in a dialect of LISP (see Barnett, 1973) with extensions for testing

constituent structure and computing attribute and factor values. The

Definition Compiler recognizes references to attributes by means of the

11-12

" *IMII1 ^ —""- ■1---—- ■
■ ■

—-^^=^^--^- ■■

lexical.category = "WORDS.DEF categoryname (expression ";)
lexcatparts "END ";

lexcatparts = {"WORDEN functionspeo I
"WORDS catwords "ENDWORDS |
"SUBCATEGORY subcatname

("ATTRIBUTES catwordattrs ";)
catwords "ENDWORDS1

"; (lexcatparts)

catwords •- lexentryname (catwordattrs) "; (catwords)

catwordattrs s attributename "= attributevalue (", catwordattrs)

Figure II-U. LEXICON

composition.rule = "RÜLE.DEF rulename structure
(subfunctions) expression "END ";

structure = categoryname "= rhsalts ";

rhsalts = rhsserles ("I rhsalts)

rhsseries = rhsitem (rhsseries)

rbsitem = "(rhsseries ") I "{ rhsalts "} I "< rhaalts '■> |
"" literalname 1 categoryname

subfunctions = "RULE.SUEFN functionname
"((variablenames) ") expression ";
(subfunctions)

Figure II-5. RULES

global declarations of their names. Factor names are identified by an

"F." prefix. A rule application can be blocked by the statement

"F.REJECT(factorname)". This statement causes immediate termination of

the rule. Both attributes and factors can be used in express'-nt and

II-1?

— - - _ .

can be assigned values. Attributes of constituents can be accessed by

an expression of the form "attributenameCconstituentname)". Attributes

are often set to the same value as an attribute of the same name in some

constituent, so a special statement is provided for this operation:

ÄATTRS attributenames FROM constituentnane.

This statement produces for each attribute in the list an assignment

statement of the form

attributename=attributename(constituentname).

The main forms for testing constituent structure are "HAVE

constituentaame" and "OMIT constituentname". HAVE implies that the

constituent position Is filled with a phrase. OMIT implies that the

constituent position is not going to be filled because some other

alternative has been selected. The rule procedures are sometimes

invoked by the Executive with only a partial set of constituents, and it

is possible in such cases for both HAVE and OMIT to be false for a

missing constituent. Once the phrase is complete, however, either HAVE

or OMIT, and not both, will be true for each constituent. For tests

with HAVE and OMIT that refer to more than one constituent, logical

connectives AND, OR, and NOT are available, or one of the following

special operators can be used: HAVEALL, HAVEANY, OMITALL, and OMITANY.

These operators take a list of constituent names as arguments and have

the obvious meanings.

II-11I

C. A VERSION OF THE SRI LANGUAGE DEFINITION

A version of the SRI language definition will serve as an

illustration of the use of the Definition System. The definition

described below is of moderate complexity: it is less complex than those

used in some current natural language text systems, but more complex

than the languages of most previous speech systems. It was derived from

a larger definition and used in the series of experiments described in

Chapter IV.»

The domain of discourse for the language is a data base of

information about ships of the U.S., Soviet, and British fleets. The

oarticular domain of discourse determines a large portion of the

vocabulary, and, hence, the lexicon. A change in the domain would

i-equire corresponding changes in the vocabulary and lexicon. The

composition rules, however, are quite general and the effect on them of

a change in discoui "^ domain would be relatively small. Some attributes

and factors in th* i'ules have been 'tuned' to the particular domain (see

Robinson, 1975), but most of them deal with general features of English.

There is information in the data base about several hundred ships

and a large number of ship classes and categories. For each ship, the

data base contains characteristics such as name, type, owner, builder.

• The larger definition was developed by Jane Robinson and Ann Robinson,
with assistance from Gary Hendrix, Joyce Friedman, and myself. As
designer of the Definition System, I influenced the general structure of
the definition but did not work out the details. After the definition
was relatively complete, I extracted a subset, made some revisions, and
used the result in a series of experiments.

11-15

t^^—^.jjjiäMj.,—■,---,_r.— , — — i__ia - J^.— ■- --.^.

length, beam, draft, displacement, speed, complement, and power. The

language definition is designed to allow a user to get information from

the data base by questions,, commands, and dialog sequences using

incomplete sentences and pronouns. The 60 test sentences used in the

experiments are listed at the end of Chapter IV. These sentences

indicate the scope of the language in an informal way. The following

paragraphs give a more precise description.

1. GLOBAL DECLARATIONS

Figure II-6 contains an abbreviated version of the global

declarations. There are 18 categories with S as the root category.

There are ^1 attributes, which can be divided into four sets: 12

attributes for syntax, 13 for case semantics, 9 for semantic

translation, and 7 for discourse. The category with the most attributes

is NP with 24. On the average, each category has about eight

attributes. The RULEFN and SCOREFN are not given explicitly since the

system defaults are used. There are also no redundancy functions

defined for category, word, or rule definitions.

2. LEXICON

The lexicon is divided into twelve categories. There are

three categories of verbs, BE, DO, and V, illustrated by "is", "does",

and "own", respectively. All have attributes for number (singular or

plural) and tense (present or past), and verbs in category V also have

11-16

- j ^| - - ^ ■^.. ..

LANGUAGE.DEFINITION
CATEGORIES S,NP,VP,CLASSIFIER,PREPP,PREP,N,BE,DO,V,

NUMBER,CENTI,SMALLNUM,TEEN,DIGIT,DET,WHDET,ADJ;
ROOT CATEGORY S;
ATTRIBUTES

S HAS REPLY;
V,VP,BE,DO HAVE TENSE;
NP,ADJ,VP,WHDET,DET,PREPP,NP HAVE SUPSET,SUPCASE;

ENDATTRS;
END;

Figure II-6. GLOBAL DECLARATIONS

attributes for voice (active or passive) and case semantics that

resemble the case grammar of Fillmore (1968) as adapted to computer use

by Celce Murcia (1976) and others. There are two categories of numbers:

^IGIT and TEEN. The TEENs ("ten", "eleven", and "twelve") are separate

because they do not combine in the same manner as DIGITs to form larger

numbers (for example, 31 cannot be said as "twenty eleven"). Both

DIGITs and TEENs have attributes giving their numeric value and their

grammatical attributes. Determiners are also split into separate groups

to simplify the rules: declarative determiners like "the" are in the

category DET; question (WH) determiners like "what" are in the category

WHDET; and the indefinite "a" is Included as a literal in the noun

phrase rule. The categories for adjective (ADJ) and prepositions (PREP)

also appear in the lexicon, but are represented by only two words each:

"of" and "by" for PREP, "fast" and "long" for ADJ.

11-17

 FTTTTÜfirfiri

The final three lexical categories (N, CLASSIFIER, and NP) are

each divided into subcategories. There are two subcategories of NPs:

countries (such as "Russia") and pronouns (like "it"). In both cases,

the words have attributes similar to those for a noun phrase constructed

by the NP composition rule. These attributes include number (singular

or plural), case (nominative or accusative), and semantic

interpretation. The lexical NP procedure also calls the discourse

routines to find possible referents for the pronouns; it blocks use of

the pronoun if no referent is found.

Classifiers are prenominal modifiers. There are three

subcategories of classifiers in the lexicon: countries (as in "British

ships"), type designations (as in "nuclear submarine"), and predicates

(as in "patrol sub"). All the classifiers have attributes indicating

the kinds of nouns they can modify and their semantic translation.

By far the largest lexical category is N, nouns. There are 10

subcategories of N: units of measure (such as "ton"), parts of ships

(such as "reactor"), classes of ships (such as "Nautilus"), individual

ships ("Seal ion"), companies ("General Dynamics"), countries

("England"), relational measures ("length"), two kinds of ship types

("CGN", "submarine"), and a subcategory of miscellaneous nouns. Members

of category N have grammatical attributes like number, semantic

attributes such as pointers into a semantic network, and attributes used

for both syntax and semantics such as information regarding whether the

N is a measure, a unit, or a relation.

11-18

tma^miam

3. COMPOSITION RULES

In addition to the twelve lexical categories, the language

definition includes ten composition rules. First to be discussed are

the three number rules whose phrase structure declarations are given in

Figure II-7. SMALLNUMs can be a DIGIT ("one"), a TEEN ("eleven"), a

DIGIT followed by the suffix TEEN ("fourteen"), a DIGIT followed by the

suffix TY ("seventy"), or a DIGIT TY DIGIT sequence ("sixty four"). The

two occurrences of TEEN and DIGIT in the phrase structure are

disarabiguated by use of numeric suffixes, "1" and "2". Thus, the rule

procedure refers to the first (leftmost) DIGIT as DIGIT1, and the

second, as DJGIT2. The SMALLNUM procedure checks attributes on the

digits since some cannot be followed by TEEN or TY ("one" is acceptable,

but not "oneteen" or "onety"), some can be followed by TY but not TEEN

("twenty", but not "twenteen"), and some must be followed by either TEEN

or TY ("thirteen" or "thirty", but not "thir").

SMALLNUM = TEEN1 1 DIGIT1 <"TEEN2 j "TY (DIGIT2)>

CFNTI = (SMALLNUM1) ("HUNDRED (("AND) SMALLNUM2))

NUMBER = (CENTI1) ("THOUSAND (("AND) CENTI2))

Figure 11-7. PHRASE STRUCTURE PARTS OF NUMBER RULES

The CENTI rule allows numbers like 2235 to be said in various

ways including "twenty two hundred and thirty five". The CENTI

procedure blocks sequences like ^000 said as "forty hundred" and also

11-19

computes the numeric value of the CENTI phrase from the values of the

constituents. The NUMBER rule can construct number phrases like "two

thousand and one". The procedure blocks phrases like 8100 s?id as

"eight thousand hundred" or as "one thousand and seventy one hundred".

A language definition for text input might omit such restrictions on the

Rrounds that no one would ever violate them in practice. However, as

mentioned previously, difficulties in acoustic processing can cause the

system to 'hear' almost anything, so the language definition must take

advantage of every opportunity to block unacceptable phrases and

downgrade unlikely ones.

In the remainder of this section, the descriptions of rules

are typically limited to simple sketches like the preceding ones.

However, to give a better indication of how the rules are actually

written, one rule procedure, for SMALLNUM, will be discussed in detail.

The SMALLNUM rule definition is given in Figure II-8. The procedure

body is a conditional statement with four main oases that depend on the

constituent structure.

In the first case, the SMALLNUM is a TEEN (TEEN1 in the

structure declaration), a number from the lexical category including

"ten", "eleven", and "twelve". The attributes NUM and NUMTYP are copied

to the SMALLNUM phrase from the TEEN by the 'ATTRS statement. The

second case for SMALLNUM occurs when the suffix TEEN is used (TEEN2 in

the structure declaration). In this case, there are two statements to

be performed (grouped together by square brackets and separated by a

11-20

. i^.,,.-., J... -_r J,| -||r |

RULE.DEF SMALLNUM SMALLNÜM = TEEN1 | DIGIT1 <WTEEN2 | "TY (DIGIT2)>;
IF HAVE TEEN1 THEN 'ATTRS NUMTYP.NUM FROM TEEN1
ELSE IF HAVE TEEN2 THEN

[IF TEEN(DIGITI) EQ "NO THEN F.REJECT(F.DIGTYP1),
IF COMPLETE.NODE THEN NÜM=NUM(DIGIT1)+10]

ELSE IF HAVE TY THEN
[IF TY(DIGITI) EQ "NO THEN F.REJECT(F.DIGTYP2),
IF HAVE DIGIT2 THEN

[IF ALONE(DIGIT2) EQ "NO THEN F.REJECT(F.DIGTYP3),
IF COMPLETE.NODE THEN NUM=NUM(DIGIT1)»10+NUM(DIGIT2)]

ELSE IF OMIT DIGIT2 THEN
[NUMTYP=nDECADE2,
IF COMPLETE.NODE THEN NÜM=NUM(DIGIT1)»10]]

ELSE IF HAVE DIGIT1 AND 0MITALL(TEEN2,TY) THEN
[IF ALONE(DIGITI) EQ "NO THEN F.REJECT(F.DIGTYP4),
NUM=NUM(DIGIT1)];

Figure II-8. SMALLNUM RULE DEFINITION

comma). The first statement looks at the TEEN attribute of DIGIT1 and

blocks the phrase if the attribute is NO by performing

F.REJECT(F.DIGTYPI). This blocks bad DIGIT TEEN sequences such as

"oneteen". The second statement tests the flaR named "COMPLETE.NODE"

and, if the flag is true, sets the NUM attribute, which gives the

numerical value of the phrase, to ten plus the NUM attribute of DIGIT1.

(The Executive sets COMPLETE.NODE false when applying a rule with some

of the constituents missing or for special tests.) The third main

SMALLNUM case is executed when HAVE TY is true. The first statement

checks the TY attribute of DIGIT1 and blocks the phrase if the attribute

value is NO (eliminating phrases like "onety"). The second statement is

another conditional depending on the phrase structure. If HAVE DIGIT2

is true, two statements are performed: a check that DIGIT2 can occur

11-21

— -

without a suffix -- that Is, AL0NE(DIGIT2) Is not NO — and an

assignment statement setting the NUM attribute to NUM of DIGIT2 plus ten

times NUM of DIGIT1. If HAVE DIGIT2 Is false but OMIT DIGIT2 Is true,

the NÜMTYP attribute Is set to DECADE2. This attribute Is used In

checks In the CENTI rule to block phrases like "forty hundred". The NUM

of the SMALLNUM Is then set to ten times the NUM of DIGIT1. The fourth

and final case for the SMALLNUM procedure occurs when the phrase has

DIGIT1 and omits both suffixes. The ALONE attribute Is checked to block

the phrase If DIGIT1 needs a suffix (for example, "thlr-" Is In the

lexicon as a digit that needs a suffix). If that test Is passed, the

NUM attribute Is copied from the digit.

The SMALLNUM composition rule Illustrates several points.

First, the use of options and alternatives in the phrase structure

declaration makes it easy to specify the basic possibilities. Second,

the rule procedure is organized as nested conditional statements

depending on the particular phrase structure. Third, unwanted phrases

are blocked by tests referring to constituent attributes. These tests

are embedded in conditionals in a manner ensuring that as soon as the

necessary constituents are available, the tests are made. The tests are

independent of the presence or absence or other constituents and are

also insensitive to the order in which the constituents are acquired.

Finally, the conditionals testing the structure treat HAVF and OMIT for

a particular constituent as separate possibilities. HAVE -jind OMIT can

both be false for a missing constituent in certain cases, since the

11-22

Executive needs to apply the rules with incomplete sets of constituents.

For example, if DIGIT1 and TY have been found for a SMALLNUM, then

without waiting for a possible DIGIT2, the rule procedure will be

executed to confirm that the DIGIT1 can occur with the TY suffix.

As an example composition rule, SMALLNUM accurately reflects

the general form, but it is atypically simple. In contrast to the one-

third page size of the SMALLNUM rule, the average rule length is about

one page, and the biggest rule, for noun phrases, is almost three pages.

Consequently, the following disnussions are limited to sketches of rules

rather than exhaustive, line-by-line documentation.

The phase structure declaration for the noun ohrase rule is

NP = {"HOW.MANY | <DET I WHDET 1 "A> (NUMBER)]
((CLASSIFIER) N ("PL) (PFEPP)).

The noun, N, can be optionally preceded by a CLASSIFIER and followed by

a plural suffix (PL) and a prepositional phrase (PREPP). At the front

of the noun phrase, there can optionally be "how many" or an optional

choice ot DET, WHDET, or "a", followed by an optional number. This

phrase structure allows many possibilities, sone of which must be

blocked by the NP procedure. For instance, "a" must be blocked if it

occurs without a following number or noun. Other structures are blocked

in certain cases depending on the attributes of constituent phrases.

For example, the NUMBER cannot be leftmost if it begins with "hundred"

or "thousand". On the other hand, if the NUMBER does not start with

"hundred" or "thousand", it cannot be preceded by "a".

11-23

 1. „i

saEsEtPWmes«

The NP procedure has a large number of statements related to

the head noun, N. Several NP attributes are derived from corresponding

N attributes, and many of the restrictions on poasible NPs depend on

properties of the N. For example, if N refers to an individual such as

a particular company, ship, or country, it cannot be preceded by "how

many", "a", WHDET, OLASSIFIER, or NUMBER, and the only preceding DET

allowed is "the". There are also case semantics checks for the noun

with a CLASSIFIER or a PREPP, and number agreement tests for the noun

with several other NP constituents.

When the NP is complete, the proceaure invokes routines to

construct a semantic net representation of its meaning. If the NP has a

definite determiner (like "the" or "that"), there art also calls on

discourse routines to look for possible referents. The phrase is

rejected if the semantic translation cannot be made or the discourse

referents cannot be determined.

The phrase structure part of the verb phrase rule is

7P = V «"SG ! "PAST> NP ! ("PPL) (PREPP)>.

The constituents are verb (V), singular suffix (SG), past tense suffix

(PAST), object noun phrase (NP), passive suffix (PPL), and prepositional

phrase (PREPP). The VP pi :edure checks various attributes of the verb

and other constituents to block unwanted combinations such as a verb

marked as active (like "have") followed by a passive marker (PPL).

There are similar syntactic checks regarding tense and number. Case

semantics checks ensure that the verb is compatible with the object and

the prepositional phrase.

mmääl^attaiaiäiilimülM

The prepositional phrase rule is one of the simplest. The

phrase structure i.s just PREP NP. The PREPP procedure blocks the phrase

if the NP is nominative case (like "we"), or if the preposition and the

noun phrase do not go together emantically. The phrase is given a low

rating if the NP is marked WH, or if the Nx' contains a NUMBER and the

noun is not a unit or a relation. (For example, "of ten knots" is ok.-'y,

but "of ten ships" is considered unlikely in view of the expected

questions.)

The remaining rules are for the root category, S. Tr.e

simplest S rule has the "irase structure HOW ADJ BE NP, illustrated by a

sentence like "How fast is it?" The rule procedure checks the semantics

of the adjective and the noun phrase for compatibility. Phrases are

blocked if BE and NP do not agree in number, or if the NP is marked WH

or accusative oase ("us"). The phrase is given a low -ating if the BE

is past tense or the NP is indefinite and has a NUMBER. ("How fast are

the ten ships?" is okay, but "How fast are ten ships?" is dubious.)

The phrase is blocked if the NP is a unit or measure, or if the semantic

translation f^ils for othe reasons.

Another relatively simple S rule has the phrase structure

S = (DO NP) VP. This rule handles imperatives and questions starting

with a DO verb. If DO and NP are present, they must agree in number,

the NP must not be marked as WH or accusative case, and the VP must not

be imperative. If DO and N? are omitted, toe VP must be imperative and

must not be marked WH. In either case, the VP must not be marked as

11-25

MM^a^^^^M^__^*.t

r
-.- _;^aH«^feg-^g^^^^N^3Jnr',^ MV^^^-T^I^J^; -■■

singular, past, or passive, and the phrase is blocked if semantic

translation fails.

The phrase structures for the last two S rules are

S = BE N?1 {NP2 1 VP}, and

S = NP1 <(D0 NP2) VP1 I BE {VP2 I NP3 I "THERE}>.

These rules handle a variety of question types and elliptical sentences.

Both make many tests concerning syntax, case semantics, and semantic

translation. The procedure for the first rule is about one page long,

and the second is about two pages in length.

In sununary, the composition rules use the phrase structure

declaration to give the basic constituent possibilities and use the

procedure to block or downgrade unwanted combinations and upgrade

expected ones. The procedures arc organized as nested conditionals

depending on the constituent structure. Simple syntactic tests are made

first, followed by case semantics, and, finally, by semantic translation

and discourse processing.

11-26

^ . ^-^^.—

D. THE DEFINITION COMPILER

The Definition Compiler translates a language definition into a

form for use by the Executive System. Data structures called 'record.:',

containing a variety of information, are constructed for each category

and rule. An important component of the category records is the list

holding the lexical entries. Major components of the rule records are

the phrase structure information and the rule procedure. This section

describes the internal form of a language definition in detail and

sketches the principal Definition Compiler algorithms.

1 CATEGORY RECORDS AND THE LEXICON

The global declarations for a language definition include a

list of the categories. In addition to these declared categories, the

Compiler creates special one-word lexical categories for each distinct

literal used in the composition rules. These special categories are

constructed so that the Executive does not have to treat literals as a

separate case. For each category, declared or specially created, the

Compiler constructs a record containing several components, the most

important of which are the following:

• A list of attributes for the category. These are derived
from the global declarations section of the language
definition.

• A list of rule records for the rules that produce phrases
of this category.

• A list of categories that can occur as the leftmost
terminal phrase in a phrase of this category. This

11-27

component, the next one, and the ones like it in the rule
records, are used for "lookahead" by the Executive.

• A list of categories that can occur as the rightmost
terminal phrase in a phrase of this category.

• A LISP function to set the attributes and factors of
terminal phrases of this category. This function is
created from the category procedure given in the language
definition.

• A list of lexical subcategory structures.

Each lexical subcategory structure is a list containing the

name of the subcategory, the default attribute-value pairs for members

of the subcategory, and the list of members. Each member is represented

by a list with the word, its attribute-value pairs, and a back-pointer

to the category record.

A lexical category declaration is compiled in a series of

steps. It is first, converted into a list structure, and the language

CATEGORYFN, if any, is called to modify the definition. The

subcategories are then compiled with the global WORDEN and the category

WORDEN applied to each word definition before its attributes are stored.

In addition to the words declared in the language definition,

the internal lexicon contains items called 'multiword lexical entries',

or 'multiwords'. These items are treated as single units for acoustic

processing but not for linguistic processing. For example, the phrases

"of the" and "are the" are among thp multiwords used in the speech

system. The use of multiwords improves the acoustic performance by

providing larger units for testing. However, the language definition

11-28

"Fiirnin" IM i ■ ir

would become excessively complicated and lose linguistic generality if

multiwords had to be treated as single words linguistically, so the

Compiler and the Executive cooperate to hide the existence of the

multiwords from the language definition. The Executive's treatment of

multiwords is described in Chapter III, Section C.4. The Compiler's job

is to add them to the lexicon so that a multiword phrase X starting with

word A is included in all the lexical subcategories that include A.

Thus, whenever the Executive considers A as a candidate word, X will be

available for consideration also. Since the Executive can work in both

directions in an utterance, the Compiler also adds multiwords Y that end

in word B to all subcategories including B. The multiwords in the

lexicon are marked to indicated whether they are to be considered in

left-to-right tests (such as X) or right-to-left tests (such as Y).

2. RULE RECORDS, STRUCTURE GrAPHS, AND PROCEDURES

The Compiler creates a record for each rule containing, among

other things, the following components:

• A graph representing the phrase structure possibilities for
the rule.

• A list of categories that can occur as the leftmost
terminal phrase in a phrase constructed by this rule.

• A list of categories that can occur as the rightmost
terminal phrase in a phrase constructed by this rule.

• A LISP function created from the rule procedure.

• A back-pointer to the category record for this rule.

11-29

MH

Rule compilation proceeds in a series of steps: (1) the rule

is translated into a list structure, (2) the language RULEFN, if any, is

applied to modify the rule definition, (3) the phrase 3tructure graph is

created, and (U) the rule procedure is rewritten and compiled as a

standard LISP function.

The phrase structure information is represented by an acyclic,

directed graph. The arcs in the graph are labeled with either a

category or NIL. Recall that literals are replaced by special one-word

categories, so there is no need for a special kind of arc for literals.

NIL arcs are introduced to deal with optional elements in the graph.»

There is a unique starting, or "leftmost", point in the graph, and a

unique ending, or "rightmost", point. A path is a series of arcs

A1,...Ak, such that the end point of Ai is the starting point of Ai+1.

It is a complete path if the starting point of Al is the leftmost point

in the graph, and the endpoint of Ak is the rightmost point. Two points

are connected if there is a path between them; by convention, a point is

considered to be connected to itself by a zero-length path. The

category labels along any complete path indicate a valid sequence of

constituents for the rule. Figure II-9 shows a phrase structure

declaration and its corresponding graph.

A phrase structure graph is stored as a collection of points

and arcs. Each point is represented by lists of arcs coming in from the

• NIL arcs are somewhat like JUMP arcs in an augmented transition
network (see Woods, 1970).

11-30

ill Mil iir HfTlTi "i i ■iiU

S = NP1 <(D0 NP2) VP1 ! BE {VP2 I NP3 1 "THEFE}>

• VP2 •
i i
i i

.BE • NP3 •

.THERE
.NP1,

i i
i i

 NIL •
i
i

,D0 »...NP2 • ,.VP1

 NIL

Figure II-9. A PHRASE STRUCTURE DECLARATION AND
ITS CORRESPONDING GRAPH

left and arcs going out to the right. The arc lists for each direction

from a point are divided into separate sections for category arcs and

NIL arcs so that the Executive does not have to test each arc every time

it is used to see which kind it is. Each arc is represented by a list

containing its starting point, its ending point, its label (a category

or NIL), an index number, and a table indicating other arcs in the graph

that cannot occur in complete paths that contain this arc (for instance,

the BE arc above cannot occur in complete paths with DO, NP2, or VP1

arcs or with either of the NIL arcs). Notice that this representation

allows the Executive to search the graph in either direction from any

arc or point.

In processing an utterance, the Executive tries to get a

series of adjacent phrases corresponding to the category labels on a

11-31

complete path through the structure graph. As the subphrases of a

phrase are acquired, they are stored in a constituent-array for the

phrase in the position specified by the index number of the

corresponding category arc. The constituent-array is initialized to

contain NILs, so the Executive can check whether it has acquired a

constituent for a particular category ?rc by a simple array reference

using the arc index number. The "HAVE constituentname" expressions in

the rule procedures are also implemented as constituent-array references

(requiring only two instructions in the PDP-10 INTERLISP). NIL arcs are

assigned index numbers larger than those for the category arcs in order

to minimize the size of the constituent array.

Since the Executive is often concerned with the relative order

of constituents, the category arc index numbers are assigned such that

if the index of category arc A is less than the index of category arc B,

either A is to the left of B or they are mutually exclusive. (Arcs are

mutually exclusive if there is no complete path that includes both of

them.) As an example, the order of the category arc index numbers in

the graph shown above is NP1, BE, VP2, Nt3, THERE, DO, NP2, and VP1.

The Executive takes advantage of the orderirg of category arcs in many

places. For instance, to find the first filled arc (an arc with an

acquired constituent for the phrase under consideration) to the right of

the arc with index number I, the Executive searches through the

constituent-array for the first nonNIL entry at location 1+1 or above.

The arcs are also stored in an array according to their index numbers,

11-32

■**"

so if a phrase is found in location J of the constituent-array, the same

index J can be used to access the corresponding arc in the graph. In

this way, the Executive substitutes array scans for graph searches.

As constituents are acquired for a phrase, some arcs are

filled, and others are blocked because they are mutually exclusive with

the filled arcs. The Executive keeps track of which arcs are blocked by

maintaining a bit table with each phrase. (The table is actually

implemented as a single integer, thus limiting the total number of arcs

in a graph to 36. This limit has not been a problem in practice.) Bit

number I is turned on if and only if ttie arc with index number I is

blocked. Part of the data stored for each arc is a bit table with the

bits turned on for the arcs that are blocked by it. Whenever an arc is

used, the Executive updates the bit table for the phrase by ORing it

with the bit table for the arc. The Executive tests if an arc is

blocked by checking the corresponding bit in the table (which takes

seven instructions after the value of the arc index is loaded into a

register). The "OMIT constituentnarae" expressions in the rule procedure

also refer to the bit table. (The OMIT expression is compiled in only

four instructions since the constituent index number is known at

compile-tlme.) Similarly, OMITANY and OMITALL are implemented by

creating a bit table for the constituents in question and ANDing it with

the phrase bit table or its complement (taking a total of five

instructions),

II-3?

—-^- -^^^ - wm U^tttm .HI I ■■ ■ -■ «i.. ■■■--■■

The operation of the Executive is simplified further by adding

redundant NIL arcs to the graph so that it is never necessary to

traverse two NIL arcs in a row. If two points, A and B, in the graph

are connected by a path of two or more NIL arcs, but no single NIL arc

connects them, the Compiler adds a new one to connect A and B directly.

No redundant NIL arcs are added to the graph in Figure II-9, but in

other cases, such as the NP rule, many are needed. Figure 11-10

shows the NP graph before redundant NIL arcs are added. To this graph,

the compiler adds five NIL arcs: (1) from the leftmost point to the

point at the right of the NUMBER arc, (2) from the left of the NUhBER to

the right of the CLASSIFIER, (3) from the leftmost point to the right of

CLASSIFIER, CO from the left of NUMBER to the rightmost point, and (5)

from the left of PL to the rightmost point.

» HOW.MANY »

•_JDET—• » NIL »

• A «—NUMBER—» NIL » »—PL—»-PREPP-»

•-WHDET-» NIL «—CLASSIFIER—»—N »
• n • ■ •

»—NIL—« »-NIL—»—NIL—»

Figure 11-10. NP GRAPH BEFORE ADDITION OF EXTRA NIL ARCS

The redundant arcs simplify the Executive algorithms by

allowing iterative operations to replace recursive searches of

arbitrarily long, and perhaps converging, paths of NIL arcs. For

example, to check all the categories that can occur immediately to the

II-?1|

left of a given constituent, the Executive can fetch the point at the

left of the arc for the constituent, check the incoming category arcs,

and then for each incoming NIL arc, check the incoming category arcs for

the point at the left of it. Because of the presence of redundant NIL

arcs, this simple algorithm covers all the possibilities without

duplication. For example, to the left of the N arc in the NP graph

after the redundant NIL arcs have been added, there is an incoming

category arc for CLASSIFIER and three incoming NIL arcs: one to NUMBER

and HOW.MANY, a second to DET, WHDET, and A, and a third to the leftmost

point in the graph.

The Executive can acquire constituents of a phrase in any

order, not Just left to right. Consequently, after each category arc is

filled, tests are made to see if a complete path has been created. The

tests succeed if there is a filled path from the left of the newly

filled arc to the leftmost point in the graph and a filled path to the

rightmost point. (A path is filled if all of its category arcs are

filled.) NIL arcs are used in the search for filled paths If they are

not marked as blocked. The Compiler makes this search more efficient by

ordering the list of NIL arcs from each point so the Executive never

needs to try more than one of them. The outgoing NIL arcs from a point

are ordered such that if arc A precedes arc B in the list, no path from

the endpoint of A leads to the endpoint of B. Similarly, the incoming

arcs are ordered such that if A precedes B, no path leads from the

starting point of B to the starting point of A. Basically, this means

11-35

putting the 'longest' arcs at the front of the lists. For example, the

NIL arcs coming in to the loft of the N in the NP graph are ordered such

that the first goes to the leftmost point, the second goes to the point

at the left of NUMBER, and the third gees to the point at the left of

CLASSIFIER. With the NIL arcs ordered in this way, the search for a

filled path only needs to consider the first unblocked NIL arc. If the

first one fails to lead to a filled path, none of the following ones can

possibly succeed. To prove this, assume to the contrary that A precedes

B in a list of outgoing arcs, both are unblocked, a search to the right

starting with A fails to lead to a filled path, but a search using B

succeeds. The point at the right of B cannot be the rightmost point in

the graph, since A leads to the rightmost point, and A is before B in

the lijt. Thus, there must be a filled category a>-c immediately

following B. However, this contradicts the hypothesis that A is

unbloc':ed since no path including A leads to the end of B where the

filled arc begins. The proof for incoming NIL arcs is similar.

To review, the phrase structure declaration for a rule is

translated into an acyclic, directed graph. The arcs are labeled with a

category or NIL and are assigned index numbers reflecting their left-to-

right order. Arcs and constituents are stored in parallel arrays

ordered by arc index number. A bit table is stored with each phrase to

record which arcs are blocked. Other bit tables a-e stored with each

arc to indicate the other arcs that are mutually exclusive with it.

Redundant NIL arcs are added to the graph so that paths do not need to

11-36

 ._„&=_»

include two NIL arcs in a row. Finally, the NIL arcs from a point are

ordered so that a search for a filled path can stop after considering

the first unblocked NIL arc.

? DETAILS OF RULE COMPILATION ALGORITHMS

The following paragraphs sketch the Compiler algorithms for

translating the phrase structure declarations into their internal form.

The translation begins with the creation of an initial graph. Recall

from the formal syntax given previously that a phrase structure is a set

of alternatives, each alternative is an ordered series of elements, and

each element is either a category, a literal, an optional series, a set

of alternatives, or an optional set of alternatives. To create an

initial graph for such a phrase structure declaration, the Compiler

first creates the leftmost and rightmost points, and then, for each top-

lavel alternative, it creates a graph for the series of elements in the

alternative, starting at the leftmost point and ending at the rightmost.

To create a graph for a series of elements El,.,.,En, from point A to

point B, the Compiler creates n-1 intermediate points P1,...,Pn-1, and

then creates graphs for El from A to PI, for E2 from PI to P2,..., and

for En from Pn-1 to B. A graph for an element E from points A to B

depends on what kind of element E is. If it is a category (or literal),

a category arc from A to B is constructed. If it is a set of

alternatives, a graph from A to B is created for each alternative series

of elements. If it is an optional series, a graph from A to B for the

11-37

series is created, and then a NIL arc from A to B is added. Similarly,

an optional set of alternatives is handled by creating the graphs for

the alternatives and adding a parallel NIL arc.

The next step is to add the redundant NIL arcs. The Comp-iler

keeps adding NIL arcs as long as it finds two in sequence between points

A and B, and no single NIL arc joins A and B. Aftei this process is

complete, duplicate NIL arcs are deleted, as are any joinxug the

leftmost point to the rightmost.

The lists of incoming and outgoing NIL arcs for each point are

then ordered. The lists are sorted by exchanging arcs A and B until it

is the case that if A precedes B, then, for incoming arcs, there is no

path from the starting point of B to the starting point of A, or, for

outgoing arcs, there is no path from the end point of A to the end point

of B.

Arc index numbers are also assigned by a sorting procedure.

If th re are N categories and literals in the phrase structure

declaration, the category arcs get numbers 1 to N, and the NIL arcs get

numbers above N. The numbers for category arcs are sorted by exchanging

the numbers for arcs A and B until it is the case that if the index for

A is less than the index for B, then there is no path from the right

point, of B to the left point of A.

The final operation is to irake a bit table for each arc A

indicating the arcs that are blocked by the use of A. This table is

11-38

formed by turning on the bit for each other arc B such that no left-to-

right path exists either from the right point of B to the left point of

A or from the right point of A to the left point of B.

The arcs are stored in an array acceding to their index

number, and the arc-array is stored as part of the rule record. Also

stored in the rule record are the leftmost and rightmost points in the

graph and the number of category arcs. This additional information

could be derived from the arra; of arcs, but the Executive benefits by

having it directly available.

After the phrase structure declaration is translated, the

Compiler begins wt k on the rule procedure. The procedure statements

dealing with attributes, factors, and constituent structure are

iewritten as standard LISP statements that will work in the environment

provided by the Executive. Before calling the rule procedure, the

Executive sets up an environment containing: (1) the consticuent-array

for the phrase, (2) the bit table showing blocked arcs, (3) the array of

attribute values, and (4) the array of factor values. The Compiler

converts "HAVE constitoertname" expressi ns to constituent-array

references using the appropriate category arc index. Similarly, "CMiT

constjtuent^ame" expr.jsions are converted to a test c,t the appropriate

bit ^.n the bit table of blocked arcs. In both cases, the Compiler looks

up the arc number corresponding to the constituent name, and a macro

produces th" required ^ode.

11-39

■ ■ - - -^

References to attributes are converted to attribute-array

references using as index the position of the attribute in the category

attribute list. Factor references are converted to factor-array

references using as index the position of the factor name in the list of

factors for the rule. In both cases, the array indexes are constants

known at compile-time, so efficient code is produced. For example,

references to constituent attributes produce eight PDP-10 instructions

to load an item from the constituent-array, and to give UNDEFINED if the

item is NIL or, if it is not, get the attribute value from the

attribute-array of the constituent.

The statement employe I to abort a rule,

MF.REJECT(factorname)",

is converted to a call on a function named F.REJECT with two arguments:

the name of the factor and the name of the rule procedure. The F.REJECT

function calls a LISP subroutine C'RETFROM") to cause the rule function

to return immediately with the value NIL as an indication of failure.

The facccr name is passed to F.REJECT as an aid to debugging. If a rule

is rejecting an input that the definition writer intended it to accept,

it is often because of a bug in a factor statement. The offending

statement can be easily located by watching calls on F.REJECT from the

rule procedure.

The 1?- step in compiling a rule is to create an empty phrase

for it, a phrase with no constituents. The phrase is saved with the

rule record and used by the Executive In ways described in the next

chapter.

II-iJO

■■----.

M. LOOKAHEAD INFORMATION

Both category records and rule records contain lists of the

categories that can occur as the leftmost or rightmost terminal phrases

of that category or rule. This information is used by the Executive to

'look ahead' to avoid unnecessary work on a category or rule whose

possible categories for boundary words do not intersect the categories

of the word possibilities determined by acoustic tests. For example,

before trying to construct a verb phrase starting at a particular

location in the input, the Executive checks acoustic results for that

location to ensure that the possibilities include at least one word that

can occur as the leftmost word in a verb phrase. The next chapter

contains more discussion of the use of lookahead by the Executive.

The lookahead lists are constructed in the following way.

Each category is first added to its own list of possible leftmost and

rightmost categories. Then, for each rule producing a phrase of

category A and for each constituent of category B that can occur as the

leftmost immediate ccnstituent of the rule, the Compiler calls the

procedure ADDLEFTCAT to add B to the list for A. If B is already on A's

list, ADDLEFTCAT does nothing. Otherwise, it adds B and then propagates

the addition in the following way: (1) for each category C that is a

possible left category of B, ADDLEFTCAT calls Itself recursive:y to add

C to the list for A, and (2) for each category D that includes A as one

of its possible left categories, ADDLErTCAT calls itself recursively to

r,dd B to the list for D. A similar operation is performed for rightmost

II-UI

category lists. When this process Is completed for all the rules, the

category lists are trimmed to eliminate categories with no lexical

entries. The rule category lists are finally set to be the union of the

lists for the categories that can occur as their leftmost or rightmost

immediate constituents.

E. DISCUSSION

As described in the preceding sections, the Definition System

consists of a metalanguage and a compiler. The metalanguage is designed

to provide a means for integrating the contributions of a variety of

knowledge sources while avoiding commitment to a particular overall

control strategy. The basic approach in the metalanguage is to use

augmented phrase structure (APS) rules in which a structure declaration

gives the constituent possibilities and an associated procedure defines

attributes and factors for phrases built by the rule. A major job of

the Definition Compiler is to contruct an internal representation of the

definition for use by the Executive in processing sentences. Structure

graphs are constructed by the Compiler from the phrase structure

declarations, and LISP procedures are written and compiled to implement

the rule procedures. The Compiler also builds an internal lexicon that

includes special entries for 'multiwords.' Finally, lookahead

information is computed and stored for categories and rules. In this

section, we compare the Definition System to some alternative approaches

that have been used in previous efforts.

11-142

The best known natural language understanding system Is undoubtedly

Winograd's SHRDLU (Winograd, 1971). The language definition system used

in SHRDLU is called PROGRAMMAR, and, like the other components of

SHRDLU, emphasizes a procedural approach to representing knowledge. A

PROGRAMMAR program is designed for top-down, left-to-right sentence

processing. The structural possibilities for the defined language are

encoded in the control structure of the program rather than being

declared separately in a form such as phrase structure rules. This

method reflects a desire to encode a great deal of special-case

knowledge to guide processing as an alternative to relying on a uniform

but weak algorithm. The emphasis on special-case knowledge and close

cooperation among different knowledge sources during sentence processing

is a aiajor contribution, but the particular method used in PROGRAMMAR

makes it difficult to experiment with different overall control

strategies. In earlier speech understanding work at SRI, we used a

procedural approach in the PROGRAMMAR tradition (Walker, 1973a,h), but

that approach was abandoned to aliow freer experimentation. Our current

approach retains the PROGRAMMAR emphasis on special-case knowledge and

close cooperation of knowledge sources, but it eliminates from the

language definition the commitment to a particular control strategy.

Procedural representation is limited to attribute and factor

information; the structural possibilities for the defined language are

declared separately rather than being encoded in the control structure

of a program. Thus, the use o' APS rules attempts to keep the most

valuable aspects of PROGRAMMAR's procedural representation while

eliminating its constraints on system control options.

II-U3

 ^^^^ i ^.-.

Another well-known approach is the use of augmented transition

networks (ATNs) for language definition (Thome, Brat ley, and Dewar,

1968; Bobrow and Fräser, 1969; Woods, 1970). ATMs are extended versions

of finite-state machines of automata theory. The first extension is to

allow state transitions to depend on the successful execution of an

entire network rather than being limited to testing a single word. By

this extension, context-free languages can be handled. The second

extension is to allow each arc to have an arbitrary condition associated

with it that must be satisfied for the arc to be used in a transition.

This extension gives ATNs the theoretical power of Turing machines.

ATNs have been used sucessfully in several large natural language

understanding systems (such as LUNAR described in Woods, Kaplan, and

Nash-Webber, 1972), and the approach is also used in the BBN speech-

understanding system (see ..apers in the 197i* IEEE Symposium, Erman,

1971*b). However, we prefer an appruach based on augmenting phrase-

structure rules rather than transition networks. One reason for this is

a personal preference for reading and writing rules rather than ATN

networks,* but a less subjective reason concerns the relative freedom

from control strategy commitments. Recall that our objection to

Winograd's PROGRAMMAR approach centered around its commitment to a

particular control strategy. However, as Winograd notes, PROGRAMMAR

• This preference appears to be shared by some users of ATNs. In a
recent report, BBN comments that to document its grammar it has used a
"semi-BNF" notation "which indicates much more c±aarly than the grammar
listing what sorts of sentences are accepted by the grammar" (Woods et
al., 1976a, p.10).

II-H4

programs ana ÄTNs "are just two different ways of talking about doing

exactly the same thing" (Winograd, 1971, p.201). An ATN is conceptually

a description of a nondeterministic machine. To process a sentence, the

machine moves through a series of states specified by the structure and

conditions of the ATN. The order of transitions is fixed, at least

conceptually, by the left-to-right scan of the sentence, so tests and

actions associated with arcs at the right of a network make use of

information from previous arcs to the left. This left-to-right

assumption affects f writing of augments on the arcs, but it is not an

absolute barrier to the use of other control strategies. Unlike a

PROGRAMMAR program, an ATN does separate the basic structure (i.e., the

network) from the augments (the tests and actions associated with the

arcs), so it is possible to use ATNs with non-left-to-right control

strategies. The method for doing this depends on recognizing augments

that use contextual information and delaying their execution until the

necessary information is available (see Bates, 1975). Our APS rules

avoid control commitments, conceptual or otherwise, by putting the

augments in a single procedure rather than spreading them over a

network; if a test or action uses information from several constituents,

it is embedded in conditional statements that check for the relevant

structure. The augments are thus organized in a way that avoids the

left-to-right bias of ATNs. Although that bias can be circumvented, we

prefer to use a representation that eliminates it rather than forcing

the Executive to try to work around It.

11-45

.-—.-.^.^u ikm

As a final comment regarding ATNs, note that our internal

representation for rules is like an augmented transition network with

the augments collected in a single procedure. As mentioned above, the

procedures are organized to avoid control strategy commitments, and the

networks provide the Executive with explicit knowledge of the basic

structural possibilities of the language in a form that is easy to use.

The structure information is heavily used by the Executive in making

predictions and constructing phrases (as discussed in Chapter III).

Thus, in rejecting ATNs, we are not rejecting the value of networks as a

representation. Instead, by changing the manner of adding augments and

by constructing the networks automatically, we retain their internal

efficiencies, and we also get an opportunity to optimize the network

format during compilation (as in the addition of extra NIL arcs and the

reordering of NIL zrcs).

Our preference for AP3 rules over more procedural methods such as

PROGRAMMAR and ATNs is shared by others. Such a preference appears, in

fact, in early work on compilers for programming languages. The first

programming language compilers were completely procedural; the

definition of the language was embedded (lost) in the control structure

of the compiler. In reaction to the obscurity of this method, "syntax-

directed compiling" was developed by Irons and others (see, for

instance, Irons, 1961; and Cheatham and Sattley, ^GU). The developers

of the new method were explicitly concerned with separating the two

functions of defining the language and translating it, functions which

11-^6

are merged in procedural approaches (see opening comments in Irons,

1961). Irons used a version of APS rules to state the syntax and

semantics of n programming language. Each phrase structure rule had an

associated semantic definition to form a 'translation' for a phrase

constructed by the rule. The translation was the only attribute of the

phrase and was formed from the translations of the constituents. Irons

implemented a general translator program to operate on such language

definitions and demonstrated the usefulness of the approach by

developing an ALGOL 60 compiler.

Irons' technique of using APS rules for programming languages was

extended by Knuth in a paper on the "semantics of context-free

languages" (Knuth, 1968). Knuth's first extension was to allow an

arbitrary number of attributes with each phrase. A set of attribute-

defining functions was associated with each phrase structure rule rather

than the single translation function of Irons. The second and more

significant extension was to allow both 'synthesized' and 'inherited'

attributes. Synthesized attributes of a phrase are defined solely in

terms of attributes of the constituents of the phrase. Irons'

translation attributes and our rule attributes are of this type.

Inherited attributes of a o^rase are defined by functions associated

with phrases that include it as a constituent. In other words, these

attributes are 'inherited' from the context rather than being

'synthesized' from information local to the phrase. In this system,

there is a danger of circular definitions of attributes (such as

11-47

inherited attribute A depending on attribute B, which is in turn

synthesized by a function with A as an argument), but such circular

definitions can at least be detected automatically by an algorithm

sketched in Knuth's paper.*

Knuth points out that inherited attributes do not provide greater

theoretical power since "synthesized attributes alone are (in principle)

sufficient to define any function of a derivation tree" (Knuth, 1968,

P.1M2). However, he claims that in practice the use of both kinds of

attributes can lead to important simplifications producing more

"natural" definitions. To support this claim, he gives a small larKuage

definition that makes use of both synthesized and inherited attributes.

The inherited attributes are used for operations such as testing the

agreement between the declaration and the use of variables. Knuth

comments that "in general, inherited attributes are useful when part of

the meaning of some construction is determined by the context in which

the construction appears" (Knuth, 1968, p.1^2).

Although Knuth's discussion is limited to programming languages,

his system of inherited and synthesized attributes appears attactive for

use in natural language processing. In fact, it has been used for

semantic translation in the REQUEST system, which is an experimental

question-answering system based on a transformational grammar of English

• However, the problem of determining whether the grammar avoids
circularity in all possible instances is very difficult computationally.
See Jazayeri, Ogden, and Rounds (1975) for a proof that any correct
algorithm for solving this problem must require time that grows
exponentially with the size of the grammar.

II-K8

(see Petrick, 1973, 1976). In REQUEST, an input is parsed aocording to a

surface structure context-free grammar, the surface tree is converted to

a deep-structure tree by reversed transformations, and the deep-

structure tree is mapped into a "logical representation" by Knuth's

translation technique, using both synthesized and inherited attributes.

Faced with Knuth's claims supported by the example of REQUEST, we

must explain our decision restricting the APS rules to use only

synthesized attributes. In this case, as with our rejection of

PROGRAMMAR-like procedural representations, the primary motivation is

the desire to free the language definition from features that would

excessively constrain the options for the Executive. Knuth states that

his approach does not depend on any particular form of syntactic

analysis. This is certainly true if the attributes are not to be

computed until after a complete derivation tree is constructed, but we

cannot afford to force the Executive to find complete context-free

parses before drawing on attribute and factor information. The

Executive must be free to use such information during sentence

processing to limit and direct its efforts. Furthermore, inherited

attributes make it difficult to share a phrase among several competing

contexts. Such sharing is particularly important with s eel.

understanding since acoustic uncertainty leads to a large number of

alternative contexts. Inherited attributes are context dependent, so

they, and all other attributes depending on them, would have to be

duplicated for each context. Thus, we have restricted ourselves to

II-M9

ÜBiacalHMaMl

using only synthesized attributes because we cannot delay the use of

augments until a complete parse is found, and we cannot afford to

duplicate attribute and factor information for each context. The

restriction to synthesized attributes and factors provides important

flexibility in the Executive, and, to date, it has not been an

impediment to the development of the SRI language definition.

A variety of computer systems for processing natural language have

used some form of APS rules (for example, Sager and Grishman, 1975;

Hobbs, 197^; Heidorn, 1975, Pratt, 1975, Landsbergen, 1976). The first

was the Linguistic String Parser implemented at New York University

under Sager in 1961-1965. The system has been redesigned and

reimplemented since then, but it has continued to use a two component

grammar: context-free rules defining the broad construction patterns of

sentences, and re?frictions covering detailed constraints. There is an

emphasis on restrictions (corresponding to our Boolean factors), but the

system does allow attributes to be set for nodes in the parse tree. In

contrast with our approach, the restrictions for a rule are not

organized into a single procedure. Instead, the approach foreshadows

ATNs by associating restrictions with particular positions in the rules.

As with ATNs, the positioning of restrictions assumes left-to-right

sentence processing. For example, in a rule A=B C, a restriction might

be positioned between B and C so it would be executed after the B phrase

was acquired and before the C was tried. Finally, some of the

'restrictions' are really optimizations for the top-down back-up parser.

11-50

so there is some blurring of the distinction betwten the language

definition and the control strategy for applying the definition. From

our standpoint, this blurring and the left-to-right bias caused by

positioning restrictions within rules are both shortcomings of the

approach. However, the successful application of the approach to

■

produce a grammar of very '.ide scope is evidence for the value of using

APS rules for natural language.

Other APS systems for natural language processing have avoided the

shortcomings mentioned above. For example, PHLIQA1 uses APS rules each

with a single procedure for augments to translate from English to the

first of several levels of semantic translation (Landsberger., 1976;

Scha, 1976), Our work was influenced by PHLIQA1 and differs mainly in

allowing alternatives and options in structure declarations and in

providing for nonBoolean factors in addition to Boolean restrictions.

These additions are especially important in a system for speech

understanding: the a1ternatives and optiom reduce the number of rules

and hence decrease the storage requirements of the Executive, and the

nonBoolean factors are of use in setting Executive priorities.

To summarize the prec""^ng discussion, our Definition System

continues a long-established line of systems using APS rules. We share

with earlier developers, juch as Irons, the desire to keep the language

definition free of control strategy commitments in order to make the

definition simpler and to allow greater flexibility in experimenting

with different system designs. Our system differs from previous ones in

11-51

m ^s^-.^-jj.iM ■ - .*^^

having broader phrase structure declaration capabilities and in allowing

nonBoolean factors.

Up to this point the discussion has focused on the metalanguage and

the choice of APS rules as a representation. The other major component

of the Definition System is the Compiler. The Compiler creates an

internal representation of a language definition for use by the

Executive in sentence processing. The internal representation has

several features that differentiate it from those used in previous

systems. The networks representing the phrase structure declarations

are reminiscent of ftTVs or charts (see papers by Kay, 1973; Kaplan,

1973a) but they are distinguished from those systems by the presence of

extra NIL arcs and the ordering of NIL arcs, both changes that

contribute to Executive efficiency. Other distinctive features of the

internal representation of the language are also concerned with

efficiency of Executive operations. These features are (1) the use of

parallel arrays for structure graph arcs and phrase constituents, with

entries ordered to reflect the lv>ft-to-right structural possibilities,

(2) the use of bit tables to keep track of blocked arcs and mutually

exclusive arcs, (?) the translation of rule procedures into cooipiled

LISP functions employing in-line instructions for efficient operations

on attributes and factors and qulclc tests of constituent structure, and

CO the construction of left and right lookahead information for both

rules and categories. The internal representation is tied to the design

of the Executive, so furt-ver discussinn of the representation is

deferred to Chapter III.

11-52

Ill THE EXECUTIVE SYSTEM

Prepared by William H. Paxton

CONTENTS:

A. Introduction
B. Parse Net
C. Overview of the Executive

1. Predict Task and Word Task
2. Setting Priorities
3. Starting the Task Cycle
i». Stopping the Task Cycle

D. Details of the Executive
1. Word Task

a. Getting a Word and Creating a Terminal Phrase
b. Distributing a Phrase to Consumers

2. Adding a Constituent to a Consumer
a. Preliminary Tests
b. Create Complete Nonterminal Phrase
c. Create Partially Filled Nonterminal Phrase

3. Predict Task
a. Create Subnet
b. Assign Ratings
c. Cleanup
d. Dead Phrases and Predictions
Multiword Lexical Entries
Priority Setting
a. Factors
b. Phrase Scores
c. Phrase Ratings
d. Relation to Executive Tasks
Adjusting Priorities and Focus by Inhibition

Discussion
1. Review
Z. CMU: HARPY and HEARSAY-II
3, BBN: SPEECHLIS and HWIM
U. Earlier SRI Systems

14.

5.

6.

A. INTRODUCTION

This chapter discusses the Executive System. The Executive in the

speech understanding system has three main responsibilities: (1) it

coordinates the work of the other components of the system by calling

acoustic processes and applying language definition procedures, (2) it

assigns priorities to the various tasks in the system, and (3) it

organizes hypotheses and results so that information is shared and

duplication of effort is avoided. In other words, the Executive carries

out the functions of integrating and controlling the sytem components.

Experimental results, to be discussed in Chapter IV, show that the

manner in which the Executive performs these functions has a large

effect on the overall performance of the system. For example, different

techniques for setting priorities result in significant differences la

average accuracy and runtime.

In processing an utterance, the Executive performs a series of

tasks to find words in the speech signal and to organize them into

phrases of the input language with the ultimate goal of creating a root

category phrase that spans the input. Thus, because we have designed

the speech understanding system with the language definition as the

primary mechanism for specifying knowledge source interactions, the

Executive does the job of a parser in fulfilling Its responsibilities

for system integration and control. We might have divided the Executive

box in the system diagram (see Chapter I, Figure 1-2) into two boxes,

perhaps calling one 'Control' and the other 'Parser', and then made

III-2

^^mMtgm^tlua^^
■ — m

favorable comments about the modularity of our approach. However, that

would belie the extent to which the parsing operations of the Executive

have been shaped to serve its integration and control functions and

would also fail to reflect the central place Li the system we have given

to the language definition — system components are controlled via the

language definition, so it is not accidental that the Executive does the

parsing. Consequently, our system diagram has a single box for the

Executive rather than two boxes for Control and Parser, and this chapter

deals with both system control strategy and parsing.

The following sections contain (1) a description of the main

Executive data structure, called the 'parse net', (2) an overview of the

Executive in sufficient detail to allow the reader to understand both

the discussion in the last section of this chapter and the exoerimental

results covered in Chapter IV, (3) a complete description of the

Executive, and (4) a discussion comparing this approach to several

others and sketching its evolution. This chapter presumes familiaricy

with the internal representation of the language definition as described

in Sections D.I and D.2 of Chapter II.

III-3

--=i-^-- • - ---

B. PARSE NET

The 'parse net' is the principal data structure built by the

Executive.1 This section describes the form and content of the parse

net; following sections describe the procedures that operate on it.

Nodes In the parse net are either 'phrases' or 'predictions.' Phrases

correspond to words or composition rules from the language definition.

Predictions are for particular categories of phrases at particular input

locations. 'Terminal' phrases contain a single word and are formed when

words are acquired by acoustic tests. 'Nonterminal' phrases are formed

when a language definition rule is applied to a set of constituent

phrases. If there are no unfilled, unblocked category arcs in the

phrase's structure graph, the phrase is called 'complete' (for a

description of structure graphs, see Section D.2 in Chapter IV).

Otherwise, more constituents can be added, so the plirase is called

'incomplete.' A complete phrase that is formed by adding missing

constituents to an Incomplete phrase P is called a 'completion' of P.

Predictions are made as part of the process of acquiring constituents to

fill category arcs in incomplete, nonterminal phrases. An incomplete

phrase is called 'empty' if none of its category arcs are filled. In

this terminology, the parse net of predictions and phrases holds

intermediate hypotheses and results while completions of empty, root-

category phrases a^e constructed. Such complete root-category phrases

with their attributes and factors are called 'interpretations' of the

input.

* The design of the parse net was inspired by Kaplan's multiprocessing
consumer-producer approach (Kaplan, 1973b).

III-JJ

^Iü

m

Phrases and predictions have time specifications indicating their

position in the input. By analogy with written text, beginning and

ending times are referred to as left and right, respectively. The times

for terminal phrases are provided as part of the output of the word

recognition routines. The times for nonterminal phrases come from the

leftmost and rightmost constituents, if those constituents have been

acquired for the phrase. An incomplete nonterminal phrase that is

missing its boundary constituents has its times either 'fixed' or

'unfixed'. Fixed times for a phrase P are either boundaries of the

utterance or times from complete phrases that might be adjacent to

completions of P. A fixed right time for a phrase P constrains possible

rightmost constituents of P to end at or near the specified position.

In contrast, an unfixed right time for a phrase means that there are no

constraints on the ending time of possible rightmost constituents.

Fixed or unfixed left times have similar results. Predictions also have

fixed or unfixed times that determine which phrases fulfill them. For

example, if a prediction has a fixed left time of 50, a phrase

fulfilling the prediction must start at or near 50. (The details of how

near is near enough are discussed later.)

Other information saved with each phrase includes an array of

attributes. For terminal phrases, the attributes come from the lexical

entry for the word or are computed by the category procedure. For

nonterminal phrases, the rule procedure computes attributes of the

phrase from constituent attributes. Terminal phrases have a pointer to

III-5

"
JJ
"-

;
~'"

,
*
J
^""-"'t™"iji-Mt"t

the lexical entry that was used to construct them, and nonterminal

phrases .nclude a pointer to their composition rule, a list of

constituent phrases, and a bit table showing the blocked arcs in the

structure graph.

Each prediction in the parse net is for phrases of a particular

category that meet particular time requirements. Stored with the

prediction record, in addition to the category and times, are the

following lists:

• Instances — Complete phrases of the predicted category
that meet the time requirements. These phrases fulfill the
prediction.

• Word sets — Sets containing words from the predicted
category which, if accepted by acoustic tests, can be used
to construct terminal phrases fulfilling the prediction.

• Consumers — Incomplete phrases that can have a phrase that
fulfills the prediction added to them as a new constituent.
Thus, the phrases on this list can 'consume' instances of
the prediction.

• Producers — Incomplete phrases whose completions could be
instances of this prediction. In other words, these
phrases can 'produce' instances for the prediction.

A prediction thus serves as an intermediary between two sets of

incomplete phrases: consumer phrases that are all missing a constituent

of the predicted category at the predicted location in the input, and

producer phrases that all might supply the missing constituents. Note

that a phrase can be a producer for one prediction and a consumer for

another. Thus, 'producers' and 'consumers' are not names for distinct

classes of phrases, but instead are names reflecting structural

III-6

üäivas^BiKaHaÜüi

relations in the parse net. The full set of producer-consumer

connections in the parse net make explicit the different sentential

contexts for each phrase. This contextual information is used by the

Executive in setting priorities and in lookahead. These operations and

the operations that construct the parse net are sketched in the next

section.

C. OVERVIEW OF THE EXECUTIVE

The Executive carries out a series of tasks adding predictions and

phrases to the parse net. There are two main types of tasks: the

predict task, which operates in a top-down manner, and the word task,

whic^ operates in a bottom-up manner.' This section sketches these

tasks and briefly describes how the task priorities are established and

how the series of tasks is started and stopped. The level of detail in

the descriptions is minimal but adequate to provide the reader with the

prerequisites for understanding both the discussion in Section E and the

experiments reported in Chapter IV. For the reader who wants a detailed

description of the Executive, this section provides an introduction that

should make the details given later easier to understand.

• See Aho and Ullman (1972) for a discussion of top-down and bottom-up
parsing strategies.

III-7

MBBi -- -■ ■ ÜB

1. PREDICT TASK AND WORK TASK

Figure III-1 shows the basic outline of the two main types

of Executive tasks. The predict task takes incomplete phrases and adds

a subnet of predictions and phrases to the parse net. The creation of

predictions for categories with lexical entries causes the word task to

be scheduled. Performing the word task entails getting an accepted word

(one that has passed the acoustic tests), constructing a terminal

phrase, and distributing it to consumers in the parse net. Adding the

phrase to a consumer can result in a complete phrase P, in which case P

is also distributed to consumers, or an incojiplete phrase Q, in which

case the predict task is scheduled to make predictions for constituents

that can be added to Q. The link in Figure III-1 from the cleanup

stage of the preüct task to the add-constituent-to-consumer operation

reflects the possibility of an old prediction with instances acquiring a

new consumer.

Both tasks are guided by lookahead* in other words, they avoid

unnecessary operations by using information about the acoustically

possible adjacent words. For example, if acoustic tests show that there

are no adjectives starting to the right of a phrase P, then no

structures are built using P that would require an adjective to its

right. Both tasks can also work either left-to-right through an input

or bidirectionally from words selected at arbitrary positions within an

utterance. The system is designed to allow constituents of phrases to

be added in any order, so experimentation with a variety of control

III-8

-" rfiT^-" - --' ,1 ^ij—^^-^f ■■M

WORD TASK

GET A WORD

CREATE A TERMINAL PHRASE

PREDICT TASK

CREATE SUBNET

ASSIGN RATINGS

DISTRIBUTE PHRASE TO CONSUMERS .CLEANUP

t t ^ 1
ADD CONSTITUENT TO CONSUMER^ SCHEDULE WORD TASK

I
SCHEDULE PREDICT TASK.

FIGURE 111-1 EXECUTIVE TASKS

strategies has been possible. Most importantly from the system-control

standpoint, each task does a limited amount of processing and then stops

after scheduling further operations for later. The scheduling doss not

specify a particular time for a future operation, but instead gives the

operation a certain priority. The operation is performed when it

becomes top priority. This organization allows the Executive to control

the overall activity of the system by setting task priorities.

We have experimented with two versions of the Executive tasks

that differ in where the acoustic tests are performed. In the first

version, called 'mappin ne at a time', a word is tested as the first

step of the word task, and only if the word passes the test is a

111-9

' Tiir^'-^MiiMi - ■tüfTTtf-- - i TT-a rm ii iiifiMirM iiiiinr" JM

terminal phrase created. In this method, word priorities are primarily

determined by consumer ratings (as described below). With the second

method, called 'mapping all at once', all the word tests at a particular

input location are performed before predictions are made at that

location. The word priorities are then influenced by the results of the

acoustic tests in addition to the consumer ratings. When a word becomes

top priority, the word task goes directly to the step of creating a

terminal phrase. Mapplr.c; all at once causes the system to test more

words per location but yields better priorities since experimental

results indicate that true hits tend to get higher scores than false

alarms. The choice between mapping one at a time or mapping all at once

is explored in tb« experiments reported in the next chapter.

2. SETTING vSlORITIBS

The fundamental data for priority setting are the word scores

provided by the acoustic mapper and the factors computed by the language

definition procedures. Mapper scores indicate how well a word matches

the input signal at a particular location in the input. Language

definition factors reflect likelihood judgments from syntactic,

semantic, and discourse sources of knowledge. The 'score' for a phrase

combines mapper scores, language factors, and, for a nonterminal phrase,

the scores of its constituents. The score is thus a local, context-free

piece of information about how 'good' the phrase is. The score may

reflect global data such as a discourse model, but it does not depend on

m-io

possible sentential contexts for the phrase. In contrast, the 'rating'

of a phrase does depend on the other phrases in which it may be embedded

to form a sentence. The rating of a phrase P is intended to provide an

estimate of the best score for an interpretation that can be constructed

using a completion of P. If P is itself a root category phrase, its

score determines its rating directly. Otherwise, the rating for P is

determined by reference to the consumers for P in the parse net. (The

organization of the Executive guarantees that all non-root-category

phraues have at least one consumer.) We have experimented with two

techniques for using the consumer context in setting phrase ratings. In

one method, the rating with respect to a particular consumer is formed

by adding the phrase score and the consumer rating. (Whenever possible,

ratings are assigned top-down in the parse net so that consumer ratings

are directly available for use in this process.) The phrase rating is

then the maximum rating with respect to any of its consumers. This

method is fast, but it leaves the rating unaffected by the consumer

restrictions that are expressed in rule procedures rather than in

structure declarations. A phrase may satisfy the structural

requirements of a consumer C but still be incompatible with C because of

constraints encoded in C's factor statements. For example, if the only

sentential context being considered is "Is it owned by —", the

structural requirements will be satisfied by any noun phrase, but

semantic factors will restrict the alternatives to possible owners.

111-11

 1

The !»«cond method for setting phrase ratings takes into

account the procedural information in the rules by exploring the paths

in the parse net that show how a phrase might be used and executing the

corresponding procedures to gather attribute and factor information.

Each producer-consumer path from a phrase P to a root category phrase

reflects a way of constructing an interpretation using P. To calculate

a rating for P with respect to such a complete path, temoorary

structures called 'virtual phrases' are built. For example, assume A Is

a consumer for P, B is a consumer for A, and C is a root-category

consumer for B (see Figure III-2). The virtual phrase A' is formed

by placing P in the appropriate empty constituent position in A. The

attributes and score of A' indicate possible completions of A-plus-P.

The virtual phrase B' is constructed by adding A' to B, and C is

constructed by adding E' to C. By assumption, C' is a root category

phrase, so the score of C determines the rating of P with respect to

the consumer path A-B-C. Various paths from P are formed in this way,

and the rating for P is its best rating with respect to any of the

constructed paths.

To reciuce the cost of rating alternatives by this method, a

heuristic search is made in the parse net for a near optimal path rather

than exhaustively trying all possible paths. The heuristic exploits the

fact that, typically, when a phrase is being rated the higher level

phrases that form its context have already been rated. (The parse net

is initialized so that a context of previously rated phrases exists even

111-12

- ■-■-:--- ■ - I f^-^--- - i„m„Mr,.««.üi-.*,m,, ,, ||

c \ Vimml C «rom C and C

CO V.tu«! B from B «no A'

i

f \
V.fta»! »e^MB A' from A and >

CP itnk it an indtrcci link betwiaen u cor mm«r
•of • pxxlucar via an miarmadlat* ptati.tuur, SA 360» 4

FIGURE 111-2 A CONSUMER ^ TH

111-13

MävTifi'f--" - -'■ !■ Ilglf ":= I ! ' 11 T T

when the system is doing bottom-up processing.) These prior ratings

provide important heuristic information. The object is to find the path

giving the best score, so the paths with the highest prior rating are

explored first. When a complete psth 5.s found, one tnat leads to a

root-category phrase, the score for that path sets a lower bound on the

rating. This lower bound is used to prune paths whose prior ratings are

low enough to suggest that they are unlikely to produce a rating higher

than the lower bound already established.

This method takes more computation per rating assignment than

the first one, but it should produce batter phrase ratings since it

gathers more information in forming them. Experimental results reported

in the next chapter indicat« that the extra effort spent in the second

method is worthwhile; it leads to better system performance in both

accuracy and runtime.

Phrase ratings are used to determine task priorities. The

priority of the predict task comes from the highest rating of any phrase

scheduled to make predictions. When the predict task is executed, it

creates predictions and phrases only at the time and direction (left or

right) that are determined by the best phrase scheduled to make

predictions. Similarly, the priority of the word task is equal to the

highest rating for any predicted word (the word rating is the rating of

the terminal phrase that could be constructed from the word). When the

word task is performed, it oniy operates on the highest r^ted word.

111-11»

In the case where task priorities are directly determined by

ratings, the control strategy is described as 'best-first'. We have

experimented with modifying priorities to Implement other control

strategies in addition to best-first. In particular, we have tried a

method we call 'focus by inhibition' in which high scoring words are

selected from the best phrases for the predict-task, and tasks that

cannot use those words are inhibited by having their priorities lowered.

The selected words are the focus of attention for the system in this

method and are described as 'the focus' or as 'in focus'. A phrase

conflicts with the focus if it contains a nonfocus word that overlaps

some focus word. The tasks that would try to complete such phrases have

their priori ies lowered. The priority reduction causes the system to

be biased against working to complete phrases that conflict with the

focus. If a task for a phrase P that is in conflict with the focus

manages to overcome the system bias against it to become the task with

the highest priority, the system shifts to a new focus by removing the

words from focus that conflict with P and adding new words co focus from

P.

The technique of focus by inhibition is motivated by a desire

to reduce the thrashing among closely rated alternatives that can happen

with a best-first strategy. Thrashing is reduced with focus by

inhibition because the best phrase inhibits its competition and thus

keeps the system's attention focused on fulfilling its predictions. The

inhibition is a relatively small decrease in priority, so the bias can

111-15

be overcome. Therefore, focus by inhibition does allow the system to

recover from selecting an incorrect word for focus. However, if the

system focuses on incorrect words too often, the net effect of the

priority changes can be harmful rather than helpful. Experimental

results showed that selecting incorrect words was in fact a r" 'ious

problem for focus by inhibition, and, as a result, overall performance

was not improved by this technique. Although this particular attempt to

improve performance by adjusting priorities did not succeed, the basic

approach still merits further study. As a method for adjusting

priorities, it provides simple answers to how, when, and why to focus

attention, while still maintalnlr.^ the completeness of the control

strategy. (It does not discard alternatives, it simply revises their

priorities.) Better success at selecting hits rather than false alarms

for focus could result in a focus by inhibition that improved

performance.

3. STARTING THE TASK CYCLE

The Executive starts processing an utterance with an initial

parse net already in existence. If the system is using a left-to-right

control strategy, the Initial net contains: (1) for each root category

rule, an empty phrase with times fixed at the beginning and end of the

utterance, and (2) for each category that can occur at the left of an

Input, a prediction with its associated empty producers, all with their

left times fixed at the beginning of the utterance and their right times

111-16

*m

unfixed. Each phrase P In the initial parse net is connected as a

consumer to the predictions for categories of phrases that can occur in

P as leftmost immediate constituents. The Executive task cycle starts

by scheduling the word task for the predictions in the initial net.

This task will find a word at the start of the utterance and the

interplay of word task and predict task will start.

As an alternative to left-to-right processing, the system can

use 'island driving' in which phrases are constructed bi .rectionally

around 'island' words selected at arbitrary locations in the input.*

The motivation for island driving is that it allows the syster to begin

processing an utterance where it is most confident that it has found a

correct word. It can use that word to provide contextual guidance in

processing other parts of the utterance where it is less confident. In

contrast, left-to-right processing must start at the beginning of the

utterance even if the system is not confident about any of the words

there.

For island driving, the initial parse net contains: empty root

category phrases with times fixed at the beginning and end of the

utterance, and, for each category in the language, a 'monitor' (which is

a special kind of prediction) with its associated empty producers, all

with both times unfixed. Each phrase P in the initial parse net is

• Island-driving is derived from Miller's 'locally organized parsing'
based on 'islands of reliability' (see Miller, 1973). For examples of
its use in speech understanding systems, see Ritea, 1974 and Bates,
1975.

111-17

IHIHM

connected as a consumer to the monitors for categories of phrases that

can be added as immediate constituents of P. The task cycle starts with

the selection of an island word according to a criterion combining the

word's mapper score and its estimated likelihood of being a false alarm.

The word task is performed for this island word to create a terminal

phrase. The terminal phrase is then passed to the distribute-phrase

procedure. For island driving, this procedure is modified so that if

the phrase being distributed does not fulfill any predictions, it is

given to the consumers for the monitor of its category. In general,

this operation can construct incomplete phrases that lead to predictions

on either side of the island word. After the first island word is

distributed, the Executive schedules a task to select a second island

word in case the first one fails to lead to highly rated phrases. If

this task is performed and starts a second island, it will reschedule

itself to try a third in case the second runs into trouble. In this

manner, a number of islands can be worked on simultaneously. The effect

of Island driving on system performance is a topic of Chapter IV,

Section E.

14. STOPPING THE TASK CYCLE

«fter each execution of a task, the Executive cheeks several

parameters to see if It should stop the task cycle. For instance, the

Executive keeps track of the amount of storage in use and stops before

the available rtorage is exhausted. Another stopping criterion is the

III-18

__

difference between the priority of the best remaining task and the

processing time already ured for the utterance. The Executive stops if

the value of this criterion falls below a certain threshold. The

threshold is initialized to a lou v^lue, but whenever an interpretation

is constructed, the threshold can be raised so that the system will not

spend much more time looking for other interpretations unless the

priorities are high. When the Executive decides to stop, it calls the

language RESPONSEFN function. This function is also called whenever an

interpretation is constructed, and it stores the interpretations and

manipulates the priority-minus-processing-time threshold. When the

Executive tells the RESPONSEFN that it is time to stop, the function

initiates question answering using the highest rated Interpretation it

has.

This concludes the overview of the Executive. The reader has

an option at this point of skipping ahead to the discussion section at

the end of this chapter or to Chapter IV (which deals with a series of

experiments concerning system performance and the Executive) before

going on to the following detailed description of the Executive.

111-19

D. DETAILS OF THE EXECUTIVE

This section gives a detailed explanation of th«* Executive. The

topics covered are the word task, adding a constituent to a consumer,

the predict task, multiword lexical entries, and priority setting. To

make the following descriptions complete, there is some repetition of

information covered in the overview.

1 WORD TASK

The major operations in the word task are to acquire a word

that is accepted by the acoustic tests, create a terminal phrase for it,

distribute the phrase to consumers, and schedule the predict task for

any incomplete phrases that result. Predicted words are organized into

'word sets'. Each word set has a list of words from some lexical

subcategory, time specifications like those for a prediction, and

priority information. Word sets are typically created during the final

step of a predict task, but they are also created at the start of a

left-to-right parse. Like a prediction, a word set has one fixed time

and one unfixed time • The creation of a word set begins by finding the

subset of the lexicon that is worth considering at the fixed time. If

the system is using the mapping-all-at-once control strategy, this

subset contains the words actually accepted by the mapper at or near the

time. Otherwise, the subset is created by a special acoustic process

• Word sets for the root-category are exceptional in that both of their
times are fixed. The algorithms take care of these as special cases.

111-20

»_, ^_,-i _ mm

called lexical subsetting, which looks at local acouatie features to

eliminate words that the mapper would not accept. In either case, the

lexical subset is intersected with the set of words in the predicted

lexical sutcategory to form the entries in the word set. (The word set

is not created if the intercection is empty.) The word set is then

assigned a priority and added to the list of word sets for use in the

word task. The word set priority reflects the expected rating of

terminal phrases constructed from words in the set. A single rating is

computed for the entire set of words. If the system is mapping all at

once, the priority of the word set is strongly influenced by the best

mapper score for a word in the set. Otherwise, the priority is affected

by the estimated false alarm likelihoods for words in the set, so that,

other things being equal, the system will try words in an order that is

expected to minimize false alarms. The priority of the word task is the

highest priority of any word set.

a. GETTING A WORD AND CREATING A TERMINAL PHRASE

When it is performed, the word task begins by selecting a

word from the highest priority word set. The selected word is the one

with the highest mapper score, if the system is mapping all at once, or

the one with the lowest false alarm likelihood, if the system is mapping

one at a time. If theia are no other words in the set, the set is

deleted. Otherwise, the priority for the set is revised. If the system

is not using the map-all strategy, the chosen word is now tested by the

111-21

"■-"^- - V^-äfa-na-i-rtifi

mapper. If It Is rejected, the word task goes directly to its final

stage. In that stage, the priority for further word tests is compared

to the priority for other syatem tasks. If word testing is still the

highest priority, the word task is directly reexecuted. Otherwise, it

returns control to the top-level Executive procedure.

If it is assumed that the word has been accepted by the

mapper, the next operation is to create a terminal phrase (see Figure

III-3). This operation begins by checking if a terminal phrase for

the same word* in the same input location has already been created. For

instance, the word might have been accepted as the result of a

prediction from the opposite direction (right-to-left instead of left-

to-right, say), or it might have been found following a prediction with

a slightly different fixed time. If such a terminal phrase exists, the

word task does not create a duplicate, but instead, it simply goes to

its final stage.

If there is a terminal phrase for the same word and place, quit.

If there is a phrase for the same word at a different place, use
the previous attributes and factors rather than recomputing
them.

Otherwise, call the category orocedure.

Construct the phrase record.

Distribute it to consumers.

Figure III-3. CREATE TERMINAL PHPASE

• In this discussion, a 'word' is a lexical entry, so if there is a word
in category X that happens to have the same spelling or pronunciation as
another word in category Y, they are still different words.

111-22

.^-^

If there is a phrase already created for the word in a

different location in the input, the attributes and language factors for

that phrase can be reused rather than recalculated. For example, after

a phrase for "it" is created, other "it" phrases use the same array of

attributes, including the semantic network representation and the list

of possible discourse referents. The shared language factors are

combined with the particular mapper scores to produce scores for the

different "it" terminal phrases.*

If the word has not been used for a previous terminal

phrase, the category procedure is called to compute attributes and

factors for it. If the category procedure does not reject the word, and

the resulting phrase score is above a certain threshold, the terminal

phrase record is constructed. The record holds the word's lexical

entry, the times given by the mapper, the phrase score, and other

information. The phrase Is now ready for distribution to consumers.

b. DISTRIBUTING A PHRASE TO CONSUMERS

The procedure for distributing a phrase to consumers is

the same for terminal and nonterminal phrases (see Figure III-4). It

is called from the procedure that creates terminal phrases and from the

procedure that adds a constituent to a consumer to create a complete

• Acoustic attributes and factors are not shared. In the current
system, the only attributes that depend on acoustic results are the
phrase times, and the only acoustic factors are from mapping and phrase
mapping. The acout'tic attributes and factors are treated specially by
the system; there is not a general mechanism for dealing with them.

ITT .23

If it la a root-category phrase, give it to the PESPONSEFN.

For each prediction fulfilled by the phrase,

Record the phrase as an instance of the prediction, and

Add the phrase to each consumer of the prediction.

Figure III-»». DISTRIBUTE A PHRASE TO CONSUMERS

nonterminal phrase. If the category of the new phrase is the root

category of the language, the phrase is passed to the language

RESPONSEFN. This function saves the phrase for possible use in question

answering and adjusts the Executive stopping parameters. If the

category of the new phrase is not the root category, all predictions for

the category are checked to see if the new phrase satisfies their time

constraints. For example, if the phrase is an NP starting at location

35 and ending at location 55, it satisfies an NP prediction with left

time 35 and right unfixed, but it does not satisfy an NP prediction with

left unfixed and right at 180.

The actual algorithm for checking times takes two times

as its input and decides whether or not they are compatible. For a

phrase to satisfy a prediction, the left phrase time must be compatible

with the left prediction time, and similarly for the right times. If a

time is unfixed, it is compatible with any other time. Two fixed times

are compatible if the gap between them is not too large. In the

simulation experiments described in the next chapter, the allowed gap

III-2»»

was gi/en by a parameter — the standard size was 0.05 seconds, but tills

was varied in one of the experiments. With real rather than simulated

acoustic processing, syllable boundary information is used in the time

check — the gap between two times must not contain an entire syllable.

This test eliminates the obviously bad cases and leaves the more

difficult ones to be handled by phrase mapping. Phrase mapping looks at

a pair of words that have been accepted individually to see if they are

acceptable as a sequence. Phrase mapping is done in the add-constituent

operation when phrases are put together to form larger phrases (by a

procedure discussed below).

For each prediction that the new phrase fulfills, the

phrase is added to the prediction's instances list and then given to the

prediction's consumers. The instances list is maintained so that

consumers arriving later can make use of previously constructed

instances. The operation of giving the phrase to a consumer is the

source of nonterminal phrases that have one or more constituents.

2. ADDING A CONSTITUENT TO A CONSUMER

The add-constituent procedure (Figure 111-5) performs

preliminary tests to ensure that the phrase and its consumer are

compatible with respect to times, phrase mapping, and lookahead. The

time checks in the distribute-phrase procedure described above ensure

that the phrase satisfies the times of the consumer's prediction; the

time checks for the add-constituent procedure are more detailed and take

111-25

.-^^^^■--^--^■■^=^---1 I,, [r^ifiiiia^tii s L

If the preliminary tests fail, quit.

Try to create a complete phrase, and distribute it If successful.

Try to create an incomplete phrase, and if successful then
assign its rating and schedule the predict task.

Figure III-5. ADD CONSTITUENT TO CONSUMER

into account other constituents of the consumer. If the preliminary

tests succeed, the procedure goes on to try creating both complete and

Incomplete phrases.

The add-constituent procedure is called from tvro locations.

It is called from the procedure that distributes new phrases, and it is

called from the predict task when a new consume!1 is added for a

prediction that has been previously fulfilled. Because of multiple

consumers and multiple instances, a particular phrase can be added to

many different consumers, and a single consumer can receive many

different constituents. This multiple use is possible since

constituents are not modified by their context, and consumers are copied

before they are combined with a constituent.

a. PRELIMINARY TESTS

Th«» add-constituent procedure begins with a series of

tests to block certain bad constituent-consumer combinations. The first

tests concern the time constraints on the new constituent imposed by the

111-26

latiüiiiiiii
mtmtmmmm

time specifications of the consumer and its old constituents (see Figure

III-6). The tests to the left of the new constituent will be

described; similar tests are performed to the right. Let the indeir

number for the constituent category arc be I. (This section assumes

familiarity with the internal representation of the language definition.

See Sections D.I and D.2 of Chapter II.) If the new constituent has a

left neighbor constituent in the consumer, the neighbor can be found by

scanning through the consumer's constituent-array, starting at position

1-1 and going down to position 1 looking for the first nonNIL entry

(recall that entries are ordered from j.eft to right in increasing

positions of the array). If there is a neighbor, the following tests

are made to ensure that it is time compatible with the new constituent.

As an Initial check, the left neighbor must really be somewhat to the

left of the new constituent. If neither of the left or right times of

the new constituent is to the right of the corresponding time of the

left neighbor, the preliminary tests fail.

The next test depends on the structure graph relation

between the new constituent and its left neighbor. If the consumer's

structure graph Indicates that the two phrases must be immediately

adjacent (i.e., the right point of the left arc is the left point of the

right arc), the rightmost word in the left phrase and the leftmost word

in the right phrase are passed to the phrase mapping procedure. The Job

of the phrase mapper is to deal with coarticulation effects at word

juncticns, and if it rejects the pair of words, the add-constituent

111-27

If find a neighboring constituent to the left,

(1) quit if the neighbor is not to the left in the input,

(2) if the neighbor must be adjacent,
phrase map and quit if the test fails,

else if the neighbor optionally can be adjacent,
phrase map and block the NIL arc if the test fails.

Otherwise, if the consumer phrase left time is fixed and
the prediction left time is unfixed, then

if the new constituent must be leftmost,
check the left times and quit if the test fails

else if the new constituent can be leftmost,
check the left times and
block the NIL arc if the teat faUs.

Do the same tests to the right of the new constituent.

Figure III-6. PART 1 OF PRELIMINARY ADD-CONSTITUENT TESTS

procedure terminates without adding the phrase to the consumer,.

Alternatively, the structure graph for the consumer may indicate that

the phrases do not have to be adjacent, but that they can optionally be

adjacent if an unblocked NIL arc is used. In this case, phrase mapping

is performed, and if it fails, the NIL arc is blocked to record that the

phrases cannot in fact be adjacent. (The arc is marked as blocked by

turning on the appropriate bit in a copy of the consumer's blocked-arc

bit table.) The last alternative is that the structure graph does not

allow the neighbors to be immediately adjacent. No phrase mapping is

done In this case.

111-28

„..^„n^iiuim MiiM i.■ p.wwii>._i

If there la not a left neighbor for the new constituent,

but the consumer's left time is fixed, a time check may be made like the

time checks to see if a phrase satisfies a prediction. However, if the

consumer and the constituent were brought together by a prediction with

a fixed left time, a time cheok is not necessary here since it would

duplicate the check made when the phrase was added as an Instance for

the prediction. In case the prediction's left time is not fixed, but

the consumer's left time is (which can happen if the consumer is a root

category phrase), and the new phrase can be the leftmost constituent, a

time check is made with the constituent's left time and the consumer's

left time. If the test fails and the constituent must be leftmost, the

add-constituent procedure terminates. If it can be leftmost by the use

of an unblocked NIL arc and the time test fails, the NIL arc is blocked.

These tests, and similar ones regarding the right side of the new

constituent, ensure the acceptability of the times and word junctions

between the new constituent and its consumer.

The second group of preliminary add-constituent tests

look at the lexical subsets adjacent to the new constituent to block

various arcs in the consumer (see Figure III-7). The lexical subsets

are determined by acoustic tests and indicate the words that may be

found in the utterance at the specified location and direction. For

example, if the constituent starts at location 70 and ends at 105, the

subset to its left will contain words that can end around 70, and the

subset to its right will contain words that can start around 105. Each

111-29

-—^^—-- ■■ ^

For each arc coming in to the left of the new constituent,
block the arc if it is inconsistent with the lookahead.

If all arcs to left are blocked, quit.

Do similar tests to the right of the new constituent.

Block any arcs that can no longer be in a complete path.

Figure III-7. PART 2 OF PRELIMINARY ADD-CONSTITUENT TESTS

category in the language has a precomputed list of possible leftmost and

rightmost terminal phrase categories. These lists are used to block

arcs that are inconsistent with the lookahead provided by the lexical

subsets.

The details of the tests to the right of the new

constituent are given below; similar tests are also made to the left.

If the arc for the constituent ends at th« rightmost point of the graph,

no lookahead tests are made at this point in the add-constituent

operation (but more lookahead will be done at a later point in the

operation if a complete phrase can be constructed). Otherwise, the arcs

are checked that start directly to the right of the arc for the new

constituent. If a category arc is blocked or filled, it does not need

to be tested with respect to the lexical subsetting lookahead. Each

unblocked, unfilled category arc is tested by intersecting the set of

possible leftmost terminal categories for the arc with the lookahead set

of categories for the lexical subset on the right of the constituent.

If the intersection is empty, the arc is blocked. Next, each nblocked

111-30

NIL are is checked that starts directly to the right of the constituent

arc. If it leads to the rightmost point in the graph or If it leads to

a filled category arc or to an unblocked, unfilled one whose leftmost

terminal categorlej? have ?i nonempty Intersection with the lookahead

categories, the NIL arc remains unblocked. Otherwise, it is blocked.

If these tests leave no arcs unblocked directly to the right of the

constituent arc, the add-constituent procedure terminates.

After the lookahead tests are completed to the left and

right of the constituent, all the remaining unblocked arcs in the

consumer are checked to make sure they can actually participate in a

complete path through the structure graph. Arcs are blocked that are

mutually exclusive with the arc for the new constituent. Any arc that

cannot be in at least one complete path is also blocked by the following

operation, which is done in two passes. The first pass goes through the

consumer's array of arcs in increasing order so that all the left

neighbors of an arc are considered before it is. If an arc does not

start at the leftmost point in the graph and all of the arcs coming in

to its left point are blocked, the arc is marked as blocked. The second

pass goes through the arc-array in decreasing order. If an arc does not

end at the rightmost point in the graph and if the arcs going out from

its right are blocked, the arc is marked as blocked. To illustrate,

assume that A has been adde^ to an empty consumer with structure

A {B C I D), and lookahead to the right of A caused B to be blocked but

left D unblocked. Arc C is marked as blocked during the first pass of

this test becauie the only arc coming in to its left (arc B) is blocked.

111-31

The preliminary tests in the add-constituent procedure

stop the procedure from trying to add t. constituent to a consumer that

is incompatible with respect to times, phrase mapping, or lookahead.

Even if the constituent and the consumer are actually compatible, the

tests still provide useful information by blocking arcs in the structure

graph to reduce the number of possibilities that must be considered in

later operations.

b. CREATE COMPLETE NONTERMINAL PHRASE

The procedure for constructing a complete nonterminal

phrase (Figure III-8) starts with a test for a complete, filled path

through the structure graph. If filled paths do not exist both from the

right of the new constituent to the rightmost point in the graph and

from its left to the leftmost point, the co-olete-phrase procedure

terminates. The next test ensures that the new complete phrase will be

compatible with its consumer context with respect to time constraints

and lookahead. The details of this test are discussed below. If the

test fails, construction of the new phrase is suspended pending the

arrival cf a new, compatible consumer. Assuming the test succeeds, the

procedure checks whether it has already constructed a complete phrase

using the same rule and constituents. If so, it terminates. The same

phrase can be arrived at in different ways when the system uses control

strategies that do not fix the order of acquisition of constituents.

For example, with island driving, a phrase could be built both from the

111-32

' tWflTl""" I 1

Check for a complete, filled path through the structure graph,
and quit if there is none.

Check consumers regarding lookahead next to the new constituent,
and suspend construction if all consumers are blocked.

Check if the same phrase already exists, and quit if it does.

Check if a phrase with the same rule and equivalent constituents
exists already:

If it does, use the previous attributes and factors
rather than recomputing them;

Otherwise, call the rule procedure, and

if it rejects the phrase or gives it a sub^hreshold
score, quit.

Create a phrase record.

Distribute the new phrase to consumers.

Figure III-8. COMPLFTE-PHRASE PROCEDURE

left and from the right. This test is necessary, therefore, to make

sure that duplicate phrases are not constructed.

Next, the procedure looks for a previously constructed

complete phrase for the same rule and 'equivalent' constituents. Two

terminal phrases are equivalent if they have the same lexical entry.

Two nonterminal phrases are equivalent if they were constructed by the

same rule and their constituents are equivalent. If two phrases are

equivalent in this way, they will have the same values for their

attributes and factors. Thus, if a phrase is found with the same rule

and equivalent constituents, its attributes and factors can be reused

111-33

rather than recalculated. Recall that a similar test was made for

terminal phrases, and, as a result, equivalent terminal phrases share

the same attribute array. The current tests ensure ♦■hdt nonterminal,

equivalent phrases also share the same attribute array. This sharing

saves storage and processing, and it also provides a simple test for

equivalence — two phrases a^e equivalent if their attribute arrays are

the same. The search for a phrase with equivalent constituents is made

more efficient by only considering one phrase from each class of

equivalent phrases. If the new phrase is equivalent to a previous one,

the old attribute array is used in the new phrase, and the old factors

are combined with the new constituent scores and phrase mapping scores

to produce a score for the new phrase. If no equivalent phrase exists,

the rule procedure is executed to produce values for the attributes and

factors, and the results are saved for future equivalence tests. If the

rule procedure rejects the new phrase, or the phrase score is below a

certain threshold, the complete-phrase procedure terminates. Otherwise,

a record is constructed holding a pointer to the rule, the constituent

list, the array of attributes, the score, and other information about

the phrase. The newly made phrase is then distributed to consumers by

the procedure described earlier.

A major step in the complete-phrase procedure is the

consumer-lookahead test. This test is similar to the lookahead tests

performed in the preliminary add-constituent stage, but it considers

lookahead with respect to the consumer context of the new phrase being

III-3»!

constructed rather than within the consumei that is getting a new

constituent. The purpose of this check is to prevent construction of

complete phrases that cannot be used in the existing context of

consumers. Building a complete phrase can require expensive s^aantic

and discourse operations, so the system tries to discover an

incompatibility before the phrase is constructed.

To illustrate the types of inccmpatibilities tested for

by the consumer-lookahead check, assume that the new complete phrase A

that is being constructed has a single consumer C. If the structure

graph for C requires a phrase of category B to the right of A, but the

set of categories that can occur as leftmost terminal phrases in a

category B phrase do not irtersect the lookahead set of categories for

words immediately to the right of A, the phrase A is not compatible with

the consumer C. Alternatively, C might already have a B phrase whose

left-time boundary did not fit the right-time boundary of A. This case

also causes the consumer-lookahead check to reject the consumer C for

the phrase A. If all the consumers for A are rejected, the construction

of A is suspended (without executing its rule procedure) until a new

consumer arrives that is compatible with it.

The consumer-lookahead test looks both to the left and to

the right of the new phrase, but the tests are similar, so only the

right side tests are described in detail. The first step is to locate

the arc in the consumer's structure graph tbet the new phrase would

fill. (Remember that the new phrase we are talking about is the phrase

111-35

f-frTBii^"^-^-^. ^-—^'-^iv, -■

being constructed by the complete-phrase procedure, and the consumer now

being discussed is a potential consumer of this new complete phrase.)

The procedure looks to the right of the arc for either: (1) an unfilled,

unblocked category arc that is not eliminated by lookahead, (2) a filled

category arc with a constituent whose left time is compatible with the

right time of the new phrase, or (3) an unblocked NIL arc that leads to

a category arc satisfying case (1) or case (2).t In any of the three

cases, the phrase and the consumer are compatible to the right. If none

of the cases succeeds, the consumer C may still be compatible with the

phrase P if P can be C'«* rightmost constituent and the phrase resulting

from adding P to C would be all right. P can be rightmost in C if its

are ends at the rightmost point in C's graph or if an unblocked NIL arc

connects it to the rightmost point. If P can be rightmost, and the

right boundary of C is fixed and compatible with the right boundary of

P, P and C are compatible to the right. If P can be rightmost and the

right boundary of C is unfixed, the consumer-lookahead procedure is

called recursively to check consumers of C. For example, if C is of

category X, the procedure checks consumers of C, which may have phrase

structures such as W=X Y. In this particular case, the lookahead to the

right of P would have to be compatible with a category Y phrase for the

consumer-lookahead test to succeed.

• We could have added phrase mapping in case (2) as a further test of
consumer compatibility, but because phrase mapping it, an expensive
operation in our system, we decided that the extra sensitivity at this
point would not justify the cost.

111-36

-^_.

The consumer-lookahead procedure can thn.a go through an

arbitrarily long path of intermediate consumprs before getting to one

that satisfies the lookahead requirements. Because of the structure of

the parse net, these paths of consumers can form a network rather than a

tree. To deal with this convergence, the procedure adds each prediction

to a queue when the prediction's consumers are first reached. If the

search returns to a prediction that is already on the queue, the

consumers for that prediction are not checked again,

c. CREATE PARTIALLY FILLED NONTERMINAL PHRASE

If the preliminary add-constituent tests indicate that

there will be at least one unblocked, unfilled category arc remaining

after the constituent is added to the consumer, the procedure to create

a partially filled nonterminal phrase is called (see Figure III-9).

The procedure first checks if it has already made an incomplete phrase

for the same combination of rule, constituents, and time specifications.

If it has, it stops rather than creating a duplicate. Otherwise, it

calls the rule procedure tu compute the attribute and factor values.*

If the rule rejects "".he phrase, or the score is subthreshjld, the

incomplete-phrase procedure quits. Next, a phrase record is constructed

which has a pointer to the rule, the constituent list, the attribute

• We do not bother here to look for equivalent phrases as we did in the
complete-phrase procedure because semantic translation and discourse
processing are only done for complete phrases, and consequently the cost
of recalculating the attributes and factors of an incomplete phrase is
much less than the cost for a complete phrase.

111-37

"-'■irr -T iWi-i^mfmm^&äm mä^mm^mm

Check for an unfilled, unblocked category arc; if none, quit.

Check if a phrase for the same rule, constituents, and time
specifications already exists; if so, quit.

Call the rule procedure.

If it rejects the rule or gives a subthreshold score,
quit.

Create a phrase record.

Calculate the phrase rating.

If the rating is above threshold, add the new phrase to the
predict sets.

Figure III-9. CREATE AN INCOMPLETE PHRASE

array, the score, and other information. If the consumer that was used

in this operation is a producer for some prediction (as will be the case

unless it is a root-category consumer), the new phrase is also added as

a producer for that prediction. The new phrase is then assigned a

rating using the techniques described in Sections C.2 and D.5.c. If the

rating is above a certain threshold, the phrase is added tc the phrases

scheduled to make predictions for missing constituents.

The incomplete phrases scheduled to make predictions are

organized into 'predict sets'. Each predict set contains incomplete

phrases that can make predictions at a particular time in a particular

direction. To illustrate, if a phrase has a constituent ending at

position 75 and needs to acquire a constituent to the right of that one,

the phrase could be in a predict set for time equal to 75 and direction

111-38

—

equal to RIGHT. The priority of a predict set is initially set to the

highest rating of any phrase in the set, but it can be modified in

accordance with various strategies for focusing the system's attention.

The priority of the predict task is the highest priority of any predict

set.

A single incomplete phrase can be in several predict sets

if it can make predictions at different locations and directions. For

example, if the phrase structure calls for three constituents, ABC,

and only the B phrase has been acquired, the phrase can be in a predict

set for time equal to the left time of B and direction equal LEFT (to

predict A), and also in a predict set for time equal to the right of B

and direction equal RIGHT (to predict C).

The algorithm for adding an incomplete phrase to predict

sets looks for all possible predictiors that the phrase can make such

that either the left or right time of the prediction is ~<i.* For the

purposes of this algorithm, a point in the. structure gra^n is called

'open for predictions to the right' if there is an unfilled, unolocked

category arc going out from the point to the right, or there is an

unblocked NIL arc going out from the point that leads to an unfilled,

unblocked category arc. First, if the left time of the phrase is fixed

and the leftmost point in the graph is open for predictions to the

• We decided against having predictions with both times fixed. This
choice sacrifices the ability to make word tests with both times fixed
(such tests might succeed where tests with only one time fixed would
fail) but it simplifies the word task and the predict task as well as
reducing storage requirements.

111-39

right, the phrase is added to the predict set for time equal to the left

of the phrase and direction, RIGHT. Then, for each acquired

constituent, if the right point of the constituent arc is open for

predictions to the right, the phrase is added to the predict set for

time equal to the right of the constituent and direction, RIGHT. If the

Executive is using a control strategy such as island driving that allows

right-to-left predictions, a similar set of operations is performed to

add the phrase to predict sets for direction equal LEFT.

3. PREDICT TASK

The predict task is divided into three main stages. In the

first, a subnet of predictions and phrases is created for the highest

priority predict set. The entire subnet is filled out at once: the

predictions for the phrases in the predict set, the producer phrases for

those predictions, the predictions for the new phrases, and so on. The

second stage consists of going through the subnet assigning phrase

ratings: whenever possible, all the consumers for a phrase are given

ratings before the phrase rating is calculated. During the final stage,

miscellaneous 'cleanup' operations are performed such as creating word

sets for new predictions, revising priorities for old word sets, and

adding old phrases to new consumers. The predict task is organized in

this manner to reduce the processing time for rating phrases and patting

priorities. The rating for a phrase is recalculated when its consumer

context changes, and the rating calculation procedure uses the ratings

TII-40

 »ir -—-^^--J»*—^^-»>——'-«■«iK——» "in Tlriii'hf«

of consumers, so the predict task is designed to provide all of the

consumers and finish giving them ratings before calculating the rating

for a phrase.

a CREATE SUBNET

*i° creata-subnet procedure, which performs the first

stage of the predict task, is outlined in Figure 111-10. While it

creates the subnet, the p! oedure also set^ up several queues for use in

later stages. For ',ne rating stage, it creates a queue, called PRQ,

holding the predictions in the subnet that have up-to-date ratings for

all of their •">nsumers, and a second queue, called WPRQ, holding the

other subnet predictions. For the cleanup stage, it creates LEXQ with

the new predictions that need to have word sets made for them, LEXQ2

with old predictions that need to have the priorities for their word

sets revised, INSTLIST holding new consumers for old predictions that

have nonempty instances-lists, and OTHERINSTLIST holding consumers that

prclde a new contoxt for phrases suspended in the complete-phrase

procedure because of consumer-lookahead failure.

The create-subnet stage of the predict task begins by

removing ehe highest priority entry from the list of predict sets. This

entry will determine the predictions to be made in the rest of ~ue task.

The time and direction from the selected predict set are passed to the

lexical subsetting procedure to retrieve the lookahead set of terminal

categories. (Often, the subset will have already been computed for

III-HI

''«lect the best predict set.

Get the lookahead information.

For each phrase P in the predict set

For each prediction PR made by P

If PR is newly created,
Add it to PRQ and fill out its subnet

Otherwise
If it is not on PRQ or WPRQ, add it to PRQ

Traverse its subnet

If it has instances,
A<.d P as consumer for it to INSTLIST.

Figure 111-10. CREATE SUBNET PROCEDURE

lookahead during an earlier operation, so the stored results can simply

be reused.) This information is used to block the creation of

predictions and phrases that are incompatible with the lookahead. Next,

the subnet is filled out for each phrase in the predict set.* As an

• We do all of the phrases in the predict set at once rather than just
doing the highest priority phrase. This is because we want to decrease
the recalculation of priorities that is caused by changes in consumer
contexts. This design decisir i was made before rules in our system
c~uld have alternatives and options. At that time, there were several
rules had similar- constituent structure possibilities (for example, five
S rules with initial NPs), so it would often happen that several phrases
with about the same priority would be waiting to make the same
prediction in the same location. By creating the subnet for all of them
at once, we can calculate ratings a single time rather than
recalculating them each time one of the phrases makes its prediction
which causes a change in the consumer context. However, with
alternatives and options, predict sets are less likely to have several
phrases that want to make the same prediction, so perhaps this design
choice should be reconsidered in view of the fact that it does entail
the risk of making unnecessary (i.e., not top-priority) predictions.

III-U2

I —-Ü —

illustration of this process, assume the predict set time is 55 and the

direction is RIGHT. Then, for each predict set phrase P, the procedure

finds the structure graph point at the right of the rightmost

constituent that has a right time of 55, if such a constituent exists.

Otherwise, P must have its left time fixed at 55, and the leftmost point

in the graph is used in the following operation. For each unblocked,

unfilled category arc A leading out of the selected point or connected

to it by an unblocked NIL arc, find or create a prediction PR for the

category cf arc A, left time fixed at 55, and right time unfixed. If PR

was newly created for P, the subnet below PR is filled out by a

procedure described below, and PR ^s added to PRQ to record that all of

its consumers have up-to-date ratings. Alternatively, if PR existed

previously, then (1) it is put on PRQ unless it is already on a queue,

(2) its subnet is traversed by a procedure described below, and (3) if

PR has instances, P as a consumer for PR is added to INSTLIST.

The procedure used to fill in the subnet below a

prediction (Figure 111-11) begins by checking if the prediction is for

a category with lexical entries. If it is, the prediction is added to

LEXQ for further processing during the cleanup stage. The next step is

to put a mark on the prediction so that if a later consumer arrives

during this stage of the predict task, the subnet will not be

reprocessed. The mark will be removed before the predict task is over.

Then, in the case of a left-to-right prediction, for each rule that can

produce a phrase of the predicted category, if the possible leftmost

III-M3

To fill out the subnet for prediction PR with new consumer P:

If the category of PR has lexical entries, add PR to LEXQ.

Mark PR.

For each of the category rules

Create an empty phrase P' as a producer for PR

For each prediction PR' made by P'

Add PR' to WPRQ and, if necessary,
remove it from PRQ.

If PR' is newly created, fill out its subnet

Else traverse its subnet, and

If PR' has instances,
add P' (as a consumer for PR') to INSTLIST.

Figure IXI-11. FILL-OUT-SUBNET PROCEDURE

terminal categories for the rule intersect the lookahead categories, an

empty phrase P' is created for the rule with the same times as the

prediction. The phrase is connected to the prediction as a producer,

and then predictions are made in the following manner for the possible

leftmost constituents of the phrase. For each category arc that can be

leftmost and is okay with respect to the lookahead, a prediction PR' is

found or created, and the phrase is added as a consrmer for it. The

prediction is added to WPRQ and removed from PRQ if it was there. This

operation records the fact that the prediction now has at least one

consumer whose rating is not set. If PR' was created by this operation,

the subnet below it is filled in by calling this procedure recursively.

III-M

Otherwise, the subnet below the prediction is traversed according to the

procedure described in the next paragraph. If it has instances, P' aj a

consumer for it is added to INSTLIST. Similar operations are performed

to fill in right-to-left predictions.

The procedure for traversing the subnet below a

preexisting prediction (Figure 111-12) starts by checking for

suspended construct-conplete-phrase operations. If there are any, the

consumer that led to the current traversal is added to OTHERINSTLIST for

spec;.al processing during the cleanup stage. The procedure then checks

to see if the prediction is marked as already traversed. If so, the

procedure returns. If not, it marks the prediction and continues. The

mark is checked after the (possible) addition to INSTLIST rather than

before in order to take care of cases in which more than one consumer

changes for an old preaiction. If the prbdiction has word sets, it is

added to LEXQ2 so that the word set priorities will be revised to

reflect their new consumer context. Finally, for each producer phrase P

for this prediction, each of the predictions made by P is put on WPRQ if

it is not already there and traversed by calling this procedure

recursively.

At the completion of the first stage of the predict task,

the subnet of predictions and phrases has been created for all the

phrases in the highest priority predict &et. The queues PRQ and WPRQ

have been created for the rating stage, the queues LEXQ and LEXQ2 are

ready for use in creating or revising word sets, and INSTLIST and

III-H5

^,-.-..- - _i jfiiiTiiii'

To traverse the subnet for a prediction PR with a new consumer P:

If PR has any suspended construct-complete-phrase operations,
add P (as a consumer for PR) to OTHERINSTLIST.

If PR is marked, quit.

Mark PR.

If PR has word sets, add it to LEXQ2.

For each prediction PR' by a producer for PR

Traverse subnet of PR' and put PR' on WPRQ.

Figure 111-12. TRAVERSE SUBNET PROCEDURE

OTHERINSTLIST hold consumers that may lead to the creation of new

phrases.

To illustrate the create-subnet procedure, assume that

the highest priority predict set has a time equal to the right boundary

of the utterance, a direction equal to LEFT, and a single phrase PI

which has a structure declaration S=BE NP (see Figure 111-13). The

only prediction to be made by PI is for an NP ending at the right of the

utterance. Assume that this prediction hes not been created by a

previous predict task (if it had been, the traverse-subnet procedure

would be called rather than the fill-out-subnet procedure). The

prediction PR1 for the NP is created, added to PRQ, and passed to the

fill-out-subnet procedure. The NP category has lexical entries such as

"it", so PR1 is added to LEXQ for further processing in the cleanup

stage. The prediction is then marked so that it will not be

III-H6

mmtim

S-PHRASE (P11

NP-PREDICTION (PR1) —

NP-PHRASE (P2)

PREPP PREDICTION (PR2)

PREPP-PHRASE (P3I-

FIGURE 111-13 NP-PREPP PARSE NET LOOP

reprocessed. An empty NP phrase P2 is created as a producer for PR1,

and it makes a prediction PF2 for a PSEPP at the end of the utterance

and adds PF2 to WPRQ. (Other predictions would be made by P2f but for

simplicity we only consider PR2.) Again assuming PR2 did not exist

before, it is passed recursively to the fill-out-subnet procedure. The

PREPP category does not have lexical entries, so PR2 is not added to

LEXQ. PR2 is marked, and a producer P3 is created for it. P3 makes a

prediction for a noun phrase at the end of the utterance, but that is

prediction PR1, which was already created. Therefore, PR1 is moved to

WPRQ from PRQ to record that it has a consumer without an up-to-date

rating. Then, PR1 is passed to the traverse subnet procedure which

quits after noticing that PR1 is already marked. Assuming for

simplicity that no other predictions or phrases are formed, the first

stage ends with LEXQ holding PR1, WPRQ holding PR1 and PR2, and the

other queues empty.

III-147

timäm&msMiBm^m """"UrMiaifiiiiifl

b. ASSIGN RATINGS

The second stage of the predict task takes cars of

asbigning ratings to phrases in the subnet. The algorithm for

calculating the rating of a particular phrase is aketched in Section C.2

above and is described in detail in section D.5.c below. This section

deals with the procedure that goes through the subnet visiting the

phrases and calling the rating ptocedurp for ea:h one. In the simplest

case, a single top-down pans i^ mcde tlitoug' the subnet, but the

operation can be more complicated if ther-a .ire "oducer-consumer loops.

A top-down pass is desirable because the calculation of ratings takes

advantage of the ratings for the consumers fcr the phrase. The

predictions placed on PRQ during th* first stage have up-to-date ratings

for their consumers, so the producers for those predictions are ready to

have their ratings calculated. When a phrase gets its rating, each of

its predictions is checked, and, if all of the prediction's consumers

now have up-to-date ratings, the prediction is moved to PRQ from WPRQ.

If there are no loops in the subnet, repeated removal of predictions

from PRQ followed by processing of their producers in the above manner,

will eventually provide ratings for all the subnet phrases in the

desired top-down way. If there is a loop in the net, it is not possible

to assign ratings in a strictly top-down manner since phrases in the

loop are consumers for themselves. When there is a loop, the algorithm

goes as top-down as possible and makes a second pass to recalculate

ratings in certain cases. The following parsgraphs describe the

III-H8

"Vr'iMiTit" i' i ^K

algorithm In detail and illustrate it by continuing with the example

ffom the previous section.

The first pass of the rating stage is an iterative

operation that continues until both PRQ and WPRy are empty (see Figure

III-IH). When both queues are empty at the start of an iteration, the

second pass begins. If PRQ is not empty, the first prediction on it is

removed and set aside for processing. If PRQ is empty, but WPRQ is not,

the subnet has a loop that includes the WPRQ predictions. However, at

least one of the WPRQ predictions must have one or more consumers that

are not involved in the loop. If this were not the case, the

predictions on WPRQ would not be reachable from the rest of the parse

net, but they are in fact reachable from at least one of the phrases in

the current predict set. A prediction on WPRQ with at least one rated

consumer is removed and set aside for processing. The prediction is

also marked as DONE so that it can be recognized when the first pass

returns to it after completing the loop. The processing of the selected

prediction is the same whether the prediction is from PRO or WPRQ. Each

producer phrase P for it is given a rating, and then for each prediction

P'.7. by P, (1) if PR is on WPRQ, then if all the consumers of PR now have

up-to-date ratings, PR la moved to PRQ, else (2) PR is checked to see if

it is marked DONE. If it is marked DONE and the rating just calculated

for its 'looping' consumer is higher than the ratings of all of its

other consumers, PR is added to PASS2Q for further processing in the

second pass. At this point, control goes back to the start of the fi-st

pass instructions to check again whether PRQ and WPRQ are empty.

111-^9

If PRO and WPRO are both empty, go to pass 2.

Pick a prediction from PRQ, or,
If PRQ is empty, pick one from WPRQ that has at

least one rated consumer.
Mark it DONE.

For each producer P of the selected prediction

Assign a rating to P.

For each prediction PR made by P

If PR is on WPRQ, then,
If all consumers of PR now have ratings,

Move PR to PRQ

Else if PR is marked DONE

If the rating for P is higher than the
rating of any other PR consumer
Then add PR to PASS2Q

Otherwise, there is an error.

Figure III-1i». PASS 1 OF RATING ASSIGNMENT

The second pass is an iterative operation that continues

until PASS2Q is empty (see Figure 111-15). If PASS2Q is not empty, a

prediction is removed from it and marked as D0NE2 so that it will be

recognized if the second pass returns to it. Each producer phras» for

the prediction has its rating recalculated, and. If its rating changes,

each prediction made by the phrase is added to PASS2Q if the prediction

is not marked D0NE2 and the other consumers for P have lower ratings

than the rerated consumer. When the second pans terminates, all the

phrases in the subnet have up-to-date priorities.

111-50

If PASS2Q is empty, quit.

Pick a prediction from PASS2Q.

Mark it as D0NE2.

For each producer P of the selected prediction

Recalculate the rating for P.

If the rating changed,

For each prediction PR by P not marked D0NE2

If P is now the highest rated consumer for PR,
Add PR to PASS2Q.

Figure 111-15. PASS 2 OF RATING ASSIGNMENT

The second pass is basically a patch to take care of

loops in the subnet. If ther1 are no loops, the second pass is vacuous

because no predictions are put on PASS2Q unless there is a loop. Even

if there are loops, the second pass will only be lightly used if ratings

tend to decrease as consumer paths get longer (which is plausible since

longer paths represent more complex, and hence less likely, structures).

This is because there is always a shorter alternative path to a looping

path, and predictions are added to PASS2Q only if a looping path has a

higher rating than any of the others. Activity in the second pass will

also be slight if ratings do not change when they are recalculated in a

context that is unchanged except for the ratings of one or more

consumers (such stability will in fact be the case if the context-

checking method is used for calculating ratings).

111-51

fr ii tfm i^^ ^ nT'TMtrf~iMiii - -^"iinniii li

To Illustrate this stage of the predict task, we continue

the previous example (see Figure 111-13). Recall that the first stage

for the example ended with PRQ empty, and PR1 and ?R2 on WPRQ. At the

start of the second stage, PR1 is selected from WPRQ since it has a

rated consumer (PI) and PR2 does not. PR1 is marked DONE, and its

producer P2 has its rating assigned. The only prediction for P2 is PR2,

PR2 is on WPRQ and now has all of its consumers rtted, so it is moved to

PRQ. Thus, the first iteration ends with PR2 on PRQ, P2 with a rating,

and WPRQ empty. The second iteration starts by removing PR2 from PRQ

and then assigning a rating to its producer P3. The only prediction by

P? is PR1, which is not on WPRQ but which is marked DONE. Assuming that

the rating of P3 is higher than the rating for PI, PR1 is added to

PASS2Q. The second iteration ends with PR1 on PASS2Q, P2 and P3 with

ratings, and both PRQ and WPRQ empty. At this point, the second pass

begins by removing PR1 from PASS2Q, marking it as D0NE2, and

recalculating the rating for P2. Assuming that the recalculation

produces a higher rating for P2, its prediction PR2 is added to PASS2Q.

Thus, the first iteration of pass two ends with PR1 marked D0NE2, P2

rerated, and PR2 on PASS2Q. The second Iteration begins by removing PR2

from PASS2Q, marking it D0NE2, and recalculating the rating for P3. The

prediction mad« by P3 is marked D0Nfi2, so it is not processed further

and the second pass ends.

111-52

■rt^iHf lii f.-ai ■■M'irrn-nTfTM'T: j ttM ■- ;'^--—-tjnrilfilit fli

c. CLEANUP

The final stage of the predict task performs various

cleanup operations. It erases marks such as D0NE2, which may have been

left by the previous stage. Predictions and phrases needing erasures

are chained together through their records, so the erasing can be done

quickly. LEXQ holds new predictions for categories with lexical

entries. For each prediction on LEXQ, word sets are created in the

manner described earlier (sea Section D.I). LEXQ2 holds old predictions

with word sets that now have a modified consumer context. Each such

word set has its priority recalculated. INSTLIST contains new consumers

for old predictions that have been previously satisfied. Each phrase on

the prediction's instances-list is added to the new consumer by the add-

constituent procedure. OTHERINSTLIST contains consumers providing a new

context for old predictions with suspended construct-complete-phrase

operations. The consumers on OTHERINSTLIST may be new consumers that

were created during the first stage or old consumers that had an

addition made to their consumer context during the first stage. The

traverse-subnet procedure takes care of both cases. During the cleanup

stage, for each suspended operation with a new or modified consumer P,

the consumer-lookahead test is performed. If the test succeeds, the

construction of the phrase goes ahead. Otherwise, it remains suspended.

After the cleanup stage, one cycle of the predict task is

complete. However, there may still be other predict sets waiting to be

processed. If there are, and the highest priority for them is highe-

111-53

-:-"-"—"^iirT-'iflimitmilmrirfc r -■„■■■ii ,- T-.- . ■ ifay-^rtrtiMMiMrni; ■rfiiifiiriiMr.T T - - ■ -^»*.-,.^

than any of the tasks currently scheduled, the predict task goes ahead

for another cycle. Otherwise, it schedules itself at the priority of

the best predict set and returns control to the top level Executive

procedure.

d. DEAD PHRASES AND PREDICTIONS

During the predict task, certain phrases and predictions

are marked as 'dead'. A prediction Is dead if no more phrases can

possibly be constructed to fulfill it. A phrase is defined to be dead

if it has no more predictions to make and all the predictions it has

made are dead.* If a phrase is dead, no tasks exist to supply

constituents for it, and, thus, no task priorities depend on its rating.

Consequently, ratings do not need to be (reCalculated for dead phrases.

Typically, the rating of a phrase is recalculated whenever the consumer

context of the phrase changes. The purpose of marking phrases as dead

is to avoid unnecessary rating recalculations.

The marking of predictions and phrases as dead takes

place during the first stage of the predict task. Whenever all the

candidate words for a prediction are exhausted in the word task or one

* Intuitively, a phrase is dead if there is no longer a chance to form
new completions of it. In some cases, a phrase may be dead in this
intuitive sense but not according to our definition. For example; a
phrase with structure ABC that has acquired constituent B and has
predicted A and C is intuitively dead as soon as eitner prediction dies,
but it is not dead by our definition until both predictions die. Our
definition was chosen in spite of this defect because it is simpler to
test (It does not depend on the structure) and in practice it is usually
equivalent to the intuitive sense.

111-51

-

of the the prediction's producers is killed by the procedure described

below, the prediction is given a special marker indicating that it

should be checked to see if it ..s still alive. The predict task

procedure for traversing the subnet below a preexisting prediction looks

for this marker. I cho marker is found, the procedure searches the

pro^'icer subnet for a phrase that still can make more predictions or a

prediction with candidate words remaining. This se^ch ♦dkes care of

recognizing deao predictions even if they are part of consumer-producer

loops. If the search fails, the prediction is 'killed'; in other words,

it is marked as dead, and for each consumer of the prediction, if all of

the consumer's predictions are now derd and the consumer has made all of

its predictions, the consumer Is killed. A consumer is killed by

marking it vs dead and if it is fi producer for a prediction PR, and PR

does not have any remaining candidate words, then either PR is killed if

all of its producers are now dead, or it is marked to indicate that it

should be checked to see if it is still alive if a subsequent predict

task encounters it. This method propagates markers up the parse net

during the first stage of the predict task. During the second stage,

ratings are not recalculated for phrases marked as dea^..

Dead phrases cannot be discarded f >m the parse net

during the first stage of the predict task because they may be needed as

consumers during the cleanup stage. For example, if a p! rase P makes a

single prediction PR ar.a PR is dead but has instances, then P will be

narked dead during the first stage, but it wij. ■ have the instances of PK

111-55

added to It during the last stage. It would be possible, of course, to

keep a list of killed phrases and prune them at the enci of the cleanup

stage, but we have not implemented such a scheme.

4. MULTIWORD LEXICAL ENTRIES

Small words like "of", "are", "a", and "the" cause

difficulties for a speech understanding system because they are often

poorly articulated or reduced to a short duration remnant. In order to

minimize false rejections for such words, the acoustic mapper must use

very loose criteria in testing them. However, the loose criteria lead

to a high false alarm rate. This creates a severe problem because the

language definition often allows several small words to ojcur in a

series. To reduce the bad effects of small words, we have introduced a

mechanism allowing a series of small words to be processed acoustically

as a single unit. With this approach, a series of words is combined to

produce a larger 'multiword lexical entry', or 'multiword', which can be

tested more reliably. Small words are tested individually only for

contexts that do not put other small words beside them. A set of over

50 multiword^ was used in the experimental tests of the system. They

Included phrases such as "is the", "of a", and "what are the".

This method does not eliminate the small-word problems, but

preliminary results suggest that it does reduce them. Following the

introduction of multiwords, the mapper criteria for small words were

tightened to reduce their false alarm rate. Data collected on the

111-56

_^.-^^_J .^

mapper performance (see the discussion in Chaptpr IV) included two cases

in which small words were incorrectly rejected, perhaps because of this

tightening. However, in both cases the missed words were part of a

series of small words, and the multiword for the series matched well

enough to be accepted in spite of the fact that one of its component

words was rejected when mapped alone. Thus, the sentences could be

understood correctly although one of the (small) words was incorrectly

rejected. More tests are required to assess the effects of multiwords,

but these initial results suggest that they may provide a means of

raising the accuracy of acoustic processing.

The multiwords are treated as single units for acoustics, but

not for linguistic processing. The language definition would be badly

distorted by an attempt to incorporate multiwords directly. Instead,

the Executive breaks multiwords into their individual parts, and

multiword entries like "is a" are analyzed by the linguistic knowledge

sources as two separate words although recognized by the mapper as one.

When a multiword with individual words W1,...,Wn is accepted from

position PI to position P2 in the input, the Executive creates n-1 new

'pseudo-positions', X1,...,Xn-1, which are distinct from positions in

the actual input. The multiword is then analyzed as a series of regular

words: W1 from PI to XI, W2 from X2 to X3,..., and Wn from Xn-1 to P2.•

• This method is similar to the Kay and Kaplan method of representing
the input as a 'chart' (see Kay, 1967, 1973).

111-57

■ ■■■ - ■ i ■--■ .^ - m —

The pseudo-positions must be treated as special cases in some

of the Executive algorithms. The time compatibility tests that are used

by the distribute-phrase and add-constituent procedures look for pseudo-

positions. If both times being tested are fixed and one is a pseudo-

position, the other must be the same pseudo-position or the times are

incompatible. The phrase mapping procedure accepts without testing two

adjacent words from the same multiword phrase. However, if the words

for phrase mapping are not from the same multiword, either word that is

from a multiword is replaced by the entire multiword before phrase

mapping takes place. For example, if called with the pair "the" and

"ship" for phrase mapping and "the" comes from the multiword "is the",

the phras«? mapping is done using "is the ship". If the lexical

subsetting procedure is called with a pseudo-position, it does not do

any acoustic processing, but instead looks in a table of accepted

multiwords to find the word from the multiword phrase at the given

position. Thus, from the W1...Wn example, the subset to the right of XI

contains just W2.

Multiwords are standard sequences of words from the language,

so there is a danger of wasted effort expended analyzing both a

multiword and the individual words composing it. For instance, if the

multiword phrase "of the" is accepted from position 35 to position 55,

the mapper may also accept "of" from 35 to ^5 and "the" from M5 to 55.

The Executive has two ways of blocking series of small words that

duplicate a multiword. First, the phrase mapping routine rejects pairs

111-58

— —^ -' -• - -

that together form a multiword. Thus, a phrase whose rightmost word is

"of" cannot be put to the left of a phrase whose leftmost word is "the"

unless the "of the" comes from a single multiword accepted by the

mapper. The second block on small words that duplicate a multiword

occurs in the word task. If "of" is the only word accepted ending at

position 15, "the" will be excluded from the candidate words starting at

45 because "of the" is one of the system multiwords. The exclusion is

not permanent; it will stop if another word ending at U5 is later found

and leads to a new execution of the predict task at position 15 and

direction equal RIGHT. The exclusion is removed as part of the word set

revisions during the cleanup phase of the predict task.

Recall that the Definition Compiler adds the multiwords to the

lexicon so that they are available for the word task algorithms.

Multiwords beginning with word W are added to all lexical subcategories

containing W and are marked for use in left-to-right word sets.

Similarly, multiwords ending wif W are added also, and are marked for

use in right-to-left word sets. The procedure that creates word sets

eliminates multiwords that are marked for the wrong direction. The

remaining multiwords are treated like standard words until they reach

the procedure to create terminal phrases. This procedure recognizes the

accepted word as a multiword, creates pseudo-positions for it, and then

creates a terminal phrase for one of the standard words in the phrase.

If the multiword lexical entry was marked for left-to-right use, the

terminal phrase is constructed for the leftmost word in the multiword.

111-59

it""" "II 'TV"MI I in i ~rl~ r ii -

Otherwise, the terminal phrase is created for the rightmost word. The

terminal phrase Is diatrlbuted and added to consumers in the standard

manner. The resulting Incomplete phrases lead to predictions at the

pseudo-position within the multiword. The standard parse net structure

and task algorithms are used in analyzing the multiword, and the

analysis benefits from the precise lookahead information available at

the pseudo-positions.

In summary, multiword lexical entries appear to offer a way to

Improve acoustic accuracy and, by the methods outlined above, have been

integrated into the system in a simple manner without requiring any

changes in the language definition.

5. PRIORITY SETTING

Newell and Simon (1976) conclude their 1975 Turing Award

Lecture by stating:

For all physical symbol systems, condemned as we are to
serial search of the problem environment, the critical
question is always: What to do next? (p.126)

In our system, this critical question is answered according to

task priorities, thereby replacing the original question by another

difficult one: How to set priorities? The approach we have taken is to

base priorities on phrase ratings that combine results from acoustic

mapping and language factors. The predict task priority is the highest

III-6U

ammmmmmmtm -— - T ■■■

rating for an incomplete phrase waiting to make a prediction. The word-

task priority is the highest rating for a terminal phrase from the

current word candidates. The priorities are initiall'1 derived from

ratings, but they can be modified according to various strategies such

as focus by inhibition.

a. FACTORS

Phrase ratings are derived from phrase scores, and phrase

scores are in turn derived from language factors and mapper factors.

The language factors are defined in lexical-category procedures and rule

procedures. Many of the language factors are Boolean. Such factors

block the construction of a phrase if the phrase would have certain

undesirable properties. If the properties are not present, the Boolean

factor allows the phrase to be constructed and does not affect the

phrase score. The remaining language factors are non-Boolean. They

raise or lower the phrase score according to the results of various

tests and are used to 'tune' the language definition (as discussed in

Robinson, 1975b). For example, if questions are expected to be the

predominant form of input to the system, non-Boolean factors can be

added to raise scores for questions relative to other kinds of

sentences. Such factors would bias the system toward looking for ways

to interpret utterances as questions.

Boolean language factors are implemented as calls on the

F.REJECT procedure, which causes the construction of a phrase to be

111-61

,~~- ^—^-.■-^„

] mvirni^^rmmmmm

immediately terminated. The non-Boolean factors are implemented as

variables assigned integer values in the range 0 to 100 or pairs of

integers, <WEIGHT T0TAL>, such that TOTAL divided by WEIGHT is between 0

and 100. A factor value that is a single integer J is equivalent to the

pair <1 J>. The factor WEIGHTS reflect relative importance; a factor

with WEIGHT equal 2 has twice the effect on the phrase score as a factor

with WEIGHT equal 1.

Mapper factors are derived from mapper scores «nd thus

are based on acoustic, phonetic, and phonological judgments. Mapper

factors for individual words and multiword lexical entries directly

contribute to the scores of terminal phrases. Similarly, phrase mapping

factors contribute to the scores of nonterminal phrases. A nonterminal

phrase with N constituents has N-1 phrase junctures and N-1 phrase

mapping factors. For both word mapping and phrase mapping, the mapper

score is an integer ranging from a top value of 100 down to a threshold

of t5.

Mapper scores are converted to mapper factor values

according to the estimated likelihood that the word is a false alarm.

Each word and multiword has a false alarm rating in the range 0 to 100,

indicating the relative likelihood of producing a false alarm compared

to the words in the vocabulary that are considered the most likely to

produce false alarms. The most likely words get a false alarm rating of

100, words half as likely get a rating of 50, and so on. The ratings

are rough estimates originally provided by the implementors of the

111-62

mapper and revised upward in some cases according to experimental

results.

The false alarm rating provides a confidence measure for

mapper results, and the system gives a greater weight to mapper factors

for words with low false alarm ratings. The factor WEIGHT is 1 if the

rating is above 90, 2 if it is between 81 and 90, 3 if it is between 71

and 80, and similarly up to 10 for ratings between 0 and 10. Also, the

range of mapper factor values is reduced for words with high false alarm

ratings. This reduction causes the system to adopt a casual attitude

toward very high mapper scores on small words like "a". The mapper

scores are converted by a linear transformation with a slope that

decreases as the false alarm rating of the word increases. For a

minimum false alarm rating of 0, the result is 27 plus two-thirds of the

mapper score; scores in the range 45 to 100 are converted to results in

the range 57 to 9**. For a maximum rating of 100, the result is Mt plus

one-third of the mapper score; scores in the range U5 to 100 produce

results in the range 57 to 77. After the weight has been calculated and

the score transformed, the mapper factor is constructed. It is a pair:

the WEIGHT as determined by the false alarm rating of the word and the

TOTAL equal to the product of the WEIGHT and the transformed score.

Ideally, this ad hoc method would be replaced by a scoring technique

based on greater information about the performance characteristics of

the acoustic processor (perhaps like the probabilistic scoring described

by Klovstad in Woods et al., 1975a, pp.33-39).

111-63

I
i I

b. PHRASE SCORES

The score for a phrase combines factors to form a WEIGHT

and TOTAL pair that can itself be used like a factor value. For a

terminal phrase, the score combines language factors from the lexical-

category procedure and the mapper factor for the word. For a

nonterminal phrase, the score combines factors from the rule procedure,

phrase-mapping factors, and constituent scores. In most cases, the

score is simply a vector sum of the factors: the WEIGHT is the sum of

the factor WEIGHTS, and the TOTAL is the sum of the factor TOTALa.

To explain the cases in which the score is not Just a

vector sum of the factors, we define the 'Q' of a score or factor to be

the quotient of the TOTAL divided by the WEIGHT. The Q is important

because it provides a 'quality' dimension for comparing factors and

scores, and the Q of scores for root-category phrases is used in

determining phrase ratings. In case the phrase score is a vector sum of

the factors, the Q of the score is a weighted arithmetic mean of the Qs

of the factors. Thus, the Q of the score is insensitive to the total

number of factors; five factors with average Qs give a result that

differs from that for ten factors with average Qs only in weight, not in

Q. This insensitivity is desirable, because the factors in our system

are not like independent probabilities and combining them by a technique

that was sensitive to the total number of factors would be

inappropriate. However, there would be a danger with using the

arithmetic mean that a very low factor would fail to pull the score down

111-61»

i.r.jinüi i T-rrr ^. -
n ■ I -

,.,.--.— .. ■ ...

*mr-n, .

as much as it should. A possible solution would be to use a geometric

mean instead (the geometric mean of N numbers la the Nth root of their

product). We have taken a different course and treat low factors as

special cases; if the Q of the factor is below a certain threshold by X

percent, the TOTAL for the score is reduced by X percent. The threshold

in the current implementation is 50, so a Q of 10 causes the TOTAL to be

reduced by 20$. (Details of the algorithm for combining factors into

scores were given in Section II of Walker et al., 1975).

c. PHRASE RATINGS

The rating for a phrase P is a certain constant times the

Q of the score for a root-category phrase that could be constructed

using P. (The constant is chosen to spread the phrase ratings over a

wide range of integers.) The rating for a root-category phrase comes

directly from the Q of its score. The rating for a nonroot phrase is

derived by operations that look at the consumer context of the phrase.

As discussed ir the preceding overview, we have experimented with two

techniques for calculating phrase ratings. The two methods for

assigning nonroot phrase ratings are 'context checking', which entails

the execution of consumer rule-procedures to gather factor information,

and 'merging', which does not. Both methods take advantage of the fact

that the system if. designed to assign ratings to the consumers of a

phrase P before assigning a rating to P icself. Define the 'rating-

score ' of the consumer to be the WEIGHT anc' TOTAL pair forming the score

111-65

used in calculating the consumer rating. Also, let the 'merged rating-

score ' of P and a consumer C be the vector sum of the score of P and the

rating-score of C. The rating of P with respect to the consumer C is

determined from the Q of the merged rating-scoi-e of P and C. The rating

of P, as calculated by merging, is the highest rating of P with respect

to any of its consumers. (Recall that there is always at least one

consumer for a nonroot phrase.)

The merging method is fast and siraple. Moreover, it

reflects both the quality of the phrase and the quality of the consumers

of the phrase. However it does not indicate whether the phrcae is

really compatible with its consumers. The phrase may have attributes

that will cause any complete phrase built from it to be rejected by the

consumers. There is nothing to be gained from working on such a phrase,

but the merging method will not give it a low rating if its score is

good and the consumers' ratings are good. The context-checking method

is designed to avoid this defect.

To start with a simple example, assume that the phrase f

has a single consumer C, ind C is a root-category phrase. The context-

checking method assigns a rating to P by creating a 'virtual' phrase C

from C and P. Virtual phrases are only created during context checking

and are deleted immediately afterward with all storage reclaimed. By

assumption, C' is a root category phrase, so the score of C' is used to

determine the rating of P.

III-66

If C is not root category, but has a single consumer D

which is, the context-checking method adds C to D to form another

virtual phrase D', and the score of D' determines the rating for P. In

general, any path leading from P to a root-category consumer can be used

to establish a rating. The phrase rating could be defined as the

maximum rating with respect to any consumer path leading to a root-

category phrase. However, there may be many such paths, and they would

all have to '»e tried in order to guarantee finding the best one. The

cost of such an exhaustive exploration of the consumer context could

overshadow the potential benefits, so the system instead uses heuristic

methods to find a near-optimal path without necessarily considering all

of the paths.

The details of the context-checking algorithm for setting

phrase ratings are as follows. If the phrase P to be given a rating is

a root-category phrase, its rating is calculated directly from its

score. Otherwise, a lower bound for the rating is initialized and the

consumers of F are scheduled for the creation of virtual phrases. The

initial lower bound is zero if P is being rated for the first time. In

case P is having its rating recalculated because of some addition to its

consumer context, the lower bound is set to its prior rating. Each

consumer C is scheduled at a priority equal to 98$ of the rating

determined by merging the score of P with the rating-score of C. The

98$ is included as a 'laziness' factor lo cause the process to stop

sooner. (Note that the scheduling re/erred to here is internal to the

rating algorithm; it is not part of the Executive task scheduling.)

1X1-67

-— i ,,
-*—--- —- i - --• - - - -

After the lower tound is Initialized and the consumers

scheduled, the path growing begins. It continues until there are no

more extensions scheduled or the highest priority is lower than the

lower bound. At each step in the growing, the highest priority

extension is performed. A scheduled extension consists of a consumer C

and a (possibly empty) path of virtual phrases. Let X be the most

recently added virtual phrase in the path or P if the path is empty. In

either case, C is a consumer for X, and the attributes and score of X

are available for use in constructing a new virtual' phrase, C. If C

is rejected by the rule procedure or if its score is subthreshold, this

step In the path growing is terminated. Otherwise, if C is root

category, its score is used to update the lower bound. If C is not

root category, extensions are scheduled for each of its conjumers at a

priority of 98$ of the rating determined by merging the consumer's

rating-score and the score of C. The consumer is not scheduled if its

priority is less than the lower bound, or if it already appears twice in

the path leading to C (thus blocking paths fron going around consumer-

producer loops more than once).

The merging method and the context-checKing method give

similar results for phrases that have no conflicts with their consumer

contexts. However, when a phrase has attributes that would cause

completions of it tu be rejected or downgraded by consumers, the

context-checking method gives it a lower rating than the merging method.

If the rule procedures are a major source of evaluative knowledge.

111-68

"*"" """ rilir-Ti ---' i r"-r ii ti in -|- II'-TIITI i iiäuMMinnr ■■mm ■

context-checking can produce more useful rat.lngs and hence better

priorities. However, merging is a faster method and can produce results

that are as useful if the rule procedures provide only limited

constraints. In our system, the rule p'ocedures are in fact an

important source of information, and experimental results s:ow that the

use of the context-checking method has good effects on performance.

One of the choices considered in the control strategy

experiment (reported in Chapter IV, Section E) was whether or not to use

contexc-checkjng in setting ratings. Some of our test systems used the

merging method exclusively. Other ' >st systems used a mix cf the

methods: context-checking for partially completed nonterminal phrases,

and merging for empty ones. This mix is preferred to pure context-

checking because empty phrases have so few attributes established that

they are almost always compatible with their context. By mixing the

methods, tl.e costlier checking is only done in cases where it is more

likely to help.

RELATION TO EXECUTIVE TASt'S

Ratings are calculated at several points in the Executive

tasks. When an incomplete phrase is created in the cdd-constituent

operation, it is inserted in the parse net to establish its consumer

context, and then its rating is calculated. If its rating is above a

certain threshold, the phrase is added to the predict ^. s. Otherwise,

the phrase will not De allowed to make any predictions unless its

consumer context changes to raise its rating above the threshold.

111-^9

Jr-TliriT "l" Ji«—äiüiaii I , - . —»-'■■»»

During the second stage of the predict task, new phrases

get initial ratings, and old phrases with modified consumer contexts get

revised ratings. In the case of a revised rating, if the phrase had

been kept out of predict sets previously, but now has an above threshold

rating, it is added to the predict sets and becomes eligible to make

predictions. Otherwise, if the phrase is a member of a predict set and

was or is now the best phrase in the set, the priority of that set is

updated to reflect the new phrase rating. These revisions ensure that a

phrase that is given a low initial rating has a chance to get a higher

rating later if its consumer context changes. The revisions also keep

the priorities in step with the ratings.

Like predict sets, word sets have priorities that depend

on ratings. These ratings are calculated as part of the cleanup stage

of the predict task. They are initially calculated when the word set is

created and are revised when the consumer context changes. The

consumers that are used in seating a word set rating come from the

prediction that caused the creation of the word set.

The details of setting word set ratings depend ou :hether

the system is mapping all at once and also on the number of words In the

set. When mapping all at once, the words in the set have mapper scores

and corresponding mapper factors. The word set is assigned a score

eqwl to the mapping factor with the highest Q. The rating of the word

set is then determined by the merging method.

111-70

If the system is not doing mapping all at once, the word

set rating is calculated either by merging (using a default score for

the word set) or by context-checking. The context-checking makes

virtual phrases using a default score and the default attributes of the

word set lexical subcategory. The defaults are shared by all the words

in the subcategory, so only one rating needs to be calculated for all

the words in the word set. The savings resulting from this are the

principal motivation for having lexical subcategories. The merging

method is employed if the system is using a no-context-checking control

strategy, or if there are few words in the word set (three or less, in

the current implementation).

The use of merging when there are few words in the word

set represents a trade-off between processing time for context checking

and processing time for acoustic tests. If the context checks are

performed and result in a low rating, the system may avoid doing

unnecessary acoustic processing. If merging is used and results in an

inflated rating, extra acoustic tests may be done. The larger the word

set, the more likely it is that the cost of the context checking will be

offset by savings in acoustic processing since the context checking is

done only once for the entire set but the acoustic tests are repeated

for each word.

111-71

6. ADJUSTING PRIORITIES AND FOCUS BY INHIBITION

Phrase ratings determine initial priorities, but priorities

can be adjusted according to a variety of strategies. If no adjustments

are made, the system will work in a 'best-first' manner strictly

following the ratings in moving from one task to another. Looking at

the series of tasks performed by such a best-first method, one often

observes the system shifting its activity among competing possibilities

at a high rate. Such observations led to an experiment in adjusting

priorities in hopes of making the system 'focus attention' better. The

method of adjusting priorities is called 'focus by inhibition' because

it affects the system focus of attention by inhibiting work cu certain

alternatives.

To explain the motivatation for focus by inhibition, assume,

contrary to fact, that the system could find a word X in the input that

was guaranteed not to be a false alarm. Having found X, the system

would not want to waste time on any task that would try to replace it.

In other words, the system should block word tasks that would produce

words overlapping X and block predict tasks for phrases containing words

that overlap X. In this way, the system would avoid wasting its effort

on tasks that were in conflict with a word that was sure to be correct.

In actual practice, the system is only relatively sure of words rather

than being absolutely sure. Instead of being sure that X is correct,

the system will have a certain confidence that X is correct. If it is

highly confident in X, it will be reluctant to perform conflicting

111-72

tasks, but It will not absolutely refuse to perform them because X may

be a false alarm. Focus by inhibition implements this reluctance as a

reduction in priority of conflicting tasks. The priority reduction

causes a system bias, but it is a bias that can be overcome — the task

can still become top priority in spite of having its priority reuuced.

In the implementation of focus by inhibition, the focus is

represented by a set of time-compatible words (or multiwords) from the

input. Two words are time-compatible if they do not overlap or have a

small enough overlap that they could still be in the same phrase. Words

are time-incompatible if they are not time-compatible — in other words,

if they overlap so much that they cannot be in the same phrase. A

phrase conflicts with focus if any word in the phrase is time-

incompatible with some word that is in focus. The phrase priority is

initialized to its rating and is lowered if the phrase conflicts with

focus. The percentage amount by which the priority is lowered depends

on the 'strength' of the focus word. The focus strength goes up

according to the mapper score for the word and the ratings of the

phrases putting the word in focus. The strength decreases acccording to

the likelihood that the word is a false alarm.

At the start of the predict task, the top priority phrase P is

selected from the top priority predict set. It is possible that P

became top priority in spite of being in conflict with some focus word

W. If so, W is removed from focus and any task inhibited because of

conflict with W has its priority raised to its preconflict level. Next,

111-73

- ^-- ■■- ■ ---

the predict task checks for a conflict between P and the current focus

set. (Even if P just causc-d the removal of a focus word, P may still be

in conflict with a different focus word.) If P conflicts with a focus

word X, the priority of P is set to its rating reduced according to the

inhibition strength of X, and the predict task goes to the rescheduling

stage without making any predictions. If there is no conflict, the

words contained in P are added to the focus set, and the normal predict

task begins. These operatiop1? at the start of the predict task take

care of adding words to focus, removing them, and adjusting prediction

priorities.

The word task also has operations for focus by inhibition. A

word set conflicts with a focus word X if any word from the set would be

time-incompatible with X. For example, if X begins at position MO and

the word set left time is also 40, there is a conflict. In case of a

conflict, the word set priority is lowered according to the strength of

the focus word. At the start of the word task, the highest priority

word set WS is selected. It may have become the highest priority in

spite of a conflict with a focus word X. If so, WS is marked as

'immune' to inhibition by X. The word X is not removed from focus;

however, if WS leads to the acquisition of a good word, a high priority

prediction will remove X from focus later. Next, the word task checks

for a conflict between WS and some focus word Y to which WS is not

immune. If there is such a Y, the priority of WS is revised and the

word-task is rescheduled. Otherwise, the normal word-task operations

begin.

III-?1*

- ^-r-^Y' e«-^-,'- ii T-rriTain

No other changes are involved in implementing focus by

inhibition. The structure of the system makes it easy to try different

methods for adjusting priorities, but, as mentioned earlier, the methods

must be Justified experimentally. This particular technique did not

improve system performance, but perhaps a related approach will. The

strength of the method is that it provides simple answers to how, when,

and why to focus attention, while maintaining the completeness of the

system control strategy. The weakness of this particular attempt is its

inability to focus primarily on hits rather than on false alarms;

perhaps greater selectivity in adding words to focus would produce a

focus by inhibition with a positive effect on system performance

(evidence suggesting that this may be so is given in Chapter IV, Section

E.3.)

E. DISCUSSION

This section reviews the most significant features of our Executive

System, compares our framework for speech understanding to some others,

and sketches the evolution of our system over the last four years.

1, REVIEW

The primary functions of the Executive are system integration

and control. The language definition is the principal mechanism for

specifying knowledge source interactions, and phrases with their

attributes and factors are the basic entities manipulated by the

111-75

-^ -'—IWitiiiiirt'i iTM

Executive. Because of the central place given to the language

definition, the Executive takes on the role of a parser in carrying out

its integration and control functions. It builds a parse net data

structure to hold intermediate results and hypotheses, and it uses the

organization of the net to help eliminate wasteful duplication of

effort. Two types of tasks interact to build the net: the predict task,

which leads to predictions for words in the input, and the word task,

which gets words and uses them to construct new phrases. The predict

task operates in a top-down manner and ends by scheduling the word task;

the word task operates in a bottom-up manner and ends by scheduling the

predict task. Both tasks can operate bidirectionally through the input

and are guided by a lookahead mechanism to avoid unnecessary operations.

The Executive controls the overall activity of the system by

setting priorities. The fundamental data for setting priorities are

factors based on both acoustic and linguistic information. Factors are

combined to form scores and ratings. A phrase score reflects a quality

judgment that is independent of the context of the phrase. For example,

the score of a nonterminal phrase depends on the scores of its

constituents and the factors that indicate how well the constituents go

together, but it does not depend on higher level phrases that might

include this one as a constituent. Because phrase scores are

Independent of context, they do not have to be recalculated for each

possible use of the phrase. If a phrase gets a subthreshold score, it

can be discarded without concern that in a different context it might do

111-76

m-rwf- ■— ■-^—-^. -—-ir-nl-Tf-TT mi

better. Moreover, the language definition allows scores to be

calculated for incomplete phrases, so the Executive has access to

quality Judgments from scores at each step as it adds constituents.

The score gives useful local information about a phrase, but

in setting priorities we want to make use of global information

concerning the sentential context; ideally, we do not want to waste time

working on a phrase that is not part of the best current hypothesis

about the entire utterance. In designing a method to make use of

contextual constraints, we must consider the way the constraints are

expressed. Our language definition is written in a style that

represents a large part of the information procedu-'ally rather than

structurally. We use general structure declarations, with categories

like noun phrase and verb phrase, and then use factor statements in the

rule procedures to specify the detailed constraints. To get early and

efficient access to the contextual information, we have developed a

special technique for calculating phrase ratings. The rating of a

phrase is intended to provide an estimate of the best score for an

interpretation that can be constructed using the phrase. Phrase ratings

are calculated by a heuristic search of the consumer tree for the

phrase. The search is guided by previous ratings and by the results of

executing consumer rules to gather factor information, and the phrase

rating is determined by the score for the best complete consumer path

constructed in the search. This technique provides the Executive with

an effective way of estimating how well the phrase fits its possible

111-77

sentential contexts while avoiding an exhaustive search of the consumer

tree. Experiments show that this context-checking method results in

significant improvements in system performance.

Experiments such as the one just mentioned are important for

evaluating a complex system design such as ours. It is not enough

simply to demonstrate that a system with certain features can be

implemented; a working system shows that the features are not

disastrous, but it does not show what good effects, if any, the features

have on performance. Experiments must be carried out in order to

discover the actual effects and interactions of the design features. A

useful method, which we have used in several experiments, is to evaluate

system features by comparing the performance using a particular feature

to the performance using a simpler alternative instead of that feature.

The performance difference indicates the importance of the feature.

Also, by testing different combinations of features, interactions

between features are revealed. Using this method, we have carried out a

large experiment concerning context checking, mapping all at once,

island driving, and focus by inhibition. The results of the and other

experiments regarding the system design are reported in Chapter IV.

The remainder of this section deals primarily with system

integration and control in some other speech-understanding systems. The

purpose is to clarify further the SRI system design rather than to give

a complete review of the literature (for a good survey of recent speech

recognition research, see Reddy, 1976). We consider systems developed

111-78

i" -I" ■Jimi ' ' "II I mmm — i

at Carnegie-Mellon University (CMU), at Bolt Beranek and Newman (BBN),

and earlier at SRI.

2. CMU: HARPY AND HEARSAY-II

Two lines of speech research have been carried out at CMU in

the last few years. One is based on the use of a simple dynamic

programming model with all system knowledge represented in a state

transition network. The other is based on a more complex design using

multiple, cooperating knowledge sources. Both lines of research have

been very productive, and there has been significant cross-fertilization

between them. We discuss the most recent (and most successful) systems

in each line: HARPY in the dynamic programming line and HEARSAY-II in

the multiple knowledge source line.

The HARPY system has the oest performance statistics of any

existing system for understanding connected speech (lowerre, 1976). The

design for HARPY evolved from a comparative study of two previous CMU

systems, Hearsay-I (see Erman, 1974a) and Dragon (see Baker, 1975).

HARPY uses a state transition network to represent all possible

pronunciations of all legal input language sentences. The network thus

embodies the entire systec knowledge of syntax, word pronunciations, and

interword coarticulation effects. To process an utterance, HARPY looks

for the path through the network that best matches the input. The

search proceeds left-to-right, segment by segment across the utterance.

At eac^ segment, all paths are discarded that are more than a threshold

111-79

iiiiiiMiiiinMi in r 11

amount worce than the best path. This heuristic means that the system

is not guaranteed to find the optimal path (the best one may be dropped

if it starts out poorly), but the threshold for dropping paths is chosen

so that in practice the optimal path is found in nearly all cases.

Compared with an exharstive search of all paths, there is a small

sacrifice in accuracy for a large improvement in processing time. The

performance achieved is impressive — on a 1011 word vocabulary, HARPY

got 92% correct of a test set of 100 sentences with an average of a

little over 20 seconds of processing per second of speech on a 1.3

million Instructions fer second computer (DEC KL-10; these results were

reported at a system demonstration at CMU on September 8, 1976). Because

of its one-pass search strategy, HARPY has a low variance in its speed

which is also an important feature for a useful system. Finally, in con-

trast to most other speech-understanding systems, HARPY is conceptually

simple and has been well-studied. For example, there is a good under-

standing of how its recognition time depends on parameters such as the

number of samples in the input, the number of phonetic-classification

templates, and the size of the recognition network.

HARPY achieves good performance with simple means, but it does

so by sacrificing generality. With its reliance on a finite-state

network for syntax, HARPY can only deal with very restricted input

languages. The network representation also makes it difficult to deal

with dynamic changes such as take place in natural connected discourse.

For example, the use of anaphora and ellipsis depends on the preceding

111-80

sentences, and what is acceptable in one context may not be in another.

The performance of HARPY appears to be largely dependent on its use of

an extremely constrained input language. The average branching factor,

the number of alternatives at each word, is about 9.5 for the grammar

with which HARPY achieved the results mentioned above. Preliminary

tests she« a drop in accuracy to about 85$ when the branching factor is

increased to 25 (see Goodman et al., 1976). Based on measurements of

our SRI language definition, we feel that a more natural input language

with a 1000+ word vocabulary could easily have a branching factor well

over 200 (see the discussion of our experiments in Chapter IV, Section

H), so these results suggest that HARPY may be limited to very

restricted languages unless there is a big improvement in acoustic

accuracy. In addition, HARPY's strictly left-to-right search for a

complete path through its network prevents it from dealing with

incomplete sentences or inputs that in any way deviate from the

predefined grammar. A more flexible control structure would allow it to

build partial interpretations of such inputs from which an appropriate

response could be inferred. In summary, on the limited tasks HARPY was

designed for, it does very well. However, it does not represent or

claim to be a general technique for speech understanding with a wide

range of input languages. Undoubtedly, applications exist where a

carefully constrained, artificial input language can be useful, and in

these applications, HARPY offers a viable approach. For more general

applications that may require a closer approximation to natural language

input, the simple approach used by HARPY seems unlikely to succeed.

111-81

Another system developed at CMU, Hearsay-II (HS-II), has taken

a more general approach (see Lesser et al., 1975). HS-II is based on

many interesting design concepts. Perhaps the most distinctive is the

representation of knowledge as self-activating, asychronous, parallel

processes that communicate with each other through a global data

structure, called the 'blackboard'. There is an emphasis throughout HS-

II on generality and uniformity in representation and control. The same

approach is proposed for all levels of the system from signal processing

to semantics. This search for generality is reminiscent of CMU efforts

in other research areas such as problem solving. In fact. Lesser et al

suggest viewing HS-II as a production system that is executed

asynchronously.* They go on to state that in this uniform framework

there are to be many small knowledge sources, each independent of the

others. Knowledge source communication is to be through the generation

and modification of globally accessible hypotheses on the blackboard.

Changes on the blackboard are also to control the activation of

knowledge sources. Each knowledge source is to have a precondition that

is a descriptios: of some partial state of the blackboard. The knowledge

source process can be run when the precondition is satisfied. The

blackboard modifications made by one knowledge source trigger other

knowledge sources by satisfying their preconditions. In addition to

preconditions, each knowledge source has a specification of the kinds of

changes it makes (information used in scheduling knowledge source

activations), and a program which accomplishes those changes. There are

' See Newell (1973) for a discussion of production syrtems,

111-82

to be no separate data structures or state information for the

individual knowledge sources; everything is to be done uniformly by

means of the blackboard.

In the following discussion, we comment first on the HS-II

goals and compare them to our system design. Later, we consider how

close the actual HS-II system that was demonstrated in September 1976,

approached tne design goals given in the IQ?1* paper. HS-II as described

above is an elegant and ambitious system. I* is more general than

HARPY, for instance, in that it does not force all knowledge into a

state transition network representation. AIPO, it can hope to deal with

sentence fragments that do not fit the predefined language. It is not

limited to a left-to-rit'ht search and can build up phrases anywhere in

the input in any order. HS-II and our system share the features just

mentioned, but, in spite of that similarity, there are significant

design contrasts between HS-II and our systea with respect to system

integration and control. First, unlike HS-II, we are not trying to use

? uniform approach throughout the system for representing partial

results and for controlling knowledge source operations. We feel it is

very unlikely that a uniform method can produce satisfactor results for

disparate operations surh as semantic interpretation and acoustic

labeling. Second, we emphasize explicit, direct knowledge source

interactions througn the procedural parta of rules rather than trying to

keep all knowledge source interactions indirect through a global data

structure. It is cle^r tl it some of the interactions must be indirect

111-83

■ r n i -

to allow the Executive to determine dynamically the order in which t^ks

will be perfonned as it searches for an interpretation. This

flexibility is necessary because of the inefficiencies associated with a

fixed order of search (see Paxton, 1975, for further discussion of this

point). We provide for indirect interactions by means of the phrases in

the parse net and achieve modularity at the level of rules in the

language definition. However, within a rule, the knowledge source

interactions are explicitly stated in the procedure. There are several

reasons for such a mix of direct and indirect interactions. One major

consideration is to encourage interactions by providing a low-cost mode

of communication. We feel that there is a large potential for mutual

guidance that would not be realized ;'f all knowledge source

communication was indirect; the cost of modifying the global data

structure and triggering the relevant preconditions would inhibit the

interactions. In addition to being more efficient, direct interactions

are often simpler to specify than the indirect ones. The simplicity

further encourages the development of knowledge sources that cooperate

closely. Another consideration is the inevitable overhead associated

with scheduling and activating tasks. If every knowledge source

interaction had this overhead, the system performance would suffer.

Moreover, efficiency considerations would limit the algorithms for

determining task priorities to simple operations such as merging local

scores. By reducing the number of tasks, we are able to use a more

complex scheduling algorithm and still keep the total scheduling cost

small relative to the time spent actually performing the tasks. Tasks

III-8H

-■----—^-

in our system are thus substantial operations such as making entire sets

of predictions or performing the acoustic processing needed to look for

words at a particular location in the input. This relatively large task

size is another difference between our system and HS-II as described in

the 1971* paper. We also have a few large knowledge sources where they

call for many small ones, and we have separate data structures for

special uae by the different knowledge sources rather than enforcing the

uniform use of a single global data structure. Finally, we have

developed techniques suitable for natural input languages, while HS-II

has used word templates of a linguistically simple form (patterned after

those developed for PARRY by Cnlby ~ see Colby et al., 1974; see Hayes-

Roth and Mostow, 1975, for a description of the HS-II template grammar).

In September 1976, a version of HS-II was demonstrated at CMU

that was somewhat different in design from the deacription given in the

M7U paper. (The 1976 system is briefly described in Reddy et al.,

1976). The 1976 HS-II has a few large knowledge sources rather than

many small ones. One component does parameter extraction, acoustic

analysis, segmentation, and labeling. Another does bottom-up word

recognition based on syllables. A third is a word verification process

using HARPY techniques. This verifier checks words found by the bottom-

up recognizer or words predicted by the syntactic component. A fourth

knowledge source process is a word-pair adjacency tester. It looks at

the speech data in a word-pair gap or overlap and decides if the pair is

acceptable or not on the basis of the phonetic spellings and various

111-85

word juncture rules. A fifth knowledge source process Is the word-

sequence hypothesizer, which provides multiword seeds for an island

driving control strategy. This process uses a bit matrix indicating

allowable word-pairs in the language to ensure that the words in the

multiword island are at least pairwise grammatically acceptable. It

also calls the word-pair adjacency tester to make sure that the words in

the island can be adjacent acoustically. The sixth and final knowledge

source process is the parser. It has a template grammar for use in

parsing word sequences, predicting words that can be syntactically

adjacent to the ends of the sequence, and constructing larger sequences

when predicted words are verified. The performance of HS-II on the same

1011 word vocabulary and input language as used in the tests of HARPY

was SH sentence accuracy (versus 92% for HARPY) and processing times of

about 2 to 20 times longer than HARPY (results reported at a system

demonstration at CMU on September 8, 1976). The poorer performance

relative to HARPY is probably a result of the very restricted input

language used for the tests; with such a language, HARPY's fast, simple

techniques are adequate and give better accuracy by considering more

alternatives before making a choice.

In many ways, the 1976 HS-II moved away from the description

given in the 1971* paper and closer to our system design. As mentioned

above, the demonstrated HS-II has a few large knowledge sources rather

than many small ones. It makes use of direct, explicit knowledge source

interactions: the word verifier is called directly from the bottom-up

111-86

word recognizer and the word Junction tester is called from the word

sequence hypothesizer. The knowledge sources maintain private data

structures and state information rather than always using the

blackboard, presumably because of the inefficiencies of doing everything

in a uniform representation structure. As in our system, data-direc'ed

invocation is used for higher level processes but not for lower level

ones. For example, the word verifier uses a HARPY control structure

rather than the event-driven technique. Thus, the system uses varying

control strategies rather than always using a precondition-activation

scheme, again presumably because of the inefficiencies of the uniform

method. Finally, along with giving the knowledge sources their own data

structures and control structures, the size of the individual tasks

performed by the knowledge sources were made relatively large to reduce

scheduling costs.

All of the above changes bring HS-II closer in design to our

system; however, differences still remain. For example, HS-II has

adopted a multiword seed technique for island driving that apparently

improves its ability to get started correctly. We have not tried that

method, but it could be added to our system easily and might result in

better island driving performance for us also. However, the technique

may depend on having a restricted grammar to make the pairwise

grammaticality tests sufficiently restrictive; with our more general

language, such a test would be much less useful since so many word-pairs

are possible. A more significant difference is the emphasis HS-II has

111-87

placed on parallel processing. The results of future experiments with

HS-II on the special C.mmp multiprocessor system will be interesting as

an indication of whether or not the potential parallelism can be

effectively utilized (see Fennell and Lesser, 1975). On the other hand,

we have emphasized natural input languages while HS-II has not. This

emphasis has led us to develop special techniques such as context

checking in setting phrase ratings. To the extent that the systems have

converged, it indicates a growing consensus regarding system

architecture for general speech understanding; the differences between

the systems reflect the different research goals of the projects such as

parallel processing in the case of H3~II and natural language processing

in our case.

3. BRN: SPEECHLIS AND HWIM

SPEECHLIS and HWIM do not represent parallel speech projects

in the way HARPY and HEAPSAY-II do. Rather, the names refe»- to systems

developed during two relatively distinct phases in the speech

understanding research at BBN. In the first phase, from lyH until

1975, BBN produced SPEECHLIS. In the second phase, 1975 to 1976, the

BBN system was changed significantly in both its components and its

overall organization. The changes merited the adoption of a . JW name,

HWIM. The two systems are particularly different with respect to system

integration and control, so it is appropriate for us to discuss both of

them.

111-88

The SPEECHLIS system has an interesting design that evolved

through the use of 'incremental simulation' combining computer programs

and human simulators [see Woods and Makhoul, 1971», regarding incremental

simulation; see the BBN papers in the 1971* IEEE Proceedings (Erman,

197Mb) regarding SPEECHLIS]. In processing an utterance, SPEECHLIS

starts with acoustic-phonetic analysis to produce a segment lattice

representing all of the alternative segmentations of the utterance and

the alternative phonetic identities of the segments. A lexical

retrieval component th^n searches through the segment lattice for good

matches for words of three or more phonemes. Such matches are added to

a word lattice. A semantic component constructs sets of nonoverlapping

words from the lattice by selecting semantically related words. These

word sets, and information regarding their syntactic and semantic

analysis, are called 'theories.' When semantic association can add no

more words to a theory, the theory is passed to a syntactic component,

called SPARSER — "speech parser" (see Bates, 1975). SPARSER postulates

grammatical structures for the words in the theory and proposes words to

fill gaps between the words. The SPEECHLIS control component keeps

track of different theories, proposals, ami events (such as the

retrieval of a word satisfying some proposal), and decides what to do

next on the basis of a weighted sum of scores 'Vom lexical retrieval,

syntax, and semantics.

SPARSER in particular is worth discussing in more detail. It

uses an augmented transition network (ATN) formalism and a grammar that

111-89

-

was derived from earlier work at BBN (see Woods, Kaplan, and Nash-

Webber, 1972). SPARSER is activated by the control component to process

a set of nonoverlapping words, each contiguous word sequence being

called an 'island.' The parser's job is to create parse paths through

the island? and to predict syntactically acceptable words to fill the

gaps between them. Each island is processed left-to-right. The first

step is to find axl the places in the grammar where the leftmost word of

the island can ociur. This and similar operations make use of

precompiled grammatical indexes. The second step is to find all the

transitions thct lead to the arc for the first word but do not use the

previous word of input (e.g., JUMP transitions). The grammar states

that are reachable from the left cf the first word by these lead-in

transitions are used in making predictions for words to the left of the

island. The third and last step in parsing an island is for paths to be

extended through the island in preparation for making predictions at the

right end. The parse paths are extended to the right Jn a best-first

manner according to scores that reflect the likelihood of the arcs. If

no paths can be found through the island, the theory is rejected.

Otherwise, the ends of the paths determine states for predictions to the

right of the island. (Notice that predictions on the right correspond

to the end of a path leading completely through the island, but

predictions on the left are constrained only by the leftmost word.)

After all the islands in the theory have been processed, SPARSER looks

for predictions to fill the gaps. In particular, it looks for small

gaps that could be filled by a single word. If a prediction is made

111-90

■ ■ ■

from both sides of such a gap, a proposal is made for the lexical

retrieval component to search for the predicted words. While SPARSER is

making proposals, it can return to an island and try to extend more

paths through it to get more predictions on the right. This is done in

hopes of producing a common prediction to fill a gap.

The ability to use pairs of islands to make predictions to

fill gaps is one of the most interesting features of SPARSER. Miller's

LPARS (see Miller, 1973) also made predictions to fill gaps between

islands, but it used an exhaustive search strategy and so was probably

impractical for large vocabularies and grammars. SPARSER appears to

have been the first to provide a combinatorially feasible control

strategy for multi-island processing. Another noteworthy feature of

SPARSER is the large amount of merging of alternatives resulting in the

sharing of information among different theories. For instance, only one

instance of a particular state and input-location configuration is ever

created and it is shared by all theories. However, there are problems

in the SPARSER design. FirTt, there is not enough communication with

other components, especially semantics. For example, SPARSER's

proposals are not constrained by semantic information and so they may

lead to wasted effort looking for words that are acceptable

syntactically but bad semantically. Second, th? use of multi-island

theories probably costs more than it is worth. There are no inter-

island consistency checks; the only interaction among islands is in

making predictions at gaps that are small enough to be filled by a

111-91

Single word. Even when there is such an interaction, it is simply to

look for common predictions, and failure to find one does not disqualify

the theory since the gap might be filled by more than one word. The

overall result is tnat there is relatively little gain from having

multi-island theories.

In contrast to the small gain from having multi-island

theories, the costs are significant. The same island may occur in many

different theories, and, although SPARSER does share Information among

theories, there is a nontrivial overhead for reprocessing an island in

each theory.» A final and especially serious problem with SPARSER is its

failure to make good use of the available grammatical constraints to

limit its operation. We mentioned above that predictions on the left of

islands depend only on the leftmost word and are therefore not taking

advantage of possible constraints provided by the other words in the

island. Another failure to use the available information relates to the

restrictions on arcs. The grammar operations on arcs are explicitly

divided into local ones, which depend only on the word or constituent

for the particular arc, and context sensitive ones, which depend en

informatlor from some other arc. SPARSER performs local operations when

it creates arc transitions, but it does not do any context sensitive

operations until it has a complete path through a network allowing a

constituent to be formed. When such a complete path is acquired,

• The time for reprocessing is about one-third the time for Initial
processing; Bates (1975, p.111) reports 16.5 CPU seconds for
reprocessing a theory that took 47.5 seconds to process originally.

111-92

SPARSER goes through the path left-to-right executing the context

sensitive operations, thus making sure that the required information is

available when it is needed. This is a simple solution to the problem

of context sensitive operations, but it fails to prevent SPARSER from

working on partial paths that are bad syntactically. Bates acknowledges

this problem and comments to the effect, that the parser could take

context into account more easily if the grammar had less of a left-to-

right orientation (Bates, 1975, p.190). This comment supports our

decision to use a language definition representation that is more

neutral than ATNs with raspect to control strategies.

SPEECHLIS has other problems in addition to those mentioned

above regarding SPARSER. First, the use of semantic associations does

not seem to be sufficiently selective to help in producing a few good

starting theories for the system. In a limited task domain, most words

will be semantically related, so almost any set of words found by

lexical retrieval will oe accepted by semantics.* If lexical retrieval

is very accurate and only finds a few outstanding matches, the poor

selectivity of semantics will not hurt, but semantic association will be

an unnecessary step. However, if lexical retrieval produces many rfords

that match equally well, semantic association seems likely to swamp the

system with theories. Given the problems with acoustic recognition, the

• However, Nash-Webber and Bruce suggest that in the lunar rocks task
domain used in SPEECHLIS, the possible semantic relationships among the
entities were so limited that this was not a problem (Woods et al.,
'.976b, p.U?). Apparently it became a problem when the task domain was
changed to travel budgets (see comnients in Woods et al., 1975b, p.MM).

111-93

latter alternative seems more probable. A second problem with SPEECHLIS

is the generally poor communication among knowledge sources. We

mentioned that syntax makes proposals that may be bad semantically. The

converse is also true; semantics makes proposals that may be bad

syntactically In general, any component in SPEECHLIS is free to make

proposals, but there is inadequate communication to ensure that such

proposals are mutually satisfactory. There is a need for closer

cooperation among the components.

The performance of SPEECHLIS seems to support these

criticisms. There has been no report of systematic tests of its

performance, but comments appear in various publications (especially

Nash-Webber and Bruce in Woods et al., 1976b; also in Woods et al.,

1975b). The processing time required by SPEECHLIS may have prevented

extensive testing. For example, SPARSER reportedly can take over UO

seconds of processing on a single theory if much bottom up processing is

necessary (Bates, 1975, p.111). It is difficult to do much testing at

that rate. Also, storage demands apparently made it impossible to run

tests to completion in many cases. There is a comment (in Woods et al.,

1975b, p.M) that, as a result of space problems during thrj semantic

association phrase, the system was unable to complete processing any

utterances. (The comment referred to tests with the travel budget task,

which may have had worse space problems for semantic association than

the previous lunar rocks task.) By 1976, SPEECHLIS was replaced at BBN

by a new system called HWIM ("Hear What I Mean"). In the change, the

III-9»«

—»^■■JB~'J=———---==ii -,1 - H

control strategy was replaced, the semantic association component was

dropped, and SPARSER was dropped.

The HWIM system is in several respects a reaction to the

problems of SPEECHLIS. For instance, it attacks the problems related to

coordinating knowledge sources by embedding much of its syntactic,

semantic, and pragmatic knowledge in a transition network

representation. The result is called a 'pragmatic grammar' and has much

in common with the 'task oriented grammars' of HARPY and Hearsay-II.

General categories like noun phrase and verb phrase are replaced by task

specific ones like 'meetings,' 'trips,' and 'expenses' (Woods et al.,

1976b, p.54). The grammar has more states and arcs than the more

general SPEECHLIS grammar because gen3ral categories have been split

into special ones and also because many word arcs have been added. Like

the CMU template grammars, large portions of the BBN pragmatic grammar

would have to be rewritten for a different task domain (as they admit;

Woods, et al., 197^, p.23).

Another problem in SPEECHLIS was SPARSER's failure to use

context sensitive restrictions until it had a complete constituent.

HWIM has a partial solution to this problem base^ on the jpeciflcation

with each arc operation of the scope of its context dependency. For

example, if arc A has a test that depends on a '"eature set by an action

on arc B, the test on A is marked to show th.-.t its scope includes B.

The HWIM parser executes context sensitive actions ^s soon as the parse

path covers the necessary scope. This method is an improvement over

111-95

SPARSER, but it still is not as thorough in its use of contextual

Information as our technique of exploring the sentential context to set

ratings. HWIM is better than SPARSER because it does not wait to

complete a constituent before testing the relations among its

subphrases. However, HWIM does wait until it has acquired complete

phrases for the arcs in the scope of the operation, and often it is not

necessary to wait that long. The tests often depend on pnrase

attributes that are determined long before the phrase is complete. To

use an example from our system, the number attribute of a noun phrase

can frequently be inferred from its determiner without waiting for the

entire phrase to be built. If the sentential context calls for a

singular noun phrase but the determiner indicates a plural one, our

method of context checking recognizes the inconsistency when it sets the

rating for the incomplete noun phrase, whereas the HWIM method would not

notice the conflict until it had a complete noun phrase a.id tried to use

it in the sentence phrase.

A third problem in SPEECHLIS was inefficiency caused by

theories with multiple Islands. The same island could occur in many

different theories resulting in substantial duplication of effort. HWiM

resolves this problem by limiting theories to a single island.

Duplication of effort is reduced by this method, but not eliminated.

There is still a problem of forming the same Island in many different

ways depending on the order in which words are added. HWIM reduces this

problem somewhat by a technique called 'island collisions'. Before

111-96

HM

explaining this technique, we sketch th? KirflM lexical retrieval

component that plays a vital role in the systea.

HWIM defends on the existence of an efficient and effective

lexical retrieval component. In providing one, Klovstad has produced a

particularly interesting part of the system (see Klovstad in Wood*? et

al., 1976b). Significant features of the lexical retrieval program

include the following:

• It finds the n best matching words without requiring
exhaustive testing of all the words in the vocabulary.
(The processing time varies with the lof ■?' the vocabulary
size rather than linearly.)

• It can take advantage of syntactic predictions to constrain
its search for matches.

• It makes effective use of phonological word boundary rules
by precomputing their possible effects. This technique
eliminates the need to make very loose judgments at word
boundaries to compensate for possible coarticulation
effects.

The internal dictionary for lexical retrieval is stored as a

tree structure merging common phonetic sequences. A tree with initial

sequences merged is used for left-to-right searches; another tree

merging final sequences is used for right-to-left searches. Word

boundary rules are applied to the trees to reflect the possible

coarticulation effects. To allow selective retrieval according to

syntactic category, each node in the dictionary tree is tagged with a

bit mask showing the categories of words in that branch. The lookup

procedure matches paths through the dictionary tree against phonemes in

111-97

--— ■ M

the segment lattice. When a path reaches the end of a word spelling, a

match has been found. The matching operation allows for 'merges' and

'splits' to take care of possible segmentation errors. In a merge, a

single phoneme accounts for two adjacent acoustic segments. In a split,

two adjacent phonemes map onto a single acoustic segment. Path scoring

penalizes matches that require splits or merges. Paths are eliminated

from consideration by three operations: (1) syntactic selection — if

no words in the selected syntactic categories are reachable by the path,

eliminate it; (2) forward pruning — if the path is judged unlikely to

produce words with scores better tuan soa^ threshold, eliminate it; and

(3) finite memory — if the path score falls relative to the others so

that the path is no longer among the k best paths (where k is a

parameter), eliminate it.

The lexical retrieval component was tested or 99 sentences

with a dictionary of 702 words. Directed to return up to 15 matches per

sentence, it selected an average of 9.'<8 distinct matches per sentence.

Overall, 23.7$ of the words returned were correct, and in about 70$ of

the sentences the best match was correct. In only about H% of the

sentences did the lexical retrieval process fail to find at least one

correct word.* The processing times for these unanchored scans is

• Klovstad suggests (in Woods et al., 1976b, p.106) using the average
ratio of correct to incorrect words as a measure of lexical retrieval
performance. He reports a ratio of 0.3112; however, this is actually
the ratio of the average number of correct words per scan (2.25) to the
average number of Incorrect words per scan (7.23). The average of
ratios is not equivalent to the ratio of averages, so Klovstad is
apparently suggesting one measure and reporting another.

111-98

■^^^~ —■-r, n

reported to be about one CPU minute for a 2.5 second utterance (Nash-

Webber and Bruce, in Woods et al., 1976b, p.^6). They also report that

to do a search at a given position in the segment lattice with a 448-

word vocabulary takes an average of 6.83 CPU seconds (Woods et al.,

1976b, p.49). We ar^ especially interested in the lexical retrieval

component because it presents an efficient alternative to our map-all-

words-at-once control strategy.

The HWIM island driving control strategy makes heavy use of

the lexical retrieval component. HWIM starts processing an utterance by

creating a segment lattice. Lexical retrieval then does an unanchored

scan to find up to 15 of the best matching words. A one word theory is

created from tht best match, and the other matches are reserved for

later use if the first one runs into trouble. There is no attempt to

use semantic associations to form multiword theories as was done in

SPEECHLIS. Instead, syntax is immediately called with the theory to

make predictions to extend it. New theories are formed by adding words

to old ones or by starting another one-word theory using one of the

original words from lexical retrieval. There is little sharing of

information among islands. One exception occurs if two islands

'collide' by growing together. In this case, the words from the two

islands are joined together in a single operation. Other than this, the

different islands do not interact, and there is none of the merging of

work on common subparts that we have in cur parse net or that SPARSER

had in its shared configurations and transitions. By giving up sharing.

111-99

the parsing becomes simpler, but there are combinatorial problems If a

large number of Islands must be considered.

In the areas of scoring and priority setting, HWIM is more

sophisticated than SPEECHLIS. HWIM uses experimentally determined

statistical scoring. The use of probabilities provides a uniform

scoring technique so that scores from different sources can be compared

and combined in a theoretically sound manner.* On the basis of these

scores, HWIM uses a 'shortfall density' technique for setting

priorities. This technique depends on having a lexical retrieval

component that can find the best matchirg words spanning the input. The

shortfall method begins by finding the best spanning words and uses them

to set an upper bound score for each segment of speech. The 'shortfall

score' for an island Is the difference between the sum of the upper

bounds for segments in the island and the actual scores for words in the

island. (Scores are additive in HWIM.) The 'shortfall density' for an

island is its shortlall score divided by its length. The priority for

working on an island is determined by the island's shortfall density:

the smaller the shortfall density, the higher the priority. The control

strategy using shortfall density priorities is guaranteed to find the

optimal interpretation as its first soannirg island. In the terminology

of heuristic search, this is an 'admissible' strategy (see Hart,

Nilsson, and Raphael, 1968). However, the price of admissiblllty for

this method appears to be a relatively breadth-first search. BBN has

• The change to probabilistic scoring began during the end of the
SPEECHLIS period at BBN (see Klovstad in Woods et al., 1975a, pp.33-39).

III-100

" " -MI
BHiÜBbäi^BEMlBiäBti

explored a number of variations to try to get better performance, and,

as of September 1976, their favorite variant sacrifices the guarantee of

finding the optimal island first. It restricts the island seeds to be

near the left end of the utterance. After a seed word is selected, the

island is first extended to the left boundary of the utteraroe and then

to the right. This method results in primarily Left-to-right

processing, so there is less chance of duplicating effor . by creating

the same island in different ways. It avoids the potential problems of

a strictly left-to-right method because it can Jump o* ar the start of

the sentence to pick a seed word. This compromise may offer a way

around some of the problems with island driving that we report in the

next chapter.

To summarize, HWIM has introduced a variety of interesting

design concepts. In particular, we refer to the work on lexical

retrieval, island parsing, probabilistic scoring, and shortfall density

priorities. However, most of these concepts still need to be tested to

determine their effect on the performance of the system. In our own

work, we have discovered that intuitively appealing design features can

sometimes have distressing effects on actual performance.

Some final comments are required regarding the use of a

'pragmatic' grammar in HWIM. Nash-Webber and Bruce state that the

overall performance of HWIM is improved by fusing syntactic, semantic,

and pragmatic knowledge sources, and that the improvement "comes from

being able to constrain as soon and as tightly as possible the

III-101

-inil-trr""—' -' - i. " - T--it-ifiiirlfr irrr in —"'- - iiirfi i i i i

acceptable ways in wliich a given theory can be extended" (Woods et al.,

1976b, p.53)- Tney go on to say that "a naive conception of KS

[knowledge source] interaction, which assumes that if communication

channels exist, they will be used effectively, is wrong, at least in

terms of currently realizable systems of HWIM's size and complexity"

(Woods et al., 1976b, p.55). On this basis, they propose a principle

that they dub "WORK TOGETHER":

If it is found that one must frequently consider
simultaneously information from several KSs, then the activity
of those KSs should be tightly coupled, (p.55)

We agree that tight coupling of knowledge sources is

important; we have emphasized that fact in the design of our systems

sines we began working on speech understanding (see, for example,

comments in Walker, 1973). We are willing to believe that pragmatic

grammar improves HWIM's performance (although Nash-Webber and Bruce

offer no evidence supporting the claim). It may also be true that the

improvement comes from the source they sutrgest — namely, from being

able to apply constraints as soon and as tightly as possible (again, no

evidence is given). An alternative explanation is that the pragmatic

grammar improves performance by greatly reducing the generality of the

input language: fewer choices, so better results. However, if Nash-

Webber and Bruce are correct in their claim that the improvement is

caused by better use of constraints, then the improved performance can

be attained without resorting to a pragmatic grammar. In our system,

III-102

_ __—_^ i-^aa

explicit checking of the sentential context as part of setting r^ings

leads to early and effective use of constraints from all relevant

sources of knowledge. Constraints are actually applied earlier by our

technique than in HWIM since we do not require completinK constituents

before considering their interrelations.

The use of a pragmatic grammar may improve efficiency, but at

a cost of increased size and complexity and decreased generality. Using

our techniques, knowledge sources can be used effectively without being

fused in the BBN manner. We get tight coupling of knowledge sources «nd

early, thorough application of constraints without giving up the

integrity or generality of the different knowledge sourceo.

k. EARLIER SRI SYSTEMS

It may be useful to give a brief sketch of the evolution of

our system design and mention some of the techniques that were tried and

then modified or discarded. The emphasis of the sketch is on

unpublished material, but we also review work discussed more fully in

earlier publications.

Our 1972 system (see Paxton and Robinson, 1973) tried to

minimize the demands on acoustics by restricting the acoustic processing

to testing words that had been hypothesized on the basis of other

knowledge. The hope was that by hypothesizing words in roughly the

order of their likelihood in a particular context, we could reduce the

III-103

—————— '• - —-" -.——-q-a^.,,-^,, im,. iirnaintHliMfriii- iirti^-r-'-f-^iii 11 ■- „ riii.r.iii- J-.^-^-^- — -■ •- —-"-ton m

average number of errors In acoustic recognition. To achieve

flexibility in ordering hypotheses, the system used a best-first

strategy rather than depth-first with backtracking. The language

definition was written in a procedural style following Winograd (1971;

in fact, an earlier version of our system had been constructed by making

modifications to Winograd's SHRDLU; see Walker 1973). There was some

effort to share information among different attempts to parse an input,

but sharing was limited to successes rather than failures or partial

results. Rating of alternatives was done by associating priority

functions with alternatives at choice points. The original intention

was to implement the system using 'spaghetti stacks' (see Bobrow and

Wegbreit, 1973), but since that facility was not available in time, an

interpreter was written instead.

During 1973 wo increased the amount of interparse cooperation

in the system by introducing a limited version of Kaplan's producer-

consumer scheme (Paxton, 1975; also see Kaplan, 1973b). It was

restricted to a single level of producers; in other words, the producers

could not be consumers too. Also, the context dependency within

producers was restricted to the lexical level. Global control was still

embedded in the procedural grammar. Performance results for this system

are reported in Walker (1971*, 1975). With a 5^ word vocabulary, the

system got MM of 71 sentences correct {62%).

In 1971> we began working with SDC on a joint project. This

change led to a major redesign influenced by SDC's previous work (see

111-101

^fttfwf - "--TT-f--^ TII .-«^..i,» -Tm- .-u. ------- ■fWliiir

Barnett, 1973; Rltea, ig?1*) and the new Hearsay-II design (Lesser et

al., 1975). The SDC parser was able to work top-down, bottom-up, and

bidirectionally, and we decided to provide that much flexibility in our

new system also. This decision required a change in the language

definition methodology and resulted In the adoption of augmented phrase

structure rules. From HS-II, we got the idea of distinguishing between

ratings (reflecting 'goodness') and priorities (reflecting

'importance'). However, we still thought of focus of attention in terms

of suspending and reawakening processes and had trouble specifying why,

when, and how, such operations should take place. By the end of the

year, we replaced the ideas of suspending and reawakening by the idea of

changing priorities and designed focus by inhibition in essentially its

current form. The original -version used entire phrases for foous, but

when that resulted in a great number of incorrect phrases in focus, we

shifted to focusing on words selected from phrases. Also during this

period, discussions with Barnett at SDC led to the ideas of phrase

mapping and lexical subsetting, the former to deal with coarticulation

effects and the latter to give the system more guidance from acoustics.

By late 1971, a system was Implemented based on augmented

phrase structure rules and a general producer-consumer structure for

parsing (see sections II and III in Walker et al., 1975). However, the

rules did not allow options or alternatives, and the attributes and

factors were defined by simple lists of assignment statements. The

produce^ consumer structure for the parse net took care of cooperation

III-105

-ira-mi- Mlfr" ' ""'''' -»"^ rrrf, iTTi.- ^^ -:...- „**. " -n n ■ rr ilftltHrin-MffTi

among different attempts to parse an utterance, but it increased the

problem of using contextual restrictions in setting priorities. From

the beginning, we felt we had to take the context into account, but our

first effort was a failure. Rather than searching up the consumer tree

as we do now, we tried passing restrictions down the tree from consumers

to producers. To illustrate, let C be a consumer phrase with an

acquired constituent A and a missing constituent B. A factor expression

for C is ir general a function F of attributes of A and B. A new

function F' can be formed by fixing the arguments of F that depend on A

to the actual values from A; thus, F' depends on attributes of B only

and can be passed down to B-producers as a restriction from C.

Simila-'ly, B-producers can further modify the arguments of F' to yield

restrictions to pass down to their producers. This method was

implemented and debugged, but as soon as it was tried on tests

simulating speech input, its extravagant use of storage for propagating

restrictions showed that it would have to be replaced.

The system design steadily evolved during 1975. The tree

search context checking technique was developed for setting ratings.

The first version searched the entire consumer tree to find the best

path; later, the current technique was developed to do a heuristic

search for a near optimal path. The system had a relatively small task

size; for example, the prediction task added only the immediate

oroducers for th highest priority phrase rather than adding the entire

subnet of producers. The small task size was intended to give a great

III-106

- — in.. . - .

deal of control over the operation of the system; it did that, but it

also caused the system to spend over hilf of its time calculating and

recalculating priorities. By adopting a larger task size, the

scheduling overhead has now been reduced to about 1211 of the Executive

nrocesslng time. Another problem was the lack of alternatives and

options in rules. Without them, it was impossible to merge related

rules. For instance, there were 10 S rules, 5 of which had initial NPs.

There were five emotv S ohrase consumers to consider when setting

ratings for initial NPs, and whenever an initial NP was found, five

incomplete S phrases had to be constructed. After we redesigned the

language definition using rules with alternatives and options, there was

only one S rule with an initial NP. The use of alternatives and options

in rules complicates the Executive, but it provides an important

reduce on in the number of rules and hence in the processing and storage

requirements of the system.

Also during 1975, we added multiword lexical entries,

lookahead, word task scheduling by lexical subcategories rather than by

individual words, and gap/overlap testing by syllables rather than by

fixed duration. To improve efficiency, we began to use a preconstructed

initial parse net and preconstructed empty phrases. The monitor subnet

for island driving was added as more than Just an efficiency measure; it

provides the necessary consumer context for island driving so that all

consumer paths lead to a root-category phrase.

III-107

fa^ ---f-,-.. " -,-: .—TjTif TTiiifirriiirii ■

In late 1975 and early 1976, we put together a version of our

system on the SDC IBM 370/145." Before thorough testing could be done,

SDC's computer was removed for administrative reasons, t.nd our Joint

effort with SDC came to an end. However, enough information about their

acoustic processing routines was collected so that we could test our

parts of the system on our own computer by using a simulation. The

results of those simulation experiments are reported in Chapter IV.

• Ann Robinson was primarily responsible for transferring the system
from our PDP-10 to the SDC IBM/370.

111-108

--^ "" ill ■•■ ii-ri- -Lii

IV EXPEPIMEMTAL STUDIES

Prcpered by williak . Prrt'dn

CONTENTS:

A. Introduction
B. Esperi«ert i — Kapp«r Perforaance
C. Maop«r Sieulatlon
D. Experlaert 2 — Fanout
E. Exp««Piiient 3 — Cont-ol Strategy Design Choices

1. Accuracy
?. Runt ice
?. Review of the Effects

F. Experiaeiit ö — Gaps and Overlaps
G. Exp^ri»ent «j — Increased Vocabulary and Improved Acoustics
H. DetailM Measureaers of Ereeutive Operation
I. Conclusion
J. Test Sentences

A. INTRODUCTION

This chapter discusses ^ se.ies of experiments concerning our

sp'ecf-understanding system. Information regarding the acoustic

processing is reported in <.he first experiment. Ai well as being cf

interest in its own right, this informatior was used in simulating the

acoustic processing for the other experiments. The second experiment

d 'Is with the 'f&nout,' the number of alternatives at each word, both

for the language alone and in cc binatlon with the acoustics. Fanout

provides a quantitative measure of the difficulty of the speech-

understanding taslc. In the third experiment, the main experiment of the

iiin~fTiiiimirr-*""-iiii n n—- - ' ™-—-. .-^-^^j^-j^Mia

series, the standard speech system is tested on a set of 60 sentences

for all combinations of four control strategy design choices. The best

configuration from Experiment ? is tested again in the fourth

experiment, allowing different sizes of gaps and overlaps between words

in the simulated acoustic processing. The fifth experiment •■"•\dies the

performance of the two most promising system configurai,j.vns from

Experiment 3, vhile varying vocabulary size and acoustic processing

accuracy. The final study deals with detailed measurements of the

Executive's performance for the best version of the system on Experiment

?. The following sections assume familiarity with the Executive System,

at least to the level of detail given in the overview (Section C) in

Chapter III.

B. EXPERIMENT 1 — MAPPER PERFORMANCE

The first experiment deals with the performance of the system

component called the 'mapper' (described in Chapter I, Section B, and in

Bernstein, 197'>). To review, the mapper carries out acoustic tests:

given a predicted word and location in the input, the mapper either

rejects the word or accepts it and reports its beginning and ending

boundaries rounded to the nearest 0.05 second. If the word Is accepted,

the mapper also i?ives it a score between 0 and 100, indicating how well

it matches the input (100 indicates a perfect match). Worjs accepted by

the mapper are either 'hits', words really in the inpuv. sentence, or

false alarms, words accepted although not in the input.

IV-2

 ^

The mapper was tested by calling it for all of the words in the

vocabulary at the start of an utterance and then ?t each position where

a previously accepted word ended (independent of whether the previous

word was a hit or a false alarm). This procedure resulted in testing

the entire vocabulary at an average of about 16 out of the 20 possible

positions per second of speech (recall that word boundaries are rounded

to multiples of 0.05 second, so there are 20 possible ending positions

per second).* Overall, tests were made at 160 positions in 11 test

utterances. For the ?05-word vocabulary used in the following

experiments, the mapper had 48 hits and 1564 false alarms. The false

alarms were distributed throughout the vocabulary [229 of the 305 words

(75%) were falsely accepted at least once], with small worols like "a"

and "the" each accounting for more than 30 false alarms.

The false-alarm rate for the mapper vras determined by counting the

number of false alarms that fell entirely within a section of the input.

For the 305-word vocabulary, the average rate was 114 false alarms per

second of speech. Since there were about 3 hits per second of speech,

this rate indicates that the mapper produced an average of almost 40

false alarms for each hit. Figure IV-1 summarizes the results for

three vocabulary sizes.

• This experiment was originally designed to record the results of all
mapper calls that might be made in a left-to-right parse. The intention
was to use this information in place of the mapper in tests of the
entire system. However, technical and administrative difficulties made
it impossible to gather enough information to satisfy the original goal.
If the original goal had been to provide data for a simulation of the
mapper, the mapper would have simply been tested on the entire
vocabulary across each utterance at 0.05-second intervals. The change
in goals may have resulted in missing some potential false alarms
because of the untested positions where no word ended.

IV-3

..-. ^ IMMMl . , . mimm

VOCABULARY SIZE (words)
305 «»51 823

False Alarm (FA) Rate IIH 1M2 360
Mean FA Score 59 58 58
Total FAs in sample 156U 2Ü26 1*989
Words with FAs 229 326 651
Words with no FAs 76 125 169

Figure IV-1. MAPPER PERFORMANCE

As partial compensation for the high false-alarm rate, there were

no 'misses' (cases in which the mapper failed to accept a correct word),

and the mean hit score was higher than the mean false alarm score (73.5

versus 59.D, although both score distributions spread over the entire

range, from near 100 down to the threshold of '45. The score

distributions are shown in Figure IV-2.

The cumulative percentage distributions for the scores are shown in

Figure IV-3 Note that a threshold of 55 instead of 45 would

eliminate '4511 of the false alarms but only 6% of the hits. We are not

suggesting such an increase in the threshold, but it illustrates the

extent to which the false alarms are found at low scores.

1V-H

HI

140

120

M
Ö100
z
in
K
C

u o

O 60
C
ui
to
5
D 40
Z

iO

i—r i—r

• False Alarms (305 Word Vocabulary) —

A Hits

• •

• • • •

45 50 55 60 65 70 75 80 85 90 95 100

SCORE

FIGURE IV-2 SCORE DISTRIBUTIONS FOR FALSE ALARMS AND HITS

C. MAPPER SIMULATION

The following experiments use a simulation of the mapper based on

the data gathered in the first experiment. To simulate the performance

of the mapper on a particular sentence, the words of the sentence were

first assigned lengths in seconds of speech. Each word was then

assigned a score picked at random from the total collection of hit

IV-5

5 o

s
z
•i
i

o
g
I
I-

uu 1 1 1 1 1 1 1 " 1 l _JU-Z

90 — o J

80 - J-T —^

70 —
FALSE ALARMS J^

(306 Word VorM)) I-*

mtm

-j

60 — J -J

50 — f"^ MEAN 69.4 p -]

40 —
/ /

-J
—

m
J"1 HITS H —^

30 - / r -j

20 — /
r MEAN 73.6 -j

j
10

—
T r

1 1 i i_ 1 rW i i i i i
45 50 66 60 65 70 76 80 86 90 96

SCORES

100

FIGURE IV-3 CUMULATIVE DISTRIBUTIONS OF HIT AND FALSE ALARM SCOPES

scores actually produced by the mapper. The words were concatenated to

determine the length of the utterance, and the length was multiplied by

the false alarm rate (111» false alarms per second of speech) to give the

total number of false alfrms to be simulated. The false alarms were

selected randomly from the 156*1 false alarms produced by the mapper, and

then positioned randomly in the sentence.

IV-6

In computing the simulated processing time for the tapper in later

experiments, we used figures of 0.30-second processing per word tested,

1.0 second p^r position for lexical subsetting,» and 10.0 seconds per

second of speech in the sentence if 'island driving' was being simulated

(see discussion of Experiment 3). These timing figures are based on

rough measurements of the mapper running on an IBM System/370 Model 1M5.

This simulation reproduces the observed mapper performance

statistics for the false-alarm rate, the hit scores, and the particular

false-alarm words and scores. Because of insufficient data, we cannot

use a simulation that reproduces more complex statistics such as the co-

occurrence of various hits and false alarms or possible dependence of

scores on the position within the utterance. We cannot say with

certainty that these more complex statistics are unimportant, and,

consequently, we do not claim that the particular oerformance levels in

the following simulation tests will be precise estimates of the system's

actual performance with a real mapper. In view of this limitation, the

following experiments that use the simulation are designed to emphasize

comparisons between performance levels rather than basing judgments on

absolute performance levels. For example, to judge some design feature

F, we look at the difference in performance with F versus without It,

• Recall that the lexical subsetting component uses local, robust
acoustic cues to select a subset of the lexicon for further testing at a
particular Input location. To simulate this component, the system
creates a subset containing the simulated hits and false alarms at or
near the specified location and then adds randomly selected words to
Increase the size of the subset to & specified value. For the 351-word
vocabulary, the subset size was set at 50 reflecting the expected
performance of a well-tuned version of the lexical subsetting component.

IV-7

_^ai=ii-

rather than simply reporting the absolute perforniance observed with F.

Such a comparative experiment is always appropriate as a way to judge

the effects of a design feature, but it is particularly important when

simulating a major component of the system. For instance, if some

property P of the actual mapper is not reflected in the simulation, that

lack may affect the performance levels of the versions of the system

with and without some design feature F. However, as long as both

versions are affected in roughly the same way, conclusions drawn from

significant differences in performance in the simulation tests will

probably be valid regarding performance with the actual mapper. Iu

short, tbe simulation experiments should be good for making design

decisions based on comparative judgments, but the absolute performance

levels in the experiments must be taken with a grain of salt.

In spite of this limitation, there were compelling reasons for

doing simulation experiments rather than testing the system with the

actual mapper. First, it would have been impossible to do extensive

testing with the actual mapper — the time required would have been too

great, both because of increased processing time and because of

increased memoiy demands (leading to large delays for 'page swapping' by

the time-sharing system). By using a simulation, we were able to do a

large number of tests because the processing and memory demands of the

mapper were eliminated. Also, we were able to study interesting control

strategies, such as mapping all at once, which would be too slow for use

with the actual mapper, but which otherwise have good effects on system

performance and suggest new system designs.

IV~8

--—^--"--— --„^„^^ ^-^---^ - —^T--—T^tJ

m-s? mnj HHMHW

Another reason for doing simulation experiments was that our access

to the actual mapper was cut off when the SDC speech project computer

was removed in March 1976. (This reason is certainly not a scientific

one, but it illustrates the fact that not all decisions in research are

determined by scientific considerations.) Luckily, there was a week

between the time that the mapper started working well enough to be

tested and the time that the SDC computer was removed. During that week

th^ first experiment was performed. The other experiments were carried

out on the SRI computer using a simulated mapper.

D. EXPERIMENT 2 — FANOUT

The second experiment deals with the fanout in the language, with

and without acoustic constraints. 'Fanout' is defined as the number of

words that can be successfully appended to an initial substring of some

sentence, to produce either a complete sentence or a string that can

potentially be completed to form a sentence. The average fanout over a

large number of initial substrings provides a measure of the uncertainty

of each word, as indicated by the number of alternatives open to the

system.*

The fanout wan measured for 11 sentences, together containing a

total of 67 words. The fanout was measured only for initial substrings

• Goodman (1976) considers a variety of measures of language complexity.
Our fanout measure roughly corresponds to his 'dynamic branching
factor ' However, his methods deal only with finite-state grammars, so
the correspondence between the measures is not exact.

IV-9

"T - i i i in r 11 " i mi ag^iiUtmtmiUMm iHlr

of the actual sentences: it was not measured along false paths. The

distribution of the size of the fanout was roughly bimodal (see Figure

IV-M). Using the ?05-word vocabulary and ignoring acoustic

constraints, 2H positions (36$) had a fanout of less than 30 words,

while 33 positions (49$) had a fanout of more than 173 words. The small

fanout positions were places allowing only vocabulary classes with a

small number cf members, classes such as preposition or verb. The large

fanout poslticrts corresponded to places where a noun could be expected.

The mean fanout was 117, with a standard deviation of 90 and a maximum

of 219. The fanout at the beginning ol sentences was 206; the average

fanout at nonlnitial positions was 100.

The fanout with acoustic constraints is based on the simulated

mapper data. It is calculated by counting the number of words that are

accepted by the simulated mapper at a position starting plus or minus

0.05 second from the end of an initial substring of hits, and that are

also in the fanout set without acoustic constraints for that substring.

In addition to recording the size of the fanout, we ordered the set of

words by increasing mapper scores and computed the rank of the hit. For

example, if two false alarms had scores higher than the hit, the rank of

the hit would be three. For the 305-word vocabulary, the mean fanout

with speech was 18, the hit had the best score in 28$ of the cases, and

the average hit rank was 3-7. The fact that the hit rank is much

smaller than half of the fanout reflects the previously mentioned

difference between the score distributions for hits and false alarms.

IV-10

._____U_^A.

-*-—

12

10

i/)
tu

* 8h-
UJ '
IT
c
o
9.

6

Z I-

luL
20 40 60 80 100 120

SIZE OF FANOUT

140 160 160 200 220

FIGURE IV-4 FANOUT HISTOGRAM

The results of this experiment help to show why tne control

strategy problem for speech understanding is so difficult. The results

suggest that, on the average, there will be between two and three false

alarms with higher scores than the actual hit to tempt the system down

false paths. Also, the hit had the best score in only 28$ of the cases,

which appears to imply that the probability of correctly answering a

sentence n words long is 0.28 raised to the nth power. However, the

IV-11

, ... „ „ irniiiTTt

accuracy of the system in the following experiments is actually much

higher than that, so there must be compensating factors tending to bring

the system back to the correct path. For example, the fanout follovdng

a false alarm is probably smaller than the fanout following a hit,

causing false paths to be dead ends. The decrease in fanout should be

most pronounced near the boundaries of an utterance, where many words

are eliminated because their minimum duration is greater than «.he

available time. Similarly, false paths may be impossible to complete

because too much speech remains. For instance, a path will be a dead

end if it requires a one-syllable word to fill a four-syllable sectior

of the input. Finally, even if there are complete false paths, the

system may still get the sentence right if the correct path is found and

is given a higher overall score than any incorrect path. The difference

in hit and false-alarm score distributions makes this more likely.

These factors, and perhaps others not yet recognized, may offset the

effect of the large number of high-scoring false alarms, but speech

understanding is still a difficult task, as indicated by the results of

the next experiment.

IV-12

_^ i _-__ ~ ■■'-■""*--'-"■-' -^—«"■ •■-• s ■-1—iirj-'—- H

E, EXPERIMENT 3 ~ CONTROL STRATEGY DESIGN CHOICES

In the third experiment, the performance of the standard speech

system was measured on a set of 60 test sentences, while varying four

major control-strategy design choices. The sentences covered a wide

range of vocabulary and included questions, commands, and elliptical

sentence fragments (see Section J at the end of this chapter for a list

of the test sentences). There were 10 sentences at each length of

simulated speech ranging from 0.8 to 2.? seconds at intervals of 0.3

second. The sentences averaged 5.9 words in length, with a maximum of 9

words. The choices used as experimental variables were the following:*

Island Drive or Not — Go in both directions from arbitrary
starting points in the input versus proceed strictly
left-to-right from the beginning: Island criving allows
the system tc use words that match well anywhere in an
input and to build up an interpretation around them.
Left-to-right processing is simpler and less flexible but
may still be more accurate and efficient than island
driving.

■

Map All or One — Test all the words at once at a given
location versus try them one at a time and delay further
testing when a good match is fout'«d: Mapping all at once
lets the system know the best candidates from the
acoustics and reduces the chances of following a false
path. Mapping one at a time avoids exhaustive testing
and will be more efficient than mapping all at once if
the system does not encounter too many false alarms.

Context Checks — Take into account the restrictions of the
possible sentential contents as part of setting
priorities versus ignore the contextual restrictions
except for use in eliminating already formed structures:
Context checking should give more information for setting
priorities and should lead to better predictions.
However, the checks can be expensive and therefore may
not lead to an overall improvement in performance.

• These choices are described in more detail in Chapter III, Section C.

IV-13

-^•-—""^rhmtfrr

Focus by Inhibition — Focus the system on selected
alternatives by inhibiting competition versus employ an
unbiased best-first strategy: Focusing allows the system
to concentrate on a particular set of potential
interpretations rather than thrashing among a large
number of alternatives. However, if the focus of
attention is too often wrong, the net effect may be
harmful to system performance.

All combinations of the four control-strategy variables were tested

on the 60 sentences. This experimental design allows us to compare the

16 combinations of control choices and to evaluate, by analysis of

variance, the main effects and interactions of the control strategy

variables. The main effect of a variable is the change in performance

it produces, averaged over all the possibilities for the other

variables. The interaction of two variables tells whether the effect of

one variable is the same for all possiDilities of the other. The

interaction of three variables tells whether the interaction of two of

them is the same for all possibilities of the third, and so on.

Analysis of variance io a statistical technique for computing the

probability that the observed effects or interactions are really caused

by the experimental variables, rather than the result of random

variation (see e.g., Winer, 1971; also, see Cox, 1958, for an excellent

introduction to experimental design). In other words, this method aids

in evaluating results of experiments influenced by substantial random

factors. In our case, the random factors include the random choices of

false alarms and hit scores in simulating the mapper, and the selection

of a particular sample of sentences from the much larger population of

possible sentences. The statistical results for a main effect or

IV-IU

mm

interaction are given in a form such as "F(1,5)=6.9, P < .05." This

means that the F ratio (a statistic for comparing variances) for the

effect or interaction has 1 and 5 degrees of freedom and has a value

equal to 6.9. ThJs in -.urn implies that the probability is less than

.05 thaö the observed effect or interaction was caused by random

variation alone. If the probability is given by itself in uhe following

discussion, it is based on the these values: FO,5)>=16.3 for p < .01,

F(1,5)>=6.6 for p < .05, and Fd ,5)>.U. 1 for p < .10.

The most importanc perfc-mance meaoves for the system are accuracy

(the percentage of sentences for which the correct sequence of w^rds is

found) and runtime (the computation required by the system, including

simulated acoustic processing time). For these measures, the control

strategy variables had large, significant effects. Beiore discussing

the effects, we need to introduce a notation for naming the experimental

designs. The capital letter "F" will refer to focus by inhibition,

lower case "f" to no focus by inhibition; "C" stands for context checks,

"e" for no context checks; "M" for map all at once, "m" for not map all

at once; "I" for island driving, and "i" for no island driving. This

notation will indicate the different combinations of choices. For

example, "fCMi" refers to the system that does not use focus by

inhibition, does use context checks, does map all at once, and does not

island drive. Using this notation, Figure IV-5 shows the accuracy

and runtime of the 16 experimental systems.

IV-15

--—— ■^"fst ^mn m ■ - ■-'-—^.^.,^-. . --.-,-.--. ^J..., . ^Täi.-fiM,;ii.in

7B 1 1 1
• fCMi

72 — • FCMi -A
• fCmi • fcMi

68 —
• fCMl 1

♦w

-

pe
rc

en

"■
• FCMI "I

• fCmi
i

60 — • FCmi • FCmi • fcMI —1
o
tu
(E

8 56
• FcMi • FcMI

52 — • fcmi
—^

48 — fcml • • Fcml

• Fcmi

1 1 1

—]

200 300 400 500 600

RUNTIME, PER SENTENCE — seconds

FIGURE IV-5 ACCURACY AND RUNTIME OF THE 16 DESIGNS

Notice the range of values for both measures, from H6.7% to 73.3t

for accuracy, and from 221 to 559 seconds processing per sentence for

runtime. These wide ranges confirm the importance of control strategy

in determining system performance. With respect to the individual

control variables, comparing the C-.^ystems to the corresponding c-

systems shows that context checks fur priority setting result in better

accuracy ^nd faster runtimes (see Figure IV-6). Similar comparisons

IV-16

—-'■ v

76

72 —

68 —

8 64

S

h 60
o
UJ
a:
a:
o u 56

52 —

48

44

1 I
• fCMi

1

[— • FCMi —
• fCMi ■ feMi

U-

• C

• fCMi

• fCml \

• FCMI |

i— • FCmi • FCml

\

■ fcMI -J

u \
■ c ■ FcMi ■ FcMU

u ■ fcmi -H

fcml ■ ■ Fcml • Context Checking

■ Fcmi ■ No Context Checking

1 1 1
200 300 400

RUNTIME, PER SENTENCE

500 600

seconds

FIGURE IV-6 CONTEXT CHECKING — MAIN EFFECTS

show that mapping all at once improves accuracy bu*. increases runtime

(see Figure IV-7), while focus by inhibition and island driving both

reduce the accuracy and increase the runtime (see Figure IV-8 and

Figure IV-9). In the remainder of this section, we discuss theso

effects and propose explsritions for them.

IV-17

_^ ■ .—^.^uj.

76

72

68

«4 1-
i

60
o
lU
cc
it
O 56

52

48

44
200

fCmi

FCmi

I
• fCMi

• FCMi

• fcMi

fCmi

I FCmi

fcmi

fcmll

Fcmi

Fcml

M

» fCMi

• FCMi"

• fcMl -

• FcMi «FcMl

• Map AM at Once

■ Map One at a Time

1
300 400 500

RUNTIME, PER SENTENCE — seconds

FIGURE IV-7 MAPPING ALL AT ONCE — MAIN EFFECTS

600

IV-18

I' If 'Tl ■- -- — -

76

72 h-

68H

I 64 I-

tu
et
ot
8 56

52

48 h-

44
200

1 1
B fCM

1 1

U- • FCMi —\

■ fCmi ■ fcMi

u ■ fCMI

i—

■ fCmi
■ f
\

• FCMI-

i— • FCmi • FCmi

\

• F

■ fcMI -J

FcMi • FcMI • :

h- ■ fcmi —^

U fcml ■ • Fcml

• Fcmi

1 1

• Focus-by-lnhibi:ion

■ No Focus-by-lnhibition |

1 1
300 400 500

RUNTIME. PER SENTENCE — seconds

600

FIGURE IV-8 FOCUS-BY-INHIBITION — MAIN EFFECTS

IV-19

--■*—^ -- MMJT- i - ■-- -^-yäl^B^ä^illl^WMM

76

72|-

68 I—

c
01 64 u
1

1 1
1- 60
o
UJ
CC
a.
o
u 56

62

48

44
200

-T— 1 ■ i
■ fCMi

— ■ FCMi —
■ fCmi ■ feMi

—
■ <

• fCmi N.

• fCMI _

• FCMI

_ ■ FCmi • FCmi X,

N.
• fcMI —

■"-'

■ FcMi • FcMI

— ■ fcmi -

- (cml • • Fcml

■ Fcmi

_ 1 ~i-

• Island Driving

■ No Island Driving

AOO 500

RUNTIME, PER SENTENCE — seconds

FIGURE IV-9 ISLAND DRIVING — MAIN EFFECTS

600

1. ACCURACY

Figure IV-10 shows the effect of the control variables on

accuracy. For the purposes of analysis of variance, we pooled the

results on each set of 10 sentences of equal length to get six accuracy

measures per system. The interaction with length was then used as the

error term for calculating statistical significance.

IV-20

—i

WITH WITHOUT DIFFERENCE

F 57.5 62.9 -5.M •
C 66.0 51.11 11.6 *
M 6M.6 55.8 8.8 ■
I 58.1

• p <

62.3

0.05

-4.2

Figure IV-ID. MAIN EFFECTS OF VARIABLES ON PERCENT CORRECT

As previously mentioned, context checks and map all improve

eccuraoy, while focus and island driving make it worse. The island

driving effect was not significant statistically because of a large

interaction with sentence length. For the long sentences, 1.7 to 2.3

seconds, island driving decreased accuracy by 15.8$, but for the short

ones, 0.8 to 1.1 seconds, it actually increased accuracy by 7.5$ (see

Figure IV-11). There was a significant interaction (p < 0.05)

between focus and island driving. As shown in Figure IV-12, the

effect of island driving is less with focus, and the effect of focus is

less with island driving. To explain this collection of results we must

first consider how accuracy is influenced by control strategy.

The control strategy affects accuracy indirectly. All the

strategies are 'complete' in the sense that they only reorder, and never

eliminate, alternatives. If there were no false alarms, all the systems

would get 100$ of the test sentences correct. Even with false alarms,

the strategies would get an equal percent correct, if all the possible

IV-21

- - -—

FIGURE IV
.,1 ACCURACY VERSUS LENGTH FOR ISLAND-DRIVING

F
f
F-f

56.7 58.3
59-6 66.3
-2.9 -8.0

I-i

-1.6
-6.7

5.1

(percent correct)

Figure IV-12. FOCUS AND ISLAND-DRIVING INTERACTION

IV-22

————■"- ■-'"""^--^

alternatives could b» tried before the system picked an interpretation.

Errors would only occur when false alarms had high enough scores to

displace hits in the highest rated interpretations. However, in the

actual system, the large number of alternatives roatfes it impossible to

consider all of them in the space dnd time available. As a result, the

order in which the alternatives are considered can affect the accuracy,

and so can the demands on space and time. Control strategy thus affects

accuracy indirectly by reordering alternatives and by modifying space

and time requirements. To explain the acnuracy effects, we must look at

these other factors.

In this experiment, the storage limit was an important factor

for accuracy. In the 960 tests (60 sentences times 16 systems), 578

I
(60.211) were correct and ?82 (39.8$) were wrong. Of the errors, 175

(1610 had an incorrect interpretation, while 207 (51$) had no

interpretation at all. Since the systems could potentially get the

correct answer, and no time limit was imposed until at least one

interpretation had been found, all of the 207 tentences with no

interpretation were a result of running out of storage.

The storage limit used in the tests was based on the number of

phrases constructed. When the tjtal reached 500, the system would stop

trying new alternatives and, if any interpretation had been found, pick

the highest rated interpretation as its answer. The average number of

phrases constructed was 20H nonterminal and 63 terminal. The system

with the best accuracy, fCMi, had the lowest average (113 nonterminals

IV-23

■— -" ■■— -' - ■uniM^MfHi

and MS terminals), while the system with the worst accuracy, Fcmi, had

one of the highest averages (260 nonterminals and 68 terminals).

Overall, there was a strong negative correlation (-.93) between system

accuracy and average number of phrases constructed (see Figure

IV-1?); the accuracy drops by about 1% for an increase of 6 phrase in

the average storage requirements.

76

72

68

64

I
1 60

m
tr c
O 56

52

48

44

Accuracy Drops 1%
for increase of
6 Phrases

100 200 300 400

STORAGE phrases

FIGURE IV-13 STORAGE AND ACCURACY FOR THE 16 SYSTEMS

Figure IV-lM shows the effects of the control variables on

the number of phrases. The pattern is the same as for accuracy; context

IV-2»»

WITH WITHOUT DIFFERENCE

F 281 253 28 •
C 2U0 291 -51 ••
M 211 290 -16 ••
I 287 217 10

(number of phrases)

•• p < .01 » p < .05

Figure IV-11. MAIN EFFllCTS ON STORAGE

checks and map all have good effects, while focus ar.d island driving

have bad effects. Again, because of a large interaction with length,

the island driving effect is not significant statistically. There are

significant interactions, p < 0.05, between focus and island driving for

storage, as seen in Figure IV-15, and between context checking and

mapping all at once, as seen in Figure IV-16.

I i I-t

F 290 272 18
f 281 222 62
P-f 6 50 -11

(number of phrases)

Figure IV-15. FOCUS AND ISLAND-DRIVING

The beneficial effects of mapping all at once are caujed by a

reduction in the proportion of false alarm terminal phrasea. Mapping

all at once significantly reduces the proportion of terminal phrases

IV-25

'liiriiii i ~ —'" ^ ^^. ..-^^; ffr, frTr - - - - TIT ii liMi^r WiiiitlT; Trti-iiiiiitri '■ " "i" nii i iMii n m n fiÜ IH i" r n ■ ■ ■ nai

M m M-m

c 221 259 -38
c 267 322 -55
C-c -46 -63 17

(number of phrases)

Figure IV-16. CONTEXT AND MAP-ALL INTERACTION

that are false alarms ~ from 88.0$ to 85.7$, P < .01. The false

terminal proportion is in turn significantly correlated with the number

of phrases (.72) and the accuracy (-.75). When the words are all mapped

at once, the system is able to take advantage of the difference in false

alarm and hit score distributions to reduce the likelihood of

constructing false terminal phrases. Notice that a relatively small

change in false terminal percentage has a large effect on system

performance.

Surprisingly, context checking also results in a significant

reduction in the false terminal percentage — from 87.5$ to 86.2$,

p < .01. This reduction may be evidence that context checking is giving

lower priority to looking for words adjacent to false alarms than it

gives to looking next to hits. This change could affect the false

terminal likelihood, since there is always a hit adjacent to a hit,

while false alarms often have nothing but other false alarms next to

them. In addition to its effect on false terminals, context checking

may also be improving the storage requirements and accuracy by generally

IV-26

._.,.■. . i^is - Yffir"^-^ ^-i,'- - -— rfrrfoiti

improving the priority setting, thereby reducing the likelihood of

following false paths.

Focus by inhibition sligh-ly increases the proportion of false

alarm terminal phrases (from 86.3$ to 87.3if). but this increase is not

statistically significant. The explanation of the ill effects of focus

is essentially the converse of the explanation of the effects of context

checking. Context checking makes performance better by improving

priorities, while focus makes it worse by distorting priorities. Focus

too often changes priorities to bias the system in favor of a false

alarm instead of a hit. In the systems that used focus by inhibition,

there was an average of 3.5 hits put in focus per sentence compared to

12.9 false alarms. FOJUS conflicts changed priorities in favor of a

false alarm 112 times per sentence and in favor of a hit, only 15 times

per sentence. Thus the priorities, and the system performance, were

better with the unbiased best-first strategy than with focus by

Inhibition.

Island driving did not affect the false terminal proportion,

but it did have bad effects on storage and accuracy for the longer

sentences. To get a sentence correct, island driving must start at

least one island with a hit. If all the oeeds — words selected to

start islands — are false alarms, the sentence will not be interpreted

correctly. The overall average was 3.7 false alarm seeds per sentence

and 0.9 hit seeds. There were one or more hit seeds in 82% of the tests

uping island driving. The bad effects of island driving on long

IV-27

:.^^£^^--.^f,i^^MMrtrjriii;TBäiii i ■■ ■ -^-"-^ rniihi '■! i iiiir r" i mtiiiMatm\Tr -HthMafr —■—-——-- _.^^.^..J-^

sentences was not caused by an increase in the number of false alarm

seeds. The average rank of the first hit in the sequence of words for

use in forming islands was M.8, and the rank did not increase with

sentence length. (The correlation between rank and length was .CO.

For sentences 1.7 seconds or longer, instead of an increase in the

number of seeds necessary to get a hit, there was an increase in the

amount of storage consumed per island. Perhaps the greater length

allowed islands to grow in r>oth directions, whereas in shorter sentences

the sentence boundaries blocked one direction or the other.

The interaction of focus and I«1and driving can be explained

as the result of the storage limit. The limit put a ceiling on the size

of the possible combined effect. Thus the combined effect was less than

the sum of the individual effects. Similarly, the interaction between

context checking and mapping all at once is a result of overlapping good

effects, which consequently fail to add. The same pattern of context

and map-all interaction appears in false terminal proportion, p < .05,

and in accuracy, F^.OO versus F(1,5)=1*.06 for p < .10.

We now turn to a brief analysis of the sentences tha g> ^ one

or more interpretations but were incorrect because their highest r^ted

interpretation was wrong. As mentioned previously, this happened in 175

tests. In 109 of these (621), the chosen interpret?*ion was reasonable

linguistically but contained incorrect words. In 10 tests (6$), the

chosen interpretation could have been eliminated by a better language

definition ("Was feet one builder of the Farragut?" is an example from

IV-28

'TiiTTnin

these 10). Finally, 56 of the errors (32%) were harmless, in that the

system 4<ould probably produce the same answer as if it had found the

correct sequence of words (e.g., "What reactor does it have?" instead

of "What reactors does it have?" was one of these harmless errors). If

the harmless errors are counted as correct in calculating the accuracy,

most accurate system, fCMi, increases in percent correct from 73.3/t

to 6l.7/f, and the average accuracy for all the systems goes up about

5.8?.

The accuracy effects have been explained in terms of storage

requirements, proportions of false terminal phrases, and priorities.

The important role of the storage limit raises the question of whether

the accuracy effects would have disappeared if uore storage h^d been

available. We believe that the effects would have been smaller but

still important. The effects on the proportion of false terminal

phrases would remain, as would the presumed effects on priorities. A

smaller percentage of false terminals and better priorities will cause

the system to find the correct interpretation sooner, and, even if the

sto -age limit were relaxed, the limit on runtime would remain to

penalize systems that were slow to find the right answer. The effects

of control strategy choices on accuracy would only vanish if space and

runtime limitations were both removed, an unlikely ^vent in view o^ the

current performance of speech-understanding systems.

IV-29

■■ ^iiiiM^lr ^- —f i^— 11 iirmrii -

2. RUNTIME

The systeui runtime is another important performance measure.

Here, we will use the phrase 'tot^l runtime' to refer to the simulated

acoustic processing, plus the actual processing time (on a DEC PDP KA-

10) for th- executive and the semantic components. The executive time

is mainly spent setting priorities and parsing. The semantics time is

used in constructing semantic translations and in dealing with anaphoric

references and ellipsis. The reported total runtime does not include

acoustic preprocessing or ques^on answering, since neither is affected

by the experimental variables.* We report results only for total,

Executive, and acoustic times; semantic times are not reported, both

because they are redundant given the other three measures, and because

they are relatively small in comparison to the others. In analysis of

variance of the ».'untimes, interaction with length was used as the error

term.

The main effects of the control variables on total runtime are

given in Figure IV-17. All the variables except context checking

increate the runtime. Dividing the sentences into a short group (0.8 to

1.1| second?) and a long group (1.7 to 2.3 seconds) shows that island

driving has a much worse effect on runtime for long than for short

sentences. For short sentences, island driving increased the mean

• Acoustic preprocessing takes about 160 CPU seconds per second of
speech on a PDP 11/^0 (according to personal communication with Iris
Kameny at SDC). The time for question answering varies great]y with the
complexity of the request.

IV-30

:

-^ — ■ ---~^^=^^a^ „^ T mittrmmfiMii ■mBri-tfiilTriirr-i ^-M^^----^-^- ■iTiTTTiarartttfciiiMatMiiMiiaiMIl« a im

WITH WITHOUT DIFFERENCE

F in? 386 31 ■
C 383 121 -38 ««

M i<98 305 193 «•

I W 359 85 #

(seconds per sentence)

» p < .05 »• p < .01 # p < .10

Figure IV-17. MAIN EFFECTS ON TOTAL RUNTIME

runtime from 262 to 290 seconds, a difference of 28. For Ion;

sentences, the increase was from 1157 to 598 seconds, a difference of

111. Recall that for long sentences island driving also had worse

effects on accuracy and storage.

Figure IV-18 and Figure IV-19 show the main effects on

executive runtime and acoustic runtime, respectively. In both cases,

context checks decrease the runtime, while focus and island driving

increase it. Mapping all at once improves the executive runtime but

leads to a huge increase in acoustic processing time. As usual,

examination of the results according to sentence length shows that

island driving is worse for longer sentences. The average executive and

acoustic times together account for 95$ of the average total, so, as

mentioned previously, we do not report separate effects for semantics.

Analysis of variance for total, executive, and acoustic

runtimes reveals a significant interaction between context checking and

IV-31

mtm

WITH WITHOUT DIFFERENCE

F 120 106 in ••

C 109 117 -8 #
M 90 135 -M5 •t

I 127 98 29 i

(seconds per sentence)

•• p < .01 # p < .10

Figure IV-18. EFFECTS ON EXECUTIVE RUNTIME

WITH WITHOUT DIFFERENCE

F 276 260 16 #
C 25«* 282 -28 ••
M 389 1M7 2U2 •*
I 295 241 5H #

(seconds per sentence)

•• p < .01 # p < .10

Figure IV-19. EFFECTS ON ACOUSTIC RUNTIME

mapping all at once (p < .01 for total and acoustics; p < .05 for

executive). For total and acoustic runtime, the good effect of contex:.

checking was reduced when words were mapped all at once, and the

increase in runtim? caused by map-all was greater when also context

checking. For executive runtime, both cnntext and map-all had good

effects, and there was actually a synergistic relation; nontext checking

helped more when mapping all at once, and vice versa.

IV-32

HHtiuiiBKa

There was also a significant three-way interaction among

focus, map-all, and island driving (p < .01 for total and acoustic

runtimes; p < .05 for Executive). When not mapping all at once, there

was negligible interaction between focus and island driving. However,

when mapping all at once, the combined bad effect of focus and island

driving was significantly less than the sum of their individual bad

effects.

The runtime results follow basically the same pattern as the

accuracy and storage results. Focus and island driving have bad

effects, with worse results from island driving for longer sentences,

while context checking has consistently good effects. Map-all has a

good effect on Executive runtime, but, unfortunately, it causes large

increases in acoustic and total runtimes. The only inconsistency with

the previous pattern of effects for accuracy and storage is the bad

effect of map-all on the acoustic runtime. This fact is explained by

pointing out that the mapper was designed for mapping words one at a

time and, in the simulation, does not accumulate or share information to

make subsequent tests more efficient. Finally, it is noteworthy that

the extra effort for context checking resulted in a net decrease in

processing time. For example, fCMi spent an average of 6.3 seconds more

per sentence doing extra processing for context checks, but it was still

11 seconds per sentence faster than fcMi.

The runtime figures above are in units of seconds used to

process a sentence. A more common unit for runtime is seconds per

IV-33

second of speech. This is a reasonable scale if th«; runtime can be

approximated by a linear function of sentence length with a zero

intercept. Both assumptions, linearity and zero intercept, are

consistent with our data. No significant nonlinearity was found by an F

test of the variance of the mean for each length about the regression

line, relative to the combined variance of the sentences within a given

length (for instance, the data for fCMi gave Frl.37 versus F(4,510=1.Ml

for p < .25). Moreover, the 95% confidence interval for the intercept

of the regression line included the origin. With this justification, we

used zero-intercept linear regression to calculate the processing times

per second of speech and their 95% confidence intervals.

The results for the fastest system, fCmi, were 111, plus or

minus IM seconds processing per second of speech for total runtime; 66,

plus or minus 9 for executive runtime; and 63, plus or minus 7 for

acoustic runtime. The results for the most accurate system, fCMi, were

247, plus or minus 21 for total runtime; 34, plus or minus 6 for

executive runtime; and 205, plus or minus 14 for acoustic runtime.

Thus, for fCMi, 8311 of the total runtime slope comes from acoustic

processing, 14$ from the executive, and the remaining 3$ from the

semantics. Clearly, the best approach to improving fCMi runtime is to

redesign the mapper for mapping all at once. The potential is large for

sharing work to improve efficiency in the mapper, since the data show

that fCMi is mapping all the words at an average of 13 out of the 20

possible positions per second of speech.

IV-34

äU^äMMUBÜHIHi!

?. REVIEW OF THE EFFECTS

The only control strategy choice with mixed effects in

Experiment ? is whether or not to map all at once. Mapping all at once

improves accuracy and executive runtime, but at a large cost in acoustic

and total runtime. Redesign of the mapper, perhaps along the lines of

the BBN lexical retrieval component (see Klovstad in Woods et al.,

1976b), could undoubtedly resolve this choice in favor of mapping all at

once. For example. Just cutting the acoustic processing in half would

make the fCMi system about as fast as the fCmi system. The choice,

whether to map all or not, is explored further in Experiment 5.

The overall effects of island driving were bad, and they were

particularly bad for longer sentences. Island driving was hurt by false

alarm seeds, especially when the sentence was long enough for the

islands to grow in both directions. Pri-haps island driving can be

modified to overcome this problem. For example, a multiword seed

technique like Hearsay-II's (see Chapter III, Sectiot, E.2) might reduce

the number of false alarm seeds, and a restriction like the one used by

BBN to keep seeds near the start of the utterance might reduce the

storage needed per island. Another alternative would be to pick seeds

anywhere In the utterance but to restrict them to growing in one

direction to an utterance boundary before allowing them to grow in the

other direction. Island driving did give higher accuracy for the

shorter sentences and correctly answered some of the sentences that fCMi

missed (see Section H), so further effort is Justified to look for

IV-35

l.....ri ,--lf»«m^M 11 iri-rnriiTM-iHiiiiPi

versions of island driving that have good effecta for long sentences as

well as for short ones.

The effects of focus by inhibition were bad on all measures.

The cause of the bad effects was too much focusing on false alarms, so

we have tried a modified version that is much more conservative about

which words to put in focus. It uses the false-alarm likelihood

estimates as a primary orit^^ioii in selecting words for focus. The

modified focu? method yas tested an the 60 utterances using the FCMi

system, which was the best of the orib-'ial focus systems. The results

are shown in Figure IV-?0 Th«. rwdificr.tion greatly reduced the number

of false alarms in focu.i and improved the FCFi p^rforiuance of all

measures. In fact, the oodififtd-fCMi is he nost accurate of all the

systems tested; it correctly answered all the sentences that fCMi did,

plus one more. However, it is still slightly worse than fCMi in storage

and runtime. The differ mces between fCMi and the modified-FCMi are

small (oecause so few words are put in focus by the modified technique),

but tiiey suggest that focus by inhibition might have significant good

effects if further effort was devoted to tuning the algorithm for

selecting focus words.

Context checking had uniformly good effects. For both

accuracy and runtime, it was worth the extra effort to get better

priority setting. This result clearly depends or. the fact that we put a

large amount of the system's knowledge into the rule procedures of the

language definition rather than into the structural declarations. It

IV-36

mam

new-FCMi old-FCMi fCMi

Words in Focus
Hits 1.3 3.9 0.0
False Harms 1.6 8.2 0.0

Focus Conflicts
Hits 4.0 13.3 0.0
False Alarms 12.8 75.8 0.0

Raw Accuracy, % 75.0 71.7 73.3
Forgiving, % 81.7 76.7 81.7
Runtime (sec/sent) 392 U77 385
Executive " 60 83 53
Acoustic " 321 377 320
Storage (phrases) 165 231 158

Figure TV-20. EFFECTS OF MODIFIED FOCUS BY INHIBITION

would be interesting to repeat these tests with different language

definitions that had the same linguistic scope but put more inforration

into the structure and less in the procedures.

F. EXPERIMENT H — GAPS AND OVERLAPS

The data from Experiment 1 do not aid us in simulating the mapper's

performance when called on to test whether two words it has accepted

individually are also acceptable as a contiguous pair. Such tests,

referred to as "phrase mapping', are necessary whenever words and

phrases are combined to form larger units. In the experimental

simulation of the mapper, we replaced phrase mapping by a simple

threshold test; we allowed gaps and overlaps of up to 0.05 second of

speech, but rejected those that were larger. Experiment h tests the

effect of different values of the gap-overlap parameter on the

IV-37

 - —

Fanout with acoustics (words)
Rank of hit in fanout
Raw accuracy, t
Forgiving accuracy, %
False terminal, %
Number of nonterminals
Total runtime (sec/sec-speech)
Executive runtime "
Acoustic runtime "

GAP- -OVERLAP SIZE
0.00 0.05 0.10

6.6 18.0 29.t
1.9 3.7 5.6

96.7 73.3 48.3
98.3 81.7 58.3
58.2 83.2 89.1

31 113 217
1H0 247 333
10 34 69

128 205 243

Figure IV-21. EFFECTS OF GAP-OVERLAP PARAMETER

performance of the fCMi system from Experiment 3. Figure IV-21 gives

tha results for a variety of measures with gap-overlap sizes of 0.00,

0.05, and 0.10 second.

The performance is much better for 0.00 and much worse for 0.10

second of gap or overlap. The observed distribution of gaps and

overlaps is shown in Figure IV-22. Notice thac a technique using a

simple threshold on the size of gaps and overlaps would not be

acceptable in practice; the threshold would have to be at least 15

oentiseconds, and the data reported in Figure IV-21 suggest that the

resulting performance would be terrible. This is strong evidence for

the importance of special acoustic tests to verify word-pair junctions.

Such tests can lead to a large reduction in the average hit rank and,

consequently, to significant improvements in both accuracy and runtime.

IV-38

—n*i ! — - i i I,,
 ■ ■

100

t z
tu
o
cc
o.

D
5
D
U

0 5 10 15

SIZE OF GAP-OVERLAP — centiseconds

FIGURE IV-22 OBSERVED DISTRIBUTION OF GAPS
AND OVERLAPS

G. EXPERIMENT 5 — INCREASED VOCABULARY AND IMPROVED ACOUSTICS

Experiment 5 studies the effects of increased vocabulary size and

improved acoustic-processing accuracy. As test systems, we use fCMi and

fCmi from Experiment 3. These are the best systems for accuracy and

speed, respectively, and they also give us more information about the

map-all control strategy choice. Thus there are three experimental

variables: vocabulary size, acoustic accuracy, and map-all. Data for

two of the eight combinations, map-all or not for smaller vocabulary and

regular acoustic accuracy, come from Experiment 3. For Experiment 5,

the other six combinations were tested to provide a complete set of data

for analysis of the effects of the variables.

IV-39

r"^nl ^^ ~ .. - * - r ^--^----^ ifniiMiiiriitMMiil
" "•■'-ITMlTMlBBll - | — ■

The large vocabulary is a 451-word superset of the 305-word

vocabulary used in the other experiments. The data gathered in

Experiment 1 showed that, with the U51-word vocabulary, the mapper made

2026 false alarms and had a false alarm rate of 1^2 false alarms per

second of speech (compared with IT» for the 305-word vocabulary). Using

the Experiment 1 information, the mapper performance was simulated for

the large vocabulary on the same set of 60 test, sentences.

Improved acoustic-processing accuracy was simulated by a 7%

downward stretch of the false alarm score distribution, while leaving

the hit scores unchanged. In other words, a false alarm score X, in the

range 45 to 100, was replaced by 1.07X-7. If the result was below the

threshold of 45, the false alarm was eliminated. This process reduced

the number of false alarms for the 305-word vocabulary from 1564 to

1204, and for the 451-word vocabulary, from 2026 to 1541. Because the

aubthreshold scores were eliminated, the simulated improvement left the

average false alarm score almost unchanged: for the 305-word vocabulary,

it went from 59.4 to 60.2, and for the 451-word vocabulary, it went from

58.2 to 58.8. We feel that an improvement ivi acoustic accuracy of the

magnitude simulated here could have been achieved by careful tuning of

the mapper.

Figure IV-23 records the accuracy results using the notation "M"

for tests with mapping all at once, "m" for those without, "A" for

systems with improved acoustic accuracy, "a" for thoac without, "V" lor

systems with increased vocabulary, and "v" for those without. Improved

IV-40

--■'---—-■ -- in

AMv Amv aMv AMV amv AmV aMV amV

Faw, t 85.0 78.3 73.3 71.6 70.0 68.3 68.3 53.3
forgiving, % 95.0 85.0 81.7 78.3 76.7 76.7 75.0 53.3

Figure IV-23. ACCURACY RESULTS

acoustics raises fCMi accuracy from 73.3? to 85.0$, or from 81.7$ to

95.0$ if harmless errors are forgiven. However, if vocabulary size is

also increased, accuracy drops slightly from 73.3$ to 71.6$. Tl.us, in

this experiment, a 7$ improvement in acoustic accuracy almost

compensates for a 48$ increase in vocabulary. Comparison of the M-

results to the m-results shows that map-all consistently helps accuracy.

The main effects on accuracy and several other measures are given

in Figure IV-2'4. Improved acoustics leads to big gains in accuracy,

storage, and runtime. Increased vocabulary makes performance worse, but

at least the system does not collapse. As in Experiment 3, mapping all

at once improves everything except acoustic and total runtimes.

There were few significant interactions. Vocabulary size and

mapping all at once interacted significantly for acoustic runtime

(p < .05) and for total runtime (p < .10). Figure IV-25 shows that

the increase caused by map-all is greater for the bigger vocabulary,

and, surprisingly, that the increase in vocabulary ^ize leads to a

reduction in processing, if the system is not mapping all at once.

IV-M1

-T r frltIl'MiTrfir--1rrfFii-r- i -|ir.iri:ii"-'"' —''—Tr"^"'- — ^ ^.ji„-^-„■■■->-^■■... Ji^.J„^HjaBm^Maäij»i«»eMi.j

^

WITH WITHOUT DIFFERENCE

Raw Accuracy (percent)

Phrases (total

A
V
A
number
A
V
M

75.8 66.3
65."4 7o.7
74.6 67.5
terminal and
155
204
156

208
159
206

False Terminals (percent)
A 80.6 85,

82,
84,

Total Runtime
A
V
M

Acoustic Runtime
A
V
M

Executive Runtime
A
V
M

9.5 "
-11.3 #

7.1 •
nonterminal)

V 84.3
M 81.7
(seconds/sentence)

266 320
312 275
383 204

(seconds/sentence)

187 213
205 195
315 84

(seconds/sentence)
66 89
88 67
55 101

-53
45

-51

-5.3
2.2

-3.1

-54

37
179

-26
10

231

-23
21

-46

• t

«f

••

»«

•«

• •

»»

••
»•
»«

• • p < .01 • p < .05 # p < .10

Figure IV-24. MAIN EFFECTS OF ACOUSTICS, VOCABMLARY, AND MAP-ALL

M m M-m

V 335 75 260
v 296 94 202
V-v 39 -19 58

(seconds/sentence)

Figure IV-25. VOCABULARY AND MAP-ALL INTERACTION FOR ACOUSTIC RUNTIME

IV-4?

Mapping all at once also interacted significantly with acoustics

for acoustic runtime (p < .01), total runtime (p < .01), and false

terminal percentage (p ' .05). All eases were similar to the one shown

in Figure 17-26. There was a synergistic interaction causing mapping

all at once to be more effective with better acoustics, and vice versa.

This result is readily explained since map-all is designed to take

advantage of the difference between false-alaro and hit-score

distributions, and improving the acou ics enhances that difference by

reducing the number of high scoring false alarms.

M m M-m

A 78.6 82.6 -1.0
a 8U.8 87.0 -2.2
A-a -6.2 -u.!; -1.8

(percent)

Figure IV-26. ACOUSTICS AND MAP-ALL INTERACTION FOR FALSE TERMINALS

In iddition to the .uain tests for Experiment 5, we also ran another

tent to study the effect of improved acoustics on a system using island

driving. The best island driving system from Experiment 3 was fCMI.

When tested on the 305-word vocabular-' with 7$ simulated improvement in

acoustics, fCMI gained in accuracy f" m 68.3$ to 78.3$. It was >till

below the non-island driving fCMi, and the gap between them reüiäined

large. (Recall that fCMi went from 73.3$ to 85.0$.) Thus, improvements

in acoustics alone appear unlikely to be able to solve the problems wich

this version of island driving.

IV-«»3

In summary, this experiment has given us information about how

badly the system is hurt by increased vocabulary, and how much it is

helped by improved acoustics. With respect to the control-strategy

design choices, further evidence appeared in favor of mapping all at

once, and against the current versicn of island driving.

H. DETAILED MEASUREMENTS OF EXECUTIVE OPERATION

This section gives a detailed breakdown of the statistics for the

most accurate of the Experiment 3 systems, fCMi. Based on the

performance for fCMi on the 60 test se-itences in Experiment 3, we report

information regarding the composition of the parse net, the effects of

lookahead, the performance of the context-checking procedures, the

processing time for the major Executive procedures, and the breakdown of

the accuracy results according to the existence and relative scores of

correct and incorrect interpretations. Because of its level of detail,

this section presupposes familiarity with the description of the

Executive given in Section D of Chapter III.

Figure IV-27 shows the average composition of the parse net at

the end of processing an utterance. Notice that there are t. 9

consumer-to-prediction links than there are predictions (78 versus 61),

so there is some sharing taking place. To estimate the amount of

sharing, we computed what the total size would be if the parse net were

a tree instead of a network and all of the shared structures were

IV-IH

-*"■■ i r • i

— ■■

133 Nonterminal phrases per sentence
38 complete, 50 partial, 25 empty

15 Terminal phrases per sentence

61 Predicticns per sentence

78 Consumer-to-prediction links per sentence

Figure IV-27. COMPOSITION OF THE PARSE NET

duplicated.* The average number of phrases plus predictions was 220 in

the actual parse net; expanding the net into a tree increased the

average to 101, an 83? increase. Thus, while only 1? out of the 78

consumer-links (22$ of them) went to another consumer's prediction, the

overall savings were quite large.

Whereas Figure IV-27 shows the number of phrases aud predictions

that were actually constructed, Figure IV-28 shows how many were

blocked for various reasons. There were 12.3 phrases per sentence

rejected by language factor statements, and of these, syntactic factors,

which are usually tested first because they are less expensive

computationally, accounted for over 90$. The preliminary tests in the

add-constituent procedure (times, phrase mapping, and lookahead) blocked

5.1 phrases per sentence. In 17.8 cases per sentence, the same terminal

or nonterminal phrase already existed, so the construction of a

» The fCMi system works left-to-right and there is no left-recursion in
the rules of the language, so the parse net does not have loops and can
be converted to a finite tree.

IV--15

n ■ I ■■!<-■

M2.3 Factor Rejections
38.3 (90.3$) by syntactic factors
1.5 (3-5%) by case-grammar factors
0.3 (0.7$) by semantic translation factors
2.^ (5.1»$) by discourse factors

5.1 Add-Constituent Preliminary Tests
3.1 in Part 1
2.0 in Part 2

17.8 Same Phrase Already Existed
4.5 Nonterminal

13.3 Terminal

31.^ Phrases and Predictions Blocked by Lookahead
in the Predict Task

96.6 Total

(per sentence)

Figure IV-28. BLOCKING OF PHRASES AND PREDICTIONS

duplicate was blocked.* The final type of blocking is lookahead in the

oredict task, which accounted for 31.I blocked phrases and predictions

per sentence.

The data in Figure IV-28 show that the lookahead mechanism is

providing a substantial constraint, so it is of interest to compare the

performance of the system with and without lookahead (see Figure

IV-29). Lookahead has good effects on accuracy, storage, and

Executive runtime, but not on acoustic runtime or total runtime. The

• It is possible to have such duplication even with a left-to-right
control strategy because of the looseness in the time constraints. For
example, a word starting at position U5 can be found by predictions 10,
^5, and 50, leading to two blocked duplicates.

I\M6

-^—

WITH WITHOUT DIFFERENCE

73.3 71.7 1.6
81.7 76.7 5.0
335 287 98
53 64 -11

320 208 112
158 192 -34

Raw Accuracy, %
Forgiving, %
Total Runtime (sec/sent)
Exec Runtime (sec/sent)
Acoustic Runtime (sec/sent)
Storage (phrases)

Figure IV-29. EFFECTS OF LOOKAHEAD

bad effects result from an increase in the number of places per sentence

where words were tested — up from 13 without lookahead, to 20 with.

Lookahead is causing the system to 'peek' at places that without

lookahead it would simply ignore. The extra testing done with lookahead

would be less expensive with a redesigned mapper, but the cost

undoubtedly would not decrease enough to compensate for the existing

difference.* Lookahead appears to help accuracy somewhat, so rather than

simply discard it, we feel that further effort is called for to design a

version of the system that uses lookahead in a more efficient way.

unlike lookahead, context checking has uniformly good effects. As

mentioned previously, an average of about 6.3 seconds of processing per

sentence was spent doing context checking, and this effort resulted in a

net decrease of 41 seconds per sentence in the total runtime (based on

comparision with the results for the best system without context-

• Based on the data in Figure IV-29 the acoustic runtime would have to
drop to one-eighth of Its current level to cause the total runtimes to
be the same (subtract seven-eighths of the acoustic runtime from the
total runtime: with lookahead, ?85-320»7/8=105; without lookahead, 287-

208»7/8=105).

IV-47

checking (fcMi) — the savings were '\9.H seconds in Executive

processing, 17.3 seconds in acoustics, and *i.2 in semantics). There was

an average of 50 rating assignments made by context checking per

sentence, with the construction of 78 virtual phrases and ?8 complete

consumer paths (average length of a complete path, 1.5 virtual phrases).

The rejection of a virtual phrase by rule factors caused 35 paths to be

terminated per sentence. Ten paths per sentence were blocked by the

heuristic search procedure because their priority was less than the

established lower bound. Note that the number of rating assigments by

context checking equals the number of partial nonterminal phrases (given

in Figure 1V-27). Thus, there was no recalculation of ratings for

partial nonterminal phrases after the first assignment. Also, since

there were only 28 complete paths, at most 28 of the partial

nonterminals were allowed to make predictions.» The ones without a

complete consumer path received a rating of zero and were not added to

predict-sets. This result helps to explain the value of context

checking; about half of the partial nonterminals that were all right

with respect to local tests and fit their consumers' structural

requirements were rejected by their consumers' factor statements and,

therefore, were given a zero rating.

The processing time for context checking appears to be well spent,

but how was the time spent for the rest of the Executive procedures?

figure IV-30 shows the total time per sentence, the number of calls

• It may have been fewer than 28 if some rating assignments created more
than one complete path.

IV-M8

iiii^aiiMr" "if i T^T'- -.-.^^^--i — -nui i -in IT-iniii inrm ■^M» r'-Tin r:-'""Ltiff'"*-^aia*^i;a^i"

FUNCTION TOTAL TIME CALLS PER CALL PERCENT OF
(seconds) (millisecs) EXECUTIVE

Word Task
Create-word-set 6.1 48 127 10.8
Get-a-word 1.5 18 83 2.7
Create-terminal 3.9 70 56 6.9

Diatribute-phrase 1.5 65 23 2.7
Add-constituent

Top-level 2.5 112 22 4.4
Prelim-part-1 1.5 112 13 2.7
Prelim-part-2 a».2 109 39 7.5
Complete-phrase 6.0 107 56 10.7

Rule procedure 3.2 41 78 5.7
Consumer-checks 3.3 156 21 5.9
Incomplete-phrase 3.8 71 54 6.7

Rule procedure 1.7 71 24 3.0
Add-predict-sets 1.1 35 31 2.0

Predict-taak
Create-Subnet 5.3 19 279 9.4
Assign-Ratings 1.6 19 84 2.8
Cleanup 0.5 19 26 0.9

Context-checking
Virtual-phrase 3.U 78 44 6.0

Rule procedure 1.9 78 24 3.4
Search 1.7 50 34 3.0

Top level 1.6 1 1584 2.8

(per sentence)

Figure IV-30. TIMING BREAKDOWN

per sentence, the time per call, and the percentage of Executive

runtime, for the major Executive routines. Notice that the combined

rule procedure execution time for complete, incomplete, and virtual

phrases is only 12.1$ of the Executive processing. The time for the

rule procedure with a complete phrase is about 78 milliseconds, while

with an incomplete or virtual phrase the time is only 24 milliseconds.

Given the size of the rule procedures and the capabilities of the

IV-49

IHTERLISP compiler and the PUP KA-10, thess times probably cannot be

improved significantly. The create-subnet procedure stands out as

taking the moat time per call, 279 milliseconds on the average.

However, it is a complex operation and that amount of time does not seem

unreasonable for it. Perhaps the main conclusion to be drawn from the

timing data in Figure IV-30 is that big improvements In processing time

will not come from discovering and correcting implementation blunders in

the Executive — instead, nontrivial design innovations will be needed.

The final measurements to be discussed deal with the accuracy of

the fCMi system. Figure IV-31 shows the accuracy breakdown in terms

of the existence and relative scores of correct and incorrect

interpretations. Overall, fCMi got W sentences correct and missed 16.

Of the 16 errors, five were 'harmless'. Three of the harmless errors

consisted of leaving out a plural morpheme. These accounted for all of

the cases in which an interpretation was found but had a worse score

than an incorrect interpretation that was also found. The other two

harmless errors were among the cases In which only incorrect

interpretations were found. In one, the system picked an interpretation

containing "has" instead of a plural morpheme followed by "have". In

the other, a singular verb suffix was acceptei] instead of a past tense

suffix. In both cases, the incorrect interpretation had a higher score

than would have been given to the correct interpretation (if it had been

found). Thus, because of high scoring false alarms, the optimal

solution (the interpretation with the highest score possible) was not

the correct solution.

IV-50

32 times only got correct interpretation
8 times only got incorrect interpretation
3 times got no interpretation

12 times correct score better than bad score
2 times correct score same as bad score
3 times correct score worse than bad score

60 total — Hk correct and 16 errors.

Figure IV-31. ACCURACY BREAKDOWN

The two cases having correct and Incorrect interpretations with

equal scores were caused by the presence of false alarms that could not

be rejected by linguistic considerations alone. The three cases getting

no interpretation all had a low scoring word in either the first or

second position (mapper scores of 59 or less), and in two of the cases,

island driving (by the fCMI system) succeeded in finding the correct

answer.

The eight cases in which only an incorrect interpretation was found

can be divided into three categories: forgiven errors, optimcl but not

correct, and suboptimal. As mentioned previously, two of the eight with

no correct interpretation were forgiven errors. Th-ee were the result

of finding an optimal interpretation that was not correct.

[Surprisingly, island driving (fCMI) got one of these correct by

stopping with a suboptimal, correct interpretation.] The final three

were the result of stopping with a suboptimal, incorrect interpretation.

In these last three, the correct interpretation started with either a

bad score (56) or a small word ("how" or "the"). In each case, island

driving (fCMI) got the correct answer.

IV-51

-

Of the 16 sentences that fCMi missed, five were forgivable acoustic

errors, six were correctly interpreted by an island driving system

(fCMI), four were the result of finding optimal but incorrect

interpretations, and one had so many attractive false paths that it

could not be handled within the storage limits by any of the systems.

These results indicate that a different control-strategy might have

correctly answered at least five sentences more than fCMi did: three for

which fCMi picked a suboptimal interpretation and two for which fCMi

found no interpretation although fCMI found the correct one. Such an

improved strategy would have an 81.7$ accuracy (90.0$ forgiving), with

'nonforgiven' errors traceable to either acoustics (five cases) or

storage limits (one case). This result gives a rough upper bound for

improvements by modifying the control strategy versus modifying the

acoustics. Of the 16 errors by fCMi, five were the result of the

control-strategy failing to find the optimal interpretation, and 11 were

the result of acoustic errors — but five of the 11 acoustic errors

could be forgiven.

IV-52

I. CONCLUSION

Reviewing the series of experiments, the first experiment showed

that the acoustic processing component called the 'mapper' had a high

false-alarm rate, but tended to give better scores to hits than to false

alarms. In the second experiment, we measured the number of

alternatives open to the syatem for extending segments of sentences.

The size of the fanout helps to explain the difficulty of speech

understanding. The third experiment studied the effects on system

performance of four control-strategy design choices. Focus by

inhibition and island driving had bad effects, while context checks for

priority setting had good effects. Mapping all at once had good effects

on everything except acoustic and total runtime, and these bad effects

could probably be eliminated by redesign of the mapper. The fourth

experiment varied the size of allowed gaps and overlaps between words

and showed the potential value of special acoustics tests to verify

word-pair junctions. The fifth experiment gave quantitative measures of

how badly the system is hurt by increased vocabulary, and how much it is

helped by improved acoustic accuracy. The experiment also provided more

information about the control, choices. The final study considered

detailed measurements of the Executive performance and provided insights

into the use of time and storage and the kinds of errors made by the

system.

Overall, the series of experiments gives a better understanding of

the system performance and suggests new Dossibilities for further

IV-53

1 J''V"--^^-^..=^—-=^^ ^.j.^. j
—'"—"l.iirinT-fMiHrii.1,1 ÜÜBIIB ^ n i, "'"-"— m ■ -nmr —-»-->—--""""ig-*

research. With respect to methodology for analyzing complex systems,

the results indicate that experimentation using analysis of variance is

a useful technique in computer science (as suggested by Newell, 1975;.

It is a technique that has been widely used in other areas of science

and technology, but it has seen almost no use in computer science.* Our

experience shows that analysis of variance and related statistical

methods can provide a productive paradigm for the study of complex

computer systems.

J. TEST SENTENCES

The 60 sentences listed below were used in the control strategy

experiments. The sentences are grouped according to their simulated

length in seconds of speech. Processing for all of the sentences

assumed a dialog context in which the preceding utterance was "What is

the speed of the Batfish?". For example, the test utterance "Submerged

displacement?" wa'i interpreted by the system as meaning "What is the

submerged displacement of the Batfish?".

2.3 seconds

Is the size of the Hammerhead 2000 tons?
Was Portsmouth Naval Shipyard the builder of the Seadragon?
Which subs have a length of ?00 feet?
How many subs did Puget JJound Naval Yard manufacture?
What engine wa? manufactured by General Dynamics?
Whose ships did the Electric Boat Company construct?
Which destroyers were constructed by Cammell Laird Company?
Which AGFF did H. M. Dockyard construct?

• However, Gillogy (Carnegie-Mellon University, Computer Science
Department Ph.D. thesis, in progress) applies analysis of variance to
the study of a chess program.

IV-5K

MUMM n,^^-,-.,. - ^—.-i^-^.ai -.-,,„, . .^^.^ ! fiHgiiii -ip,! nn ^

How many diesel frigates does Great Britain have?
Did Bethlehem Steel Company manufacture a cruiser?

2.0 seconds

Were the Lafayettes built by Todd Pacific Shipyards?
Which countries have conventional submarines?
Which frigates were built by Newport News Shipyard?
Does the Swordfish have a speed of 30 knots?
What is the surface displacement of the Queenfish?
What categories of submarines are there?
Did Vickers Armstrongs Limited construct the Olympus?
Does the united States own that submarine?
What standard displacement does the Seahorse have?
What training submarines does England own?

1.7 seconds

Who constructed the English cruisers?
How many frigates are owned by the U.S.?
How many oruisers does England own?
How many classes of subs are there?
Do Resolutions have two reactors?
Is Britain the owner of the Conqueror?
Is the Renown a British pubmarine?
How many patrol submarines are there?
How many countries have CGNs?
Name the owners of aircraft carriers.

1.^ seconds

What country owns the Superb?
Who was the builder of the Jack?
Was Its builder Avondale Shipyards?
Do we have ten dieael carriers?
How fast are the Graybacks?
What reactors does it have?
Was it built by Norfolk Navy Yard?
How many turbines do Brookes have?
Which nuclear carriers do we own?
Print the draft of the Scamp.

1.1 seconds

List the CHGs.
How many Darters are the-e?
Is it a research sub?
Who is the owner of it?
The speed of the Onslaught?
How fast is the Trout?
How many CGs are there?

IV-55

Speed of the Bluefish?
What engines are there?
Is a Cv a submarine?

0.8 seconds

Submerged displacement?
How long is it?
Whose ship is it?
Is it owned by us?
The Constellation?
Its surface spef;d?
Who constructed it?
What is its size?
What displacement?
Displacement of it?

IV-56

- -■■

THE REPRESENTATION OF SEMANTIC KNOWLEDGE

Prepared by Gary G. Hendr\x

CONTENTS:

A. Introciuction
B. The Role of Semantic Representation
C. Basic Network Notions

1. A Preliminary Example
2. Restrictionr on Nodes and Arcs
?. The Hierarchical Taxonomy

D. Partitioning
1. Spaces
2. Vistas
3. Supernodes

E. Higher-Order Structures
1. Logical Connectives

a. Conjunction
b. Disjunction
c. Negation
d. Implication
e. Spaces as Conjunctions

2. Quantification
a. The Implicit Existentials of Propositions
b. The Orthogonal Partitioning Approach to

Quantification
c. The Implicit Existential Approach to Quantification
d. Streamlining the Implicit Existential Approach
e. Examples of the Overlap Shorthand
f. Quantification in the Hierarchicol Tr^onomy
g. Delineations

?. Other Higher-Order Structures
a. Representing Yes/No Queries
b. Representing WH Queries
c. Representing How-Many Queries

F. Augmentations
1. Property Lists
2. Procedural Augmentation

G. Supports for Diverse Tasks
1. Focus
2. Scratch Spaces
?. Relating Syntax to Semantics

H. Linearized Net Notation
I. Applying the Representation

A. INTHODUCTION

This chapter describes the framework for knowledge representation

that underlies those semantic-oriented components of the SRI speech

understanding system that deal with the content of communication as

opposed to (or in addition to) its surface form. The representation

scheme embodies the system's knowledge about the nature of the task

domain (that portion of the outside world with which the system is

conversant) and serves as the medium for recording and communicating

semantic information among the relevant system components during the

interpretation of an utterance. The components that make use of the

representation scheme and encoded knowledge include the semantic

composition routines, the discourse component, the deduction component,

and the English generator. Tha development of the representation has

been strongly influenced by the requirements of the components;

correspondingly, the representation has helped, at a fundamental level,

to shape the des^n of all components dealing with content and plays a

central role in their coordination.*

The representation scheme builds upon and extends the notion of

semantic networks as described by Simmons (197?), Shapiro (1971),

Rumelhart arJ Norman (1972), and Schänk (1973). However, the network

structure used in the SFI speech understanding system differs from that

of other nets in that nodes and arcs are partitioned into 'spaces'

• The rost recent editions of the computer primitives for constructing
and manipulating procedurally augmented partitioned semantic networks
were progrcTmed by uonathan Slocum and Ann Robinson.

V-2

- - -1 —
--"'-"—"- — -- —■

(Hendrix, 1975a,b). These spaces, playing a role in networks roughly

analogous to that played by parentheses in strings and lists, group

information into bundles that help to condense and organize the

network's encoding of information. In particular, partitioning is used

in the speech understanding system:

• To encode .logical connectives and higher-order predicates,
especially quantifiers.

• To encode the association between surface and deep
structure. Each syntactic unit of an input utterance is
cross-indexed with its translation image in the network.

• To interrelate new inputs with previous network knowledge
while maintaining a definite boundary between the new and
the old.

• To simultaneously encode in one network structure the
multiple hypotheses concerning alternative incorporations
of a given constituent into larger phrases.

• To allow sharing of network representations among competing
hypotheses.

• To maintain intermediate results and hypotheses during the
question answering process.

• To define hierarchies of local contexts for discourse
analysis.

Details concerning the encoding of various types of information in

partitioned semantic networks are presented below.

V-3

MI MM md*i didUHl

B. THE ROLE OF SEMANTIC REPRESENTATION

Before considering the actual formalisms and conventions of the

semantic representation, it will be helpful to gain a perspective on the

utilization of the representation by various speech understanding system

components. More comprehensive discussions concerning how each

component uses partitioned semantic net structures are contained in

other chapters of this report. Here, the goal is simply to provide a

summary of the variouü interactions between the components and the

network while processing an input.

Connections to the partitioned semantic network from other system

components are pictured in Figure V-1 by broken lines. During

system operations, the actual flow of semantic information is realized

as the transfer of pointers into the net from one system component to

another. The flow of network pointers, and of system control, is

indicated in the figure by arrows. Heavy arrows labeled 'exec' indicate

that control flows through the speech executive and not directly from

one component to another.

As Figure V-1 shows, the network itself includes an encoding

of knowledge about the domain of discourse. This encoding, called the

domain model, includes descriptions of the objects and situations in the

external world. All semantic processing performed by the system builds

upon this model. For the ship domain, the model holds information about

various ships and their properties.

V-H

»-w........ .. --^it ,1^ ,, i

"^ english outpul

FIGURE V-1 FLOW OF SEMANTIC INFORMATION

V-5

 . ■ - ---

The domain model serves three primary functions in the speech

system. First, it is the source of information for answering user

queries once the queries have been understood. Second, when language

definition rules administered by the system executive discover a

sequence of input utterance constituents that are syntactically capable

of combining to form a larger phrase, knowledge from the network model

is used to judge the feasibility of unifying the constituents to form a

larger unit that has a meaningful interpretation in the task domain. In

this capacity, the domain model serves as a parse time semantic filter.

Third, the domain model serves as a foundation upon which structures

encoding new inputs are built. This use of the model is in keeping with

the fundamental principle that inputs are understood through an appeal

to existing knowledge.

As anchor points for language understanding, the encoding in the

network model of those concepts in the domain that can be referenced

directly by individual words are referred to by records in the sys'.em's

lexicon.* It is through these representations of basic concepts that

interpretations of all inputs are understood. As the system executive

attempts to combine lexical items into phrases and phrases into larger

phrase units, references to the network are passed by the executive from

the lexicon to the semantic composition routines. In the composition

routines, the network structures referenced by phrase components are

used in the construction of new netwo"k structures that represent the

• See the discussion of the lexicon in Chapter II,

V-6

meanings of the composite phrase. These new structures encode new

instances or new combinations of concepts in the original network

(domain model). Information concerning these newly created structures

is then given back to the executive for use in combining the new phrase

with other constituents (from the lexicon or composition routines) to

form still larger structures. Tnis process continues to combine network

structures and to extend the net until an interpretation for the entire

utterance has been constructed. The interpretation takes the form of a

network fragment that is anchored to concepts in the original domain

model but that is nevertheless external to and distinct from the domain

model.

During the construction of an interpretation of an input utterance,

any output from the semantic composition routines that constitutes the

internal semantic description of a definite noun phrase is given to the

drscourse component for determination of the referent. The resolution

of definite noun phrases may be viewed as the substitution of one

network structure for another. The input network indicates the

description (with respect to context) of some object in terms of other

concepts. The output provided by the discourse component is a pointer

directly referencing the network encoding of the object itself.

For elliptical utterances (ones that do not form complete

sentences), the output from the semantic composition routines indicating

the interpretation of the fragmentary input is given to the discourse

component for expansion into an interpretation of a complete statement

V-7

i ■ - ■- —~ ■

or query. Here, a newly created complete interpretation is substituted

for the network encoding of a partial interpretation.

The network structures that ar3 built up by the semantic

composition routines and the discourse component to represent the

meanings of utterances do not directly indicate the scoping of (either

implicit or explicit) quantifiers that appear in the input. Rather,

because the determination of scopes is highly context sensitive, this

task is performed by the quantifier module only after a (still

unquantified) interpretation has been assigned to the total input. The

quantification process makes no changes in the topology of nodes and

arcs in the network fragment encoding the interpretation of an input.

Instead, scoping is accomplished by adding new partitioning to the

existing structure.

Once a network structure encoding a fully quantified interpretation

of an input has been formulated, (a pointer to) it is passed to the

responder module. The responder examines the interpretation and

determines an appropriate course of action for producing a response that

will satisfy the user. For the current system, inputs are expected to

be questions or commands requesting information. For these types of

inputs, the responder generates appropriate calls to the logical

deduction component to retrieve (or derive) requested information from

the network encoding of the domain model. In the deduction component,

both the request for information and the collection of known facts are

expressed in network notation.

V-8

The ras.jonder component can produce answers to YES/NO questions

directly from the output of deduction. However, the deduction component

answers WH questions by returning pointers to nodes in the semantic

network that encode the appropriate answers. The responder component

passes such pointers to the English generator, which produces phrases or

sentences answering the original questions in ordinary language. The

responder component then returns these English strings to the user as

output.

To summarize, the original net encodes a model of the external

world that provides the seeds for subsequent understanding. Translation

involves building up network structures on top of this base net to

represent the meanings of individual inputs. Answers to user questions

are found by matching the net fragments encoding the translation of

queries against the network encoding of domain knowledge in the system.

When an answer is found, its network encoding is translated into

English.

V-9

' aÜÜMMIiB ■ ——- ■■■■ *■-*

C. BASIC NETWORK NOTIONS

In its simplest form, a semantic network consists of a collection

of nodes interconnected by an accompanying set of arcs. Each node

represents an object (a physical object, situation, event, set, and

others), and each arc represents an instance of a binary relation.

Typical of the binary relations used in networks are set membership and

'deep case relations. ' A deep case relationship is a relationship

between a situation (or other gestalt concept) and a participant in the

situation. For example, there is an 'obj' case relationship between an

owning situation and the object that is owned. (The notion of a 'deep'

case, which is a relationship between semantic objects, contrasts with

the notion of a 'surface' case, which is a relationship between

syntactic units.)

1. A PRELIMINARY EXAMPLE

Figure V-2 provides an indication of how the

interconnections among nodes and arcs may be used in the encoding of

knowledge. At the top of the figure is the node 'UNIVERSAL'. (Single

quotes denote node names.) This node represents the set UNIVERSAL, the

universal set of objects. Arcs labeled ,,s", called "s arcs", are used

to indicate subset relationships that exist between UNIVERSAL and other

sets. In particular, the s arc from 'CORPORATIONS' to 'UNIVERSAL'

indicates that CORPORATIONS, the set of all corporations, is a subset of

UNIVERSAL. (Again note the use of single quotes: 'CORPORATIONS' is a

V-10

^... -.■-^^^-.^...-.-.. .^J__,

FIGURE V-2 AN EXAMPLE SEMANTIC NETWORK

node that represents CORPORATIONS.) Similarly, SITUATIONS, TIMES, and

PHYSOBJS (the set of all pnysical objects) are also indicated as being

subsets of UNIVERSAL. At the next lower level, SUBMARINES, the set of

all subs, is shown to be a subset of PHYSOBJS.

V-11

.iiMmiw

Set membership is encoded in the- network through the use of "e

arcs". For example, the e arc from node 'Henry.L.Stimson' to node

'SUBMAKINES' indicates that the Henry.^.Stimson is an element of

SUBMARINES and is thus some particular sub. Similarly, General.Dynamics

is a corporation and tl and t2 are instants in time.

The node 'B' represents an element of the set BUILDINGS, the

set of all building situations in which an agent constructs an object

over some time period. (BUILDINGS is not the set of all roofed and

walled structures.) In turn, BUILDINGS is a subset of SITUATIONS, the

set of all static conditions and dynamic events. For the particular

situation B, General.Dynamics is the agent that built the object, the

Henry.L.Stimson, during the period from time tl until t2. The

components of situation B are associated with it through deep case

relationships, which are encoded by case arcs emanating from node 'B'.

For example, the agent of situation B is indicated by the agt arc from

'B' to 'General.Dynamics'. The other deep case relationships are

encodeö by obj, start-time, and end-time «res.

2. RESTRICTIONS ON NODES AND ARCS

Proponents of network structures have adopted a number of

different conventions concerning what types of concepts may be encoded

by nodes and what types of relationships may or should be encoded by

arcs.* In creating encoding structures for the SRI speech understanding

* For a useful perspective on these issues, see Woods, 1975.

V-12

"■""m i-Tr-

system, an atterapt is always made to use constructs that are easily

understood by appealing to such familiar mathematical systems as set

theory, predicate calculus, and case logic. (See Bruce, 1973» for a

description of case logic.) The SRI system places no restrictions on

the types of objects that may be represented by nodes. However, arcs

are restricted to the encoding of hierarchical (element and subset)

information and case relationships. Arcs are never, for example,

allowed to encode relationships, such as ownership; that are time

i^'Med.

The reason for this restriction on arcs arises from the fact

that arcs are much less flexible than nodes. Arcs directly relate only

three pieces of information (from-node, to-node, and arc label), and one

of these (the label) is not back-indexed (i.e., most network schemes

provide no easy mechanism for finding all arcs of a given label). Also,

(omitting the new concept of a space, presented below) other network

structures cannot point to an arc. Thus, for example, an arc does not

have enough handles to relate the concept of ownership with an agt, obj,

start-time, and end-time.

In contrast, a node may interrelate an arbitrary number of

concepts simply by using multiple outgoing case arcs. Moreover, a node

may be pointed to by an arc dnd hence may be modified by the arc and its

from-node. When used to encode a relationship, a node will typically

have an e arc to the set of all relationships of the same type (e.g., an

e arc to 'OWNINGS') and case arcs pointing to each of its known

V-13

-■i imin -—-'"' * -■■niiaiir - - -

participants. All such relationships are members of the set SITUATIONS.

Each member of this set relates some state of affairs or state of flux

in affairs. Interpreted quite broadly, the elements of this important

set each encompass the idea of a circumstance, or a set of

circumstances, or an event, or a set of related evento with their

corresponding changes in circumstances, or a relationship, or a set of

interdependent relationships.

Although some network systems (e.g., Sowa, 1976) attach

significance to node labels, we do not. (Indeed, in the actual

implementation, most nodes have no labels and are referenced only by

location.) Names such as "SUBMARINES" may have significance to the

system users but mean nothing to the network system itself.

Some network systems have a fixed number of arc labels with

each having a special meaning to the network processor. While hierarchy

encoding arcs are especially known to our processor, case names may be

invented freely and do little more in the network than distinguish the

various corponent parts of a complex object from one another. (The use

of case arcs in language translation is a separate issue.) Routines

that retrieve information from the network are actually made more

efficient by the use of more case names, since an increase in the number

of esses decreases the grain' size for searches.

V-l'-J

3. THE HIEHAPCHICAL TAXONOMY

The presence of e and s arcs in a network serves to taxonomi/.e

the concepts represented by the variois /odes in hierarchical form and

is a key featur of the SRI notation. The significance of the taxonony

lies in the fact that many sets have associated wi*h them a collection

of properties common to all of their members. Any property that is

characteristic of ALL members of a given set may be described at the set

level arc" need not be repeated in the encoding of each individual set

member. This set level encoding 1 ids to great savings in storage. The

actual encoding of properties common to all members of a set is

dependent on the use of quantification, which is discussed later. Of

importance here is tY > lealination that the knowledge of whether or not

an item belongs lo a given set is of central relevance in question

answering and fact retrieval.

To enhance the precision of the network encoding of

taxonomies, the standard set-theory notions of set membership and set

inclusion, which are expressed by e and s arcs, may be supplemented by

the more restrictive concepts of disjoint subsets and distinct elements

When certain subsets of a given parent set are disjoint (i.e.!

have no elements in common), this fact may be represented by ds arcs.

As Fieure V-3 shows, suppose that 'X', 'Y1', 'Y2',...,'Yn' are

nodes in some particular network N representing the sets X, Y1, Y2,...,

Yn, respectively, and t\,at for every i from 1 to n there is a ds arc

V-15

^W -- ^,. , _■ _

FIGURE V-3 ABSTRACTED USE OF ds ARCS

from 'Yi' to 'X'. The network N indicates that each Yi is a subset of

X. Further, the use of ds arcs rather than s arcs indicates that for

unequal i and j, the xutersection ^f Yi and Yj is the empty set. [Note:

The empty set is the only set that is disjoint from itself. Thus, the

set of unicorns (which in extension in the real world is the empty set)

is disjoint from the set of chickens that have teeth (which also is

empty).]

Whenever the need arises to show that the intersection of two

sets SI and S2 is nil, a parent set SO (which is the union of S1 and S2)

may be constructed. SI and S2 are then indicated to be disjoint subsets

of this set.

IT u and v are known to be elements of some parent set, it

does not necessarily follow that u and v are distinct objects. That is,

the symbols "u" ana "v" may be references to the same object. To show

that two nodes representing elements of a common set do in fact

V-16

--- ■ I !■! ■■ - - ;

■■ _—~r~- -

represent two distinct entities, de arcs may be used. As shown in

Figure V-U, suppose 'X', 'Yl', '¥2',...,'Yn' a.'e nodes in some

network N representing the set X and the items Yl, Y2,..., Yn,

respectively. Suppose further that for every 'Yi' there is a de arc

from 'Yi' to 'X'. The network N then indicates that each Yi is an

element of X. Further, for unequal i and j, Yi is distinct from Y j.

FIGURE V-4 ABSTRACTED USE OF de ARCS

To see the useful interplay between de arcs and e arcs,

suppose Tom, Dick, and Harry went for a drive, and the driver wore a red

cap. Tom, Dick, and Harry are distinct elements of the set of people

who went for the drive, and their membership in the set would be

recorded by three de arcs. The driver is also in this set, but could be

any one of the three. Using a normal e arc to show the membership of

the driver allows information about the driver {<-.g., he wore a red cap)

to be recorded while maintaining the uncertainty as to which of the

three set members the driver really is.

V-17

- —— - mm _—. ajM^AHMlAl

The use of e, s, de, and ds arcs in a more extended example is

shown in Figure V-5. This network indicates that CARRIERS,

SUBMARINES, and P.SHIPS are all subsets of SHIPS. CARRIERS and

SUBMARINES are indicated (by the ds arcs) to be disjoint sets. However,

P.SHIPS is simply indicated to be a subset of SHIPS (by an s arc) and

thus may intersect with CARRIERS or SUBMARINES or both.

FIGURE V-5 THE USE OF ds AND de ARCS

V-18

P.SHIPS is itself shown to have the disjoint subsets NUKES

(the set of nuclear powered ships) and DIESELS, whose intersections with

CARRIERS and SUBMARINES might or might not be empty. (Figure V-5

actually indicates that the intersection of SUBMARINES and NUKES must

include set NUKE.SUBS, which has at least two memtors.) The node

P.SHIPS was used in this network solely to allow twc independent

divisions of SHIPS into disjoint subsets. To show the equivalence of

SHIPS and P.SHIPS, an s arc may be drawn from 'SHIPS' to 'P.SHIPS'.

Set NUKE.SUBS is a subset of both SUBMARINES and NUKES. Its

members include the Whale, the Henry.L.Stimson, and X. The Whale and

the Henry.L.Stimson are known to be distinct. X might be either of

these or yet some other nuclear sub.

The cardinality of the set NUKE.SUBS is indicated by the card

arc» from 'WUKE.SUBS' to 'n'. If n were 2, then it would be possible to

deduce that X is either the Whale or the Henry.L.Stimson. The very

ambiguity of X (as shown in the Tom, Dick, and Harry example above) is

attractive for some applications.

The use of ds and de arcs increases the power of the taxonomy

by making it possible to prove negative assertions. For example, with

CARRIERS and SUBMARINES known to be disjoint, it is possible to show

• Cardinality should probably be encoded by a node rather than an arc.
This node, whic!: would represent the relationship between a set and its
cardinality, would have an e arc to 'HAS-CARDINALITY', a set arc to the
set node, and a num (number) arr to the number node. The card arcs of
the figures should be thought of as abbreviations for this larger
structure.

V-19

 ...,.-:,„ -

that the Whale (or X) is not a carrier. Information about

noninteraection and nonequivalence can be encoded by other means, but

the de and ds arcs allow much of this information to be encoded for the

price of the hierarchical information alone.

D. PARTITIONING

1. SPACES

To add a new dimension to the organizational and expressive

power of semantic networks, the basic concept of a network as a

collection of nodes and arcs may be extended to include the notion of

partitioning (see Hendrix, 1975a,b). The central idea of partitioning

is to allow groups of nodes and arcs to be bundled together into units.

Each such bundle is defined by a new network construct called a "space".

Spaces are fundamental entities in partitioned networks, on the same

level as nodes and arcs.

Every node and every arc of the network belongs to (or lies

in/on) one or more spaces. Spaces are fully cross-inuexed with nodes

and arcs. Given a space, all nodes and arcs lying within it are

immediately determinable. Likewise, given a node or arc, all spaces on

which it lies are directly available. Nodes and arcs of different

spaces may be linked, but the linkage between such entities may be

thought of as passing through boundaries that partition spaces. Nodes

and arcs may be created in (initially empty) spaces, may be transferred

V-20

or 'copied' (at a fraction of creation cost) from one space to another,

and may be removed from a space.

Spaces are useful in a variety of applications, including the

encoding of quantifiers and other higher-order predicates. An important

application of spaces in the SRI speech understanding system, which may

be helpful to consider as an introduction to the partitioning concept,

is in grouping togttber subparts of a semantic network that are capable

of being expressed by a single syntactic unit. For example. Figure

V-6 shows a netwv. .: containing three spaces, t,o of which

correspond to syntactic units. Fach space is represented by a rectangle

that contains the name of the space in the upper right corner. Thus,

space SI is at the top of the figure. Diagrammatically, a node or arc

is indicated as belonging to a space if its label is written within the

rectangle associated with the space. So, node 'C and the e arc from

'C to 'CORPORATIONS' lie only in S2. Spaces SI, S2, and S3 may be

given concrete interpretations in the context of the sentence

"A corporation C built a submarine S."

Space SI encodes background information (about corporations, building

events, and submarines) for the understanding of this sentence. Space

S? encodes "a corporation C", the information that would be conveyed by

the syntactic subject of tt ■- sentence. Space S3 encodes a building

evert in which a submarine S is the object of the building. This

corresponds to the verb phrase of the sentence ("built a submarine S").

Figure V-6 does not in fact indicate that C was the agent in

building event B, but this omission is corrected below.

V-21

- ■ ■

jS*— \ y^" —"s y ^v

SI

(CORPORATIONS) (BUILDINGS
) <

SUBMARINES)

,1 11

S2 S3
e e e

0 (A obj -4?\ VJ ^Z)

FIGURE V-6 SPACES SHOWING SYNTACTIC GROUPINGS

2. VISTAS

In using partitioned networks, it is often convenient to

combine several spaces to form a composite bundle of nodes and arcs

representing the aggrega -> of the bundles of the individual spaces.

Such a combination of s.nces is called a "vista". Most operations

involving a partitioned semantic network are performed from the vantage

of one of these vistas with the effect that the operations behave as if

the entire network were composed solely of those nodes and arcs that lie

in the spaces of the given vista. All structures lying outside the

vista are ignored. To use an analogy with vision, when viewing the

V-22

■ —

network from a given vista Vr only those nodes and arcs are visible that

lie in one of the spaces comprising V.

The mechanics of partitioning alloy vistas to be created

freely from arbitrary combinations of spaces. However, this freedom is

seldom used. Rather, vistas are typically created in a hierarchical

fashion by adding one naw space to an existing vista or by adding a new

space to the union of multiple existing vistas. The new vista created

in this fashion inherits a view of the information in the parent

vista(s) and adds a new space for extending locally available

information without altering the view of the parent(s). Such

hierarchically created vistas are analogous to programming contexts with

global and local variables. Information structures in the spaces of the

parent vistaCs) are global relative to the new space, while structures

created in the new space are local.

If space Si is created to be the local space of vista Vi

following the hierarchical pattern of vista growth described above, then

Si is called the "bottom space" or "lowest space" of Vi, and Vi is

called the "orthodox vista" (or, when there is no confusion, simply the

"vista") of Si. Since Si and Vi are so closely related, it will be

convenient to talk about "viewing the net from the vantage of Si" when

t^ie viewing is actually from Vi.

When new vistas are created hierarchically, they form a

partial ordering of viewing capability. An example of such a partial

V-23

v4 = (S4 S,)

v; - (s7 s4 S,)

FIGURE V-7 ABSTRACTION OF VISTA ORDERING

ordering is depicted in Figure V-7. The spaces that are included

in the various vistas are represented by rectangles as before. To the

right of each rectangle is a list notation (vistas are actually

implemented as LISP lists) indicating the orthodox vista of the space.

Heavy arrows indicate the inheritance of viewing capability. That is,

from any point in the partial ordering, information is visible on any

space that ma/ be reached by following up heavy arrows.

V-21

■■"■—-- ■

Space SI at the top of the figure is associated with orthodox

vista VI, which contains only space SI. From the vantage of VI, only

the information in SI is visible. Since this information is the most

global information in the hierarchy, SI and VI are called the "root

space" and "root vista", respectively.

The orthodox vista of S2 is V2, which contains both S2 and SI.

Thus, from the vantage of V2, all the information in both S2 and S1 is

visible. However, the information in S3 is not visible from V2 (except

to the extent that SI or S2 contain some of the same nodes and arcs as

S3). From the vantage of V5 it is possible to see all the information

in both S2 and S3, as well as the information in 35 and SI.

Figure V-d provides some indication of how vista

hierarchies may be usad in a practical way. Again, the heavy arrows

indicate which spaces are included in the (orvhodox) vista of any of the

spaces. From the vista of space VP, it is possible to see information

on spaces VP, V, NP2, and BACKGROUND. Thus, from the vantage f VP, it

is possible to see the background information and the structures used in

creating a network interpretation of the verb phrase (VP) in the

sentence "A corporation built a submarine." This view includes the

information of space V (which encodes the verb alone), space NP2 (which

encodes the direct object alone), and space VP (which encodes the

relationship between the verb and object). From this same vantage, the

structures in spaces NP1 and S are invisible.

V-25

FIGURE V-8 USE OF VISTAS IN SYNTAX ENCODING

In subsequent diagrams, when a rectangle representing a space

S is drawn completely within a rectangle representing a second space S',

then the orthodox vista of S is an extension of the orthodox vis+a of

S'. for example, A and B in Figure V-9 represent equivalent

structures. If two rectangles overlap, but neither contains the other,

V-26

lÜHBBIHa

SI

S2 S3

S4

(a)

-T—
i 1

S2

i

SI

S3

S4

lb)

FIGURE V-9 EQUIVALENCE OF ENCLOSURE AND HEAVY
ARROW NOTATION

thjn structures appearing in the overlap lie on buth spaces. Examples

üf such overlaps occur in the section on quantification below.

V-27

?. SUPERNODES

By bundling together a collection of structures, a space may

be used to represent a complex concept th. t is in some way related to

the aggregate of information encoded by its internal nodes and arcs.

For example, a certain space S might bundle together a collection of

nodes and arcs which, when taken together, represent the set of things

that some person has reported to be true, or believes to be true, or

wishes to have happen. Each node and each arc represents some aspect of

the belief (report, wish), but only the space represents the belief

structure (report, wished-for condition) itself.

Since it is often necessary to relate other concepts in the

semantic network to the complex concept encoded by a space, spaces are

(but only when necessary) given all the properties normally associated

with nodes. In particular, arcs from ordinary nodes may point to

spaces. This situation is shown abstractly in ""igure V-10. Node

'X' represents a believing situation in which the believer (agt = agent,)

is JOHN and the thing believed (thm = theme) is a complex uf information

encoded by space S. The structures inside S (omitted in the figure) may

be thought of as describing a hypothetical world (HYPO.WORLD) in whicu

JOHN believes. (How to represent what the system itself believes it

believes is an interesting, solvable problem that the reader may wish to

consider after completing this section.)

V-28

FIGURE V-10 THE BELIEFS OF JOHN

When spaces are given node-like properties, they are called

"supernodes". In the SRI speech understanding system, the primary use

of supernodes is in encoding higher-order structures (including logical

connectives and quantification), which is the subject of the next

section.

V-29

f-= -rfr--.f-r

E. HIGHER-ORDER STRUCTURES

A primary reason for developing the concept of network partitioning

was to provide an efficient and uniform mechanism for dealing with

higher-order logical constructs. This section discusses the application

of partitioning to the encoding of logical connectives, quantifiers,

questions, and other concepts that are encoded only clumsily (if at all)

by networks lacking partitioning.

In discussing higher-order encoding structures, it is important to

bear in mind that logical connectives, quantifiers, and other

mathematical formalisms are simply tools that are useful in the

construction of models. The goal of developing a network encoding

structure is not to represent higher-order mathematical formalisms

(although this is possible and is important in some task domains) but

rather to represent the types of knowledge that typically require such

formalisms for their representation in other formal logics.

It is also important to bear in mind that formal statements may be

regarded from either of two perspectives. From the first perspective, a

statement represents a proposition whose truth or falsity may be tested

in arbitrary worlds W. From the other perspective, a statement

designates a set of conditions. This designation in turn provides a

partial description of all worlds in which those conditions hold. In

building network models, the latter is usually the perspective from

which network formalisms are most easily understood.

V-30

^'JLV :-?--—.-^

1 LOGICAL CONNECTIVES

Rather than cover possible network encodings for a wide

variety of logical connectives (there are 16 binary connectives alone),

attention will be focused on CONJUNCTION, DISJUNCTION, and NEGATION.

From the network encodings of these three, encodings for any logical

connective may be constructed. (Indeed, NEGATION In combination with

either CONJUNCTION or DISJUNCTION forms a logically complete set.) The

IMPLICATION connective, because of its importance in the network

encoding of quantification, also will be considered.

a, CONJUNCTION

As the first logical connective, consider CONJUNCTION.

From one perspective, a conjunction is a proposition that relates a

number of component statements called 'terms' or 'conjuncts'. The

proposition is itself true if and only if each of the individual

conjuncts Is true. From the standpoint of model building, it is useful

to think of each conjunct as a description of some condition. The

conjunction itself then becomes a complex description of the situation

in which the conditions described by each of the individual conjuncts

exist in unison. From either perspective, a conjunction bundles

together multiple conjunctive terms. If the bundle is accepted (as

being true or as providing a partial description of some world), then

the various terms must be accepted collectively. Conversely, if any

term In the bundle is not accepted, then the bundle itself is rejected.

V-31

■■II M f ^ I

The inherent bundling capability of spaces makes the

space fopmalism a convenient mechanism for the network encoding of

conjunction. In particular, a conjunction C may be represented by a

space S upon which each conjunct of C (and only the conjuncts of C) is

encoded as a net structure. Space S2 of Figure V-11, for example,

encodes the conjunction "The Henry.L.Stimson was built by

General.Dynamics AND the Henry.L.Stimson is owned by the U.S."

si

FIGURE V-11 THE CONJUNCTION "THE HENRY.L.STIMSON WAS BUILT BY
GENERAL.DYNAMICS AND THE HENRY.L.STIMSON IS OWNED
BY THE U.S."

V-32

The subordination of S2 under SI in the viewing hierarchy

is rather artificial and was done here solely for exposition. Except

for delimiting the conjunction (X & Y), the structures of S2 might just

as well have been encoded directly in SI. This ability to remove S2

after moving its structures to SI is the network analog of the ability

to remove the embedded parentheses in the formula

(A & B 4 (X & Y) & C)

to form

(A&B&X&Y&C) .

The merit of placing the terms of a conjunction on their own space will

become apparent when the conjunction is dominated by a structure other

than another conjunction (such as a .isjunction).

b. DISJUNCTION

As the second logical connective, consider DISJUNCTION.

Unlike a conjunction, which groups together a set of statements for

consideration as a unified whole, a disjunction separates out a number

of alternative statements. The disjunction is accepted into a belief

system or model if any of the individual statements (disjuncts) is

accepted. The inherent separating ability of spaces makes the space

formalism a convenient mechanism for the network encoding of

disjunctions. In particular, each of the n disjuncts of a disjunction D

may be encoded on different spaces and so kept in (relative) isolation.

V-33

(OWNINGS j

SI

FIGURE V-12 THE DISJUNCT "EITHER THE HENRY.L.STIMSON WAS BUILT
BY GENERAL.DYNAMICS OR THE HENRY.L.STIMSON IS OWNED
BY THE U.S.S.R."

V-3U

[TiTir-rTTir- -'TTJ m
i - — i "lin linitiiimii

i
Figure V-12, for example, shows the network encoding

of the disjunction D = "Either the Henry.L.Stimson was built by

General.Dynamics, OR the Henry.L.Stimson is owned by the U.S.3.R." Node

'D' represents the disjunction itself, an element of DISJUNCTIONS, the

set of all disjunctions. The disjuncts of D are represented by spaces

(supernodes) S2 and S3. Since a dislunction may be regarded as a SET of

alternative disjuncts, the disjuncts of D are shown as distinct elements

of D. Whenever a disjunction appears in the network, it is assumed that

all members of the disjunctive set are explicitly encoded. [A more

elaborate encoding scheme might encode a disjunction by a node 'D' with

a case arc (a disjuncts are) to a node 'S' representing the set of

disjuncts. Such a structure would separate the notion of a disjunction

from the notion of a set of statements. For the SRI speech

understanding system, this distinction Mas not considered worth the

extra structure.] Since the disjuncts of D are represented as spaces,

each disjunct is an implicit conjunction (which might, however,

"conjoin" only a single conjunctive term).

The entire disjunction structure is embedded in the

conjunction encoded by SI. From the modeling perspective, 31 represents

some world and each structure in SI represents some object or situation

that occurs in that world. So, in viewing the network from the vantage

of (the orthodox vista of) SI, such entities as General.Dynamics and D

are seen to occur. However, the structures in spaces S2 and S3 are not

seen from the vantage of SI and are thus not asserted in the world

\

\

■\

\

V-35

iHäiiaggäiüiu

modeled by SI. Since D does appear in the world vf SI, it is known that

the world of SI includes the situations described by at least one of the

d.isjuncts of D. If S2, for example, were included, then the modeled

world would include all situations described by structures that are

visible from the vantage of S2. This view includes structures in S2 and

SI, but excludes structures in S3.

The encoding of "The Henry.L.Stimson is owned by either

the U.S. or the U.S.S.B." that is shown in Figure V-13 has the

following interesting feature. From the vantage of SI, it is possible

to see that there is an owning situation involving the Henry.L.Stimson

as an object. However, the agt arcs from 'X" are not visible in S1, so

the owner is not known. But in viewing the network from the vantage of

either of the disjuncts of D, the agent of the owning is specified.

[There are several other ways to encode the information of Figure

V-13j but the structure shown ir, one of the least expensive. Other

methods include (1) using two nodes with e arcs to 'OWNINGS', and (2)

making the agt aotne dummy node 'I' with an e arc to a node 'S' that

represents a set of cardinality two "ith distinct elements The.Ü.S,S.R.

and The.U.S.]

c. NEGATION

The network encoding of NEGATION, like the network

encoding of disjunction, uses the separating aspect of spaces. But

rather than separating multiple alternatives, negation uses spaces to

V-36

-— —-—:-—^■^■—

SI

FIGURE V-13 THE HENRY.L.STIMSON IS OWNED BY EITHER THE U.S. OR THE U.S.S.R

separate the negative froai the positive. Figure V-IM shows the

network encoding of the negation "The Ü.S.S.R. does NOT own the

Henry.L.Stimson." The negation, an element of NEGATIONS, is encoded by

space (supernode) S2. S2 is an (implicit) conjunction describing a set

of situations that cannot occur simultaneously in the context of the

situations described in SI. As in the disjunction example, the negated

structures inside S2 are not visible when viewing the network from the

vantage of SI, although the negation itself is visible.

V~37

NEGATIONS

FIGURE V-14 THE U.S.S.R. DOES NOT OWN THE HENRY.L.STiMSON

d. IMPLICATION

Using the formalisms developed for conjunction,

disjunction, and negation, it is possible to construct network encodings

carrying the force of any logical connective. Note in particular that

the implication

P => Q

is equivalent to

V-38

•■'— M 1 i'T-iri l i- --- ■ trr. im T 'tr ir-wMitoTirt-- M J"'t*

-P v Q

which uses only disjunction and negation. The network of Figure

V-15 takes advantage of this transformation to express the

implication

"If General.Dynamics built the Henry.L.Stimson,
then the U.3. owns it"

as the disjunction

"Either General.Dynamics didn't build the Henry.L.Stimson,
OR the U.S owns it."

Since the notion of implication is closely tied to the

expression of general rules and, as will be seen subsequently, to the

use of universal quantifiers, it is important that implications be

expressed both simply and economically. As might be expected, if both P

and Q are positive, it is more economical to express {P => Q] directly

as an implication than it is to transform it into a disjunction. (If

P = ~R, then {R v Q} is the economical encoding. If Q = ~S, then

~{P & S} is economical. If P = ~R and Q = ~S, then {S => R} is

economical.) An implicational encoding of the information of Figure

V-15 is presented in Figure V-16. In the new figure, node 'I'

encodes the implication. Each implication has two component parts, an

ante (antecedent) and a conse (consequent), which are encoded as spaces.

It is the situations of the ante that imply the situations of the conse.

The positive alternative (S?) of disjunction D corresponds to the conse

(T3) of I. The ante (T2) of I corresponds to the negated alternative

(SH) of D.

V-39

API '""'" ^.--.i--.—--.^ | i -firirMWBlillillMli'^i»! MMM" ii in i r ■JMiä-JJä^'iMasMM'ji"»*—

SI

FIGURE V-15 EITHER GENERAL.DYNAMICS DID NOT BUH 0 THE HENRY.L.STIMSON,
OR THE U.S. OWNS IT

To further decrease the costs associated with the

encoding of implications, the abbreviation shown in Figure V-17 may

be used. Antecedents of implications are placed in trie set

IMPLICATIONS» and associated with their corresponding consequence«?

V-10

„.t^ . .. , .^jMaM^^. if ffTm iiiiMi-nf"^-i i Ifrliltii lii|-|

T1

FIGURE V-)S IF GENFflAL DYNAMICS BUJLT THE HENHY.L.STIWSON,
THEN THE US OWNS IT

through conse arcs. Since the abbreviition is rather ugly and saves

oiily on»* node and one arc per iaplication, it is probably worthwhile

only in systems with severe storage lim. ations.

¥-111

.... . .:..--- ^-.^^ . J i itrtlrfifTi^iiti

(IMPLICATIONS»

i

1

conse

^

T1

T2 13

FIGURE V-17 COMPACT IMPLICATION NOTATION

e. SPACES AS CONJUNCTIONS

For understanding subsequent sections, it is important to

look back at the spaces used in forming logical connectives and to

aalize that these spaces always act as conjunctions. CONJUNCTIONS are

themselves simply encoded as spaces. DISJUNCTIONS are encoded by a set

of spaces, each of which represents an alternative conjunction.

NEGATIONS are encoded by spaces that represent negated conjunctions, and

both the ante and conse of IMPLICATIONS are conjunctions.

V-12

2. QUANTIFICATION

In addition to handling the encoding of individual pieces of

information and Joining individuals by logical connectives, a system for

representing knowledge should be able to deal with quantified

information. Partitioning offers a number of alternatives for the

encoding of quantified information. The more interesting of these use

spaces to group together collections of universal or existential

variables whose scopes are -ommutative. Nestings of scopes (and the

dependency of existentials on higher universals) is then encoded by

using an appropriate hierarchy of orthodox vistas. Details for two

schemes using this general approach are presented in subsections below.

a. THE IMPLICIT EXISTENTIALS OF Pr>0P0SITT0NS

Before actually getting into the details of

quantification in nets, it is necessary to consider one aspect of

quantification that is often overlooked in dealing with formulas in

first order predicate calculus. This aspect is the implicit existential

quantification carried by propositions.

Letting the symbol "A" represent "FOR-ALL" and the symbol

"3" represent "THERE-EXISTS," an ordinary formula in first order

predicate calculus such as

AxEytpfx.y)]

may be read as "for all x there exists a y such that p(x,y)." Although

V-»I3

 . - . . - — . . _ _ .. „ —*k*mmmit*m*t

it may appear that all the quantification information of this formula is

encoded in the prefix (i.e., in "AxEy"), the proposition p(x,y) itself

implicitly encodes existential information. That is, proposition p(x,y)

proposes that THERE EXISTS a particular type of situation involving x

and y.

One way of thinking about predicate p is that it models a

set of situations S.* Each situation in the set has two participants.

To distinguish the participants, they may be given names such as "easel"

and "case2." For any two entities x and y, p(x,y) will be true if and

only if there is a particular situation i in S such that x is the casef

of i and y is the case2. Thus, one interpretation of p(x,y) is "there

exists situation i, an element of S, whose easel is x and whose case2 is

y."

Using the interpretation cited above, p(x,y) carries at

least four pieces of information:

1. THERE EXISTS i
2. i is an element of situation set S
3. the easel of i is x
k. the case2 of i is y

* There is a chicken-and-egg problem concerning whether p models S or
vice versa. Although it is possible to think of S as being a set
defined by predicate p, it is probably more useful and realistic to
think of S as existing prior to p and to thi.ik of p as being a
mathematical modei of situation set S. To see this interpretation,
consider the set of owning situations existing in our everyday world.
This set exists whether or not anyone cares to invent a predicate called
"owns" to model it. Note carefully that S is a set of situations and is
not a set of n-tuples composing a formal mathematical relation. In
particular, S is distinct from the set R of pairs (x, y) where (x, y) is
in R if and only if p(x,y). Predicates, sets of tuples and network
structures only se-ve to model S.

For certain applications (as shown below), it is important to separate

out or.e of these four pieces. Since predicate calculus notation bundles

these pieces together, some new notational conventions are needed.

Hence, let the notation

<q xl x2 ... xn>

indicate a situation of type q over the participants xl through xn. For

each situation type q, case names will be defined for each of the

positions xl through xn. Further, the q designating the situation type

may be either the associated predicate ("p" in the example above) or the

associated situation set ("S"). In discussions of predicates in which

the associated set is not explicitly named, the capitalization of the

predicate symbol may be used as the name of the set. Thus, were S not

explicitly narnod, the set associated with p would be P.

Since a situation designator q may be either a predicate

Oi set name, the expressions ,,<p x y>" and <S x y>" are equivalent, both

denoting a situation from the set S with easel x and case2 y. Using

situation notation, the proposition

P(x,y)

may be expressed as

E<S x y>

(or, equivalently, as E<p x y>). That is, p(x,y) means "there exists

<S x y>," or "there exists an element of S with participants x and y."

Thus, the formula

AxEy[p(x,y)]

may be restated in the form

V-15

-■■—-:-- -.-- r. -

.. [|tr.^^.

AxEyE<S x y>

which explicitly indicates the existential quantification of the

situation.

Recalling that E<S x y> means that there exists an

element i of S with easel x and case2 y, the formula

E<S x y>

may be thought of as a shorthand for

EiE<e i S>E<case1 i x>E<case2 i y>

where <e i s> is the situation of i being an element of S and

<ca3e1 i x> is the situation of x being the easel of i.

In existentially quantifying a situation

<q xl x2 ... xn>, it has been assumed that the situation participants xl

through xn were either constants or already quantified. Should the

expression E<q x1 x2 ... xn> ever appear with some xi unquantified, it

is to be interpreted as a shorthand for ExiE<q xl x2 ... xn>.

b. THE ORTHOGONAL PARTITIONING APPROACH TO QtlANTIFICATIGN

(Note: This section presents an approach to

quantification that was not used in the SRI speech understanding system,

and may be skipped. However, the approach provides a clear encoding for

branching quantifiers and a clean separation between quantification and

the use of logical connectives.)

V-H6

The most straightforward technique for encoding

quantification based on partitioning is called the "orthogonal

partitioning approach." By using this technique, the network is

partitioned (at least) twice. One partitioning is used to encode

logical connectives and similar structures. The other partitioning is

used solely for the purpose of encoding quantification. A typical node

in the network will lie on two spaces, with one space, called the

"matrix" space, showing the node's relationship to the logical

connectives and the other space, called the "quantification" space,

showing the node's quantification. Similarly, arcs lie on two spaces.

The matrix spaces are arranged in the hierarchy thau is

used by the logical connectives (as discussed previously). The

quantification spaces are arranged in a hierarchy such as that shown in

Figure V-18. Each space is associated with either existential

information (spaces whose labels begin with "E") or universal

information (labels with "A"). At the top of Figure V-18 is space

EO, encoding the top-level existentials. These are the system's

constants. Directly below EO are spaces associated with universals.

Then at the next level, there are more existential spaces, and so on.

All of the semantic networks presented in illustrations

thus far were intended to encode purely existential information,

although no explicit indication of quantification was used. In the

orthogonal approach to quantification, an explicit indication of the

existential nature of the information in the previous nets could be

V-«»?

MiMMIiM—Ma^M^M i "l 'li iiiV! lait^r'"" II^IIII

FIGURE V-18 A HIERARCHY OF QUANTIFICATION SPACES

realized by placing every node and every arc of these networks on space

EO of the quantification partitioning. Universal quantification is

introduced by using vistas that contain more than the single space EC.

The vista (El Al EO) is typical of the vistas in the

quantification hierarchy. The nodes and arcs lying on El are to be

V-i»8

nrl ; """"ifni '■ in" II:"'I "IM w'im" -M^=^'—'^^ T T -" "i"l I ^ ■

considered as existential variables that are dependent upon the

universals specified at higher levels in the hierarchy. In particular,

the structures of El are dependent on the universal structures of Al.

So, if A1 contains x and El contains y, the encoded quantification might

be expressed as

AxEy

Matrix spaces overlapping spaces of the; vista of El will be presented

shortly to complete the encoding of a quantified statement.

For a more complex quantification vista, consider the

vista of E6. The existential structures on E6 are dependent upon the

universal structures in A5 and A2. The existential structures of E2 are

dependent only upon the universal structures in A2. If A2 contains

structure u, E2 structure v, A5 structure w, and E6 structure x, then

the quantification might be written as

AuEvAwEx .

The vista associated with E5 encodes a "branching

quantification." For every A3 and A4, there exist E3, E4, and E5. But

the E3 depend only on A3, and the E4 depend only on A4. The E5 depend

on both A3 and A4. Hintikka (1974,' presents an interesting discussion

of branching quantifiers. One of his examples that fits vista E5 is

"every writer likes a book of his almost as much as every critic

dislikes some book he has reviewed." The disliked book depends only on

the critic, the liked book only on the author, and the relation between

the like and dislike on both the author and the critic.

V-49

"i i ' ■ ■■~1i""i-

To see how orthogonal partitioning is used in the

encoding of an actual expression, consider

AxEy[p(x,y)] ,

which is encodeo by the network of Figure V-19. Since two

partitiorings have been used, the figure presents two displays of the

net with the top display showing the matrix partitioning and the bottom

display showing the quantification partitioning. The quantification

vista (El Al EO) also appeared in Figure V-18.

Thinking of p(x,y) in terms of an instance i of situation

set P (see the previous subsection), the quantified expression may be

restated as

AxEyE<P x y>

or "33

AxEyEiE<e i P>E<case1 i x>E<ca3e2 i y> .

The matrix space MO encodes the situation

<P x y>

or, equivalently, the conjunction of subsituations

<e i P> & <ca3e1 i x> & <case2 i y> .

The quantification spaces El, Al, and EO then add quantification

information to this conjunction of situations.

Looking at the vista (El Al EO), nodes 'i' and 'y' an<l

associated arc structures lie on existential space El and are therefore

within the scope of (and dependent upon) all universal variables

specified on universal spaces above E1 in the hierarchy. For this

V-50

-'ijniii rirr ■ m^m

FIGURE V-19 THE ENCODING OF AxEy [p(x,y)] BY THE ORTHOGONAL
PARTITION METHOD

V-51

;^. ,-.-r- .■■J^-^-^^^ _r^-.,..rF.a.^._,. ^.^„...^^^y^^.,..

ijijj..„jmju-ji,iiajiJMgei!, -,i . :- ^—-k -^ J'^'.-t^mgm.-i,mmim*-i'l'-,^.:*iHi*mf."- ■»^^^.j^Ji.iJUkiA.y .^.JJ,.,IPI,.I.._U»I —^^^^-^^-^^^

example, the only such universal space is Al, which specifies the

universal variable x. Appearing on space EO, the space of top-level

constants. is node 'P'. Hence, the network encodes P as a constant, x

as a universal, and y and i as existentials within the scope of x. The

various arcs that lie on El may also be interpreted as existentials

within the scope of x. Each ouch arc indicates an instance of a

relationship that depends on x. For example, consider the e arc from

"i' to '?'. Each x determines a new i and therefore a new instance of

the element-of relation between that i and P. <e i P>.

Even without considering mort difficult examples or

constructing formal proofs, it should be clear that quantified

statements of arbitrary complexity may be encoded using this scheme.

The scheme has a number of appealing features. Node and arc structures

are not needed to explicitly encode quantifiers and scopes (as would be

the case in any nonpartitioned network; see Shapiro, 1971). This leaves

the nodes and arcs free to encode only matrix-type information, thus

simplifying pattern-matching algorithms. The placing of quantification

information in a separate partitioning i-j attractive in that it is

analogous to "moving quantifiers to the left" in predicate calculus.

Branching quantifiers are handled easily. Further, by consulting the

vista of the quantification space upon which a node or arc lies, all

variables of higher scope may be found easily.

However, the orthogonal partitioning approach to

quantification adds new quantification spaces to the spaces encoding

V-52

logical connectives and therefore makes additional storage demands on

the system. If the matrix spaces could themselves carry quantification

information, then the quantification spaces could be eliminated,

resulting in simpler networks, demanding less storage.

c. THE IMPLICIT EXISTENTIAL APPROACH TO QUANTIFICATION

The technique for encoding quantification that was

actually employed in the SRI speech understanding system is called the

"implicit existential (IE) approach." Using this technique, the spaces

created to encode logical connectives serve double duty by also encoding

quantification information.

The basic idea of the IE approach is to let each space

used by the logical connectives implicitly carry an existential

quantifier. Each connective space, it will be recalled, encodes a

conjunctive situation incorporating a number of subsituations. When a

connective space carries an existential quantification, it not only

encodes this conjunctive situation but also asserts its existence.*

Universal quantification is achieved indirectly in the IE approach

through the use of the identity

Ax[p(x)J <=> -Ex[~p(x)] ,

which may be restated in English as "{for every x, p(x) is true} is

equivalent with (there does not exist an x for which p(x) is false}."

• In the orthogonal approach, the connective space (the matrix space)
encoded the conjunction situation, but information regarding its
existence was encoded on quantification spaces.

V-53

That is, the IE approach transforms all universally quantified

statements into statements involving only existentials and NEGATIONS.

As an example of the implicit existential approach to

quantification, reconsider Figure V-12, assuming that each connective

space implicitly carries an existential quantifier. Space SI models the

conjoined existences of such entities as General.Dynamics, BUILDINGS,

and the like . It also models the existence of disjunction D and the

membership of D in the set DISJUNCTIONS. Further, SI encodes the

existence of the two alternative disjuncts of D, S2, and S3. (Note

carefully that the existence of ai'-.ernatives does not imply the

existence of situations specified in the alternatives.)

If one of the alternative disjuncts of D is accepted,

then the information encoded by that alternative extends the model

formed by SI. For example, if S2 is accepted, the model is extended to

include the existence of entities matching the structure of S2. In

particular, the acceptance of alternative S2 implies the acceptance of

the existence of a building situation S whose agent is General.Dynamics

and whose object is the Henry.L.Stimson.

The information encoded by the network of Figure V-12 is

purely existential and therefore lends itself easily to the IE approach.

For a general description of how universal quantification may be encoded

in the IE approach, consider the abstract statement

AxEy[p(x,y)] ,

which may be transformed an follows:

■-T -■- ^-^-Jä«™^-

AxEyE<P x y>
~~AxEyE<P x y>
-(-Ax)EyE<P x y>
-Ex[-{EyE<P x y>n .

Since ühe last statement involves only existentials and logical

connectives, It may be encoded directly by the IE approach, as shown in

Figure V-?0. The relationship between Figure V-20 and the last

statement above should be clear. To understand better how the

relationship {Ax[p(x)] <=> -Ex[~p(x)]} is used in Figure V-20, note

the parallelism between vista (S3 S2 SI) of that figure and vista

(El A1 EO) of Figure V-19.

si

S2

FlbURE V-CO AN ENCODING OF AxEy !p(x,y)] BY THE IMPLICIT
EXISTENTIAL METHOD

V-55

d. STREAMLINING THE IMPLICIT EXISTENTIAL APPROACH

Although the encoding of universal quantification as the

negation of existential quantification is well-founded mathematically,

it is not. particularly intuitive and the resulting networks (such as

Figure V-20) seem unnecessarily complex. To streamline the implicit

existential approach, a shorthand notation based on the IMPLICATION

connective may be adopted. This shorthand will both simplify the

networks and increase their intuitive appeal.

Working toward this streamlining of universal

quantification, consider the statement

Ax[p(x)] .

Although this statement looks extremely simple, it is the canonical form

of all universals and may in fact encode quite complex information. The

x, for example, may be a whole vector of variables, and p may carry

additional universal and existential information. And, of course, this

statement might be embedded in a more complex expression. The point is

that if this statement can be analyzed and if an efficient means can be

found for encoding it in a partitioned network, then similar techniques

will apply to all universals.

For natural language systems (and probably for any system

modeling a piece of the real world), the p(x) in Ax[p(x)] may almost

always be restated as an implication of the form

p(x) - {q(x) => r(x)} .

V-5ü

 i_

This is because variables such as x are almost always quantified over

some set (i.e., typed) when used in natural language.* The antecedent

q(x) of the implication serves to restrict the universally quantified

variable, confining its range to some fixed set.

A given q(x) or r(x) might predicate the existence of

other entities that interact with x. For example, it might be that

q(x) = Ey[u(x,y)]

and

r(x) = Ez[v(x,z)] .

If x, y, and z are thought of as (possibly empty) seta of variables and

u and v are thought of as arbitrary formulas, then a statement of the

form Ax[p(x)] or, equivalent!},

Ax[{Ey[u(x,y)]} => {Ez[v(x,z)]}]

is completely general. After making the transformation

-Ex[-HEy[u(x,y)]} => {EzCvU.z)}}]

the statement may be directly encoded as shown in the forbidding network

of Figure V-21.

However, using a shorthand notation, the same information

may be encoded by the simpler network of Figure V-22. Use of the

• That is, since there is so very little that is true or interesting
about everything, almost all universally quantified statements concern
only the members of some subset of the universal set. For example, q
may restrict x to only range over the set of COUNTRIES or over the set
of SHIPS. Quantified English sentences encoding these restrictions
might begin with "all countries ..." or "every ship ..." (Note that
even the morphology of the word "everything" suggests the analyses "for
all x, if x is a THING, then ...")

V-57

1 /^ ^N
SO

f\ (NEGATIONS)

(
V

)
—\

\ / \ /

i"

y A

\ A\ ./
\ / \ / S2

\ / S31
\ .-, / easel (JK/

S4

(0 iy
case2 \^ i U easel o u

ante Nw f \ ^f conse

e

L^^^
[IMPLICATIONS j

FIGURE V-21 AN ENCODING OF Ax({Ev[u(x,y)]} =» {Ez[v(x,z)J}

V-58

iiTi^triy^— ■■-■ — l|- ■niiMTt^Vr' ^^-■- - ^ifi i-tfia—-"■ifrnfT"^—~ ■'-- ._,. .-^.-.^^^ ^_^_., _. .

TO

u h«-

T2

FIGURE V-22 A SHORTHAND ENCODING OF Ax[(Ev[u(x,y)]}^ {Ez[v(x,z)l}]

shorthand is indicated by the overlapping of the ante and oonse spaces

of an implication. Whenever such an overlap occurs, the structures in

the overlap are to be considered as being universally quantified and the

remainder of the implication is to be considered within the scope of

these universals.

[The deduction procedures that operate on partitioned

semantic networks (see the Chapter XII on the deduction component)

V-59

actually consider all of the ante space structures, including the

overlap, to be universally quantified. The justification for this

arises from the following analysis:

Ax[{Ey[u(x,y)]} => {Ez[v(x,z)]}]
Ax[-{Ey[u(x,y)]} V {Ez[v(x,z)]}]
Ax[{Ay[-u(x,y)]} V {Ez[v(x,z)]}]
AxAy[-u(x,y) V {Ez[v(x,z)]l]
AxAy[u(x,y) => {Ez[v(x,z)]}]

The ability to include {Ez[v(x,z)]} within the scope of y in the next to

last step derives from the fact that (Ez[v(x,z)]} is independent of y.]

The correspondences between the nets of Figure V-21 and

Figure V-2.? are as follows: Space SI corresponds to the overlap of T1

and T2. S3 corresponds to T1 less the overlap. Si» corresponds to T2

less the overlap. Note that when the negations are ignored, the view of

the network from the vantage of S3 (or, alternatively, SM) is identical

to the view from T1 (T2). But rather than inherit a view of node 'X' as

in vista (S3 S2 SI SO), the view from vista (T1 TO) includes 'X' because

'X' appears directly in T1.

Since spaces S3 and S*! and the implication are within a

double negative in Figure V-21, their corresponding structures in Figure

V-P2 are allowed to appear at the top level. It is this elimination of

a double negative th?t results in the simplification of structure.

Intuitively, the implication structure of Figure V-22 may

be interpreted as meaning

for the existence of any entities matching the structure of

V-60

space T1f there will exist entities to match the structure of
T2 as well, with the match for structures in the overlap being
the same for both T1 and T2.

e. EXAMPLES OF THE OVERLAP SHORTHAND

Since the shorthand presented above provides the

principal means for encoding universal quantification in the SRI speech

understanding system, this subsection provides four examples that

further expound and clarify its use.

As the first example, consider

"Every submarine is owned by a/some country."

which may be formalized as

AxEc[member(x,SUBMARINES) =>
{member(c,COUNTRIES) & owns(c,x)}] .

The network encoding of this statement appears in Figure V-23. The

universal quantification of x is indicated by its appearance in the

ante/conse overlap. The dependence of country c on submarine x is

indicated by the appearence of c in the conse space S3, within the

(shorthand implied) scope of x.

The example of Figu; e V-23 may be contrasted with the

example of Figure V-21, which encodes

"Every Lafayette (class sub) ii* owned by the U.S."

or

Ax[member(x,LAFAyETTES) => ownstThe.U.S,,x)] .

V-61

I 'l Ill'-Vl. I ■ f

ante

IMPLICATIONS

FIGURE V-23 EVERY SUBMARINE IS OWNED BY SOME COUNTRY

Unlike the c above, the agent of these ownings is not within the scope

of x and so lies on the higher space S1. The quantification expression

might well have begun "THERE-EXISTS The.U.S and FOR-ALL x ..."

To show the nesting of scopes and the alternation of

universal and existential quantifiers, consider the statement

"All the ships in any given class have the same length."

V-62

mam ■^-J- dlHIBMHM

FIGURE V-24 EVERY LAFAYETTE IS OWNED BY THE U.S.

If a class of ships a.s thought of as a set (whose members belong to the

class), then the statement may be formalized as

AcElAs[member(c.CLASSES) => {memberd.LENGTHS)
& {member{s.c) => has.lengthCs.D)}]

or as

Ac[member(c.CLASSES) => {El[member(1.LENGTHS)
& A3[member(s,c) => has.lengthCs.D]]}] ,

V-63

ir iMiaMBarYtir rim if ii ■■rrtTni'mr- -T ---"" - .,,<.^,.. „..-,^^J-J„. . -..^ .-^

The network of Figure V-25 encodes this information,

closely paralleling the last formal expression. Note that the universal

variables c and s lie in overlaps and that 1 lies in S3, within the

scope of c.

Since all the antecedents presented thus far have encoded

only simple membership relationships, the fourth example, encoded by the

net uf Figure V-26, has a more complex ante. The example statement

is

"All ships built by General..Dynamics belong to the U.S."

or

Ax[member(x,SHIPS) & built(General.Dynamics,x)
=> owns(The,U.S.,x)] .

In this example, the set restricting the values of x is not explicitly

encoded in the network. Nevertheless, the antecedent of the implication

restricts x to be taken from the set of ships that were built by

General.Dynamics.

f. QUANTIFICATION IN THE HIERARCHICAL TAXONOMY

The use of s and ds arcs for creating a hierarchical

taxonomy of objects was presented as a basic network concept. The

taxonomic information alone provides answers to element/set/subset

questions such as

"Is the Henry.L.Stimson a ship?"

"Are destroyers ships?"

"Is a submarine a destroyer?"

V-64

iir-iiiliiriiiirrTr -

SI

FIGURE V-25 ALL THE SHIPS IN ANY GIVEN CLASS HAVE THE SAME LENGTH

V-65

^»..fa.^..,. — - f--—- i-iiiiiiiirTi'r- -~-:-'~~^-'^M^-~~> ■ -

SI

FIGURE V-26 ALL SHIPS BUILT BY GENERAL.DYNAMICS BELONG TO THE U.S.

V-66

- ** * n , *„',■*,- A. ^ ^ ^^Maarttmi

However, taxonomic information takes on added significance when the

various sets of the taxonomy are associated with general rules (i.e.,

quantified statements). For example, if the rule

Ax[member(x,S) => p(x)]

is included in the system, then knowing that some individual i is a

memi/jr of set S is enough to establish that i hao property p.

Furthermore (and this is the important point), there is no need to

explicitly record the fact that individual i has property p since it may

be easily derived. If set S has n members, the encoding of the one

general rule and the various set memberships (many of which may be

derived in the taxonomy through chains of s arcs) saves n reencodings of

p for the various members.

In the domain of the SFI speech understanding system, it

happens that the ships that belong to a particular class have many

properties in common. These common properties have been encoded in

general rules to avoid replication of data. As an example of one such

general rule, reconsider the network of Figure V-21», which states that

all ships of the Lafayette class (all members of LAFAYETTES) have the

property of being owned by The.U.S.

g. DELINEATIONS

By indiccting some of the common properties p of members

of a set S, a universally quantified statement serves to partially bound

S. That is, by stating that all members of S have property p, a general

V-67

iMwHriiwi teji. ^ü-.^:^i>i^—

rule indicates that ONLY individuals having property p are in S. Thus,

the general rule provides an indication of a limitation on the

membership of S. Formally, this limitation arises as a consequence of

the fact that

{Ax[member(x,S) => p(x)]} <=> {Ax[~p(x) => "member(x,3)]} .

For purposes of understanding natural language inputs,

general rules serving to .'.imjt the membership of situation sets are very

important. In particular, it is useful for each situation set to have a

general rule, called the set "delineation" rule, that names an"

restricts the participants of situations in the set. For example, the

delineation rule of the set OWNINGS is shown in Figure V-27. This

general ru]* indicates that all owning situations have an agt, obj,

start-time, and end-time. Further, the agt must be a member of

LEGAL.PERSONS, the obj must be (in this system) a member of PHYSOBJS,

and the start-time and end-time must be elements of TIMES. More complex

restrictions could also be added. For example, the start-time could be

restricted to precede the end-time.

By using delineation rules, the semantic composition

rules (which are discussed in detail in the Chapter VII) are able to

reject certain anomalous combinations of phrases that nevertheless meet

syntactic and acoustic criteria for being Joined. For example, if

various indicators suggest the hypothesis that, the input utterance

mentions an ownership situation in which the role of obj (not agt) is

played by a country, then the delineation of OWNINGS may be used to

V-68

■Ml -rf rr ^—^-tff i ^ i '-irfiTirfir ■■ ■ ■ ■^*^-^ ~rt mi

FIGURE V-27 THE DEUNEAT'ON THEOREM OF OWNINGS

V-69

=^--^*~- ~ - - - mtsm ruf ■■■

"

reject the hypothesis on the grounds that tue role of obj may be filled

~ily by elements of PhYSOBJS. (The fact that no country is a physical

object follows immediately from the taxonomy.)

Since delineations are a common commodity in the SRI

speech unaerstanding system, their structure is sometimes abbreviated in

figures to simplify the notation. Such an abbreviation is shown in the

drawing of Figure V-28, which is intended to convey the same

information as the drawing of Figure V-27. Unlike the implication

shorthand discussed earlier, the delineation abbreviation is used only

in pictures and is not actually reflected in the internal computer

structures.

3 OTHER HIGHER-ORDER STRUCTURES

In addition to encoding quantification and logical

connectives, partitioning may be used in the encoding of other higher-

order structures as well. The need for additional higher-order

structures is, of course, dependent upon the task that the system is to

perform and the domain to be modeled.

For example, if a system is to deal with beliefs, then some

second-order constructs for encoding beliefs must be devised. One

possibility for encoding a belief system has already been presented in

Figure V-10 (and is being pursued by Cohen and Perrault, 1976).

V..70

^mmm

(OWNINGS j

\ de! in

t -v

agt objN.

-x ^_ ~»^-N ^ ̂ ^V^

(J < o) xo T3
e

\ \
e

i

>-.
■ '

(LEGAL.PERSONS j { PHYSOBJS j f TIMES j

FIGURE V-28 ABBREVIATED DELINEATION OF OWNINGS

If a system were to be able to discuss the semantics of

natural language, higher-order predicates would be needed to show the

relationships between sentences (and parts of sentences) and their

semartic interpretations. This might be done as in Figure V-29,

which shows an interpretation situation X existing between the syntactic

entity

V-71

f SENTENCES j

' /^ ^
f INTERPRETATIONS)

i i

e

(GENERAL.DYNAMICS j (HENR* L.STIMSON j

r ^ semantic-obj i ' /^ ^N ♦
e Kl r (BUILDINGS j

I r^
\ e /

syntactic-obi

V" /- L oy /

^\ Y /^

\

rGENERAL-DYNAMlCS-BUILT-THE-HENRY-L.-STIMSON.")

FIGURE V-29 RELATING A SENTENCE TO ITS MEANING

V-72

-T ^-fM.Ti rn-ini -'-fi'ilnilwiiiiinf-ii -- n -n—-TTtT -Tn—r-ir. i -i nrh irTrfiiti-

"General.Dynamics built the Henry.L.Stimson."

and its semantic interpretation in the net.

In the SRI speech understanding system, the task to be

performed was that of andersLanding and responding to spoken inputs,

most of which turned out to be questions. Hence, the principal need for

new higneicder structures was for encoding queries.

a. REPRESENTING YES/NO QUERIES

Questions may be regarded as requests (or commands) for

the delivery of information, with each such request carrying an

indication of the nature of the sought data. YES/NO questions seek

information regarding the validity of a proposition and supply the

proposition itself as an indicator. For example, the question

"Did General.Dynamics build the Henry.L.Stimson?"

may be restated as the request

"Tell me if the statement 'General.Dynamics built the
Henry.L.Stimson' is true."

Figure V-30 shows a network encoding of this query.

The query itself is represented by node 'Q'. Q is shown to be an

element of REQUESTS.YN, the set of all requests for YES/NO-type

information. Each such request has one component part, the proposition

(prop) whose validity is being sought. Hence, the prop arc from 'Q'

points to space S2, which encodes the proposition

built(General.Dynamics,Henry.L.Stimson).

V-73

-ii ¥ irr =^ ^- - - -

SI

FIGURE V-30 DID GENERAL.DYNAMICS BUILD THE HENRY.L.STIMS0N7

Figure V-31 shows the network encoding of the

question

"Did General.Dynamics build all U.S. destroyers?"

whose associated proposition contains a universal quantification.

V-?^

-it-riwrtFin.- —'f i "T ' i — -

SI

REQUESTS.YN

prop
Q) »

IMPLICATIONS)•♦•

S2

S4

FIGURE V-31 DID GENERAL.DYNAMICS BUILD ALL U.S. DESTROYERS?

, .- -J—..--i-n

(To save storage, it would be possible to eliminate the

'Q' node and the prop arc by encoding the proposition itself as an

element of REQUESTS.YN.)

b. REPRESENTING WH QUERIES

Like YES/NO queries, WH queries (queries concerning WHO,

WHAT, WHICH, WHERE, HOW-MANY) are requests for information. But rather

than simply querying the truth or falsity of a proposition, a WH query

seeks to determine what bindings of existential variables will make a

proposition true. For example, the WH query

"Who built the Henry.L.Stimson?"

is associated with the proposition

Ex[built(x,Henry.L.Stimson)] .

Working under the assumption that "some x built the Henry.L.Stimson",

the query seeks bindings for existential variable x. A restatement of

the query as a request might go something like this:

"Tell me what bindings of variable x will make the statement
'x buiit the Henry.L.Stimson' be true."

Figure V-32 shows a network encoding of this

query/request. 0 is the query itself, an element of the set

REQUESTS.WH, the set of all requests for WH-type information. Each such

reauest has two component parts, a proposition (prop) and an index. The

index indicates those existential variables appearing in the proposition

whose bindings are sought as answers to the query. The index is encoded

V-76

iträll^lfiiltlitr IfTlii Tl r^^^*----^ c^aaaiB—pj^

mm

FIGURE V-32 WHO BUILT THE HENRY.L.STIMSON?

V-77

nr rur-^-Wkkäm^Bnsm^ämiuii-, , : , , ~^~- - -. -. , ^i,- rrn

as a apace that overlaps the spaceCs) representing the proposition and

that includes only those nodes representing sought-after existentials.

The translation of the word "who" in this example is

worth noting. The "who", of course, corresponds to node 'x'. But note

that x is shown to be an element of LEGAL.PERSONS, the set of all

humans, countries, companies, and the like. Thus, "who" translates

roughly into "what member of the set of legal persons". Note also that

"who" may be either singular or plural. A conscious decision has been

made to treat these cases identically and to treat each WH request as a

request for a set of answers. This set, which may contain zero, one, or

multiple members, is generated one item at a time by the deduction

component of the speech understanding system. (The deduction component,

described in Chapter XII, sets up a generator-type coroutine. The first

pulse of this generator produces one answer. More answers, if any, may

be found by pulsing again.) A distinction between the plural and

singular cases could easily be made. For example, elements of

RKQUESTS.WH.SG might request one binding of existential variaoles.

Elements of REQUESTS.WH.PL might request all bindings of the

existentials.

[Should storage becomt tight, it would be possible to

eliminate the 'Q' node and prop arc (Just as in YES/NO) by encoding the

proposition itself as an element of REQUESTS.WH and by using the

proposition space, in its role as supernode, as the tail of the index

arc.]

V-78

■ ^-^-— ■

The network of Figure V-33 encodes one reading of the

English question

"Who built every destroyer?"

In particular, this network encodes the reading that assumes there exist

one or more y, each of whom has individually built all of the

destroyers, and that it is the identity of these y that is sought. (The

uniqueness of the builder of an object is another matter which is not

addressed in this example. If it were, the interpretation would then be

that there is a unique y who built all of the destroyers.) Formally, a

binding is sought for the y of

EyAx[member(x,DESTROYERS) r> built(y,x)] .

(If the interpretation placed upon this question proves troublesome,

consider "who answered every questior correctly?")

The Ldtwork of Figure V-33 may be contrasted with the

network of Figure 7-3^, which encodes one reading of the English

question

"Who built each destroyer?"

The network of Figure V-3^ places the request for information within

the scope of a universal variable x that ranges over the set of

DESTROYERS. That is, for each destroyer x, there is a new request for

information. In particular, for each x, it is Jissumed that there exists

a y who built x and the identity of this y is sought. An appropriate

answer to this query would be sorcsthing like "the xl was built by yl,

the x2 by y2, ..."

V-79

L-i^.-^^-irr^ i r
i r ~iiiTi

LEGAL.PERSONS

REQUESTS.WH

&

DESTROYERS BUILDINGS

FIGURE V-33 WHO BUILT EVERY DESTROYER?

V-80

iMiliiiNl li" i I'IM MMÜB i ij ilijf HI ii i gBiailh Üii HI I ifeiik -WM üf-rf-fTin'-irwTir i f! ■ r iii ^ifi^frr* • ■ -■ - ^ -^ - ^^*^~^ : - Vi 't' i <wtmmäitimk

ante

0 prop y^T"

-^ Y

I index

FIGURE V-34 WHO BUILT EACH DESTROYER?

V-81

FIGURE V-35 WHAT COMPANIES BUILT WHAT DESTROYERS?

Figure V-35 shows the network encoding of the

multiplt WH question

"Whai. companies built what destroyers?"

The underlying proposition is

ExEy[men)ber(x,COMPANIES) &
memberCy,DESTROYERS) & built(x,y)] .

Bindings (all sets of bindings) are sought nairwise for both x and y.

Hence, both node 'x' and node 'y' lie on the index space.

V-82

ür-TilT i muxm -.^„. ._,^-.^- ■ ■-^,-,l-^- - «J

c. REPRESENTING HOW-MANY QUERIES

A HOW-MANY question may be regarded as a special type of

WH question that queries the -ardinality of a set. For example, the

HOW-MANY question

"How many . ..ps did General .Dynamics build?"

may be rephrased as the WH question

"Wbit is the cardinality (n) of the set (z) of
ships (x) that were built by General.Dynami ?"

Formally, the associated proposition is

EzEn[subset(z,SHIPS) i member(n,NUMBERS) & cardinality(z,n) i
Ax[member(x,z) <=> {member(x,SHIPS) &
built(General.Dynamics,x)}]] .

It is the bi.'dir.g of n that .z nought by the query. Figure V-36

shows the networl: encoding that parallels this analysis.

One of the interesting features of the proposition in

this question is the specification of set z. Set z is defined by

stating a necessary and sufficient condition for set membership.

Namely, "x is a member of z IF AND ONLY IF z is a ship and was built by

General.Dynamics." This nece?sary and sufficient condition is encoded

both in the predicate calculus formula and in the network as a two-way

implication. Note in particular that im. lications I and J of the

network make dual use of spaces 54 and S5.

V-8^

■ ii M*"' ' — -—— ■^^=^~~-1 i|-,-|iäj

IMPLICATIONS ̂

FIGURE V-36 HOW MANY SHIPS DID GENERAL.DYNAMICS BUILD?

V-8i4

■ _

F. AUGMENTATIONS

Since partitioned semantic networks are capable of encoding

arbitrary logical statements, they have a high degree of completeness.

Nevertheless, it may be more economical or convenient to encode certain

types of information on property lists or in procedures. Therefore, the

following features are offered as augmentations of the basic

capabilities.

1, PROPERTY LISTS

Each of the various network entities (nodes, arcs, and spaces)

has one or more property lists. Nodes and spaces have so-called

"global" property lists that are like the property lists of atoms in

LISP. In addition, arcs and nodes (including supernodes, i.e., spaces

that have been given node-like features) have context-sensitive property

lists resembling (and modeled after) the property lists of QLISP (Reboh

and Sacerdoti, 1973). The context sensitivity of these property lists

has been designed to parallel the visibility hierarchy of vistas

described earlier. In particular, each item on one of these lists has a

double key consisting of a property name and a space in a stratified

configuration. All GETs and PUTs are made with respect to a vista. If

a value V is stored under property P with respect to vista (SI S2 ...),

then the value is indexed by both P and and the bottom space of the

vista, SI. To GET the value of property P with respect to vista (SI S2

...), the system first checks to see if P has a value on space SI. If

V-85

■ »r-Mi-B^—-' -

it has, that value is taken. Otherwise, the other spaces in the vista

are considered in order.

2. PROCEDURAL AUGMENTATION

There are a number of ways in which procedures may be linked

with partitioned net structures to form procedurally augmented,

partitioned semantic networks. Perhaps the most overt of these is the

method used in the SRI speech understanding system. To see what this

method is, consider the set SUMS, the set of all situations with three

participants, addend 1, addend2, and total, in which the total is the sum

of the addends. Certain elements of this set might be represented

explicitly in the network, but it would be impossible to explicitly

encode the entire set. On the other hand, the INTERLISP function PLUS

comes very close to modeling all the instances of practical interest.

What is needed, then, is some way to use PLUS to create instances of

SUMS on the fly.

Moving in this direction, let APPLICATIONS be the set of all

situations in which an INTERLISP function is applied to an ordered set

of arguments to produce a result. Then the general rule encoded in

Figure V-37 shows the interrelation of PLUS and SUMS. Namely, for

every x, y, and z, if z is the result of applying PLUS to x and y, then

z is the total, x is the addend 1, and y is the addend2 of a SUMS

situation j. (A more cautious formulation would restrict x and y to be

numbers.)

V-86

APPLICATIONS IMPLICATIONS

SUMS

FIGURE V-37 RELATING SUMS SITUATIONS TO FUNCTION PLUS

V-87

Now the general rule of Figure V-37 merely transforms the

pr)blem of finding a SUMS situation into the problem of finding an

AFPLICATIONS situation. Vere there no special mechanism for finding

APPLICATIONS, one unsolvable problem would simply be replaced by

another. But the algorithms that perform logical deduction in networks

(described in Chapter XII) have special knowledge of the set

APPLICATIONS. In particular, they know how to apply the function to the

arguments to produce both a result and £ new member of the APPLICATIONS

set.

The bulk of specific information about the physical attributes

of ships that is maintained by the SRI speech understanding system is

kept on files and retrieved upon demand by file access functions.* These

access functions are typical of a large class of functions that take an

A-list as their only argument and return an A-list (or, more generally,

a possibly empty list of A-lists) as their result. For example, the

retrieval function SHIPDATA might be applied to tne argument

(NAME Henry.L.Stimson OWNER ? BUILDER ?)

and return the resulting A-list

(OWNER The.U.S BUILDER General.Dynamics).

This application would then correspond to thai depicted in Figure

V-?8. In this figure, the A-lists are encoded by nodes, with

attribute/value pairs being encoded by outgoing arcs. Each arc's label

carries the attribute and the arc's to-ncde carries the value.

• The file access system and its link to the network were written by
Jonathan Slocum.

V-88

■- ---

FIGURE V-38 AN APPLICATION OF SHIPDATA

Function SHIPDATA turns out to be very flexible. In fact, it

is capable of taking just about any A-li.st of the form

(C1 VI C2 V2 ... Cn Vn)

where the Ci are the names of colurms on the file records and the Vi are

either values to be matched or question marks. The function returns an

A-list with entries for those i whose Vi were originally question marks.

V-89

Since the flexibility of SHIPDATA makes possible a large

number of different calling configurations, the following expediency

(i.e., hack) was used to compress the number of necessary general rules.

A new situation set called KEYED-APPLICATIONS was defined. Each member

of this set was associated with a function (usually SHIPDATA) and a

number of cases. Furthermore, and this is the expediency, on the

property list of each member there was placed a set of keys, where each

key is a list of case names. The deduction algorithms were especially

programmed to know about members of KEYED-APPLICATIONS. In particular,

they were given the knowledge that the function could be called if all

the cases listed in any key had values. The A-list to be used in this

call consisted of all case/value pairs for which the values were known,

supplemented by case/question-mark pairs for cases with unknown values.

Thus, a general rule involving a KEYED-APPLICATIONS situation

with n keys could take the place of n general rules. For example, the

general rule of Figure V-39 carries the force of three general

rules, the first of which is shown in Figure V-UO.

V-90

TTiM

^

keys

/
|(NAME)
(CLASS)
(BUILDER)|

IMPLICATIDNS

ante
« 1

FIGURE V-39 A KEYED-APPLICATIONS SITUATiON

V-91

-

FIGURE V-40 THEOREM IMPLIED BY FIRST KEY

y-92

■in- - ---

SUPPORTS FOR DIVERSE TASKS

The discussion of partitioned semantic networks presented thus far

has emphasized mechanisms for encoding logical statements in nets, but

the representation scheme supports other tasks as well.

1 FOCUS

One of these tasks is that of establishing local contents for

discourse analysis. Developed by Barbara Deutsch and described more

fully in Chapter IX, the basic concept is to introduce a second

partitioning of the network that complements the partitioning used in

the encoding of logical connectives. Spaces in this second

partitioning, called "focus spaces," are used to group together objects

that have either been mentioned recently in the dialog or that are

closely related to objects that have been mentioned.

By creating vistas of focus spaces, it becomes possible to

define various levels of focus. Search algorithms may then begin with

the most local information and proceed stepwise into larger and larger

contexts.

2. SCRATCH SPACES

In the process of solving problems posed in the network

formalism, it is often necessary to set up subproblems, consider

alternative assumptions, and derive intermediate facts. (Such

V-93

r- ~iMMi _*, b —

intermediate facts typically consist of instantiations of quantified

statements.) Although the network structures used to encode such

intermediate information are of central interest, during the problem

solving process, such structures are of little value afterwards. Rather

than clutter the network with intermediate results, the hypotheses and

bits of derived information are placed in scratch spaces that serve as

temporary extensions to the central model. After completing a problem

solving activity, the "bottom line" may be moved to the central net and

the extension forgotten. Details concerning the use of extension spaces

are contained in Chapter XII.

3. RELATING SYNTAX TO SEMANTICS

As Figure V-8 shows, partitioning may be used to show the

relationship between the syntax of an input and the input's translation

in the net. This ability, as described in Chapter VII, is of central

importance in the tran&lation of quantified expressions and in allowing

multiple parse-time hypotheses concerning the interrretation of an input

to share network translations of subphrases. It is also crucial to the

approach to processing elliptical expressions that is described in

Chapter X.

V-9H

, ,1 irVTr^-ifc.-i d rlf.J .^rin« ' — --^■J'-^™™^'^^ r--; ---... .,.,..- - '—-T - ■- -

H. LINEARIZED NET NOTATION

To communicate network structures to the computer, a linearized net

notation, called the "LN2" language, has been devised as an extension of

INTERLISP. The eyntax of LN2 wao inspired by and bears some resemblance

to the syntax of KRL, the knowledge representation language of Bobrow

and Winograd (1976).

To give an indication of the flavor of this language, an LN2

statement describing the network of Figure V-Hl

is presented in Figure V-1*2. Altnough this example illustrates only

a fraction of the features of LN2, the central capabilities are covered.

The total statement is a call to function !SPACE of the form

(!SPACE name el e2 ... en). Its first argument is a name to be given

to a newly created space. All subsequent arguments are expressions to

be executed in the context of the new space.

The first such expression is "[UNIVERSAL]", which read macros

expand into "(!N0DE UNIVERSAL)." In general, calls to !N0DE are of the

form (!NODE optional-name el e2 ... en). The function creates a new

node on the current space, assigns it the optional-name (if any) and

then evaluates the various expressions ei. Thus, [UNIVERSAL] Just

creates a node named UNIVERSAL.

"[SITUATIONS (APE UNIVERSAL)]" creates a node named SITUATIONS and

then executes the expression "(ARE UNIVERSAL)," which creates a da arc

V-95

--^-— ■ i i -Mu.-rr jiV..,- -Vr-inw .-■■■■- —-anflllfl

FIGURE V-41 NETWORK CREATED BY LN2

V-96

r - - i . w - - i" - iii..iii-i- , i rii-iii-i T T^l-i — -^.-JU».^-—.■^■..

(ISPACE SI
[UNIVERSAL]
["r TU AT IONS (ARE UNIVERSAL)]
[IMPLICATIONS (ARE SITUATIONS^]
[OWNINGS (ARE SITUATIONS)]
[SUBMARINES (ARE UNIVERSAL)]
[LAFAYETTES (ARE SUBMARINES)]
[Henry.L.Strsson (A .AFAYETTE)]
[COUNTRIEd (ARE UNIVERSAL)

(SINGULAR COUNTRY)]
[The.U.S. (A COUNTRY)]
[x (AN OWNING)

Ugt The.U.S.)
(obj Henry.L.Stitnson}]

(TURN.OFF.D)
(IMPLICATION

(tu (A SUBMARINE)])
([(AN OWNTWG)

{obj u}
{agt (A COUNTRY^]))

(DEC.SIT
owns (OWNER OWNEE)

[(AN OWNING)
{agt OWNER}
{obj OWNEE}])

(IMPLICATION
([y (A LAFAYETTE)])
(<owns The.U.S. y>)))

figure V-142. AN LN2 STATEMENT

from the current node to 'UNIVERSAL'. Tne next four !NODE expressions

are similar.

"[Henry.L.Stimson (A LAFAYETTE)]" causes a node to be created named

Henry.L.Stimson. Function A produces a de arc from thid node to the

node whose name is fo.'ined by adding "S" or "ES" to the argument of A.

Hence, the de arc from 'Henry.L.Stimson' to 'LAFAYETTE'.

V-97

-i —i

Since COUNTRY has an irregular plural, the expression creating node

'COUNTRIES' has a call to function SINGULAR to note this fact. SINGULAR

does the necessary bookkeeping so that the call to A in "[The.U.S. (A

COUNTRY)]" works properly. (Note: words and spellings used by LN2 have

nothing to do with the lexicon of the SRI speech understanding system.)

"tx (AN OWNING) {agt The.U.S.} {obj Henry.L.Stimson}]" creates node

'x', encodes x as a distinct element of OWNINGS, and then creates an agt

arc to 'The.U.S.' and an obj arc to 'Henry.L.Stimson'.

The expression "(TURN.OFF.D)" changes the operation of functions A

and ARE so that de and ds arcs are replaced subsequently by e and s

arcs.

Function lilPLICATION takes two arguments: a list of expressions for

creating structures inside an implication ante space and a similar list

for the conse space. IMPLICATION builds a new element of IMPLICATIONS

with appropriate new spaces and then executes the lists of expressions.

New structures created or referred to by both ante and conse are placed

in the overlap.

In the first IMPLICATION of the e/ample, the ante space expressions

(there is only one) cause a node labeled "u" to be created witn an e arc

to SUBMARINES. The sole conse space expression calls for a node to be

created and assigned a gensym name. The node represents an element of

OWNINGS. The obj of this element is u. The agt is to be encoded by a

newly created, gensym named node with an e arc to COUNTRIES.

V-98

Function DEC.SIT (= declare situation) creates no structure itself

but defines shorthands for subsequent use. The example shown defines

"owns" situations in terms of the local variables (formal parameters)

OWNER and OWNEE. The remaining arguments to DEC.SIT are expressions to

be evaluated when an owns situation is invoked. That is, this call to

DEC.SIT defines a type of subroutine for creating network encodings of

owns situations.

An invocation of owns occurs in the conse of the last IMPLICATION.

The delimiters •*<" and ">" indicate that a situation is to be

instantiated. The first argument within the delimiters is the situation

name (which must have been previously declared in a DEC.SIT) and the

other arguments are actual parameters for the situation subroutine.

I. APPLYING THE REPRESENTATION

This chapter has outlined a method for encoding a variety of types

of information in procedurally augmented, partitioned semantic networks.

However, this is only the first half of a two-part story. As important

as the ability to represent information is the ability to apply the

information to the performance of tasks. This other half of the story,

in particular, is the subject of the chapters on semantic translation

(Chapter VII) and on deduction (Chapter XII).

V-99

VI THE MODEL OF THE DOMAIN

Prepared by Gary G. Hendrix

Using the partitioned semantic network formalisms described in

Chapter V, a model was constructed for the data base-oriented domain the

SRI speech understanding system. This model consists almost entirely of

information about ships in the U.S., Soviet, and Br-tish fleets.

Seventy-six classes of ships are included, covering 7'40 individual

ships, over 200 of which are known by name. Such characteristics as the

owner, builder, length, beam, draft, displacement, number in crew,

speeds (surface and submerged), class, and type are available for each

ship. In all, more than 30 relationships about ships are considered.

At the top level, this domain model is encoded as a large

conjunction of individual facts and general rules. A small portion of

the space, called the "KNOWLEDGE" space, that encodes this top-level

conjunction is shown in Figure VI-1. In particular, this figure

shows the top levels of the model's hierarchical taxonomy. The model

divides the UNIVERSAL set into seven major disjoint subsets, which will

be discussed below.

o
o

Z
<
5
O
Q

a.
O

LU

a

VI-2

L =^^^=^'.^-^ —.^J^.>-^^J,.J

Several of the ship properties considered in the task domain are

physical characteristics, such as length and weight, that are

quantitative in nature. To deal with such dimensioned quantities, the

sets UNITS.OF.MEASURE, NUMBERS, and MEASURES are included in the model.

As Figure VI-2 shows, the delineation of MEASURES indicates a close

relationship between these three sets. In particular, any D.MEASURE, an

element of MEASURES, will be associated with two component parts: a num

(= number) n taken from the set NUMBERS, and a unit u taken from

UNITS.OF.MEASURE.

Certain subsets of MEASURES particularize the units. For example,

the delineation of LENGTHS shows the unit to be restricted to FOOT. (A

more general system would allow INCHES, METERS, and the like.) Since

the number of numbers and measures is infinite, only those numbers and

measures that are needed to encode other relationships are included in

the network. Routines that do translation, numeric computations, and

retrieval from files can produce new number and measure nodes on demand.

Returning to the hierarchy shown in Figure VI-1, consider the set

PHY.LP, whose principal reason for inclusion in the model is to show

(through s and ds arcs) the relationships between PHYSOBJS (the set of

physical objects), IAPHYS0BJ3 (the set of inanimate physical objects),

and LEGAL.PERSONS (the set of HUMANS, COMPANIES, COUNTRIES, and the

like). IAPHYSOBJS and LEGAL.PERSONS, being disjoint subsets of PHY.LP,

have no elements in common. PHYS0B.JS is a subset of PHY.LP that

includes all of IAPHYSOBJS and that shares HUMANS in common with

VI-3

KNOWLEDGE

FIGURE VI-2 DELINEATIONS OF MEASURES AND SPEEDS

VI-4

I' I " TTTT Ti iii iii nTir

LEGAL.PERSONS. IAPHYSOBJS includes SHIP.PARTS and SHIPS. SHIP.PARTS,

not shown in Figure VI-1. includes POWER-PLANTS, REACTORS, TURBINES,

TORPEDO.LAUNCHERS, and the like. Also not shown are 21 elements of

COMPANIES.

Since the focus of the task domain is ships, the set SHIPS is of

central importance in the model, and most of the nodes of the network

are used in encoding its subsets or elements. Of equal importance with

SHIPS is SHIP.GROUPS, the power set (set of all subsets) of SHIPS. A

small but illustrative fraction of the overlapping taxonomies of these

two sets is shown in Figure VI-3.

The set SHIP.GROUPS is divided into three major disjoint subsets:

CLASSES, TYPES, and MACRO.GROUPS. The set of classes is composed of

members that are sets of ships that are all basically identical. In

particular, for this data base all the members of a given class are

considered to have been made by the same manufacturer to the same

specifications. TYPES are more general sets, grouping together ships

that have similar (but not identical) characteristics and purposes. For

example, the type SSBN is a set containing all ballistic missile

submarines that are nu'lear powered. This type includes all members of

the ETHAN.ALLEN, GEORGE.WASHINGTON, LAFAYETTE, and RESOLUTION classes.

While ships of the same type are by no means identical (a Lafayette is

65 feet longer than a Resolution), their military characteristics are

closely related. Nodes representing the various types are labeled with

the abbreviations comr.ionly used by the Navy. Even more general sets

VI-5

 ^„..i^-

CO
Q-
D
O
IT
O

I

Q

<

t
I
tn
u.
O
to
UJ

C

O
X
<

a z
Q.
a.
<
-J
DC
UJ
>
O

i

>
LU
tr
D
Ü

VI-6

L ■AMfi^^^^-—^

than TYPES are MACRO.GROUPS. These include broad categories such as

DESTROYERS and SUBMARINES.

The model includes 67 classes and 23 types, covering over 700

individual ships. Of these, 201 are explicitly recorded in the network

by nodes with de arcs into one of the classes. For example,

'Henry.L.Stimson' has a de arc to 'LAFAYETTES', which indicates that the

Henry.L.Stimson is a member of the Lafayette class. Tracing the

membership of the Henry.L.Stimson through the more general sets provides

the following information: it is of the SSBN type; it is a ballistic

missile sub; it is a submarine; and it is a ship. Taking the second ds

arc from 'SSBN', the Henry.L.Stimson is also shown to be a nuke (nuclear

powered).

Although the types and macro.groups form disjoint subsets, the

network encodes no explicit explanation of criteria used to define (and

hence to distinguish) these sets. For example, there is no indication

that the set of aircraft carriers is exactly that set of ships providing

runways for airplanes. Although the network formalism is fully capable

of encoding such information, the kinds of interactions with the dati

base in the current oomain did not require it, so it is not included in

the current model.

As indicated by the two s arcs that together connect 'SHIPS' and

'P.SHIPS' in both directions, these nodes of Figure VI-1 and Figure VI-3

represent the same set. The inclusion of two nodes is to allow ds arcs

VI-7

■-■■^^■.-■^ ^-.- MMM

to encode two divisions of the ships into disjoint subsets. The first

group of disjoint subsets (those with ds arcs into 'SHIPS') includes

DESTROYERS, SUBMARINES, FRIGATES, CARRIERS, and CRUISERS. This HiVi310n

is based on ship function. The second group (those with ds arcs into

'P.SHIPS') includes DIESELS and NUKES. This division is based on the

kind of fuel that supplies power to the ships.

Let us return to Figure VI-1 for a final look; the last two major

subsets of UNIVERSAL are COMPUTER.PROCEDURES and SITUATIONS.

COMPUTER.PROCEDURES includes those computer codes that are used in

connection with the APPLICATIONS feature of network procedural

augmentation (as described in Chapter V, Section F.2). SITUATIONS is

the set of all situations (relationships) existing in the ship domain.

Almost forty subsets of SITUATIONS are included in the model. Some of

these are used for internal purposes, including IMPLICATIONS,

DISJUNCTIONS, NEGATIONS, REQUESTS.YN, REQUESTS.WH, APPLICATIONS, and

KEYED-APPLICATIONS. The remainder of the sets model categories of

situations that may be talked about in the language accepted by the

SRI speech understanding system. These include such categories as

OWNINGS, BUILDINGS, HAVE.PART, GREATER.THAN, HAVE,LENGTH, HAVE.SURFACE.

DISPLACEMENT, and PRED.TRAINING. All sets in the last group have

delineations to aid the translation process.

The several situation sets having names of the furm

"HAVE.<dimension>" are used to encode the situations of a physical

object having a certain dimension to its character that is asrociated

VI-8

- ^-g -" I "" xi -i i^i T
IIB "' iilJTfii^irrr"~T' "-nr i-' -i- -

with a quantitative measure. For example, Figure VI-4 shows the

delineation of HAVE.BEAM. This delineation indicates that members of

HAVE.BEAM relate a physical object p io a length q.

The several situation sets having names of the form

"PRED.<property>" are used to encode situations in which some object has

the property <property>. For example, members of PRED.TRAINING indicate

that the participant filling their "pobj" case is used in training.

(The system currently has no detailed model of what training is.)

All of the situations in this task domain turned out to be either

binary or unary. A limitation to such simple situations was neither

planned nor desired; it just happened. The networks themselves are

capable of handling situations with arbitrary numbers of participants

and actually become more efficient as the number of participants

increases.

The encoding of information about the participation of particular

ships in the "arious categories of situations is handled almost

exclusively by universally quantified statements. Some of these

statements make no appeal to sources of knowledge outside the network.

For example, the statement of Figure VI-5 makes no appeal to

external knowledge in indicating that every ship of type CVT is used in

training. But most of the quantified statements used in the model rely

on the KEYED-APPLICATIONS feature to access information in a relational

data base. For example, the general rule of Figure VI-6 indicates

VI-9

SITUATIONS

ds

KNOWLEDGE

'HYSOBJS) f LENGTHS)

FIGURE VI-4 THE DELINEATION OF HAVE.BEAM

VI-1Ü

^^^^^fHfrtfiTiT'^^^ '■ m—, ^„-, J... ,- - -J-J^..-.:^„- .„„

KNOWLEDGE

FIGURE VI-5 ALL CVTs ARE TRAINING SHIPS

VI-11

KNOWLEDGE

k3yS

1(NAMEI
(CLASS)
(BEAMll

1. f ||

NUMBERS

FIGURE VI-6 LINKING h'/WE.BEAMS SITUATIONS TO RELATIONAL FILES

VI-12

that a number giving the beam of a ship in feet may be found by calling

function SHIPDATA with the argument

(NAME x BEAM ? CLASS ?),

where x is the ship whose beam is to be found. (The keys indicate two

other possible calls: given a class, beams and individual ships may be

retrieved; given a beam, classes and individuals in the class may be

retrie.ed.) Not all of the KEYED-APPLICATIONS use function SHIPDATA.

For example, the set GREATER.THAN is linked to an arithmetic procedure.

The construction of a model for the navy ships domain that has some

degree of completeness was undertaken primarily to provide a foundation

for semantic processing in the speech understanding system. However,

this detailed development of a particular model provided a test of the

representation scheme described in Chapter V and suggested some useful

extensions. In particular, the notion of KEYED-APPLICATIONS and the use

of de and ds arcs were directly motivated by the experience of building

a model for the ship data. In earlier stages of the project, the

representational •■heme also was used in building a fragmentary model of

the steps involved in assembling and disassembling an air compressor.

VI-13

VII SEMANTIC ASPECTS OF TRANSLATION

Prepared by Gary G. Hendrix

CONTENTS:

A. Introduction
1. Integration of Filtering and Structure Building
2. Timely Semantic Filtering
3- A Two-phase System
1. Cooperation with discourse

B. Phase I: Semantic Composition
1. An Introductory Example
2. Technical Comments on the Example

a. Sharing Network Structures
b. Syntactic Order
c. Conceptual Spaces
d. Communicacing with the System Executive

3- Interacting with Discourse: Determined Noun Phrases
4. Other Aspects of the SCRs

a. Multiple Node Lexical Entries
b. Equiv Arcs

5- More on Delineations
6. Semantic Composition Rule Summary

C. Phase II: Quantification
1. Overview
2. The Quantifiers
3. Space Ordering

D. The Use of Case Information

VII-1

mm

■ ■ ■^^•?=VBpmfsmmmmmi.

A. INTRODUCTION

The subject of this chapter is the utilization of semantic

knowledge in the process of understanding spoken inputs as practiced in

the SRI speech understanding system. Basically, there are three

functions that a semantic component may perform during the understanding

process. First, it may filter out phrase combinations that, although

syntactically and acoustically acceptable, do not meet semantic criteria

for meaningful unification. Second, for combinations that are

acceptable, the semantic component may build deep, internal structures

representing the meaning of the input (or portions of the input) in the

context of a particular task domain. Third, by considering the meaning

of a phrase that constitutes a fragment of the utterance, the semantic

component may make predictions concerning what words or syntactic

constructions are likely to occur in other parts of the utterance. In

the current implementation of the speech understanding system, the first

two of these functions, filtering and structure building, are performed

in a single module; prediction of likely words (but not of syntactic

constructions) is carried out in a separate procedure. In this chapter,

the major emphasis will be on the first two; prediction will be treated

briefly at the end.

To understand the details of semantic filtering and structure

building, it will be helpful to consider first some of the higher-level

design features of the system.

VI1-2

--^^. I II i ■-! •■--•■'-'■■-

1. INTEGRATION OF FILTERING AND STRUCTURE BUILDING

One of the system design features to note is that filtering

and structure building are not handled as individual processes but are

treated c ectively. It would be convenient to have semantic filtering

guide the parsing while saving the relatively expensive structure

building task for a postparsing phase ir. which the syntactic analysis of

an input would be known in total and the building of structures for

spurious phrases could be omitted. However, it turns out that filtaring

(by both semantics and discourse) is dependent upon the structures

assigned to subphrases of th^ input. Therefore, filtering and structure

building are combined. When a phrase combination is proposed to the

semantic system, the system attempts to build up a structure encoding

the meaning of the new phrase. If any of various checks and

restrictions in the structure-building process recognize an anomalous

condition, the structure building fails, and this failure, acting as a

filter, serves to reject the phrase combination.

2. TIMELY SEMANTIC FILTERING

Most text-based understanding systems (e.g.. Woods et al,,

1972) perform a complete syntactic analysis of an input before taking

any but the most superficial semantic considerations (e.g., number

agreement) into account. This approach is quite reasonable, since, for

processing text, semantic analysis tends to be far more expensive than

reading words from the input buffer or manipulating the grammar.

VII-3

However, when dealing with the added costs and uncertainties of acoustic

input, the early use of semantic filtering (and, consequently, structure

building) to prune misheard words and false paths through the grammar

becomes more attractive. Therefore, in the SRI speech understanding

system, the semantic component is given the opportunity to reject each

new phrase when it is first proposed.

3- A TWO-PHASE SYSTEM

An additional design feature, which has had a great influence

on the overall structure of the semantic system, is that the scoping of

quantified variables is saved for a postparsing phase. There are two

reasons for this postponement. First, the determination of scopes is

extremely context sensitive, making it difficult (or impossible) to

perform in a bottom-up fashion, one phrase at a time. Second, the

information that scoping adds to the structures representing the

semantic interpretations of phrases provides few (if any) new clues that

are helpful in filtering. Thus, it is also more efficient to delay the

quantification process.

H. COOPERATION WITH DISCOURSE

The semantic and discourse components of the speech

understanding system are closely coordinated and should be studied as a

pair. Both components build and evaluate networks that describe the

system's interpretation of phrases in the input. Interpretations for

VII-I

some ph»ases (e.g., pronouns) are built by discourse alone. Some types

of phrases (e.g., indefinite noun phrases, verb phrases, prepositional

phrases) have interpretations constructed by the semantic component

alone. But some phrases (e.g., definitely determined noun phrases) are

interpreted by a cooperative effort in which the semantic component

builds an intentional description of the phrase's meaning, and discourse

relates this intentional description to a particular object in the

domain model. In forming an Interpretation for a new composite phrase,

the semantic module uses the interpretations for each of the phrase's

constituent subphrases. Tu. interpretations may have been produced

either by semantics or discourse (or have come directly from the

lexicon).

As another point of cooperation between discourse and

semantics, after discourse expands an elliptical input into a sentence

level interpretation, the semantic system is used to add quantification.

B. PHASE I: SEMANTIC COMPOSITION

As indicated above, the operations of the semantic component may be

separated into two phases. The first of these phases, called the

'composition' phase, is the subject of this section. The second (or

'quantification') phase is discussed in Section C.

The task of ehe composition phase is to provide semantic filtering

and (unquantified) structure building in support of the parsing process.

VII-5

- -

This task is performed by a battery of semantic composition routines

(SCRs) that are tightly coordinated with the language definition of the

system (see Chapter II). Whenever a language definition rule suggests

the feasibility of combining a number of components of the input to

produce a larger or more general phrase, one of these SCRs is invoked.

Acting as a filter, the SCR may reject the combination on semantic

grounds. If the combination is accepted, then the SCR builds a network

structure representing the (unquantified) interpretation of the phrase.

In building up such structures, the SCRs are in fact COMPOSING network

paraphrases of the input phrases. Hence the name 'composition routine.'

Since different SCRs are associated with different rules of the

language definition, each SCR constitutes a procedural encoding of the

knowledge concerning the semantic import of the associated syntactic

production(s). This procedural specification references and coordinates

the declarative semantic knowledge in the system's lexicon and in the

network-encoded domain model. Bringing these sources of semantic

information to bear on a proposed phrase combination, an SCR creates an

interpretation structure meeting a number of highly interdependent

criteria. These include:

• Creating an interpretation structure that accurately models
the (unquantified) meaning of the phrase.

• Reusing the network structures of components in building
interpretations of the composite phrase. (This
consideration, which is nontrivial in bidirectional
networks, makes the building of the composite phrase less
expensive.)

VII-6

HKäB ._ r».i r - ■ - i r MM illfliBB —

• Building structures that allow multiple hypotheses
concerning the proper incorporation of a given utterance
component in larger phrases to be encoded simultaneously.
(This makes possible the handling of ambiguous situations.)

• Allowing competing users of a subphrase to share a single
network structure representing the interpretation of that
subphrase. (Recycling increases efficiency.)

• Incorporating special quantification markers into the
structure that are effectively invisible to other parts of
the speech understanding system. (These markers are needed
by the quantification phase but must be so encoded that
they do not change the meaning of the unquantified
structures.)

• Indicating the association between each syntactic unit of
the composite phrase and its contribution to the network
interpretation structure. (This association is needed both
by the quantification phase and by that portion of the
discourse component that expands elliptical inputs.)

The ability to use the structures of subphrases in the building of

composite structures and the complications of simultaneously maintaining

multiple hypotheses make the interactions of the JCRs both more

important and more interesting than the operation of any one SCR in

isolation. Therefore, the operations of the SCRs will oe presented by a

series of examples in which many SCRs participate in the construction of

an interpretation of a complete utterance.

1. AN INTRODUCTORY EXAMPLE

To introduce most of the important features of the SCRs while

postponing side issues, consider, for the purposes of simplicity, the

parsing of the following, rather unlikely, sentence:

"A power plant of a submarine was ouilt by a company."

VII-7

The ultimate result of the semantic interpretation process for this

sentence is the network structure recorded in the SCRATCH space of

Figure VII-1. Structures representing new inputs are constructed in

a scratch space (or spaces) to prevent them from becoming confused with

the system's model of the task domain, which is recorded on the

KNOWLEDGE space. Since the SCRATCH space of the example is immediately

below the KNOWLEDGE space in the viewing hierarchy (as shown by the

heavy arrow), the view from the SCRATCH space includes the structures in

the KNOWLEDGE space. In Figure VII-1, the scratch space is presented

in its entirety, but only a fraction of the structures in the KNOWLEDGE

space have been shown.

SA-3804-35R

FIGURE VII-1 PARSE TARGET STRUCTURE FOR "A-POWER-PLANT OF A-SUBMARINE
WAS-BUILT BY A-COMPANY"

VII-8

-■ ■ —-^-"-TitM I
■ -' - -

Since the system interprets new inputs by calling on previous

knowledge, there are several links from the SCRATCH space into the

KNOWLEDGE space. The interpretation of the network in the SCRATCH space

is as follows: Node 'B' represents an element of the set BUILDINGS, the

set of all building events. In the particular event B, an agt (agent) C

is the builder of an obj (object) P. The agent C of the building event

is an element of COMPANIES. The object built by C is P, an element of

the set POWER.PLANTS. Node 'H' encodes the proposition that power plant

P is the subpart in a HAVE.PART situation in which S, some member of the

set of SUBMARINES, is the suppart (super part).

To suppress syntactic technicalities while concentrating on

the semantic aspects of the construction of this interpretation

structure from the original English input, assume the highly simplified

language definition:

GRAMMAR
R1: S => NP VP
R2: NP => NP PREPP
R3: VP => VP PREPP
RJk PREPP => PREP NP

LEXICON
NP: a-power-plant,

a-submarine, a-company
VP: was-built

PREP: of, by

(NOTE: "a-power-plant" is not treated as an NP in the actual system.

Rather, "power plant" is first combined with PREPP "of a submarine" and

only afterward is "a" appended to produce the NP "a power plant of a

submarine".)

VII-9

- —■ r

In the translation process, spaces are created to represent

the semantics of each grammatically defined constituent of the total

utterance. These spaces are shown in Figure VII-2, with heavy arrows

indicating the visibility hierarchy.

At the start of processing, space KNOWLEDGE contains knowledge

about power plants, HAVE.PART situations, submarines, building events,

and companies. Upon spotting the noun phrase "a-power-plant", an SCR is

called to set up a structure representing the meaning of the phrase. In

particular, the SCP creates a new space, NP1, below the KNOWLEDGE space

in the viewing hierarchy. Within this space, a node 'P' is created with

an e arc to 'POWER-PLANTS'. Thus, node '?' represents some power-plant

and the e arc makes its membership in POWER-PLANTS explicit. The new

space NP1 separates the structures built to represent the phrase from

structures that are in the KNOWLEDGE space. Similarly, new spaces

PREP2, NP2, V?1, PPEP1, and N03 are set up to encode other utterance

constituents that correspond to explicit lexical entries (terminals).

As language definition rules suggest the grouping of

subphrases into larger .'nits, SCRs are called to aid in the process.

Using rule RU, PREP1 ("by") and NP3 ("a-company") are combined to form

PREPP1 ("by a-company"). PREPP1 is allocated its own space, but no new

structures are created within it.

When syntactic considerations suggest combining VP1 (^was-

built") with PREPP1, the appropriate SCR is called. Consulting a

VII-10

KNOWLEDGE

SA-3804-1991

FIGURE VII-2 MULTIPLE SCRATCH SPACES FOR "A-POWER-PLANT OF
A-SUBMARINE WAS-BUILT BY A-COMPANV"

VII-11

■MiHiäiKMMBü

surface-to-deep-case map associated with the lexical entry for the verb

"build",» the SCR determines that a "by" P^EPP following the verb often

signals the deep agt case in a passive constructior;. Operating under

this hypothesis, the SCR checks the voice of VP1. Passing this test,

the SCR ne-tt checks the semantic feasibility of the NP of PREPP1 serving

as the agt in a BUILDINGS event. To make this check, the SCR consults

the delineation of BUILDINGS, which indicates that any agt of a

BUILDINGS situation must be an element of LEGAL.PERSONS (Delineations

are discussed in Chapters V and VI.) The candidate for the agt position

is C of space NP3. Since C is an element of COMPANIES, and COMPANIES is

a subset of LEGAL.PERSONS, C is accepted. A combination such as "built

by a submarine" would have been rejected.

Once VP1 and PREPP1 have passed the accf-ptability tests, a new

space, VP2, is constructed to encode the resultant VP. This new space

links node 'B' of VP1 with node 'C of NP3 via an agt arc. Tnis new arc

is visible from space VP2 (and lower spaces in the hierarchy), but is

not visible from eithor VP1 or NP3, leaving the components encoded in

VPl and NP3 free to combine in alternatives to VP2 if necessary.

Continuing the parse, NP2 ("a-submanne") is combined with VP2

("was-built by a-oompany") to form SI, after passing tests similar to

those above. The ob/i arc linking the coastituent phrases of 31 is

contained In space SI and hence is not seen from the spaces of the

• The use of case information is descrioed in greater detail in Section
D at, the end of this chapter.

VII-12

f*JrS&ri'mt 'Wi'" "V^'j^JllJji

constituents NP2 and VP2. Notice that the construct "a-submarine was-

built by a-compa y", which is encoded by SI, is a spurious

interpretation of utterance components. The creation of this spurious

phrase could have been avoided by strict left-to-right parsing.

However, in a system for understanding speech, it may be desirable for

parsing to proceed from the right or from the middle (island driving/.

In any case, the purpose of this presentation is to show how spurious

constructions arising either from misheard words or local ambiguities

are handled by the SCRs.

Using rule R4, PREP2 ("of") may be combined with NP2 ("a-

submarine") to form PREPP2. The network structures that are visible

from space PREPP2 do not include the (spurious) obj arc from 'B' to 'S'

that lies in space SI.

When the syntax of rule R2 suggests combining NP1 and PREPP2

to form a new NP ("a-power-plant of a-submarine"), an SCR is called.

The SCR checks NP1 to see if it is relational in nature (as is "length"

in "length of the Henry.L.Stimson" or "length of 425 feet") and hence

expecting an argument to be supplied. Since NP1 fails this test, the

SCR checks the properties of the PREP "of" and discovers that it may be

used to encode HAVE.PART siuations. Calling upon the delineation of

HAVE.PART and appropriate surface-to-deep-case maps, the SCR determines

that the HAVE.PART hypothesis provides a feasible interpretation for the

NP and hence builds space NP4 with node ''I* and three arcs as shown.

Although these new constructs are visible from space NP^, they are not

VII-13

T^-IT-"itr-—Ti 11 -in^^naiMaai ^""n"- nrifrr^

visible from constituents NP1 and PREPP2 (and NP2). Furthermore, they

cannot be seen from spurious space SI. Thus, the construction of NP4

has not altered the view of the net from SI. This is an important

feature, since at this point in the processing SI is just as likely a

hypothesis as NPH. While these two hypotheses are incompatible, they

are nevertheless able to share the structure of NP2 without interfering

with one another.

Using rule R1, S2 is constructed from NPI and VP2. In

addition to the obj arc contained in c.,ace S2 itself, the view of the

net from S2 includes all the information accessible from either space

NP1» or space VP2, and hence is identical to the view from space SCRATCH

of Figure VII-1. Since the parse corresponding to space SI does not

successfully account for the total input, it is rejected, and S2 is

accepted as expressing the meaning of the input.

As will be described later, during the quantification phase,

the structures on space S2 and those spaces that are above S2 but below

KNOWLEDGE are quantified. The result of this process is exactly the

SCRATCH space of Figure VII-1.

The partial ordering of spaces from S2 to KNOWLEDGE indicated

in Figure VII-2 is identical to that represented more clearly in Figure

VII-3 which, because of the choice of space labels, may be recognized

as the parse tree of the input sentence. Consequently, the syntax of

the input and the association between each syntactic unit and its

VIT-14

NP1 PREP2 NP2 VP1 PREP1 NP3

SA-3804-23R1

FIGURE VII-3 VIEWING HIERARCHY ABOVE S2

corresponding semantics have been captured in the structures built by

the SCRs. As discussed below in Section C on quantification and in

relation to discourse analysis in Chapter X, this association plays a

central role in determining the scopes of higher-order predicates and in

analyzing elliptical utterances.

2. TECHNICAL COMMENTS ON THE EXAMPLE

In the discussion of the example, a few technical points were

suppressed to simplify the exposition. These will now be considered.

VII-15

^^-■■■-"^^^j- - —■■

a. SHARING NETWORK STRUCTURES

As seen in the example, partitioning enables networks to

maintain alternative hypotheses (e.g., SI and S2) concerning the use of

utterance constituents and enables such competing hypotheses to share

network substructures (e.g., V2). Since partitioned structures,

together with the associated feature of multiple vistas which allows

alternative views of the network, make sharing so natural and

straightforward, it is worthwhile to reflect upon the problem of sharing

that arises in unpartitioned networks.

The root of the problem is that networks, unlike simpler

list structures, are cross-linked by two-way pointers. To see the

distinction, let X be some S-expression and let LI and L2 be two list

structures that contain pointers to X. In establishing pointers from LI

and L2 to X, no change is made in X itself. In particular, the creation

of a pointer to X does not result in the creation of an inverse pointer

from X. So both LI and L2 may point to X without any complications

since X does not point back to either structure.

In ordinary networks, the situation is different. If

arcs are established to (or from) a node Y from (to) other nodes N1 and

N2, then pointers are established in N1 and N2 that point to Y and

pointers are established in Y that point to Nl and N2. Now, if N1 and

N2 are alternatives, the following problem arises. By taking

alternatlva Nl, the structures pointed to by Nl must be taken also

VII-16

mäimUmt^^äm

(since they form a part of the extended meaning of N1). In particular,

Y must be taken, and in turn the structures pointed to by Y. But this

includes IJ2, which, being the other alternative, was to have been

excluded. The point is that N1 and N2 become linked when they attempt

to share the same substructure Y. This contrasts with the list

structures above in which LI and L2 could both point to X without

establishing a path from LI to L2.

There are two solutions to the sharing problem in

networks. The first is not to share at all. That is, all structures

that would have been shared are instead copied. This solution is

expensive and, ultimately, unworkable, since there is usually some path

between Just about any two nodes in the network. The other solution is

to establish a bookkeeping procedure that will maintain a number of

different points of view. For each point of view, the bookkeeping must

indicate exactly which network structures are to be included and which

are not. Such bookkeeping, of course, constitutes a type of network

partitioning.

b. SYNTACTIC ORDER

The visibility hierarchies shown in Figure VII-3 appear

to maintain the syntactic order of constituents of a phrase. For

example, these figures show that NPI and VP2 are immediately above S2

and seem to indicate that NPH is to the left of VP2. In reality, the

orthodox vista of S2 is guaranteed to contain both space NPJ* and space

VII-17

^^-'■•li- "I 'fVu

VP2, but the vista itself says nothing about the!'' relative order.

Therefore, any space created by an SCR that has more than one direct

parent will have a property, called PARENT.ORDER, indicating the left to

right order of its parents. For example, the PARENT.ORDER of S2 is (NPU

VP2). Because of quantification considerations, the order is reversed

if ono of the parents is a prepositional phrase. This result reflects

the quantification rule that "the scoping power of a higher-order

predicate decreases from left to right except when embedded in a

prepositional phrase."

c. CONCEPTUAL SPACES

Actually, it is not necessary for the system to create

new spaces for all syntactic units (even though it could). For example,

the spaces PREP1, PREPP1, PREP2, and PREPP2 of the example exist only

conceptually. The space really associated with the synt&ctic unit

PREPP1 is NP3. This reflects the fact that, in isolation, the

prepositional phrase determines no more network structure than the NP

alone.

However, empty spaces sometimes are created by the SCRs.

Typically, this occurs when a new phrase has the same unquantified

network structure as one of its constituents but differs from the

constituent because of quantification. A new space is created in order

to attach a quantifyjation property that is to belong to the new phrase

but not to the constituent.

VII-18

HaaSaaeHÜMMH

d. COMMUNICATING WITH THE SYSTEM EXECUTIVE

Each SCR has Its own set of input parameters. Typically,

these include the semantic interpretations of phrase constituents and a

few syntactic attributes. If any constituent is ambiguous, multiple

unambiguous calls are made to SCRs. If the results of an SCR are

ambiguous, a list of interpretations is returned. The interpretations

returned by the SCRs are typically communicated by pairs of the form

(node . vista). For example, the interpretation of the VP "was-built by

a-company" is passed to the executive by the pair

CB' . (VP2 VP1 [PREPP1] [PREP1] NP3 KNOWLEDGE)).

(Recall that [PREPPi] and [PREP1] are only conceptual.) Discounting the

KNOWLEDGE space, the vista of a pair Include» all spaces upon which

structures have been created to encode the unquantified interpretation

of the phrase. (As will be seen in a subsequent example, this vista

sometimes consists of the KNOWLEDGE space alone.) The node of the pair

is the so-called "head node" of the structure. It in at this node that

the structure will typically be joined to other structures in creating

larger phrases.

For simplicity of writing, a node-space pair may be used

to represent the node-vista pair in which the vista is the orthodox

vista of the space. Thus, the pair above may be abbreviated as

('B' . VP2) .

Using this notation, the results of the various calls to the SCRs may be

summarized as follows:

VII-19

^^"^^^^^"-^in^i iiri"~ r——v ttmrn

PHRASE INTERPRETATION

NP1 CP' . NPD
NP2 ('S' . NP2)
NP3 CC . NP3)
NP4 CP' . NP4)
PREP1 pre net
PREP2 pre net
PREPP1 CC . NP3)
PREPP2 CS' . NP2)
SI CB' . SI)
S2 CB' . S2)
VP1 ('3' . VP1)
VP2 CB' . VP2)

3. INTERACTING WITH DISCOURSE: DETERMINED NOUN PHRASES

The example utterance considered above was carefully

constructed to avoid complications arising from quantification or from

interactions with the discourse component of the speech understanding

system. However, both quantification and interaction with discourse

have major impacts on the semantic aspects of the translation process.

By considering a second example sentence

"General.Dynamics built the American submarine,"

new facets of the semantic system, particularly its interaction with

discourse, may be highlighted while still avoiding the complications of

quantification.

The principal distinction between the first example sentence

and the current sentence is that the former contained only indefinitely

determined noun phrases whereas the latter contains definitely

determined NPs. Thus, the first example concerns "a company," but the

VII-20

M^.

current example concerns the particular company "Genera? .Dynamics."

Likewise, the first example concerns "a submarine," but the current

example concerns a particular submarine that is designated as "the

American submarine."

The phrase "the American submarine" is intended for use in a

context in which the partial descrlptior "an American submarine" is

sufficient for distinguishing a particular individual. Assuming that

the current conversation concerns the Henry.L.Stirason, which is an

American submarine, and the Churchili, which is a British submarine,

then the phrase "the American submarine" designates ehe Henry.L.Stimson,

and the example sentence is equivalent to the following:

"General.Dynamics built the Henry.L.Stimson."

The actual task of relating "the American submarine" to the

Henry.L.Stimson is performed by the discourse component and is described

more fully In Chapter IX. As will be shown in this section, SCRs create

the network descriptions that discourse uses in finding the referents of

determined noun phrases. Further, onoe a referent is found, SCRs are

used to incorporate the particular individuals returned by discourse

when building larger structures.

Turning now to the details of translating the example

sentence, the target structure which is to be produced by the parsing

process is shown in Figure VII--'*. Note that the SCRATCH space

contains only the building node and its associated arcs. These elements

cor itute the new information conveyed by the sentence. Both

VI1-21

' mtamiä

^^mmmmmmm'um'imi'

FIGURE Vli-4 CONTEXT DEPENDENT PARSE TARGET STRUCTURE FOR
"GENERALDYNAMICS BUILT THE AMERICAN SUBMARINE'

"General.Dynamics" and "the American submarine" (i.e., "the

Henry.L.Stimson") were already known to the system.

To perform the translation with minimal syntax, assume the

following simplified language definition:

GRAMMAR

R1 S => NP VP
R2 VP => VP NP
R3 NP => N
m NP => ART MOD N

VII-22

---- i ■ - -frmimfkmm nT-^'-i--t--"-rn ■ ■ —

N
VP

MOD
ART

LEXICON

General.Dynamics, submarine
built
American
a, an, the

Using this language definition, the parsing process will produce the

various subphrases shown in Figure VII-5. The semantic and discourse

interpretations of these phrases are indicated by node-space pairs that

refer to the network of Figure VI1-6. Figure VII-6 shows a

portion of the KNOWLEDGE space and all network structures that are

produced in the translation of the example sentence.

PHRASE ENGLISH EXPRESSION

ART1 the
MODI American
N1 General,Dynamics
N2 submarine
NP1 General.Dynamics
NP2 the American submarine

VP1 built
VP2 built the submarine
SI General.Dynamics bui.lt

the American submarine

INTERPRETATION

('P' . MODI)
('General.Dynamics' . KNOWLEDGE)
CS' . N2)
{'General.Dynamics' . KNOWLEDGE)
('S' . NP2-S)

from semantics
('Henry.L.Stimson' . NP2-D)

from discourse
('B' . VP1)
('B' . VP2)

CB SI)

Figure VII-5. NODE-SPACE PAIRS FOR PHRASE? IN "GENERAL.DYNAMICS
BUILT THE AMERICAN SUBMnRINE"

The first word of the sentence is the N "General.Dynamics".

When this word is identified in the acoustics, an SCR is called to

construct an interpretation. Typically, SCRs build new network

VII-23

*~--^-j"'— -- ~-— ■ Hot a

FIGURE VII-6 SCRATCH SPACES FOR "GENERAL.DYNAMICS BUILT THE
AMERICAN SUBMARINE"

VII-24

■fiWrmT-r—I—

structures, but since Inforaation tn tht lexicon indicates that

"General.Dynauics" has a unique referent, which is uodeled by the node

'General .Dynamics' of the KNOWLEDGE space, no new netwo.'k structures

nee-' be created, .-mher, the SCR simply returns the node-space pair

f't^eneral.Dynaaiw.- moWLEDGE).

It has item stated previously that the interpretations

oroduced by the semantics system indicate the association between each

phrase of an utterance and its network translation (if any). This

association is usually indicated by spaces. Since phrases typically

cause new structures to be constructed, and since these structures

usually involve more than a single node or arc, spaces (or vistas) are

us«d to encircle the collection of structures created for the phrase.

But spaces need not -iwayt, be used. Since "General .Dypamlcs" already

has a representation in the KNOWLEDGE space, no new strctures are

created. Furthe-, since "Genial. Dynamics* " represented by a single

node, a new space is not needed to bundle together a number of network

structures, «s seen in Figure VI1-5, the semantic interpretation of

"Genaral.Dynamics" is designated by the node-space pair

('General.Dynamics . KNOWLEDGE). In general, wherever the

interpretation of a phrase is expressed by a pair in which the node is

in the KNOWLEDGE space, the network translation of the phrase is simply

the node of the pair.

By applying rule R3 i f the grammar, the N "General.Dynamics"

may be eneralized to an KP. The SCR associated with this

VI1-25

transformation is an identity function. That is, the interpretation of

the NP is the same as the interpretation of the N.

It is worth emphasizing that the SCR that associates the N

"General.Dynamics" with the node 'General.Dynamics' makes this

association because the lexicon indicates that the no . is a unique

referent that is independent of context. That is, there is only one

General.Dynamics and hence the interoretation of the N

"General.Dynamics" does not vary with context. A proper (and hence

definitely determined) noun such as "John" is typically used to refer to

some particular object, but since there may be many Johns, the object

referred to depends upoa the context in which the noui is us^d. Finding

the referents of determined noun phrases with respect to context is the

task of discourse and wi]1 be illustrated shortly.

Moving to the next word in the sentence, an SCR is called when

the VP "built" is recognized. As was the case for the previous example

sentence, this SCR creates a new space, VP1, to encode the

interpretation of the VP. Within this space, a node 'B' with an e arc

to BUILDINGS is created to represent a building event.

The recognition of the word "the" as an ART (article) leads to

no significant processing by SCRs.

The next word, "American", has only one meaning in the speech

understanding system: "owned by the.U.S." (Were other interpretations

allowed, the following analysis would simply be one among many.) The

VII-26

IIT If 1—■-■™

SCR that is called to build an interpretation for this MOD (modifier)

creates the space MODI shown in Figure VII-6. Within this space, a node

'?' is created to represent the ownership situation and an agt arc is

created from '?' to 'The.U.S.' to indicate that the U.S. is the owner.

These structures are built in accordance with information taken from the

lexical entry for "American". The lexical entry also indicates that the

thing to be modified by this MOD must fill the obj case of the OWNINGS

situation. The obj case is said to be the "open" case of the MOD.

The last word, "submarine", causes a space N2 to be created,

upon which lies a node 'S' with an e arc to 'SUBMARINES'.

Consider now the application of rule RU to produce the NP

phrase "the American submarine" froir the phrases ART1, MODI, and N2.

The SCR associated with this rule tests to see if the head of the N

phrase (represented by node 'S') is a feasible candidate to fill the

open case of the MOD. To do this, the SCR uses the delineation of set

OWNINGS, as described previously. Once this test is satisfied, an obj

arc is created from '?' to 'S' on a new space NP2-S. This space, in

combination with the spaces MODI and N2 of its orthodox vista, encodes

the semantic interpretation of the phrase. Specifically, it describes

what may be paraphrased as "A submarine that is owned by the U.S." Note

particularly that it does not really represent "THE submarine that is

owned by the U.S."

VII-27

___> . m^mm -- —

If the ART of the production were "a" or "an", then the

description of an American submarine that is produced by the SCR would

be an appropriate final interpretation of the new NP. But, since the

ART is in fact "the", the description produced by semantics is only the

first step in the process of properly interpreting the NP. The presence

of "the" signals that the NP is definitely determined. In terms of the

system, this result means that the description built by the SCR should

be sufficiently specific to uniquely identify some particular object

that is currently in context. It J3 the task of the discourse component

to use the description built by the SCR to find this object.

(Note: There are othe;* meanings conveyed by definitely

determined NPs, and discourse must determine which is intended. For

example, there is the generic meaning, as in "the dog is man's best

friend." Also, the context is sometimes universal as in "the moon is

full." With no context, "the moon" refers to the moon of earth, but in

a special context might refer to one of the moons of Mars. The

resolution of a determined NP sometimes depends upon the context defined

by the embedding sentence itself, as in "the composer that I like best

is Bach." But the case under consideration, the case in which discourse

looks for an object in local context, is the only important case for the

current SRI speech understanding system.)

Assuming that both the Churchill and the Henry.L.Stimson have

been mentioned recently, the discourse system will determine that "the

American submarine" is the Henry.L.Stimson. At a technical level.

VII-28

^.—^■^-- -^^ ^-—■

discourse creates an interpretation that is expressed by the node-space

pair

('Henry.L.Stimson' . NP2-D).

Paralleling ('General.Dynamics' . KNOWLEDJE), since 'Henry.L.Stimson' is

on the KNOWLEDGE space, the final network translation of the NP "the

American submarine" is the single node 'Henry.L.Stimson'. The space

NP2-D contains no structure. Its purpose is simply to hold the place of

the space NP2-S that was created by semantics. Subsequent compositions

that would have used space NP2-S will now use NP2-D. To show taatt NP2-D

has replaced NP2-S, the property list of NP2-D contains a REPLACED

property whose value is ('S' . NP2-S), the displaced semantic

interpretation. Property lists and LISP pointers are shown in Figure

VII-6 by dashed arrows.

The next rule to be applied is R2, which indicates that a new

VP may be created from VP1 ("built") and NP2 ("the American submarine").

The SCR for this rule uses the surface-to-deep-case map associated with

the lexical entry for "built" in determining that the syntactic direct

object should map onto the deep obj case. The delineation of BUILDINGS

is then used to test the feasibility of the Henry.L.Stimson filling this

case. When this test is passed, an obj arc from 'B' to

'Henry.L.Stimson' is created or a new space "VP".

Similarly, rule R1 is used to establish an agt arc from 'B' to

'General.Dynamics' on new space SI, completing the parsing process. The

quantification phase then transforms the interpretation of the total

VII-29

sentence into the network of the SCRATCH space of Figure VII-4. The

structures on this SCRATCH space are exactly those structures that lie

on the spaces of the orthodox vista of S1, omitting space KNOWLEDGE.

4. OTHER ASPECTS OF THE SCRS

With the exception of quantification, the examples presented

above have introduced all of the major aspects cf the semantic

composition routines. However, a few of the less central aspects are

worth mentioning.

a. MULTIPLE NODE LEXICAL ENTRIES

All of the lexical items presented thus far have produced

at most one node in the scratch spaces used by the SCRs. However, the

MOD "American" may really be thought of as a two-node lexical item since

it designates both an element of OWNINGS and fills the deep agt case of

the owning situation with The.U.S.

Some relational nouns are entered in the lexicon as two

node entries. For example, the interpretation of the isolated noun

"beam" is shown in Figure VII-7. This word imports both the concept

of a length L and the concept of this L filling the measure case of a

HAVE.BEAM situation H. Since "beam", "draft", and "length" all

designate elements of LENGTHS, it is the situation part that

distinguishes these words from one another.

VII-30

FIGURE VII-7 THE TWO NODE INTERPRETATION OF "BEAM'

b. EQUIV ARCS

In the network representing the domain model, if two

nodes N1 and N2 are known to represent the same thing, then N1 and N2

are the same node. (Note carefully that two different nodes may still

represent the same object because the objects represented by the nodes

are not KNOWN to be equivalent — even though they are equivalent.) In

processing inputs, objects that heve been described differently are

often asserted to be equivalent. To show this equivalence, the objects

may be connected by an equiv arc. The direction of the equiv arc is

irrelevant.

VII-31

--j™"- •■- — ■ri.r"
iMIHIiii

For example, consider the sentence

"The Henry.L.Stimson is a ship."

The scratch spaces created in translating this sentence are shown in

Figure VII-8. The first NP of this sentence ("The Henry.L.Stimson")

is interpreted as designating node 'Henry.L.Stimson' of KNOWLEDGE. The

second NP results in the creation of a node 'X' to represent some

element of SHIPS. The copula "is" links these two concepts by asserting

that they are equivalent. That is, some ship X is equivalent to the

Henry.L.Stimson. Using this identity, the Henry.L.Stimson must itself

be an element of SHIPS. The result of eliminating the equiv arc and

substituting 'Henry.L.Stimson' for 'X' is shown in Figure VII-9.

As described in Chapter XII, the deduction component of

the speech understanding system makes use of equiv arcs. In particular,

an equiv arc is matched against a dummy entity, and the from- and to-

nodes of the arc are paired.

5. MORE ON DELINEATIONS

Above, in processing example sentences, delineations were used

as semantic tests to determine whether a given object could play a given

role in a situation of a given type. In a speech understanding system,

the principal contribution of such tests is to throw out spurious

combinations which, typically, are proposed as a result of misheard

words. But these delineation tests can also clear up certain

ambiguities.

VII-32

iMaUMMMüMIÜ—«■■■MMlliaiMg-.-, . -,_- frWi-

KNOWLEDGE

FIGURE VII-8 SCRATCH SPACES Wl ^ EQUIV ARC FOR "THE HENRY.L.STIMSON
!S A SHIP"

Given the skeletal sentence

"X built Y",

it is clear that, if the sentence makes sense at all, X designates the

deep agt of a building event and Y designates the deep obj. However,

for the skeletal noun phrase,

VII-33

r , ■ „ "-"--- - -

FIGURE VII-9 SIMPLIFIED INTERPRETATION OF "THE HENRY.L.STIMSON
IS A SHIP"

"beam of Z",

the Z right be either the obj of a HAVE.BEAM relationship (as in "beam

of the Henry.L.Stimson") or the measure of such a relationship (as in

"beam of 33 feet"). The delineation of HAVE.BEAM, by indicating that

the obj must be a physical object and the measure must be a length,

provides sufficient information to determine the role played by the Z.

6. SEMANTIC COMPOSITION RULE SUMMARY

The operations of the semantic composition rules may be

summarized as follows. When a content word is identified in the

acoustic stream, an SCR is called to interpret the word. The

VII-31»

i 11 Ti-mff-

interpretation structure is a network fragment that describes the input

by relating it to concepts in the KNOWLEDGE space (which encodes the

system's domain model). Information concerning how to interpret a given

isolated word comes largely from the lexicon.

Information concerning if and how subphrases may be combined

to form larger units is encoded procedurally in the various SCRs and

declaratively in the delineations of sets.

For determined noun phrases, the indefinite interpretations

constructed by the SCRs are typically replaced by discourse

interpretations referencing particular items in the domain model. The

interpretations built by SCRs are used by the discourse system in

finding the appropriate referent. The interpretations from the

discourse system may be combined into larger combinations in the same

manner as the interpretations created by the SCRs themselves.

The network interpretation of a total utterance is divided

among a number of scratch spaces. Each syntactic unit of the input may

be identified either with a single node on the KNOWLEDGE space or with

some set (i.e., vista) of these scratch spaces. The syntactic phrase

structuring of the input is reflected in the vista hierarchy relating

ehe various spaces.

In addition to the node and arc structures, the various spaces

created by SCRs may carry information on their property lists concerning

quantification. The nature of this information and its role in

completing the translation process are the subjects treated next.

VII-35

-.i.. —.^-■n- «-»■Ü.

C. PHASE II: QUANTIFICATION

The quantification procedure perfonned by the semantic component

and described in this section is the final step in the construction of a

structure representing the meaning of an input. This operation is

performed on the (as yet unquantified) interpretation structure of a

complete utterance that was produced either by an SCR (in the case of a

complete sentence) or by the discourse component (in the case of

elliptical expansion).

The task of the quantification phase is to introduce higher-order

predicates and their associated scopes into the structure produced by

the composition phase. Although the scoping of all higher-order

predicates is performed during this process, the procedure is called the

"quantification phase" because most of the higher-order predicates that

have been considered are, in fact, quantifiers.

The introduction of scopes into the translation net is delayed

until a postphase because of the highly context-sensitive nature of

scope determination. While quantifiers are frequently indicated within

noun phrases, their influence is generally not confined to the noun

phrase itself, but rather is brought to bear on higher constituents in

which the noun phrase is embedded. Furthermore, the scopes of most

English quantifiers are affected by otner quantifiers that appear in the

utterance. The interaction of quantifiers is influenced by the syntax

of the higher level constituents that incorporate them, by the relative

VII-36

"lT¥7Ti' ' i i fl fi

scoping strengthj of the actual English words used, and by the physical

feasibility of readings.

The qu:.:tl float ion process Is largely performed by repar itioning

the nodes and arcs of the unquantified interpretation structures. That

is, while leaving the original partitioning in place to save the

syntactic history of the input for discourse analysis (i.e., for the

expansion of future elliptical inputs), nodes and arcs are placed in new

spaces that are ordered hierarchically to indicate the nesting of

higher-order predicates. For example, a typical new space might define

the boundaries of the scope of a universal variable. In addition to

repartitioning, some new nodes also may be introduced into the

translation structure to represent such logical connectives as

IMPLICATIONS and NEGATIONS.

Information for deciding how to define the new "quantification"

spaces and how to order the spaces is taken from the network structures

built earlier in the semantic composition phase. In particular, the

syntactic structure of the input, as shown in the hierarchy of scratch

spaces, plays an important role. Heavy reliance is also placed on

information (not yet discussed) that is encoded on the property lists of

the sciatch spaces.

The approach to determining the scopes of quantifiers that is

presented in this section has been influenced by the game theory

technique advanced by Hintikka (197^). However, certain engineering

VII-37

wslnmtrTr-~~- --i -— r"^^—-'""•"■'iirtTtT'-r ^~—-■ »Tf-- --^■a»-^-~"".»g«»-"':'^-~—^

expediencies have been used in applying portions of his technique to an

operational system based on partitioned semantic networks.

1. OVERVIEW

To gain a perspective on the overall quantification procedure,

consider the processing of the example query

"Did General.Dynamics build every Lafayette?"

(The Lafayettes compose one class of nuclear submarines.) The scratch

spaces for this query that wers built by the SCRs during the composition

phase are shown in Figure VII-10.

Simply put, the node and arc structure created by semantic

composition is the same as would have been created for

"General.Dynamics built a Lafayette."

However, two of the spaces have special properties relating to

quantification (or, more generally, higher-order predicates). Space NP3

includes information about the English quantifier "every" and space S1h

includes information about the special YN (i.e., yes/no) quantifier."

In more detail, the noun phrase "General.Dynamics" is

interoreted by the single node 'General.Dynamics' of the KNOWLEDGE

space. The VP "built" results in space VP1, as in previous examples.

Also paralleling previous examples, the noun "Lafayette" results in a

node 'L' with e arc to 'LAFAYETTES' being created in a new space N2.

The quantifier "every" is combined with this noun to form a new noun

VII-38

L_ QUANT YN

FIGURE VII-10 SCR SPACES FOR "DID GENERAL.DYNAMICS BUILD EVERY LAFAYETTE?'

VII-39

phrase, "every Lafayette." This NP is represented by the vista from new

space NP2. The view fron NP2 inherits the noun structure of N2. But,

through the property list of space NP2, there is added to this noun

structure the information that the English quantifier "every" was used

in the fonnation of the NP. The empty space NP2 is created solely to

provide a place to attach this property list. If the properties were

hung from space N2, then the interpretation of the noun in isolation

would be altered and would not be available for incorporation in

alternative hypotheses. (There may, for example, be a hypothesis in

which the acoustic signal preceding "Lafayette" is interpreted as

containing some word other than "every.")

VP1 and NP2 are combined to form VP2, "built every Lafayette,"

in a fashion analogous to previous examples. In the last stage of

composition, the AUXD (the auxiliary verb of the "do" family) "did" is

combined with the NP "General.Dynamics" and VP2 to form a complete

query. The building operations for node and arc structures are the same

as if the NP and VP were being combined to form an assertion. But the

pattern

AUXD NP VP

signals that the validity of the assertion

NP VP

is to be tested by a YES/NO query. Since a test involving a proposition

is second-order, the request for a test is not translated into a network

structure by the SCR. Ratner, the creation of a (second-order) network

ViI-40

iri iiin"t""i"^ r

structure to encode the YES/NO query involving the proposition NP-VP is

delayed until the quantification phase. Tc indicate that this structure

is to be built, the space Sib is created below Sla and is marked by the

property value pair (QUANT . YN). (Space S1a with its vista is the

interpretation of proposition NP-VP.) In general, a QUANT property is

assigned to a space whenever a quantification or other higher-order

structure must be built during the second phase of semantic processing.

Using the structure built during the composition phase as its

sole input, the quantification phase builds a network structure that

provides a complete (literal) interpretation of the original input

utterance, which includes all higher-order structures. For the example

query, the structure of Figure VII-10 is transformed into the structure

of Figure VII-11 (while the structure of Figure VII-1C is preserved

for subsequent discourse analysis).

Space T of Figure VII-11 is the target translation space for

the query. At the top level, T encodes a request R for information of

the YES/NO type. (See the discussion of REQUESTS.YN in Chapter V,

Section E.3.a, and Chapter XI, Section B.I.) The proposition of this

request, whose validity determines the answer to the query, is encoded

on space P. In particular, P encodes the proposition

"For every L, if L ia CP element of WFAYETTES,
then L was built by General.Dynamics."

Note that this proposition contains the universally quantified variable

L and that the quantification is encoded in accordance with the

techniques described in Chapter V, Section E.2.

VII-41

FIGURE Vll-11 ULTIMATE TRANSLATION OF "DID GENERAL.DYNAMICS BUILD
EVERY LAFAYETTE?"

VII-4i>

" ^''i ■■[■-^^^^-^^^^^^^^
, m - , ,-„,^,>*.J.^^1 - - - r _ . . |-r-.- >-_ ^„,„J-:..^„^.„„,.,. ..J.„..,J.,

The conversion of & semantic composition structure (i.e., the

final product of the SCRs) into a fully quantified translation is

performed by applying "quantification" functions (Q functions) to the

various spaces created by the SCRs, Exactly one Q function is applied

to each space, and the process is completed when the last space has been

processed. The Q functions that are applied determine the types of

higher-order structures that are produced, and the order in which spaces

are selected for the application of a Q function determines the nesting

of predicate scopes. Only a small number of Q functions are ujed.

The particular Q function to be applied to a giver sptce is

determined solely by the QUANT value of the space. (Spaces with no

QUANT property are understood to have the value NIL.) Th«; order in

which the functions are applied is determined by calculations involving

the syntax of the utterance and the relative scoping strength of those

quantifiers that occur in the semantic composition structure.

Omitting the details of the order of space selection, the

conversion of the example query proceeds as follows: First, an empty

translation space T is created below the KNOWLEDGE spice. This space is

designated as the current active space for the creation of new

structures by subsequent calls to Q functions. Then, space Sib is

selected and the value of its QUANT property is mapped onto the Q

function Q.YN. Q.YN is then applied to space Sib.

VII-U3

IBüi^^lrii't ' M -'=£=i^ -"-"' ^ — ^^~-"^—tiif ii^

Q.YN builds structures to represent a YES/NO request on the

active translation space, T. In particular, the structures of space T

shown in Figure VII-12 are created by Q.YN. These structures consist

of a node 'R', an e arc from 'R' to 'REQUESTS.YN', a new supernode '?',

and a prop arc from 'R' to 'P'. Upon completing this structure building

operation, Q.YN designates the new space P as the active space for the

application of Q functions to any space above Sib in the viewing

hierarchy. For the current example, this includes all other spaces

created during the composition phase.

The next space that is selected is space NP2. After the value

of its QUANT property has been mapped onto the function Q.UNIV, Q.UNIV

is called to build structures in the currently active translation space,

P. The structures built by this call to Q.UNIV are shown in Figure

VII-13. These include an implication node 'I' with its corresponding

ante and conse spaces, A and C. After creating these structures, Q.UNIV

copies node '1/ from composition space N2 onto both A and C. Q.UNIV

copies 'L' because it is marked as the HEAD node of NP2. This copying,

which is relatively inexpensive, does not alter the structure of N2,

leaving it intact for use in discourse analysis. However, the copying

does cause spaces A and C to overlap and hence, by the overlapping

convencion of IMPLICATIONS (presented in Chapter V, Section E.2.d),

establishes L as a universal variable.

Upon completion of its building and copying operations, Q.UNIV

splits the remainder of the quantification process into two

VII-4K

-I irrf ■

KNOWLEDGE

prop
H I » (balance of interpretation

to be constructed here)

FIGURE VII-12 RESULT OF O.YN SCOPING PROCEDURE

VII-15

KNOWLEDGE

prop

/

A

(components
of NP2 go here)

c

(balance of
Interpretation
goes here)

o

FIGURE VII-13 RESULT OF Q.UNIV SCOPING PROCEDURE

VII-46

 .-—»ii ., „i r--v.—J^^,-.-- ^p---1 -~r ^--:n-l -'nrT^ri'ij-nMWmnifn'f rl^-r

subprocesses. In the first of these subprocesses, the spaces above NP2

(the space that activated the function) are to be considered, using

space A as the active space. In the second subprocess, all other spaces

currently pending are to be considered, using space C as the active

space.

In the first of these subprocesses, only space N2 remains to

be prcoessed. Since this space has no QUANT value, the default, function

Q.EXISTS is applied. This function simply copies all the structures of

NP2 onto the currently active translation space, A. Since '1/ already

exists on A, this copy operation acts as a no-op. But the e arc from

'L' to 'LAFAYETTES' is transferred.

In the second of the subprocesses, spaces Sla, VP2, and VP1

are considered, using C as the active space. Since none of these spaces

have a QUANT property, Q.EXISTS is applied to each with the result that

their structures are copied onto space C. This copying process in no

way alters the structures created during semantic composition.

With Sib, VP2, and VP1 processed, all the semantic composition

spaces have had a Q function applied, and the quantification phase of

translation is completed.

2. THE QUANTIFIERS

A list of the quantifiers used in the system with their

associated Q functions and strengths is presented in Figure VII-lU,

VII-U7

'-'" | niflip-M—=..J...-.~:J«-^

QUANTIFIER Q FUNCTION STRENGTH

ALL Q.UNIV 2
ANY Q.UNIV 7
BOTH Q.UNIV 2
(CONSTANT) — infinite

EACH Q.UNIV 6
EITHER Q.UNIV 2
EVERY Q.UNIV 2
NEITHER Q.NO-EXIST 3
(NIL) Q.EXISTS 0
NO Q.NO-EXIST 3
NONE Q.NO-EXIST 2
NOT Q.NEG «1
PL-DEF Q.UNIV 3
PL-NUMBERED Q.SET 1
PL-OPEN Q. EXISTS 0
SOME Q. EXISTS 1
WH Q.WH 5
YN Q.YN 8

Figure VII-1U. THE Q FUNCTIONS AND STRENGTHS OF QUANTIFIERS

(The word "quantifier," as used here means "any MARKER denoting a

higher-order predicate and its strength.") The quantifiers include both

English words (all, any, both, each, either, every, neither, no, none,

not, and some) and quantifiers derived from structure (CONSTANT, NIL,

PL-DEF, PL-NUMBERED, PL-OPEN, WH, and YN).

The quantifiers associated with English words are typically

found during the composition phase by spotting constructions of the form

quantifier-word noun-structure

as in "all submarines", "every destroyer", "no torpedo launchers". The

structural quantifiers are found by noting the structure of inputs. For

example, the YN quantifier is signaled by the construction

is X Y?

VII-U8

-ntarrf

Whenever a quantifier is found in the composition process, it becomes

the value of the QUANT property of one of the composition spaces.

Each quantifier denotes two separate pieces of information: a

higher-order predicate and the relative scoping strength with which that

predicate is to be used. In the speech understanding system, a

different Q function is used for each of the higher-order predicates

recognized by the system, and it is this Q function, rather than the

predicate itself, that is directly associated with a quantifier.

The interpretations placed on the English word quantifiers are

quite straightforward. ALL, ANY, BOTH, EACH, EITHER, and EVERY are all

interpreted as denoting universal quantification. In particular, the

quantifier ANY is never used in the existential interpretation. The

quantifiers are only applied to count (as opposed to mass) nouns and the

individual (as opposed to the collective) interpretation is always

assumed. Thus "John saw all the men" is interpreted as "For every man,

John saw him" as opposed to "John saw the group of men."

The English word quantifier SOME is interpreted as denoting

existential quantification. NO, NONE, and NEITHER denote "there does

not exi't." NOT denotes negation.

The structural quantifiers denote some of the more exotic

higher-order predicates. WH (signaled by words such as "who," "what,"

"which," and "how many") is used to identify a WH-type request for

information. Similarly, the YN quantifier denotes a YES/NO query.

VII-49

MMlMitiiMiir - - m ikTiil I

The PL-DEF quantifier arises from plural, definitely

determined noun phrases such as "those five ships" in "General.Dynamics

built those five ships." During the composition phase, the discourse

component resolves plural, determined NPs to nodes on the KNOWLEDGE

space representing sets. The PL-DEF denotes a universal quantification

over one of these resolved sets. For example, "for every member of the

set consisting of <those five 3hips>, General.Dynamics built it."

PL-NUMBERED arises from plural noun ph-ases that explicitly

designate a number (e.g., "five men", "two of the submarines", "how many

engines"). This quantifier is associated with a predicate over two

objects N and P that may be paraphrased as

"N is the cardinality of the set defined by the predicate P."

For examols, consider the statement

"General.Dynamics built 31 Lafayettes."

During the composition phase, the phrase "3i Lafayettes" signals the PL-

NÜMBFRED quantifier. In the quantification phase, this results in the

creation of a structure encoding

"31 is the cardinality of set S, where x is an element of S if and
only if x is a Lafayette and x was built by General.Dynamics."

If a plural noun phrase contains no English quantifier, no

definite determiner, and no number designation, then it signals a PL-

OPEN quantification. For example, "submarines" in "General.Dynamic3

built submarines" signals a PL-OPEN. Under normal circumstances, PL-

OPEN simply indicates existential quantification. For the example just

cited the interpretation would be

VII-50

"There exists a submarine that General.Dynamics built."

(This interpretation loses the information that more than one submarine

was built, but the structure for the more complete interpretation was

considered more expensive than it was worth for the present

implementation.)

Unlike any other quantifier in the syste-«, the effect of PL-

OPEN can sometimes be superseded by stronger quantifiers. In

particular, if a PL-OPEN type of NP is the subject of a sentence, then

an ALL quantifier is created by the sentence-level SCR to supersede the

PL-OPEN. For example, in

"Ships are built by corporations"

both "ships" and "corporations" are PL-OPEN NPs. But since "ships" is

the subject, an ALL quantifier at the sentence level supersedes the PL-

OPEN. Thus the interpretation is

"For every ship there exists a corporation that built it."

Most spaces created during semantic composition are not marked

as being quantified at all and may be thought of as having a QUANT value

of NIL. This NIL value signals existential quantification. The

sentence

"A power plant of a submarine was built by a company",

which was the first example considered under semantic composition, is

purely existential.

VII-51

^t^-^---^»«i»=

Some types of phraser are mapped directly onto the KNOWLEDGE

space during the composition phase. For example, phrases with unique

referents such as "General.Dynamics" and (in context) "the American

submarine" are so mapped. Such KNOWLEDGE space nodes are tantamount to

CONSTANTS and are therefore unaffected by quantification.

3. SPACE ORDERING

The nesting of scopes by Q functions is critically dependent

upon the order in which spaces are selected for Q-function application.

It has been suggested that this order would best be established by game

theory considerations as outlined by Hintikka (197U). However, the game

theory approach did ^ot appear suitable for immediate adaptation to a

computational system. Therefore, a more engineering-oriented approach,

based on syntax ana quantifier strength, has been used in the SRI speech

understanding system.

The ordering of spaces for Q function applications conforms to

the following ruler^

GIVEN any two composition spaces,

IF e;.ther has a QUANT of greater strength than the other,
then the stronger is taken first.

• Doug Appelt and I are currently working on a revised version of this
rule. Appelt has observed that when an English-word quantifier is the
first word of a sentence, its strength relative to other English-word
quantifiers is greatly increased. We have also observed that
quantifiers in fronted adverbial phrases outscope quantifiers in the
balance of the sentence, and that when an "ANV" falls within the scope
of a WH or YN, it behaves existentially. Updates to the system based on
these observations are pending.

VII-52

Ml ^^■^fc^KÜMfe. M mu'iMTSW'M — — I IM

OTHERWISE, if either is in the orthodox vista of the other,
then the space in whose vista the other lies is taken first
(i.e., compounds dominate their constituents).

OTHERWISE, that spac^ corresponding to the logically leftmost
syntactic constituent is taken first.

With one exception, a syntactic unit X is to the logical left of

vncactic unit Y if X appears before Y in the sentence. The exception

ij. the case in which X and Y combine with a preposition to form a new

syntactic unit Z as in the production

Z => ' PREP Y .

For tnis case only, Y is considered to be to the logical left of X.

(Example: "Every engine of every submarine" is roughly equivalent with

"For every submarine, for every engine of that sub")

Applying the above rule to the example input of Figure VII-10

yields the following analysis: Space Sib is the first space for Q-

function application l-ocöi'se its QuANT strength, at 8 Tor a YN, is

greater than any other. Space NP2 comes next with a QUANT strength cf 2

for EVERY. The other spaces (Sla, VP2, VP1, and N2) all have strength

0. Since all of these other spaces are in the orthodox vista of Sla,

Sla comes next. Similarly, tfP2 comes before VP1 or N2. VP2 comes

before K2 because it is to the left of N2, ond N2 comes last.

As was the case in the introductory e '^mple, the application

of some Q functions may cause the quantification process to be split

into multiple subprocesses, each with its own active target space. When

this happens, those spaces that remain unconsidered are divided ai T

VII-53

the suhprocesses. But in each subprocess, the spaces are considered in

the same order as they would have been had the subprocess remained

joined.

To gain a better feel for the influence of quantifier stiv'jth

over the scoping of predicates, consider the two queries

"Who built every X?"

and

"Who built each X?"

These queries are of interest because the WH quantifier signaled by the

word "who" has a strength of 5, which lies between the strength of EVERY

(strength 2) and EACH (strength 6).

Since WH outscopes EVERY, the interpretation of the first

query goes something like this: "Who is that one builder B such that for

all x in X, B built x?" Since WH is outscoped by EACH, the

interpretation of the second query goes something like this: "For all x

in X, who built x?" The network structures representing these two

queries are ahown in Chapter V, Section E.3-b.

Another pair of sentences whose interpretations differ only

with respect to scope are

"All the men didn't go."

and

"Each of the men didn't go."

In the first, not all went. In the second, not any went. (Of course,

"not all went" versus "not any went" is just another case in point.)

: --T-- ...^-^-- ■. ■-.

The scoping scheme as outlined above is far from perfect and

should be regarded as merely a first cut at a difficult but fascinating

problem.

D. THE USE OF CASE INFORMATION

Case information establishes a link between certain syntactic and

semantic constructions.* It serves two purposes: First, it provide." a

basis for using information from a syntactic structure in determining

what semantic relationships hold in a particular phrase. Second, it is

a relatively simple mechanism for eliminating incorrect interpretations

by rejecting unallowable semantic relationships and by blocking

syntactic predictions for words that cannot possibly fit in the current

semantic context. Both uses of case information have already figured in

examples earlier in this chapter. Here we will describe the mechanism

involved and illustrate its application.

Every word that conveys the concept of a situation has contained in

its lexical entry (1) a pointer to the semantic net representation for

the set of similar situations, and (2) a statement of the syntactic

attributes that signal which syntactic units specify which semantic

roles in situations of that type Verbs, certain prepositions,

modifiers, adjectives, and certain nouns are interpreted semantically in

terms of situations and have this information associated with them in

the lexicon. When a word or phrase conveying situation data is added to

• This section was prepared by Ann Robinson.

VII-55

i—^nrfTTntirrT^^"

a phrase, this information is used along with the syntactic attributes

of the phrase to determine the case relations allowed among particular

constituents. If the phrase satisfies the relations, the information is

used by the semantic composition routines to build the semantic

structure representing it. The information also is used to eliminate

interpretations where these relations cannot hold.

Since many verbs map the same surface constituents into the saune

case relations, with the only difference between verbs being the

particular situation types, these verbs are grouped together and

described by common paradigms (see Celce-Murcia, 1976). Thus, verbs

like 'build', 'own', and 'construct' all follow a common paradigm which

indicates that in the active voice., the syntactic subject fills the agt

(agent) case and the syntactic object fills the obj (object) case, and

that they are reversed in the passive voice. Cases may be obligatory or

optional, and all the obligatory ones must be filled for a sentence

interpretation to be accepted.

To see in more detail how this information is used to check

possible phrases and to block predictions of words by the executive that

would otherwise be made on the basis of syntactic information, it is

necessary to look more closely at what information is available. As has

been described in Chapter V, Section E.2.g, each situation has a

delineating element that has case arcs connecting it to other nodes in

the network. As a result, it is possible to determine for each case arc

the set of items that can be in the case relation. Structures

VII-56

~

■■-*^- ?w«-=™

indicating a particular instance of that situation must correspond to

the restrictions that are specified. For example, semantic structures

can not be built for phrases like 'The Henry L. Stimson owns the U.S.'

because submarines cannot own countries.

To save the time that would be otherwise be required to compute for

each noun whether its possible referents are included in a specific set,

nouns are predivided into subcategories that correspond to the sets

allowed in particular case relations. When a word that refers to a

situation is added to a phrase, the information associated with that

word is used along with syntactic information to determine which case

relations the other constituents in the phrase can fill. If other

constituents have been found and are compatible, then the phrase is

built. If the other constituents have not yet been found, then the

inforiuation indicating what case each constituent can fill is used to

determine what subcategory or subcateories of nouns can occur in that

constituent. When the executive is ready to predict nouns for each

subcategory, it first checks the attributes of that subcategory in the

current context. If that subcategory is not allowed semantically

because of the case (or other) constraints, then that prediction is

eliminated. If that subcategory is allowable then the predictions for

individual words are made.

As an example, consider the sentence "Who owns the Henry L.

Stimson?" as shown in Figure VII-15. The verb "owns" corresponds t")

the semantic situation set OWNINGS. This has two associated case arcs:

VII-57

-^—^—- ■....«j-»»-

FIGURE VII-15 SEMANTIC NET REPRESENTATION
OF THE OWNING SITUATION

agt and obj. The agt arc indicates the the set of all possible owners,

and the obj arc indicates the set of all things that can be owned. In

this domain, the owners are all the legal persons: companies and

countries. When the verb "owns" is found, and a partial verb phrase is

constructed, the case information is used to restrict the nouns that can

follow it. The verb "owns" is active, so the verb phrase must be of the

form VNP. i.e.. a noun phrase must follow the verb. The case

information restricts the NP to include one of the nouns in the

VI1-58

 ---^--^^ "■ i I" f" 1 " in 1 "r"' i i--^^-~

subcategory of nouns that is associated with the set of ships. If any

complete noun phrases have been found to the right of the verb, they

will be combined with the verb only if they meet the 'case' criteria,

namely, that the head noun reference a ship. If a successful

interpretation has not been found, when the executive is ready to

predict nouns for the Nr» constituent, it will first check each noun

subcategory to see if that subcategory could fit at that place. In this

example, the only allowable subcategory is ships. Companies, countries,

measures, and the like are not allowed. The executive will only predict

the individual words in that subcategory. Henry.L.Stimson is a

submarine, and thus the noun "Henry L. Stimson" is in that subcategory.

When the phrase "the Henry L. Stimson1' is found and specifed as a noun

phrase, the information that it is likely to fit the obj case in the

semantic representation is given to the semantic composition routines

along with the semantic structures for "own" and "the Henry L.

Stimson". With the VP thus completed, the information is used in the S

rule to determine what possible cases the surface subject can fill.

Since the obj case is filled, the remaining NP must fill the agt case.

"Who" is consistent with the constraint on agt, that it be a reference

to a legal person, so it is combined with the VP and the information

given to the semantic composition routines to complete the semantic

interpretation.

VII-59

g^gäfcjg^MJHSl^MaBMl

YIII DISCOURSE ANALYSIS

Prepared by Barbara J. Grosz

CONTENT?1

A. Introduction
B. Di alog Collection and Analysis
C. Collection of the Dialogs

1. Purpose
2. Task Dialogs

3. Data Base Dialogs
D. Analysis of the Dialogs

1. Overview
2. The Structure of the Dialogs

a. Task-Oriented Dialogs
b. The Data Base Dialogs
c. Kinds of Subdialogs
d. Opening and Closing of Subdialogs
e. Multiple Uses of O.K.
f. Multiple Open Subtasks

3. Reference
H. Kinds of Utterances
5. Ellipsis
6. Lexicon
7. Descriptions

a. Specification
b. Categories of Features
c. Perspective

8. Miscellaneous Observations

A. INTRODUCTION

Discourse processing deals with the problems arising from the

necessity of relating utterances to the context in which they occur.

Utterances are not spoken in isolation. Attempts to interpret an

utterance in isolation often yield ambiguities that disappear once the

surrounding context in which the utterance occurs is considered. Both

the preceding discourse context — the utterances that have already

occured — and the situational context — the environment in which an

utterance occurs — affect the interpretation of the utterance.

Development of the discourse component of the SRI speech

understanding system began with the collection and analysis of several

dialogs. Dialog is the most natural mode of language interaction with

computers. Furthermore, from the system building and testing points of

view, dialog provides the possibility of checking the system's

understanding as the discourse progresses (and hence, the opportunity

for clarification before errors compound themselves) and enables the

system to influence the discourse. Finally, since dialog is a primary

use of language, the study of dialog reveals many of the basic

mechanisms in language communication.

Two kinds of dialogs we^e collected: a set of task-oriented dialogs

involving communication between two people cooperating to complete a

task; and a set of data-base-oriented dialogs involving communication

directed toward obtaining information from a computer data base. The

VIII~2

remainder of this chapter describes the differences between these two

kinds of dialog and the procedures for collecting them and gives

analyses of the dialogs collected. The analyses were directed toward

determining the range of phenomena present in the dialogs. In

particular, we were interested in determining those characteristics of

the dialogs that ware amenable to formalization and incorporation in a

language understanding system and in determining ways of encoding and

using the information present in both the dialog itself and in the

surrounding task context to aid in interpretation of successive

utterances.

The dialog analysis revealed that contextual influences operate at

two different levels in a discourse. First, the global context in which

an utterance occurs — the total discourse and situational setting —

provides one set of constraints on interpretation of the utterance. For

example, choices between word senses are influenced by context at this

level. The second set of constraints is provided by the immediate

context of closely preceding utterances. A natural language-

understanding system must provide for interpretation of utterances (and

their parts) in terms of both of these levels of context.

The discourse component of the speech understanding system keeps

representations of both levels of context and contains routines for

using them in handling two discourse-level phenomena that were common in

the dialogs we collected. First, the global dialog context is used in

the resolution of definite noun phrases; i.e., in identifying those

VIII-3

- -f- - ■ i,. -- - ■i n

concepts referred to by the noun phrases in an utterance that are

definitely determined (e.g., tl?e nuclear sub). Secondly, the immediate

context of an utterance — syntactic and semantic information from the

preceding utterance — are used in the interpretation of elliptical

expressions.; e.g., in expanding a noun phrase (the submarine?) in

context (Who owns the carrier?) into a full utterance (Who owns the

submarine?).

Encoding global context consists, in essence, of separating out

that subset of a system's total knowledge base that is relevant at a

given point in a dialog. The goal is to determine and represent what is

in the user's focus of attention. For a semantic network knowledge

representation, what is required is to change the homogeneous nature of

the network by highlighting certain nodes and arcs. In the SRI speech-

understanding system this highlighting is achieved by partitioning the

semantic network into focus spaces. Chapter IX includes a brief

description of this representation and describes its use in resolving

definite noun phrases.

The immediately preceding utterance provides the context needed for

interpreting an jlliptical utterance (or phrase). In the speech

understanding system the syntactic and semantic frameworks needed for

building an interpretation of an elliptical utterance are provided by

attributes recorded in the parse tree of the preceding utterance.

Chapter X describes several forms of ellipsis and the mechanisms for

handling ellipsis in the system. Of particular interest is the use of

VIII-4

-"— -^-.- ■

the parse-time semantic network partition in limiting the work done for

interpretation of elliptical utterances.

B. DIALOG COLLECTION AND ANALYSIS

'Task-oriented dialogs' are dialogs between two people cooperating

to complete some task, where 'task' encompasses real-life activities

that are directed toward achieving a particular goal and that can be

broken down into small steps, each having its own goal. Examples of

tasks include repairing faulty equipment, building a house, carrying out

a chemistry experiment, and solving algebra word problems. Task-

oriented dialogs occur normally as a master craftsman instructs an

apprentice, two mechanics work together to repair a car, and as a

teacher guides a student in a chemistry lab. The major characteristics

of these dialogs are that both participants are aware of the. task to be

performed and that communication between the participants is necessary

for accomplishing it.

The tasks considered in this research have one further

characteristic: they are tasks for which it is feasible to consider a

computer taking the role of one of the participants sometime in the not

too distant future. In particular, we have investigated situations in

which the computer guides a person performing a task. Interest in such

dialogs arose in part from considering the language requirements yf s

computer-based consultant system. A description of initial steps toward

building such a system may be found in Hart (1975).

VIII-5

In addition to the task-oriented dialogs, we collected a set of

'question-answering' dialogs. Question-answering dialogs occur when one

person asks another (or a computer system) a series of questions in

order to help solve some problem. They are distinguished from task

dialogs mostly in that the answerer cannot be viewed as sharing a goal

in common with the questioner. Although short question-answering

dialogs are common in everyday conversation, extended ones (more than

five or so questions) are more frequent in communications with

computers, for example, in a sequence of queries to a computer data

base. In the dialogs that were collected, a person queried a data base

in order to solve an assigned problem. Solution required interaction

with the data base. To avoid confusion with other kinds of question-

answering dialogs, these dialogs will be referred to as data base

dialogs in the remainder of the discussion. Date base dialogs differ

from task-oriented dialogs both in the degree of structure present and

in the influence of the task or problem on that structure. As a result

of the differences in amount and kind of problen.' structure, there are

significant differences in the kind of language occurring in the two

kinds of dialog.

Task-oriented dialogs are a good source of unbiased data on

discourse. Concentration on the performance of a task keeps the

participants from becoming self-conscious about their language. The

resulting dialogs are spontaneous and unrehearsed. The data base

dialogs are somewhat less spontaneous. The less realistic nature of the

VTII-6

:*=im^- ^^J^L.- -»^ MM iMMiftiii' ' n-^-■^--^■---"-^^^•'^^'iai

assigned problems contributed to the subjects in these dialogs being

more self-conscious than those in the task dialogs.

The dialogs aescribed in '■his report were both written and spoken.

To simplify the following discussion, the term 'speaker' will be used to

refer to the transmitter of a message and 'hearer' to the receiver even

though some of the transmissions were typed.

Section C contains a description of the method of dialog

collection. Section D presents an analysis of the dialogs; the major

emphasis here will be on the task-oriented dialogs; the data base

dialogs will be used to provide contrast. Finally, some other natural

language data are examined and future areas of analysis indicated.

C. COLLECTION OF THE DIALOGS

1. PURPOSE

The main purpose of dialog collection «as to provide data for

determining characteristics of the language used when people communicate

fc!' the purpose of solving a problem. Since the goal of the dialog

analysis was to determine the language demands a person would make on a

computer system, the ideal context for collection would be one in w^ioh

a person was interacting with a computer. But this is a 'Catch-22'

situation: data are needed to guide the design of the system. The best

that can be done is to simulate this setup. At the start it was not

clear whether the language people use in communicating with one another

VIII-7

■ ■■r^-^-^ -^

would differ from the language they might use in communicating with a

computer. We expected that people's ideas of the capabilities of

computers would ■■'flMence the language they used, even if they were told

that the system understood ^.glish. In the task situation we were able

t collect data both of the language used when two people were

interacting directly and of the language used when one peraon thought

the other dialog participant was a computer. Our intuition proved

correct: the language used in ommunicating with a 'computer' was

different.

Chapanis (1975) has been interested in characterizing

differ ..^es in language use across different modes of communication.

For example, he investigated differences in measures such as number of

sentences, number of wrn-ds, and number of "nounlike" words across modes

such as handwriting, typing, and speaking. In addition, he examined the

differences in time raquired for problem solution across the different

modes of communica'ion. His analyses are statistical; they provide

information about how the language used in the various modes differs.

Although such statistical measures provide some indication of the

desirability of one mode over another and of the effect of the mode on

the language used, they do net provide the information required for

building a computer langu?.ge-understanding system. For that,

information is needed on the particular words ussd and on how th«y are

put together in utterances to provide meaningful communicdtion.

VIII-8

■^ —._ ^-I,-

The analysis reported here is of a different sort: it is

concerned with taking a single mode (actually a small number of very

similar modes) of communication and characterizing the range of language

devices used to achieve successful commmunication of an idea. A large

number of different questions can be asked along these lines. They

include sentence-level questions like "How many different sentence

structures occur?", "Do some occur more frequently than others?", and

"In what context?"; intersentential questions like "What links are there

from one utterance to another?"; and more global questions like "Does a

dialog have some overall structure?" These questions must be answered

before a complete language-understanding system can be built.

The emphasis of the analysis presented here will be on

discourse-level phenomena, and in particular, on the structure of the

dialogs, the relation between dialog and task, and the kinds of

references used for identifying objects.

2. TASK DIALOGS

The main task used for collection of data on task-oriented

language was assembly of part of an air compressor. In addition, two

dialogs were collected in which an expert plumber provided guidance in

the repair of a leaky faucet. A sketch of an aircompressor is shown in

Figure VIII-1 For the purposes of understanding the dialog fragments

in this report, it is important to note the pump, the pump pulley, the

platform, the aftercooler, the belt-housing frame and cover, and the

VIII-9

i r r fin MW '■

DC
O
8
LLI
a:
Q-

o
u
oc
<

<
CO

m
OC

VIII-10

connections between these parts. Tasks involving both high-level

assembly — installing the pump and belt — and lower-level assembly —

putting the pump together — were used.

The participants in each of the dialogs ware an 'expert' (E)

and an 'apprentice' (A). The experts, in addition to being skilled at

mechanical tasks, were familiar with the compressor and the tools used

in assembling and disassembling it. Before participating in the

dialogs, the experts performed the task themselves and then had a

practice session instructing someone else. None of the apprentices was

familiar with the air compressor; in general mechanical knowledge, they

ranged from complete novices to amateur auto mechanics.

Dialogs were collected under a variety of conditions. The

visual contact between participants was varied to determine the effects

of limited vision and to collect data on descriptions. In the first

experiments, E and A were allowed to communicate freely; they

interrupted each other frequently. For the next set of experiments, the

ability to interrupt was removed to see what effect this would have on

communication and task accomplishment. Finally, the information given

to A about E was varied.

The dialogs fall into four classes:

(a) Free, with vision: E and A were in the same

room; they were able to see each other; verbal communication

was spoken; no restrictions were placed on language use. The

VIII-11

MTX^ -

only instructions were to complete the task. The only

restriction was that E could only instruct A; he could not

help DO the task. In this setup, then, E could see A, monitor

what A was doing, and notice where A put tools and parts. E

and A were free to interrupt one another.

(b) Free, with no vision: the conditions were the

same as (a) except that E was not able to see what A was

doing.

(c) Restricted and aware: both visual and verbal

communication were restricted in these protocols. The

experimental set-up is shown in Figure VIII-2. Verbal

communication passed through a monitor who was responsible for

assuring that E and A did not interrupt each other. In these

dialogs A spoke, and the monitor typed the message; E typed a

responsf. and the monitor read it to A. Computer terminals

were U3(3 solely so that transcripts could be easily obtained.

E was able to get 'still' pictures from the television camera.

They had to be requested; normally, the camera was focused on

a blank wall. In these experiments, A was informed that the

experiment was a simulation of a computer system. Hence, A

was airfare that E was a person.

(d) Restricted and unaware: the experimental setup

was the same as in Condition (c), but A was told that E was a

VIII-12

■ i III-^-- - —— ^ " I ■— ' Mi MMMMJJM

EXPERT

COMPUTER TV
TERMINAL MONITOR

l i

APPRENTICE
(würkstationi

TV
CAMERA MICROPHONE

EARPHONES T\

PDP-10
COMPUTER

'TERMINAL

MONITOR

| » TAPE
RECORDER' c EARPHONES

l— MICROPHONE

FIGURE VIII-2 EXPERIMENTAL SETUP FOR RESTRICTED DIALOGS

computer system. In each case we determined after the

protocol was collected and before explaining the true nature

of the experiment that A believed that a computer system was

serving as expert.

3- DATA BASE DIALOGS

The data base experiments were designed to collect data u the

language people would use if they had verbal access to a data base. In

order to collect realistic data, it was necessary to provide people with

a specific problem, requiring information from the data base. Again the

purpose was to make their language as unself-conscious as possible.

VIII-13

1r■'- - r 11 i■ flifiBiiwiiih'liin

Detailed descriptions of the procedures for collecting the data together

with examples are in Deutsch (197^) and Silva (1975).

The data base used for these dialog experiments contained

information about the ships of the United States, British, and Russian

fleets. In the first set of dialogs, the subjects were given charts

(similar to the ones found in naval reports) to fill out, and two short

problems to solve. They were instructed to ask for information from an

analyst, who answered using material from the data base. The subjects

and analysts were in the same room but were not allowed to interrupt one

another or to view each other's materials. For these problems, no

additional information can be obtained from the subject and the analyst

being able to see one another.

The second set of dialogs used a revised data base containing

information on U.S. and Russian ships in the Mediterranean. Subjects

were given one long problem to solve for which they needed information

in the data base. The subjects were not restricted in their use of

language. Thexr queries were translated into data base queries and

typed to a computer data base system by an 'operator'. The answers were

read back to the subject.

VIII-IH

i ii i innlmiiiMiiirTri - - ■ "— —- —" TlllT'llTlf5''"™'3''"*

ANALYSIS OF THE DIALOGS

1 OVERVIEW

This section presents analyses of the data gathered. There

were marked contrasts between the task dialogs and the data base dialogs

in word use, utterance structure, and overall dialog structure. These

differences stemmed from the fact that in the task situation, both

participants knew and were responsible for the 'solution' of the task,

but in the data base dialogs, only the subject was responsible for the

problem solution. Furthermore, the task dialogs involved tasks that

break down into subtasks. The relationship between subtasks is well-

defined. As a result, successive utterances in the task dialogs had

strong links. In contrast, the information needed for solution of the

data base problems could be asked for in a variety of ways (i.e., a

variety of question sequences). There was no necessary dependence of a

query on what preceded or followed it.

Ten task dialogs were collected: one under Condition (a), and

three each under Conditions (b), (c), and (d). The major difference in

language between the free dialogs and the restricted dialogs was the

frequent occurrence of interruptions in the free dialogs. Expert and

apprentice cooperated on completing utterances as well as en completing

the task. The dialog segments in Figure VIII-3 illustrate this

cooperative aspect of the interruption. Lines (5)-(6), (9)-(13), and

(17)-'18) are the most direct examples. In the first two cases, E is

VIII-15

„ ■-—^- - . .—-^^■-^..-. m-nrrmmätätüm

(1) E: ... and those are to be inserted in the side of the
motor ... in the side of the rear of the motor

(2) A: üh hm.

(3) E: . . . and . . .

(4) A: ... I see it . . .

(5) E: O.K. and each wire is to be attached to a

(6) A: One of those bolt things here?

(7) E: bolt? . . . yes.

* « »

(8) A; . . now should I unscrew the nuts from the bolts?

(9) E: No. The wire goes on top of that ... on top of the
nuts that ar^ on there . . .

(10) A

(11) E

(12) A

(13) E

I see . . .

. . . and there're . . .

Other nuts.

. . . there are other nuts

(14) E: The washer will be the last thing that . . .

(15) A: The washer will be last , . .

(16) E: The last item that will be on it.

(17) A: O.K. Then this little plastic thing

(18) E: With the holes in it.

Figure VIII-3. FRAGMENTS OF COOPERATIVE DIALOGS

VIII-16

- - - "--in iiiiiiiiMBtiejMrLiüfc

pausing in search of the 'right' phrase when A fills it in. In (17)-

(18), E gives a similar kind of aid to A. Lines (2) and (4) are typical

of the kind of ongoing mutual support of the two participants. A

indicates an understanding of what has been said so far, so E may

continue. This support is also evident in the echoing of (14)-(16).

The kind of fragment resulting from these interruptions was more than we

wanted to attempt to handle in an initial speech understanding system.

We surmised that not allowing the participants to interrupt would not

seriously hamper problem solution. Chapanis (1973) has evidence that

supports this hypothesis. The restricted dialogs were designed to

eliminate interruptions. The design of the experiment for restricted

dialogs closely resembles Chapanis' setup but was designed

independently.

The different visibility conditions had several different

effects on the dialog. Robinson (1975a) discusses some of these. The

most pronounced difference was in the kind of descriptions that

resulted. Figure VIII-'* shows the most blatant contrast found in the

dialogs.

If visual informdtion i3 shared, that common information can

be used in descriptions. In the protocols with restricted dialog and

limited vision, E often asked for a still picture in order to use this

kind of information. The dialog fragment in Figure VIII-5 is an

example.

VIII-17

..—--^^^—^--~

WITH VISION:

E: You have a top piece with a KNURLED section that you
can take ahold of.

A: What's a knurled section?

E: You've got your fingers on it.

WITHOUT VISION:

E: Now underneath is what they call a cap assembly. It
has a KNURLED face around it.

A: What does knurled mean?

E: Little lines running up and down on it so you can
take ahold of it.

Figure VIII-1. DESCRIPTION OF "KNURLED" WITH AND WITHOUT VISION

E: Use the ratchet wrench on the top and hold the nut
stationary on the bottom with a box wrench.

A: What is a ratchet wrench?

E: Show me the table.

E: The ratchet wrench is the object lying between the wheel
puller and the box wrenches on the table.

Figure VIII-5. USING VISION TO HELP WITH A DESCRIPTION

The difficulty of giving descriptions without the aid of

shared visual information is best illustrated by the fragment in Figure

VIII-6. A more extensive discussion of the descriptions found in the

dialogs and some of their characteristics is presented later in Section

D.7.

VIII-18

II ilirmniiiniil-rntn—"—;- - -^, ,-... .—^ - —--^ *-. -- -,->. , -..aaaa—MMS^MBfaaL..

E: O.K., uh . . now, we need to attach the um . . conduit
to the motor, .. the conduit is the uh . . the covering
around the wire that you . . uh . . were working with
earlier. Um, there is a small part urn . . oh brother

A: Now, wait as... the conduit is tvie cover to the
wires?

E: Yes. and . . .

A: Oh, I see, there's a part that . . a part that's supposed
to go over it . . .

E: Yes . .

A: I see . . it looks just the right shape, too. Ah hah!
yes . . .

E: Wonderful, since I did not know how to describe the part!

Figure VIII-6. DIFFICULTIES IN EXPLAINING AN UNFAMILIAR
COMPLEX OBJECT

Four of the tea task dialogs form the core data of the

analysis: two each of the dialogs occurring unaer the two restricted

language conditions [Conditions (c) and (d)]. These conditions were

selected because they were closest to the situations that would occur in

any person-computer interaction in th. ..car future. Since each of the

dialogs took between ^0 minutes and two hours and consisted of between

120 and 250 line^, this constitutes a large body of data.

Most of the attributes discussed below occurred to some extent

in all of the dialogs. Interesting phenomena that occurred in isolated

dialogs also will be pointed out.

VIII-19

.. ^ai.^^--;■■._■; .„. ^~~--. - T^.^,,^ -., -.i^^i -:.-

In addition to the ten task-oriented dialogs, five data base

dialogs were analyzed. Two dialogs were chosen as representative of the

dialogs collected during the first experiment. All three dialogs from

the second set were analyzed. Again, although the number of dialogs is

small, the amount of data in each dialog is quite large. The dialogs in

the first set are over 100 lines long and represent approximately 30

minutes of speaking time. The dialogs from the second set each

represent over an hour of dialog. It was necessary to look at long

segments of dialog to get the data needed, since the range of discourse

phenomena was of interest rather than statistics on what occurs most

often.

2. THE STRUCTURE OF THE DIALOGS

a. TASK-ORIENTED DIALOGS

The most interesting characteristic of task-oriented

dialogs is that they have a structure that closely parallels the

structure of the task „eing performed. The '/hole dialog is segmsnted

into subdialogs, which themselves may break down into subdialogs, just

as the task breaks down into subtasks, which themselves may be

decomposable. For example, the 'task' of making a cake has subtasks of

preparing the batter, actually baking the cake, and icing the cake. A

recipe (or television cooking program description) contains distinct

parts for each of these subtasks. Likewise, the compressor task of

installing the pump breaks down into attaching the pump, attaching the

VIII-20

^*^. 'mil rrln--r-rt'---TT r-"-fcif'riB "nr-fTTVnl-lrii"-' - ^.^s^=^^±-. =^r. ——7- --■■ M T -^\\\ liiiri'iiifir " 'iliMliiin

pump pulley, attaching the belt, and several other tisks. Attaching the

pump breaks down into positioning the pump and actually attaching it.

An analysis of the dialogs for the pump installation task reveals that

they fall into subdialogs paralleling these subtasks. The

correspondence between task structure and dialog structure plays a

crucial role in determining tho context in which an utterance is

interpreted. It is particularly important for the interpretation of

references (see Section D.3).

Several linguistic devices indicate the segmentation of a

dialog. As an example, consider the use of "when". The subdialog

corresponding to a task ends, or is 'closed', when the tark it parallels

is completed. If reference needs to be made later to an object or

action in that subdialog, the subdialog must be reopened. "When"

provides one means jf accouiplishing this. The utterance, "A little

metal semicircle fell off when I took the wheel off" is meant to

reinvoke the entire context of taking the wheel off in order to

determine the meaning of the metal semicircle falling out.

Thsre are different ways to open and close subdialogs.

The most common opening is a statement of the goal of the task.

Frequently this is preced ' by "next" or "the next step is". If A opens

the task, just the plain task description may be used. For example,

"I'm tightening the motor mount bolts". Correspondingly, the most

frequent kind of task closure is a report of completion of the task.

Frequently, this is preceded by an "O.K." Section D.2.d contains mo-e

examples.

VIII-21

" '-' - ""r^r-—i riT'

Another indication of the segmentation phenomenon comes

from the use of pronouns to refer back over long portions of discourse.

After a subdialog is closed, a pronoun may be used to refer to objects

in the higher level task t ^at contains the subtask corresponding to the

subdialog. T'.iis is the case in the dia1og example of Figure VIII-7.

E: Good morning. I would like for you to reassemble tae
compressor.

E: I suggest you begin by attaching the pump to the platform

. . . (otl- :r subtaaks)

E: Good. All that remains then is to attach the belt housing
cover to the belt housing frame.

A: All right. I assume the hole in the housing cover opens
to fie pump pulley rather than to the motor pulley.

E: Yes that is correct. The pump pulley alsc acts ^s a fan
to cool the pump.

A: Fine. Thank you.

A: All right the belt housing cover is on and tightened down.

(30 minutes + 60 utterances after beginning)

E: Fine. Now let's see if it works.

Figure VIII-7. FSONOUN USE REFLECTING DIALOG STRUCTURE

The completion of the belt housing cover attachment

closes the jubtask of installing the cover. The "it" in the last

utterance refers to the air compressor last mentioned over a half-hour

VIII-22

 -^

before. This use of "it" is not unique. In fact, similar expressions

containing "it" references to the air compressor occurred in three of

the four core dialogs. There were also several instances of pronoun

references skipping over smaller pieces of dialog. In every case, the

pieces skipped over were whole segments relating to some distinct

subtask or subtasks.

This segmentation is a reflection of an important

underlying phenomenon: as different parts of the task are performed,

different objects and actions come into 'focus'. The segmentation of

dialogs is a reflection of the shifts of focus with time. When t

subtask is ccmpleted, it fades from focus. However, the higher level

(parent) task remains in focus. Hence, when a sibling subtask is

performed, the concepts in the parent — but not those in the completed

subtask — are in focus and affect the use of referring expressions like

pronouns. This notion of focus is closely related to Chafe's notion of

'foregrounding' (Chafe, 1972). Both are discussed in more detail in

Chapter IX and in Grosz (1977).

b. THE DATA BASE DIALOGS

The data base dialogs did not exhibit the same kind of

segmentation, but there was definite evidence of groups of closely

related utterances. Tho amount of segmentation evident in these dialogs

differed according to the problem being solved.

VIII-23

The dialogs for the ohart-filling-out problems had no

global structure although there were sequences of related utterances.

The sentence-to-sentence links were most evident from the use of

elliptical sentence fragments. The sequence in Figure VIII-8

illustrates one utterance providing context so that only a phrase

suffices as a complete utterance in that it conveys a whole question.

As Chapter X shows, the use of ellipses is a local discourse feature; it

operates only between adjacent utterances.

What's the surface displacement of the Lafayette class?

7300 tons.

What's the submerged displacement?

8200 tons.

The length?

425 feet.

Nucbex' of torpedo tubes?

Figure VIII-8. A SEQUENCE OF ELLIPTICAL SENTENCE FRAGMENTS

The dialogs for the short problems exhibit a slightly

larger grouping of utterances. Some evidence of shifting of focus over

subprobleras appears. The dialog fragment in Figure VIII-9 is a self-

contained unit. The immediately preceding utterance was about British

diesel patrol submarines. The utterances following this subdialog were

about submarines other than the Yankee and the Hotel II. The subdialog

VI11-24

Bääte^Sü^mm^msm^

S: What classes of USSR submarines are there?

A: <answer>

S: How many of tho are nuclear ballistic missile sub-
marines?

A: Two.

S: What are they?

A: Yankee, Hotel II.

S: How many tubes does the Yankee have?

A: Eight.

S: "That's torpedo tubes, right?

A: «Eight.

S: And, how many torpedo tubes and missile launchers for the
Hotel II?

A: Ten torpedo tubes, three missile launchers.

S: What is the submerged speed for the Yankee and Hotel II?

\: <answer>

Figure VIII-9. A DATA BASE QUERY SUBDIALOG

itself narrows from considering all Soviet submarines to asking about

attributes of two particular submarines. There is a short subdialog

inside the subdialog itself. The two starred utterances form a

clarification-question/answer pair. Although such segments appear in

these dialogs, there are not very many of them. This is the longest

sequence that appeared; the others were only six to eight utterances

VIII-25

äMr

long. Most of the dialog still consisted of sequences of utterances

related locally but without structure.

The dialogs for the longer problems exhibit more

structuring. Figure VIII-9 gives an example. The questioning moves

from determining elements of a particular class of submarines to a

subdialog covering attributes of two of those ships. Openings and

closings of these subdialogs are less clear than those for the task

dialogs. As a result, the segmentation is harder to detect.

What distinguishes the data base dialogs most from the

task dialogs is the lack of any intermediate structure. There are local

discourse phenomena tying adjacent utterances together, and there is

some structure provided by the overall problem, but there is little

relating the local segments together into bigger segments. As the

problems posed to the subjects get larger, intermediate level

organization appears. What seems to happen with these problems is that

a solution breaks down into some recognizable substeps and the dialogs

fall into segments according to these substeps. There is a continuum,

then, of which we have only a few sample points, from the totally

unstructured chart-filling dialogs to the highly structured task

dialogs.

VIII-26

"--- "■'■ ---^-^-^ '

c. KINDS OF SUBDIALOGS

The subdialogs we have discussed so far are task or

problem related; they can be linked directly to some substep of the task

being attempted. Several other kinds of subdialogs occur: g^ eral

question answering, clarification, and communication channel related.

Some of these an» quite short, only a pair of utterances, but they are

all distinguishable as separate from the surrounding dialog and cohesive

as a unit.

General question-and-answer subdialogs include subdialogs

related to identifying objects in the domain (e.g., "What's a motor

bolt?"), describing tool use ["How is this (wheelpuller) used?"],

identifying the right tool to be used or seeing if a better tool is

available (e.g., the expert asking "What tools are you using?"), making

sure no blatant error occurs in performing the task (e.g., the

apprentice asking, "Will this require some effort?"), and testing

whether a task was performed correctly (e.g., "How tight should the

bc1cs be?"). The data base dialogs contain only a few general question-

answering dialogs; they are all concerned with terminology, e.g., "What

do you mean by deployment?"

Two kinds of subdialogs fall in-between subtask and

general question answering. They are clearly related to the task being

done but are also general questions. First, there are questions about

why a certain part or step is needed (e.g., "What is the key for?").

VIII-27

fa-K^a—i - — ---"■-' - - ■ ,. - - --■ ■ -^ . - . _-

Second, there are requests by the apprentice for alternative ways of

doing some task (e.g., "Do you have another way to get the nuts in

underneath the platform?").

Both the task and the data base dialogs contain pairs of

exchanges whose purpose is to determine that the previous message was

heard correctly or to have a missed message resent. The middle two

lines of the dialog in Figure VIII-10 are an example of this kind of

subdialog. Requests for retransmission include statements like "What

was that again?" and "Please repeat the last instruction."

A: One of them is at 14 degrees E, 31* degrees N.

S: 34 degrees you said?

A: Yes.

S: O.K.

Figure VIII-10. A SUBDIALOG CHECKING PREVIOUS MESSAGE

There are also subdialogs where one participant wants to

make sure that the other participant means the same thing as he does.

This kind occurs in the starred sequence of the dialog fragment of

Figure VIII-9.

VIII-28

d, OPENING AND CLOSING OF SUBDIALOGS

Task subdialogs may be opened by either expert or

apprentice. In the dialogs that were examined, expert openings were

always statements of the subtask goal. Sometimes the statement was

augmented by a sequencing expression such as "next" or "now".

Subdialogs opened by apprentices also included subtask goal statements,

but these could be embedded either in statements indicating the task was

being, or about to be, performed, or in statements requesting

information on how to perform the task. Frequently, a pair of

utterances serves to open a subtask. This happens when A asks for the

next task, as in the following:

A: What should I do now?

E: Remove the pump.

Alternatively, a pair may result rrom A asking how to do some task,

leading to E giving a subtask specification, as in the pair:

A: How do I remove the pump?

E: First removs the flywheel.

Such pairs occurred both when A knew what task was next but not how to

do it and when E gave the task and A needed more specification. As an

example, consider the preceding four utterances as part of a single

dialog.

Task subdialogs that occurred when the apprentice ran

into trouble were opened by a statement of the problem. Similarly,

subdialogs for checking task performance were opened by the expert

VIII-29

- ■ - ----■ ■ Milii

asking if some goal had been achieved or was in the process of being

achieved.

The most typical closings of subdialogs were through

statements like "O.K." or ones indicating that a task goal was

completed. Often a combination of these was used. These closings are

explicit; implicit closings also occurred quite frequently. Typically,

A would indicate that a subtask was finished by asking for the next

subtask. In these cases, the same statement might serve both to close

an old subdialog and to open a new one.

Question-answering subdialogs are always opened by a

question about some part, tool, task, or proolem. In the protocols

collected, some of these subdialogs were closed with a direct antwer.

In other cases, a long series of exchanges occurred before the answer

was arrived at. Only some short sequences contained a closing "O.K."

or other explicit indication from A. Almost all of the longer sequences

ended with such a communication.

e. MULTIPLE USES OF O.K.

Robinson (1975a) pointed out the use of "O.K." as an

acknowledgment that the preceding message has been received. This is

only one of four meanings this small word took on in the dialogs. In

particular, "O.K." was used at different times to mean:

VIII-30

: ---— ■ —

• I heard you

• I heard you and I understand

• I heard you, I understand, and I am now doing (or will do)
what you said

»I'm finished (O.K. what next?)

Figure VIII-11 contains examples of each of these meanings.

O.K. -- I HEARD YOU:

E: Loosen the motor bolts and slide the motor toward the
pump.

A: O.K. What's a motor bolt.

O.K. -- I HEARD YOU AND I UNDERSTAND:

E: That's the center portion of the wheel. Point at where
you think it is. Show it to me please.

A: O.K. Just a sec.

O.K. — I HEARD YOU, I UNDERSTAND, AND I'M DOING WHAT YOU SAID:

E: First loosen the two alien head setscrews holding it
to the shaft, then pull it off.

A: O.K.

A: I can only find one setscrew. Where's the other one.

O.K. — I'M FINISHED:

A: O.K. All the bolts are off.

Figure VIII-11. DIFFERENT USES OF "O.K."

Each of these uses of "O.K." requires a different

response from the hearer. Often the indication of which one is meant

comes from the next statement in the dialog. Although the time between

VIII-31

, _._ -.-. - ■ . i II II II'11 - nil i I i ■—--""-*—-— ^ ._.. y-^^.^:^. _ - .-^^ .- > „.._. :..■ ^^.-~^=^-^^—**..-^L

the preceding statement and the "O.K." is often a clue to which meaning

is intended, it is not always a reliable indication.

The main problem for building a computer system comes

from distinguishing the first three levels of "O.K." from the fourth.

In the task domain, level 2 never occurred where level 3 was applicable

(though one can imagine it in some situations, like a child being told

to make his bed). The distinction between level 1 and levels 2 and 3

will be immediately evident from the utterance following the "O.K."

Furthermore, no ambiguity problems can arise from this distincton since

it does not have any impact on charge of focus. Level 4, on the other

hand, does indicate a change of focus: 2 once a task is completed, focus

shifts to a new task. At present, the best strategy for intarpreting

"O.K." seems to be to wait for the next utterance to determine if a

shift of focus is intended.

Figure VIII-12 contains a dialog fragment illustrating

one of the problems that arise from the use of "O.K." for closing a

subdialog. In line (4), A indicates completion of part of the 'open-

valve' task. In line (5), E gives the next task; he has closed the

whole 'open-valve' task. However, from line (6) it is clear that A

thinks another subtask may be involved in the 'open-valve task'. To

answer (6), E must re-open the closed (for him) 'open-valve' task and

its corresponding subdialog.

VIII-32

EL-K^WV i ■ r«a«- ^

(1) E: Open the top of the valve and let the water out. Just
open the faucet up on top. Just like you were going to
turn the water on.

(2) A: Oh, like I'm going to turn the water on. O.K.

(S'1 E: Now, that'll relieve the pressure.

(4) A: O.K. some water came out.

(5) E: Now the next thing you do, you take an alien wrench .

(6) A: Do I leave it on or turn it back off?

(7) E: It doesn't make any dfference.

(8) A: O.K.

Figure VIII-12. A MISUNDERSTOOD "O.K."

f. MULTIPLE OPEN 3UBTASKS

The preceding discussion has centered around the idea of

only one task being under discussion at any time and hence providing

focus for the dialog. However, some examples of more than one focus

were encountered in the dialogs analyzed. These fell into two

categories: 'hypothetical' and 'competition'. In the hypothetical case,

one task was being performed, but a future one was being considered.

Although the task being performed was a lengthy one, there were no

problems, so *:he apprentice asked about how to perform some future task,

or what would happen if some task were performed differently. In all

such instances, both A and E seemed comfortable with the multiple foci.

VIII-33

»i ^-■ilrtw 1, In

In the competition case, however, E and A appeared to be competing for

who would determine what would get discussed. Although both could

handle the dual foci, at least one of the two always seemed annoyed.

The annoyance was manifest both through repetition of statements and

from the tone of message communicated orally. In all cases, the

maintenance of multiple foci did not last more than two or three

exchanges.

3. REFERENCE

The importance of the link between task structure and dialog

structure and the need for representing focus of attention are most

clearly seen when examining the use of 'referring expressions'. The

utterances in a dialog (or any discourse) comprise two kinds or

information. Some of the information has been introduced previously

into the discourse; in previous research, such information has been

labeled 'given' or 'old'. Other information is 'new'; it is being

introduced into the discourse by this utterance. Understanding an

utterance requires identifying the given concepts in memory and

attaching the new information to them. The term 'referring expression'

denotes those parts of an utterance that communicate given information.

Determining the information and processes needed to identify

the object meant by a referring expression, resolving, that is, a

reference, was a primary goal of the dialog analysis. Because definite

noun phrases are the most common form of referring expression, the

VIII-31»

...-.■ ■-.■■^J. .-.-... ^ - -i. ■|fMi.irJiaJ--miTriir rm. J„^„:

analysis focused on the use of these phrases. For some of the analysis

it will be useful to distinguish two kinds of definite noun phrases:

pronouns and nonpronominal definite noun phrases. In the following

discussion, the term 'DEFNP' wll be used to refer to nonprcnominal

definite noun phrases only. The basis of this distinction arises from

the different processes needed for resolving pronoun references and

DEFNPs.

Resolution of DEFNPs is basically a retrieval process. The

context in which an utterance appears — both the surrounding non-

linguistic environment and the global linguistic context of the

preceding discourse — is crucial to the resolution process for the

DEFNPs in the utterance. The immediate linguistic context and,

especially, the sentential context of the referent itsalf, are not

important. For most pronouns, the opposite is true. Unlike DEFNPs,

pronouns carry alnost no information themselves. The immediate

linguistic context of the preceding utterance (and preceding clauses in

the same utterance) supplies candidates for the referents; sentential

context provides restrictions for choosing among them. Global context

is not very important. The exception for pronouns is the previously

mentioned use of pronouns tc refer back over long portions of dialog.

In these instances, the global context supplies candidates. The process

is basically one of retrieval. However, the lack of samantic

information in the pronoun makes sentential context necessary for

choosing among the candidates. This use of pronouns is similar to the

VIII-35

-"■■

'pragmatic anaphora' in Har.kamer and Sag (l976). In essence, resolution

of these pronouns, like DEFNPs, is basically a global semantic process.

Resolution of other pronouns is mo-"^ local and more syntactic.

There are several ways in which the object referred to by a

DEFNP may be evident in the discourse contexc. The simplest case is

when the object was explicitly mentioned in a preceding utterance.

Chafe (1972) pointed out another use of DEFNPs: to refer to objects that

-i^e foregrounded'. These are objects that are not explicitly mentioned

in the discourse but are so closely coupled to some objoct which has

been that they may be considered "in the consciousness of the hearer"

(Chafe, 197^) and, hen-.e, may Ka referred to definitely. For example,

in the sequence,

E: Are you using the socket wrench?

Ä: Yes. The socket fell off ...

"the 'jocket" has not been previously mentioned but is foregrounded when

"the socket wrench" is ident .led.

A problem of particular interest in resolving references is

determining '-'..ere to search for referents: how far back in the dialog is

it necessary to go? Searching the whcie preceding discourse may be

quite time consuming. The necessity of considering foregrounded

concepts as well as those explicitly mentioned wakes searching the whole

dialog unreasonable.

VIII-36

,_-._ ^^-----^---^i.^. -

Chafe (1972) noted that the time (or, its analog, distance, in

a text) between utterances affected whether or not a definite reference

could be used. He also remarked that it was not clear how much

discourse could occur before an object ceased to be foregrounded. Most

language understandinc systems use some time measure as the sole basis

for considering objects as referents cf definite noun phrases. The

system of Norman et al. (1975) has a concept of 'working memory', but

objects must be explicitly reraentioned in order to stay in this memory.

The examples presented in Section D.2 illustrate that time alone is not

a sufficient determiner. Whole segments of dialog may be skipped over,

and objects not mentioned for a long time may be referred to by definite

noun phrases (even pro^uns!) .

Examination of the references occurring in the task dialogs

showed that references operate inside of subdialogs. That is, a? long

as a subdialog is open, objects introduced into it are referred to by

definite noun phrases. We consider these objects 'in focus'. When a

subdialoi is closed, the objects inside it leave focus and require

different references (unless the whole subdialog is reopened ur they are

first reintroduced in some other subdialog). When a subtask is

completed, the definite noun phrases may refer to objects in higher

level tasks. For illustrative purposes, consider the simple tree task

structure of Figure VIII-13 When task T6 is completed, there is a

return to the context of T2 and possibly directly to T1, but there can

be no references to objects c"ly in T4 or T5. Objects in T4-T6 cannot

VIII-37

m^kSiämamm. Ä^eB-tiai^M

FIGURE VIII-13 A SIMPLE TASK MODEL FOR ILLUSTRATING DIALOG "POPS"

be directly referenced from T7 or T8. When T8 is completed, there may

be a 'pop' up to T3 or T1.

Most references can be resolved in terms of the preceding

utterances in the subdialog, but this is not of itself sufficient for

establishing the existence of segmentation mentioned previously. Those

utterances are also the most recent ones. A simpler explanation of the

reference retrieval process can be made in terms of the referent being

closest in time. If we consider the references that occur after a

subdialog has been closed, we can see a place wherQ the subdialog

explariation is more powerful than this 'closest in time' explanation.

When a subdialog is closed and focus shifts back to a higher level task,

VIII-38

the cbjects in that higher task get referred to definitely even though

they have not been mentioned recently. The use of DEFNPs in this way

might be expected, but the use of pronouns for objects not recently

mentioned is certainly striking. The example in Section D.2.a is hard

to account for if task and dialog structure are ignored.

A secord indication of structure comes from the use of plural

DEFNPs. Consider again the task structure of Figure VIII-13 and suppose

that some bolts B1 are involved in task T2 and another set B2 in task

T3. Then, even if some utterance in the end of the subdialog for T2

contains the phrase "the bolts", any reference to "the bolts" once T2 is

closed and T3 opened will be taken to mean the set B2. This is true

with a combination of singular and plurals also. So if T2 involves a

single bolt B, the phrase "the bolts" inside of T3 will not be taken to

include B.

In this connection, it is important to point out tnat people

are sensitive to the distinction between singulars and plurals. In the

subdialog of Figure VIII-ll, E indicates the ambiguity of the phrase

"the alien screw" by pointing out the fact that there are two (in

addition he indicates that they both need to be tightened).

This subdialog may be contrasted with ^he one of Figure

VIII-1q,. Here even though the two screws have been mentioned within

one exchange of the wheelpuller screw, the phrase "the screw" is totally

unambiguous. Completion of the tightening task has closed one subdialog

and removed those two screws from focus.

VIII-39

Check the alignment of the two pulleys before you tighten
the setscrews.

Yes. I'm doing that now.

O.K.

Tightening the alien screw now.

O.K. Thank you.

That's finished.

By the way, there are two setscrews.

Figure VIII-14. SINGULAR/PLURAL DISTINCTIONS

A: How do I remove the flywheel?

E: First loosen the two alien head setscrews holding it to
the shaft, then pull it off.

A: The two screws are loose but I'm having trouble getting
the wheel off.

E: Use the wheel puller. Do you know how to use it?

A: No.

E: Loosen the screw in the center and place the jaws around
the hub of the wheel, then tighten the screw . . .

Figure VIII-15. EFFECT OF SHIFT IN SUBDIALOG ON DEFNPS

Another indication of dialog structure and segmentation comes

from consiJering a dialog with groups of lines removed. If a whole

subdialog is removed, the dialog remains coherent. Although it is

VIII-40

sometimes possible to delete some utterances that are not whole

subdialogs without damaging coherency, such removals often result in

dialog fragments that do not make sense. Removing a question and its

answer may not affect coherency. Removing a subdialog opening or

closing does.

The one point where definite references in one subdialog get

resolved in terms of objects in a closed subdialog is at the crossover

point, the set of utterances that provide the transition from one

subdialog to the next. The use of "them" in the sequence

A: I've got all four bolts in place.

E: Good. Now tighten thetL up.

is net only acceptable, but practically necessary. "The bolts" does as

well, but "the (four) pump mounting bolts" is confusing; it seems to

indicate another set of bolts. This confusion is present even though

A's statement with E's "good" ends ono subtisk (cl sing the

corresponding subdialog) and the remainder of E's statement opens a new

subdialog. The objects in the just closed subtask are still in focus

through the transition to the new subtask because the two tasks are

contiguous in time. Hence, at such transition points 'closeness in

tin.3' provides focus.

In a structured discourse, both time and structure need to be

taken into account in resolving references. Previous systems have been

able to rely on time as the sole basis of definite noun phrase

resolution because they heve been concerned with unstructured tasks. In

VIII-HI

Winograd's (1971) blocks task any instruction can be followed by any

other. Although there is utterance-to-utterance cohesion, there is no

global cohesion (other than everything being about blocks). This is

exactly what happens in the data base domain, too. Norman et al.

(1975) report that the time-based algorithm used in their system work?

on most references in texts. But textual material is edited according

to a set of rules that emphasizes the time aspect of reference. To that

extent, texts are atypical of the kinds of language people use in direct

communication. The dialogs are perfectly comprehensible when being

read; it is cletu that segmentation is usable in processing text as well

as in interactive forms of communication.

4. KINDS OF UTTERANCES

There are marked differences in the kinds of utterances

occurring in the task dialogs and in the data base dialogs. Syntactic

differences include such things as differences in the number and kinds

of WH-questions and differences in the ratios of questions, imperatives,

and declaratives. Several of these are enumerated in Section IV, The

Langu ge Definition, in Walker et al. (1975). There were al^o distinct

differences in the kinds of utterances in these two sets of dialogs.

These differences are manifest on two levels: 'utterance purpose', the

overall reason for the utterance (e.g., to convey task information); and

'utterance type' — the form in which the utterance conveys information

(e.g., a request or a response).

VIII-M2

-—-—^- -— —-■■ ■-

Almost all of the utterances in the data base dialogs are

questions whose purpose is to get information out of the data base (that

being the nature of data base query). In the task domain, there was a

wider variety of utterance purposes and also of utterance types.

Utterances served three purposes. The majority were 'task related';

they involved such things as describing task steps, identifying parts

and tools, and describing progress on a task. Secondly, utterances

served as 'sensory substitutes'; these included requests from E, such as

"Show me ...", and Statements by A, such as "I'm pointing at ...".

Finally, some utterances served to establish that the communication

channel was still open, for example, the question "Can you hear me?" In

addition, several of the "O.K.s" served as channel checkers as well as

providing task information.

There were five types of utterances. Most of the utterances

were 'requests' for information or 'responses' to such requests. These

types include questions about task steps, which tool to use, and how a

task step was progressing, and the answers to such questions. Often,

however, information was offered without such requests. Some aoprentice

utterances were 'reports' of progress. These are quite similar to

answers to requests like "What are you doing now?" but differ in that

they also indicate A's need to communicate his progress. Similarly, E

'imperatives' are quite similar to answers to the question "What should

I do next?" but convey E's feeling of task progress rather than A's.

Both reports and imperatives are often followed by utterances that serve

VIII-Ü3

merely to 'acknowledge' that a message has been received. "O.K." and

"Yes" often function in this way.

Each type of utterance may be followed only by a subset of the

other types. Imperatives and reports may be followed by either

acknowledgments or combinations of an acknowledgment and a request. In

the latter case, if the request immediately follows the imperative or

report, the acknowledgment is implicit and may be omitted. Typical

requests following imperatives involve questions about parts of the

task; typical requests following reportc involve checking that some

subtask has been done correctly. Reports may also be followed by

imperatives. Again, the acknowledgment is implicit.

With one exception, requests and responses come in pairs. In

the usual case, requests must be followed by a response. The response

may be followed by anything other than another response. The exception

occurs •■'ith erabeddings of questions and answers as in the dialog of

Figure VIII-16. In this case a request is followed by another request.

Correspondingly, the response is followed by another response. Finally,

acknowledgments may be followed by imperatives, requests, or reports.

In a sense, an acknowledgment signals that the acknowledging person is

ready to receive another message.

Figure VIII-17 contains a segment of dialog containing the

five types of task utterances. In this example, each of the imperatives

and reports is followed by an acknowledgment. In several cases, the

VIII-im

A: Should I put the bolt on next?

E' Are the setacrews tight?

A: Yes.

E: (OK)(Then) you can put on the belt.

Figure VIII-16, EMBEDDINGS OF REQUESTS AND RESPONSES

acknowledgment is immediately followed by a request. In these cases,

the acknowledgment itself is optional. There are examples, in other

places, of similar imperatives being followed by requests for

information. A similar situation holds for reports; although in this

fragment all reports are followed only by acknowledgments, it is also

possible to follow the\ with requests or with a combination of
v

acknowledgment and request.

The utterances in the dialogs vary somewhat along another

dimension, that might be called 'response influence': the amount of

influence an utterance has on the form and content of the utterance that

follows. It is difficult to point at all of the factors influencing

this dimension and many utterances are neutral with respect to it, but

others are clearly marked. Consider the two sots of utterances in

Figure VIII-18. Utterance Al is neutral with respect to influence.

Either party could take over the dialog at this point; neither the form

nor the content of the next utterance is indicated, utterance B1, on

the other hand, puts responsibility for the form of the following

VIII-H5

- -, ^ i ■ - ■

E: The pump pulley should be next.
IMPERATIVE (this direction follows a report indicating
completion of the preceding task)

A^ Yes uh does the side of the pump pulley with the
holes face away from the pump or towards it?
ACKNOWLEDGMENT FOLLOWED BY A REQUEST FOR INFORMATION

E: Away from the pump.
RESPONSE

A: All right.
ACKNOWLEDGMENT

E: Did you insert the key, i.e., the half-moon shaped
piece?
REQUEST

A: Yes I did.
RESPONSE

E: Be sure and check the alignment of the twc pulleys
before you tighten the setscrews.
IMPERATIVE

A: Yes I'm just now fiddling with that.
ACKNOWLEDGMENT FOLLOWED BY A REPORT

E: O.K.
ACKNOWLEDGMENT

A: Tightening the alien screw now.
'REPORT

E: O.K. Thank you.
ACKNOWLEDGMENT

A: That's finished.
REPORT

Figure VIII-17. UTTERANCE TYPES IN A SAMPLE DIALOG FRAGMENT

VIII-46

Set A: 1. A: I'vo finished installing the strap.

2. E: The pump pulley should be next.

3. A: Yes. Does the side of the pump pulley with the
holes face away from the pump or towards it?

Set B: 1. A: Now what should I do?

?.. E: Install the pulley on the shaft.

3. A: What is the first thing to do in installing the
pulley?

Figure VIII-18. TWO SIMILAR DIALOG FRAGMENTS FOR COMPARING
RESPONSE INFLUENCE

utterance on E. Both utterances A2 and B2 are neutral; they are quite

similar in what they convey. The responses to them are quite different,

though. Utterance A3 exhibits strong influence over the response to it.

One of the two alternatives must be picked or some explanation of why

neither war given. The preferred response is a simple phrase choosing

one of the two opticis. Utterance B3 is harder to classify. It does

not seem entirely neutral since it indicates no choice or narrowing of

alternatives by A, but it is not as clearly an abdication as is B1.

Imperatives and yes/no questions exhibit strong influence over the form

of responses to them.

Subjective evaluation of the dialogs indicates the lack of

response-influencing 'itterancea from As who were unsure of the task, and

a higher presence in the dialogs with experienced As. Before this kind

VIII-U7

wm

of information can get used in a language understanding system, more

analysis is needed both on how the information is conveyed and how it is

used. One clear use, though, is to indicate familiarity or lack of

familiarity with a problem.

5. ELLIPSIS

Elliptical sentence fragments are phrases that function in

context as full sentences, although they are only parts of what would

constitute a complete sentence. The use of fragments in the task

dialogs was quite different from that in the data base dialogs. In the

data base dialogs, the fragments all formed part of a series of

questions. In each case, the meaning of the fragment could be obtained

by finding a similar phrase in the preceding question and substituting

the new phrase for the old. An algorithm for handling this kind of

fragment is presented in Chapter X. In the task dialogs, fragments

occurred as * .^sponses to previous requests for information and as

qualifying phrases on immediately preceding utterances. As a result,

the fragments in the task dialog were patterned on and needed to be

interpreted in terrrs of the immediately preceding utterance.

The most common form of fragment used in reponse to a request

was the one that f^u into Uic '»H phrase of the preceding question. This

occurs, for example, in

E: What tools are you using?

A: My fingers.

VIII-U8

A's response "my fingers" matches the phrase "what tools". Arriving at

a complete utterance requires a set of standard syntactic

transformations like chang: ig the "you" to an "I". Robinson (1975a)

contains a description of the transformations required to interpret this

kind of fragment. Secondly, a fragment may occur in response to a

choice question. This is the case in the pair

E: Does the side of the pump pulley with the holes face
away from the pump or towards it?

A: Away from the pump.

(In a sense, this is a restricted form of a WH-question. The WH-phrase

is replaced by a choice phrase. This could be phrased as a "Which way

..." question).

The use of a fragment to qualify a preceding utterance is

illustrated by the sequence

E: Place the key in the slot.

A: Flat side upward?

In each of these cases, the full sentence needed to get an

interpretation of the fragment can be derived from transformations on

the preceding utterance. When fragments appear as answers to questions

(the first two examples), the questions themselves provide an indication

of where the fragment, fits in. In the last example, this is not the

case. There i? no place marked by a WH-phrase to indicate a slot for

the fragment. Instead, the fragment fills an optional slot in the

sentence structure (for verb complements), which was not used in the

first utterance of the pair.

VIII-U9

6. LEXICON

Analysis of the words occurring in the dialogs is necessary to

determine both the size of lexicon and the breadth of concepts present.

Section IV, The Language Definition, in Walker et al. (1975) contain

a description of the kinds of words found in the data base dialogs. In

this section, only the task-oriented dialogs will be considered. It the

following analysis, different forms of the same root were not

distinguished. For example, "bolt", "bolted", and "bolts" were treated

as identical.

One of the most interesting results was that only 520

different words occurred in the four core dialogs. (There were

approximately 8000 words in the dialogs — not including occurrences of

the articles "a" and "the"). Malhotra's (1975) results confirm our

finding that only a small number of words seem to be required for

communication in a limited domair.

Of the 520 words occurring in the four core dialogs, only 100

are used more than ten times. Although this suggests thr.t most of the

communication is achieved by a small core lexicon, it is important to

realize that many words occurring only once or twice are crucial to

conveying events that occur and objects that are used only a few times.

Half of the words are unique to a particular dialog. However, many of

these words are just differences in expressing similar concepts.

However, 90 words occur in all four of the dialogs. Of these 90, 7^4 are

VIII-50

i^fetuA:,,^—:-.^- —L ,.

among the 100 words used over ten times. The list appears in Figure

VIII-19. The starred words were used fewer than ten times. Since the

number of different words in each dialog ranged from 236 to 303,

approximately one-third of the words in each dialog occurred in each of

the other three dialogs as well. If the dialogs are separated into

pairs according to task, then the pairs in each grouping share over half

of their words (U2 and 15^). These results suggest both a large

overlap in concepts, and a large variety in how concepts are expressed.

a ■again all alien •also and at back
be belt bolt box by cai. do •^asy
•enough »fit from get go good •hand •hard
have hold how I if in it just
key know •like •long loose •more motor no
not now of off ok on one or
out •over place plate please pulley pump put
screw see •seem should show slide so •some
tank that the then there they tight to
top •toward turn two up use way we
what •when where which will with •work wrench
you yes

Figure VIII-19. WORDS OCCURRING IN ALL FOUR DIALOGS

The two 'naive apprentice' dialogs share 60$ of their words.

Correspondingly, only 20% of the words in each of the naive apprentice

dialogs are unique to that dialog. The other two dialogs each had

approximately 30$ unique words.

It is dangerous to generalize from such a limited sample;

speaker idiosyncrasies cannot be filtered out. However, there are some

clear trends, giving indications for system building and suggestions for

VIII-51

future studies. Approximately 140 of the words in the dialogs were

task-dependent words; as the task shifts, the need for these words

changes. The overlap between the two naive apprentice dialogs suggests

that words applicable to low level task descriptions (e.g., specific

simple tools, like screwdrivers) get used more often in these dialogs.

If we add a fifth dialog to the analysis that covered a

different task but also used an inexperienced apprentice, similar

results occur. The number of words increases to 580. Again, over half

of the words are unique to some particular dialog. Only 61 words are

shared by all of tbo dialogs. These words, grouped by category, appear

in Figure VIII-20. If we consider the three naive apprentice dialogs,

the nimber of shared words is 88. Twenty-six of these words, listed in

Figure VIII-21, are missing from at least one of the experienced

apprentice dialogs. The number of words stored by the naive apprentice

dialogs is less than the number shared by the four 'task-in-common'

dialogs, but many of the additions are clearly from more detailed advice

being given (e.g., "screwdriver", "align", and "tool").

Although the overlap of words is interesting, it is important

not to ignore the large number of words that are unique to some one of

the dialogs. The overlap means that, for a given task, a relatively

itmall number of words (significantly less than 1000!) will suffice to

cover almost all of what almost every speaker says. The 'unique words'

indicate that although many of the concepts being expressed by the

performers of the task are the same, there is a wide variability in just

VIII-52

■ - -^---- - -

AUXILIARY AND PRO-VERBS
be can do

DOMAIN-RELATED WORDS

have should will

bolt box fit go hold place
plate pump put show tight top
turn use

FUNCTION WORDS
a also and by from how
if in no not now of
on out over so that the
then there to up what when
which with

MISCELLANEOUS
good just
see two

like
way

ok
yes

one please

PRONOUNS
it they

SPEAKER/HEARER IDENTIFIERS
I we you

Figure VIII-20. WORDS OCCURRING IN ALL FIVE DIALOGS,
GROUPED BY CATEGORY

align around both bottom but
down end face first groove
hammer metal onto other remove
right round screwdriver shaft side
slot sure take thing took
wheelpuller

Figure VIII-21. WORDS IN ALL NAIVE APPRENTICE DIALOGS BUT
MISSING IN AT LEAST ONE OF THE OTHERS

how to express those concepts. Analysis at the lexical level is

important, but it must be used in conjunction with higher-level

syntactic, semantic, and discourse analyses.

VIII-53

7. DESCRIPTIONS

The section on references (Section D.3) concentrated on the

identification of objects from the point of view of context, pointing

out how such context shifts with task and with time. The linguistic

description of an object must distinguish it from all others in the

context of speaker and hearer in order for any communication to be

possible. The problem of identifying an object mentioned in an

utterance on the basis of its description and the problem of generating

reasonable descriptions to guide the user are of equal importance in a

language understanding system. For this reason, the descriptions in all

of the dialogs were examined in an initial attempt at characterizing

descriptions.

a. SPECIFICATION

Uison (1970) has shown that the description of an object

changes depending on the surrounding objects from which it must be

distinguished. So, for example, the same flat round white object was

described as "the round one" when a flat square object of similar size

and material was present, but as "the white one" when a similarly shaped

but black object w,\3 present. However, it is clear from the task

dialogs and from other data (Freedle, 1972) that description of an

object seldom contains only the minimal amount of information necessary

to distinguish the object. Descriptions, like tha rest of language, are

redundant. (Olson, p.266, comments on this phenomenon and the need for

further investigation of it.)

VIII-S1»

What appears to be the case is that the speaker describes

an object not in the minimum number of 'bits' of information, but rather

in a manner that will enable the hearer to locate the object meant as

quickly as possible. Clear distinguishing features (e.g., color, size,

and shape) are part, of a description precisely because they enable

eliminating large numbers of objects as wrong and hence help the hearer

to isolate the correct object more quickly.

The use of redundant information (and not just

distinguishing information) to speed up the search for a referent can be

easily seen from an example. If A asks "What tool should I use?", the

response, "The red-handled one." is not satisfactory even if there is

only one red-handled tool in the workstation. Processing such a

description requires considering too many alternatives. Although A

might eventually find the tool, he would certainly question S's choice

of description. "The red-handled screwdriver" is more helpful, because

it limits the search to screwdrivers. Olson's descriptions were

probably as minimal as they were because of the bare environment in

which the distinguishing had to be done. In giving a description that

minimizes search time, a balance must be reached. Too much information

is as harmful as too little. Ail parts of the description must be

processed to make sure the object is the correct one. Furthermore, the

hearer may wonder whether he is mistaken, if he thinks he has found the

object but there is more description coming. Rather than minimize

either just the communication time (including processing of the

VIII-55

=:
^II i irrTr:-r ' - r- - -- — - _ . . '-"""-

description) or just the search time, the combination of communication

time and search time must be minimized.

Because the goal of most descriptions in the task dialogs

was to enable the hearer to locate an object, the descriptions in the

task dialogs were, to some extent, 'procedural'. Either implicitly or

explicitly, they described how to locate an object, rather than what the

object was in general. For example, the response to "What's a

nutdriver?" was "It looks like a screwdriver and is in the yellow case
j

by the wall", rather than the (nonprocedural) definition description, "A

tool with a handle on one end and the end shaped to fit over a nut, used

for tightening and loosening nuts," This combination of description of

the object itself coupled with looational information was quite common

in response to qus^tions (e.g., "What's an x?"). In a sense, the

speaker was saying, "Keep these properties in mind and look at olace Y."

It is interesting that the descriptions of the object itself preceded

the locational information more often than following it. The location

provides a narrowing of focus. What is not clear is why this narrowing

occurs after and not before the object properties are given. Possibly,

even though narrowing of focus is useful for identification, the

question "What is an x?" demands some description of an object's

properties first.

VIII-56

-j-'—----

b. CATKGOHIES OF FEATURES

The features used in the descriptions of objects in the

dialogs fell into four categories: physical characteristics, location,

analogies, and function. A class name of the object always appeared in

initial introductions, but it is not included in this list. Otherwise,

the list contains items used in initial introductions as well as in

response to questions concerning object identification.

The physical characteristics of the object itself

included color, shape (often including the word "shape" as in "the

little half-moon shaped part"), size (either absolute or relative), and

material of which the object is composed (e.g., "metal").

Location, both physical and in time, of the object were

often used. Physical location was specified in response to a "What's a"

question. Time references occurred when an object description was

embedded in some higher-level statement. For example, "Use the two

screws you mentioned earlier", "... the cover to the vires you were

working with earlier".

Analogy provides a lot of information in a small package.

It occurred most often when any other description would have been long

and involved. In addition to the above screwdriver example, there was

"it looks like a pocketknife", "it looks like ears sticking out", or "It

looks like a y".

VIII-57

■"^"^"- —■■-"- itlMIt

Closely related to analogy is the use of "function'' to

describe an object. Functional descriptions also enable bypassing other

more complex descriptions (e.g., of shape). The combination of analogy

and functional description often occurs with the phrase "it locks like

it does x" (and, in fact it does do x!). Functional descriptions

implicitly convey this concept of "looks like" even when it is

explicitly stated.

Finally, there is a set of miscellaneous distinguishing

features that are best characterized as the absence of something usual

or the presence of something atypical. For example, "[you can tell

where it goes] by where there is no paint", or "the side with writing on

it".

c. PERSPECTIVE

In order for a description to work, it is o-ucial that it

take into account the hearer's point of view. The role of the hearer's

physical location is well established. The well-known "Empire State

Building" question (you give a different answer to the question "Where

JS it" to a person in Moscow and a person in New York City) is meant to

illustrate this point. In the task domain, words like "left" and

"front" must take into account both canonical orientations (the front of

a car is the same no matter where you stand relative to it) and hearer

orientation.

VIII-58

There is also a nonlocational aspect of the hearer's

orientation. Descriptions must be given to a level of detail pertinent

for the hearer's skill level. Concepts unfamiliar to the hearer may be

introduced, but they must be explained in terms familiar to him.

Evidence of such sensitivity to user skill in the dialogs came both from

the level of detail of task described and from the description of parts

and tools.

8. MISCELLANEOUS OBSERVATIONS

There were several areas in which only limited data are

available from the dialogs but which are important for understanding the

choice? made in generating an utterance and the information conveyed by

an u*- ^ance. There were clear indications of the influence of one

speaker on another, deficiencies in formality, and influence of

apprentice skill level.

One question of importance in constructing natural language-

understanding systems is the influence of the way the system states

things on the language with which it has to deal. Since only two

different experts were used in the task dialogs, only one of whom worked

with more than two As, it in hard to conclude much from the dialogs.

Still there are indications of A's adapting E's language. Adoption of

GOmmon names is the most common example. "The half-moon shaped piece"

gets referred to as "the (woodruff) key" once the name is introduced by

E. Similarly "the screws holding the pulley on" become "th« (alien

VIII-59

^r^*^^^-^^-^—-;—- ■- - ■ - .^^-^
, ..^..

head) aetscrews". The transference may be from A to E as well. In one

dialog with an experienced A, E adopted terms (such as "pressure

register") used by A.

One of the confounding factors in determining language

influences is that in the case of two of the dialogs, A thought that E

was a computer. In both, the language is more 'formal' than in the

other dialogs. In the one that is the most formal, E responded more

formally. It is not clear in this case how much of the difference is

due to E's speech and how much ti A's image of what a computer expert

could understand. Although there are clear differences between the

'computer-expert' dialogs and the others, it is hard to point at exactly

what aspect of an utterance makes it seem more formal. For example, the

utterance,

"Is it correct that the strap is attached to the pump "oy one
of the cylinder head bolts?"

seems more formal than a question that starts simply, "Is the strap

...". Similarly, "I've finished attaching the tubing to the elbow." is

less formal than "The elbow and tubing installation is completed."

Unfortunately, there are too few data here to decide what is speaker-

idiosyncratic and what comes from anticipated computer capabilities.

Still, there are enough indications of differences when a computer is

thought to be a participant in the dialog that this is an important area

for study. Furthermore, that although the As thought they were being

helpful by being more formal, in fact the resulting sentences often were

more complex.

VIII-60

-"■"■,r*'""" '""-

E's instructions to As varied according to the skill level of

A In almost all cases, E diu not know how skilled A was to start with.

Although the initial instructions to all As were quite similar,

instructions at the end varied substantially. Not only is the amount of

detail oresented different but also the way in which instructions are

given. Dialogs with inexperienced apprentices contain more requests and

fewer spontaneous reports. In the dialogs with more experienoed

apprentices, there are more imperatives to check that steps have been

done and fewer giving directions. The clearest example of E moderating

his interactions as he determines the skill level of A is in a dialog

with an experienced A. Up to a particular point in the dialog, most of

E's utterances are directions or answers to requests. Then E starts to

givs a direction and changes his 'tone'. R types

"OK. Tig XXX OK. Make sure ... are tight."

(The XXX indicates an erasure to the monitor). The important question

for builders of computer systems is what information the human expert is

using to base his impressions of skill level on. There are clearly

several factors involved. A comparison of the few dialogs we have

indicates that A's terminology, the level of detail of instruction A

asks for, and A's own indication of skill level contribute. More data

need to be collected and examined to determine how skill impressions are

transmitted and generalized.

Finally, there were a few examples in the dialogs of the kinds

of ambiguity that people are and are not willing to tolerate. For

VIII-61

mmi"-~ MI ■■ ■■ ■ TI im Üifi.^

example, the phrase "alien bolts" in the context of attaching the pump

pulley was accepted as meaning "alien haad screws". Quite often the use

of "nut" and "bol*" interchangeably was accepted, but in the dialog of

Figure VIII-22 the ii;»use of "bolt" is not acceptable since it causes

or fusion about which task is being done.

A: Should I unscrew at the top of the airhose or at the
bc'tom and which, of the bolts at the bottom?

(oy bolts, A means nuts)

S; Loosen the pipe ^t the tank (b^tom) end and unscrew it
completely at th« top end.

A: End of what, the pipe or the bolts?

("bolts", really nuts)

E: i'e're working en the pipe now. Don't worry about the
bolts yet.

Figure VIII-22. BOLT/NUT CONrüoION

It is clear that the dialog analyses reported here are really

just a begirning. There are »any dimensions along which much further

analysis must be done. As stated in the introduction to this chapter,

the purpose of this part of the research war to determine the scope of

discourse nhenomena in dialogs with computers, and to provide a basis

for initial attempts to incorpora*« discourse capabilities in a language

understanding system.

VIII-62

—. . MMMl i ■ • "'- .^u, ■MBM- ■""

IX RESOLVING DEFINITE NOUN PHRASES

Prepared by Barbara J. Grosz

CONTbwTS:

A. Introduction
1. Sentential and Dialog Context
2. The Inference Problem

B. The Focus Space Encoding of Context
1. Extending the Notion of Partitioning
2. Matching in Focus

C. DEFNP Resolution in Context
1. From Semantics to Discourse
2. Interpreting Complete NPS

a. Singular NPS
b. Plural NPS
c. Modified NPS
d. üenJ tives
e. Quantified DEFHPs.

3. Augmenting Focus

A. INTRODUCTION

The presence of both old and new information in the utterances

comprising a dialog was discussed in Chapter VIII, Section D.3. The

speaker expeots tho hearer to know the old information but to be

unfamiliar with the new. Comprehension entails identifying the old

concepts in memory and attaching the new information to them. Hence,

identification of the old information in memory is an important part of

the comprehension process. There are several syntactic devices for

expressing old information (e.g., definite noun phrases, cleft

IX-1

sentences, adverbials such as "too" and "still"). In this chapter we

will be concerned with the processing needed to handle definite noun

phrases since they are the most frequently used means of expressing old

information. We will refer to the process of identifying the concept

referred to by a definite noun phrase as "resolving the reference" or

"resolving the definite noun phrase". Since context plays a crucial

role in this identification process, a major concern of this section

will be on using a representation of context to aid in resolving

references.

The remainder of this section describes the role of context in

reference resolution. Section B provides an overview of the use of a

focus space partition of a network to represent context. Section C

discusses several categories of definite noun phrase references and

procedures for interpreting them. These procedures depend on the

existence of a representation of focus of attention. The point of the

section is to show the processing that must be done to build a

representation of a particular definite noun phrase, given that noun

phrase and a representation of the context in which it appears.

1 SENTENTIAL AND DIALOG CONTEXT

As in Chapter VIII, it will be useful here to divide definite

noun phrase references into two categories: pronouns and nonpronominal

definite noun phrases (DEFNPs). Although referring expressions in both

categories depend on the context in which they occur for their

IX-2

interpretation, the nature of this dependence is quite different in each

case. Similarly, although some of the processing required for building

interpretations of pronouns and DEFNPs may be shared, there is other

processing that is unique to each of these forms of reference. Both the

global dialog context and the immediate context of the preceding

utterance play roles in interpreting each of these forms cf rei rence,

but the former is more important for DEFNPs, the latter for pronouns.

The major differences between these two kinds of reference

stem from differences in the amount of information contained in the two

kinds of referring expressions. DEFNPs contain more information in

themselves than pronouns. The head noun of a DEFNP specifies the class

of the object being referred to (in elliptical NPs and NPs with "one" as

the head, the specification must be found contextually), and additional

descriptive and distinguishing information is provided by modifiers.

The global discourse context in which a DEFNP occurs plays a crucial

role in resolving its reference. This context delineates the set of

objects from which the object referred to must be distinguished.

Sentential context, however, does not play a role in DEFNP resolution.

In contrast, pronouns carry little information in themselves. They are

really slot fillers and usually depend only on the sentential context in

which they occur to provide most of the clues needed for identifying the

referent. The exception to this — pronouns that refer back over long

pieces of discourse — are discussed in the Section D.3 of Chapter VIII.

IX-3

'iTnlnrrftiiiMTfcBfriiwr

The relative role of sentential context in resolving DEFNPs

and pronoun references can be seen by considering an example from

Charniak (1972) and some variations of it. The original dialog is

presented in Figure IX-1. The "it" in (7) can be resolved only when

the context of "take ... back" is considered (and even then a large

amount of inferencing must be performed; e.g., see Charniak; Hobbs,

1976).

(1) Today was Jack's birthday.

(2) Penny and Janet went to the store.

(3) They were going to get presents.

CO Janet decided to get a top.

(5) "Don't dp that" said Penny.

(6) "Jack has a top.

(7) He will make you take it back."

Figure IX-1. THE KITE STORY

Note, however, that this "it" cannot be replaced by the DEFNP

"the top". The problem stems from the fact that the context in which

the utterance appears includes two tops, but use of the phrase "the top"

implies there is only one. The sentential context of "take ... back"

does not help eliminate one top as a possible referent when the DEFNP is

used, as it does when the pronoun is. Finally, if instead of (7) the

sentence were

"If you get Jack a top, he will make you take (it / the top)
back" ,

IX-4

either "it" or "the top" may be used and the reference to the

hypothetioal top of the if-clause is clear. The difference between the

use of "the top" here and in (7) is that here the if-clause sets up a

new context in which there is only one top: the hypothetical one.

In many respects pronoun reference is closer to ellipsis,

which will be discussed in the next chapter, than to DEFNP reference,

and in a sense, the use of pronouns and ellipsis are duals. To see

this, consider a sentence (S) composed of constituents A,B,C, i.e.,

assume that a context free part of a language Definition rule for S is

S->A B C. Let a, b, c be respective instances of the particular phrase

types A, B, C. Pronoun reference entails substituting a pronoun for one

of these constituents; the remaining constituents are used to provide

selectional restrictions on what the referent of the pronoun is. For

example, in the 'sentence', "it b c", properties of b and c are used to

find the object referred to by "it". Ellipsis, on the other hand,

entails using only one of the constituents and, depending on context, to

supply the others. So, if a' is also an instance of A, the 'sentence'

"a'" in the context of the previous utterance, "ab c", may be expanded

to "a' b c". Elliptical expressions can always be resolved in terms of

the immediately preceding utterance. Elliptical DEFNPs (e.g., "the four

by the door") and DEFNPs with the word "one" substituted fcr the head

noun are like pronouns in that a slot (or a slot holder) is given, and

the immediate sentential context and the preceding utterance are used to

"fill out" the phrase, but they are like DEFNPs in the role played by

the global dialog context.

IX~5

miwKimmmmmam

2. THE INFERENCE PROBLEM

The simplest form of DEFNP resolution occurs when a phrase is

matched with an object that has been described the same way previously

in a discourse. This form occurs in the reference to a wrench in the

sequence:

I bought a new wrench today.

The wrench is on the table.

However, restricting the use of DEFNPs to sach cases results in rather

boring discourse since it requires explicit statement of obvious facts.

For example, the second sentence of the following sequence

Susan bought a car today.

The car has seats.

The seats . . .

is totally unnecessary and makes for awkward reading. Such redundant

information usually is left out of a discourse. Comprehension then

requires that the hearer be able to fill in the missing information from

what he knows about the objects and actions being discussed. As a

result, the resolution of DEFNPs often requires inferencing on the part

of the listener.

There are two kinds of inferences that are needed for

resolving DEFNPs. First, a reference may entail establishing additional

properties of an object already in focus. Second, a reference may refer

to an object that has been brought into focus only implicitly. As an

example of the first case, consider the sequence

I took your coats to the cleaners.

IX-6

- ■'---—^j—— ,m

m

The blue coat will be ready tomorrow.

To understand the DEFNP, the hearer must infer that one of the coats is

blue. More frequently, an object once in focus may be referred to in

more general terms than those in the description first used to bring it

into focus. Resolving the reference entails establishing that the new

description is true of the old object. In the sequence:

I bought a novel toda,.

The book ...

the fact that novels are books must be inferred.

The problem posed for resolution here is not the difficulty of

the inferences themselves, but rather restricting the number of objects

considered. That is, it is not the chain of inferencing that is the

problem, but the number of times that chaining roust be done. For

example, in the preceding example, the inference chain relating novel

and book is not long. The question is whether to look at all books and

see which has been mentioned recently (doing the inferencing from book

to novel), or to look at all objects mentioned recently and see which is

a book (doing the inferencing from novel to book).

The second kind of inferencing required for DEFNP resolution

arises because an object implicitly brings certain of its subparts into

focus when it is brought into focus. For example, mention cf "the

living room" brings into focus items such as "the ceiling" and "the

furniture". In the ensuing discourse, these objects may be referred to

by DEFNPs. In the sequence:

IX-7

■ ..,.r,^<aj^..., .-^„.^ - - nr"- r —T -■mi^'THaiMMMMBHlliaMl

E: Use the crescent wrench.

A: The handle is too long,

the phrase "the handle" can be resolved because the handle of a wrench

is brought into focus when the wrench is. Parts of actions as well as

objects may become focused in this way. For example, in the sequence:

E: Attach the pump to the platform.

A: Where are the bolts?

"the bolts" become focused because they are a part (namely the

fasteners) of this attaching operation.

Chafe (1972, 1974) has pointed out the necessity for

'foregrounding' more than what is explicitly mentioned. His concept of

'being in consciousness' is similar to the notion presented here of

being in focus in the discourse. The problem in handling this kind of

inference is deciding how much information related to an object should

get brought into fcous when that object is. This issue is clearly

related to the qViestion of what goes into the 'frame' (Minsky, 1974;

Winograd, 1975) for a concept. This kind of inferencing was not handled

in the speech understanding system because of the lack of structure in

the data base dialogs. In the task domain, the hierarchical structure

of the task and the correspondence between task structure and dialog can

be used to provide both explicit and implicit focusing (see Grosz,

1977).

IX-8

Sr~tl ■nir

3. THE FOCuS SPACE ENCODING OF CONTEXT

Several of the preceding examples, as well as examples presented in

Chapter VIII, point out the need for a representation of the global

discourse context in which an utterance appears. This section provides

a brief overview of an approach developed in the framework of a semantic

network knowledge representation. The representation chosen has several

distinguishing features. It highlights that part of the semantic

network relevant at a given point in a dialog, grouping together those

concepts whioh are in the focus of attention of the dialog participants.

The ability to link the context representation with representat._ons of

surrounding task situations also is provided. The representation itself

is structured so that the structure of the dialog (see Chapter VIII,

Section D.2). can be mirrored and used in discourse processing.

Finally, the representation has the potential for extensions in two

directions closely related to context: focusing on different attributes

of the same object under different circumstances and forgetting

information no longer relevant to a discourse.

1. EXTENDING THE NOTION OF PARTITIONING

To encode context, or focus of attention, we will extend the

notion of partitioning of networks described in Chapter V, Section D,

and in Hendrix (1975a,b). We will now allow a network to be partitioned

along multiple dimensions. Each partition will be independent in the

sense that the spaces on which a node or arc lies in one partition

IX-9

„aaa^«- | n p-i] -- i - - f- if nMrrn-iiii lu ■ Tilliiinirii mmr -i 1nf"'^^"&,i,-""sai™t^-"te,ai^i-

neither determines nor depends on the spaces it lies on in any other

partition. In particular, in addition to partitioning the network along

'logical' lines, we will partition it along 'focus' lines. The logical

partition will remain as described previously: every node or arc lies on

at least one space in the logical partition. In addition, nodes and

arcs may lie on spaces in the focus partition.

Network partitioning will be used both for its ability to

separate entities into spaces and for its ability to relate different

spaces hierarchically. We note here that although we are using a

network representation, the use of partitioning of memory structures for

the purpose of reflecting focus of attention is a general one and may be

used in other representation schemes.

The focus partition is not a partition in the mathematical

sense, since nodes and arcs may lie on ary number of focus spaces, or on

no focus space at all. At any point in a dialog, one focus space will

be 'active', but several may be considered 'open'. The active focus

space will reflect the focus of attention of the dialog at that point in

the dialog. The open focus spaces will reflect previous active spaces

that contain some unfinished topics and hence may become active again;

they are possible areas for the dialog to shift back to. Hence, the

focus partition enables the portions of the network that are relevant to

a dialog to be spotlighted and a trace of the spotlighting to be kept.

IX-10

- —n ——^—^—-

When the same object enters the dialog twice, in two different

subdialogs (e.g., a tool used in two distinct subtasks), the node

corresponding to that object will appear in two distinct focus spaces.

If different aspects of the object are focused on in the two subdialogs,

different relations in which the object participates will be in the two

focus spaces. Hence, focusing also allows the particular way of looking

at a conceot that is germane to a given point in a dialog to b"e

spotlighted.

The main reason for providing the ability to focus on

different attributes of an object is to allow differential access to the

properties of the object, and hence to the facts that may be derived

about that object. Using the arcs in focus for differential access does

not rule out considering a concept differently than it has already been

portrayed. Instead, it orders the way in which aspects of the concept

are to be examined in looking for new (to the dialog) information about

the concept.

Differential access is important for actions as well as

physical objects. For example, when quilting is considered as a kind of

sewing, the subactions of cutting and pinning are directly accesible,

but when quilting is considered as a social gathering then the

subactions of talking and eating are more important, and more

accessible.

IX-11

2. MATCHING IN FOCUS

The basic process involved in resolving DEFNPs is iiatGliing

structures in the memory representation. In the case of a system with a

semantic network knowledge base, the problem is that of finding a

network structure matching the structure of the noun phrase. This

S'sction Describes the role of focus spaces in this matching process.

The prBsentation assumes that items get moved in and out of focus as

needed. The shifting of focus in the data base dialogs is basically

linear with time. As a result, the implementation in the speech

understanding system assumed a linear shift in focus. Concepts

mentioned in one utterance were moved into focus and kept there until a

small fixed number of other utterances had been processed. This is a

minimal use of focus. It corresponds directly to tho linear history and

working space models in other systems (see Norman et al., 1975). As

pointed out in Chapter VIII, Section D.2, the task dialogs are mach more

structured than the data base dialogs. As a result, much more

sophisticated handling of focus can be done for the task dialogs. In

particular, focus spaces can be used to relate snifts in focus to the

dynamics of the task (see Grosz, 1977).

In the speech understanding system, this matching procedure is

performed by the deduction component (described in detail in Chapter

XII). The deduction component is called with a QVISTA (question vista)

and a KVISTA (knowledge vista). The QVISTA is a set of spaces

containing a piece of network for which a match is sought. The KVISTA

IX-12

.. ,-^.^J^-. ■■^ ^

represents the set of all knowledge in which the match is sought. In

the process of arriving at a match, the deduction component binds the

arcs and nodes in the QVISTA to arcs and nodes in the KVISTA. When a

match is found, the node in the KVISTA bound to the node corresponding

to the head noun of the DEFNP in tho QVISTA represents the object

referred to by the DEFNP.

The focus representation can aid the leduction component in

two ways: by focusing on particular nodes, and by focusing on particular

arcs from those nodes. By focusing on certain nodes, the deduction

component can be constrained to consider only objects germane to the

dialog. Focusing on an arc guides the deduction component in

establishing properties about nodes being matchea. We have some

experience in directing the deduction component to match nodes in focus;

this will be described in some detail. Details of focusing on arcs is

described in Grosz (1977). For the resolution of DEFNPs (the discourse

use of the deduction component), the QVISTA is the vista constructed at

parse time for i.he DEFNP and the KVISTA is the knowledge space. In

addition, matching in focus currently entails passing the deduction

component a focus vista and a list of nodes to be matched in focus.

Matching in focus means the bindings made by the matcher are restricted

to the items in focus; however, deductions can be made using any

Information An KVISTA. The focus vista represents the set of nodes and

arcsi considered to be 'in focus'. In DEFNP cases the nods corresponding

to the head noun of the NP is forced to be in focus. This corresponds

to saying the referrent of a DEFNP is sought (first) in focus.

IX-13

jvLizw^i ^.Mf ■■;-■, ^rr-inr • --ii II nimi I ■

The simplest use of a focus match is to arrive at the correct

match. Consider the situation portrayed in Figure IX-2. There are

several wrenches: W1 is a box-end wench that is in focus FS1; W2 is a

bcx-end wrench in focus FS2', W3 is an open-end wrench also in focus FS2;

W4 is another open-end wrench not in focus at all. There is another

object, 01, with a bcx-end. Space q.wl of Figure IX-3 shows the

QVISTA corresponding to the DEFNP "the wrench". If the deduction

component were asked to find a match without focus for thi.n query, any

of the W nodes would do. This corresponds to the fact that, without

focus, the phrase "the wrench" is four ways ambiguous. However, if the

deduction component is provided with QVISTA q.wl and focus vista FS1

(and the node QW1), it will find that W1 is the only match. In arriving

at this solution, it uay consider HI but will discard this possibility

when realizing that hammers and wrenches are mutually distinct subsets

of tools. The attempt to match "the wrench" in focus space FS2 will

result in both W2 and W3 matching, reflecting the fact that, for the

discussion at that point, two wrenches were relevant, and the phrase is

ambiguous.

The second use of focus is to reduce ths amount of computation

done in arriving at a match. Most QVISTAs are not as simple as q.wl.

Space q.w2 of Figure IX-3 shows the QVISTA of the DEFNP "the box-end

wrench". Consider what could happen in an unconstrained match. The

deduction component would consider all of the nodes with 'e' arcs to

wrenches or all of the nodes with 'endtype' arcs to BOX-END (depending

IX-II

-T „■.■trM^- ^■-■1^':,...,/^:^^il^^-__. : i»^-^^--- ^ -^^ääääg^MB^^feB

f >i endtype /—N ^/^
I BOX-END)■* —4 01 j^e

FIGURE IX-2 A SIMPLE KVISTA WITH TWO FOCUS SPACES

I I I I

FIGURE IX-3 OVISTAS FOR "THE WRENCH" AND "THE BOX-END WRENCH"

on which set is smaller) until it tried W1 or W2. If asked for a second

match, it would (eventually) determine that both W1 and W2 matched.

Note that in tnt worst case this could entail one node and two arc

bindings for each of the nodes in the set selected.

IX-15

...

The constrained match is able to avoid all this hunting. If

focus space FS1 is used, only nodes HI and W1 are oonsidered (as

before). With focus space FS2 as the constraint, both W3 and W2 would

be considered but W3 eliminated. In the worst case, one set (one 'e'

arc and one node) of unnecessary bindings would be made.

The advantage of focus spaces in terms of the number of

bindings attempted depends on having fewer items 'in focus' at any one

time than are in a typical set in the knowledge vista. But this is

exactly the purpose of focus — to highlight those few items relevant to

a given point in the dialog.

A similar computational advantage is gained when deduction is

necessary to achieve a match; i.e., when theorems — information stored

in the net as general rales applicable to whole sets of concepts — must

be applied. To illustrate such a match, consider the KVISTA of Figure

IX-M. Here the set of wrenches has two subsets, 'B-E', the set of

all box-end wrenches, and '0-E', the set of all open-end wrenches.

Finding matches for the QVISTA q.wl in this KVISTA entails following the

e and s chain from, say W1, to 'WRENCHES'. This process is the simplest

form of deduction. Even assuming that all of the elements of 'WRENCHES'

were represented as elements of sets that were subsets of 'WRENCHES',

finding some match for QW1 would not be too complicated. (We still have

the problem of finding the right match, given that inhere is more than

one).

IX-16

FIGURE IX-4 A KVISTA WITH THE SET OF WRENCHES DIVIDED INTO SEVERAL SUBSETS

The situation gets more complicated when we consider finding a

match for QVISTA q.w2. For purposes of this discussion, assume that

'WRENCHES' has fewer elements than 'BOX-END'. (This assumption

simplifies the discussion, and is reasonable, considering that objects

other than wrenches may be classified as "box-end".) The match for

'QW2' proceeds by considering all nodes with 'e' arcs to 'WRENCHES',

The 'e' arcs are all implicit in this case; they must be derived by

following e-and-s chains. For each element of wrenches proposed as a

match for 'QW2', the deduction component attempts to establish an

'endtypa' arc to 'BOX-END'. In particular the delineating element

descriptions for 'B-E' and '0-E', contained in the logical spaces

IX-17

■ !■■ inYrr—

bew.desc and oew.desc, respectively, represent applicable theorems. If

'W2' is tried as a match, the deduction component will establish the e-

link to wrenches. The relevant theorem in this case is in the box

labeled oew.desc. A tentative endtype arc from W2 to 'OPEN-END' will be

constructed and only then will the deduction component realize 'OPEN-

END' is not 'BOX-END', and hence W2 will not match. In general, there

will be many nodes like W2 that appear to be candidates but do not

match, and many theorems that will apply. The work done before

considering W1 may be extensive. By constraining the search to nodes in

focus, a considerable reduction can be achieved. In particular, suppose

there are n elements of wrenches, of which m are box-end. In the worst

case, n-m incorrect bindings and unnecessary theorem invocations will be

computed. (Even the average of n-m/2 is significant if n is much larger

than m.) However, if there are k nodes in focus of which W1 and W2 are

the only ones that are wrenches, then at worst k wrong bindings and one

unnecessary theorem will be tried. Since the cost of a theorem is

typically much greater than the cost of establishing a binding — even

following e and s chains — and typically k<<n, the savings are

substantial.

A further computational advantage of focus may be seen from

the modified version of the wrenches situation portrayed in Figure

IX-5 A focus space, FS, has been added. In addition to containing

the nodes W1 and W2 (which we are assuming are already in focus), it

contains the 'endtype' arc from W1 to 'BOX-END' and an explicit 'e' arc

IX-18

 ~~.

FIGURE IX-5 THE WRENCHES KVISTA WITH FOCUS ADDED

from 'Wl' to 'WRENCHES'. Any matches sought for "the box-end wrench"

while the focus is FS will be able to ta! j advantage of this explicitly

stored information. This information is redundant; ideally, the arcs

would disappear as soon as FS was closed. Incorporating this feature

would have the desirable results of both having the information

available when it was relevant and allowing it to be 'garbage collected'

or 'forgotten' after it ceased to be relevant. This is one possible

extension of the focus space mechanism.

IX-19

HaMHiaUaHMa

DEFNP RESOLUTION IN CONTEXT

The typical noun phrase has several constituents. For the purposes

of this discussion we will consider the structure of an NP to follow one

of the patterns

(1) (DET/QUANT)[NUM] NOM
(2) (DET/QUANT)[NUM]
(3) NUM

(These rules do not correspond to the actual rules in the SRI speech

understanding system language definition. However, the grouping is

convenient for purposes of discussing discourse processing.) In this

notation, the slanted line indicates a choice of one or the other

constituent, parentheses are used for grouping, and brackets indicate an

optional constituent. DET is the category containing determiners; it

contains words such as "the", "this", and "which". QUANT is the

category of all quantifiers; e.g., "all", "any", "some". NUM is the set

of number expressions; e.g., "one" and "three hundred fifty." NOM, the

set of nominal expressions, contains unmodified nouns, premodified,

postmodified nouns, and nouns both pre- and postmodified. Respective

examples of such NOMs are "wrench", "box-end wrench", "wrench with the

red handle", and "box-end wrench with the red handle." Form (1) is the

form of NP with which we will he most concerned; forms (2) and (3) are

both elliptical and are not handled in the speech understanding system.

There are many syntactic and semantic problems associated with

parsing and building representations for the group of phrases in the

category NOM. Some of these are discussed in Chapter VIII, Section B.

IX-20

riJJflirrf-^' ■'I sr^^t... -^«ä^äB^

For example, it takes semantic knowledge to determine the difference

between "the big ship" and "the German ship". For the purposes of this

section, these problems can be ignored. We will assume that any NOM has

been checked syntactically and that a semantic representation has been

built for it. It is only when looking for the concept described by the

NOM that discourse processing is really needed.

1. FROM SEMANTICS TO DISCOURSE

The semantic interpretation for the NOM constituent of a noun

phrase encodes the relationships among the concepts that are conveyed by

the constituents of the NOM in the underlying knowledge representation.

In essence, it provides a representation of the typical item described

by the NP. For example, the representation for "American sub" in the

partitioned semantic network notation is shown in SPACE PI of Figure

IX-6. Note that the 'ownership' relation conveyed by "American" in

this particular construction is represented in this network structure.

The discourse component oont .'ibutes to building an interpretation of an

NP only if the determiner or quantifier for the NP indicates

definiteness. [The elliptical form (3) of the NP constituent structure

implicitly conveys definiteness.] The basic problem for the discourse

routines is to locate the object or set currently in focus which

corresponds to the description Jn the NOM part of the NP. When an

instance of NUM is included in the NP, discourse processing is

influenced only insofar as a check on the set found is required to be

IX-21

"—- ■ -■--- -- Uttmitf ■ - - - ,. , „,,, .a, ft,

r

I i

FIGURE IX-6 PARSE LEVEL SEMANTIC NET REPRESENTATION FOR
"AMERICAN SUB"

sure the set has the correct cardinality. "One" is an exception and is

treated like "a" rather than other, plural, NUMs, For the NP, "the

American sub", an individual submarine owned by the U.S. must be found

in focus. For the NP, "all six American subs", a set of (exactly) six

subs, all owned by the U.S., must be found.

IX-22

-. ^^ffig|

2. INTERPRETING COMPLETE NPS

Tne deduction component, when augmented for focus matches as

described in the preceding section, performs the central function in the

process of interpreting complete NPs. Given the semantic Interpretation

of a DSFNP and the current focus vista, it determines which, if any,

object iri focus matches the DEFNP. Note that the first kind of

inferencing discussed in the overview occurs at this stage of the

processing. The deduction component, in determining whether a given

object in focus is the referent of the DEFNP, follows the subset

hierarchy and deduces information from theorems in the network. The

restriction of the search to the focus space is crucial; generally, the

number of objects in focus is quite small and contradictions (e.g., if

the candidate focus space node and the node corresponding to the head of

the DEFNP are elements of mutually exclusive sets) can be reached

quickly for many of the objects. At present, this matching procedure is

carried on depth-first. In the limited data base domain for which

resolution has been done, this strategy is sufficient. A parallel

search has the advantage of finding the match more quickly, on the

average. However, it is still necessary to establish that no other

object matches in order to rule out ambiguities.

a. SINGULAR NPS

If the DEFNP is singular and a match is found, the node

matching the node corresponding to the head noun is the referent. The

IX-2i

■ i , »in mm i ili-lli-iiiii

only further processing is to check that all relevant relationships are

in focus. This process is described below in Section C.3. If a match

is not found, one of three possibilities still exists (assuming the NP

can be resolved!): the object may be unique (e.g., "the sun"); the DEFNP

may refer to an object implicitly, but not explicitly, in focus (the

foregrounding problem); or the DEFNP may contain a genitive or a

modifier containing new information (e.g., the DEFNP, "John'.', car" when

John is in focus but his car is not).

The uniqueness check requires determining whether more

than one object fitting the DEFNP description exists. This check is

done after the focus space check, because context may in fact overrule

the usual uniqueness conditions. The phrase "the sun" in the sequence,

Mary has a beautiful sunset picture.

The sun is teetering above the mountain,

refers to the image of the sun in the picture, not the real sun; i.e.,

the sunset picture creates a context with a special sun. For relational

DEFNPs, a unique result always is obtained, and the focus mechanism is

not used.

References to objects implicitly in focus will not be

considered here. Extensions to current routines necessary for handling

modifiers and genitives are discussed after the section on plural NPs.

IX-24

b. PLURAL NPS

A plural DEFNP may create a new set by grouping together

objects already in focus. In the sequence,

You will need the wrench, the screwdriver, and the hammer.

Should I put those tools in the toolbox?

the DEFNP "those tools" (note that the pronoun "them" could also have

been used) refers to the set of three individual tools in focus. The

set itself, however, does not exist as a node in the network.

The resolution routines handle this problem by looking

for individual objects in focus that satisfy the DFTPIP. (Since the

deduction component does not yet handle sets, Vnis is the only kind of

plural resolution that is done in ths current system implementation.)

If it finds more than one such object, a new set is created and added to

focus. Future references to the set, either by pronoun or DEFNP, will

lead the deduction component to find the set.

c. MODIFIED NPS

Modifiers may be used in three ways. The simplest case

is the use of modifiers to select among individual objects in focus.

This case entails a straightforward match (although some inferencing may

be required). Problems arise only when a modifier is used to select an

element of a set in focus (when the individual elements of the set are

not in focus) or when modifiers are used to supply new information about

some objects in focus. An example of the former occurs in the sequence,

IX-25

—.

A high school class came to visit the hospital.

The brightest student . . .

The DEFNP "the brightest student" singles out an element of the high

school class. An example of new information being added by the DEFNP

occurs in the third sentence of the sequence,

Jane got some books today.

They're on the coffee table.

The new book by Haley is on top.

The DEFNP "the new book by Haley" singles out one of the set of books.

The information that Haley wrote it and that it is new is introduced by

the DEFNP.

The existing DEFNP routines will fail to find a match in

these two cases. What needs to be added is the ability to remove

modifiers from the DEFNP until a (unique) match can be found, i.e., to

try successively less restrictive matches. The use of network

partitioning to reflect the parse structure in the semantic

interpretation of phrases provider « means of removing modifiers from

DEFNPs. It also is crucial for handling ellipsis (see Chapter X).

d. GENITIVES

Genitives may cause two kinds of problems. First, the

genitive may be used to supply new information about an element or set

already in focus. When used this way, a genitive is like any other

modifier. As an example, consider the use of the DEFNP "Peter's car"

IX-26

-iV.^. -,-.- - ;,_..,:,.-„,- --....

when a set of cars, one of which is owned by Peter, is in focus.

Assuming "Peter" is unique, ownership by Peter can be asserted of one of

the cars. This use of the genitive may be handled exactly like other

modifiers.

The second and more interesting problem arises when a

genitive is used to supply the old information in a phrase. That is,

the genitive constituent of a DEFNP may refer to an object in focus,

while the object referred to by the complete DEFNP may not be in focus.

For example, assume a focus in which there are two people, a boy and a

girl. Then the phrase "the boy's mother" is unambiguous and resolvable

because the boy is in focus and mother is a unique relation. That is,

even though there is no mother in focus, there is a boy in focus, and

the rel tion conveyed by the genitive can be used to determine, via the

link to the boy, which person is being referred to. Note that

foregrounding is not the issue here; the phrase "the boy's school" is

equally resolvable. In a sense, a DEFNP with a genitive has two heads:

the head of the genitive, as well as what is usually considered to be

the head noun. For this reason, if a DEFNP with a genitive connot be

resolved, the processing must proceed in two stages. If the whole DEFNP

cannot be resolved, the genitive alone must be considered. The genitive

must be resolvable. If the remainder of the NP is not resolvable in

focus, then the genitive relationship must be used to determine

uniqueness. For example, if some boy is in focus, "the boy's school" is

resolvable by accessing what is known about the boy and determining if

school is unique.

IX-27

^r-^^-W^-^r^ iMMiriiT r'ifüio

e. QUANTIFIED DEFNPS

The processing of quantified DEFNPs is the same as that

for unquantified plural DEFNPa except for the consideration of a generic

interpretation. There are several cases, depending both on the

particular quantifier used and on whether the optional NUM (number)

constituent is present in the DEFNP. If the optional NUM is included in

the NP, then the generic is never intended. Insteaa, it is always tl.e

case that a local set must be found, with the correct cardinality, over

which the quantification holds. To see this, contrast "All subs have

beams over 30 feet." with "All five subs have beams over 30 feet." In

the first utterance, the generic interpretation is clearly preferred.

In the second, the generic interpretation is not possible; a local

(nongeneric) set must be identified. Although this construction (i.e^,

QUANT NUM NOM) can be used witn "any" (end to a lesser extent with

"some") as the quantifier, its most common use is with "all"; hence,

"all" is the only quantifier allowed in this construction by the current

language definition. However, the nongeneric meaning of the

construction holds for the other quantifiers as well.

For constructions not including NUM, the question of

interpreting a phrase generically depends on the quantifier.

Quantifiers implicitly conveying a set of siz two "both", "either",

"neither" are never generic. There must be a local set matching the NOM

and with exactly two members, for 'hese quantifiers to be meaningful.

In contrast, "all" always conveys the generic; the construction "all

IX-28

the x" is useu to limit the restriction of "all" to some local set.»

"Some" and "every" also tend to convey the generic, but

less strongly than "all". The heuristic we currently use is to assume

the generic use if the NOM is unmodified and otherwise o check first

for a local set i eeting the specifications of the MOii. If no such set

exists, then the generic is assumed. There are clear counter-examples

to this rule; e.g., in the utterance, "Some tall trees are killed by

lightning", the generic is intended even if there is some particular set

of trees in focus. This case is not currently handled by the discourse

routines. For the remainder of the quantifiers a local set is checked

for first. If none exists, the generic is used.

3- AUGMENTING FOCUS

Once an utterctuue has been parsed, the concepts occurring in

the utterance must be added to focus. When the matcher returns a match

for a DEFNP, more information than the node corresponding to the NP is

returned. Recall that the semantic interpretation for an NP is a set of

nodes and arcs encoding the relationships expressed in the NP. For the

DEFNP, "the red box-end wrench", the encoding, shown in Figure IX-7,

includes an element arc to the set of wrenches, an endtype arc to box-

end, and a node representing the relationship of being colored red

At first there seems to be some ambiguity between expressions involving
"all" meaning "all in the computer knowledge base" and "all in the
world". However, this ambiguity can be seen only from a frame of
reference outside the computer model. Inside, the two are, by
definition, equivalent.

IX-29

 . .,;—.— ■■- i^i

NPi

endtype

n

■♦< BOX-END

FIGURE IX-7 SEMANTIC REPRESENTATION FOR "RED BOX-END WRENCH'

("red" and "box-end" are represented differently because the color of a

wrench can change but the endtype cannot). To see what happens when a

match is made for the DEFNP, consider the focus setup of Figure

IX-8. Focus space FSi contains three wrenches. Two of them are in

set 3EW, a subset of all wrenches that includes only box-end wrenches.

Of these, one is red, the other green. In the process of identifying

"the red box-end wrench" with W1, two new arcs will be created: an

element arc from W1 to wrenches and an endtype arc from W1 to BOX-END.

These are the result of various network deductions using information in

the net of Figure IX-8. In addition to returning the correspondence

between Node 01 and W1, the deduction component returns correspondences

between Ci and CW1 and a set of arc correspondences. The latter

includes the correspondence between the e-arc out of Oi and the newly

created e-arc from W1 and the correspondence between the endtype arc

from Oi and the newly created endtype arc.

IX-30

- i-ihiWi"" i

FIGURE IX-8 ORIGINAL FOCUS SPACE

Updating the focus space entails moving each node c* arc that

corresponds to a node or arc in the NP space to the focus space. The

result, for this NP, is shown in Figure IX-9.

IX-31

FIGURE IX-9 NEW FOCUS SPACE

IX-32

---—-

ELLIPSIS

Prepared by Barbara J. Grosz

CONTENTS:

A. Overview
B. Slot Determination

1. Syntax
2. Semantics

C Completing the Utterance
D. Elliptical Relational Noun Phrases
E. Limitations and Extensions

A. OVERVIEW

The content of an utterance not only provides the semantic

framework for resolution of definite noun phrases, but also the

syntactic and semantic framework for interpreting elliptical utterances.

Ellipsis refers to the use of incomplete grammatical units in a

discourse (the items left out are 'elided'). Although such a unit is

ill-formed by itself (in the traditional competence grammar sense), if

the context in which it appears supplies the elided items, it is well-

formed. For example, the utterance.

The crescent wrench

is an incomplete sentence, but if it appears in the context of the

question.

What tool are you using to loosen the bolts?

X-1

then it is easy to construct the complete sentence it is meant to

convey, namely,

I am using the crescent wrench.

"The crescent wrench" is an example of ellipsis at the sentence (or

clause) level. Ellipses may occur at the noun phrase or verb phrase

level as well. The following sequence is an example of noun phrase

ellipsis:

Which box should I use for the tools?
Only the largest will hold all the tools.

Verb pnrase ellipsis is shown in the following sequence:

Has the pump been tightened down?
No, but the motor has been.

Halliday and Hasan (1976) present many examples of each of the

three forms of ellipsis (clausil, noun phrase, and verb phrase) and the

means by which they can be used to link successive sentences in a

discourse. The emphasis of this section will be on ellipsis at the

sentence level, because it is the form of ellipsis that occurred most

frequently in the dialogs.

It is important to note that if the constituents missing from an

elliptical phrase can be found at all, they can be found in the

immediately preceding utterance. If there is a sequence of three

utterances u1, u2, and u3, then the structure of u2 can be matched

against ul, and u3 can only be matched against that of u2, but the

presence of u2 precludes matching u3 against ul. In the long sequences

X-2

of questions to be discussed shortly, although it appears that u3 is

patterned on ul, in fact u2 is expanded to a form similar to ul and then

u3 is patterned on u2. It is in this regard that ellipsis is a more

local phenomenon than reference. Only the immediate focus of an

utterance contributes to expansion of any elliptical phrases in the

utterance. The global discourse context is not significant.

The process of building an interpretation of an elliptical phrase

entails two steps once the ellipsis has been detected. First, the items

missing from the utterance must be found in the preceding utterance (or,

equivalently, the slot the elliptical phrase fills in the preceding

utterance must be determined). Second, a complete phrase must be built

using the elliptical phrase and the missing constituents found in the

previous (old) utterance. In the remainder of the discussion, the first

step will be referred to as "determining the slot", the second as

"expanding the utterance".

The use of ellipsis was different in the task dialogs and the data

base dialogs (see Chapter VIII, Section D.M). In the task dialogs,

elliptical utterances appeared as responses to questions. In the data

base dialogs, elliptical utterances were used in long sequences of

questions. For purposes of building an interpretation of an utterance,

the difference has most impact on the slot-determining phase of

processing. In the question-and-answer pairs of the task dialogs, the

slot filled by the elliptical answer is often marked in the question by

a WH-phrase. Determining the slot filled by the ellipses in the

X-3

question sequences of the data base dialogs is not so straightforward;

syntactic and semantic clues must be used as explained below. Expansion

of the utterance entails similar procedures in the two domains, but some

preliminary transformations are required for the ellipses in the task

domain (see Robinson, 1975a).

I
The remainder of this section concentrates on capabilities in the

discourse component for handling the elliptical utterances that occurrea

in the data base dialogs. The procedure for interpreting the elliptical

utterances (EU) in the context of the preceding pattern utterance (PU)

will be presented. In question-and-answer sequences, both the answer

following a question and the next question itself may be elliptical.

The PU for an elliptical answer is the preceding question. Expansion of

this elliptical answer requires many of the same transformations as the

elliptical utterances in the task dialogs. The PU for an elliptical

question also is the preceding question, which is really two utterances

back. This treatment is actually equivalent to using the immediately

preceding utterance, the answer, since its structure corresponds

directly to that of the question. The two utterances differ only in

that one is marked as a question.

We limited the iange of elliptical expressions we would handle in

the speech-understanding system o noun phrases functioning as complete

sentences, as in our initial example. This set oovered most of the

ellipses encountered in our protocols. More importantly, allowing more

extensive noun phrase and verb phrase ellipses would have meant greatly

X-14

^^~ ' ---^-— 11
BBIBiillüaMHBiii^^a

 -■ -- ■

increasing the alternatives considered for these lower level

constituents during the interpretation of an utterance. Expanding an

elliptical phrase is a relatively expensive operation when compared, for

example, with syntactic checks or semantic case checks. Doing it at the

utterance level seems worth the cost since complete utterances are

relatively infrequent compared with other constituents being proposed

and found. If we had bean working with error-free test input rather

than speech, the overhead requirements would have been less extreme and

other forms of ellipsis might have been allowed. Extensions and

raodif cations needed to do more complete ellipsis handling are descrioed

in Section E.

B. SLOT DETERMINATION

1 SYNTAX

Syntax plays a major role in determining the slot filled by an

elliptical utterance (EU). Usually, for an El to make sense th^re must

be a structural unit of the same type in the pattern utterance (PU).

(This is not completely true: there may be an unfilled slot in the

syntactic pattern for the PU that the EU fills. This case, and

extensions to the algorithms for handling it, are discussed in Section

E.) In addition to defining the category of phrase an EU can match,

syntax also provides filters on the basis of definiteness and syntactic

role .

X-5

•« »JKHESSH,

■

If an EU consists solely of a noun phrase (NP), the determiner

of that NP must match the determiner of the slot phrase in the PU. If

the NP of the EU is definitely determined, it can match only definite

NPs in the pattern; if it is indefinite, it can match only indefinitely

determined phrases. The sequence PU ~ EÜ1 is fine, but PU - EU2 is

awkward.

PU: Does England own a submarine.
EU1: A destroyer?
EU2: The destroyer?

It is possible to have a sequence of questions with indefinite NPs

culminating in a definite NP, but this is an exceptional case; it occurs

only when the definite NP refers to some truly unique object, or the

questioner and answerer are playing a game. The following sequence

showing an interchange between two people is an example of the former:

PI: Do you know what John got at the auction?
P2: "as it a document?
PI: Yes.
P2: An old one?
PI: Yes.

P2: The Constitution? / A copy of the Constitution?

The question-answering dialogs of the game "20 Questions" are

an example of the latter. The same phenomenon happens with plurals. So

the sequence PU - EU1 is fine, but PU - EU2 is not.

PU: Does England own any submarines?
EU1: Any patrol boats?
EU2: The patrol boats?

One can construct situations in which EU2 is reasonable, but again the

set denoted by the NP must be unique. So, for a data base in which

X-6

there was only one set of patrol boats (and these are a subset of

submarines), the sequence PU - EU2 might be acceptable. This use of the

definite at the end of a series of indefinites is sufficiently rare that

we have not modified the algorithm to handle it.

The parallelism of definites and indefinites is most clear

when we consider utterances with two NPs that differ only in

definitenesb. Contrast the two sets of question sequences.

PU: Did the cat hurt a bird?
EU1: The dog?
EU2: A mouse?

PU: Did the cat hurt the bird?
EU1: The dog?
EU2: A mouse?

Without any preceding context , in the first sequence both EU1 and EU2

are unambiguous; the NPs match the correspondingly determined NPs. In

the second sequence, EU1 is ambiguous; it could either be a question

about the cat and the dog or one about the dog and the bird. The

preference is to resolve the ambiguity on a semantic basis, but there is

clearly some confusion that does not arise in the first sequence.

Utterance EU2, in the second sequence, really does not make sense

without some imputed context. Even then, there could be an ambiguity

similar to the one for EU1.

The algorithm for determining the slot filled by an elliptical

utterance uses the parallelism of determiners to filter out phrases to

be considered as matches. The determiner of each NP in the PU is

checked. If it is the same as that of the NP constituting the EU, then

X-7

f^flF^i-Wir-i-irr^' ^mtrimSsttm riiinHiiriiiTTiTTiTlMJiMI

the NP is a candidate for a match; the slot it fills is a candidate slot

for the EU.

A problem arises when considering EUs consisting solely of

norainals — NPs without any determiners. Some default determiner must

be chosen for the EU so that the filtering process can be done. The

default currently used is definite for singular NPs and indefinite for

plural NPs. This treatment is adequate for the kinds of questions in

the data base domain seen in the following three examples from the data

base protocols:

PU: What is the length of the Ethan Allen?
EU: Draft?

PU: Does Britain own any submarines?
EU: Patrol boats?

PU: Does the U.S. own the Ethan Allen?
EU: George Washington?

In general, however, there are cases that do not work undetermined:

PU: Did you drive the Cadillac today?
EU: Volkswagen?

"Volkswagen" alone is just not enough; "the Volkswagen" is. This pair

actually points up the idiosyncratic nature of the preceding pair.

Other nouns require no determiner and can be matched by u her

undetermined nouns or by definitely determined ones:

PU
EU
EU

Did he write about pollution?
Ecology?
The environment.

X-8

: ' i mr'urTiTiTtrti - ■ -■ r liirVfPir f- riTii i" j-r^^-^-'-'-.Mii

The syntactic role of a noun phrase is important in choosing

between candidate slots that are filled by phrases which are otherwise

semantically and syntactically equivalent. Consider the sequence:

PU: Is the Ethan Allen longer than the George Washington?
EU: The Churchill?

The EU is ambiguous since "The Churchill" could replace either "the

Ethan Allen" or "the George Washington". However, both "Is the

Churchill" and "Than the Churchill" are unambiguous. In each case a

syntactic role is assigned to "the Churchill" that can be used to

eliminate one of the two candidate slots.

In summary, syntax is used to limit the candidates considered

for finding slots of NPs serving as EUs. First, only NPs with matching

determiners are considered. If '.-.here is more tnan one candidate,

syncactic role is used to eliminate choices. If at either step of the

process there are no candidates, there is the option of relaxing

syntactic constraints. This option was not pursued in the speech

understanding system because of the need to restrict, rather than

increase, potential interpretations.

2. SEMANTICS

Although syntactic restrictions often eliminate all but ot.^

choice, there are cases when an appeal must be made to semantic

attributes of the phrases filling candidate slots in the pattern

utterance. The role of semantics in filtering out candidates may be

seen by considering the sequence.

X-9

- - -—

PU: Ts the chicken in the co ler?
RU: The potato salad?

Syntactically, "the potato salad" matches both "the chicken" and "the

cooler". Semantical1:- it is 'closer' to "the chicken": they are both

foods. Therefore, the ellipsis ptocedures should establish that as the

candid . .e slot.

Semantic closeness in a system with a semantic network

knowledge representation is determin(from the element and superset

hierarchy of the network. Given some collection of nodes N and a node

m, the node n in N is most closely related to m if n and m belong to a

common set (in the network) that does not include any other nodes of N.

In network terms, nodt, n is closest to m if, considering only element

(e) and subset (a) arcs, n and m have the closest common ancestor. This

closeness measure is a relative one. It can only be used to decide

among a set of alternatives.

For each of the concepts in an utterance, a piece of semantic

network is built. In particular, a noun phrase co. responds to a set of

nodes and relations in the network. For each noun phrase, a single node

in the network can be distinguished as central to the concept expressed

in the noun phrase. The node corr spending to a definite NP is the node

representing the object (or other ^jncept) identified with U c NP.

(Intensional referents are an exception — they may be treated like

indefinif-s for the purposes of tlllpsls.) For indefinite NPs, one node

of the structure built for tne NP is the 'head node'; the concept it

X-10

represents corresponds to the head noun of the noun phrase. Hence,

corresponding to each candidate slot that passes through the syntactic

constraints, there is a candidate node. The candidate node that is

closest to the node corresponding to the EU is chosen as the matching

node; the slot filled by itr concept is the slot the EU is taken to

fill.

To find the candidate node that shares the closest common

ancestor with the EU-node, paths are grown by recursively following e

and s arcs from each candidate node and the EU node. Having paths from

two different starting nodes reach a common node indicates that the two

nodes are elements of a common superset. If one of them is the EU node,

the match h?s ^een found and the slot determined. Since all paths

eventually reach the node UNIVERSAL (the top of the semantic net

hierarchy), any path that reaches UNIVERSAL is eliminated from

consideration. The paths traced for the sequence,

PU: Is the box-end wrench used to loosen the bolt?
EU: The socket wrench?

are shown in Figure X-1. Paths from the PU candidate nodes, which

correspond to the DEFNPs, '"the box-end wrench" and "the bolt" are shown

with dashed lines. The path from the node corresponding to the EU is

shown with a dotted line. The paths from 'W1' and 'W2' meet at

'wrenches'. It is important to note that the intermediate subsets,

'socket-wrenches' and 'box-end wrenches' are not needed for the

algorithm to work (in fact, it works faster without them).

X-11

[PHYSICAL OBJECTS)
\

FIGURE X-1 PATH-GROWING ALGORITHM

Problems arise only when paths from two (or more) candidate

nodes intersect with the path from the EU node at the same iteration of

the algorithm. This can happen either because the paths all intersect

(for the first time) at the same node, or because the paths from the

candidates have intersected at some node and the path from that node

intersects with the EU node's path. In either case the EU is ambiguous.

Consider the following examples:

PU: Is the submarine faster than the carrier?
EU: The patrol boat?

X-12

lüaaji* m^jgjinii^jji

PU: Is the patrol boat faster than the carrier?
EU: The nuclear sub?

PU: Is the nuke faster than the diesel sub?
EU: The carrier?

PU: Is the nuclear sub faster than the patrol boat?
EU: The guided missile carrier?

PU: Is the patrol boat slower than the Ethan Allen?
EU: The guided missile carrier?

Since syntactic clues have already been used as a filter, discourse has

no further '.-.'zy of disambiguating the utterance. A possibility, not

explored in the current implementation, is to examine the syntactic

roles of all of the candidates and see what keys to disambiguation might

be asked of the speaker.

After a candidate is selected, there is also a need for

semantic checking. This need is especially strong in a speech-

understanding environment. Even though the phrase constituting an EU

syntactically and seraantically matches some phrase in the PU, it may not

make sense seraantically to substitute the EU for this phrase. For

example, in

PU: Does Britain own a sub?
EU: A commander?

the EU matches the phrase "a sub" (they are both physical objects) but

the substitution does not make sense (note that it would if the PU were,

"Is there a sub in Naples?"). For this reason, a semantic check on the

suitability of substituting the EU in the selected slot is always done.

This check is in essence the same one that is done by the semantic

composition routines when the original utterance (i.e., the PU) is

X-13

'

interpreted and the matching (slot) phrase is embedded in some higher

level phrase. In building the PU, the semantic routines check the

suitability of this embedding. In the above example, the phrase "own a

sub" is checked. Before trying to substitute an EU, the discourse

routines perform the same check with the EU. In the example, the

plausibility of "own a commander" is checked and rejected. Such

possibilities must be provided for in a system with speech input, since

the acoustic routines may confuse "a commander" with "a Carpenter" (the

name of a ship).

C. COMPLETING THE UTTERANCE

Completion of the elliptical utterance entails fitting it into the

slot in the pattern utterance selected by the slot determination phase

of the process. Semantic checks already have ensured that it is

reasonable to substitute the EU for the NP that occupies the slot in the

PU. The remainir£ step is to build a new structure using pieces of the

PU and the EU. use of a network partition to reflect the parse

structure for an utterance is crucial to limiting the computing done in

this expansion.

Elliptical expansion in an earlier version of the speech

understanding system (see Walker et al., 1975) depended on having

available a representation of the semantic interpretation of the

complete PU in terms of the semantic representation of each of its

constituents. The utterance expansion routines built a new net around

X-14

- ■:—- • '»**■ •• i' il" "-iTÜTTil

the semantic representation of the EU using all of the information from

the semantic interpretation of the PU not superseded by information in

the EU. But, in a. speech system environment, interpretations of

utterances are built up from partial interpretations. Eaca partial

interpretation has been processed by both semantics and discourse to

allow assignment of scores for determining which of the competing

interpretations to work on next. As a result, the final semantic

interpretation of an utterance is a combination of semantic

representations of some constituents, discourse representations of other

constituents, and semantic processing to handle quantification. The

simple surgery of the original system no longer works because there is

no complete semantic template available. For example, when a definite

noun phrase is resolved, the node identified with the resolution, rather

than the original semantic interpretation, is used in building

representations for higher (embedding) phrases.

It would be possible for the semantic component of the system to

build dual representations, one using semantics and one using discourse

results, each time phrases were merged to make a higher level phrase.

This duplication would make available a final semantic interpretation

built only from semantic constituents. However, this solution would

double the most expensive work done by semantics in building an

interpretation. This doubling of effort would have to be done for all

phrases that include NPs, even the false attempts that were not part of

the final interpretation. Furthermore, such an expansion algorithm

X-15

requires copying all portions of the PU being used with the EU. In

contrast, the algorithm described in this section overcomes both of

these problems: it works using the combination of semantic and discourse

representations, and it copies only those portions of an utterance that

embed the slot filled by the EU.

To illustrate the basic algorithm we will consider the sequence

PU: What is the speed of the submarine?
EU: The carrier?

Figure X-2 shows the final semantic interpretation of the PU along

with the semantic interpretation for each of the constituent phrases and

the discourse interpretation of the NPs. The semantic representation of

each constituent is in a separate space in the network. (The hierarchy

of these spaces, shown by the heavy arrows, directly mirrors the parse

structure of the utterance.)

As soon as the NP "the submarine" is encountered and semantics has

built an interpretation for it, discourse is called. The submarine

Churchill is found in focus (Chapter IX, Section B) and hence identified

as the object referred to by the NP. Note that the node for the

particular ship is used in the higher level (embedding) NP "the speed of

the Churchill". Similarly, once the semantic interpretation for this NP

is built, discourse is called and determines the node corresponding to

the speed of the Churchill (which may or may not exist explicitly in the

net; see Chapter IX, Section C). This node is then used in building the

semantics for the whole utterance.

X~16

. ^ .. -^ :. iWiiWiaBiMilBlffci

X-17

Now consider what happens when the EU is encountered. The match of

"the carrier" with the slot filled by "the submarine" is found as

described in the preceding section. But the node for the Churchill is

nowhere to be found in the utterance level semantics, which consists

solely of the nodes and arcs in the vista of Spaces SI and N3 of Figure

X-2 (and of the knowledgespace nodes touched by those arcs). However,

it is easy to find how any node was used in building a final

interpretation of an utterance if enough information from the parse of

that utterance is kept.

After an utterance is accepted, the discourse routines collect

information about each of the NPs and VPs in history lists. In

particular for NPs, the semantic interpretation, the discourse

interpretation (which in some cases is identical to the semantic

interpretation tut ^ always different for definite NPs), the phrase of

which the NP is a constituent (or in which it is "embedded"), and

syntactic factors such as number and determination are noted in a table.

For VPs, only the semantic interpretation and the embedding phrase need

to be collected.

When an EU is encountered and the candidate slot found, the

embedding phrase for the EU can be constructed from the embedding phrase

for the phrase filling the slot in the PU. In the example, the

embedding phrase for "the carrier" is NP2. The first step of

substituting the EL in the slot is to copy the space(s) created when the

embedding phrase was formed from its constituents and to substitute arcs

X-18

 ■ ■-—w-.- ..— - -i t»f i i i i TrmUri - Hi i—ariFi

to the EU node for any arcs to the corresponding PU node. In the

example, a new space NP3 corresponding to NP2 must be built with an arc

to the Midway instead of the Churchill, as shown in Figure X-3 Note

that it is not necessary to copy any of the structure built for other

constituents of the embedding phrase. Network partitioning, in

particular the visibility restrictions it imposes, enables each of these

constituents to be viewed from the perspective of the new space. The

result of this step js a new constituent for some higher level embedding

phrase. Again the embedding phrase can be determined easily from the

history lists. The process continues recursively until the embedding

phrase is the utterance. Resolution of definite noun phrases (in

particular, relational NPs) is performed, if relevant, when the new

constituent is built. In the example, NP3 is built as shown in Figure

X-B- Because this is a relational NP, it is passed to the

resolution routines and the actual "speed of the Midway" is computed.

Finally, this node is emuedded in a copy of the utterance level

semantics as shown in Figure X-1.

Notice that the visibility restrictions of network partitioning

enable restricting the copying of constituents of the P'J to those

phrases embedding the slot filled by the EU. Looked at another way,

only those phrases on the path from the slot to the root of the parse

tree were copied. This attribute of the procedure may be seen ever, more

clearly by considering the sequence

PU: Does Britain own the carrier?
EU: The U.S.?

X-19

-■ - ^ --

tu
I

O
H
CO
CO
a

z
< a.
X

>
LU

CO

Q

<
a:
LU

tr
cc
<
u
LU
I
H

Ü
Z
>

cr
UJ

£E
CC
<
O
LU
I
(-
U.
O

O uj
w UJ LU S
OC (ft

n

UJ
X

a

£ 3

X-20

'Tiiiiriiiii .^_

€ 3

tr
at

<

X

u.
o
Q
ui
UJ
Q-
00

I
h

<
I
5

o
z
<
DC
LLI

3

<

u.
O

z
O
I
X
UJ

_i
<
z

x
tr

C3

Ui
Q Z

o.

X-21

„„_ iim-ir- fiOSHB^B-^w» -^^^^^^^^-■-
^^^^

and examining Figure X-5 and Figure X-6. The phrase "the

U.S." corresponds to "Britain", a top-level constituent of the

sentence. Only the space SI and the 'agent' arc need to be copied in

building the interpretation of the EU.

In the two examples presented so far, the EU is a definite NP. The

only difference in handling indefinite NPs is that the head node (and

other nodes and arcs) of the NP lie on spaces below the KNOWLEDGESPACE

and these spaces must be copied in the first step of the substitution.

Again, network partitioning minimizes the work; the whole collection of

spaces for the EU becomes visible (and the spaces for the NP that fill

the slot in the PU become invisible) when the new space is created for

the embedding phrase.

A final problem occurs with quantified NPs. Consider the sequence:

PU: Does Britain own all of the subs?
EU: The carriers?

The quantifier "all" operates on the NP "the carriers" in the most

natural interpretation of the EU. To obtain thi3 result, some record

must be kept of what quantifier, if any, applies to a phrase. But this

is exactly what the semantic component does in the first step of

handling quantifiers. When the NP "all of the subs" is constructed, the

only thing that happens is the recording of the quantifier "all" on a

space in the network of the NP. The actual rearrangement of the

structure into one tha4- corresponds to the network encoding of

quantified statements (see Chapter V, Section E.2) does not occur until

X-22

ri-fifi—^^^^^

LU

< o
LU
I
H
z

o

<

cc
m

O
p

oc
o
u.
w
O
I-

z
LU
00
LU
cc
Q-
LU
CC

in

LU
CC
3
a

X-23

D
UJ
X
F

u
<

t
D

< u
a

X

O

2
<
CL
X
LU

a

I I
0) CO

£ 3

z

X-24

 1" iii"ii ■- —-^

after the entire utterance is processed. Semantic processing must

operate this way to capture the proper scoping of quantifiers.

Discourse uses the tracks left at the parse structure level to transfer

relevant quantifiers to elliptical utterances. In the sequence

PU* Does Britain own both carriers?
EU: Either carrier?

the EU is already quantified and the expansion process does not transfer

the quantifier from the PU. The two-step process for handling

quantifiers also means that an elliptical utterance when expanded may

have different scoping than the PU. This difference in scoping occurs

in the sequence

PU: Who built all ballistic missile submarines?
EU: Each Nuke?

The PU asks for the single builder of all ballistic missile s ^marines.

The scope of "all" is inside of the scope of "who". In the EU, the

scope of the "who" moves inside the scope of the quantifier, "each".

For each nuke, the particular builder of that ship must be identified.

X-25

D. ELLIPTICAL RELATIONAL NOUN PHRASES

The ellipses discussed so far have all been structural in the sense

that some syntactic pieces of an utterance have been left out; the

structure of the utterance is incomplete. As a result, syntactic clues

may be used to detect tha ellipsis and to guide interpretation of it.

The data base dialogs also contain elliptical utterances for which there

are no syntactic clues. Consider the utterance: "What is the ler.gth?";

the ellipsis here is semantic. The utterance is syntactically, but not

semantically, complete. "The length" is a well-formed NP; however,

semantically, "length" assumes some object for which length is a

relevant measure and implicitly conveys the relation of "having a

length". The combination of this 'relational' attribute and

definiteness indicates the need for an object. (If the utterance had

been "What is a length", then no object would be required. The use of

the indefinite determiner distinguishes this case.)

In essence, the verb like characteristics of the relational nouns

cause a situation in which a phrase that appears to be syntactically

complete is not. The object of the 'verb' is missing, but, since ^.he

verb is expressed through a noun, no syntactic indications of

incompleteness occur. Case information appearing with the semantics of

relational nouns can be used to detect this kind of ellipsis.

When a definitely determined relational NP (RELNP) is encountered,

the discourse routines first check to see if all of the cases required

X-26

r- --" ---*— mm

by the RELNP are present. If any are missing, ellipsis handling is

invoked. The preceding utterance is examined to find objects for the

empty slots. The procedure for finding candidate slots in the case of

structural ellipsis can be used to determine which object in the PU best

fills the missing case slot. Expansion of the elliptical RELNP is

straightforward: a new space is created below the space for the RELNP

and the space(s) containing the slot filler(s), and the case arcs are

jdded to this space.

A compound case of structural and RELNP ellipsis occurs in the

sequence

PU: What is the draft of the submarine?
EU: The length?

In processing this EU, the RELNP ellipsis is handled at the noun phrase

level resulting in the structure of (a) in Figure X-7 being

transformed into the structure of (b). The structural ellipsis is

handled at the utterance level. At this point the problem is equivalent

to processing the EU, "the length of the submarine". The result appears

in (c) of Figure X-7.

X-27

NP S (

OET ttw

N length

(•) Samanlic int»rprat>tian of lh« NP "th« Itn ■h"

FIGURE X-7 EXPANSION OF THE ELLIPTICAL UTTERANCE, "THE LENGTH"

X-28

- ~ -^-~i- .—
-.-^-.^

E. LIMITATIONS AND EXTENSIONS

The ellipsis-handling capabilities described in this section are

limited in at least two ways. First, the slot-determining procedures

depend on the presence of a matching phrase in the pattern utterance.

However, an elliptical utterance may be a modifying phrase to be added

to the PU; in this case, there will be no matching phrase, but rather a

raissipg (optional) constituent. Second, we restricted our treatment to

isolated noun phrases (and nominals) serving as utterances and

seraantically elliptical RELNPs, both because we wanted to reduce the

number of competing hypotheses that would have to be considered in the

interpretation of a spoken utterance and because no other instances

occurred in the dialogs. However, the algorithm for expanding an

elliptical utterance is general. In the remainder of this section we

discuss these limitations and present the extensions necessary for

handling less restricted forms of ellipsis.

The major limitation of the current ellipsis routines stems from

the assumption that the EU will fill a single slot in the PU, which is

not true of ellipsis in general. At the utterance level, the general

case is that any number of constituents may be present or missing in the

EU. In the sequence,

PU: Did you take the coat to the cleaners?
EU: The shoes to the shoemaker?

the EU contains an object NP and an adverbial prepositional phrase. The

subject NP and the VP must be retrieved from the PU. This kind of

X-29

ellipsis is even more common when more complex sentences are considered.

In particular, when two clauses or phrases are conjoined, the second is

often elliptical; consider the above sequence joined by "and". Rather

than looking for a single slot filled by the EU, the ellipsis routines

should determine the constituents missing from the PU and then build the

full utterance (the latter stop would be quite similar to the work done

by the semantic composition routines).

The mechanism for handling ellipsis this way would entail a closer

coupling of syntax and discourse and ■•ould proceed basically as follows.

The parsing routines would determine which constituents of the utterance

were present in the EU and which were missing, on the basis of the

context-free structural description associated with each rule in the

language definition. Using this information and the parse of the PU,

the discourse routines would build the complete utterance in a manner

similar to the one now used for expansion. The only difference would be

that several components might get replaced at once. Both semantic and

syntactic checking could be done based on the mapping between the

structure of the PU and that of the completed EU.

Adopting such a strategy eliminates two major limitations of the

current approach. First, the EU may consist of any number of

constituents, not just a single NP (the only exception to this

restriction in the current routines is with RELMP ellipsis). In

particular, the EU may consist solely of a modifying phrase not present

X-30

Ti -^—-^-'-^-■■■-■^'^-^

in the PU, as in the sequence,*

PU: Plot the distribution of soybeans.
EU: In the year 2000.

Second, the extension to handling NP and VP ellipsis is straightforward.

The only additional step needed is to determine the NP (or VP) in the PU

that matches the elliptical phrase. The PU phrase then takes the role

of the PU and the elliptical phrase takes the role of the EU in the

above description. The result of the processing is a complete NP (or

VP) to be used in building the rest of the utterance. For example, in

the sequence,

PU: Is the Churchill the smallest sub?
EU: Is the Lafayette the largest?

the elliptical NP "the largest" gets matched with the PU phraae "the

smallest sub", and is then expanded to "the largest sub". This complete

NP can then be used in the (now complete) EU.

Processing the kinds of ellipsis occurring in the question

answering pairs of the task dialogs also entails only one additional

step. The question (PU) must be transformed before it can be used as a

template. As an example, consider the sequence

PU: Which bolts did you tighten?
EU: The front bolts.

The PU must get transformed to "You did tighten which bolts", then an

I/you transformation must be dene. Then the EU can be placed in the

slot (nicely indicated by the WH-phrase). A means of expanding the

» Thanks to W. H. P?xton for this example and for a suggestion of how to
handle it. The content of this section was greatly influenced by
discussions with him.

X-31

^jum^uj j

language definition to facilitate this kind of processing is currently

being explored.

X-32

XI RESPONDING ON THE BASIS OF THE SEMANTIC TRANSLATION

Prepared by Gary G. Hendrix

CONTENTS:

A. Perspective
B. Interactions with the Deduction Component and the

English Generator
1. Yes/No Queries
2. WH Queries

A. PERSPECTIVE

Once a semantic translation has been constructed for an utterance,

a language understanding system will respond in accordance with the

nature of its interpretation of the input and within its abilities to

perform tasks. The range of sophistication in response ability is

potentially quite broad. At one extreme, a system might be able to

build literal interpretations of inputs but be completely unable to act

upon them. At the other extreme, a system might record who uttered the

input; consider what the meaning of the input is in terms of the

system's perspective on the knowledge, beliefs, goals, and social

behavior of the speaker; and then consider how to act upon the input in

such a way as to maximize the system's own potential for reward, as

determined by its own value system, goals, aspirations, and predictions

concerning how its actions will affect future states of the world.

. ■ ■ ■■■-.—-^ - -

Possible actions to be performed by a sophisticated system would include

updating its world model to reflect new input information; supplementing

the model by making inferences and deductions; both finding answers

logically or even performing physical experiments to determine them;

taking physical action in response to commands and requests; and

planning and executing sequences of actions to achieve or maintain goals

in the face of new input data.

The response component of the SRI speech understanding system is

rather limited in its scope, reflecting the project's emphasis on an

intelligent interpretation of the utterance as opposed to subsequent

processing. The resources that may be marshalled by the responder

include a component that performs logical deduction (see Chapter XII), a

natural language generator that converts network structures into

appropriate English expressions (see Chapter XIII), and a routine for

drawing partitioned network structures.* No resources for permanently

augmenting the task domain model, doing planning, reasoning about goals

and beliefs, or performing motor activities are available.

Given its current set of resources, the task of the responder is to

determine which inputs are requests for information that may be acted

upon by the deduction component and which are not. For those that are

not, a representation of the corresponding partitioned network structure

is drawn to express the system's interpretation of the utterance. For

• This routine was programmed by Par Emanuelson of Linkoeping University
in Sweden while he was a visiting research engineer at Sfll. It is
illustrated in thb example presented in Chapter I, Section C.

XI-2

■ - - — - HI tu

those inputs that are suitable for deductive processing, the responder

formats a call to deduction and interprets the results returned by it.

Depending upon the type of information requested and the results

returned, the responder will either produce a specified response, like

YES or NO, or will invoke thf. English generator to express the results

of the deduction processing.

B. INTERACTIONS WITH THE DEDUCTION COMPONENT AND THE ENGLISH GENERATOR

The input to the response component is a space T that represents

the interpretation of the spoken utterance. Such translation spaces are

produced by the quantification phase of the semantic translation

process. To determine what action is to be taken in response to an

input, the re^onder examines space T, looking for either the structure

of Figure XI-1 or the structure of Figure XI-2. For question

answering to be performed, space T must contain exactly the structures

shown and contain no additional structures. The special sets

REQUESTS.YN and REQUESTS.WH are used in the encoding of YES/NO and WH

questions, respectively, and are discussed in Chapter V, Section E 3.

The structures of Figure XI-1 and Figure XI-2 are not

necessarily the interpretations of questions. For example, the command

"Give me the speed of the Henry.L.Stimson."

translates into the same request for information that would be produced

for

"What is the speed of the Henry.L.Stimson?"

XI-3

s^ ^x KNOWLEDGE

(REQUESTS.YN)

i \

y

e

T

P

r A Prop

K J

FIGURE XI-1 SCHEMATIC OF YES/NO QUESTION

On the other hand, not all queries fall into one of these two forms.

For example, the query

"Who built each destroyer?"

which is interpreted as

"For each destroyer, who was its builder?"

does not fall in either category but rather embeds the request structure

of Figure XI-2 in a universally quantified expression. Some

questions involving quantifiers are accepted- For example,

"Did General.Dynamics build all of the Lafayettes?"

XI-4

■ a ■ 7 iiTi"iri »M^. üj^äbiHBH i !■■■ ii.---,r^äiiHMiiiiiHt^MMB^M^a

KNOWLEDGE

P

FIGURE XI-2 SCHEMATIC OF WH QUESTION

follows the fo!.n of Figure XI-1.

The system's understanding of any utterance that does not follow

one of the forms cited above is expressed by printing out a drawing of

the network of the utterance's translation space T (and the structures

of spaces embedded ss supernodes In T, and so on).

XI-5

1. YES/NO QUERIES

For top-level YES/NO questions, which follow the form of

Figure XI-1, the responder calTs '■■he deduction component (sse the

discussion in Chapter XII for an explanation of its input/output

charaoteris:ics) with a QVISTA and a KVISTA. The QVISTA used in this

call is a one item list containing only space P, and the KVISTA is a

one-item list containing only space KNOWLEDGE of the system's task

domain model.*

Essentially, space P (and its embedded spaces if it contains

logical connectives such as IMPLICATIONS, NEGATIONS, or DISJUNCTIONS)

represents a proposition upon whose truth rests the answer to the YES/NO

query. The job of deduction is to test the truth of P against the

domain model encoded in the KNOWLEDGE space. Conceptually, this is done

by pattern matching the structures of P against the structures of

KNOWLEDGE.

If the proposition can be proved true, then deduction returns

an association list describing how structures in P may be instantiated

by rtructures in KNOWLEDGE. If the proposition can be proved false,

deduction provides a counterexample (that is, an instantiation in a

egation space). In addition to associations between P structures and

» KVISTA is the orthodox vista of KNOWLEDGE, but QVISTA is created by
the responder. The orthodox vista of P is the list (P T KNOWLEDGE). In
general, the QVISTA and KVISTA supplied to deduction may contain an
arbitrary number of -paces. In fact, calls to deduction from discourse
typically use QVISTAS containing multiple spaces created by the semantic
composition routines.

XI-6

- B - - ^..i.^« —

KNOWLEDGE structures, the association list contains a pair of the form

(ANSWER . value). For YES/NO questions, the responder returns this

value to the speech understanding system executive for printing. The

value will be YES, or NO, or, in those cases where deduction can neither

prove nor disprove the proposition, UNKNOWN.

2. WH QUERIES

Top-level WH questions have a prop space P just like YES/NO

questions. The responder uses this space to set up a call to deduction

that is identical to the call for YES/NO questions. If the ANSWER value

on the returned association list is NO, then the responder reports that

the underlying proposition was faulty. For example, the report "NO SUCH

PERSON OR THING" would be produced for the queries

,:What submarine is a destroyer?"

and (more convincingly)

"Which destroyers are nukes?"

(There are T nuclear destroyers.) If users are not expected to ask WH

questions wiVii false propositions, then the language definition may

include a proviso that if this condition arises, the executive's score

of the querj will be lowered and parsing resumed in search of a higher

scoring interpretation of the input.

If the ANSWER value on the association list is UNKNOWN, then

deduction could neither prove nor disprove the proposition of the

question. The responder returns an appropriate message.

XI-7

If the ANSWER value on the association list returned by

deduction for a WH query is YES, then the association list contains a

mapping from the query's proposition onto one of the proposition's

(possibly many) instantiations. This map holds the (an) answer to the

query. For example, upon receiving the translation of the query

"Who built the Henry.L.Stimson?"

which is shown in Figure XI-3, the responder calls deduction with a

QVISTA of (P). Then deduction returns an association list whose form is

approximately as follows:

[(ANSWER . YES)
(VISTA . (KEXTENSION KNOWLEDGE))
(X . General.Dynamics)
(Y . DERIVED.031)
(<e X LEGAL.PERS0NS> . <e General.Dynamics LEGAL.PERS0NS>)
(<e Y BUILDINGS> . <e DERIVED.031 BUILDINGS>)
(<agt Y X> . <agt DERIVED.031 General.Dynamics>)
Kobj Y Henry.L.Stimson> . <obj DERIVED.031 Henry.L.Stimson>)]

This association list shows the mapping between the original

proposition P, which may be paraphrased as:

There is some legal person X,
and there is some building situation Y,
and the agt of Y is X,
and the obj of Y is the Henry.L.Stimson.

and its instantiation

General.Dynamics is a legal person,
and DERIVED.031 is a building situation,
and the agt of DERIVED.031 is General.Dynamics,
and the obj of DERIVED.031 is the Henry.L.Stimson.

In particular, 'X' is associated with 'General.Dynamics', Since 'X' is

the ncde of the WH query's indox space I, its image, 'General.Dynamics',

is the answer to the question.

XT-8

y»— s^

KNOWLEDGE

(RE QUESTS. WH j { LEGAL.PERSONS c BUILDINGS j f HENRY.L.STIMSON j

i i ^1 i ^{ y~^

/

e

/ T

e e /
p

r l^N/ obj

AYJ

. ^v
jy s^-J

r L^
/ T^ x

(R) \J
X

i

FIGURE XI-3 TRANSLATION OF "WHO BUILT THE HENRY.L.STIMSON?"

The way in whicn the responder expresses answers to WH queries

depends upon the setting of system variable SENTENCEFLG and the nature

of the query's index space. If SENTENCEFLG is NIL and the index space

contains exactly one node, then the image of that node is passed to the

English generator for translation into an English phrase. In the

XI-9

example above, the node 'General.Dynamics' would be passed to the

generator and the list (General Dynamics Corporation) would be returned.

The vista that is the value of VISTA on the association list — for the

example, (KEXTENSION KNOWLEDGE) — is passed as a second argument to the

generator. This vista contains not only the KNOWLEDGE space, but other

spaces that have been created by deduction to encode nodesi and arcs

(e.g., 'DERIVED.031') that were derived in the process of instantiating

the proposition of space P. Since the answer to a WH question might be

a derived node, this vista may be needed by the gene.-ator to provide a

sufficient vantage from which to view the node. In the example, the

instantiation of 'X' is not derived, but lies on the KNOWLEDGE space.

(The instantiation of 'Y' is derived.)

If the SENTENCEFLG is set to TRUE or if multiple nodes lie on

the index space I, then a complete sentence (or sequence of sentences)

describing the instantiation of P in KNOWLEDGE (and its extensions) is

generated as an answer to the query. To do this, the responder creates

a new (scratch) space G below KNOWLEDGE and copies all the

instantiations of the structures of P onto this space. That is, each

network structure appearing on the right side of a pair on the

association list returned by deduction is copied onto G. (This copying

onto a new space is performed at a fraction of the cost of creating new

structures.) The new space G partitions off the instantiations of P

irom other network structures. This space is then passed to the English

generator, which is responsible for expressing all the concepts encoded

XI-10

on the space. For the example query, that set of concepts may be

expressed as

"The General Dynamics Corporation built the Henry.L.Stirason."

XI-11

 _ _-

XII THE DEDUCTION COMPONENT

Prepared by Richard E. Fikes

CONTENTS:

A. Introduction
B. Element Parity
C. The Environment Tree
D. The Executive for the Deductive Component
E. Generating Candidate Bindings for a Selected QVISTA Element
F. Ramifications of a Proposed Binding
G. The Binder

1. QVISTA To- t.evel Elements
2. QVISTA Disjunctions
3. QVISTA Implications

a. Consequent Match
b. Antecedent Match

4. QVISTA Negations
H. Deriving Element-of and Subset Relations Using Taxonomies
I. Simplification of Negations
J. The KVISTA Extractor

1. KVISTA Extraction Rules
a. KVISTA Disjunctions
b. KVISTA Implications

i. Consequenu Match
ii. Antecedent Match

c. KVISTA Negations
2. An Example

K. The QVISTA Extractor
1. QVISTA Extraction Rules

a. QVISTA Disjunctions
b. QVISTA Implications

i. Consequent Match
ii. Antecedent Match

c. QVISTA Negations
2. An Example

L. Procedural Augmentation
1. E Arc with Bound N.des
2. Sets Defined in the QVISTA
3. Applications and Keyed-Applications
1. Efficiency Considerations

M. Two Examples

XII-1

A. INTRODUCTION

Thia chapter is a progress report on the deduction component, a

facility for retrieving information from procedurally augmented,

partitioned semantic networks. Several ccmplete implementations have

been constructed during the last two years, each incorporating major

design changes from its predecessor, anJ our exploration of new design

ideas continues. We describe here a set of facilitiej» embodying the

major design ideas that have evolved from our experience with these

systems.•

When the response component determines that an utterance is a

request for information, the deduction component is called to process

the net structure corresponding to the utterance, relating it to other

information stored in the domain model. The deduction component is

capable of retrieving inf^.jation explicitly stored in the nets,

deriving information using general statements stored as theorems in the

net, and calling user supplied functions pointed to in the net that

obtain information f'-om knowledge sources other than the net such as

data files.

• Many people in the SRI Artificial Intelligence Center have contributed
to the development of the deduction component. Gar>' Hendrix has been a
major partner in the design effort throughout the project. Nils Nilsson
has been an important contributor to the deductive machinery, and
Jonathan Slocum both designed and implemented the data base interface.
Mjke Wilber and Rene Reboh were major participants in the overall
implementation effort.

XII-2

For example, if a user asks "Who built fne Henry L. Stimson?" and

the knowledge net contains the fact 'General Dynamics built the Henry L.

Stimson', then the answer would be determined by simply retrieving that

fact. If the knowledge net did not. contain that fact but instead

contained the theorem 'General Dynamics built all of the Lafayettes' and

the fact 'The Henry L. Stimson is a Lafayette', thon the same query

would be answered by using that theorem and that face to deduce the

answer. Alternatively, if the knowledge net did not contain those facts

or that theorem, but instead contained the theorem 'Function SHIPDATA

can be called tc determine the builder of any given ship' and the fact

'The Henry L. Stimson is a sh^p', then the same query would be answered

by determining that the Henry L. Stimson is a ship and then callitg the

function SHIPDATA.

The deduction component accepts as input a vista called QVISTA

containing the network translation of an English query and a vista

called KVISTA containing the knowledge base from which answers to the

query are to be retrieved. The QVISTA is the 'proposition' portion of

the query (see Chapter V, Section E.3) and can be thought of as

representing a 'pattern', with the QVISTA elements (i.e., arcs and

nodes) being the pattern's variables. Processing entails seeking a

'match' in the KVISTA for the query pattern. A successful match

produces a list containing a 'binding' for each QVISTA element to a

corresponding KVISTA element. For example, if the query is "What

submarines did General Dynamics build?", then the QVISTA would be as

XII-3

shown in Figure XII-1. The KVISTA would be examined for elements of

the BUILDINGS set that have an outgoing agt (agent) arc to

GENERAL.DYNAMICS and that have an outgoing obj (object) arc to a node

that has an outgoing e (element) or de (distinct elements) arc to

SUBMARINES. The to-node of the obj arc of each such element of

BUILDINGS represents an answer to the query.

The deduction component is a 'generator' of answers, ea.ch answer

being in the form of a list containing a binding for each QVISTA

element. After a bindings list is returned, it can be repeatedly

'pulsed' to find as many different answers to the query as desired.

Hence, in the previous example, each time it iz pulsed, it will indicate

another submarine that General Dynamics built.

Included on the bindings list produced is an 'answer pair' whose

first member is "ANSWER" and whose second member is either "YES", "NO",

or "UNKNOWN". Each time a binding is found for each QVISTA element, the

answer pair in the generated bindings list indicates a "Yes" answer. If

it has been proved that no possible set of bindings exists for the

elements in QVISTA, then the answer pair will indicate a "No" answer to

the query. When it is not possible to find either another set of

bindings for the QVISTA or any set of bindings for the negation of the

QVISTA, then a one-element bindings list is generated, indicating an

answer of "Unknown".

XII-1

FIGURE XII-1 KVISTA AND QVISTA FOR THE EXAMPLE QUERY "WHAT
SUBMARINES DID GENERAL.DYNAMICS BUILD?"

XII-5

 ■ - ...s,^.,, . ■

The deduction component retrieves information directly from the

KVISTA using the indexing properties of the nets. It contains

derivational machinery that provides the equivalent of a logically

complete first-order predicate calculus theorem prover. It also

contains procedural augmentation facilities for applying user-supplied

semantics-based deduction functions. The following examples indicate

how these capabilities contribute to the answe-ing of queries.

Consider the KVISTA and OVISTA shown in Figure XII-2. The

indexing properties of the net would be used to find the following

bindings:

node Y to node B,
node X to node General.Dynamics,
arc Y~obj—>Henry.L.Stimson to arc B—obj—>Henry.L.Stimson,
arc Y—agt—>X to arc B—agt—>General.Dynamics, and
arc Y—e—>BUILDINGS to arc B—e—>BUILDINGS.

A binding for arc X—e—>LEGAL.PERSONS must be derived since no e arc

exists in the KVISTA between node General.Dynamics and node

LEGAL.PERSONS. The required arc is easily derived by finding the

'chain' of de and c's arcs that connects the two nodes.

Another example is ohown in Figure XII-3. To answer this query,

it is necessary to carry out a derivation using the Implication in the

KVISTA that represents the statement "General Dynamics built all of the

Lafayettes". The derivation will proceed by setting up a subproblem to

find bindings for the instance of the implication's antecedent that

requires the Henry L. Stirason to be a member of the set of Lafayettes.

When that subproblem is solved, a new member of the BUILDINGS set will

be added to the KVISTA that will provide the desired bindings.

XII-6

- - •-■■■i'i ir wur '

KNOWLEDGE

FIGURE XII-2 AN EXAMPLE QUERY, "WHO BUILT THE HENRY.L.STIMSON''
WHOSE ANSWER IS EXPLICITLY AVAILABLE

XIT-7

KNOWLEDGE

FIGURE XII-3 AN LXAMPLE QUEHY. WHO BUILT THE HENRY LSTIM30N'-, WHOSE

ANSWKR IS INTERNALLY DERIVABLE

XII-8

Figure XII-4 shows an example with a KVISTft that contains a

theorem indicating that the user-supplied data base access function

SHIPDATA can be used to produce new members of the BUILDINGS set. This

theorem would be used in a derivation, as in the previous example, by

creating a subproblem consisting of an instance of the theorem's

antecedent. SHIPDATA will be called to produce in the KVISTA a new

member of KEYED.APPLICATI0N3 that will provide the bindings needed to

solve the subproblem. A new member of the BUILDINGS set will then be

created, as before, to supply the desired bindings for the original

query.

In this chapter, we will describe the major constituents of the

deduction component and how they interact to answer queries. We begin

with a discussion of our concept of "parity", a description cf the case

analysis tree that defines the alternative answers being constructed,

and a presentation of the flow of control in the deduction executive.

B. ELEMENT PARITY

The derivational and retrieval machinery in the deduction component

does not require that queries and KVISTA facts and theorems be

translated into a canonical form such as prenex normal form cr clause

form. This Tlexibility saves statement translation time, reduces the

need to keep both an 'internal' and an 'external' form of statements,

and allows a user to make entries into the knowledge base in a form that

is most advantageous for the class of queries to be answered.

XII-9

—,^u, - -■ i

FIGURE XII-4 AN EXAMPLE QUERY, "WHO OWNS THE HcNRY.L.STIMSON?"
WHOSE ANSWER IS EXTERNALLY DERIVABLE

XII-10

^^-*..,==-^^--~

Therefore, it is necessary to be able to work with arbitrary nestings of

negations, implications, and disjunctions containing arbitrary

quantifiers both in the KVISTA and in the QVISTA.

One of the problems that this lack of canonicalization presents is

determining whether a variable would be universally or exfstentially

quantified if the statement in which the variable appears were

transformed so that all the quantifiers occurred at the beginning of the

statement (i.e., if the statement were put into prenex normal form).

This information can be used, for example, when matching (i.e.,

unifying) two structures to reject matches that would require binding

two distinct existentially quantified elements.

A second problem is that of determining the 'logical sign'

(positive or negative) that a KViSTA or QVISTA element has. An

element's logical sign corresponds to the sign that the term in which

the element occurs would have if the statement in which the element

appears were put into disjunctive normal form. This information is

important since a QVISTA element and its binding must have the same

logical sign. When the derivational machinery is looking for an element

in a KVISTA theorem that could produce a binding for some given QVISTA

element, it can determine that the derivation cannot possibly produce a

binding for the given QVISTA element if the theorem's element does not

have the same logical sign.

XII-11

— -..-^^—-■»

As an example, elements in the consequent of an implication that is

visible in the KVISTA have a positive logical sign and can produce

bindings for elements that are visible in the QVISTA (using a derivation

that proves an instance of the implication's antecedent), and elements

in the antecedent of the implication have a negative logical sign and

can provide bindings for elements in a negation space that is visible in

the QVISTA (using a derivation t'»it proves the negation of the

implication's consequent).* Similarly, a QVISTA element will require a

binding that is either visible in the KVISTA or in a negation space that

is visible in the KVISTA, depending on how the QVISTA is embedded in

negations, implications, and disjunctions.

The 'implicit existential' representation of quantification that we

are using (See Chapter V, Section E.2.c) has the interesting property

that in the KVISTA all existentially quantified elements have a positive

logical sign and all universally quantified elements have a negative

logical sign. This correspondence can be understood intuitively by

observing that negation changes a universal quantifier into an

existential quantifier (and vice versa), and that all universal

quantification in our representation is derived from negated existential

* A space being 'in a vista' means that the space is one of the spaces
on the list that defines the vista. An element being 'visible in a
vista' or 'in the top level of the vista' means that the element is in a
space that is in the vista. An element being 'embedded in a vista V
means that the element is not visible in the vista and that the vista of
the space that the element is in includes one of the spaces that is in
vista V. Hence, for example, the consequent of an implication can be
'visible in the KVISTA', but the elements of the consequent would be
'embedded in the KVISTA'.

XII-12

-^ ^ -^

quantification. Similarly, with respect to matching QVISTA structures

against KVISTA structures, QVISTA elements with a positive logical sign

can be thought of as being universally quantified, and QVISTA elements

with a negative logical sign can be thought of as being existentially

quantified.

Hence, a single device can be used to deal with the tv;o problems

discussed above. Namely, functions are available for computing a

'parity' of either 'positive' or 'negative' for each element that is

either visible or embedded in either the KVISTA or the QVISTA. Parity

corresponds to logical sign and is defined as follows All elements in

the vista have positive parity. All elements in a negation or

antecedent space have parity opposite that of the space (supernode) they

are in. All elements of any other space (such as a disjunct or

consequent space) that are not also elements of a negation space or an

antecedent space have parity the same as that of the space they are in.

Parity is used to ensure that anticipated bindings will be legal

with respect to quantification and that both elements in a binding will

either be visiDle in the vista or will be in a negation space that is

visible in the vista.

XII-13

.-. -.—1 -I, aii-fah,,- —— ■ ■ ^-^—^-^-^fcj^*

C. THE ENVIRONMENT 7REE

The deduc* ion component proceeds by growing a case analysis search

tree each node of which represents a set of choices, asoumptions, and

subproblems called an 'environment'. All of the retrieval and deduction

acti'/itles are done with respect to some environment in this tree.

A typical choice that causes creation of a new environment is the

binding of a QVISTA element. Such a choice can be used to derive a

contradiction or to restrict possible bindings of other QVISTA element.?

and therefore is a 'case' that must be considered separately from

situations where a different binding is selected for the same QVISTA

element. Another typical choice that causes the creation of a new

environment is that of a derivational strategy for determining bindings

for some construct such as an implication occurring in the QVISTA. The

selected strategy may, for example, create a subproblem in which an

implication's antecedent is assumed to be true and bindings are sought

for the implication's consequent.

Subproblems are formed by adding newly created spaces called

"extension spaces" to QVISTA. Similarly, assumptions are made and the

results of derivations are stored in newly created extension spaces

added to KVISTA. At any given time, the extension space most recently

added to KVISTA or QVISTA in a given environment is called the "current"

KVISTA or QVISTA extension space for that environment, and the most

recently added set of spaces is called the current KVISTA or QVISTA

extension vista.

xn-m

"- -.-^-.^-:-.^-

Each time the deduction component Is called with a new query, it

attaches an empty space to KVISTA and considers it to be the current

extension space and the current extension vista to KVISTA. Whenever a

new ne'„ element is därived in the KVISTA, it is added to the current

KVISTA extension space. When a subproblem is being created that

involves making assumptions, a new KVISTA extension vista is created and

the assumptions are made in the new vista. When the subproblem is

completed, the new extension vista is deleted from KVISTA, thereby

removing the assumptions and any results derived from them.

The current QVISTA extension vista contains the most recently

created subproblems, and bindings are always being sought for the net

elements in the current QVISTA extension vista. Associated with each

QVISTA extension space in the KVISTA that was current when the extension

space was created. Bindings for elements in a QVISTA extension space

must be elements of the KVISTA associated with the extension space.

This restriction prevents the use during the solution of a subproblem of

derived results that depend on assumptions made after the subproblem is

created. Initially, all of QVISTA is considered as the current QVISTA

extension vista.

Extension spaces are added to KVISTA and QVISTA with respect to an

environment, so that KVISTA and QVISTA trees of spaces are grown that

map onto the environment tree. The network partitioning facilities

provide a natural and efficient mechanism for administering these

alternative cases, including their subproblems, assumptions, and derived

results.

XII-15

Extension spaces would be used, for example, to find bindings for

an implication occurring in the QVISTA. A typical derivation would

assume the implication's antecedent in a newly created KVISTA extension

space and put a copy of the consequent into a newly created QVISTA

extension space. Bindings would then be sought for the consequent copy,

and when a complete set was found, the extension spaces created for this

subproblem would be deleted from the KVISTA and QVISTA, a copy would be

created of the QVISTA implication in the current KVISTA extension space,

and bindings would be formed between the elements of the QVISTA

implication and its newly derived KVISTA copy.

An environment is represented by an association list that pairs

variable names with their values. A new environment is created as an

offspring of an existing environment in the tree. The new environment

effectively 'inherits' its own copy of each of the variable values from

its parent. Whenever possible, the values are not copied and changes in

the new environment are made in such a manner as not to affect the

values in the parent. For example, if a value Is a list and is not

copied, then in the offspring environment elements might be added to the

front of the list, but the existing list and its elements would not be

changed,

In the version of the deduction component described in this

chapter, the following variables are included in an environment:

(1) BINDINGS -- The ll.'jt of bindings of QVISTA elements
to KVISTA elements.

XII-16

^J-^^"-----J-^^>I»J»^^.I-I-«--.^.-»JJI»*^.--^^*JM-|---'»J"'J"--- ■■, irr-i i iiii —1 -"-———■ --~— --.^w-,.,,.^.^---..^,..^,- «, ^»^j^äjiiaati^-aäjjaa

(2) QVISTA — The list of spaces in QVISTA. This list
includes all the extension spaces that are a part of QVISTA in
this environment. The first element of this list is the
current QVISTA extension space.

(3) QVISTA.EXTENSION.VISTAS — A list of the extension
vistas that are part of QVISTA in this environment. The list
is orderecl so that its first element is always the current
QVISTA extension vista.

(4) KVISTA -- The list of spaces in KVISTA. This list
includes all the extension spaces that are a part of KVISTA in
this environment. The first element of this list is the
current KVISTA extension space.

(5) KVISTA.EXTENSION.VISTAS -- A list of the extension
vistas that are part of KVISTA in this environment. The list
is ordered so that its first element is always the current
KVISTA extension vista.

(6) EXTRACTED.Q.ELEMENTS — The list of QVISTA elements
that have been extracted in this environment and its ancestors
(see Section K on the QVISTA Extractor).

(7) CANDIDATE.GENERATORS — The generator functions that
produce possible bindings for QVISTA elements (See Section D
on the Executive). An offspring environment that inherits a
generator from its parent environment must effectively have a
copy of the generator, since the generator may be
independently pulsed in both environments. The 'spaghetti
stack' features of INTERLISP (leitelman, 1975) allow such
'copying' to be done efficiently.

(8) WAITING.Q.ELEMENTS ~ The list of QVISTA elements
whose candidate generators are waiting for new bindings to
occur. No attempt will be made to find a binding for a QVISTA
element while it if; on this list.

(9) BINDING.DEMONS — The lists of demons that are
associated with each unbound QVISTA element. When a QVISTA
element is bound, each of the demons associated with it is
given control. In the version of the deduction component
described in this chapter, these demons are placed on QVISTA
nodes by generators of candidate bindings when those
generators cannot proceed until further bindings are made. As
is the case with generators of candidate bindings, an
offspring environment that inherits demons from its parent
must effectively have a "' py of the demons so that they can be
independently activated s both environments.

XII-17

D. THE EXECUTIVE FOR THE DEDUCTIVE COMPONENT

The facilities that we have designed for the deductive component

allow for a variety of control and selection strategies to guide the

searcn for bindings. We present in this section a simple control

strategy that we will assume to be in effect for our discussions in this

chapter.

The deduction, component i.^ a generator function and it depends

heavily on the use of generator functions (See Teitelraan, 1975, Section

12). Generator functions are designed to produce sequentially members

of some set (as defined by the parameters of each call). When a

generator function is called, it creates an entity called s 'generator'

that maintains its own <* .;? and control environment and can be 'pulsed'

(i.e., restarted) an arbi'.-ary number of times. Each time a generator

is pulsed, it returns as a value a member of the set it is generating.

Generators are a useful control device when some unknown number of a

set's members need to be computed.

Control begins in the executive at step SELECT.ENVIRONMENT (shown

below) witn a single node in the environment tree. In that environment,

which is 'active', the bindings list is initialized to ((ANSWER . YES)),

the entire QVISTA is considered to be the current QVISTA extension

space, and an empty extension space has been created and added to

KVISTA.

XII-18

üiaiNätta
' - -■ ■ iiiM«MTT"Wlii^' ni'V i , .■iiiim i i ^——

The deduction component proceeds by selecting ar. environment and a

QVISTA element. It then uses a 'candidate generator' function to

produce KVISTA elements that are potential bindings for the selected

QVISTA element in the selected environment. A function called RAMIFY is

given each potential binding suggested by the candidate generators to

determine what other bindings would be directly implied by the suggested

binding. For example, a binding for an arc implies bindings for the

arc's frora-node and to-node. If a binding is implied that contradicts

an existing binding, then RAMIFY will reject the potential binding.

Once a potential binding has been accepted by RAMIFY, control is

passed to the Binder to make the binding. If either the selected QVISTA

element or the potential binding are elements of an implication,

disjunction, or negation, then a derivation may be required before the

binding can be made. The Binder tests to determine whether a derivation

is required. If not, it makes the bindings; if so, it calls the KVISTA

Extractor and/or the QVISTA Extractor to create the subproblems and make

the assumptions that define the derivation. If an answer to the

original query has been produced when control is returned to the top

level, then a bindings list is generated; otherwise, the selection cycle

is repeated.

"No" answers to questions are produced by creating an offspring

environment of the top (first) node in the environment tree. In that

environment, the value of ANSWER on the bindings list is changed to NO,

and a new QVISTA is created containing only a negation relation. The

XII-19

|ff .,.;;--,^-i-.^tj:£^-^ - ^^^ "—r^-n—"■""-

elements of this relation's negation space are all the elements of the

original QVISTA. This offspring environment can be created and it or

any of its offspring can b selected in step SELECT.ENVIRONMENT at any

time before a bindings list has been generated with a "Yes" answer pair.

The following is a description of basic control cyols of the

deduction component:

SELECT.FNVIRONMENT:

Select an 'active' environment and call it
"CURRENT.ENVIRONMENT". If no active environments remain in
the tree, then generate a final bindings list consisting of
((ANSWER . UNKNOWN)). If an active environment is found and
selected, then continue.

GENERATE.CANDIDATE:

Select an unbound QVISTA element for which a binding is
to be sought, and call the selected element "Q.SELECTION". If
a generator of candidate bindings for Q.SELECTION does not
exist in CURRENT.ENVIRONMENT, then create one. Pulse the
candidate generator to produce a candidate binding for
Q.SELECTION. If the generator produces a candidate binding,
then go to step PROCESS.CANDIDATE.

If either Q.SELECTION is in the top QVISTA level or
Q.SELECTION is the only element in a negation space that is in

top QVISTA level, then deactivate CURRENT.ENVIRONMENT th
(because there
CURRENT.ENVIRONMENT).

PROCESS.CANDIDATE:

is no possible aolution
Go to step SELECT.ENVIRONMENT.

in

Call the candidate binding produced by the generator
"TARGET.ELEMENT", and apply RAMIFY to Q.SELECTION and
TARGET.ELEMENT in CURRENT.ENVIRONMENT. If RAMIFY determines
that Q.SELECTION cannot be bound to TARGET.ELEMENT, then go to
step GENERATE.CANDIDATE.

If RAMIFY does not reject the binding of Q.SELECTION to
TARGET.ELEMENT, create an offspring environment of
CURRENT.ENVIRONMENT fo»' TARGET.ELEMENT, call the offspring
"NEW.ENVIRONMENT", and give control to the Binder. If, when

XII-20

■■■ ^-M-r-ii^ri

the Binder returns control, not all the QVISTA elements have
been bound in NEW.ENVIRONMENT, then go to step
SELECT.ENVIRONMENT.

If all 0VI5TA elements have "een bound In NEW.ENVIRONMENT
(i.e., a soluticr, has been found), then generate
NSW. ENVIRONMENT'S b'r.dlngs list. If a "Yes" answer was
prodiceci, then the deduction coapone t c: n be pulsed again to
produce another s» , -r.f bindings. If It is pulsed again, then
deactivate NEW.ENVi;-ONMENT and go to step SELECT. ENVIRONMENT.

The basic goal of Li« QVISTA elenent selection process that occurs

in step GENERATE.CANDIDATE is :o select the QVISTA element that will

have the mi..iflua n'jnber of candidate bindings (i.e., the most

constrpined element), and thereby "Biniaize the number of ases t-he

executive must 3onsi(l*r. This selection is necessarily a guess that can

be guided by heuristics auch as "Select a node having an outgoing arc

whose to-node i3 bound t^ a node with a small number of incoming arcs".

The beiector considers only those elements that are in or are embedded

in the current QVISTA extension vista and that, are not on " 2

environment's W«rTTNG.Q.ELEMENTS list. (See Section L on Procedural

Augrentation for a discussion of the WAITING.Q.ELEMENTS list). A node

cannot be selected until the to-ncde of one of its outgoing arcs is

bound, and an arc cannot be selected until either its from-node or its

to-node is bound, since those bindings are needed to provide an index

into 'ehe i(VISTA. Nodes that represent disjunctions, negations, or

implications, their o-, going e arcs, their case arcs, and the to-nodes

of their case arcs are not selected because they reee se bindings from

the Binder as a by-product rf binding the elements inside the

disjunction, negation, or implication.

XJ.I-21

 - ■ ■ .■ ...— '■ ,....—

E. GENERATING CANDIDATE BINDINGS FOR A SELECTED QVISTA ELEMENT

When the executive selects a QVISTA element to bind, it pulses a

generator that produces KVISTA elements having the same parity as the

QVISTA element that are potential bindings for the QVISTA element. The

standard generate- function that is used to produce the potential

bindinjja uses the indexing features of the semantic r»et in a straight-

forward way to find potential bindings. A collection of special purpose

generator functions also is available that will be used in preference to

the standard generator function whenever possible. These special-

purpose functions will be discussed below in Section L. In this section

we will describe the standard function that is used when no others

apply.

The standard candidate generating function works in the following

manner. If the selected QVISTA element is a node, say QNO, then each

outgoing arc QNO—R—>QNi (where R is any relation) from node QNO that

has a bound to-node is an index to potential bindings. In particular,

if node QNi is bound to KVISTA node KNi, then the from-node of each

Incoming arc to node KNi with relation R is a potential binding for node

QNO. If the indexing arc's relation is e or s, then the special

'chaining' functions described below in Section H are used to produce

aerived incoming e or s arcs to node KNi.

If the selected QVISTA element is an arc QN0--R~>QNi (where R is

any relation) and node QNO is bound to node KNO, then each outgoing

XII-22

 - ii■1^1 - -

KVISTA arc from node KNO with relation R is a candidate match for the

selected arc. If the selected arc's relation is s or e, then the

special 'chaining' functions are used to produce derived outgoing e or s

arcs from node KNO. If node QNi is bound, then potential bindings can

also be found in the same manner as if the arc's from-node had been

selected (i.e., the selected arc is an index).

The order in which candidate bindings are generated is an important

factor in the effectivenass of the procedure. In general, candidates

that do not require a derivation are preferred. A useful first-order

heuristic is to sort the candidates based on their level of embedding in

KVISTA. Candidates at the top level require no derivation and are

generated first. "Sach level of embedding implies the need for a

derivation to "extract" the candidate. Hence, the level of embedding

provides a first-order approximation to the number of derivational steps

that will be required.

F. RAMIFICATIONS OF A PROPOSED BINDING

RAMIFY is a function that plays a role similar to that of

unification in predicate calculus theorem provers in that it deternines

the set of 'substitutions' necessary for a match to occur. It takes as

input a QVISTA element and a KVISTA element and determines the set of

bindings, couplings, and Instantiations that would be implied by binding

the QVISTA element to the KVISTA element. For example, if a node

representing an element of the set of owning situations is bound to a

XII-23

QVISTA node, then typically that binding will imply bindings for the

QVISTA node's e arc to OWNINGS, its agt and obj case arcs, and to-nodes

of the case arcs'. If an inconsistency or 'illegal' binding, coupling,

or instantiation is itnpltec. (fcr example, two different bindings are

implied for the same element), then RAMIFY will indicate that the input

KVISTA element is not a possible binding for the input QVISTA element.

A 'binding' is a pairing of a QVISTA element with a KVISTA element

of equal parity. An 'instdntiation' is a pairing of a KVISTA element

having negative parity with a KVISTA element having positive parity

(i.e., an instantiation of the universally quantified negative parity

KVISTA element). A 'coupling' is any other legal pairing of QVISTA and

KVISTA elements (typically a requirement that two universally quantified

variables must take the same binding or instantiation).

A binding of some QVISTA element Qi to some KVISTA element Ki is

legal only if it satisfies the following requirements. Let KV denote

the KVISTA associated with the QVISTA space that Qi is an element of.

Then, element Ki must either be a top level element of KV, an element of

a negation space that is a top level element of KV, or the current

KVISTA extension space must be a member of KV.

All other pairings are legal except those that combine a positive

parity KVISTA elemen*- with a negative parity QVISTA element, a positive

parity KVISTA element with another positive parity KVISTA element, or a

negative parity QVISTA element with another negative parity QVISTA

XII-2'»

.—^ -**

element (i.e., if it pairs two distinct existentially quantified

elements).

RAMIFY proceeds by applying the following rules to each node Ni

that must be paired with a node Nj. For each such pair, first consider

each outgoing case arc Nj—Rx—>Nk from node Nj for any case relation

Rx. If node Ni also has an outgoing case arc Ni—Rx—>N1, then arc Ni—

Rx—>N1 must be pairable with arc Nj—Rx—>Nk and node NI must be

pairable with node Nk. Second, check to see if the entity represented

by node Ni is constrained to be an element (T a subset) of a set that

is disjoint from any set that the entity represented by node Nj is

constrained to be an element (or a subset) of.

An inconsistency is reported if a universally quantified element

(i.e., a positive parity QVISTA element or a negative parity KVISTA

element) is forced to nave two different bindings or instantiations, or

if a node is shown to represent a member (subset) of a set that is

aisjoint from a set that the entity represented by the node's binding is

a member (subset) of.

XII-25

G. THE BINDER

The Binder described in this section is called when a QVISTA

element has been selected in some environment, a candidate binding

(i.e., a target element) in the KVISTA has been found, and RAMIFY has

been successfully applied to the selected QVISTA element and the

candidate binding. The rules described below make the bindings

determined by RAMIFY if a derivation is not required. If a derivation

is required before the bindings can be made, then the rules invoke the

QVISTA Extractor or the KVISTA Extractor to carry out the derivation.

The rules used by the Binder can be thought of in propositional

form as being the following:

"x" is implied by "x".
"x OR y" is implied by "x".
"y IMPLIES x" is implied by "x".
"(x AND y) IMPLIES z" is implied by "~x".
"-(x AND y)" is implied by "~x".

A detailed description of the rules as actually applied by the Binder

follows.

1 QVISTA TOP LEVEL ELEMENTS

Consider the case where the selected QVISTA element is in the

top level of the QVISTA. If the target element is a top-level KVISTA

element, then in the offspring environment created for the target

element ""ake the bindings determined by RAMIFY (see the

PROCESS.CANDIDATE step of the basic control cycle, described above in

XII-26

Section D on the Executive). If the target element Is not a top level

KVISTA element, then call the KVISTA Extractor to derive a copy of the

target element in the top level of the KVISTA that can be a binding for

the selected QVISTA element.

2. QVISTA DISJUNCTIONS

Consider the case where the selected QVISTA element is in some

disjunct space DS. If bindings have been found for all the elements of

space DS, then bindings can be assigned to the entire disjunction (i.e.,

"x OR y" is implied by "x").

The Binder determines whether all elements in space DS

received bindings to top-level KVISTA elements during RAMIFY. If so,

then in the offspring environment created for the target element it

makes the bindings produced by RAMIFY and assigns dummy bindings to the

disjunction and to all elements in the other disjuncts. If not all the

elements in space DS received bindings to top-level KVISTA elements

during RAMIFY, then the QVISTA Extractor is called to carry out a

derivation in which bindings are sought for the elements of space DS

while assuming the negation of each of the disjunction's other disjuncts

(using the rule that "x OR y" can be proved by assuming "~y" and proving

"x").

XII-27

3. QVISTA IMPLICATIONS

a. CONSEQUENT MATCH

Consider the case where the selected QVISTA element is in

some consequent apace CS. If bindings have been found for all the

elements of space CS, then bindings can be assigned to the entire

implication (i.e., "y IMPLIES x" is implied by "x").

The Binder determines whether all elements in space CS

received bindings to top level KVISTA elements during RAMIFY. If so,

then in the offspring environment created for the target element, it

makes the bindings produced by RAMIFY and assigns dummy bindings to the

implication, the antecedent space, the consequent space, and to all

unbound elements in the antecedent. If not, all the elements in space

CS received bindings to top level KVISTA elements during RAMIFY, then

the QVISTA Extractor is called to carry out a derivation in which

bindings are sought for the elements of space CS while assuming the

disjunction's antecedent (using the rule that "x IMPLIES y" can be

proved by assuming "x" and proving "y").

b. ANTECEDENT MATCH

Consider the case where the selected QViSTA element is in

some antecedent space AS. If -the bindings found for trie elements of

space AS include all the elements of a negation space, then bindings can

be assigned to the entire implication [i.e., "(x and y) IMPLIES z" is

implied by "~x"].

XII-28

The Binder determines whether during RAMIFY all elements

in some top-level KVISTA negation space either became the bindings for

elements of the antecedent space AS or were instantiated to top level

KVISTA elements. If so, then in the offspring environment created for

the target element it makes the bindings produced by RAMIFY, binds space

AS to the KVISTA negation space, and assigns dummy bindings to the

implication, the consequent space, and to all unbound elements in the

consequent and the antecedent. If during RAMIFY not all the elements in

a top level KVISTA negation space were either the bindings for elements

of the antecedent space AS or were instantiated to top level KVISTA

elements, then the ÜVISTA Extractor is called to carry out a derivation

in which bindings are sought for a negation in which AS is the negation

space while assuming the negation of the implication's consequent (using

the rule that "x IMPLIES y" can be proved by assuming "~y" and proving

"-x").

4. QVISTA NEGATIONS

Consider the case where the selected QVISTA element is in some

negation space NS. If the bindings found for the elements of space NS

include all the elements of a negation space, then bindings can be

assigned to the entire negation [i.e., "~(x AND y)" is implied by "~x"].

The Binder determines whether during RAMIFY all elements in

some top-level KVISTA negation space either were designated to be the

bindings for elements of space NS or were instantiated to top-level

XII-29

HiäaisgsljaBM

KVISTA elements. If so, then in the offspring environnent created for

the target element it makes the bindings from RAMIFY, binds space NS and

its outgoing e arc to the KVISTA negation space and its outgoing e arc,

and assigns dummy bindings to all unbound elements in space NS.

If during RAMIFY not all the elements ir a top-level KVISTA

negation space were either designated to be bindings for elecrents of

space NS or were instantiated to top-level KVISTA elements, then one of

the extractors is called to carry out a derivation as follows. If space

NS contains either more than one node or contains arcs that do not share

a common from-node, then space NS is considered to contain a conjunction

and the QVISTA extractor is called to carry out a derivation in which

bindings are sought for the negation of the conjunct containing the

selected QVISTA element while assuming the other conjuncts. Otherwise,

the KVISTA Extractor is called to derive a copy of the target element in

the top level of the KVISTA that can be a binding for the selected

QVISTA element.

XII-30

H. DERIVING ELEMENT-OF AND SUBSET RELATIONS USING TAXONOMIES

Partitioned semantic networks are particularly well suited for

representing taxonomies of sets using s, ds, e, and de arcs. The

deduction component has special purpose facilities designed to extract

set element and subset information from the taxonomy representation.

These facilities make use of the following rules.

Disjoint Sets:

The sets represented by nodes Nx and Ny are disjoint if
either:

(1) there exist ans Nx—ds—>Nz and Ny—ds—>Nz for
some Nz; or

(2) there exist nodes Nu and Nv ruch that the Nx set is
a subset of the set represented by Nu, the Ny set is a subset
of the set represented by Nv, and the Nu and Nv sets are
disjoint.

Subsets;

The set represented by a node Nx is a subset of the set
represented by a node Ny if either:

(1) Nx and Ny are the same node;

(2) there exists an arc Nx—s—>Ny;

(3) there exists an arc Nx—ds—>Nv; or

(4) there exists a node Nz such that the Nx set is a
subset of the set represented by Nz and the Nz set is a subset
of the Ny set.

The set represented by a node Nx is not a suoset of the set
represented by a node Ny if the Nx and Ny sets are disjoint.

XII-31

- ■—>-
- r r .■^-".*—

Set Elements:

The entity represented by a node Nx is an element of the set
represented hy a node Ny if either:

(1) there exists an arc Nx—e—>Ny;

(2) there exists an arc Nx—de—>Ny; or

(3) there exists a node Nz such that the Nx set is an.
element of the set represented by Nz, and the Nz set is a
subset of the Ny set.

The entity represented by a node Nx is not an element of the
set represented by a node Ny if there exists a node Nz such
that entity Nx is an element of the set represented by Nz, and
the Ny and Nz sets are disjoint.

The basic function, called S:CHAIN, that makes use of these rules

searches for chains of s or ds arcs in the KVISTA from a given from-node

and/or a given to-ncde. For example, if from-node Nx and to-node Ny are

given, then S:CHAIN will look at all of the supersets of Nx, all of the

supersets of those supersets, etc., until Ny is encountered or until no

new supersets can be found. If Ny is encountered, then S:CHAIN will

have found a sequence of nodes N1,N2,...,Nk such that there exist arcs

Nx~s—>N1 (or Nx—ds—>N1), N1—s—>N2 (or N1—ds~>N2), ..., Nk~s—

>Ny (or Nk~d3~>Ny), and S:CHAIN can conclude that the set represented

by Nx is a subset of the set represented by Ny. If only a from-node is

given to S:CHAIN, then it acts as a generator of supersets of the given

node. If only a to-node is given, then S:CHAIN acts as a generator of

subsets of the given node.

Simple functions have been written that use S:CHA.IN to generate the

sets that a given node is an element of, to determine whether or not a

XII-32

"J^-;i-J-—■ -T-

given node represents an element of the set represented by a second

given node, and to determine whether or not the set represented by a

given node is a subset of the set represented by a second given node.

These functions provide general service facilities to the major

constituents of the deduction component. For example, they are used by

RAMIFY to test whether the entity represented by the binding of a given

QVISTA node could possibly be an element of the set represented by the

binding of the to-node of the given QVISTA node's outgoing e arc, and by

the generators of candidate bindings for QVISTA. nodes.

I. SIMPLIFICATION OF NEGATIONS

The derivational machinery of the deduction component creates

subproblems, makes assumptions, and derives r.cw net structures during

the course of a derivation. All of the functions that apply the

derivational rules assume that whenever a QVISTA or KVISTA negation

space is produced that contains only a disjunction, negation, or

implication, the following transformations are performed:

(1) If a negation contains only another negation, then
delete both negation relations leaving only the elements of
the embedded negation space; i.e., "~(~x)" becomes "x".

(2) If a negation contains only a disjunction, then
delete the negation and disjunction relations and transform
each disjunct into a negation; i.e., "~(x OR y)" becomes "~x"
and "~y".

(3) If a negation contains only an implication, then
delete the negation and implication relations, delete the
antecedent space leaving only its elements, and transform the
consequent into a negation relation; i.e., "~(x IMPLIES y)"
becomes "x" and "~y".

XII-33

 ""tiiMiii

J. THE KVISTA EXTRACTOR

Typically, KVISTA elements occurring in negations, disjunctions, or

implications can be used to produce bindings for QVISTA elements only if

suitable derivations are carried out. The derivational machinery

applies the rules given in this section to 'extract' such desirable

KVISTA elements from negations, disjunctions, and implications so that

they can be asserted or denied in the top level of KVISTA. Th; rules

can be thought of in prepositional form as being the following:

To extract "x" from "x OR y", prove "~y".
To extract "x" from "y IMPLIES x", prove "y".
To extract "~x" from "x IMPLIES y", prove "~y".
To extract "~x" from "~(x AND y)", prove "y".

When the Binder is unable to bind a selected QVISTA element to a

KVISTA target element and the selected QVISTA element cannot be further

extracted, then the KVISTA Extractor described in this section is called

to carry out a derivation that is directed toward creating subproblems

whose solution will allow the creation of the target element either in a

top-level KVISTA space or in a negation space that is a top level KVISTA

element. For example, if the target element is "x" in the expression "z

IMPLIES (x OR y)", then the KVISTA Extractor will initiate a subproblem

in wr.ich an attempt is made to prove "z" and "~y". Solution of this

subproblem will allow "x" to be asserted.

TVe derivation is carried out in the offspring environment created

for the target element (see Section D above on the Executive). It is

begun by creating an empty space and calling it the "conclusion space",

XII-S'I

--^.—,.-■--■-,. -._, —^■.~..-

^^

making a copy in the conclusion space of the disjunction, implication,

or negation relation in the top level of the KVISTA that the target

element is embedded in, and calling the copy of the target element

"TARGET.COPY". When creating the copy of the disjunction, implication,

0" negation, if an element ',,as instantiated or coupled by RAMIFY, then

the instantiation or coupling is useu in the copy.

The appropriate subproblem is created in new QVISTA extension

spaces by repeatedly applying the extraction rules given below to the

conclusion space as long as any of them are applicable. The new QVISTA

extension spaces containing the subproblem are then designated as the

current QVISTA extension vista, control is returned to the executive,

and whenever the offspring environment is selected, bindings are sought

for the subproblem in the QVISTA extension v^sta.

When bindings for all the elements of the QVISTA extension vista

are found, the derivation is completed by deleting the extension spaces

added to QVISTA and KVISTA, adding to the current KVISTA extension space

the elements from the deleted KVISTA extension spaces, ^nd adding the

elements of the conclusion space to the current KVISTA extension space.

When adding a?emen.s tc KVISTA, if the to-node or the from-node of a

conclr.slcn space arc is in the QVISTA, then instead of adding the arc to

KVISTA, a copy of the arc is added using the binding cf the QVISTA from-

node or to-node.

XII-35

„^^^^ m

1. KVISTA EXTRACTION RULES

a. KVISTA DISJUNCTIONS

If TARGET.COPY occurs in or is embedded in a disjunction

that is a node in the conclusion space, then the next step in the

extraction process uses the rule that "x" can be proved by knowing "x OR

y" and proving "~y". The extraction proceeds as follows. Delete from

the conclusion space the disjunction relation that TARGET.COPY occurs

in, add the conclusion space to the KVISTA as a new extension space,

call the disjunct space that TARGET.COPY occurs in the new conclusion

space, create a space containing negations of each of the other

disjunct^, and add the newly created space to QVISTA as a new extension

space.

b. KVISTA IMPLICATIONS

i. CONSEQUENT MATCH

If TARGET.COPY occurs in or is embedded in the

consequent space CS of an implication IMP that is a node in the

conclusion space, then the next step in the extraction process uses the

rule that "x" can be proved by knowing "y IMPLIES x" and proving "y".

The extraction proceeds as follows. Delete from the conclusion space

the implication relation that TARGET.COPY occurs in, add the conclusion

space to the KVISTA as a new ext2n3ion space, create a new conclusion

space containing the elements of space CS that are not also elements of

XII~36

IMF's antecedent space, and add IMF's antecedent space to QVISTA as a

new extension space.

ii. ANTECEDENT MATCH

If TARGET.COPY occurs in the antecedent space AS of

an implication IMP that is a node of the conclusion space and

TARGET.COPY does not also occur in the consequent space CS of IMP, then

the next step in the extraction process uses the rule that "~x" can be

proved by knowing "x IMPLIES y" and proving "~y". The extraction

proceeds as follows. Delete from the conclusion space the implication

relation that TARGET.COPY occurs in. Add the conclusion space to the

KVISTA as a new extension space. Create a new conclusion space

containing a negation relation whose negation space has as elements

those elements of space AS that are not in the overlap with space AS.

Then create a space containing the elements in the over1ap and a newly

created negation relation whose negation space contains those elements

of space CS that are not in the overlap with space AS. Then add the

newly created space to QVISTA as a new extension space.

c. KVISTA NEGATIONS

If TARGET.COPY occurs in or is embedded in the negation

space NS of a negation relation that is a node in the conclusion space,

and space NS either contains more than one node or contains arcs that do

not share the same from-node (i.e., space NS contains a conjunction).

XII-37

m-mm ^^ABa^HI ^-■i....-

then the next step in the extraction process uses the rule that "~x" can

be proved by knowing "~(x AND y)" and proving "y". The extraction

proceeds as follows. If TARGET.COPY occurs In or Is embedded In a

negation, disjunction, or implication that is an element of space NS,

then delete all elements of space NS except that negation, disjunction,

or implication relation. If TARGET.COPY is a node that is an element of

space NS, then delete all elements of space NS except TARGET.COPY and

its outgoing arcs. If TARGET.COPY is an arc that is an element of space

NS, then delete all elements of space NS except the from-node of

TARGET.COPY and all the outgoing arcs of the from-node. In all cases,

add the elements deleted from space NS to the QVISTA extension space.

2. AN EXAMPLE

Consider how the KVISTA Extractor would behave in the

following example situation. Assume that the KVISTA contains the

theorem shown in Figure XII-5 and that node "r" in that theorem is

the target element. The following is a predicate calculus

representation of the theorem:

M(k) OR (Au){[(u IN N) AND (Ax)[(x IN P) IMPLIES (Ey)((y IN Q)
AND R(u,x,y))]] IMPLIES (Ez)[(z IN S) AND T(u,z)]}.

To see the outline of the extraction proc33S, consider the following

propositlonal representation of the theorem;

M OR {[N AND (P IMPLIES (Q AND R))] IMPLIES (S and T)}.

The extraction proceeds by setting up M as a subproblem to allow the

conclusion of the remainder of the theorem. ~(S and T) is then added to

XII-38

HHMHiBilla __i«^. ggfgj

IMPLICATIONS

—*
V

\ \
^ V V \ V^ /^\ .

w w e

^N
^ /

f ^v
1c,

GfllP /

i conw^X'^

/

i ■1
i

1 ir -x A /
t •\ V /
WntB v^ /

■— ̂
 « V con» ^^

^ \J

FIGURE XII-5 EXAMPLE KVISTA THEOREM

the subproblem to allow the conclusion ~[N AND (P IMPLIES (Q AND R))].

"N" is then added to the subproblem to allow the conclusion ~[P IMPLIES

(Q AND R)]. This conclusion is transformed into [P AND ~(Q AND R)].

"P" is then added to KVISTA and "Q" is added to the subproblem to allow

the conclusion of ~R. The final conclusion of the derivation is (~R AND

XII-39

——m

P). Figure XII-6 shows the conclusion spaces and the extension

spaces that are created as the fully quantified extraction takes place,

and Figure XII-7 shows the QVISTA and KVISTA extension spaces at the

end of the extraction. Note that the universally quantified variable

"u" becomes a node in a QVISTA extension space and all subexpressions

that contain "u" point to that QVISTA node. Placing "u" in the QVISTA

allows an arbitrary KVISTA binding to be selected for it and restricts

all subexpressions containing "u" to accept that binding.

K. THE QVISTA EXTRACTOR

Finding bindings for negations, disjunctions, or implications

occurring in the QVISTA typically requires a derivation. When the

Binder is unable to bind a selected QVISTA element to a KVISTA target

element because the selected QVISTA element is em^dded in a

disjunction, implication, or negation, then the QVISTA Extractor

described in this section is called to carry out a derivation.

In this derivation, a subproblem is created in which the selected

QVISTA element has been 'extracted' and can be bound to the target

element. The subproblem is constructed so that its solution will imply

bindings for the original disjunction, implication, or negation. For

example, if the selected element is "x" in the expression "z IMPLIES (x

OR y)", then the extractor will initiate a subproblem in which "z" and

it~yii are assumed in the KVISTA and an attempt is made to prove "x" in

the QVISTA.

XII-40

CONCLUSION SPACE

Initially:
M(k) OR (Au){[(u IN N) AND (Ax)[(x IN P) IMPLIES
(Ey)((y IN Q) AND R(u,x,y))]] IMPLIES (Ez)[(z IN S)
AND T(u,z)]}

After step 1 (Disjunction Rule):
(Au){[(u IN N) AND (Ax)[(x IN P) IMPLIES
(Ey)((y IN Q) AND R(u,x,y))]] IMPLIES (Ez)[(z IN S)
AND T(u,z)]}

After step 2 (Implication Rule, Antecedent Match):
-{[(u IN N) AND (Ax)[(x IN P) IMPLIES (Ey) ((y IN Q)
AND R(u,x,y))]}

After step 3 (Negation Rule):
-(Ax)[(x IN P) IMPLIES (Ey)((y IN Q) AND R(u,x,y))]

After step 4 (negation simplification):
x, (x IN P), ~(Ey)[(y IN Q) AND R(u,x,y)]

After step 5 (Negation Rule):
~R(u,x,y)

EXTENSION SPACES

KVISTA K1:

QVISTA Q1;

x, (x IN P)
(added during step 5)

-M(k)
(added during step 1; accepts bindings from
initial KVISTA)

Q2: u, -[(z IN S) AND T(u,z)]
(added during step 2; accepts bindings from
initial KVISTA)

Q3: (u IN N)
(added during step 3; accepts bindings from
initial KVISTA)

Q4: y, (y IN Q)
(added during step 5; accepts bindings from
K1 and the initial KVISTA)

Derivation conclusion added to KVISTA after deleting K1:
x, (x IN P), ~R(<binding of u>,x,<binding of y>)

Figure XII-6. EXAMPLE OF KVISTA EXTRACTION

XII-41

—

KVISTA

QVISTA

Q4

e K1

FIGURE XII-7 EXTENSION SPACES FOR KVISTA EXTRACTION EXAMPLE

XII-42

 !_ «.-, ^ ■■■■.„.!-.

The rules used by the QVISTA Extractor can be thought of in

proposltional form as being the following:

To prove "x OR y", assume "~y" and prove "x".
To prove "x IMPLIES y", either assume "x" and prove "y" or

assume "~y" and prove ""x".
To prove "~(x AND y)", assume "y" and prove "~x".

If the QVISTA element given to the QVISTA Extractor occurs on the

environment's list of already extracted QVISTA elements, then the

extractor deactivates the offspring environment created for the target

element and returns. Otherwise, the extractor adds the QVISTA element

to the list and initiates the derivation.

The derivation is carried out in the offspring environment created

for the target element. It is begun by calling the top-level

disjunction, implication, or negation relation that the selected QVISTA

element is embedded in in the "original embedding", making a copy of the

original embedding, calling that copy the "current extraction", and

calling the copy of the selected QVISTA element "Q.SELECTION.COPY".

When making the copy of the original embedding, if an element is bound,

then its binding is used in the copy.

The desired subproblems are created and assumptions made by

repeatedly applying the extraction rules given below to the current

extraction as long as any of them are applicable. The set of new QVISTA

extension spaces added to QVISTA by the extraction rules is then

designated as the current QVISTA extension vista, control is returned to

the executive, and whenever the offspring environment is selected.

XII-43

.. > ^l, . tm

^ .-..,...,-■, igMHHH

bindings are sougnt for the subprobleras in the newly created QVISTA

extension vista.

When bindings are found for all the elements of the vista added to

QVISTA by the extraction rules, the derivation is completed as follows.

The extension spaces added to QVISTA and to KVISTA by the extraction

rules are deleted, a copy of the original embedding is added to the

current KVISTA extension, and bindings are created between the original

embedding and the newly derived KVISTA copy.

1. QVISTA EXTRACTION RULES

a. QVISTA DISJUNCTIONS

If the current extraction is a disjunction, then the next

step in the extraction process u »es the rule that a disjunction "x OR y,!

can be proved by assuming ""x1 and then proving "y". The extraction

proceeds as follows. Let DS denote the disjunct space that

Q.SELECTION.COPY occurs in. If Q.SELECTION.COPY occurs in or is

embedded in a negation, disjunction, or implication that is a node in

space DS, then delete from space DS that negation, disjunction, or

implication relation, and call the deleted relation the current

extraction; otherwise, call Q.SELECTION.COPY the current extraction.

Add to KVISTA a new extension space containing negations of each of the

disjuncts other than space DS. Then add space DS to QVISTA as a new

extension space.

XII-14U

"---r: - i ■■ MHMH - ■ -- ■Mfai IHM.

b. QVISTA IMPLICATIONS

i. CONSEQUENT MATCH

If the current extraction is an implication IMP and

Q.SELECTION.COPY occurs in or is embedded in the consequent space CS of

that implication, then the next step in the extraction process uses the

rule that an implication "x IMPLIES y" can be proved by assuming "x" and

then proving "y". The extraction proceeds as follows. If

Q.SELECTION.COPY occurs in a negation, disjunction, or implication that

is a node in space CS, then delete from space CS that negation,

disjunction, or implication relation, and call the deleted relation the

current extraction; otherwise, call Q.SELECTION.COPY the current

extraction. Add to KVISTA as a new extension space the IMP's antecedent

space. Then add to QVISTA as a new extension space those elements of

space CS that are not in the overlap with the antecedent space.

ii. ANTECEDENT MATCH

If the current extraction is an implication and

Q.SELECTION.COPY occurs in or is embedded in the antecedent space AS of

that implication and does not also occur in the consequent space CS of

that implication, then the next step in the extraction process uses the

rule that an implication "x IMPLIES y" can be proved by assuming "~y"

and then proving "~x" .

XII-15

- ■
.■■^a^mmton-Miii^ —ifM

The extraction proceeds as follows. Create a new

space QS containing a negation relation whose negation space contains

tnose elemants of space AS that are not in the overlap with space CS,

and apply the negation simplification rules to the new negation. If

after the simplification Q.SELECTION.COPY occurs in a negation,

disjunction, or implication that is a node in space QS, then delete from

space QS that negation, disjunction, or implication relation, and call

the deleted relation the current extraction; otherwise, call

Q.SELECTION.COPY the current extraction. Add to KVISTA a new extension

space containing those elements that are in th" overlap of spaces AS and

CS, and a newly created negation relation whose negation space contains

those elements of space CS that are not elements of the overlap with

space AS. Then add space NS to QVISTA as a new extension space.

c. QVISTA NEGATIONS

If the current extraction is a negation relation and the

relation's negation space NS contains not more than one node and no arcs

that do not share a common from-node (I.e., space NS does not contain a

conjunction), then add the entire current extraction to the current

QVISTA extension space since no more extraction need be done.

Otherwise, space NS is considered to contai.i a conjunction and the next

step in the extraction process uses the rule that a negated conjunction

"~(x AND y)" can be proved by assuming "x" and then proving ""y".

XII-46

.,--- -,.—.v,^— - — -—-'-^-—--«.. ■ nurMt-r-Tnir-r^-nii- Ml

There are three cases to consider in describing the

extraction process. The first case is where Q.SELECTION.COPY occurs in

or is embedded in a negation, disjunction, or implication that is a noac

in space NS. In that case, delete all elements of space NS except that

negation, disjunction, or implication relation. Then, create a new

space ES containing the current extraction, and apply the negation

simplification rules to the current extraction. After the

simplification, if Q.SELECTION.COPY occurs in or is embedded in a

negation, disjunction, or implication that is a node in space ES, then

delete from space ES that negation, disjunction, or implication

relation, and call the deleted relation the current extraction;

otherwise, call Q.SELECTION.COPY the current extraction. Create a new

extension space for KVISTA containing the elements deleted from space NS

and then add space ES to QVISTA as a new extension space.

The second case is where Q.SELECTION.COPY is a node that

is an element of space NS. In that case, delete all elements of space

N3 except Q.SELECTION.COPY and its outgoing arcs, and create a new

extension KVISTA space containing the elements deleted from space NS.

Then add the current extraction to QVISTA as a new extension space and

call Q.SELECTION.COPY the new current extraction.

The third case is where Q.SELECTION.COPY is an arc that

is an element of space NS. In that case, delete all elements cf space

NS except the from-node of Q.SELECTION.COPY and all the outgoing arcs of

the from-node, and create a new KVISTA extension space containing the

XII-47

 -.^..i.mt^—J. -.■■.-.—-..M.^-^-i.---~t- .^.^J^—J,^- -■■.^.JmJi..JJaaJ»ii . -- ■■■ .^- - —^ ^—jMaaa

elements deleted from space NS. Then add the current extraction to

QVISTA as a new extension space and call Q.SELECTION.COPY the new

current extraction.

2. AN EXAMPLE

Consider how the QVISTA Extractor would behave in the

following example situation. Assume that the QVISTA contains the

theorem shown in Figure XII-5 and that node "r" in that theorem is the

selected QVISTA element. We repeat here the predicate calculus

representation of the theorem:

M(k) OR (Au){[(u IN N) AND (Ax)[(x IN P) IMPLIES (Ey)((y IN Q)
AND R(u,x,y))]] IMPLIES (Ez;[(z IN S) AND T(u,z)]}.

To see the outline of the extraction process, again consider the

following prepositional representation of the theorem:

M OR {[N AMD (P IMPLIES (Q AND R))] IMPLIES (S and T)}.

The extraction proceeds by making the assumption ""M" for use while

proving the remainder of the theorem. The assumption "~(S AND T)" is

then made, which can be used while proving ""[N AND (P IMPLIES (Q AND

R))]". The assumption "N" is then made to be used while proving n~[P

IMPLIES (Q AND R)]". This subproblem is transformed into "P AND "(Q AND

R)". The assumption "Q" is then made to be used while proving "~R".

The extraction ends leaving the subproblems "~R" and "P" to be solved.

Figure XII-8 shows the current extractions and the extension spaces

that are created as the fully quantified extraction takes place, and

Figure XII-9 shows the QVISTA and KVISTA extension spaces at the end

of the extraction.

XII-48

--■- - ■ -- -■ — •■■-- ■ - ■- •—■

CURRENT EXTRACTIONS

Initially:
M(k) OR (AuH[(u IN N) AND (Ax)[(x IN P) IMPLIE3
(Ey)((y IN Ci) AND R(u,x,y))]] IMPLIES (F»U(2 IN S)
AND T(u,z)]}

After s i 1 (Dipjunction Rule):
(Au u IN N) AND (Ax)[(x IN P) IMPLIES (Ey)((y IN Q)
AND x,y))]] IMPLIES (Ez)[(z IN S) AND T(u,z)]}

After step 2 (Implication Rule, Antecedent Match):
~{[(u IN N) AND U>:)[(x IN P) IMPLIES (Ey)((y IN Q)
AND R(u,x,y))]}

After step 3 (the portion of the Negation Rule that
precedes simplification):
-(A:.)[(x IN P) IMPLIES (Ey)((y IN Q) AND R(u,x,y))]

After «tep M (the r-mainder of the Negation Rule):
-(Ey)[(y IN Q) AND R(u,x,y)]

After step 5 (Negation Rule):
~R(u,x,y)

EXTENSION SPACES

QVISTA Q1: x, (x IN P)
(added during step 4; accepts bindings from
K3, K2, K1, and the initial KVISTA):

Q2: -R(u,x,y)
(added during step 5; accepts bindings from
K4, K3, K2, K1, and the initial KVISTA):

KVISTA K1: ~M(k)
(added during step 1)

K2: u, ~(Ez)[(z IN S) AND T(u,z)]
(added durinc step 2)

K3: (u IN N)
(added during step 4)

K4: y, (y IN Q)
(added during step 5)

Figure XII-8. EXAMPLE OF QVISTA EXTRACTION

XII-1J9

FIGURE XII-9 LXTENSION SPACES FOR QVISTA F.XTRACTION EXAMPLE

XII-50

k&~~:*
I—I 1

L. PROCEDURAL AUGMENTATION

We are experimenting with various facilities for allowing the

deduction component to be augmented with procedures embodying additional

derivational rules and strategies. In our discussion here, we will

focus on augmentation in the form of special-purpose functions for

generating candidate bindings. These functions are used in preference

to the standard function for generating candidates whenever possible.

(The standard generator function is described above in Section E). The

following subsections describe a basic set of such special-purpose

generators.

1 E ARC WITH BOUND NODES

If the selected QVISTA element is an e or s arc having a bound

from-node and a bound to-node, then look for a binding by calling one of

the derivation functions that chains through the taxonomies. If the

derivation function returns a "Yes" answer and the selected arc has

positive parity, then create the derived arc in the current KVISTA

extension space and generate it as the only candidate binding. If the

derivation function returns a "No" answer and the selected arc has

negative parity, then create a negation relation in the current KVISTA

extension space with a negation space containing only the derived arc

and generate the derived arc as the only candidate binding. Otherwise

(.i.e., if the derivation function returns an "Unknown" answer or the

arc's parity prevents a binding), call the standard candidate bindings

generator.

XII-51

iiniMg.Mii , i__ ••'m 'inmi^m^jA.jt,

2. SETS DEFINED IN THE QVISTA

A query may specify a set and then ask about some property of

that set. For example, the query "Did General Electric build any of the

nuclear submarines owned by the U.S.?" might be interpreted as "Let

US.NUCS be the set of all nuclear submarines owned by the U.S.; did

General Electric build any member of US.NUCS?" Such sets that are

specified in the query can be arbitrarily created in the KVISTA along

with a collection of necessary conditions for membership, a collection

of sufficient conditions for membership, or a single condition that is

both necessary and sufficient for membership.

A necessary condition for membership in some set represented

by a node X is expressed as an implication whose antecedent space

contains only a single node with a single outgoing e arc to node X. A

sufficient condition for membership in the X set is expressed as an

implication whose consequent space contains only a single node with a

single outgoing e arc to node X.

The function in the deduction component that creates these

KVISTA subsets proceeds as follows. If the selected Q.ISTA element ic a

node, QN, that has no outgoing e arcs and that has an outgoing s arc

whose to-node is bound to some KVISTA node KX, then create in the

current KVISTA extension space a new node, KN, to be the binding for

node QN and a new arc KN—s—>KX. In addition, there are three

alternative ways in which necessary and/or sufficient conditions c^n be

created for the KN set.

XII-52

r-^——laa ■■
■— ■ ! 'I 1 ■

The first option is to create in the current KVI3TA extension

a copy of any implications in the QVISTA that represent necessary

conditions for membership in the set represented by node QN.

The second option can be taken only if KX is the node

UNIVERSAL. In that case, copies can be created in the current KVISTA

extension space of any implications in the QVISTA that represent

sufficient conditions for membership in the QN set.

The third option can be taken only if KX is the node

UNIVERSAL. In that case, a copy can be created in the current KVISTA

extension space of any double implication in the QVISTA that is both a

necessary and a sufficient condition for membership in the QN set.

When making these copies, if an element is bound, then its

binding is used in the copy. The generator completes its work by

generating a set of bindings for node QN, the outgoing s arc for QN, and

all the unbound QVISTA elements that are part of copied implications.

3. APPLICATIONS AND KEYED-APPLICATIONS

Special-purpose generator functions Pvist to create elements

of the APPLICATIONS and KEYED-APPLICATIONS sets when they are needed by

calling the appropriate functions. For example, if the KVISTA Extractor

adds to the QVISTA the antecedent of the implication shown in Figure

XII-10 and the to-nodes of the "addendl" and "addenda" arcs are bound,

then the "plus" function can be called to obtain a sum and create in the

XII-53

IMPLICATIONS

SUMS

FIGURE XII-10 RELATING SUMS SITUATIONS TO FUNCTION PLUS

XII-51*

,-l-l ^-^ -Jt*^^^,^ ^^^-^n^s
■ -

KVISTA an element of APPLICATIONS that will provide bindings for the

corresponding nodes and arcs in the antecedent. This example is

discussed in Chapter V, Section F.2, in connection with the same figure.

When a QVISTA node is selected that has an outgoing e arc

whose to-node is bound to APPLICATIONS, a special purpose generator of

candidate bindings for APPLICATIONS is called. This generator checks to

see if all the to-nodes of the selected node's "ARGi" case arcs are

bound. If they are, then it calls the indicated function with the

bindings of the "ARGi" arcs' to-nodes as arguments, creates a new

element of the APPLICATIONS set in the current KVISTA extension space

using ths result produced by the function, and generates a binding of

the selected QVISTA node to the newly created APPLICATIONS set element.

If not all of the to-nodes of the ARGi arcs are bound, then the selected

QVISTA node is added to the current environment's WAITING.Q.ELEMENTS and

a "demon" is attached to one of the unbound to-nodes.

Demons are INTERLISP forms or stack pointers (Teitelman, 1975,

Section 12) that can be associated with any QVISTA element in an

environment. Whenever a QVISTA element is bound, any demons that are

associated with that element in the current environment are called. The

demons attached to the to-nodes of ARGi arcs by the candidate bindings

generator of the APPLICATIONS set check to see if the to-nodes of the

other ARGi arcs are bound. If they are, the demon removes the from-node

of the ARGi arcs from the WAITING.Q.ELEMENTS list. Otherwise, it

attaches itself to an unbound to-node of an ARGi arc and pauses.

XII-55

 jgLatä

When a QVISTA node is selected that has an outgoing e arc

whose to-node Is bound to KEYED-APPLICATIONS, a special-purpose

generator of candidate bindings for KEYED-APPLICATIONS Is called. The

generator conducts a 'key set bindings test' to determine If the to-

nodes of all the ARG1 aros 1»; any of the key sets are bound. If they

are, then It calls the KEYED-APPLICATION element's functlor with an a-

11st containing the available bindings of ARG1 arcs' to-nodes and

indicating with question marks the desired missing bindings, creates a

new element of the KEYED-APPLICATIONS set in the current KVISTA

extension space using the results generated by the function, and

generates a binding of the selected QVISTA node to the newly created

KEYED-APPLICATIONS set element. If not all of the to-nodes of the ARGi

arcs in any key set are bound, then the selected QVISTA node is added to

the current environment's WAITING.Q.ELEMENTS and a demon is attached to

the tc-nodes of at least one ARGI arc in each key set. These demons

when called, repeat the key set bindings test on ARGi to-nodes. If the

to-nodes of all the ARGi arcs in some key set are bound, then the ARGi

arcs' from-node is removed from the WAITING.Q.ELEMENTS list. Otherwise,

demons are attached as before.*

If the function called by the APPLICATIONS or KEY-APPLICATIONS

candidate binding generator is a generator, then each time the candidate

binding generator is pulsed, it pulses the function to produce a new

element of either the APPLICATIONS or KEY-APPLICATIONS set.

• This KEYED-APPLICATIONS mechanism was motivated by a desire to
interface the deduction component with a data base management system.
Jonathan Slocum designed and implemented the interface.

XII-56

4. EFFICIENCY CONSIDERATIONS

The special-purpose generators for the APPLICATIONS and KEY-

APPLICATUNS sets are an adequate facility for dealing with 'evaluable

predicates' (Green, 1969) in the deduction component. The mechanism is

simple, and the representation explicitly indicates the functions, their

arguments, their results, and the additional knowledge provided by their

results.

However, a significant gain in efficiency can be obtained at

the expense of the representation's explicitness by allowing functions

for generating candidate bindings to be attached to any KVISTA node that

represents a set. These functions would be used as generators of

candidate bindings for QVISTA nodes that are constrained to be elements

of the set the function is attached to. For example, the APPLICATIONS

and KEYED-APPLICATIONS generators would be attached to the APPLICATIONS

and KEYED-APPLICATIONS nodes and would be called by this mechanism.

This facility would allow computations such as data base accesses, sums,

and products to be done directly by the generators without the need to

apply the deduction component's derivational machinery to KVISTA

theorems. The degree to which one should sacrifice the explicitness and

"purity" of the representation with this mechanism in order to gain

derivational efficiency, it seems, must be decided by considering the

goals for each particular use of the system.

XII-57

MHBHÜ^MäHiM *_

M. TWO EXAMPLES

Consider again how the deduction component would answer the example

query "Who built the Henry L. Stimson?" in Figure XII-2. An initial

environment, EO, would be created in the environment tree and selected

as the "CURRENT.ENVIRONMENT". A QVISTA element, say node Y, would be

selected as the "Q.SELECTION", and the standard function for generating

candidate bindings would be used to create a candidate bindings

generator for Y. The generator would consider as candidate bindings the

from-nodes of either incoming obj arcs to node Henry.L.Stimson or

incoming "e" arcs to node BUILDINGS. For the KVISTA shown, node B would

be generated as the "TARGET.ELEMENT".

RAMIFY would be given the (Y,B) binding and would determine that

unique bindings are implied for the remainder of the elements in QVISTA

as follows. Since both Y and B have outgoing agt and obj case arcs, Y's

case arcs must be bound to B's corresponding case arcs, which implies

bindings for the case arcs' to-nodes. In particular, node X must be

bound to node General.Dynamics. Since both nodes X and Y have outgoing

"e" arcs with bound to-nodes, RAMIFY will test whether the set

membership of those nodes is consistent with the set membership of their

bindings. This test employs the derivation functions that follow subset

chains, and therefore the required "e" arc between General.Dynamics and

LEGAL.PERSONS is derived.

XII-58

■a ■^- A _ '■"'-

RAMIFY would output its set of implied bindings, and control would

be given to the Binder. Since both Y and B are in the top level of

their vistas, all the bindings would be made and control would return to

the executive. When no further unbound QVISTA elements can be found by

the executive, the set of bindings with a "Yes" answer would be

generated.

Now consider how the deduction component would answer the same

example query given the KVISTA shown in Figure XII-3. In this case the

candidate bindings generator for node Y would generate node "b" as a

candidate. Given the (Y,b) binding, RAMIFY would determine bindings for

node Y'» outgoing arcs, a binding of node X to node General.Dynamics,

and an instantiation of node Z to node Henry.L.Stimson.

Since the candidate binding for node Y (namely, node b) is not in

the top level of the KVISTA, the Binder would call the KVISTA Extractor

to derive a binding for node Y. Node "b" is the target and it occurs in

the consequent of an implication. Hence, the KVISTA Extractor would add

an extension vista to QVISTA consisting of one space containing an "e"

arc from node Henry.L.Stimson (the instantiation of node Z) to node

LAFAYETTES, and would then return control to the executive.

When the executive selects environment El as the current

environment, the arc Henry.L.Stimson—e~>LAFAYETTES would be selected

and the special-purpose candidate bindings generator for "e" arcs with

bound to- and from-nodes would be used to find a matching arc. RAMIFY

XII-59

rrw--" ^ - ■ ■ - y JMllliri i 'i ■'■■'■iTn w nr i i iirüämll

would not find any additional bindings implied by the binding of the "e"

arc, and the Binder would be able to make the arc binding.

The binding of the "e" arc would complete the binding of the

extension vista (i.e., the subproblem) added to QVISTA by the KVISTA

Extractor, and therefore would cause the QVISTA extension vista to be

deleted and an addition to be made to the current KVISTA extension

space. The addition would be a copy of the elements in the

implication's consequent space with the to-node of the obj arc in the

copy being node Henry.L.Stiuison. The KVISTA would then contain an

explicit match for the QVISTA elements and the deduction component would

find the matches as in the first example, binding the QVISTA elements to

the newly derived copy of the implication's consequent.

XII-60

 : - TTimlmw^ifrafrriTmriMiwi^ari-mHMimlTffi^

XIII GENERATING VERBAL RESPONSES

Prepared by Jonathan Slocum

CONTENTS:

A. Introduction
B. Generation Templates
C. Noun Phrases
D. Discussion
E. Looking Ahead

A. INTRODUCTION

When an input utterance has been analyzed and the semantic content

of an appropriate response has been developed (for example, the answer

to a question), the problem of formulating this response for

presentation to the user remains. It is the responsibility of the

generator, interpreting a grammar, to produce an English output from the

given semantic information. This program determines exactly how the

response may be formulated — as a noun phrase, a sentence, or a

sequence of sentences. It chooses words and phrases with which to

express the semantic content, as well as a syntactic frame for their

organization, and it produces the response in 'text' form. This text

string can be transformed into a sequence of phonemes via a word

pronunciation dictionary and output by a VOTRAX speech synthesizer.

However, in the current system, no sentence intonation or stress

XIII-1

■ i^iTfrnrii^^^^^"'-^-"-—^^^-J''--J-^^ ilwii«ii liiMiiwii i i "i ------- - ■■ .. - .-_. ,^ - -^^^d.

contouring is performed; that is, the word pronunciation is context-

free. Therefore, the production of speech per se is relatively

uninteresting and will not be mentioned further.

B. GENERATION TEMPLATES

In the semantic component of the speech understanding system,

situations and events are verb-dominated. By this, we mean that events

and situations are expressed by means of verbs or verb-like constructs;

they take as 'arguments' entitles that are usually expressed by nouns or

noun-like constructs. As a result, the grammar rules that generate

sentences depend primarily on the verb, and secondarily on its

arguments.

Even a cursory study of a few hundred English verbs shows that they

impose definite, regular constraints on the syntactic forms of their

arguments in sentences. These syntactic constraints depend on

particular senses of particular verbs; thus, it seems inappropriate io

maintain a global, monolithic grammar for the purposes of geneiation.

This fact has not been noted in previous work on language generation In

which verbs were studied whose arguinents were exclusively noun phrases

(NP) or prepositional phrases (PP). However, there are many instances

of constructs other than NP or PP. Examples Include: choose "to go",

authorize "there to be a demonstration", consider "it easy", see "her

drive away", imagine "him laughing", find "her murdered", wonder "how to

do it", ask "why I believe", suggest "sending them away". In

XIII-2

particular, consider the difference between "stop to help" and "stop

helping": Tie different senses of "stop" demand different syntactic

realizations. For this reasc , we associate verbs and grammar rules (in

the form of templates) with specific worr! senses (prototypical nodes) in

the net.

Our examples will employ simplified semantic net structures. In

the net fragment in Figure XIII-1, the U.S. and the U.K. are

elements (e) of the ^et of countries. At agents (agt) they each

participc s in OWNing situations involving as OLjects (obj) particular

ships; each ship is an element of a particular oc-t [class] of ships;

each class is a subset is) of a particular set [type] of ships; each

type is a subset of the set of all ships.

Now, consider the node in Figure XIII-1 labeled S.OWN. This node

is the prototypical OWN, in that it incorporates the meaning of the

situation of owning (including any semantic constraints on its

arguments), and in that all instances of owni j situations are related

to it. With this node we associate the appropriate verbs (OWN, POSSESS,

HAVE, BELONG) and their 'generation templates.' One template will not

suffice for all pour verbs; for instance, the syntactic sublet of the

verb BELONG is the OBJect case argument, while jn the otY r (active)

verbs the subject is the AGenT:

»Cf owns OBJ ; OBJ is owned by AGT
AGT possesses „.3J ; OBJ is possessed by AGT
AGT has OBJ ; OBJ belongs .0 AGT

XIII-3

--■ T^ Til - -—-^
"f I - - - u-^»^

FIGURE XIII-1 FRAGMENT OF A SEMANTIC NETWORK

XIII-4

So we employ the corresponding templates:

[OWN ((NP AGT) Vact (NP OBJ)) ((NP OBJ) Vpas BY (NP ACT))]
[POSSESS ((NP AGT) Vact (NP OBJ)) ((NP OBJ) Vpas BY (NP AGT))]
[HAVE ((NP AGT) Vact (NP OBJ))]
[BELONG ((NP OBJ) Vact TO (NP AGT))]

A set of templates like these is associated with every 'prototype

verb' node in the semantic net. The sentence generation algorithms are

then fairly simple (see Figure XIII-2), and constituent functions

(e.g., NP) are responsible for controlling subcomponents of the grammar

— generally, through appropriate recursive calls to the interpreter.

For example, in order to speak about a particular owning situation (such

as OWN.2), we pursue the hierarchy to find the 'canonical' S.OWN, choose

a verb (say, BELONG) and an associated template [(NP OBJ) Vact TO (NP

AGT)], and generate the constituents:

verb [OWN.2 ~> S.OWN] —> belong

template —> [(NP OBJ) Vact TO (NP AGT)]

(NP OBJ) —> [NP WHALE] —> the Whale
Vact —> belongs

TO ~> to
(NP AGT) ~> [NP U.S.] —> the United States

XIII-5

-

I

TO GENERATE A RESPONSE:
1. Generate-a-sentence; if succeed, return sentence
2. Generate-an-NP; if succeed, return noun phrase
3. Else FAIL

TO GENERATE-A-SENTENCE:
1. Generate-a-clause

TO GENERATE-A-CLAUSE:
1. Choose-a-verb; if none available, FAIL
2. Choose-a-template; if none available, go to step 1
3. Apply-the-template; if fail, go to step 2
4. Generate-verb-string
'J. Concatenate the subject, verb string, and predicate
6. Return results

TO CHOOSE-A-VERB (-NOUN):
1. Ret-ieve a verb (noun) associated with current node;

if fcund, return it
2. Take i step up hierarchy for new current node
3. If succeed, go to step 1; else FAIL

TO CHOOSE-A-TEMPLA^E:
1. Retrieve a template associated with current node and word
2. If found, retirn it; else FAIL

TO APPLY-THE-TEMPLATE:
1. Initialize RESULTS to be empty
2. If template is empty, return RESULTS
3. Evaluate-first-constituent; if unsuccessful, FAIL
M. Concatenate RESULTS and answer from step 3
5. niscard first constituent from template
6. Go to step 2

TO EVALUATE-FIRST-CONSTITUENT:
1. If constituent is atomic, return it (unevaluated)
2. (Constituent is a list); apply function named as first

item in constituent to network nodes indicated by rest
of constituent

3. Return results of step 2

TO GENERATE-AN-NP:
1. Choose-a-noun; if none available, FAIL
2. Choose-a-template; if none available, go to step 1
3. Apply-the-template; if fail, go to step 2
4. Return results of step 3

Figure XIII-2. THE BASIC GENERATION ALGORITHMS

XIII-6

C. NOUN PHRASES

In the current generator, noun templates are used to control noun

phrase generation. Much like verb templates, noun templates order the

constituents in the phrase and indicate how each constituent is to be

generated by naming a function to be called with the network

constituent. For example, with the node WHALE we associate the template

[WHALE (THE (N))], which enables us to speak of the particular submarine

named "Whale" as "the Whale." Associating, e.g., [STURGEON ((DET) (N))]

with the node STURGEONS (the set of all "Sturgeon class" submarines)

allows us to speak of an indeterminate member of that class as "a

Sturgeon," or of a subset of that class as "the Sturgeons." And

associating, e.g., [SUBMARINE ((DET) (N))] with the node SUBMARINES (the

set of all submarines) allows us to speak of an indeterminate submarine

as "a submarine," or of a subset of submarines as "the submarines." NP

templates like this are distributed throughout the network hierarchy.

We do not consider this method to be entirely sufficient, but it handles

all current requirements.

XIII-7

 HMHI

D. DISCUSSION

In theory, the set of possible English sentences is infinite. The

obvious question then arises, "If one tries to account for them with

templates, won't there be an infinite number of templates?" The simple

answer is, "No, for some of the same reasons that allow a finite grammar

to generate an infinite number of strings." Sentences of arbitrary

lengtn are produced by arbitrary embedding and arbitrary conjunction,

not uy including arbitrary numbers of distinct case arguments. Even so,

the number of basic syntactic patterns (devoid of case names and

particular prepositions) might seem to be extremely large. Evidence,

however, is to the contrary. Hornby and his colleagues (1948, 195^)

show the number of patterns to be small. The eventual number of

templates would appear to be several times the number of patterns, owing

to the substitution of particular prepositions for 'prep' in the

syntactic patterns, and the assignment of different case names to a

particular constituent, depending on the particular verb used.

One may question whether templates should be stored for passives;

certainly, they could be derived. On the other hand, neglecting to

store them would force us to indicate with each verb (sense), whether it

can (or, sometimes, must) be passivized. Specifying 'transitive' is not

enough since there are transitive verbs (i.e., verbs that take an

object) that cannot be passivized. Since we have to store the

information anyway, we can save some code and computing time by storing

the passive template.

XIIT-8

-- -* - _^— ■—

There are several reasons for generating the verb after the major

arguments. First, the subject must be generated so that the verb can be

made to agree in number. Second, certain word senses are true of verb-

particle combinations while not of the isolated verb. Sinne particles

must appear after objects that are short (like pronouns) but before

objects that are long (like noun phrases), the particle must be

positioned after the object phrase is generated. Finally, insertion of

some adverbials (e.g., "not") requires an auxiliary verb; thus verb

generation must follow adverbial generation, so that any use of mid-

position adverbials will affect the generation of the verb string.

E. LOOKING AHEAD

There are some sources of potential template proliferation, an

important one being the combinatorial arrangements of the case arguments

of time, manner, and other adverbials, as well as other (possibly non-

adverbial) case arguments like source, goal, and instrument. Some of

these arguments are rather constrained in their positions in the

sentence, but others may appear almost anywhere:

"Yesterday the ship sailed from the lighthouse to the dock."
"The ship sailed from the lighthouse to the dock yesterday."
"From the lighthouse the ship sailed yesterday to the dock."

It is of course unreasonable to try to cover all these cases with

templates; instead we will leave insertion of these adverbial arguments

to a single heuristic routine. There are several justifications for

this solution, among them: the particular form of the verb cannot be

XIII-9

*t*mmm^mmm*M^ima^tmm*aMmmtmitmaimkmmi*^. . .

generated until the subject, object(s), and complement(s) have been

generated; these adverbials are so universal as to appear in almost any

of the templates and in several possible places; and there are heuristic

constraints involved in the placement of arguments.

There are no well-formulated rules accounting for noun phrases in

English; indeed, there are few well-established guidelines other than

that the hearer must be able to resolve the pronouns and neun phrases to

their referents. The speaker should employ anaphora in ord^r to avoid

repetition, but only when his 'model of the hearer' indicates chat there

will be no ambiguity. Problems include: whether to use a proper noun

(name) if the referent has one, or whether to employ a pronoun or common

noun; in the latter case, which of the available common nouns, vhat

determiners to use, what adjectives and postmodifiers, etc. The

generator should piece these constituents together in some reasonable

order, performing appropriate lexical transformations, and recursively

expanding any constituent phrases.

Some low-power pronominalization rules can be directly incorporated

in a grammar — reflexivization, for example. Otherwise, a grammar

should not determine the components of a constituent phrase independent

of the conversational context. This situation has not been universally

recognized, but it is becoming increasingly clear that a discourse

module, operating on some model of the hearer, must be consulted during

the generation phase. The generator should pass any 'noun' constituent

to the discourse module (perhaps with its recommendation about how to

XIII-10

■ HII^ iiiM -^ - i M - " --

produce the constituent); the module must determine if a pronoun or bare

noun is ambiguous to the hearer, and, if so, what to add to the noun in

order to make the desired referent clear. In the future, more general

templates, for example,

[(DET) (Adj QUAD (Adj SIZE) (Adj SHAPE) (Adj COLOR) (N)] ,

may be employed, and a discourse module will decide for each template

constituent whether it is to appear in the phrase.

It would appear that, for generation purposes at least, our modular

grammar has an important advantage over a 'monolithic' grammar: it

clearly indicates the syntactic idiosyncracies imposed by particular

word choices. The storage requirements of the two formalisms are

probably similar. The modular grammar will probably require more rules,

but a monolithic grammar must in turn incorporate many 'applicability

tests' for each of its rules. In effect, these tests are precomputed

during the construction of the modular grammar. Further research should

enable us to verify these claims.

XIII-11

XIV REFERENCES

Aho, A. V., and Ullman, J. The Theory of Parsing, Translation, and
Compiling. Volume 1. Prentice-Hall, Englewood Cliffs, New Jersey,
1972.

Baker, James K. The DRAGON System — An Overview. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 1975, ASSP-23, 2^-29■

Barnett, Jeffrey A. INFIX LISP for SDC IBM 370 Users. TM-M310, System
Development Corporation, Santa Monica, California, May 1973-

Barnett, Jeffrey A. Speech Understanding Sytem Overview. TM-5732,
System Development Corporation, Santa Monica, California, August
1976.

Barnett, Jeffrey A., and Pintar, Douglas. CRISP: A Programming Language
and System. TM-5455, System Development Corporation, Santa Monica,
California, December 1974.

Bates, Madeleine. Syntactic Analysis in a Speech Understanding System.
BBN Report 3116, Bolt Beranek and Newman, Cambridge, Massachusetts,
August 1975-

Becker, Richard, and Poza, Fausto. Acoustic Processing in the SRI
Speech Understanding System. IEEE Transactions on Acoustics, Speech
and Signal Processing, 1975, ASSP-23, 416-426.

Bernstein, Morton I. Interactive Systems Research: Final Report. TM-
5243/004, System Development Corporation, Santa Monica, California,
1975.

Bobrow, Daniel G., and Fräser. J. Bruce. An Augmented State Transition
Network Analysis Procedure. Proceedings of the International Joint
Conference on Artificial Intelligence, Washington, D.C., 7-9 May
1969. Editod by Donald E. Walker and Lewis M. Norton. The MITRE
Corporation, Bedford, Massachusetts, 1969, 557-568.

Bobrow, Daniel G., and Wegbreit, Ben. A Model and Stack Implementation
of Multiple Environments. Communications of the ACM, 1973, 16, 591-
603.

TTV ~- ^---^.^-^ ^—■--"— ----- - — -"'-

Bobrow, Daniel G., and Winograd, Terry. An Overview of KRL, a Knowledge
Representation Language. Computer Science Laboratory, Xerox Palo
Alto Research Center, Palo Alto, California, and Artificial
Intelligence Laboratory, Stanford University, Stanford, California,
July 1976.

Bruce, Bertram C. A Model of Temporal References and Its Application in
a Question Answering Program. Artificial Intelligence, 1973f 3. 1-
26.

Celce-Murcia, Marianne. Verb Paradigms for Sentence Recognition.
American Journal of Computational Linguistics, Microfiche 38, 1976.

Chafe, Wallace L. Discourse Structure and Human Knowledge. In:
Language Comprehension and the Acquisition of Knowledge. Edited by
Roy 0. Freedle and John B. Carroll. Winston, Washington, D. C,
1972. Pp. 41-69-

Chafe, Wallace L. Language and Consciousness. Language, 197'*, 50, 111-

133-

Chapanis, Alphonse. The Communication of Factual Information Through
Various Channels. Information Storage and Retrieval, 1973, 9, 215-
231 .

Chapanis, Alphonse. Interactive Human Communication,
American, March 1975, 36-M2.

Scientific

Charniak, Eugene. Toward a Model of Children's Story Comprehension. AI
TR-266, Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, Massachusetts, 1972.

Cheatham, Thomas E., and Sattley, Kirk. Syntax Directed Compiling.
AFIPS Conference Proceedings: Spring Joint Computer Conference, 1964,
25, 31-57.

Cohen, Philip R., and Perrault, C. Raymond. Preliminaries for a Model
of Conversation. In Proceedings of the First CSCSI/SCEIO National
Conference, Vancouver, British Columbia, Canada, 25-27 August 1976.
Pp. 102-111.

Colby, Kenneth M., Faught, William, and Parkinson, Roger. Pattern
Matching Rules for the Recognition of Natural Language Dialogue
Expressions. AI-MEMO 234, Artificial Intelligence Laboratory,
Stanford University, Stanford, California, June, 1974.

Cox, D. R. Planning of Experiments. John Wiley, New York, 1958.

Deutsch, Barbara G. The Structure of Task-Oriented Dialogs.
Contributed Papers, IEEE Symposium on Speech Recognition. Carnegle-

XIV-2

t--r ■ -r .„^^^ ^.. „—. -

Mellon University, Pittsburgh, Pennsylvania, 15-19 April I0?1*.
Edited by Lee D. Enaan. IEEE, New York, 1974, 250-254. (a)

Deutsch, Barbara G. Typescripts of Task Oriented Dialogs. SUR Note
146, Stanford Research Institute, Menlo Park, August 20, 1974. (b)

Deutsch, Barbara G. Establishing Context in Task-Oriented Dialogs.
American Journal of Computational Linguistics, 1975, 4, Microfiche

35.

Erman, Lee D. An Environment and System for Machine Understanding of
Connected Speech. Ph.D. Thesis, Stanford University, Stanford
California, 1974. (Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, Pennsylvania.) (a)

Erman, Lee D., (Ed.). Contributed Papers, IEEE Symposium on Speech
Recognition. Carnegie-Mellon University, Pittsburgh, Pennsylvania,
15-19 April 1974. IEEE, New York, 1974, 250-254. (b)

Fennell, Richard D., and Lesser, Victor R. Parallelism in AI Problem
Solving: A Case Study of Hearsay II. Technical Report, Department of
Computer Science, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, 1975.

Fillmore, Charles J The Case for Case. In: Universals in Linguistic
Theory. Edited by E'mmon Bach and Robert T. Harius. Holt, Rinehart
and Winston, 1968. Pp. 1-88.

Freedle, Roy 0. Language Users a^ Fallible Information-Processors:
Implications for Measuring a^d Modeling Comprehension. In: Language
Comprehension and the Acquisition of Knowledge. Edited by
John B. Carroll and Roy 0. Freedle. Winston, Washington, D.C., 1972,

169-209.

Goodman, R. Gary. Analysis of Languages for Man-Machine Communication.
Ph.D. Thesis, Stanford University, Stanford, California, 1976.
(Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Pennsylvania.)

Goodman, R. Gary, Lowerre, Bruce T., and Reddy, D. Raj. Effects of
Branching Factor and Vocabulary Size on Performance (Abstract). In:
Speech Understanding Systems: Summary of Results of the Five-Year
Research Effort. By Reddy, D. Raj, et al. Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania,
September 1976.

Green, C. Cordell. The Application of Theorem Proving to Question-
Answering Systems. Technical Report No. CS 138, Artificial
Intelligence Groap, Stanford Research Institute, Menlo Park,
California, and Artificial Intelligence Project, Stanford University,
Stanford, California, June 1969.

XIV-3

ii i nir - mnsi

Grosz, Barbara J. The Representation and Use of Focus in Dialog
Understanding. Ph.D. Thesis, University of California, Berkeley,
California, 1977.

Kalliday, Michael A., and Hasan, Ruqaiya. Cohesion in English. London,
Longman, 1976.

Hankaraer, Jorge, and Sag, Ivar. Deep and Surface Anaphora. Linguistic
Inquiry, 1976, 7, 390-428.

Hart, Peter E. Progress on a Computer Based Consultant. Technical Note
99, Artificial Intelligence Center, Stanford Research Institute,
Menlo Park, California, January 1975-

Hart, Peter E., Nilsson, Nils J., and Raphael, Bertram. A Form?! Basis
for the Heuristic Determination of Minimal Cost Paths. IEEE
Transactions on Systems Science and Cybernetics, 1968, SSC-4, 100-
107.

Hayes-Roth, Frederick, and Mostow, David J. An Automatically Compilable
Recognition Network for Structured Patterns. Advance Papers,
International Joint Conference on Artificial Intelligence, Tbilisi,
Georgian SSR, 3-8 September 1975.

Heidorn, George E. Augmented Phrase Structure Grammars. In:
Theoretical Issues in Natural Language Processing. Edited by
Roger C. Schänk and Bonnie Nash-Webber. Center for Applied
Linguistics, Arlington, Virginia, 1975, 1-5.

Hendrix, Gary G. Expanding the Utility of Semantic Networks Through
Partitioning. Advance Papers, International Joint Conference on
Artificial Intelligence, Tbilisi, Georgian SSR, 3-8 September 1975,
115-121. (a)

Hendrix, Gary G. Partitioned Networks for the Mathematical Modeling of
Natural Language Semantics. Technical Report NL-28, Department of
Computer Sciences, University of Texas, Austin, Texas, 1975- (b)

Hendrix, Gary G. Semantic Processing for Speech Understanding.
American Journal of Computational Linguistics, 1975, 4, Microfiche
3^. (c)

Hintikka, Jaakko. Quantifiers vs. Quantification Theory. Linguistic
Inquiry, 1974, 5, 153-177.

Hobbs, Jerry R. A Metalanguage for Expressing Grammatical Restrictions
in Nodal Spans Parsing of Natural Language Courant Computer Science
Report No. 2, New York University, New York, 1974.

XIV-4

—--•■ ii ill i i ^Tii ffriii^^ Mtmirltrnamiii i

Hobbs, Jerry R. Pronoun Resolution. Research Report 76-1, Department
of Computer Sciences, City University of New York, New York, August
1976.

Hornby, A. S., Gatenby, E. V., and Wakefield, H.. Th-i Advanced
Learner's Dictionary of Current English. Oxford Press, London, 19^8.

Hornby, A. S. A Guide to Patterns and Usage in English. Oxford Press,
London, 1954.

Irons, E. T. A Syntax Directed Compiler for ALGOL 60. Communications
of the ACM, 1961, 4, 51-55.

Jazayeri, Mehdi, Ogden, William F., and Rounds, William C. The
Intrinsically Exponential Complexity of the Circularity Problem for
Attribute Grammars. Communications of the ACM, 1975, 18, 697-706.

Kaplan, Ronald M. A General Syntactic Processor. In: Natural Language
Processing. Edited by Randall Rustin. Algorithmic^ Press, New York,
1973- Pp- 193-241.

Kaplan, Ronald M. A Multi-Processin»; Approach to Natural Language.
Proceedings, National Computer Coiiference, New York, New York, 4-8
June 1973- Volume 42. AFIPS Press, New Jersey, 1973, 435-440. (b)

Kay, Martin. Experiments With a Powerful Parser. RM-5452-PR, The RAND
Corporation, Santa Monica, California, 1967.

Kay, Martin. The Mind System. In: Natural Language Processing. Edited
by Randall Rustin. Algorithmics Press, New York, 1973- Pp. 153-
188.

Knuth, Donald E. Semantics of Context-Free Languages. Mathematical
Systems Theory, 1968, 2, 127-145.

Landsbergen, S. P. Jan. Syntax and Formal Semantics of English in
PHLIQAI. In: COLING 76, Preprints of the 6th International
Conference on Computational Linguistics, Ottawa, Ontario, Canada, 28
June - 2 July 1976. No. 21.

Lesser, Victor R., Fennell, Richard D., Erman, Lee D., and
Reddy, D. Raj. Organization of the Hearsay II Speech Understanding
System. IEEE Transactions on Acoustics, Speech. and Signal
Processing, 1975, ASSP-23, 11-24.

Lowerre, Bruce T. The HARPf Speech Recognition System. Ph.D. Thesis,
Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1976.

Malhotra, Ashok. Design Requirements for a Knowledge-Based English
Language System for Management: An Experimental Analysis. Ph.D.

XIV-5

.>

. -----.■

Thesis, Sloan School of Management, Massachusetts Institute of
Technology, February 1975.

Miller, Perry L. A Locally Organized Parser for Spokon Input.
Technical Report 503, Lincoln Laboratory, Massachusetts Institute of
Technology, Lexington, Massachusetts, May 197^.

Minsky, Marvin. A Framework for Representing Knowledge. AI Memo 306,
Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1974.

Newell, Allen. Production Systems: Models of Control Structures. In:
Visual Information Processing. Edited by W. C. Chase. Academic
Press, New York, 1973. Pp. 463-526.

Newell, Allen. A Tutorial on Speech Understanding Systems. In: Speech
Recognition: Invited Papers of the 197:4 IEEE Symposium. Edited by
D. Ra, Reddy. Academic Press, New York, 1975. Pp. 3-54.

Newell, Allen, and Simon, Herbert A. '' nnputer Science r.s Empirical
Inquiry: Symbols and Search. 1975 ACM Turing Award Lecture.
Ccmmunicaulons of the ACM, 1976, 19, 113-126.

Newell, Allen, et al. Speech Understanding Systems. North-Holland
Publibhing Company, Amsterdam, 1973.

Nilsso-i, Nils J., et al. Artificial Intelligence — Research and
Applications. Annual Report, Project 3805, Artificial Intelligence
Center, Stanford Research Institute, Menlo Park, California, May
1975.

Norman, Donald A., Rumelhart, David E., and the LNR Research Group.
Expi'i-ations in Cognition. Freäman, San Francisco, 1975.

Olson, David R. Language and Thought: Aspects of a Cognitive Theory of
Semantics. Psychological Review, 1970, T7, 257-273.

Paxton, William H. A Best-First Parser. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 1975, ASSP-23, 425-432.

Paxton, William H. A Framework for Language Understanding. In: C0LINC-
76, Preprints of the 6th International Conference on Computational
Linguistics, Ottawa, Ontario, Canada, 28 June - 2 July 1976. No.
14. (a)

Paxton, William H. Experiment? in Speech Understanding Sy ^m Control.
In Proceedings of the First CSCSI/SCEIO Nationa^ uOnfe:ence,
Vancouver, British Columbia, Canada, 25-27 August 1976. (b)

XIV-6

Paxton, William H., and Robinson, Ann E. A Parser for a Speech
Understanding System. Advance Papers, International Joint Conference
on Artificial Intelligence, Stanford, California, 20-23 August 1973-
Stanford Research Institute, Menlo Park, California, 1973, 216-222.

Paxton, William H., and Robinson, Ann E. System Integration and Control
in a Speech Understanding System. American Journal of Computational
Linguistics, 1975, 4, Microfiche S2»-

Petrick, Stanley R. Semantic Interpretation in the Request System. In:
Computational and Mathematical Linguistics, Proceedings of the
International Confsrence on Computational Linguistics, Volume I.
Edited by Antonio Zampolli. Casa Editrice Leo S. Olschki, Firenze,

1973-

Petrick, Stanley R. On Natural Language Based Computer Systems. IBM
Journal of Research and Development, 1A76, 20, 31^-325.

Pratt, Vaughn R. LINGOL - A Progress Report. Advance Papers,
International Joint Conference on Artificial Intelligence, Tbilisi,
Georgian SSR, 3-8 September 1975, 122-428.

Reboh, Rene, and Sacerdoti, Earl. A Preliminary QLISP MAnual.
Technical Note 81, Artificial Intelligence Center, Stanford Research
Institute, Menlo Park, California, August 1973-

Reddy, D. Raj. Speech Recognition by Machine: A Review. Proceedings of
the IEEE, 1976, 64, 501-531-

Reddy, D. Raj, et al. Speech Understanding Systems: Summary of Results
of the Five-Yetir Research Effort. Department of Computer Science.
Carnegie-Mellon University, Pittsburgh, Pennsylvania, September 1976

Ritea, H. Barry. A Voice-Controlled Data Management System.
Contributed Papers, IEEE Symposium on Speech Recognition. Carnegie-
Mellon University, Pittsburgh, Pennsylvania, 15-19 April 1974.
Edited by Lee D. Erman. IEEE, New York, 1974, 28-31.

Ritea, H. Barry. Automatic Speech Understanding Systems. Proceedings
of the 11th Annual IEEE Computer Society Conference, Washington,
D.C., September 1975.

Robinson, Jane J. Performance Grammars. In: Speech Recognition:
Invited Papers of the 1974 IEEE Symposium. Edited by D. Raj Reddy.
Academic Press, New York, 1975. Pp. 401-427. (a)

Robinson, Jane J. A Tuneable Performance Grammar. American Journal of
Computational Linguistics, 1975, 4, Microfiche 34. (b)

XIV-7

■HiU

Rumelhart, David E., and Norman, Donald A. Active Semantic Networks as
a Model of Human Memory. Advance Papers, International Joint
Conference on Artificial Intelligence, Stanford, California, 20-23
August 1973- Stanford Research Institute, Menlo Park, California,
1973, 450-1157.

Sager, Naomi, and Grlshman, Ralph. The Restriction Language for
Computer Grammars. Communications of the ACM, 1975, 18, 390-U00.

Scha, Remko J. H. Semantic Types In PHLIQA1. In: COLING 76, Preprints
of the 6th International Conference on Computational Linguistics,
Ottawa, Ontario, Canada, 28 June - 2 July 1976. No. 10.

Schänk, Roger C. Identification of Conceptualizations Underlying
Natural Language. In: Computer Models of Thought and Language.
Edited by Roger C. Schänk and Kenneth M. Colby. W H. Freeman, San
Francisco, 1973, 187-2M7.

Shapiro, Stuart C. A Net Structure for Semantic Information Storage,
Deduction and Retrieval. Advance Papers, Second International Joint
Conference on Artificial Intelligence, London, England, 1-2 September
1971. The British Computer Society, London, England, 1971. Pp.
512-523-

Silva, Georgette. SDC-SRI Protocol Gathering Experiments and Computer
Analysis of Dialog. SUR Note 141, System Development Corporation,
Santa Monica, California, October 1975.

Simmons, Robert F. Semantic Networks: Their Computation and Use for
Understanding English Sentences. In: Computer Models of Thought and
Language. Edited by Roger C. Schänk and Kenneth M. Colby. Freeman,
San Francisco, 1973- Pp. 63-113.

Slocum, Jonathan. Speech Generation from Semantic Nets. American
Journal of Computational Linguistics, 1975, '*, Microfiche 33-

Sowa, John F. Conceptual Graphs for a Data Base Interface. IBM Journal
of Research and Development, 1976, 20, 336-357.

Teltelman, Warren. INTERLISP Reference Manual. XEROX Palo Alto
Research Center, Palo Alto, California, 1975.

Thorne, James P., Bratley, Paul, and Dewar, Haimlsh. The Syntactic
Analysis of English by Machine. In: Machine Intelligence 3. Edited
by Donald Michie. Edinburgh University Press, Edinburgh, 1968.

Uppsala University. Interlisp/360 and /370 User Reference Manual.
Uppsala University, Uppsala, Sweden, 1975.

XIV-8

Walker, Donald E. Speech Understanding Research. Annual Report,
Project 1526, Artificial Intelligence Center, Stanford, Research
Institute, Menlo Park, California, February 1973- (a)

Walker, Donald E. Speech Understanding Through Syntactic and Semantic
Analysis. Advance Papers, International Joint Conference on
Artificial intelligence, Stanford, California, 20-23 August 1973-
Stanford Research Institute, Menlo Park, California, 1973, 208-215.
(b)

Walker, Donald E. Speech Understanding Research. Annual Report,
Project 1526, Artificial Intelligence Center, Stanford Research
Institute, Menlo Park, California, May 1974.

Walker, Donald E. The SRI Speech Understanding System. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 1975, ASSP-
23, 397-416.

Walker, Donald E., et al. Speech Understanding Research. Annual
Report, Project 3804, Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, California, June 1975.

Winer, B. J. Statistical Principles in Experimental Design. Second
Edition. McGraw-Hill, New York, 1971.

Winograd, Terry. Procedures as a Representation for Data in a Computer
Program for Understanding Natural Language. Report MAC-TR-84,
Project MAC, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1971. [Published as Understanding Natural Language,
Academic Press, New York, 1972.]

Winograd, Terry. Frame Representations and the Declarative/Procedural
Controversy. In: Representation and Understanding. Edited by
Daniel G. Bobrow and Allen M. Collins. Academic Press, New York,
1975. Pp. 185-210.

Woods, William A. Transition Network Grammars for Natural Language
Analysis. Communications of the ACM, 1970, 13, 591-606.

Woods, William A. What's in a Link: Foundations for Semantic Networks.
In: Representation and Understanding. Edited by Daniel G. Bobrow
and Allen M. Collins. Academic Press, New York, 1975- Pp. 35-82.

Woods, William A., Kaplan, Ronald M., and Nash-Webber, Bonnie. The
Lunar Sciences Natural Language Information System. Final Report.
BBN Report 2378, Bolt Beranek and Newman, Cambridge, Massachusetts,
1972.

Woods, William A., and Makhoul, John. Mechanical Inference Problems in
Continuous Speech Understanding. Artificial Intelligence, 1974, 5,

73-91.

XIV-9

.,.-..*

Woods, William A., et al. Speech Understanding Systems. Quarterly
Technical Progress Report No. 1. BBN Report 3018, Bolt Beranek and
Newman, Cambridge, Massachusetts, February 1975. (a)

Woods, William A., et al. Speech Understanding Systems. Annual
Technical Progress Report. BBN Report 3188, Bolt Beranek and Newman,
Can^ridge, Massachusetts, October 1975. (b)

Woods, William A., et al. Speech Understanding Systems. Quarte ly
Technical Progress Report No. 5. BBN Report 3240, Bolt Beranek and
Newman, Cambridge, Massachusetts, January 1976. (a)

Woods, William A., et al. Speech Understanding Systems. Quarterly
Technical Progress Report No. 6. BBN Report 3303, Bolt Beranek and
Newman, Cambridge, Massachusetts, April 1976. (b)

XIV-10

XV SRI SPEECH UNDERSTANDING RESEARCH PUBLICATIONS AND REPORTS

Becker, Richard, and Poza, Fausto. Acoustic Processing in the SRI
Sptech Understanding System. IEEE Transactions on Acoustics, Speech
and Signal Processing, 1975, ASSP-23, Ul6-426.

Deutsch, Barbara G. The Structure of Task-Oriented Dialogs.
Contributed Papers, IEEE Symposium on Speech Recognition, Carnegie-
Mellon University, Pittsburgh, Pennsylvania, 15-19 April 1974. IEEE,
New York, 1974, 250-254. [Technical Note 90, Artificial Intelligence
Center, Stanford Research Institute, Menlo Park, California, April
1974.]

Deutsch, Barbara G. Establishing Context in Task-Oriented Dialogs.
American Journal of Computational Linguistics, 1975, Microfiche 35.
[Technical Note 114, Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, California, September 1975.]

Hendrix, Gary G. Expanding the Utility of Semantic Networks Through
Partitioning. Advance Papers of the Fourth International Joint
Conference on Artificial Intelligence, Tbilisi. Georgia, USSR, 3-8
September 1975, 115-121. [Technical Note 105, Artificial
Intelligence Center, Stanford Research Institute, Menlo Park,
California, June 1975-]

Hendrix, Gary G. Semantic Processing for Speech Understanding.
American Journal of Computational Linguistics. 1975, Microfiche 34.
[Technical Note 113, Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, California, September 1975.]

Paxton, William H. A Best-First Parser. IEEE Transactions on
Acoustics, Speech and Signal Processing, 1975, ASSP-23, 426-432.
[Contributed Papers, IEEE Symposium on Speech Recognition, Carnegie-
Mellon University, Pittsburgh, Pennsylvania, 15-19 April 1974. IEEE,
New York, 218-225.] [Technical Note 92, Artificial Intelligence
Center, Stanford Research Institute, Menlo Park, California, April
1974.]

Paxton, William H., and Robinson, Ann E. A Parser for a Speech
Understanding System. Advance Papers, International Joint Conference
on Artificial Intelligence, Stanford, California, 20-23 August 1973.
Stanford Research Institute, Menlo Park, California, 1973, 216-222.
[Technical Note 79, Artificial Intelligence Center, Stanford Research
Institute, Menlo Park, California, June 1973-]

XV-1

 — wmmtm

Paxton, William H., and Robinson, Ann E. System Integration and Control
in a Speech Understanding System. American Journal of Computational
Linguistics, 1975, Microfiche 31*- [Technical Note 111, Artificial
Intelligence Center, Stanford Research Institute, Menlo Park,
California, September 1975.]

Paxton, William H. A Framework for Language Understanding. In COLING
76, Preprints of the 6th International Conference on Computational
Linguistics, Ottawa, Ontario, Canada, 28 June - 2 July 1976.
[Technical Note 131, Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, California, June 1976.]

Paxton, William H. Experiments in Speech Understanding System Control.
In Proceedings of the First CSCSI/SCEIO National Conference,
Vancouver, British Columbia, Canada, 25-27 August 1976. [Technical
Note 131», Artificial Intelligence Center, Stanford Research
Institute, Menlo Park, California, August 1976.]

Robinson, Jane J. Performance Grammars. In Speech Recognition:
Invited Papers of the 1974 IEEE Symposium. Edited by Raj Reddy.
Academic Press, New York, 1975- Pp. 401-427. [Invited Papers, IEEE
Symposium on Speech Recognition, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, 15-19 April 1974.] [Technical Note 97,
Artificial Intelligence Center, Stanford Research Institute, Menlo
Park, California, April 1974.]

Robinson, Jane J. A Tuneable Performance Grammar. American Journal of
Computational Linguistics, 1975, Microfiche 34. [Technical Note 112,
Artificial Intelligence Center, Stanford Research Institute, Menlo
Park, California, September 1975.]

Slocum, Jonathan. Speech Generation from Semantic Nets. American
Journal of Computational Linguistics, 1975, Microfiche 33-
[Technical Note 115, Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, California, September 1975.]

Walker, Donald E. Speech Understanding Research. Annual Technical
Report, Project 1526, Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, California, February 1973-

Walker, Donald E. Speech Understanding Through Syntactic and Semantic
Analysis. IEEE Transactions on Computers, 1976, C-25, 432-439-
[Advance Papers, International Joint Conference on Artificial
Intelligence, Stanford, California, 20-23 August 1973- Stanford
Research Institute, Menlo Park, California, 1973, 208-215.]
[Technical Note 80, Artificial Intelligence Center, Stanford Research
Institute, Minlo Park, California, June 1973.]

Walker, Donald E. Speech Understanding, Computational Linguistics, and
Artificial Intelligence. In Computational and Mathematical

XV-2

Linguistics, Proceedings of the International Conference on
Computational Linguistics, Volume I. Edited by Antonio Zampolli.
Casa Editrice Leo S. Olschki, Firenze, 1973. Pp. 725-740.
[Technical Note 85, Artificial Intelligence Center, Stanford Research
Institute, Menlo Park, California, August 1973-]

Walker, Donald E. Speech Understanding Research. Annual Technical
Report, Project 1526, Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, California, May 1974.

Walker, Donald E. The SRI Speech Understanding System. IEEE
Transactions on Acoustics, Speech and Signal Processing, 1975, ASSP-
23, 397-416. [Contributed Papers, IEEE Symposium on Speech
Recognition, Carnegie-Mellon University, Pittsburgh, Pennsylvania,
15-19 April 1974. IEEE, New York, 32-37.] [Technical Note 91,
Artificial Intelligence Center, Stanford Research Institute, Menlo
Park, California, April 1974.]

Walker, Donald E. Progress in Speech Understanding Research at SRI.
Proceedings of the Fourth International Congress of Applied
Linguistics, Stuttgart, German Federal Republi., 25 - 30 August 1975.
Edited by Gerhard Nickel. Hochschul Verlag, Stuttgart, 1976.
[Technical Note 110, Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, California, August 1975.]

Walker, Donald E., et al. Speech Understanding Research. Annual
Technical Report, Project 3804, Artificial Intelligence Center,
Stanford Research Institute, Menlo Park, California, June 1975-

Walker, Donald E. Speech Understanding Research. Semiannual Technical
Report, Project 4762, Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, California, June 1976.

Walker, Donald E, (Ed.) Speech Understanding Research. Final Technical
Report, Project 4762, Artificial Intelligence Center, Stanford
Research Institute, Menlo Park, California, October 1976.

XV-3

— _ ------ -----

