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IMPROVING THE MANRY-AGGARWAL METHOD FOﬁkaSIGNING
2
MULTI-DIMENSIONAL FIR DIGITAL FILTERS.

by

James W. Daniel*

Abstract

M.T. Manry and J.K. Aggarwal recently described an algorithm for use in the
design of multi-dimensional FIR digital filters by phase correction. As they
observe, their method can be viewed as the steepest descent method for minimizing
a certain function f(x): given an approximate solution X » a new approximation

is x ,,=x +tp where p =-Vf(x ) and t is chosen by a simple rule. We
derive here an improved rule for determining th and an improved direction N

(essentially the Fletcher-Reeves conjugate-gradient direction). The resulting
method appears to be two to three times as fast as the Manry-Aggarwal method; the
additional cost is primarily in storage, which roughly doubles.

Key words: FIR digital filters; filter design; phase correction;
Manry-Aggarwal method.
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1. Introduction

In recent papers [Manry (1976), Manry-Aggarwal (1976)], M.T. Manry and J.K.
Aggarwal have proposed a new technique for the design of multi-dimensional FIR
digital filters. The reader is referred to those papers for references, applica-
tions, and comparisons with other methods; in the interest of brevity, we confine
ourselves here to presenting dramatic improvements in the Manry-Aggarwal method.
For simplicity and clarity, we follow the lead of [Manry (1976), Manry-Aggarwal
(1976)] by presenting our discussion in terms of two-dimensional filters; general-
ization is obvious and straightforward.

*Departments of Mathematics and of Computer Sciences and Center for Numerical
Analysis at The University of Texas at Austin. Research supported in part by the
United States Office of Naval Research under Contract N0O001l4-67-A-0126-0015;
reproduction in whole or in part is permitted for any purposes of the United States
government .
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A two-dimensional FIR digital filter is described by an array h of filter
spatial coefficients hmn for oSmSM-1 and o<n<N-1 for integers M,N.

The filter produces output spatial data 8mn from input spatial data dmn according

to
Hz-:lNl
& " L SR
'mn R hkl m-k,n~%

Corresponding to the spatial coefficient array h is the frequency-domain
array H of coefficients H for 0fm<M-1 and o0SXn<N-1 defined by the

discrete Fourier transform:

M-1 N-1
1.1) B, = Z I k.
m=0 n=0 -
M-1 N-1
(1.2) o= M I L R ke gt
k=0 =0
where
(1.3) U = exp(-2nj/M), V = exp(-2nj/N), j = V-1

The problem addressed by Manry and Aggarwal is the following. It is desired
to design a filter whose spatial coefficients hmn will be zero except for a
small number of specified values of m,n and whose corresponding frequency-domain-
coefficient amplitudes Iﬂkll will assume (or approximate) prescribed values Akz
for 05Sk<M-1 and o0SRS5N-1. For simplicity of presentation it is assumed

that the spatial array h is truncated in the sense that the (possibly) non-zero spatial

coefficients h are for oSmSHl-l, 0SnsN, -1, where M, SM, N, SN;

1 1 1

generalization is obvious and straightforward. In this case, computation of the

frequency-domain array H by Equation 1.1 simplifies to

. T A Y SR 4§ N i o i **m




Ml-l Nl-l
km n
(1.4) Hy = ;20 ng: h U v

2. The Manry-Aggarwal method

Manry and Aggarwal first present a basic iterative step for improving a
(i+1)

spatial array h(i) to an array h which comes closer to having the desired

frequency-domain-coefficient amplitudes Akl' Assuming that h;;) =0 except for

o<m<M-1 and oSt\SNl—l, we compute the corresponding frequency-domain array

ﬂ(i) by Equations 1.1 or 1.4. We then write these frequency-domain coefficients
(1)

Hkl as

(2.1) H.‘(‘t) = IHI(:R")| exp(jeg)) for o Sk <$M-1, o S2EN-1.

1)
Recall that we desire to have [H o | = A, for 0Sk<M-1, o0S%<N-1, for given
Akl' We therefore define a new frequency domain array §(1+%) with the same phase

as for u(i) but with the correct amplitude:

(2.2) D o exp(t0(})).
From n(1+k) we compute the corresponding spatial array §(1+k) via Equation 1.2.

(1Hg)

Since we cannot in general expect h to be truncated, that is to satisfy the

requirement that h:ﬂ) =0 except for oSm< Hl-l and oSnS Nl-l, we must
(1+s) (1+1):

truncate h to obtain h

pOP) e o<miM -1, o0SnSN -1

p(i¥) nn 1 1

(2.3) s

o otherwise
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The basic iterative step then takes h(1+1) 'E(iﬁ)-

It is a simple matter to see that il(iﬂ) comes closer, in a sense, than

j_w(i) to achieving the desired frequency-domain~coefficient amplitudes Akll More

precisely, given any truncated spatial array h, so that hmn-o except possibly

for oSmSMl—l. ofanl—l, we define

Mil Nil ' 2
(2.4) £(h) = (| - AL)
k=0 L=0 U;I Au

where H 1is computed from h via Equations 1.1 or 1.4. Then [Manry (1976)] we
* (1+9) (1)

can measure the improvement in b over t_\ by
Ml-l Nl-l

(2.5) T G WA NP, lh,f,,‘,“” -hlf\:)lz--MN 15+, D)2
m=0 n=0

, then since f is
i+
( 1))

If we always use the basic iterative step 11(“1) = B(iﬂ)

bounded below and f decreases at each step, we know that f(y(i)) - f(l\

I[h(i+1) g }.‘(1) (l

converges to zero; by Equation 2.5 this implies that converges to

zero, and hemce E)aniel (1971)] the sequence {L\u)} either converges to a unique
*

point h or it has a continuum of limit points (i.e., an infinite connected set

of limit points), an unlikely occurence.

In [Hanry (19763 » another important interpretation is given for the step from
(1) F U+
-

L\ to

of the Hl"l variables hun for oSmSMI-l and o<nS Nl-l. It can then be shown

that the gradient Vf of f 1is given by (the M Nl low-order components of)

1

(2.6) weg®) = 2w~ W,

(1) + (1+9)

Thci'cforc we can interpret the basic iterative step from h to h as a

The function f in Equation 2.4 should be considered a function
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step of length 5§§ in the steepest descent direction -Vf(h(i)) for f:

(i+1) _:(i"‘&i) Chan "D(i"'l)_ lsl(1) | con-

Since we deduced above that if we let h

(i))

verges to zero, it follows from Equation 2.6 that Vf(b converges to zero.

Thus we can analyze the convergence of the basic iterative method.

Proposition.

Let the basic iterative method be used, so that h(i+1) = ﬁ(i+%). Then {g(i)}

either converges to a unique point or has a continuum of limit points. 1In either

case, all limits h satisfy Vf(l_;)-o.

Manry and Aggarwal observed that in practice the choice gave

g(1+1) - :(i+%)

rather slow convergence; this simply says that 5%5 is not a particularly good

step in the steepest descent direction. They therefore propose letting

(2.8) 9(1+1) . h(i) + t1(£,(i+*s) . h(i))

1
N Their choice of ti attempts to

minimize !|L.(1) A &l(i—l) %

where t1 is not necessarily chosen as

accelerate convergence. Specifically, they let ¢y
- - 2
c(l.:(1 1) E(i z)ﬂ " with respect to c, giving a simple formula for g’ they

then let t,=1+c if this decreases f, but t = otherwise or if 1< 2.

* ™

i i i 2MN

Numerical experiments show that this choice gives a dramatic improvement, reducing

f to a given value in half the work as for the basic, unaccelerated, method. This
accelerated method, therefore, is the method proposed in [Ham'y (1976) , Manry-

Aggarwal (1976)]; we call it the Manry-Aggarwal method.

3. Improving the step size t,

Although the Manry-Aggarwal choice of the step size ty dramatically improves

convergence as compared with the unaccelerated basic method, further improvement seems




possible at little cost. Suppose that we wish to move in a direction 2(1) from

b(i) to h(i+1) by 9(1*1) -g(i)4-tig(1% at present we have 2(1) =ﬁ(i+k)'- (i).

b

but in the next Section we will use different directions. 1In the frequency domain,

we will then have

MG IO

where g(i) is computed from g(i) as ﬂ(i) is from b(i), namely by Equations

1.1 or 1.4. We will try to choose t so as approximately to minimize f, that is,

i

M-1 N-1
(3.1 s = T I - |nl + D,
k=0 f=0

as a function of t. This function is difficult to handle because of the term

H(i) + tP(i) ; writing this for the momemt as H+tP|, we derive a simple approx-
k? k2

imation.

We have |H+tP| = V (i+tP)(H+tP), where  denotes complex conjugation.
i e s R g 3i:2. %
Therefore |H+tP| = [uu+t(up+np)+tzppl;’ = [|u|“+e@EP+HP) + t°|P|"7]
(1)

[0 [1+ t(ﬁP-+H§)/|H|2+-tzlﬂzlth]% Since we typically expect the steps tp and

b

tP(i) to be small, we can approximate the square root (1+x)“ above by the terms
2
in t through the second power in the power series (1+x);’=1+1/2x- 1/8% *..4

After some rearrangement, this gives

2 = 4 pi 2
z S & B 2| |p PH + PH
(3.2) |+ tP| = |H| +t(PH+PH)/(2|H]) + ¢t JzTil{T - _L;m_i)..

For each term in Equation 3.1, by substituting Equation 3.2 and rearranging we

therefore have

2
(A - |H+tP|)2 = A2-7A|H+tP| + |H+ep|




L[mwuﬂ-ﬂ, o e o

= A2-2A|H+tP| + |u|2 + :(§H+ﬁp)+:219|2

& 2 = - A 2 A 2 gunu)
z (A-|HD +e(PH+PH) (1 - Y+t Q- Y|P|© +aA
Tl Ta] ANE

Substituting this approximation in Equation 3.1 gives us a quadratic polynomial

at t, whose minimum is easily found to occur at

M-1 N-1
Pt W5 | 51, (1) Ay 12,
Yy kz 22 (Prg By * Prg B - —g=)f q2]p 07|
=0 =0 | kQ |
" ((1) (1) , 51 (1))
e D + kg kg Po Mg
" <1>‘ A ZIH“)I3

This expression is indeed formidable, but 1t really i{s easy to compute; the work
is small compared to the cost of the two discrete Fourier transforms required at
each iteration. If this choice of ti does not decrease f, then we instead use

t Using this step-size, we require about 757 of the iterations necessary

3 il
i 2MN
with the Manry-Aggarwal method to reduce the error f to a given amount. We show
no numerical examples here, however, because still better improvements will be made

in the next section.

4. Improving the search direction

As we remarked in Section 2, the direction used in the Manry-Aggarwal method
is simply the steepest descent direction for the function f of Equation 2.4.
Steepest descent, however, is no longer widely used by people in numerical opitmization:
various conjugate gradient or conjugate direction methods are much more successful.
The so-called variable-metric versions of these methods are unattractive because

they require storage in proportion to the square of the number (MINl in our case)

-
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of variables. We therefore opt for the version of conjugate gradients described
in [Fletcher-Reeves (1964), Poljak (1969), Polak-Ribiere (1969)].
In this method, the initial direction 2(1) is the steepest descent direction

-vep‘V).

Thereafter we take

(1) (1-1)
14

=t v, e
(4.1)
by = e@™)y - v, ™) le @) I2

where (.).) denotes the usual inner product

: M;-1 N -1
(X, = L TS MR
. kgo geo KL KL

Again, this changed direction costs little to compute in comparison with the two
discrete Fourier transforms per iteration.

Thus our fipnal algorithm improving the Manry-Aggarwal method consists of using
the search direction given by Equation 4.1 in conjunction with the step size given
by Equation 3.11; whenever f(g(i)4-tig(i)) is not less than fgb(i)), we revert
to the basic iterative step and let b(i+1)=-h(i+&), the same as taking a step
t1 = Eﬁi in the steepest descent direction. This method dramatically improves the
Manry-Aggarwal method, as we show in the next section. Before considering numerical
experiments, we must compare the storage required by the two methods now under con-

sideration. The Manry-Aggarwal requires on the order of 2MN-+3M1N locations

1
(plus terms of lower order). Because of needs to store previous gradients, et cetera,
our new method requires on the order of 4MN-+6M1N1 locations. Thus the new method

requires about twice the storage.




5. Some simple numerical experiments

We show here a comparison of the Manry-Aggarwal method against our method on two
problems from [Manry (1976)]. 1In both cases we take M=N=32 and Ml =N1 =8. Thus
there are 64 unknown coefficients hmn to determine in an attempt to match 1024
amplitudes Akl' The Manry-Aggarwal method requires about 4500 locations of storage

compared with about 9000 for our method.

!
In all cases we start the algorithm by letting Hl(df)ﬁAk2 for oSk SM-1,
b g(—%) from g(-%) via Equation 1.2, and finally we truncate

o N-1, we compute

o |
to let b(o) - ﬁ( 1). We show the results of 100 iterations on the old method and

as many iterations of the new method as needed until the change in f in one

14 (i)"b(i_l)l|5 107,

iteration is less than 10 ' and HQ

Example 1

The desired amplitude response is a ring. More precisely,

2 2
L 5 4 1<0k + BQ

Mg

0.2 otherwise

where kT
s for oSk <15
ek 2 16
SEQ%%i- for 16 <k <31
With E(o) determined as above, initially we have

£p®) = .09575649, [[vEn ()| = 233.

After 100 iterations (200 Fourier transforms) the Manry-Aggarwal algorithm has
reduced f to a value of .024544519 and HVf" to approximately .38. The new
algorithm accomplishes this for f in 52 transforms, at which point f 1is reduced

to .024541657 and ||Vf| to .48; after 78 transforms we have f = .02454094819 and




[ 10
# V€]l = .0095, while 110 transforms yield f = .02454094777 and |Nfll = .000079.
i
| More data are displayed in Tables 5.1 and 5.2 below. Both methods reduce f to
{
i a reasonable value in a few iterations, but the new method improves the f-values
much better thereafter.
?
2 ¥ x
10 T & x = New method
|
1 = -
: 101 . c o Manry-Aggarwal method
(o]
10° 4 3 & é
c >
| £ X e C
| 107! ¢
| = =
vel 2¢O 1
’ 1077}
ii 107 x
l 10 3 e St Py . >~ - —e -+ o
10 20 30 40 50 60 70 80 90 100
1/2 number of discrete Fourier transforms
Table 5.1. |V£| for Example 1.
-1
10 x = New method
-2 : o = Manry-Aggarwal method
i 10
10" ©
f~.02454
) -4
¢ 10 [+]
o
B 5 = c °
4 o C
i 10 g e c e
10-6 X % x
10 20 30 40 50 60 70 80 90 100
1/2 number of discrete Fourier transforms
Table 5.2 f for Example 2.
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Example 2.
The desired amplitude response is a diamond. More precisely,
<
sy 1 4f |6, | + [8,] <2
, o otherwise
where ﬁk is as in Example 1. With g(o) determined as above, initially we have

£(a(®) = 08179448, v ()|l = 257.

After 100 iterations (200 Fourier transforms) the Manry-Aggarwal algorithm has
reduced f to a value of .0186557567 and [ Vf | to approximately 3.9. The new
algorithm accomplishes this for f in 52 transforms at which point f 1is reduced
to .018574098 and || Vf| to 14; after 120 transforms we have f = .01800420801 and
| VEll = .01, while 156 transforms yield f = .01800420785 and | Vf| = .00007. More

data are displayed in Tables 5.3 and 5.4 below.

, ®
10 x = New method

1 ® g = o = Manry-Aggarwal method
10 X g o (o] 0

© ¢
10° 1 X
Ilvell 107t
1072 :
10-3 X
1074 : = ; U2 & =
10 20 30 40 50 60 70 80 90 100

1/2 number of discrete Fourier transforms

Table 5.3 |Vf|| for Example 2
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o 1$ x = New method
o = Manry-Aggarwal method
-2
10 P g = .
x < o o
-3 ° o
10 - » (#] °
~4
10
5 x
10 1
x X x x
-6
10
L * - + +- -
10 20 30 40 50 60 70 80 90 100
1/2 number of discrete Fourier transforms
Table 5.4 f for Example 2
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