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IMPROVING THE MANRY-AGGARWAL METHOD FOR ~)ESIGNING

MULTI—DIMENSIONAL FIR DIGITAL FILTERS..

by

James W. Daniel*

Abstract

M.T. Manry and J.K. Aggarwal recently described an algorithm for use in the
design of multi—dimensional FIR digital filters by phase correction. As they
observe, their method can be viewed as the steepest descent method for minimizing
a certain function f(x): given an approximate solution x , a new approximation

is X
n+l~~

Xn +tnPn where ~~~~—Vf (x~) and t is chosen by a simple rule. We

derive here an improved rule for determining t~ and an improved direction p
~

(essentially the Fletcher—Reeves conjugate—gradient direction). The resulting
method appears to be two to three times as fast as the Manry—Aggarwal method ; the
additional cost is primarily in storage, which roughly doubles.

Key words: FIR digital filters; filter design; phase correction;
Manry—Aggarwal method.

1. Introduction

In recent papers E Manry (1976), Manry—Aggarwal (1976)1 , M.T. Manry and J.K.

Aggarwal have proposed a new technique for the design of multi—dimensional FIR

digital filters. The reader is referred to those papers for references, applica-

tions, and comparisons with other methods; in the interest of brevity, we confine

ourselves here to presenting dramatic improvements in the Manry—Aggarwal method .

For simplicity and clarity, we follow the lead of [Manry (1976), Manry—Aggarwal

(l976fl by presenting our discussion in terms of two—dimensional filters; general-

izat ion is obvious and straightforward.

*Departments of Mathematics and ol Computer Sciences and Center for Numerical
Analysis at The University of Texas at Austin. Research supported in part by the
United States Office of Naval Research under Contract N00014—67—A—0126—OO1S;
reproduction in whole or in part is permitted for any purposes of the United States
government .
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A two—dimensional FIR digital filter is described by an array h of filter

spatial coefficients h for o.~ m~~M—l and o.� n~~N—l for integers M,N.

The filter produces output spatial data from input spatial data dmn 
according

to

N—i N-i
-~~~~~ ~ da-k,n-9.

k—o L o

Corresponding to the spatial coefficient array b is the frec[uency-domain

array H of coeff icients H f or o~~m~~M—l and o~~n~~N—l defined by the
— inn

discrete Fourier transform:

M—i N-i
(1.1) H - E h

k9.. m o n o

M-l N-i
(1.2) h (1/MN ) ~ ~ 

H1~ 
U V

k o  Q o

where

(1.3) U exp (—2 rrj IM) , V — exp(—2ni/N), j . ~TT

The problem addressed by Manry and Aggarval is the following. it is desired

to design a filter whose spatial coefficients h~~ will be zero except for a

small number of specified values of a,n and whose corresponding frequency—domain

coef f icient amplitudes I~~ I will assume (or approximate) prescribed values

for o.~ k~~M—l and o~~L~~N—1. For simplicity of presentation it is assumed

that the spatial array b is truncated in the sense that the (possibly) non-z~~o spatial

coefficients hma are for o~~m~~M1 —l, o~~n �N 1—l
, where M1~~M, N1~~N;

generalization is obvious and straightforward. In this case, computation of the

frequency—domain array ~ by Equation 1.1 simplifies to

— 

~~~ ~~ a r

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _  
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t4l~
l N

1
—l

(1 4) R.~~ ~ E h ~~~ 
~~n

m—O n o

2. The Manry-Aggarval method

Manry and Aggarwal first present a basic iterative step for improving a

spatial array to an array which comes closer to having the desired

frequency—domain—coefficient ampl itudes A,~~. Assuming that ~~~ =o except for

o~~m~~M1—l 
and o~~n~~N1—l, 

we compute the corresponding frequency—domain array

~~t) by Equations 1.1 or 1.4. We then write these frequency—domain coefficients

as

(2.1) H~~~ — IH~~ 
exp (j O~~~) for o ~ k ~ M—l , o ~~~ N—l.

Recall that we desire to have — A.~ for o~~k~~M—l, o .~~~~N—l , for given

A~~. We therefore define a new frequency domain array ~(1~~) with the same phase

as for but with the correct amplitude:

(2.2) — A~~exp(jO~~~).

From we compute the corresponding spatial array via Equation 1.2.

Since we cannot in general expect to be truncated, that is to satisfy the

requirement that h~~
’
~~ -o except for o �m �M

1-1 
and o� n .~ N1—l

, we must

truncate to obtain

I h~14~~ for o~~m~~M -1, o~~n~~N -1

(2.3) — 
1 1

1. o otherwise ‘

I 

_ _ _ _

_
_

_
_ _  

_ _ _I~~~T~~~ T _ _ _ _ _ _
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The basic iterative step then takes

It is a simple matter to see that comes closer, in a sense, than

to achieving the desired frequency—domain—coefficient amplitudes A,~~. More

precisely, given any truncated spatial array h, so that h~~ =o except possibly

for o~~m~~M1—1
, o .~ n~~N1—l, we define

M-l N—l 
2(2.4) f(h) — 

~~~ 
( I H ~ I — A~~)

k—o 2 o

where ~ is computed from h via Equations 1.1 or 1.4. Then [Manry (1976)] we

‘i)can measure the improvement in ‘ over b’ by

M1—l N —l

(2.5) f( 1 —f(h~
1
~)~~—MN ~~~~ —h~

’
~~

2
— —MN ~~~~~~~~m—o n—o

If we always use the basic iterative step h~
:
~ ’~
) 

~~~~~~ then since f is

bounded below and f decreases at each step, we know that f(~~~)) — f(b~~~~ )

converges to zero; by Equation 2.5 this implies that If~~
+l)_ b (~ fj converges to

zero, and herte [Daniel (1971)] the sequence either converges to a unique

point h or it has a continuum of limit points (i.e., an infinite connected set

of limit points), an unlikely occurence.

In [Manry (l976~ , another important interpretation is given for the step from

(1) A (i+½)
h to . The function f in Equation 2.4 should be considered a function

of the M1N1 var iables hen for o~~m~~M1—1 and o~~n~~N1
—l . It can then be shown

that the gradient Vf of f is given by (the M
1
N1 

low—order components of)

(1) ~~(i+½ ) (I)
(2.6) —Vf(~ ) — 2MN (b — 

~~ 
)

Therefore we can interpret the basic iterative step from to as a

- - _______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~ .~ . .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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step of length in the steepest descent direction —Vf (b~
’
~
) for f:

(2.7) 11(i+½) — + ~~~~~~~~ [—v~(~ ’~)J

Since we deduced above that if we let - then 
+1) h~

1
~ fi con-

verges to zero, it follows from Equation 2.6 that Vf (b
UP) converges to zero.

Thus we can analyze the convergence of the basic iterative method.

Proposition.

Let the basic iterative method be used , so that h
(i+

~~ ~~~~~~ Then (h~’~}

either converges to a unique point or has a contlriium of limit points. In either

case, all limits h satisfy Vf(b) 2.

Manry and Aggarval observed that in practice the choice ~~~~~ gave

rather slow convergence; this simply says that -
~~~~~~~ is not a particularly good

ster in the steepest descent direction. They therefore propose letting

(2.8) h
(i+l) 

— h~
1
~ + t (hU~~~ — h

(i))
— — j a  —

where t~ is not necessarily chosen as -
~~

jj Their choice of t
1 

attempts to

accelerate convergence. Specifically, they let c1 minimize !Ih~~ 
— ~~(i—l) +

— h~~~
2
~)] 11

2 
with respect to c, giving a simple formula for c

1
; they

then let t~~~I.l+c~ if this decreases f, but t~ — - otherwise or if i<2.

Numerical experiments show that this choice gives a dramatic improvement, reducing

f to a given value in half the work as for the basic, unaccelerated , method. This

accelerated method, therefore , is the method proposed in (Manry (1976), Manry—

Aggarwal (1976)] ; we call it the Manry—Aggarwal method .

3. improving the step size t________________________________ S

Although the Manry—Aggarwal choice of the step size t~ dramatically improves

convergence as compared with the unaccelerated basic method , further improvement seems

_ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~r~- ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

.*
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(i)possible at little cost. Suppose that we wish to move in a direction from

k
(i) 

to b
(i+l) (i+l) 

= + t~ ~~~~~ at present we have 
~~1) — 

(i)by h — ba

but in the next Section we will use different directions. In the frequenc y domain,

we will then have

= + ~a — 1=

(1) (i) (
where is computed from ~ as U is from ~ 1) namely by Equations

1.1 or 1.4. We will try to choose t~ so as approximately to minimize f , that is,

M-1 N—i (i) j 2
(3.1) g(t) E L E (Akt

_ IH~~ + tPkR, i)
k o  2 o

as a function of t. This function is difficult to handle because of the term

(1)
+ tP~~~ I ; writing this for the momemt as I H+tPI, we derive a simple approx—

~~~~~ 1cm .

We have H+tP I — ~flhi+ti’)(H+tP), where 
— 

denotes complex conjugation .

Therefore H+tP j [l4}I+t(HP +HP)+t
21 1

½ _ E I HI +t ( HP)+ t
2

IP I
2
]

2 =

H I (l+ t(~P+H~)/I Hl
2
+t

2
jPj 2/IHI

2
1~ Since we typically expect the steps and

tP~~
0 to be small , we can approximate the square root (l+x)

½ above by the terms
S

in t through the second power in the power series (1+x)
½
~~l+1/2 x l/8 x

2 + . . .

After some rearrangement , this gives

(PH + PH)
(3.2) IH ÷tp l : IH I +t(~H+ P~)/(2IHI) + t

2[~~~~ 
- 

81H !
3 2].

For each term in Equation 3.1, by substituting Equation 3.2 and rearranging we

therefore have

( A —  H + t P l )
2 

— A2 — 2A IH +t P I + IH+tP I 2

_____ ___________________ _______ 
4

— —--I  - 
~~~~~~~~~~~~ “TWi~~~ ’~ l ~~~~~~~~~~~~~~~~~ 

~~~~~~ ~ — ~~~~~~ —. — ..~~~~ ....
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— A2 - 2AIH+tPJ + 1H 1 2 + t(~H+iiP)+t
2

lP I
2

(A-IHl )
2+t(~14+pii)(l- 1

A~)+t
2 
[(l

_ 
~J
A
f)lPI

2 
+ A

Substituting this approximation in Equation 3.1 gives us a quadratic polynomial

at t, whose minimum is easily found to occur at

= — :~: :~: ~~~~~~~~ + ~~ H~~~~) (l  — _____

(3.3) 
(p(i)~ (i) + 

..(i) (j ) ’~2

1 
AkL ~~k9. kQ. k~~~kL J+ 

2 ’H ~~~ ~
k9.

This expression is indeed formidable, but it really is easy to compute; the work

is small compared to the cost of the two discrete Fourier transforms required at

each iteration. If this choice of t~ does not decrease f, then we instead use

= ~~~~~~~~ . Using this step—size, we require about 75Z of the Iterations necessary

with the Manry—Aggarwal method to reduce the error f to a given amount. We show

no numerical examples here, however, because still better improvements will be made

in the next section.

4. Improving the search direction

As we remarked in Section 2, the direction used in the Manry—Aggarwal method

is simply the steepest descent direction for the function f of Equat ion 2.4.

Steepest descent, however, is no longer widely used by people in numerical opitmization

various conjugate gradient or conjugate direction methods are much more successful .

The so—called variable—metric versions of these methods are unattractive because

they requite storage In proportion to the square of the number (M
1
N
1 

in our case)

_ _ __ _ _  - 1 . - ~~~~~~~ 
--.-——-— ——-—--
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of variables . We therefore opt for the version of conjugate gradients described

in (Fletcher—Reeves (1964), Poijak (1969), Polak—Ribiere (1969)].

In this method , the initial direction ~~~~~~~~~ is the steepest descent direction

_Vf (b
W). Thereafter we take

~~1) — 

~
(b

~
1
~

) + b11p~~
1
~~~

(4.1)

b1 1  = <Vf (h~
1
~

) — Vf( h~
1
~~~), Vf(~~~))/IIVf O~

U_U
)It 2

where (. .)  denotes the usual inner product

M1—1 N1—l

= ~~ ~~~~~~~~
k=o ~~o

Again, this changed direction costs little to compute in comparison with the two

discrete Fourier transforms per iteration .

Thus our final algorithm improving the Manry—Aggarwal method consists of using

the search direction given by Equation 4.1 in conjunction with the step size given

by Equation 3.11; whenever f(b~ +t~~~
1
~ ) is not less than f(~h

U)), we revert

to the basic iterative step and let h
(i+l) ,~h

(i+½) the same as taking a step

= in the steepest descent direction. This method dramat ically improves the

Manry—Aggarwal method , as we show in the next section. Before considering numerical

experiments, we must compare the storage required by the two method s now under con-

sideration. The Manry—Aggarwal requires on the order of 2MN+3M
1N1 

locations

(plus terms of lower order). Because of needs to store previous gradients, et cetera ,

our new method requires on the order nf 4MN +6M1N1 locations. Thus the new method

requires about twice the storage.

______ - 

. ,

~~ ~~~~~~~~~ 
. ~ T 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
..

- . ~~~~~ -~~ ~ ~~~~~~~~

-

~
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5. Some simple numerical experiments

We show here a comparison of the Manry—Aggarwal method against our method on two

problems from (Manry (1976)]. In both cases we take M = N = 3 2  and M1 N1 = 8. Thus

there are 64 unknown coefficients h to determine in an attempt to match 1024inn

amplitudes A.~~. The Manry—Aggarwal method requires about 4500 locations of storage

compared with abou t 9000 for our method .

In all cases we start the algorithm by letting ~~~~ =~~~~~ for o~~k~~M— 1 ,

o < 
~~N—l , we compute ~~~~ from H(1) via Equation 1.2, and finall y we truncate

(o) (— ½ )
to let ~ = . We show the results of 100 iterations on the old method and

as many iterations of the new method as needed until the change in f in one

iteration is less than and Ib(i)  b~’~’~II < 1o~
7

Example 1

The desired amplitude response is a r ing . More p r e c i s e l y,

f 1 if l< O ~ + ~ 4 for o~~k~~3l , o~. ~ 3l

I~ o.2 otherwise

where f kii for o~~k— l 5

(k-32) 
~ for 16 ~ k ~ 31

With h(o) determined as above, initially we have

f(~~
(O)
) = .09575649, IlVf (~~°~)II = 233.

After 100 iterations (200 Fourier transforms) the Manry—Aggarwal algorithm has

reduced f to a value of .024544519 and IIVf II to approximately . ~8. The new

algorithm accomplishes this for f in 52 transforms, at which point f is reduced

to  .024541657 and lI VI D to .48; after 78 transforms we have I = .02454094819 and

- 

.d 
- -
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L.’f 
~ 

= .0095, while 110 transforms yield f .02454094777 and I~ f Ii = .000079.

More data are displayed in Tables 5.1 and 5.2 below. Both methods reduce f to

a reasonable value in a few iterations , but the new method improves the f-values

much better thereafter.

10 x = New method

io
l o = Manry—Aggarwal method

S

0 
0 c o

LO
C

10 
1

—2
10

10 .- .-
~~

----—

10 20 30 40 50 60 70 80 90 100

1/2 number of discrete Fourier transforms

Table 5.1. 
~
f 
~ 

for Example 1.

l0~~ x = New method

-2 
o = Manry—Aggarwa l method

10

024 56
0

0

10~~ 

0

C

I A 6
1-

10 20 30 40 50 60 70 80 90 100

1/2 number of discrete Fourier transforms

Table 5.2 f for Example 2.

______ 
- -- - -

~
--——..-—..‘-

~~
---- —.-————
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Example 2.

The desired amplitude response is a diamond . More precisely,

1 if 0
ki + ~~. 2

o otherwise

where is as in Example 1. With ~(o) determined as above , initiall y we have

f(h~~~ ) = .08179448, II Vf (~~°~) Ii = 257.

After 100 iterat ions (200 Fourier transforms) the Manry—Aggarwa l algorithm has

reduced f to a value of .0186557567 and lIvi to approximately 3.9. The new

algori thm accomplishes this for f in 52 transforms at whi ch poin t f is red uced

to .018574098 and Dvi ii to 14; after 120 transforms we have f .01800420801 and

= .01, while 156 transforms yield f = .01800420785 and II Vf II = .00007. Mort

data are d isplayed in Tables 5.3 and 5.4 below.

210 x = New method

o o Manry—Aggarwa l method
10 * 0

C

100 x

~~ io~~

io
_2

x

*
~ ——~~~~~~~~ - — — -- - -—

10 20 30 40 50 60 70 80 90 MO

1/2 number of discrete Fourier transforms

Table 5.3 IIVf Il for Example 2
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-l x = New method
10

o Manry—Aggarwal method
— 2

10 0
0

C

—4
f— .018 10

10
_ S

io
_ 6

f

10 20 30 40 50 60 70 80 90 100

1/2 number of discrete Fourier transforms

Table 5.4 f f or Example 2
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~ M.T. Manry and J.K. Ag~~~~wal recentl y described an algorithm for
use in the design of mu1~~i—dimensiona1 FiR digital filters by phase
corre ction. As they observe , their method can be viewed as the
steepest descent method for minimizing a certain function f(x):
given an approximate sqiution x~~ a new approximation is ~~~~~~

‘“

where I fl) V~f(x,1~) and is chosen by a simple rule. We

derive here an improved rule for determining t~~~ and an improved
direction ~~ (essentially the Fletcher—Reeves conjugate—gradient
direction). 1

~4he resulting method appears to be two to three times
as fast as the Manry—Aggarwal method; the additional cost is pri-
marily in storage , wh ich roughly doubles. ~~~~~~~~~~~~~~~
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