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added mass on a vertical surface-piercing cylinder as a function of oscilla-
tion frequency , o’~ cylinder diameter, D, water depth , h , and mode shape.
The parameters, o~h/g and D/h, and the mode shape completely defined the
mondinensionalized wavemaking and added-mass forces. It was found that for
practical purposes the wavemaking force may be assumed to be loca l i zed  in the
near-surface zone and therefore deper.dent on only the parameter  oi/~7j. The
coefficient of added mass , in general , depends on both parameters and the
mode shape . It also varies with elevation , but for practical purposes a
uniform value of one can be used if D/h < 0.01. Damping for a number of
proposed platforms was found neg ligible because the diameters in the near-
surface zone were too small . To a t t a in  d amping of 2 to 4 percent of critical
would require, e.g., diameters greater than 30 feet in a 600-foot water depth
for a platform with a natural period of 4 seconds .

v.... Experirients were conducted to verify the results of potential theory.
Rigid vertical cylinders were oscillated with simple-harmonic motion in calm
water, Total forces and radiated waves were measured . They compared very
well with theoretical values . Other investi gators ’ data also verified the
theory.

A small experimental study was made in an attempt to verify the hydro-
dynamic damping implied by the quasi-steady drag-force interaction term of
the presently used modified !~orison equation to represent the drag force on
an oscillating cylinder in waves. Damping was measured for an elastically
supported circular cylinder in a steady current. The measured values were
up to 4 times lower than the theoretical values. The disagreement appears
to be that the experiments were outside the range for which the quasi-steady
assumption is valid . Coefficients of added mass were also measured and were
found equal to the potential theory value irrespective of the velocity of
the current .
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CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (Si)
UNITS OF MEASUREMENT

U.S. customary units of measurement used in this report can be converted to metric (SI)
units as follows:

Multiply by To obtain

inches 25.4 millimeters

2.54 centimeters

square inches 6.452 square centimeters

cubic inches 16.39 cubic centimeters

feet 30.48 centimeters

0.3048 meters

square feet 0.0929 square meters

cubic feet 0.0283 cubic meters

yards 0.9144 meters

square yards 0.836 square meters

cubic yards 0.7646 cubic meters

miles 1.6093 kilometers

square miles 259.0 hectares

acres 0.4047 hectares

foot .pounds 1.3558 newton meters
‘I

ounces 28.35 grams

pounds 453.6 grams

0.4536 kilograms

ton, long 1.0160 metric tons

ton , short 0.9072 metric tons

degrees (angle) 0. 1745 radians

Fahrenheit degrees 5/9 Celsius degrees or KcI~ ins ’

‘To obtain Celsius (C) temperatu re readings from Fahrenheit (F) readings , use fo rmula: C (5/9) (F — 32).
To obtain Kelvin (K) readings , use forumla: K = (5/9) (F — 32) + 273.15.
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SYMBOLS AND DEFINITIONS

A projected area of hori:ontal cylinder and flanges ;
equation (76)

a cy l inder  radius

coefficient of “added ma-~s”

CD coef f i c ien t  of drag

C1 coeff ic ient  of iner t ia

Cg nondimensional ampli tude of the tot a l force on vert ica l
cylinder  due to a periodic incident  wave ; equation (60)

C.,~, nondimensional amp l i t ud e o f th e total  wa vemaki n g force
for trans lational mcde of oscillation; equation (40)

Cam averaged over the water depth

general ized damp ing coefficient; equation (23)

generalized structural damping coefficient

D cylinder diameter

DMF dynami c magnif icat ion factor;  equation (6 1)

F0

F~ ampli tude of the total wavemaking force for the
trans l ational mode of oscillation

F
~ amplitude of the total viscous force for the

translational mode of oscillation

F
0 steady-state drag force

generalized hydrodynami c force acting on cylinder;
equation (8)

F~ generalized force due to incident wave ; equation (20)

f d is t r ibuted hydrodynamic force acting on vertical
cylinder

~am di stributed “added-mas s” force

dis t r ibuted wavemaking force
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SYMBOLS AND DEFINITIONS--Continued

f g d is t r ibuted force due to incident wave

G function of amh and ~p (y) ; equation (35)

function of kh and ip (y) ; equation (33)

g accelerat ion of gravity

H wave heigh t

~~~~ Fl~~~ Hankel  function of the fi rst k ind  of orde r one and its
fi rs t derivative

~~~~~ F1~
2
~ Hankel  function of the second k i n d  of order one and i ts

f i rs t  derivat ive

h water  dep th

Ini (b ) imag inary part of a complex nuither , b

I~ r’odified Bessel function of the first kind of order one

i in t ege r ;  also the complex number  /-i

J 1, J~ Bessel fun ct ion o f t h e fi rst k ind of orde r one an d i ts
f i rs t der iva t ive

K 1, K~ Modi f ied  Bessel funct ion of the secon d k in d o f order
one and i ts  f i r st der i vat ive

K~ g e n e r a l i z e d  s t r u c t u r a l  s t i f f n e s s

k wave n umber

L wa vele n gt h

lumped s t ruc tura l  mas s at e levat ion  y~ whe re i is
an integer

Mam to ta l  added mass

genera l i zed  t o t a l  mass

generalized structural mass

m in teger

number of ver t ica l  legs suppor t ing  platform

n in teger

9
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SYMBOLS AND DEFINITIONS--Cont inue d

P1, P2 , P3 functions of Bessel functions; defined in Appendi x A

p dynamic pressure acting on cylinder

dynamic  pressure act ing on cy l inder  due to i ts  m o t i o n

dynamic pressure ac t ing  on cy l inde r  due to wavemak ing ;
W equa t ion (36 )

p~ d yn amic pressure  ac t ing  on cy l inde r  due to adde d mass;am equation (37)

Re (b) real part of the complex number b

R
~m 

effective coefficient of added mass for mode-shape

~~y); equation (55)

r radial coordinate; Figure 2

S0 o s c i l l a t i o n  Strouhal number , cnD/2i~U

I period of o s c i l l a t i o n

t time

U velocity of the current at the centerline of the channel
averaged over time

u, hori zontal component of the wave water particle velocity
and acceleration , respectively , at x = o as if the
structure were not present

X , X , X displacemen t , velocity and acceleration , respectively,
of vertical cylinder at the mean water line ; also , the
displacement , velocity, and acceleration , respectively ..
of h o r i z o n t a l  cy l inder

X0 oscillation amp litude at the mean water line for the
vertical cylinder; also , the initial displacement of
the horizontal cylinde r

XOd amp l i t u d e  of dynami c response

ampl i tude of s ta t ic response

x horizon tal coordinate and the displacement of the
vertical cylinder at elevation y with respect to
i t s  mean p o s i t i o n ;  a lso , the argument of the func t ions

~~ 
an d p
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SYt~BOLS AND DEFINITIONS--Continue d

x ve loc i ty  and accelerat i on , r e spec t ive ly ,  at e leva t ion  y ,
of the v e r t i c a l  cy l i nde r

am p l i t u de of radiated wave

Y 1, Y~ Bessel function of the second kind of order one and i ts
fi rst  derivative

y vertical coordinate; Figure 2

y~ ~th e l e v a t i o n

z horizon tal coordinate; Fi gure 2

mth root of the equation a2h/ g  = - a ,~h tan

where  c~~h > 0 and m = 1, 2,

9 angular coordinate; Fi gure 2

v kinematic viscosity

fraction of critical damping

fraction of critical damping due to structural effects

fraction of critical damping due to wavemaking

fraction of critical damping due to viscous effects

p mass density of water

a radian frequency

a n na tu ra l  frequency i n  water

:~ 
natura l  frequency in air

veloci ty  p o t e n t i a l

~ I ’  ~D ’ ~B v e l o c i t y  p o t e n t i a l  due to the incident wave , due to the
diffra cted wave and due to the mot ion of the body ,
respec tively

= + 
~ 

velocity potential due to the i n t e r a c t i o n  of t he
in cident wave with a motionless vertical cylinde r

spat ia l part of 
~B 

equation (26)

~4i (y) mode shape of the vertical cylinder
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HYD RODYNAMIC DAMPING AND “ADDED MASS” FOR FLEXIBLE OFFSHORE PLATFORMS

by
Charle a P e trau .skas

I .  INTRODUCTION

The discovery of oil in water depths up to 1 ,000 feet is one of the
primary factors that has stimulated research on the problem of dynami c
response of fixed offshore platforms . In water depths less than 400 feet
a static design based on the force due to an expected maximum wave during
the lifetime of the platfo rm is usually sufficient to guarantee a stiff
platform whose first-mode frequency is sufficiently high so that dynamic

response due to waves can be neg lected. However , in deeper water eco-
nomical s ta t ic  desi gns w i l l  tend to decrease the first-mode frequencies .
For examp le , Burke and Tigh e (1972) cite first-mode frequencies of 2.6,
1.7, 1.4 , and 1.0 radians per second for proposed plat fo rms in water depths
of 400 , 600 , 800 , and 1,000 f eet , respectively .

Wind-generated waves are a major source of frequency-dependent energy
for the dynamic excitation of these platforms . The energy of these waves
is usual l y specified by a spectral density function (wave spectrum) that
defines its distribution as a function of frequen cy a , and direction , 0.
The one-dimensional (integra ted over 0) spectrum that ias developed by
Pierson and Moskowitz (1964) is commonly used. It is a u n i m o d a l  func t ion ,
defined ei ther in terms of windspeed or the significan t w a v e  hei gh t .  The
ef fec t  of increasing windspeed is to increase the energy level  at the peak
and sh i f t  the peak to lower frequencies . The wave cncr~

y for  f r equ en cies
above the peak has been measured by many invest  i ,at or— Iii h i ps , 19b6)
and postulated by Ph i l l i ps (1958) on the bas is  of d iu i cn sio  ii a n a l y s i s  to
be pr oport ion al to a~~~. These s ame measurements aj~~.-a r  to show tha t  the
factor o f proport ional i ty  is a universal constant . I1o~ ever , t h i s  has bee n
recently disputed b y measurements of Barnet t  ( l ~~’2) tha t  show the factor
to be dependent on fe t ch in such a way th at for  shor t  fe tches  the factor
and consequently the wave energy can be up to it) t i nes  h ighe r .

The combination of decreasing fi rst-mode f requenc ies  and the v a r i a t i on
of wave energy wi th  respect to frequency imp lies that dynamic response
cou ld be a si gn i f ican t f actor in the desi gn of these p la t fo rms  in deep
wate r .

1. Present Rqpresentat ion of f~ydro~ynamic Forces on Flexible Platforms.

To s tudy the e f f ec t  of surface waves on dynamic respons e requires an
equation tha t  def ines  the forces on the members of the p l a t f o r m .  The
presen t ly  used representa t ion  of hydrodynamic  forces on f l e x f l - le p la t fo rms ,

~~~~~ -
~
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as defined by the horizontal force , df(y ,t), on an elenwait , dy ,  of a
vertical structural member whose motion is constrained in the x-y p l ane
(Fig. 1(a)) is given by the following equ a t i o n :

df(y ,t) ~C1 
P —i-— ~i (y,t) _ C am P —i— x (y , t)

+ CD .Ej lu(y,t) - *(y,t) 
~ 
[u(y ,t) - ~ (y,t)] } dy, ( 1)

where

C1 = coefficient of inertia ,

Cam coefficient of “added mass ,”

CD = drag coefficient ,

u , = h o r i z o n t a l  components of the wave water particle
velocity and acceleration at x = 0 as if  t h e
Structure were not present ,

and

= velocity and acceleration of structural member .

The equation as written applies to unidirectional waves traveling in
the x-direct ion that are either periodic or random. I f  random , the equa-
t ion is assumed valid for a realization of the stochastic process defining
the surface waves . For a nonver t ical  member and mult id i rec t iona l  seas the
equation may be used to define the force in the direction of the member ’s
motion , assumed to take  place in the  plane t h a t  is normal to the member ’s
undeflected orientation , provided the componen t of the f lu id’ s motion is
also in the same direction .

The equation is a modification of one that was developed by Morison ,
et al. (1950) for w ave forces on a rigid vertical piling. The modi fica-
tion attempts to take into account the forces due to the velocity and
accele rati on of the s t ruc tu ra l  members . The equa t ion  w i l l  be re ferred
to as the “modif ied  ‘~o rison equat ion . ”

a. Rationale . The firs t two terms of the equation represent the
e f f e c t  of the r e l a t i v e  acce l e r a t i on  between the  s t r u c t u r a l  member and the
fluid. Their appearance as addi tive terms proport ional to ü and ~~~,

respectively , can be exp l ained by use of poten tia l  theory if each differ-
ential clement , dy , of the vertical cylinder is considered moving w i t h
an acce lera t ion  ~ in a two-d imens iona l  u n i f o rm f low f i e ld  hav ing  an
acceleration ~i (F ig .  1 ( h ) ) .  Batchelor (1967) derives the force on an
arbitrary body in an inviscid fluid by selecting an accelerating frame of
reference such that the velocity of t he  f l u i d  in  t h i s  frame of reference
is zero far away from the body. Then the force on the body is found to

14
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i(y , t) 
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i i
( b )

Fi gure 1. Definition sketch for modified
Morisor. force equation .
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consist of two parts .  The f irs t part is an e f f e c t i v e  “buoyancy ” force
due to the pressure gradient needed to accelerate the f lu id .  The second
par t is id en t ica l  to th e “added-mas s” force on a body moving in a s t i l l
f lu id  wi th  an accelerat ion 5~ - ~~ . The net force on the circular cyl inder
in P . gure 1(b) can then be expressed by:

r nD
2

. .. .i
= L~ T u - C P —i-- (x - u) j  dy, (2)

where C~~ = 1. Comparing this result wi th  the firs t two terms of equation
(1) show s that  they are identical provided C 1 = C am + 1.

The effect  ‘-‘f relat ive velocity is represented by the third term of
equation ( I ) ,  defined here as the drag- force interact ion term . Its form
is that of the drag force on a circular cylinder in a steady flow of
viscous fluid at high Reynolds number . At each instant of time the drag
force is assum~~ to be the same as in a steady fl ow of velocity u -

This quasi-steady approach has been used successfully to predict trans-
verse oscillations due to a steady wind of elastically supported prismatic
cylinders for the si tuation where the vortex shedding frequency is much
higher than the natural  frequency of the cylinder (Parkins on and Modi ,
1967; Novak , 1969).

b. Imp lications. The present force equat ion imp l ies tw o ef f ects due
to platform motion . The added-mass force , being proportional to ~~,

implies an increas e in the effective mas s of the plat form and therefore
lowers the modal frequencies . Because of the rate at which wave energy
decay s wi th  increasing frequency , any lowering of the first-mode frequency
provides a l arge increas e in the amount of wave energy that is avai lable
for dynamic excitat ion .

The assumed form of the drag force interact ion tern imp lies the exist-
ence of hydrodynamic damping. This can be clearly seen by imag ining that
the p la t form is excited by random waves such that  on the average k << u
and sgn(u - k) sgn u . Then the fo l lowing  approximation can be made to
the drag-force interact ion term to isolate th e damp ing effect :

CD
.
~ ~~~~~ (u - *) ~~~~~~~ t U~~

U _ C
D ~~ 

(3)

The term C0 p D j u i i  is a posi t ive d amp ing force becaus e being proportional
to u i it alway s opposes the veloci ty  of the p la t fo rm members . Its
proportionality to u i  also implies that  the damp ing increases w i t h
increasing wav e height .

c. i~pp1 ications in the Literature.  The present equation has been used
in a number of thcoietical studies to evaluate the importance of dynamic
response and the hy drodynamic damping imp lied by the drag-for ce interaction
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term (Shubinski , Wilson , and Selna , 1967; Selna and Cho , 1972; Foster,
1970 ; Burk e and Ti ghe , 1972; Malhotra and Penzien , 19 70 ; P cn z ien , Ka ul ,
and Berge , 1972) . The coeff icients  C1 and Cain used by the investi-
gators , usually have corresponded to the two-dimensional values of 2 and
1, respectively. In instances where speci fic values were not cited the
auth ors assumed tha t  Cam = CI - 1. CD ranged from 0.7  to 1.4;  in some
cases specific value s were not given. The most informat ive  studies were
made by the lat ter  three groups of investigators . They show tha t  a
dynamic analysis is important for deepwater f ixed  p la t forms , and th at
the hydrodynani ic damp in g can be si gni f icant .

The equation has also been used to predict  dynamic response of plat-
form models in the laboratory . Nat h and Ilarleman (1969 , 1970) studied
t h e  respons e of ver t ica l  cy linders and m u l t i l e g  p lat forms to incident
periedic and random unidirectional waves. Measured response compared
w e l l  w i t h  the t heo ret i c a l  predic t ions  based on the equat ion wi thou t  the
drag-force interact ion term and C j and Cam equal to 2 and 1, respec-
t i v e l y .  The good comparison was in part for tui tous for the fo l lowing
three reasons : (a) Use of cyl inders  whose diameters were sufficiently
large compared with the wave heights so that inertial forces predomi-
na ted , (b) use of plastic cy linders whose damping was large so that
hydrodynamic damping was masked , and (c) use of structural mass that
was large compared with the added mass so that results were insensitive
to free-surface effects on added mass.

2. Objectives and Score of Research.

In view of the possible importance of dynamic response , research was
undert aken to develop information on added mass and hydrody namic
d amping.

The major  part  of the rescarch was directed tow ard developing quanti-
t a t ive  informat ion  on the ef fects  of the exis tence of a free surface which
causes the coef f ic ien t  of added mass to vary wi th  elevation and permits
the generation of waves by the osc i l la t ion  of s t ruc tura l  members that are
located in the near -sur face  zone. This la t te r effect  acts as a damp ing
mechanism because energy of the generated waves radiates away from the
pla t fo rm . A vertical surface-piercing circular cylinder was chosen as
an idealization of the platform because the vertical members forming the
legs of the platform are usual ly larger in diameter than the hori zontal
and diagonal bracing. Consequently the forces due to wavemaking and
effects of the free surface on the added mass will be most important for
these vertical members . In some cases the p la t fo rm itself may consist of
a s ingle  vertical column .

In Section I I , classical potential theory with lineari zed boundary
condi t ions  is used to derive the  d i f f e r e n t i a l  equation of motion for the
dynamic response of the circular cylinder to incident waves . The mode
shape of the cylinder is assumed known a pr ior i in order that  the response
could be considered from the point of view of a sing le-degree-of- freedom
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system. The waveniaking and added mass forces are derived and studied as
a function of cy l inder  diameter , water  depth , osc i l l a t ion  fre quency , and
mode shape . Energy dissi pation due to wavemaking is examined and its
importance evaluated for fi xed offshore p la t fo rms .

Section I I I  discusses the experimental program to verify the results
of the potential theory . Rigid vertical circular cylinders were oscil-
lated wi th simple-harmonic motion in a translational mode . The resulting
external hydrodynamic forces and the generated waves were measured and
then compared with the theoretical results .

The oscillations were performed in stillwater and consequently the
verification is a limi ted one becaus e a prototyp e structure in nature
oscillates in an incident wave field. However , for the linearized
boundary conditions the velocity potential and consequently the forces
due to the incident  waves are theoretical ly independent of the motion
of the structure. Some experimental evidence of this independence for
models of ship h u l l s  is given by Vugts (1968).

A smal ler part of the research is devoted to an experimental s tudy
aimed at verifying the hydrodynamic damping implied by the drag-force
interaction term in the modified Morison equation (Sec. IV). An elas-
tically supported horizontal cylinder was positioned wi th in  an open
channe l so that its axis was normal to the direction of a steady current .
The motion of a cylinder was constrained so that the oscillations were
in the direction of the current. It was located deep enough so that
the free-surface ef fec ts  were considered unimportant . Dynami c response
to an in i t i a l  disp lacement was measured for a range of current speeds .
The measurements are compared with the damping predicted by the drag-
force interaction term. Added mass was also measured as a function of
current speed . The experiment was designed so that the natural frequency
of the elasticall y mounted cylinder was much hi gher than the highest
frequency of vortex shedding. This was done to avoid any possible feed-
back due to vortex shedding.

Vortex shedding was not studied although it could be an important
mechanism for providing additional excitation energy at the modal fre-
quencies of the plat form. Bidde (1970) and Wiegel and Delmonte (1972)
present laboratory measurements of transverse forces on rigid vertical
circular cylinders subjected to unidirectional periodic waves . They
show transverse forces up to 60 percent of the inline forces. Bidde ’s
results for deepwater waves appear to show that the ratio of transverse
force to inline force depends on the ratio of wave height , H, to
cylinder diameter , D. This dependence on - HID seems reasonable because
Keulegan and Carpenter (1958) show that the initiation of vortex shedding
and the numb er  of vortices shed depends on the excursion of the water
p a r t i c l e  r e l a t i v e  to 0. The frequency of vortex shedding in waves is
not w e l l  k nown. The dat a of these invest i gators show average frequencies
of 2 to 6 times the wave frequency . For large values of (lID , such that
a large number of vortices are shed , an estimate of frequency can be made
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by using the Strouhal number of 0 .25 measured by Roshko (1961) for steady
flow at supercritical Reynolds number. Then for deepwater waves , if the
maximum water particle velocity at the mean water line (~-lWL) is used , the
vortex shedding frequency is approximately 2(IIID) times the wave fre-
quency. In that case vortex shedding may act as a mechanism for trans-
ferring energy from low-frequency waves to the s t ructure  at hi gh frequency.
The level of this energy at the first-mode frequency could be much higher
than that available directly from the surface waves because most of it
would be suppli ed by the larger waves with frequencies centered about the
peak of the wave spectrum. It seems that such a mechanism of energy trans-
fer would be important for unidirectional waves , but it is no t clear if it
could be effect ive  in random multidi rectional seas .

II .  POTENTIAL THEORY MODEL FUR DYNAMIC RESPONSE OF PLATFORMS

Classical potential theory with l inearized boundary conditions is used
to formulate the steady-state dynami c response prob lem for a plat fo rm
idealized by a vertical cylinder. The hydrodynamic forces due to wave-
making and added mass are investigated in detail and used in the equation
of motion to study the importance of wavemaking as a damp ing me ch anism
for idealized and actual platforms.

1. Idealization of Offshore Pla t form.

The p la t fo rm is idealized by a single vertical surface-p iercing
circular cylinder of diameter , 0 , with the deck mass , M 1, con cent rated
at an arbitrary distance , y 1, above the MWL. It is assume d to respond
dynamical ly  predominantly wi th  a mode shap e ~ (y) only in the x-y plane .
i~(y) is defined such that ~(O) = 1.0. The deflection of the platform
is assumed infinitesimal so that the platform behaves as a linear system.
Figure 2 is a definition sketch and presents the coordinate system that
is used.

2. Different ia l  Equation of Motion.

With the ab ove assumptions the dynamic system can be s imp l i f i ed  to an
equivalent sing le-degree-of- freedom linear system wi th  a general ized struc-
tural mass , M~ , generalized structural s t i f fness , K~~. and gen erali z ed
structural damping,  C~ , excited by a generalized force , F * ( t ) .  The
generalized displacement is X(t), the deflection of the cylinder at th~
Mh’IL. The differential equation of motion for X(t) is then given by:

X ( t )  + ~~ X(t) + c
2

X ( t ) = F (t)/M5 , (4 )

where

= /K~ /M~ = radian natural frequency of the system in air , (5)

= C~ /2M~o5 = fraction of critical damping in a i r . (6)

‘9
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Figure 2. Definition sketch and coordinate system.
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The structural damping of the plat form in air is specified in terms
of a single quantity, 

~~~~~
. This representation of damping is common l y

used in the modal method of dynamic response analysis where is
specified for each mode . A more detailed representation of structural
damping is not used or warranted because there is at present no method
for specifying in detail the energy dissipation capabilities of all i~e
members and connections in a structure . The values of used in prac-
tice are based on experience and on the few data that are avai lable from
shaking tes ts of land structures , such as reported by h l oerner  and
Jennings (1969). In this study the specification by 

~ 
is partic-

ular ly convenient because the hydrodynamic damp ing due to wa vemak i n g can
be specified in equivalent terms and thereby comparisons can be made .

The generalized quanti t ies  ~~ and F*(t)  are derived by the app li-
cation of the principle of virtual  displacement , f i rs t  formulated by Jean
Be rnoulli  in 1717. In essence i t  states the fo l lowing :  If  forces acting
on a s tructural  system are in equil ibrium , and i f th e system is sub jec ted
to a vi r tual  displacement compatible with  the geometric arrangement or
kinematic constraints , then the total  vir tual  work done is zero . App li-
cation of this principle to the dynamic system of Figure 2 y ields the
following :

yl

= $ m (y ) ~
2 (y)dy -i- M . ( 7 )

-h I

where

m~(y) = distributed structural mass per unit length ,

¼ l1~ = concentrated mass at elevation y i ,

and

*F (t) = J f(y,t) ~t(y) dy , (8)

—h

wher e

f (y ,t) = dis t r ibuted hydrodyn amic force per uni t  length .

F*( t )  is the generalized hydr od ynamic for ce ac t ing  on an osc i l la t ing
cylinder in the presence of surface waves . The wa te r  is assumed inviscid
so that f(y , t) is der ivable  from a veloci ty po ten t ia l  ~(r,e ,y,t). With
the further  assumption of l inearized theory , f (y , t)  can be calcu lated
by in tegra t ing the pressure , p ( r ,O ,y , t ) ,  corresponding to ~~~, around

2~
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the circumference of the cylinder at i ts mean position , r a. The
fol lowing equation res ults :

f( y , t) = —a p(a , 6 ,y,t) cos~ d B .  (9)

The relationship between p and ~ according to linear theory is given
by:

p = P-~~~/~t — p g y .  (10)

This relationship is derived by integrat ing the Euler equations of motion ,
yielding Bernoul l i ’ s Law , and then neglect ing the higher order terms that
are due to convective acceleration . Then,

0 2n

F*(t) = 
~~ ~ ~~~~

“
~~~

1 r a  ~,(y) cosededy . (11)

Consistent with linear theory , the integration with respect to y extends
only to the MWL , and consequently the hydrostatic pressure in equation
(10) has no net effect .

According to linear theory (Wehausen and Laitone , 1960) ~ can be
represented as the sum of three veloci ty potentials :

(12)

where is the potential of the incident waves , 1D is the potent i al
of the diffracted waves, and 

~B 
is the potential due to the motion of

the cylinder. The physical interpretation is that + 
~D ~~ 

is the
velocity potential due to the interact ion of the incoming wave wi th  a
motionless vert ical  cylinder and 

~B is the vel ocity po ten t ia l  due to
the motion of the cylinder in a disturb an ce-free f lu id .  Substi tut ion of
equation (12) into equation (11) then yields :

0 21t

F* (t) j J ap
~

(
~B +~G)/~t l . .. $(y) c o s e de d y . (13)

For the steady-state case of simple-harmonic motion defined by:

X(t )  = X 0ae~~~~, (14)
where

X0 
= amplitude of the cylinder oscillation at y = 0,

= radian frequency of oscillation ,

22
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the dynamic pressure , 
~B’ 

due to the motion of the cylinder can be
decom p osed in to  two parts that are proportional to X~t) and X(t),
respec tive ly ,  as fol lows :

= _ P ~~~/~t~~~~~~ q ( a ,e ,y) e 1
~~

= q 1 (a , e , y )  X ( t )  + q 2 (a , 9 ,y )  X ( t ) ,  (15)

where  q0 is complex but q~ and q2 a re real . Then the generalized
force becomes :

0 2~
F* (t) = 

—h 
S a[P~~0

/&t~

-q 1x ( t )  - q 2 x ( t ) )  cosG ‘~(y) d O d y ,  ( 16)

where

- S a q 1 cos 8~~( t ) d O  , (17)

is the distributed wavemaking force, f~ (y,t) , per unit length of the
cylinder . It is an energy dissipation term because it opposes the
cylinder velocity. The term :

2n

— S a q
2 

cos9x (t) d - , (18)

is the d is t r ibu ted  added-mass force , f~~~(y, t ) ,  per uni t  length of the
cy l inde r.  I t  has the same e f fec t  as the  i n e r t i a l  force due to s t r u c t u r a l
mas s .

Incorp ora t ing  equation (16) in to  the equation of motion yields :

X ( t ) +2 o [~~~M”/(1~ ’ +M 4 ) 
~
- 

~
) X ( t )

2 * *+ ~ X ( t )  = F ( t ) / ( M  + M  ) , ( 19)(I S am

23 

-



— ~~~~~~~~~~~~~~~~~~~~~~~~ ——--5--.

-5-.,- - - -

where

F~ (t) = generalized force due to the diffraction of the
incident wave on a motionless cylinder

0 2rr

= a f 5 ~~~~~~~~ 1 r a  cos8 ~(y) dOdy , (20)

= generalized added mass

O 2 ~~
= J j ’ a q 2 cos e ‘~(y)dGd y , (21)

= r adia i , n a tu ra l  frequency in water
- 1 

* * *= 4 K ,‘~M + M ( 2 )

= general ized w:vemaking damping coefficient

0 2rr

= $ 5 a q1cos 8 ~(y) ded y , (23)

c = fraction of critical damping due to wavemaking

+ M:m . (24)
- 5’

3. [l y drody na mic Fo r ces Due to ~1oti.on .

• Th e h ydrod ynainic forces on the cylinder due to its motion are
der ivab le  from the ve loc i ty  p o t en t i a l  ~ and in l inea r  theory are
independent of the forces due to the incident waves . In this section

~B is derived and a theoretical investi gation is macic of the wavemaking
and added-mass forces.

a. l)erivation of Veloci ty Potential. B is derived for the steady-
state simp le-harmonic motion of a vertical cy linder in an incompressible
inv isc id  f l u id  of constan t depth , h , and of infinite radial extent .
The mot i on of the cylinder is specified by its velocity

k(y , t) = XQo1p (y)e~~
t

Figure 2 is the defi n ition sketch.
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The der ivat i on of 
~B is s im i l a r  to that for a f lap-type wave maker

in finite depth for which the velocity potential was der ived by liavelock
(1929) and r eder ived an d i ts  mathe mat ical  asp ects discussed by B iesel and
Suquet ( 1 9 5 2) .  I n both instances separation of variables is used to sol ve
th e Laplace equation with l inear i zed boundary condit ions . The main differ-
ence is that is here three-dimensional and requires a solution in
cylindrical coordinates , (r,O ,y), whereas the flap-type wavemaker prob-
lem is two-dimensional . This d i f f e ren ce is import an t because it results
in a ve r t i ca l  var ia t ion  of added mas s that  is very d i f fe ren t  from tha t  of
the two—dimensional problem .

I t  is a l so  s i m i l a r  to the  de r iva t ion  of the d i f f r a c t ed  pote n t ia l  for
the case of a ve r t i c a l  cylinder in an inc ident  wave f i e ld  as solved for
finitc depth by ~1a cC amy and Fuch s (1954) . Here the  d i f f e r ence  is in the
bou ndary condi t ion  on the su r face  of the ~-yl in der . For the diffracted
po ten t i a l  the veloci ty  on the boundary in the radial direction must be
such tha t  no f low crosses the b oundary . The solution results in out-
w ardly radiating waves . But fo r 

~B the bo undary condition is speci f ied
by the  mot ion  o f the  cy li nder.  This results not onl y in radiated waves
but also in a nonprogressive disturb ance that is maximum at the cy l inder
and decays expone n t i a l ly with distance . This latter disturbance contri-
bute s to the added mass .

The pote n t ia l  fo r the cas e of a c i r cu l a r  cylinder in i n f i n i t e  water
de pth has been derived by h lave lock ( l92~fl .  Al though h i s  sol ution could
have been used for obtai n in g th e w ave m aki n g forces in deep wate r , the
added- mas s forces required a f in i te-dep th  so lu t ion .  Consequentl y all
derived forces are based on the following solut ion in finite depth .

( 1) Pa r t i a l  Di f fe rent ia l  Equation and Boundary Conditions.
must s a t i s fy  the L ap lace equati on in cy li nd ri cal coordi nates , that  i s ,

= = 
~~

_

~~~~~

- ± -

~~~~~~ 
+ 

~~ 
.
~~~

) 9
B 

(23~

in the reg ion a � r < ~~
; —h � y � 0; and 0 � G ~

. 2yi .

F Because i s sought  for s teady-s ta te  si mple—harmonic  motion the
time factor can be separated out , yielding :

= 
~B~~~

e,Y)e , (2 6)

where 
~ B 

also must  sa t i s f y Lap l ace ’ s equat ion , the fo l l owi ng l in ea r i :ed
bo undary con di  t ions ,
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(a) ~~~ - —- 1 çi8 = 0  on y O .

(b) ~ z~
B = O  on y — h ,

cy

~QB
(c )  -

~~~~~

- = 
~ ‘, (y)  cos 8 or r =

and t h e  ra d ii it  ion cond i ti on tha t :

lim r 2 (~~~~/~~ + ik~~~) = 0
r-4

wh e r e  k is the  wave  number. The radiation condition guarantees that
t he so lu ti on for 

~B 
i s unicjue and implies that the generated wave is

outgoing and its a m p l i t u d e  dieca ys as r ’
~ (W ehau sr i i  , 1~

)T’l

(2 Eleii entarv Solutions . Usin g the standard separation—of—
variabl es techni que , the elenentary  so lu t ions  for 

~ B that satisfy the

i-: condi t ons are as follows

(a) cosh k(y+h){A
0
H~~~ (kr) + B

0
FI~
2
~~(kr)) cose ,

(h) cos~~~(y4h){A I
1
(~~ r) + B K

1
(~~r)] cosG, (2~ )

wher e  kh and a~~ satisfy the t’ol 1o~ ing transcenden tal equations :

0
2
h/g kh tanh kh , (28)

c7 h/g - cy h tan ~ hm
for

ah  > 0 and ni = 1 ,2,. ..,~~~. (29 )m

The fi rst equation is the classical re lationshi p be tween wavelength
and frequency that is den vah ~e fron t h i’ free— surface condit ion for small
amp i i t o d o  plane surface waves . In thi s case i t  is s imp ly a funct i onal
relationshi p - i a  - n  o 2h/g and ku and has the cI ass ical meaning onl y
for  t I l ( -  r ad ia ted  waves f :i r f rom t h e  cv u nder .  The second c- p i at  ion  has no
s i m p l e  ph ys i cal in t e r p r e t  at ion . The s o l u t i  ons can be i n t e rp r e t e d
geometr i  cal  l y us show n in  1 I gui- v 3.
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Fi gu re 3. Geometr ical  in te rpre ta t ion  for the roots of
= -a~ h tan

• ~J~~~) and ii~
2) are the  Uanke l  funct ions  of the  f i rs t and second k i n d

of order  one. T h e i r  asymptot ic  behavior , as represen ted  by the f i r s t  term
of their asymptot ic expansions (l)wight , 1961) , are :

(k r) = (2/i~k r)~e
’ (nr—31T/4) ,

H~
2
~ (kr)  = (2/~ kr )~e~~ 

(kr—3~ /4)

I f  the y are m u l t i p l i e d  by the t im e factor , ~~~~~ the  products repre-
sent an incoming and an ou tgoing wave , respectively , with an amplitude
that decays like r ~~~. 

-

I~ and K 1 are the modified Bessel functions of the fi rst and second
k i n d , r espec t i v e ly , of f i r s t  order.  The first terms of their a s y l n p t o t i  c
se ries (lX~i ght , 106 1) are :
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Q 1~
I, (c~ r) = e /(21T o~ r) 2

m m

—~ ‘r
K (c~ r) = e (~ /2~ r) 2 .1 m

These funct ions are analogous to the exponential functions t h at  result
f rom the so lu t ion  of the f lap- typ e wavenaker . They represent a non-
progressive disturb ance tha t  decays r ap idl y w i t h the r ad i a l  d i s t a n c e .

(3) Expansion of Boundary Condition on Surfac~ of Cylinde r in
Terms of Elementary  Functions . 

~ B is a l i n e a r  c o m b i n a t i o n of the  d c -
men ta ry so lu t ions , ”but to satisfy the radiation condition the coeffi-
c ien t s  Am : m = 0 , 1, 2 , . . .  ,~~~ mus t be id e n t i c a l l y  :ero . C o n s e q u e n t l y ,

~ B 
B
0
H~
2
~ (kr ) cosh k (y+h ) cos~

+ “ B K (o~ r) cos o’ (h+y ) cose . (30)L m l  m m
m 1

The c o n s t a n t s  B : m = 0 , 1, 2 , . . .  , are de te rmined  from boundary con d i t i o n(c) for the normal  v e l o c i t y  on the su r face  of the c y l i n d e r .  ~u l i s t i t u t i o nof into the boundary condition yields :

X0~~~(y) B0kI1~
2
~ (ka)cosh k(y+h)

+ 

m l  

B (~~~a) cos 
~ 

(y+h) .  (31)

The fu n c t i o n s  in  equatio n (31) form a complete orthogonal set ove r the
i n t e r v a l -h v 0 and t h e r e f o r e  the coefficien ts are given by:

A A

B0 
= 

kH~~~(ka )~~~ 
~‘(y)co h k(y-h) dy , j ’ co:h2k ( y + h ) d y )

Bm 
= — — ( ~(y)coso (h—y)dy/ cos

k K  (~~~a)I m -ii -h
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Then

i~~t (2) (j ’ ) ‘
= c~n8(r , e ,y ) e  = X 0 th [G0 (kh) cosh k ( y ~ h )  H1 (k r ) , ’H 1 (ka)

V i-’t+ 
L 

G m C05
~ m (h1

~~~ K 1~~~~~~~~~~~~~~ ) ]  cos~ e , ( 32)

m 1
where

(2~~~) ~ (y) cosh k(y±h) dy

0 (kh) = 
—h (3~

•
0 sinh kh cosh ~~ + kh

(2/h ) $ ~~y) cos~~~(h+y)dy
G(a’ h) - 

—h (34)m sin 0’ h cos~ ii + ~~ hm in m

(-I ) Dynamic Pressures Due to i~avemaking, p~~, and Added M ass ,

p~ . To ob ta in  Pn and PD , t he  func t ions q and q mus t he
~am W am I

related to ‘PB. Becaus e ‘PB is a complex number i t  ca n be w r i t t e n  as
Re ( ’P B ) + ilm(’PB) . Then :

~B B r = a ~~~~~~ 
iRe (pB

)_ I rn
~~

pB)]I r
_
a e~~~ 

. (35)

E quati ng th is  w i t h  equation (15) , where = X0oe~~
t , yields :

and 

= ( P /X 0 ) 1 m ( ~ 8
) 

‘r=a

- ( P/ X C) Re (~~~) t r=a~

Tak ing  t h e  real  and imag i n a r y  p a r t s  of ‘PB y i e l d s  the fol  l owing  r e s u l t s
for  th e  d y n a m i c  p r e s s u r e s :

= P~~i G 0 (k h)  P1(ka) cosh k (y +h) cos9 x ( t ) ,  (36)

wlie re

P1(ka) = 2 / [~T k a [ J f ( k a ) 2 
+ Y~~(ka)

2J )
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and

= ph [G
0
(kh)P

2(ka) coshk (y+h)

+ G(~~h) P
3(~~

a) cos~~ (h+y)] cas e X(t), (3 7)

where
P,(ka) = — !J 1(ka) J~~(ka)

+ Y,(ka) Y1
’(ka)) /(J~ (ka)

2
-’- Y (ka ~~ i

P3 (0’a) —K 1
(~~a)/K~ (~~a). (38)

J 1 and Y 1 are Bessel functions of the firs t and second kind ,
respective ly , of the first order. Behavior of the functions P1, P2, and
P3 is discussed in Appendix A.

b. WavemakinE Forces. The distributed wavemaking force , fw(Y,t),
as de fined by equa tion (17) is given by:

f
~~
(y,t) — Pvra~ ’tG0(kh) P1 (ka) cosh k(y-th) X (t). (39)

is maximu m at t h e  MIVL and decays with respect to y l ike  the
velocity potential of a small amplitude free-surface wave . In non-
dimensional  form , it is a funct ion  of two independent parameters , kh and
ka and the mode shape ~(y). Because k is related to the oscillation
frequency o by equation (28) the wavemaking forces and consequently the
damping due to wavemaking are frequency-dependent.

5’ (1) Total iVaveinaking Force for Trans l ation Mode, np~y) = 1. To
gain a better understanding of the wavemaking force , the theoretical
result for total force was studied for the case of trans lational oscilla-
tion t h at would occur , e .g. , i f  a ri g id cy l i ndr i ca l  s t ruc tu re  were exci ted
by simp le-har monic ground mot ion . Th is  t h e o r e t i c a l  resul t , in terms of

• the nondimensiona l  amp l i t u de i
~ 

of the t o t a l  force , F~ , de fined as the
co e f f i c i ent of the wavemaking force is:

C = F /Pg~a
2X0 

= (c2h/g~ si nhkh c30(kh) P1(ka)/ka , (40)

where for n J i (y)  = 1,

0 (kh) 2 sinh kh ( - I i )
0 kh (si  r ib !~h coshkh kh)

~t is derived by integrating the amplitude of fw (y ,t) over the water
depth .
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is solely due to wave generation. This can be shown by considering
the li m i t i n g  case where kh - ‘- 0. For smal l  values of kh , such that
h/L < 1/25 , use of the shallow water approximations (sinh kh kh and
cosh 1.0) yields the result:

C ~ (kh)
2 
P1(ka)/ka ; (42)

then

lim C 0,

kh-tO.

This result is expected becaus e when kh is zero , so is a2h/g, and
therefore the free-surface boundary condi t ion for the veloci ty  potent ia l
implies that the ver t ical  veloci ty  is zero . The free surface is in effect
a lid so that the flow f ie ld  is the s ame as for the two-d imens iona l  case
of a cy l i nde r  osc i l l a t i n g  in an i n f i n i t e  mot ionless  f lu id  for which the
part  of the  force tha t  is p roport ional  to ve loc i ty  is zero .

If kh > 0, then the free-surface condition permits the existence
of waves , resul ting  in a force that opposes the velocity and consequently
net work is done on the f l u id  over each cycle of osc i l l a t ion .

For the case of deep water , for prac t ica l  purposes defined by
h / L  > l / 2 ( k h  > ii ) ,  the wave maki n g force depends on onl y one parameter ,
F0 = oV ~7~~~ T h i s  ca n be show n by usi n g the deepwater approximations
(o 2hlg kh , ka 0 2 a/g and cash kh si nh kh e~~ /2)  in equation (40) ,
wh ich yield:

~ 
4P (Fb/2)/F5 . (45)

The dependence on one paramet er  is expected because for kh > -in the
radia ted waves are not i n f l u e n c e d  by t he  bo t to m. Then the  wavemaking
forces do not depend on the w a t e r  depth . As kh increases , the ex ten t
of th e zo ne over w h i c h  f1~. is si gnificant decreases , so tha t  for practi-
cal purp oses the  radiated w a v e  energy is characterized by the motion at
the  UWL and does not depend on the exact mode shape . This simplifies
tb-ic estimation of damp ing for offshore platforms because the wavemaking
force can then be assumed to j e t  at the .‘fl~L as a point force having amamp l i t ude  d e t e rm i n ed b y e q u a t i o n (43). However , the estimate is always
on the  h i gh s ide .  The magn i tude of the error is determined as a function
of kh and 

~
(y) in the next section .

As stated previous l y, the wavemaking force is frequency-dependent.
This  dependence is i l l u s tr a t ed  in Fi gure 1 showing C~ plotted versus F

0
.

The shape of the curve i mp l i e s  that the  damp i n g  due to wavemaking could
be im por tan t  o n h v  for  a s m a l l  range of 1’~ va lues , so that for a given
d i a me te r , energy ca n be effectivel y d i s s i pated th ro ug h a s m a l l  range of
frequenc I es.
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MEASURED DATA

D ,ft h ,fi 0/h
o 0.50 1.00 0.502.0 — o o.so 0.83 0.60 -

• 0.50 0.67 0.75
• 0.75 1 .00 0.75
A 0.75 0.83 0.90
O 0.75 0.67 1.12

1.5 — X 0~~0.025fi —

w

1.0 — -

o~~~

a’
0.5 —

0 1
0 0.5 1.0 1 .5 2.0 2.5

5’

Fi gure 4. Coeff ic ient  of the wave inaking force for a2h/g  > it

(data from force measurements).

(2) E f f e c t  of Mode S.~~~~~ Firs t the mode shape a f f e c t s  th e
d i s t r i b u t e d  wav em aking  fo rce and secondly enters into the c a l c u l a t i o n

• of the generalized wavemaking damping coefficient , C~ . as defined by
equation (23).

In the firs t case , the effect of the mode shape is included in the
function G0 ( k h ) ,  to wh ich 

~~ 
is proportional. Assuming first-mode

• shapes to be contained within the class of shapes defined by (Fi g. 5 ) :

$(y) = 1 — 

~~~~ (44)
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where 0 < q (y)  < 1 such that q ( 0 )  = 0 and q( -h)  = 1 y ields the result
that :

= 
2sinh kh

G0 
(kh) kh (sinh kh cosh kh + kh)

[i 
~~~~~ kh S 

q (y) coshk (y +h)dy]. (45)

If q(y) is equal to zero for all y, G0(kh) corresponds to the trans-
lation mode. Otherwise the second term within the brackets is positive ,
so that the effect of q ( y )  is to reduce 

~w 
for the translation mode

by a fac tor  that  depends on kh and the shape of q (y ) .

y

(~
/(y)=%-q (y)

h

/ / // / / // // // // / / / /
Fi gure 5. First-mode shapes .

Assuming q(y) can be expanded in a Taylor series abou t  y = 0 ,

q(y) = q ( 0 )  + q ’(O)y +... + q~~~~(O ) v ~~’n

The major  contr ibut ion to the  in tegra l in the above e q u a t i o n  w i l l  come
from the second term of the expans ion which is the  slope of q ( y )  at
y = 0. S u b s t i t u t i o n  of the second term y ields ti-ic followin g result for
deep wa te r :

—kh
00 (kh) [i - 

q 1 (O)h T 
(46)
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A reasonable first-mode shape is given by:

IT y
$(y) = 1 — cog (1 + ~ ) , (47)

which corresponds approximately to the first mode for a cantilever column
having a constant cross section and mass per unit length . Then q ’ (O) =

r/2h and the error made in using the t rans la t ion  mode is a p p r o x i m a t e l y
(in/2kh). 100 percent .

In the cas e where C~ is calcula ted , ~( y )  acts as wei ght fu n c t i on
for the ampli tude of 

~~ 
Because f 1~ is dis tr i b u ted n%~i t h  depth l ike

cosh k ( y +

C (i - 

sinh kh 5 

q~~) cosh k ( y +h)dy ~ (48)

and therefore the resul t  for the translation mode w i l l  represent an upper
bound for ~~~ The erro r made in using C~ b ased on the translation
mode w ill be tw ice  that for 

~~
In most practical situations the error w ill be small. For example ,

the platforms analyzed by Burk e and Ti ghe (1972 ) yield values for o~ h/g
(or equi valentl y kh) ranging from 32 to 84. The corresponding errors
range from 9. 8 t o 3. 7 percent .  There fore , for p rac t ica l  purposes C~
can be considered independent of ~(y) . Then the deepwater results for

as p lotted in Fi gure 4 can he used because

= C,, c~~ T a
2
/0  . (49)

c. Added-Mass Forces. The distributed added-mass force , farn lv ,t i ,
as de fin ed by equation (18), is given by:

= — P v n ah[G0 (kh) P2 (ka) cosh k ( y  +h )

+ 

m~~1 
0 

~
0’m~~ 

P
3
(~~ a) cos~~~(h+y )~~ X(t). (50)

It consis ts of two components. The f i r s t var ies  with depth in t in e  s ioe
way as the d i s t r i b u t e d  w ave mak ing  fo r e-c so that in deep w a t e r  i t  is con-
cen t ra ted  in the near-surface zone ; i t  w i l l  be refe rred to as a “ l o c a l ”
force. The second component is  defi ned b y an i n f i n i t e  ser ies  and acts
at a l l  e l eva t i ons  even for deep w a t e r ;  i t  w i l l  be re ferred to as an
“overal l”  force .

I n non di men sio n al form , 
~am i s comp le te lv defined by two parameters ,

ka and kh , an d the  mode sha pe ~(y )  . This can  be clea r l y  seen for the
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local force although it is not so obvious for the overall force, which is
defined in terms of cn~h and ama. But because ama amh ( k a ) / ( k h )  and
the set {c i :  ni = 1 ,2,.. • x }  are determined uni que ly by o2h/ g , which is
itself determined by kh , the same two parameters completel y de fine the
overall force. For plotting theoretical results , the al ternate parame ters ,
a2h/ g  and D/h , we re used becaus e they ar e re la ted  d i rectl y t o the char-
acteris tics of the dynami c sys tem , whereas kh and ka require the
calcula t ion of k for a given o and h .

The added-mass force per unit length over a width -nr a for the two-
dimensional flap-type wavemaker is given by

lim 
~anka-+co

for which P 2 (ka)  = 0 and P 3(a~ a) = 1.0 (App . A ) .  In this case the local
component no longer exists. This results in an added mass dis t r ib ut ion
that is very di fferent  from that for the c i rcular  cy li nder .

(1) Added-Mass Forces for Translation Mode, 4(y) = 1. The added-
mass forces for the translation mode are as simple to obtain as the wave -
making forces and provide a better understanding of their nature . Calcu-
lations are presented showing the variation of added mass with respect to
elevation and i ts dependence on the parameters 02h/g and D/h .

(a) Distributed Coefficient of Added Mass, C~~(y). The
variation of added mass with respect to elevation is specified by C~~ (y)
defined as fo l lows :

ar in p i f  (y , t ) ]
C (Y) = 

2 
am 

(51)
pi

~ 
n~mp [x (y ,tfl

where the term “amp(z)” means ampli tude of the quantity z which is
assumed to be sinple harmonic in time . ~(y,t) is the acce le ra t ion  of
the cylinder at elevation y and therefore amp[x(y,t)] = np (y)X0o

2.
For 4(y) = 1,

C (y) (kh)P (k-n ) coshk(y-1-h )

G (0’ h)p3 (0’ a)cos~ (h-n-y)1 , (52)

where G
0(kh) is defined by equation (41) and
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2 sin a’ h
ç.(a’ h) = - 

m (53)
a ’h ( s u - ia’~ -i cos a ’ h + o ’ h)m m m m

Ca~ (y) was evaluated by computer for a series of c’2h/ g  val ues and for
D/h = 0.50 and 0. 10 and are p lotted in Figures 6 and 7 . The overall com-
ponent was based on 30 terms , each of which required an iterative solution
for amh.

Certain trends can be noted from the plotted results . As o2h/g
becomes small , Cam approaches a constant value of one . The explana-
tion is identical to that for the wavemaking forces . For o2h/ g  = 0 ,
the boundary condition on t h e f r ee su r face inplies the existence of an
impermeable lid . Consequently, the flow field is identical to the two-
dimensional case of a circular cylinder accelerating in a fluid of
infinite extent for which the coefficient of added mass is one.

At t h e othe r extreme when e2h/g becomes very large the local com-
ponent goes to zero and amji , as can be inferred from Figure 3,
approaches mir/2 where m = 1,3,5,... ,~~~~. Therefore ,

u r n  C
am 
(y) = - .  -

~~ ~ sin cos 
~~ 

+ i’) ,  (54)

cT2h/g -+cx~ 
IT m=1 ,3,5 m

and consequently C~~(y) for larger ~
2h/g can be considered dependent

only on a/h . The function P3 is monotonica liy increasing and is always
less than one. For large a/h , P 3 will be close to one so that the terms
of the series decrease approximatel y as m 2’, making ti-ic fi rst term donni-
nant. In that case Cam(y) will vary approximatel y as cos ir/2 (l + v/h).
The resul t  for o2h / g  = 50 and D/li = 0. 50 in Fi gu re 6 i l l u s t r a t e s  th is
case. However , o2h/g is apparently not large enough becaus e in the
limit Cam at y = 0 should be zero , whereas a negative value results .
(Negative added-mass values have also been derived by Ogilvie (1963) for
a submerged hori~ onta1 circular cylinde r oscillati ng with simp le-harmonic
motion in the horizontal direction , lie used linear theory and found nega-
tive values for some cases of low submergence.) As a/h becomes sma l l ,
Cam approaches a constant value of one. This can be seen by considering
the case of a/h 0 in which

mn ap
3 ~~ -~~

_ 
~~

and therefore ,

u r n  C (Y) V s i n ( r n~~ , °2)

c h/g-.~ , a/h-.O m 1 ,3 ,5
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The series converges to th e va lue  71/4 (Dw i ght , 1961) and consequen t l y ,
C~~(y) = 1.0 except at the M1,cL where it is zero . The tendency toward
uniformity can be seen in Fi gure 7 for o 2h/g  = 50 and D/h = 0.10. In
fact , it can be shown theoreticail~ that for all o2h/g~C~~ approaches
the value one as a/h becomes s m a l l .  This tendency can be seen by com-
paring the  resul ts  for D/h = O .~ w i t h  thos e for D/h = 0. 1  -d ie re  C am
is approximately one for a r- ucli larger part of the water depth .

The limiting case of o2h/g -
~~ ca n also be der ived  by so lv ing  for

t~ie velocity potential function w i t h  its value equal to :ero i t  = 0.
This boundary condi t ion resul t s  when c h / g  -

~ for t h e  f ree-surface
boundary condi tion . This approach has been used by other investi gators
wi th t h e  intent of applying the results to earth quake-excit ation proh1e~cs -

The boundary condi tion , being  homogene c-as in tine , implies that the added
mass is aot t ine-dependent  and consequent lv ~~~~~- - aided-mas s forces are
di rect ly  propor t iona l  to any time f i in ~ t i o n representing the  base accel-
era t io n. Jacobsen ( l b 4 P )  s tudied the added mass b y this approach for
fl uid ou t s ide  an d inside ri gid ci r cu la r  tanks , lie found that the dis-
tribution of added mass with respect to elevation for the inside fluid
is similar to that outside except that it approaches u n i f o r m i t y  more
quickly with decreasing a/h . Garrison and B e r k l i t e  (1973) s tudied it
for fluid outside arbitraril y shaped bodies using a numerical procedure
based on the distribution of singularities on the bodies ’ surface . He
included the circular cy linde r as ~ special case for comparison with
anal y tical resul ts based on eq uat ion (54). Chopra ( 1967 , 1968 , 1970)
studied i t  for vertic al-wall dams excited by earth quake-produced ground
mo t ion.

At the MV~L, Cam ranges from values go-eater ti-ian one (up to 1.5 for
the plottc - -~ results) all the way to negative values . This variation is
due to the combined effects of the local and overall components. For
small values of c2h / g  the local component dominates . In f a c t , for
o2h/ g  -

~ 0 it can be seen from Fi gure 3 that a~h ma so that
G(a ~ i) -

~ 0 becaus e s in  amh -- 0 .  Consequent lv , ti-ic overall component
con t r ibu te s  l i t t l e .  As a 2h / g  i n c re a s e s , t h e  local  component becomes

- ‘ concent ra ted  near t i - i t  surface , but the  o v e r a l l  coi-lponeot at y = 0
provides a negat ive con t r ibu t ion  because  the  product G(a1 h ) cos ~~h is
always nega t ive . E v e n t n n a  l i v  t he  se en- a l l  compone nt domina tes , r e s u l t i n g
in a negative Cam and imp lying th a t~ the force on the cy linder at this
leve l is in the  d i r e c t i on of ti-ic acceleration r~ther than opposite to it
as is usually ti -ic case. •\s o 2h/g . the contribut ion from t h e  local
component disappears . At the same time arnh n a / 2  where m is odd so
that G(amh) cos a h 0 and conseque nt l y (~~~ 0.

(b) •\verage C o e f f i c i e n t  of Added M as s , Cam. ~am is  t h r
ave rage va lue  of (h 1~~( y )  for t i - ic  t r ans  l o t  ion mode . The compu t at i  on of
t h i s  q u a n t i t y  is si mpler  than C~~~(y) b ecause  ti - ic terms of t i - ic  i n f i n i t e
se r i e s  a re  pro p or t  i ens ’ to m ~ rath er than m 2 a nd the re fo re  the
series  con verges more r a p i d l y .  C a l c u l a t i o ns were  made by computer for
many d i f f e r e n t  pairs  of s 2h / g  and 9/h c o v e r i n g  t h e  range of l a b o r a t u n y
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experiments and field conditions . The i n f i n i t e  series w as as sume d to
ha ve converged when an addi t ional  tern-i caused less than 0.01 percent
change in ti -ne cumulat ive sum . The resul t s  are p l o t t e d  in Figure  8
(e xper imenta l  dat a arc discussed in Section I I I ) .

These resul ts  i l l u s t r a t e  more fu l l y  the inf luence  of the two par a-
meters . Fo r p rac t i ca l  purposes : (a) o 2h/ g  can be cons i dered in f i n i t e  if
it is greater  than 100 so that  Cam (y)  as def ined by equation (54) can
be used , and (b) the i nf luence  of D/h is neg l i g ib l e  for value s less than
about 0.01 so t hat  a constant  C~~ (y) o f uni ty  can be assumed to act at
all depths .

(2) Effect of Mode Sh ape. The effect of 4(y) on C~~(y) was
not studied directly. Instead its integrated effect , as inc luded  in the
generalized added mass , M~~ , defined by equation (21), was inves ti gated.
This choice was made because M

~m 
is a measure of the kinetic energy com-

po nent due to hyd ro dyn ami c effects and consequentl y en te rs in to  the eva l -
ua t ion  of e f f e c t i v e  energy dissipat ion due to waven i ak ing as def ined by
the fraction of critical damp ing, 

~~~~~
, in equat ion  ( 2 4 ) .

The e ffect  of mode shape was s tudied in terms of a normalized
gcnerali :ed coe f f i c i en t  of added mass , Ram , def i n ed by:

0
1 1 ’  2
j~ J C

am
(Y) ~ (y ) dy

*

o ‘ 
(55)

i r  2
j~~J $ (y) dy

—h

wh ere  C LU:I ( y) is now a fu n c t i  on of ~ (v) as defined by equation (51)
The n umerator  is the ave rage va lue  of Ca~~(y ) w ei ghed be ~

2 (y) and is
equi valent  to M 1~/p -nT a2h. The denomina to r  is t i-n e same q u a n t i t y  for the
case w here Cam (y)  = 1.0. Therefore , R~n is an ove r a l l  meas u re o f the
de v ia t ion  of k j m (y) from a u n i f o rm va lue  of one as in f l uenced  b y t i - i c
combina t ion  of np (y) , o 2h/ g  and 9/h . It is t i- ic e q u i v a l e n t  cons t ant
coe f f i c i e n t  of added mass , applied at a l l  e l eva t i ons , tha t  y ie ld s  t ine
co rrect n a t u r a l  f requency in  a f l u i d  for a prescr ibed mode shape .

The fo ur mode shapes s tudied  were t he  cantilever mode , de f ined  by
equat ion ( 17) , and approximat ions  to th ree  h i gher modes d e f i n e d  by:

~~y )  = s in  n~~ (1 + y / h ) ; n 3 , 5 , and 7 . (5 6)

The r e su l t s  arc p l o t t e d  in  Fi gures 9 and 10; equa t ions  used to ob ta in
r e s u l t s  are g iven in A ppe n d i x  B.

The si gnificant result for the c a n t i l e v e r mode is the  increased
SO I l S  i t  l v i  t V ~f R.

~m 
to 9/h when compa red wi ti n resin its for the
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BASED ON RESULTS
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Fi gure 10. Effective coefficient of “added mass” for
= sin n - i r / 2 (1  + y/h) ; n = 3, 5 , and 7.
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translation mode, This effect is primari ly due to the  weigh t func t ion

~
2(y) being app lied to the variation of Cam (y ) ,  as exhibited in Figures

6 and 7 , rather ti-ian due to effects of ~~y) on C~~ (y) . This was clari-
fied by stud y of tine hi gher mode shapes .

Fi gure 10 shows that as ti-ic number of n odes in creases for the hi gher
modes , ~~~ for  a g iven 1)/h and a 2h/ g  de creases. The resul t s  are a
combination of effects due to nj.’(y) and the presence of a free surface
and an impermeable bottom . As n in creases , the e ffect  of the free
sur face  and bot tom con t r ibu te  less and less to Rim . The primary contri-
but io n comes f rom n~(y) . The resulting ~~~ approaches that  for ~~y)
i n a f lu i d of i n f i n i t e  ex ten t  in the y-direction . Evidence for this is
shown by tine dotted li nes that correspond to the i n f i n i t e  f l u i d  resul t
p lo t ted  in Fi gure 11 , calcul ated fro m the v e l o c i t y  p o t e n t i a l  derived by
Land w ebe r (1967) . The dot ted l ines were obtained from Fi gure 11 by the
r e l a t i o n s h i p  719/S = a/ 4  n 9/h , whe re S is the wavelength  of the
def lec ted  shape.

0 6 -  -.

R~m -

0 4 -  -

- -

0 2 -  -

-

o—  I i I I I i I
0 DI 0.2 03 0.4 0.5 06

V 7TD
O s

I i  u - c 11 . L fle et ice added mas s for f l e x i b l e  c y l i n d e r  in
i n f i n i t e  f l u i d .
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4. ~ydrodynamic Forces_Due to the Incident Waves.

The velocity potential , ~G , for the d i f f rac t ion  of a p lane surface
wave about a rigid vertical cylinder has been derived by Havelock (1940)
for i n f i n i t e  depth and by MacCamy and Fuch s (1954) for f i n i t e  depth .

a, Distributed Force. For a wave of height H traveling in a
posi t ive  x -direct ion , def ined by :

H .
= sin(kx - ct),

whe re ni is the surface e levat ion , the fo rce per unit  length is give n b y :

f g (Y~ t )  = — ~.~~ _1-! C

h
i<

~~~~~~~ P4 (ka) cos ( at + ‘Y) (57)

where

P4
(ka) = 1/[ J (ka ) 2 + Y~ (k a) 2]~ [TTka P1(ka)/2)~ , (58)

= arc tan [J~ (ka)/y ~ (ka)] , (59)

fg is maximum at the  Mlii. ari d decays with respect to ~
- l i ke  ti-n e wave-

making forces . In nondinensional form it is a function of two parameters
kh and ka. Unlike the forces due to ti-ic motion of the cy linde r, the
incident -wave forces do not depend on ~ ( y ) ;  th i s  is a con seq uence of
l i n e a r i z a t i o n.

b . Total Force and its Re lationship to ti-ic Generali:ed Force.
Althoug h ~(y) has no direct influence on fg, it does enter into ti-ne
calcula tion of dynamic response as a wei gh t fun ct ion appl ied to f g,
yielding F~ ( t)  as de f in ed b y equ a t io n ( 20) . The force magnitude at
the first-mode frequency will be of most iniportance for the dynamic
response problem . This frequency will usuall b e su f f i c i e n t ly h i gh that
fg w i l l  be concent ra ted  in the nea r - su r f ace  zone and ‘~ ( v) w i l l  have
little influence. For practical purposes the generalized force will then
be eo,ual to the total deepwater force. The error made w ill be identical
to tha t  made in ti-ic calculation of 

~ 
based on ti ie transl ation mode .

The amp l i t u d e  of to t a l  force , FG ,  i n n o n d i m e n s i o n a l  fo rm is de f ined
- I by Cg . For deep water (kh > 77) it is g iven  by :

2 8 
_ _ _ _ _ _ _C = F /P gr7 a (1-1/2) = — r . (60)

g 0 F 3 L  IT J
0

It  i s p lo t t ed  in i i gu re 12;  ti -ne limiting va lues  were  d e r i v e d  us ing the
li m i t i n g  values for  t ine  f u n c t i o n  P 1 i n  A p p e n d i x  B.

The p lo t t ed  r e s u l t s  show t ha t  the  non d imens  i ona l force de creases
r a p i d l y  beyond F0 = I . This  decreas e is impor t an t  becaus e the  e f f e c t  ive
e x c i t i n g force ca n i-n e decre a sed  by i n c r e a s i n g  t ine  f i r s t - m o d e  f requency .
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Fi gure  l~~. Co e f f i c i e n t  of t ine  force due to ti -ic incident  wave
• f or o 21-i/g > i t.

5. Dynamic Response and Damp ing .

• The wavcrnaking and added-mass forces of tine previous section s show
that the coefficients of the diffe rential equation of motion (equat i on 19)
are frequency-dependent. This implies that the dynamic system is actuall y
represented by an integral equation in ti-ic time domain (Tick , 1959).
Consequently, the transient part of the well known general solution-i of
the equation with constant coefficients is not valid in this case. To
obtain the transient part requires the solution of an initial value
problem. Howeve r , the steady-state part of the general solut i on is valid
and can be used to ob ta in  the response due to e i t h e r  periodi c waves  or
random waves specified by a wave spectrum.
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The steady-state solution for the amplitude of dynamic response,
Xod , due to a periodic input of frequency o is given by the following
equation:

XOd = (DMF) x0~ , (61)

where

= amp litude of static response,

DMF = dynamic magnifica tion factor ,

= 1/([i - (c/c )
2
~
2 

+

The DMF for constant values of ~ is plotted in Figure 13. It is a
unimodal function of a/ca peaking at 1.0 for ~ values less ti-ian about
0.20 (20 percent of critical damping) . The v a l u e  at resonance is inversely
propo r tion al to ~; equa l to l / 2~~. Sta t ic  response occ urs when o/ .z~
becomes small becaus e then DMF 1,0. The D~tF 

- - 0 as a/an -
~

In the  case of damp ing due to wavemaking ,  equation (24) , g ives :

* * *= = C /2c (M + M ) , (62)
‘w w ii s am

wh e r e  C~ and 
~~~ 

are funct ions  of a2h / g , 9/h and i~~( ) .  In deep
water this reduces to:

C (Fe) Pg~~ D

2

.-
’
4

2 * ‘ (63)
2o (~. + M )

4 11 s am

F0 an-nd a2h/g can-n be written by (°/on) o~ ~ft/g and (0/o n)2 a2h/g,
r e s p e c t i v e ly , and consequen t ly  ~ in equa t ion  (61) w i l l  he a f u n c t i o n  of
a/at- i . Therefore, ti-nc DMF will ha ve a d i f f e r e n t sin ape from tha t shown in
the fi gu re and th i s  would  have  to  be t aken  in to  accoun t when c a l c u l a t i n g
t i-n e dynamic response spect runu to random waves . ~ieve rtiic less , tine i)M i- for
con s t a n t  ~ is y er usefu l for u n d e r s t a n d i n g  t h e  impor t ance  of damp i ng .
I t o  i n v e r s e  p r o p o r t i o n a l i t y  to ~ at resonance  i m p l i e s  t ha t  even very
s I r i l  I am ounts  of dam p ing are i mpor t an t  in r educ ing  the d y u n a m l i  c response.
For example , if ti -n e fo rc ing  func t ion  is s i mp l e - h a r m o n i c  w i t h  a =

th en XOd = ( l / 2~) X05 .  Wave  energy is usuall y spread ove r a band of
frequencies so t ha t  the  e f f ec t iveness  of ~ in r educ ing  ti -ic ove ra l l
res ponse , d e f i n e d  by the rms [ N i t ) ] ,  w i l l  depe nd to a gme;i t ex ten t  on
how far removed is ti - n e f requency o n at t ine peak of the wave spec t rum
f rom the natura l frequency of the s~~n - u c t m u r e . For example , under lifetime
desi gn s to rm cond i t ions , such t h a t  o~ << ~~~~ tine static response may
dominate; hut under the more frequently occurring mode ra te conditions such
t h a t  o

~ 
a~ , ti -n e dynamic respons e w i l l  be inversel y m -op om-t ional to ~~~.
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Figure 13. Effect of damping on dynamic
response (Biggs , 1964).

Consequently, ti-n e effectiveness of F, must be evaluated on a statistical
basis taking into consideration the  occurrence probabilities of lifetime
and moderate conditions .

:n . Idealized Plat forms. 
~ 

and dynamic response were studied theo-
reticall y as a function of diameter for three idealized platforms having
natural periods of 3, 4, and 5 seconds in a water dep th of 600 feet. The
ob jec t ive  was to determine the l eve l  of damping that can be obtained from
this mechanism and ti-ic conditions under which it is of significance.

The idealized p latforms are descr i bed w i t h re fe ren ce to Fi gure 2. The
f i r s t  p l a t fo rm is a s i n g l e  v e r t i c a l  cy l inder  e x t e n d i n g  to the MWL having a
wall th i ckness of 2 inches and no deck.  The second p l a t f o r m  is the same
except that it extend3 some d i s t a n c e  above the  Ml V I. and supports  a deck.
Both the mass of the deck and mass of the s t ee l  above the Mlvi . are assumed
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lumped at the deck level so that the generalized mass , M~, is 400
k-slugs . This value was obtained from the mass at deck level used by
Burke and Tighe (1972) for proposed deepwater drilling platforms . The
third platform is the same as the second except that is assumed to
be shared by four legs . Consequently each of the legs contributes to
wavemaking; interaction between legs was neglected. In all cases the
shell was considered full of water adding a mass per unit length of
p71D2/4 to the struct-~ral mass. The cantilever mode shape was used
for 

~P(y)
.

(1) Effect of Diameter and Natural Frequency on .
~~~~~~ 

~~~~ was

calculated by using equation (62) with the assumption that ~ = o~~. The
total generalized mass , p1* , for the cantilever mode shape was given by:

= + = ( (PA + P A )  + PA R* ] 
S 

~2 (y) dy + M~ /N (64)

where

= area of enclosed water

= area of shell -nr Dd where d = w a l l  th ickness

p
5 

= mas s densi ty  of s teel

f$
2 (y)d y = 0 .228 1-i

N = number of legs

R* is defined b’- equation (55).

was calculated exactly , although ti-ic use of the deepwater approxi-
mation , defined by equation (49), would have resulted in an error no
hi gher than 10 percent. I~ is shown plo tted ve rsus diameter in Figure 14.

The plotted results show ti-nat 
~ 

will be most important for ti-n e larger
cylinders . However , the diameter for which it becomes si gnificant will
depend on The results also indicate that 

~ 
generally increases

with decreasing o~ but the relationshi p is complicated because for a
given diameter Ew may sometimes be greater for ti-ne platform having a
hi gher a~ . The followin g explains the theoretical results in terms of
the wavemaki rn g forces and their dependence on the parameter , F0 = ~~~~~

Tine f i r s t case (one leg; no deck) represents  an a p p r o x i m a t e  upper
bound on ti-ne available 

~ 
becaus e the structural mass of this idealized

49
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Figure 14. Effect of natural frequency and diameter on percent of
critical damping for idealized platforms in water depth
of 600 feet .
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plat form for dianneters larger ti-ian 20 feet is less than 15 percent of the

combined added mass and mass of the internal water. The effect of diameter
on can be understood from the deepicater approximation for C~ defined
by equation (63). When F0 is less ti-ian one , this equation implies that

~2 because beth (~ and ~‘I~~ 92• This quadratic increase of 
~with increasing diameter is portrayed by ti-ne left limbs of the plotted

curves . When F0 is greater ti-nan about two , ç D-~ becaus e then
C
~ 

a D 1 but 
~
‘1
~m 

D 2. Consc~1Lie ntlv , c decays more slowly with
increasing diameter t h a n it rises. The rise and decay imp l y that there

must be a diameter for which ç is ~axinum . This diameter is defined by
F0 = 1 .4 at which 

~ 
is a maxi m um .

The effect of decreasing the  na tu ra l  f requency is to increas e t i -n e peak

~ 
and shift it t o  larger diametcr~- . The shift of the peak results from

the requirement that F0 = 1. -I . An increase in the peak 
~~ 

occurs
because both C~ and a D 2 ; co nsequent l y 

~~ 
~~~~~~~~ Fo r a g iven

diameter monotonic relationships exist only in tine limiting situations
where F0 is less ti-ian one and ~ re Ot Cr  ti - ian two , respec t ive ly .  Whe n
F0 < 1 , 

~ 
a a~ becaus e ~~~~, 

a and Fi gure 9 implies that is
practically independent of 0n for ti-ne range of v a l u e s  t ha t  are consid-
ered here. When F0 > 2 , ~~ 

a o~~~ beca use C~ a 
~n •  These results are

valid only for the range of 0n satisfying the criteria on F0. 
In

genera l , for a given diameter , i~ need not be monotonic allv related to 9
and requires a series of plots as shown here to evaluate the  cond i t ions
under which maximum damp i n g can be ach i eved.

Similar trends exist for the other cases . The major difference is the
decrease of 

~w 
and the shift of the p eak va1ue~ to la rger  dia meters .

These effects are due to the  c o n t r i b u t i o n  of the  deck nIaSS and can be
similarly explained by a study of equation (63).

The be h avior  of ~w for  prototype s t ruc tu r e s  w i l l  be app r o x i m a t e l y
represented by the region between the p lots for ti ne second and t h i r d  cases.

~w 
for the  smal le r  d iameters  (but  not < 15 feet) will correspond mo re

c lose l y to the second case becaus e one column w i l l  prob ably  not be suf f i -
c i e n t  to  provide ti -n e necessary s t i  f fu i e ss . In t h i s  ease , ~w w i l l  range
from 0.5 to 1.0 percent of critical . For the la rger  diameters it w i l l
correspond more c lose ly  to the t h i r d  c i s c .  Consequ en t ly , ~ c w i l l  be
h i gher , on the  o rder of 2 to 3 perce n t of c r i t i c a l .

D e c r e a s i n g  t i - i c  w a t e r  d e p t h  w o u l d  i n c re a s e  r,w becaus e ~~~ i s  propor-
tional t i  h .  Howeve r , o~ w i l l  l i k e l y  be l a r g e r  becaus e s t i f f e r  p l it-
forms can be co ns tm-iuele d in shallower w :ut er , This will tend to decrease

The ne t e ffect rcqimi r ’- - an an .n  i - ~:- j s  for each depth .

I
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(2) Effect of i) iameter an-id Diffraction on Dynamic hespom~se. The
dynamic response at resonance is given b~-:

annp( F* ( t ) )
X0d . (6 5)

o w

Using the  dcepwater approximations for the  ampl i tude  of i~~(t ) ,  d e f i n e d
by equation (60), and C~ yields the  result:

C (F )
Xod/(H/2) = 

C~~
(F o) (66)

This is plotted in Figure 15 as a function of diameter for the idealize d
platfo rms. Because at resonance Xod is independent of mass, all the
idealized platforms have the same response provided the same incident-wave
force acts on all legs.

The dyn ami c response, as shown in the figure, decreases w i t h  increasing
diameter due to the combined effects of diffraction and wavemaking. This
can be shown theoretically for F0 > 2 where Cv 4/F~ and Cg 8/(~~~~T
yielding XOd/(II/2) a l/D½ . Diffraction acts as a low-pass filter signifi-
carntly reducing the response of large-diameter platforms as illustrated for
the 4-second natural period. The “no diffraction” curve was calcu lated by
assuming Cg = 2, which is the limiting value as F0 becomes small.

b. Damping for Actual Platforms. The Table below represents 
~w 

for
proposed deepwater oil drilling platforms that were studied by Burke and
Tighe (1972) and ~-1a1hotra and Penzien (1969) arud for the Texas Tower No, 4

Table. Damping due to wavemaking for actua l p latfo rms .

Source In k-slugs 1 N D F0 Cv

- — 

(f t )  (rad/s) ~2 (ft) (F0) (pct)

Burke and Tighe 4(W) 2.59 5 6 9 4 5.0 1.02 0.66 0.05
( 1Q 7 1)- 600 1.W7 900 4 5.0 0.66 0.18 0.02

800 1.42 1 ,000 4 5.0 0.56 0.08

________________ 1 ,000 1.01 1, 800 4 5.0 Q . -i0 0 . 0 2

~Ialhotra and 1 ,270 0.57 1 ,800 3 18.0 0. 13 0 . 0 2  0 .0 8
Penzien (1969) 

______ _______ _________ — _____ _____ _____ ______

Brewer Engineering 180 2.20 330 3 12.5 1.37 l. -18 0.56
Laboratories , Inc.
p959)

‘1’ ~ p2(y1).

2N um hc r  of legs .
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Figure 15. Effect of diameter and di ffraction on the dynami c response
at resonarke for idealized plat forms in water depth of
600 f ee t .
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that was studied 1w Brewer Eng i n eeri n g Labo ra to r i e s , I nc. (1959) . 
~ic for

the first f i v e  p la t forms  in the Fab le  is insi gnificant . Member d i a m e t e r s
o f the f i rs t four p l a t f o r m s  are nnuch too s m a l l  for t h i s  damp ing mechanism
to be e f f e c t i v e , w h i l e  the  n a t u r a l  f re~ uency is too low and tine water too
deep for the f i  f t h  platform. Only for tine Texas Tower is 

~ic of some
s i gn i f icance  because  the n a t u i - n l  f requency and d iameter  combine  to produce
a I- ix imum value  for 

~~~~~~ 
Wowever , due to ti -ne p r e d o m i n a n c e  of the  deck

mass , the diameter is s t i l l  too s m a l l  to provide appreciable damp ing. For
examp le , according to equat ion (63) , ass umin g ~~ > >  ‘1k, a d i ame te r  of
25 feet could provide 

~ ic close to 3 1~ercent . (‘ft course the desi gn
static load , be ing  p r e d o m i n a n t l y  due to i n e r t i a l  fo rce s , wou ld  he quad-
rup led .  This  wo u ld ha ve to be considered in conjunction w ith any po s s ib l e
reduction in dynamic response .

The mode shapes and f r equenc i e s  used to compute  
~nc for  the o i l  d r i l l -

ing p la t forms nc-re calculated from the mass and stiffness matric es publi-
shed by the investigators . The mode shapes are shoan in F igure  16.

I I I .  EXPE R I  I i AL V E RI  El CATION OF THE POTE N T I A I. MODEL

The obje ctive of the expe rimental program was to v e r i fy  the  wavemak ing
and added-mass f a r c e s  predi cted by the p o t e n t i a l  m o d e l .  The t e s t s  con-
sisted of osc i  I ia t  in g  ri g id su r f a c e — p i e r c i n g  v e r t i  cal  c y l i n d e r s  i n  a
trans lat iou mc~- 1. and measuring the total foTces and the generated waves .
These oscill ations ice re performed in stiliwater and thereferc- the verifi-
catiorn is a u nit ed one because a prototype structure in nature oscillates
in an i n c i d e n t  wave f i e l d .  Howeve r , the t e s t  is v a l i d  wi th i n  the  scope of
potential theory w i t h  l i n e a r i z e d  boundary conditions for which the forces
due to  t he  i r n c i  d en t w aves and t hose  due to the  mo t ion  of t I e  s t r u c t u r e  are
independent .

This sec t i o n  discusses the ex p e r i m e n t a l  equipment , important factors
in their design , and the e x p t - r i u n n e n t a l  program and its r e su l t s .

1. E x p e r i m e n t a l  Equ i pment and I mportan t dieters in T h e i r  Design.

A general view of the e x p e r i n u e ’a l  equi pment and arrangement  is shoo n
in Fi gure 17. Some of tin e r e l e v a n t  linens i ons are g iven  in ti -n e schemat ic
diagram of Fi gure 15 . A f o u r — I c g g e u  p l a t fe m of  w e l d e d  s t e e l  s t r u c t u r a l
member -s s upports  the  c~u r r i  age used to t r a n s m i t  a t I - - H I S  l~n t i o n a 1  o s c i l l a t i o n
to t u e  test cylinde rs and the necessary power t r a n s n i ss  i em equi pnw’Iit to
impart to them un app roximately ii imp l e — h a rmonic  motion . It is p l a c e d  in  a
rectangular b a-c i r n (~ 3 by 150 feet) so that the si -n I- t e ’ t d ist an ce from tine
te -; t cyli rndcr s to ti-ne nearest wall is ~jut 24 f ~ t . The system i s  c np a—
h le of osci 11 a t  i on frequencies up t o 2 . 8 cyc le s  -

~ r second arid amp l i t  ades
of c a r r i a g e  d i s p l a c e m e n t  , X0, up to  0 .3 fo o t .  .\n array of five gages is
position ed alon g a c i r cular arc I a  measure  the sun faee wa~-es i n  one quad-
r a n t .

n . P l a t f o rm. The theo r -t cal r c s u l t - ~ of ti-ne previaus s e c t i o n  i m p l y
that the  amp I t ode of t h e  ge ne r a t  -d n~ ave w 1 11 he p rope rt  i on a 1 t o  cos €3 .
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Consequen t ly , to m i n i m i z e  the e f fec t  of wave r e f l e c t i o n  i t  was necessary
to perform the experiments off a p latform situated near ti -ne m i d d l e  of a
wide basi n ;  e x i s t i n g  two-dimens ional  f lumes could not be used. This
necessitated the construction of a platform for supporting the carriage
and power transmission equi pnnent.

The main design considerations were rigidity and wave refl cctiv it \
It  was ver  impor t an t  for  the p l a t f o r m  to be r ig id  (have  a la rge s t i  f f-
ness and hi gh moda l f requencies)  because frequency-dependent energy
sources d namnicallv excite the platform and tine resulting vibrations
cou ld  c o n t a m i n a t e  the  force m e a s u r e m e n t s .  The s i m p l e - h a r m o n i c  not i c - n i  of
the ca r r i age  at a maximum frequency of 2.8 cycles per second induces hor i -
zontal loads on the platform at the same frequency and vertical loads and
torque on the axle of t h e  eccentric and speed-reducer shaft i t  double  I d e
frequency . Energy at hi gher frequencies is supplied by motor noise and
impact forces due to back lash  in the speed-reducer gears and clearances
in other moving p a r t s .  Based on ti-ne experience of using a trial platte r -a
it was dete rmined t ha t  a very ri g i d  p l a t f o rm w o u l d  be r e q u i r e d ; one for
w h i c h  the  lowest  na tu ra l f requency  w o u l d n ’ t be less ti-nan abou t 1tt to 50
cycles  per second . To m i n i m i ze wave r e f l e c t i o n  t h e  legs had  to be of
snail diametel- and l o c a t e d  as far away as p o s s i b l e  f i - e m the o s c i l l a t i n g
cy l i n d e r .  However , t h i s  makes the p latform mor e f l e x  i i  le so that a corn-
promise had to be made be tween ri gidi ty needs and riini m i:iti on of w a v e
r e f l e c t i o n .

The p re sen t  p l a t f o r m  s a t i s f i e d  the n a t u r a l  f r e q u e n c y  criteria for t h e
f o l l o w in g  assumed modes of v i b r a t i o n ~ (a) ~u v e r t i c a l  mode in ti -n c :-y
plane (the y-axis points out of the  page in Fi gure  18.) where the deck
be n ds as a beam assumed simply supported by the  I-beams ; (b) a v e r t i c a l
mode in the  .x - -y p lane where the beams s u p p o r t i n g  the  deck bend as i f
simp ly suppor ted by the legs ; a n d (c) a hon  z o n t a l  mode where  t ine  deck
and the suppor t ing  bea ms t r a n sl a t e  in the  x -z  p lane , t h e  s t i f f n e s s  be ing
provided by the legs wh i ch are assumed f i xed  t u  the  unde r s ide  of the beams
and p inned  at the b a s i n  f l oor .

Wa v e  r e f l e c t i o n  from t i - ic  f ron t  legs wa s  n h i n i m i  zed hr  l o c a t i n g  ti -ne
c a r r i a g e  so that the mean p o s i t i o n  of the c y l i n d e r  a x i s  i n t e r s e c t e d  a

- . l i n e  c o n n e c t i n g  t h e  t n o  m ont  legs . A l t h o u g h acco rd ing  to l i n e a r  theory
no energy s h o u l d  r a d i a t e  p e r p e n d i c u l a r  to ti -ne direction of oscilla tion -n ,
measurements  showed a s m a l l  amount  nt  t w i c e  ti - n e o s c i l l a t i o n  frequency .
T h i s  was too s m a l l  to  a f f e c t  the fo rce  meas uremen t s  and c o u l d  he neg lec ted
in t ine  c a l c u l a t  ion of r a d i a t e d  energy f rom ti -ne measure d sur face  waves .
R e f l e c t i o n s  f rom ti -n e back l e g s  were  also sma l l  and in most cases suffi-
c i e n t  force and wave  d a t a  Icc-re o b t a i n e d  be fo re  the  r e f l e c t ed  n c ;nv c  a r r i v e d .

b .  C a r r i ag e .  The purpose of the  c a r r i a g e  is to  t r a n sm i t  a t rans la-
t i o n a l  m o t i o i n  to t i n e  cy l i r n d e r  a l o n g  a l i n e . Consequent  lv , it was essen—
t i - i l  t h a t  a l l  e l e m e n t s  of t i - ic  c ;n r r  age and Su p p o r t s  be r i g i d  and t h e

in? , i on  r e s t r a i n e d  l a t e r a l ly and vert i cal 1> .  At t h e  same t i inc t i n e  car-
r i a g e  had  t o  he l i gh t  to reduce the  i n e r t i a l  loads on the  p i ; n t  form and
on t i n e  m e c h a n i c~n 1 1 i n kag e s  . The res t  i-a i n t - - h i d  t o be low— f r i  c t  ion d ev i c e -~
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for which the difference between dynamic and static friction was small
so that impact forces due to stick-slip would be minimized. Welded alu-
minum construction was used for the carriage to meet the rigidity and
wei ght requirements and special roller-bearing devices were used to meet
ti -ne f r i c t ion  and restraint requirements.

The carriage tha t  was used is a welded  aluminum frame of four
4- by 4- by 5/16-inch H-beams (Figs . 17, 18, and 19) supported on four
tracks of 1-inch O.D. solid stainless steel 60 Case-hardened and ground
s h a f t i n g of material 440G. The supports and rest rai nts are provided by
the SKF li near-motion assemblies shown in Fi gu re 20. These assemblies
solved the difficult problem of providing a frictionless four-point
support and complete lateral and vertical restraint without the aline-
ment probl ems that  u sua l l y occur in such cases . Each a s sembly  consists
of two rollers enclosed within a housing; each roller is supported by
two completely sealed ball bearings . On one side of the carriage the
rollers within the housings can move along their axes , thereby prevent-
ing j amming due to any misalinement in the tracks . Each assemb ly can
be rotated so that  the rollers can be preloaded in place onto the shaft-
ing thereby eliminatin g any p a y  in the  ver t ical  d i rec t ion . Each of the
t racks is ri g idl y connected to a lower aluminum frame by means of three
shaft-support blocks (Fig. 19). The blocks are movable to allow a maxi-
mum travel of 1 foot. The lower frame acts as a ri gid base for the
carriage . A ri gid vertical extension of ti-n e carriage , consisting of an
U-beam whose ends are butt-welded to aluminum plates , connects to the
underside of the carriage (Fig. 18). The H-beam passes through a hole
cut in the platform and the lower welded plate provides a flat surface
for attaching the force transducers and cylinders (Fig. 21). The use of
four c la mps as sh ow n in the f i gure p rovided a s u f f i c ient ly r ig id  connec-
tion .

c. Power Transmission Equipment. The power transmission equipment
is illustrated in Fi gure 19. The basic elements are the connecting rod ,
ecce n t r i c  an d i ts  a x l e , and the V-be l t  and p u l l e y s .

The c o n n e c t i n g  rod t rans forms tine cons tan t  rotational speed of the
eccentric into a periodic translation of the carriage . The mot ion  is
approximatel y simp le-harmonic if X0 is sufficiently small compared t o
the  l eng th  of the  connecting rod and if t i ne  center  of the eccent r ic ’ s
a xle  is a t  the same e l e v a t i o n  as the  cen te r  of the  p i n  at the carr iage
connec t io n point. Ti-ic desi gn length of tine rod w a s  2 .5  feet  and 

~0 was
0 .23  foot for  the  force measurements . This resulted in tine second har-
monic of t he  c a r r i a g e  d i s p l a c i - m e n i t  and a c c e l e r a t i o n - i  t h a t  was 0 .25 anJ 1
percent , respectively, of t h e  firs t harmonic. The corresponding values
for ti -n c r - nln a t cd wave mea~ Iiremen t~ based On a maximum X() of 0.0 0 1  f oo t
reach ed (1 .9 and 3. 7 pe- i~~ - n  . To redince imp i t  l o a d s  i t  w :ns  e s s e n t i a l
t i n a t  the clearance bet~~een t ine  p ins  and t i n e  hea r in c -~iirf a cL of t ine  con—
meeting rod ends be u s s m a l l  us p o s s i b l e .  C o m m e r c i a l l y  ov a l  1 a b l e  hu s in  i m g —
tvp ’- rod ends w ere  found u r n s  u i  t i I -  le becau se the  i n i t i a l  we ar was t o o  great
and b a l l  bearing rod ends produced t o o  much noise in the measured force
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records . Consequent l~; split-ring type rod ends of bronze-bearing material
were designed and built. These i c e -n -c  made with an adjustable bore thereby
providing a method for controlling the clearance.

The eccentric is a device for adjusting X0. It consists of a 3/4-
inch thick steel plate butt-welded to a 2-inch O.D. axle. An aluminum
block wi th  an attached pin that connects to the rod end can f r ee ly  s l i de
a long  two s lo t s  that are cut in tu e plate . This allow s a maximum X0 of
0.5  foot .  The impor tan t  des ign consideration was the ri gidity of the axle
bec aus e the ax le acts as a spring for ti - ic carr iage mass and the added mass.
After a 1-inch O.D. axle proved to be too flexible , the 2-inch O.D. axle
was chosen.  The noise content of the force measurements was reduced and
its frequency increased.

Commercially available cas t  iron p u l l ey s  and a rubber V-belt were used
to trans mit  the rotary  motion from the speed-reducer shaf t  to the eccen-
tric ’s axle. The noise level in ti-ne force measurements was  s e n s i t i v e  to
the tension of the belt. Although lowering the tension reduced the noise
level , it had to be maintained at a hi gh enough tension to prevent belt
slippage and corresponding distortion of the simp le-harmonic carriage dis-
placement. An optimum tension was- found and used throug hou t the force
measurement experiments.

d. i’ow e r .  The power was supp lied by a combination of 1/2 horsepower
d i rec t - - cu r ren t  motor  and speed reducer . The motor speed could be varied
ove r a cont inuous  r a n g e  b y a va r iab le  t r a n r - forme i - - t v p e  c o n t r o l .  The 1/2
horsepower wos sufficient becaus e the  d o m i n a n t  f o rces  a re ine r t i a l  so
that  very l i t t l e  net work has to be done.  -\ d .c .  motor  was particularly
s u i t a b l e  because of i ts  low noise leve l compared to an d.c. motor. The
speed reducer was  a w orm- gea r  t y p e . Because of clearance between the
gear t e et h  impact forces occurred on torque reversal and contaminated the
force records . However , enough contro l over the noise level was provided
by t i -n c V-be l t  te n s i o n  tha t  special  devices , such as a brake on the eccen-
t r ic ’ s axle , for preventing torque reversal were not necessary .

e. Cy l inders  and Fo rce Transducer.  Two cy l inders , approximate l y
1.1 feet in hei ght and having diameters of 0 .50  and 0 . 7 5  foot , respec—
tive ly, were used in tine experin ientnn l prog ram.  These are i l l u s t r a t e d
together  w i t h  the  force t ransducer  in F i gu r e  2 2 .

The cy l i n d e r s  h ad to  b e w a t e r - t i gh t  c o n t a i n e r s  c o n s t r u c t e d  of li ght
nnatc r i~ul  i n order to i s o l a t e  the added-mass forces due to the outs ide
w a t e r  from t ine  t o t a l  force m eas in remen t s  . P l a s t i c  m a t e r i a l  w a s  su i  t a b l e
for this purpose. Each cy linder was construc ted of tubin g having ;n w a l l
thickness of 1/8 inch . A disk w a s  w e l d e d  to on e end t o  p r o v i d e  a icater-
t i gh t  f i t .

Th e fo rce t ransducer w ;us d e s i gned t I ’ measure  t i - ic  I l t a l  t o r c e  on t h e
c y l i n d e r s  by s iu nrnnnn i ng t ine forces t r a n s m i  t t e d  to l i e  n u p p e  r and 1 ower ~ 1 n u t s
Id u gure 2 2 n  . The forces -  from t i n e  S t r u t s  a re  t r~n nsnn i t I e d  to tine uppen—
f o r c e  and l o w e r — f o r c e  loa d c e l l s  t h a t  c o n s i s t  of flexible aluminium
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elements as shown in Fi gure 23. The defornnat ion  of each load ce l l  is
picked up by t ine  four  s t r a in  gages shown in the f i gu re ;  each gage act s as
a resistance element of a full Wheatstone bridge. The ou tpu t  from each
br id ge passes throug h a preamplifier , the tw o outputs  are summed and then
passed through an amplifier to yield a pen deflection on the stri p-chart
recorder tha t  is propor t iona l  to the t o t a l  force.

The force t ransducer  had to be sens i t ive  and at the same t i m e  have a
natural frequency that is hi gh with respect to the oscillation frequency.
The latter requirem ent is necessary to use the results of a static cali-
bration to measure time-varying forces and to shift the noise to hi gher
frequencies . The natural frequency was measured to be 43 cycles per
second whe n the 0.50-foot O.D. cylinder was submerged to the maximum water
depth of 1 foot; the corresponding value for the 0.75-foot 0.D. cylinder
was not measured but calculations based on the  pr ev io us measured val ue and
the theo re t i ca l  added mas s showed it to be about 35 cycles per second .
The force transducer was assumed to respond staticall y because the meas-
ured force data were for oscillation frequencies less than 2.5 cycles per
second .

f. Displacement Sensor. The carr iage displacement , X0, was measured
by a linear potentiometer-type displacement sensor. Figure 24 shows the
sensor. The motion of the rod changes the resistance in a manner that is
li near w i t h  d isplacement . Fi gure 25 shows the sensor at tached to the
ca ri-i age.

g. Wave Gages. Five resistance-type w ave gages were used to measure
the radia ted waves . Each consisted of two s t a in less  s tee l  wires 0.50-foot
long and 0.03  inch in-n diameter  as show n in Fi gur e 26 ( the scale  in the
f i gure is in c e n t i m e t e r s ) .  The wave gage acts as a resis tance element in
a Wheatstone brid ge network . The resistance is proportional to subme rgence
and therefore the  gage can be used to measure w a t e r  leve l f luc tua t ions .

E u .  Amplifiers an-nd Recorders. An ei gh t-channel Brush amp l i f i e r -
recorder system was used to record ti-ne force , carr iage  d i sp lacemen t , and
wa ve da ta .  Fi gure 2 7 show s tine sys tem in p o s i t i o n  for  record ing  the  forces
and corresponding carriage displacement . The two amplifiers on the  l e f t
s i d e  of the recorder were used to amp lif y and sum ti-ne outputs of t i n e  top-
force and bo t tom- force load c e l l s  as p rev ious ly  de sc r ibed .  The ca r r ia ge
displacement was measured  h t i n e  b o t t o m  amp l i f i e r .  Due to f requent  break -
dow ns a l l  ei ght  amp l i f i e r s  cou ld  not  be used con t inuous ly .  Co n s e q u n e n t l y ,
the waves and corresponding c a r r i a g e  di  sp LncomI -n t were recorded separatel y —

u s i n g  an y s i x  of ti - n e a m p l i f i e r s  t ha t  w e r e  operational.

2. ~1easurecl Forces, Anal ysis , ;nmn d Results.

One of t h e  o b j e c t i v e s  w~u s to v e r i f y  t i ne  t i n e o n - e t i c a l  w a v e m a k i n g  forces
fo r deepwater  c o n d i t i o n s  in  the v i c i n i t e  of F0 = 1. -I where C~ is m a x i —
n i n e - n . To do t h i s  accurately requ i red t h a t  b o t h  t i n e  viscous and added—mass
f o r ce s  be sm all in comparison with the w-u ~-cmak i ng forces. These requi re —
ment s restricted t i n e  e x p e r i m e n t s  to s tout  cy l i nders for wh i ch d/h > 0.50
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m d  values of o2h/g < 8; consequently, ti-ne added-mass forces , wh ich
depe nd on both parameters , were ve r i f i ed  onl y i n t h i s  r a n g e .  The viscous-
fonce requirement  a l so  res t r ic ted  X0/D to small values .

ni . Ranges of the  V a r i a b l e s .  In order  for  the  v i s c o u s  fo rccr ~ to  he
s m a l l  in  compar i son  w i t h  the  w-avem aking forces i t  was i m p o r t a n t  to gr e-
\ e i i t boundary -layer  separa t ion , o therwise  the low p re s su re  in  t , e  w a k e
could produce drag  forces t h a t  would not be poss ib Ic- t o  s e l ’ : n r : I t e  liom
ti-n e wavemaking forces . Separation c m i i i  be pre vented  b y using small values
of  X 0 / D .  S c h l i c h t i ng (1968) shows that  for a c yl i n d e r  s t a r t i n g  im pul-
s i v e l  f r o m  r e s t  and t ern continuing with a co rns - t i nt velocity, separation
beg ins only after the cylinder has  t r ave l e d  a d i s t a n c e  of 0 . 175D . I f  t i n e
s ta r t i n g  ; m  ocess is more g e n t  le , then the d i s t ance  t rave led  before  sepa-
r a t i o n o ccu r - s  i s  l a r g e r , e . g . ,  the  distance is 0.2e1) for a motion d e f n n n c d
by a c on s t a n t  acceleration . Consequentl y it is u n l i k e l y  t i -nat  s e p a r a t i o n

— i s i l l  occur  for ar-i oscillating cylinder if X0/D is less ti-nan O.~~ .

I n  this case laminar bounda ry-layer theory can be used to o b t a i n  an
e s t i m a te  of t ine  v iscous forces. B atchelor  (1967) obtains the viscous
forces on an oscillatin g cylinder in a still fluid of infinite extent
( n o f r ee su r face )  for t i-n e case t h a t  X0 /D << 1 and t he  Reynolds  number ,
oD 2 /v , is l a rge  in comparison to unity. The p a r t  of the force t ha t  is
;n rop ~~r t i o na l  to v e l o c i t y  is due to two f ac to r s , each con t r ib u t i n g  50
percent: (al tangential stresses on the surface of the cy linder , and
(b) normal stresses acting on a cy linder whose cross section is ti-nat of
t i -ne cy l i nder plus  a p e r t u r h at i o n  on the order of the bounda r y - l ay e r  thick-
ness .  h i s  r esu l t  for it s  a m p l i t u d e , F~~, is show n p l o t t e d  in Figure 28
as ti -ne ratio Fi./Fv versus oscillation frequency ; Fnq is the a m p l i t u d e
of t i n e  w n n v e m a k i n g  force for  t h e  t r ans l a t i on  mode . This  shonc s that if
D/h is s u f f i c i e n t  l- ~- l a rge  and ti -n e o s c i l l a t i o n  f r e L l n m e n n c o  is s u f f i c i e n t l y
sm all then F~ can be made insi gnif icant in -n comparison with F4~.

The added-mass e f fec t s  d i c t a t e d  t h a t  o 2h/ g  be s m a l l  s-c t h a t  Ew
could! be acc u r a t e ly  i so l a t ed  from tine total nnean ured fo rce . The impor-
ta n ce of o 2h/ g  can be seen from tine f o l l o w i n g  r e l a t i o r o -h i p  for t ine  r a t i o
Ew / F am where Fam is the a m p l i t u d e  of t i -n e addd- mI-n:a w s force :

F~/F = C / ( ~ c2h/ g)

H o w e v e r , in order to measure Cw fo r cl e cpn cat er  cond i  - onu s , ~
2h/ g c o i u l d

not be smaller ti -nan -n ~r . Consequent ly the  e x p e r i m e n t  cou ld  in  t he des i gned
such  t n n ; n t  I - h. is very la rge w i t h -  r espec t  to F~inn . \ e v c r t h e l e s s  , ve ry
a c c n u r a t e  v a l u e s  of  C~ w e r e  o b t a i n e d  by th e ann iys i s  t e c h n i que  descr ibed
p ic-  ~ n ous I y -

( : n s i u e r i n g  t i n e  s i n m u l t a n e o u s  e f f e c t s  o f  v iscous  and added—mass  forces
i t  w a s  d e c i d e d  to  use t i - n e  f o l l o w - i ng  ranges for t h e  v : u r i  r u b l e s  o f  t h e
e s- p e n  i lent

7 1
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= 0.025 foot,

D = 0.50 and 0. 75 foot ,

o = 21T to Sir radians per second (1.0 to 2.5 cycles per second) ,

h = 0.67, 0.83, and 1.0 foot.

The corr espondi n g ran ges for th e nondimens iona l  variab l es were :

X0/D = 0.05 and 0.033 ,

D/h = 0.50 , 0.60 , 0 . 7 5 , 0. 90 , and 1. 12 ,

1.0 < cs2h/g  < 8.0 ,

1 . 2  < F~ < 2 . 2  (fo r o 2h/ g  > i i) .

b. Experimental Procedure. Both static and dynami c calibrations were
required for the force transducer. The static calibration determined ti-ne
relationship between the total forcc on the cy 1 inder and the deflection of
the recorder pen . The method of imposing a known h o r i z o n t a l  load on t i - n e
cylinder is illustrated in Figure 29. The figure shows a string looped
around the cy linder passing over two pulleys and supporting a 1 ,000-gram
wei ght in a t in  container ; the cylinder is loaded at the u pp e r - r e a c t i o n
point def ined as the  e l eva t ion  at which no output is measured from the
lower-force load c e l l .  The procedure consisted of: (a) locating by trial
the upper- and lower-reaction points , (b) setting the  s e n s i t i v i t y  on ti -n e
amp lifiers such that the pen deflection was the same for a given load
whether the cylinder was loaded at the upper- or lower-reaction point ,
(c) engaging the summing circuit so that the pen deflection is proportional
to the sum of the amp lifier outputs , an d (d) loading the c y l i n d e r  wi th a
series of loads at the two reaction points and midncay between them to
obtain -n three calibration curves of load versus pen deflection . This type
of calibration was performed in air as well as water. The three calibra-
tion curves were nearly identical and therefore , it was assumed ti -nat the
pen deflection will be proportional to the total force on the cy linder
when it is forced to oscillate. The curves were also linear so that an
incremental calibrat ion was not required for each run ; the pen deflection
due to one load was sufficient. The dynamic calibration determined ti-ne
rna:s-in-air that would h-nave to be subtracted from the  mass-in-water to
arrive at the added mass due to the outside water. The procedure consisted
of oscillating the cylinder in air with X0 = 0.025 foot at five to six
d i f f e r e n t  f requencies  in the range of 1.0 to 2.5 cycles per second . Using
tEu c resul t s  of the s t a t i c  c a l i b r a t i on  to c a l c u l a t e  ti -n e o sc i l l a to ry  forces ,
the m a s s - i n - a i r  was ob ta ined  for each frequency and ti-ne average value used
in the calculation of added mass as exp lained later in this section .

-\ run cons i s t ed  of force measur ements  for a g i ven d i ame te r  and w a t e r
depth and covering the complete range of o s c i linut ion frequencies in seven
to eight di scri-te steps . Preceding each -i run the force transducer was 
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to ei ght dis crete steps . Preceding each run the force t ransducer  was
calibrated staticall y in w ri ter using the procedure described ab ove. Then
forces ar-nd carr iage d i s p l a c e m e n t s , corresponding to approx ima te l y the  5th
through 15th cycle , were recorded.

c. Force Data. A sample  of the force data for the 0 .50-foot  d iameter
cy l i n d e r  is shown in Figure 30. The data represent app roximately ti-n e 5th
th ro u gh the 15th c y c l e  from the t ime  t ine  o s c i l l a t i o n s  began in calm water.
The carriage displacement is also recorded because the phase difference
be tween  the  force and displacement records is required to separate out
the wavemaking and added-mass forces . S imi l a r  records were oh t a i n e d  for
each frequency and water depth. Some noise was still presen t in ti-ne fo--ce
records ; however, its leve l was no t hi gh enough to introduce si g n i f i c a n t
errors in the analysis.

d. A n a l y s i s .  To obta in  the measured wavemaking and added-mass forces
it was necessarr to firs t resolve ti-ne total measured force into two com-
ponents; one proportional to the velocity of the carriage , and ti-ne other
proportional to its acceleration. Assuming that both -i the force and the
carriage displacement si gnals are s i m p l e  harmonic , two pieces of informa-
tion were required from ti-n e recorded data : (a) the amplitude of ti-ne tot rn l
force, F, and (b) the phase difference , c , between ti-n e force and
carriage displacement si gnals. The phase difference yields t i n e  r a t i o
F~ / F~ where Fk is the amp l i tude  of the force propor t iona l  to v e l o c i t
an d F~ is amplitude o f the fo rce proportional to acceleration . The
additional information provided b~’ F was t h e n  used to calcul ate the
magnitudes of ti-n e components by the following equations :

F. = F/[l + l / t a n 2 € ] 2  , (68)

F.. = F . / t a n € .  (60)

F was def i ned as o n e — h a l f  of t he  PC - k — t o — t h r o u g h v a l u e  that appeared
to be rep resen ta t ive  of the force record . C w a s  ti n e rus--erage of approxi-
ma tel y 15 values based on z e r o - c r o s s i n g s - -  of the  force and d i sp lacement

- 
records . The averag ing process allowed accurate values to be obtained
even though t i ne y were small , ra n g ing f r o m  10 ° to 40 0 and t in .- records
still contained some noise.

C\%~ and Cam were c a l c u l a t e d  us ing  t i m e  followin g equations :

2
C F - /P g  iIP~ - , (70)w x 4

A - 2 . ‘~7 D h  —
C =[(F../x c) —M ) - e - — — - — — - -- . (- I)
am x 0 s 4

F~ wa s n u s - a u m e d  due s o l e l y to w n u v e m a k i n g  b e c a n n s e  t i -n e v i s cous  forces  for a l l
tine d n n t n were  less than 5 p e r c e n t  of F~~. The calculation of Cam required
the sui t n - m c io of t i n e  mass—in—air , \ls - , s-i-n i ch ranged from 10 to 50 percent
of t ine  addc~ mass .
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e. Resul ts and Connn~arison wi th Theory. The C~ calcula ted from the
measured forces are compared wi th  t heo re t i c a l  r e su l t s  in Fi gu res 4 and 31.
The firs t figure contains all ti-ne deepwater data plotted as a function of
F0. The measured value s compare w e l l  w i t h  those p red i c t ed  by theory and
are shown to be independent of D/h , The second figure contains all the
data.  I n th i s  case G~ is  p lo t t ed  as a function of two parameters ,
o2h/g and D/h , because both  are impor t an t  for o2h/ g  < m~ The theo-
re t i c a l  values were calculated using equation (40). The measured values
compare w e l l  enoug h-i w i th  ti-ic theore t ica l  resul ts  that  the e ffect  of D/h
is clearly shown . C~ for D/h = 0.75 is derived from forces me asured for
both diameters ; no systematic effect of D is evi dent,

The ~am a re shown p lot ted in Figure 8. Again the measured values
compare well with the theoretical results. The decrease of C am w i t h
increasing o2h/g is clearly shown. Some of the measured vnnlues that
are past the o2h/g fo r w hich  Cam is minimum shows ti-ne subsequent
increase of Cam.

f.  Data of Other Investigators. Garrison and Berklite (1973) per-
fo rmed a series o f experim~nts to measure the coeff i cient of added mass
in stillwater for various bodies , one of which was a vertical circular
cylinder. The ob jec t ive  was to verify their numerical solution for the
case where a2h/g -

~~ . Experimental values of Cam were obtained for
the c i r c u l a r cy li n de r as a function of D/h for o2h/g in the range of
200 to 500; D/h ranged from 0.4 to 6.0. Their results for D/h of
0. 50 , 0.60 and 0.90 are shown plot ted in Fi gu re 8. The devi ations of the
experimental values from the corresponding theoretical ones are real
because theoretical values in the figure agree nc i th t h e i r  numerical
results .

The experimental work of Clough (1960) provides so me veri f i ca t ion of
the theo ret ical  mode-shape e f f ec t s , The ob jec t ive  in one set of his  ex-
periments was to measure ti-ne effect of flexibility on added mass. This
was done by using flexible hollow vertical cylinders of various cross
sections that were fixed to the bottom of a tank and extende d upward to
the MWL. The experiments consisted of measuring ti-ne natural frequency in
s t i l i n c a t e r  and then  app ly ing  un i fo rm wei gh t s  along the  c y l i n d e r u n t i l  the
s ame frequency was measured in  a i r . The a p p l i e d  wei gh t per uni t leng th
was then assumed to be p ropor t iona l  to ti-i c added mass af ter the e f fec t s
of the  wate r  i n s ide  the cylinders were sub t racted.

One of the cylinders s- as c i r cu l a r  and had a d iameter  of 0 , 2 5  foot.
Its natural frequency was 3 cycles per secon d in a w a t e r  depth of 3 feet .
Th i s  yields a2h / g  = 23 and D/h = 0.125 . The average c o e f f i c i e n t  of
added mass w :n s measured to be 0.58. This  measure of added mass is identi-
cal t o  ~~~ as de f ined  by equa t ion  (55) and p lo t t ed  in Fi gu re 9 fo r tine
cantilever mode wh i ch approximates the  f i r s t -mode  shape of ti-n e cy l i nde r s
tested by Cloug h. His result is shown p lotted in ti-ne figure . The theo-.
retucal results si-now that low val ues of R~ m c ai-n occur for certai n-n coith i-
n a t i o n s  of D/h and  a 2h / g .  The prim n ur s - - effect is due to the nonuniform
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Figure 31. Coefficient of the wavemaking force for all force meacurements .
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distribution of added mass as illustrated by Figures 6 and 7. This
appears to explain Cloug h ’ s low value. Flexibility becomes important
only for the hi gher mode shapes .

3. Measured Surface Waves , Analysis , and R e s u l t s .

Sur f ace w r n v e s , generated by o s c i l l a t i o n s  of ti -ne cyl inders , we re
m easured in -i one quadrant at five different locations along a circular
arc fo r m e d  by a 3,5-foot radius (Fig. 18). At th is  radius the  surface
f luctuat ions are p r imar i ly  due to the r ad i a t ed  w n n \ - e s ; the nonprogress ive
surface disturbance due to added-mass effects is negli gible. The objec-
ti ve of ti-n e measurements  w a s  to ob ta in  Cw d i r e c t l y  fro m the radiated
waves

mm . Ranges o f the Var iables .  The diameters  and o s c i l l a t i o n  frequen-
cies we re the same as for the force measurements ,  i w o  a d d i t i o n a l  w a t e r
dep ths (<1 .0 foot) w e r e  used for the 0 .50 - foo t -d i am e te r  cy linder. X

0 
was

ex ten ded to larger val ues on the a s s u m p ti o n  tha t  the  viscous forces should
not a f fec t  the gen e i - n n t e d  waves .  The w a t e r  depths and x 0 ’ s were  as
fo l lows :

For D = 0.50 foot ,
h = 1.00, 0.92, 0.83, 0.75 , and 0 .67  foot ,

X0 = 0.02 5 , 0,037 5 , 0.05 , and 0,0625 foot;

fo r D = 0 .75  foot ,
h = 1.00 and 0 , 83  foot ,
X 11 = 0.0375, 0.0568 , 0 ,07S , and 0 .093S foot .

b. Experimental Procedure. Before any runs w ere  made mi ll fi ve gages
were checked for linearity over an elevation range of ±0.05 foot with
respect to the ~-1IcL. This was done for the maximum and minimum water
depths by performing a step calibration in increments of 0.01 foot. The
procedure consisted of raising each gage to ±0.05 foot, lowering it to

-0.05 foot , and them -n returning it to original position. The submergence

of the gages proved to be linearly related to the pen deflection of the H
chart recorder.

A run cons is ted  of sur face  wave measurements  for a g iven w a t e r  depth
and di n n m n e t e r  and spanning all pairs of and o .  Because  an average
of s i x  a ’ s w e r e  used t h i s  r e s u l t e d  in a p p r o\ i  m a t e l y 24 wave records per
run. Preceding each run a simplified calibration was made based on t i -ne
linearity of the  wave gages. All gr uges were c a l i h r n t e+l s imu ltaneouslv
using a s i ngle incre ment equal to the  maximum expected w r n v e  amp ! i tude .
The sensi tivities of a l l  gages were  mad e equal by adj usting the amplifiers .
Consequently, the reco n-ded w a v e s  a t  each gage were  of tine correct heig ht
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with respect to the waves at any other gage. ~-iext , the X0 was set by
ad jus t ing  the stroke of the eccentric and the f irst  10 to 20 waves were
recorded for each a . Approximately 5 minutes were required for the
water to become still between changes in a. The wave gage calibration
was checked at the end of each run.

c. Surface Wave Data.  Fi gure 32 shows a sample of the recorded wave
data for the 0.75-foot-diameter cylinder. The wave height is maximum at
U = 0 ° (gage 5) and decreases with decreasing U (see Fig. 18 for coordi-
nate system). At U = -90°, which is perpemdicular to the oscillation
direction , the wave frequency is twice the oscillation frequency . This
is an e f fec t  of non l inea r ity  because l inear  theory predicts no energy
propagation in this direction . The amplitude of these waves was foun d to
increase with increasing X0 and decreasing a , but it was too small to
contribute si gn i f i c a n t l y  to the to ta l  rad ia ted  ene rgy.

The cha racte r is t i cs o f the waves at the other gages were also a f f ec t ed
by X0 and a. Simp le-harmonic surface fluctuations occurred on ly when
deepwater waves were generated using the smaller values of X0. A second
harmonic became evident for the larger X0

t S. For the  s m a l l e r  va lues  of
a the waves were hi ghly nonlinear ; for toe lowest a the shape was asynn-
metrical. The asymmetry was foun d to be due to the generation of a second
harmonic tha t  propagates at its own phase speed rather ti-nan the speed of
the fundamental  component . This was determined by measur ing  ti n e w :nv es m t
f ive locations along the d i rec t ion  of o s c i l l m u t i o n . The records  showed
ti-nat the profile differed from gage to gage because the phase of ti-ne free-
second harmonic with respect to the phase of t he  fundamenta l  changed w i t h
distance . This phenomenon has been predicted and experimentall y verified
by Madsen (1971) for a flap-type wavemaker oscillating in a translation
mode, lie shc.cs that in  s h a l l o w  w a t e r  it occurs when (H/2)/(kh)2 >
it can be e l i m i n ated i f a secon d harmonic of an appropriate amplitude is
added to the simple-harmonic motion -i of the genera to r.  An analys is  of
this phenomenon was o u t s i d e  t i e - s c o p e  of this study . It is reported here
because this effectively limited the measurements of Cv to deepwater
waves .

d. Ana lysus. C,,~ can be calculated from the radiated waves by equat-
1mg the average rate of energy flux throug h-i a circular boundary mit a radial
distan ce , r , w i t h  t he  average r i t e  m i t  wh i ch the cylinden- does work on the
f lu id .  Us ing  this pr inci p le Weh ausen (10 ’l) deri ves the relationship
between the damping coeffici ent , for an arbitrary body and the resulting
ampli tudes of the r ad ia ted  w: u ves . h i s  r e su l t  appears to  have a typograph-
ical error t h a t  y i e l d s  a damping coefficient tinat is twice the  correct
value . The correct result for Cv is g i ven b y :

IT
2

— 
32 (r- It) r s in h  2 k h + 2 k l n ~ r ~‘o~~T— • _  

~~~~ Lcosh 2kb + 1 J ~ L 2X 0 J d O ~~2)
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Fi gure 32. Sample of the wave data.
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Du - to svnumn et i-r , t he  i n t e g r a t i o n  ex tends  ove r  one q u a d r a n t , This  r e s u l t
4,an a l so  be deri ved from t i-n e f o l l o w i n g  r e l a t i o n s h ip:

TI y
/ °kh ‘ 0

4 I .~~2 i~~+ - - r d n ~~=J 4 Ic \ sin-ih 2k0j  L 2
0

T 2 .

~ r c P g ~~~~~~~
— x (t ) X ( t ~~d t  (73)

where ti -n e i n t e g r m m n d  of t h e  l e f t  s i de  is t i -ne I i  n e a r - th e or y  power  for a
p l a n e  s i n n p l e — h a r i m i o n i c  w a v e  of a m p lit u d e  Y 0 (~ ) mind crest length  rd - - .

was d e f i n e d  mis o n e — h a l f  the d i f f e r e i n c e  i - ,- t w c - e m i  t h e  measure d c re s t
mai d  t r ou gh  e l e - c m i t i  orns . T h i s  d e f i n i t i o n  y i e l d s  t in e  a m p l i  t ade  of t i n e  f i n s t
ha rmon ic  p r o v i d e d  t h e  t h i r d  and h i gh e r  I n -armon i cs are n e g l i g i b l e .

Tine measured ‘s we i-c assume d to be represented b y :

y
0 = a0cos e i- b c os 3 9 .  (7-I )

m i nd b 0 we - i - c  d e t er m i n e d  by mu lemust— squares procedure  using t h e
meas ured value — i t  t in r e e  l oca t ions ; 0 = ~~0 , ~22h° and ~45 3~ Th i s  repre-
s e m m t a t i o n  was chosen becaus e i t  provided mu b e t t e r  f i t  to  the measured
da ta  than t ine  t h e or e t i  al v a r iat i o n  def ined  b y cos 0.  Phes e t m l r e e loe m-
t i on i s  were  used j c - c m i u s e  : ( a )  The meas u remen t s  here  w e r e  t i n e  mos t m n c ; a n - m i t  e

due to t i t e  l a rg e r w ayes  . and  (h )  the o t h e r  l o c a t i o n s  c o n t a i n e d  ene rgy 4 t
tm - ice the Omn ci  1 l m n t  ion  f requ c i i ce  m e d  therefore  v i o l a t e d  the i i  nn ea i -  t h e o r y
mis S umpt i o n s  -

e. RL - sult s .-nnd C~~~ m~~iso n with Theory . Although C~- was ca l c u l a t e d
f a n  i l l  v i l u c s  of  o - i - i / g  only t h o se  c o r r e s i o n d i m ; g  to  d ee pw at er  c o n d i t i o n s
m i r e  p l a t t e d .  Ihe o t m i n e n -  v a lu e s  m ure  not  valid hec mnus e i n  mos t cases the
waves cont ai ned mu fr:n- —sec ad in an -mo n i e th a t made t i n e  waves  a s y m m e t ri c a l
mi s isetusse d earlier in  t 1 j s sect ion . t i e  r n - - cu l t s  m i re p l o t t e d  i n  two

-; separate fu~~m ir u m - s . 
im i gu c 33 shows Cv p i t  t e d  mus t f u n c t i o n  of F 0 fu n-

t h a v m n r i  m u b  I es o I tine e \g -  - n - i  ment mm t h at  c o r r e s p o n d  o th e  fo rce  measure—
- - ments. i ’ u g n u r e  3-i s h o w s  m l l  t h e  d e e p w a te r  r e s u l t s . It  is e v i d e n t  t m n m n t

ci t h  eo n -c  fonn s m i n i  u ppe r  h o u n d  to t i - i c  C5 ‘ S c m n 1 c u t  mit ed from the  u i n e4ui— mired
- On i s  i s  expected h c c m u t u s e  c-nel -gy i s  la s t d i n n i n g  geaerat i orn mm n j

p r mip mmm t m mt n o .  il - i i s  w a s  o m i i - t i c n n 1 m t 1 ~~Y evident fan- t i n e  I m i r g e r  X~~’-s I-n e~~aus e
i n  s onic- c a se s  t i n e  w ; n y e  cres t mi t  U = 0— i b roke b c f o n - e i t  n -c - inched t h e  n . a v e

g m n y r - . S o n n e t  i me -. t i n  s rc-~ t i l t  ed i n  a w a n - c  m umnp I i t  ode tn t 9 00 ti mit I c m I S
.,a ;u I i c r  t h - m i t i  1 i l  0 - — 2 2 1~

0
. On the m u ye r age  t h e  m e m u s n u r e d  Cw ‘ s n~e n - c

a ’ on .iU pc  r c c n n  I owen t i  nu n  t i n e  t i n e o n - n - t  i c m i l  qu a i n t  i t  i es
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2.5

MEASURE D DATA
D, ft h, ft 0/h

2.0 — 0 0.50 1.00 0.50
o 0.50 0.83 0.60
A 0.50 0.67 0.75

= 0.025-f t

F0~ 0- ‘[Oiq’

Figure 33. Coefficient of the wmuvemakin g force calculated from
the measured radiated waves for o2h/g > in . 
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I

2 .5 1
o MEASURED DATA
0= 0.50 ft

h ft 1.00,0.92,0.83, 0.75,0.672 0  X 0 f t -~0.025, 0.0375, 0.05,0.625 —

D~~0.75 ft
h,ft= 1.00, 0.83

X0 ,ft 0.0375,0.0568) 0.075, 0.0938

Q~5 _ 5

~~~~~~

F0= 0~1i57~
Fi gure 34 . C o e f f i c i e n t  of t i n e  wavenn aking force c a l c ul a t e d  from

ti -n e meas ured radiated wm i ve s  for a 2h / g  > -i .
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IV . HYDRODYNAMIC DAMPING AN D ADDE 1 t ’L\SS
FOR CYLINDER OSCILLAIING IN A CURRENI

It is shown-n in ti -ic i n t roduc t i on (Sec. I) t i -nat  i f  the velocity - of the
s t ructural members , k ( t ) , is smal l  in re la t ion  to ti -n e wave-induced
wate r par t ic le  ve loci t ies , u , the n the damping force due to the drag-
force interaction term of the modi f ied Morison equat ion can be repre-
sented by C0pD iuik. The doniinant contribution to this term s-ill come
from the hi ghest waves in the spectrum . The average frequency of these
waves during design-storm conditions will be much lower than ti-ne natural
frequency of the structure so that a nuither of oscillation cycles will
tak e place during the passage of the large waves . Consequent ly , as a
firs t approximation , it is assumed possible to mode l this situation in a
steady current.

The experiments discussed in this section used an elastically support-
ed ri gid cylinder instead of a system whereby the cylinder was fo rced to
oscillate l ike for the wavemak ing  experiments . This was  done becaus e i t
was desired to obtain data in the range where the oscillation frequency
was much higher than that of vortex shedding. The use of a forced-
oscillat ion system in this frequency range would have rmade it impossible
to extract the viscous forces that are proportionai to vel ocity from the
total forces because they would h ave been (on the bas is of results in
this section) less than 1 percent of the inertial fo rces in the range of
the present experiments .

The experiments coi.sisted of a series of tests in which ti-ne decay of
vib rat ions w i t h  respect to time were measured when the c y l i n d e r  was g iven
an ini tial displacemen t and then suddenl y released . The cylinder was com-
ple tely submerged and its motion was constrained to i,e in the direction
of the current . The corresponding damp ing values were compared w i t h
theoret ical  values that  ni - c  p red ic ted  b y t i -ne drag- force i n t e r ac t ion  term
of the modif ied ~1o r i son e q u m n t i o n .  Coe f f i c i en t s  of added mass wei-e also
measured.

1. Experimental Equ pment and Arrangement.

Fi gure 35 is mu schematic diagram of the major experimental equi pment
and its arrangement. A horizontal circular cy linder , hmnving a dian nieter
of O . l . ~5 foot and a w m i l l  th i ckness of 1/32 of nun inch is shown pos i t ion -ned
in a 1-foot-wide open channnel. Disk-type flanges of O .167-foot -dimni -etu-r
were welded to the ends of the  c y l i n d e r  in at-n m u t t e r r p t  to produce a p re-
d o m i n a n t l y t w o - d i m e n s i o n a l  flow over ti-ne cylinde r -no that i t  could  be
con s i d e red a s e c t i o n  of in i n f i n I t e l y  long  cylinder. The flanges are
welded to ri g id s t r u t s  t i n a t  mi re  in tu rn  connected to 11-shaped elennents
t i -n a t  act as e l a s t i c  s u p p o r t s  f o r  the cy-linder. All counponents are of
a l u m i n u m. The sy s t  n - un  wa s  p o s i t i o n e d  about  36 feet fn-om ti -n e channe l
en t rance .

The initial displac-ement was oroduced by we i ghts wh i ch transmi t their
load to tine cylinde r vi a a i c t  ring us shown in Fi gur e 33. Becaus e ti-ne
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STRAIN GAGE S ‘ STRAIN GAGES
RIGID STRUT
I

II 
X

j-0.D.:0.125’

GAP : 
~‘8

‘ ‘ ‘ ‘ ‘ ‘ ‘ ~_ x ‘~ ~

~~ I C ’
VIEW ALONG THE CHANNEL

Q65

SIDE VIEW

Fi gure 35. Schematic diagram of experim uiental arran gement and method
of producing i n i t i a l  d i s p l a c e m e n t .
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struts are stiff relative to the elastic supports , the ini tial disp lace-
merit and subsequent  dy n a m i c  response is constrained to be along an arc of
a c i rc le  whose o ri gin is it  the  e l e v a t i o n  of ti-ne elastic supports. How-
eve r , the  motion wm is essentially mu pur e  translation because the maximum
mummp l i t u d e  in the  x-direction was less than 1 percent of tine length of the
struts.

St rain gages mounted on the  f langes  of the H-shaped e lements  were
used to mem i~ iirc- the stem idn- -stznte forces , initial disp lacement  and dynamic
response in the x-di rection. The gages mounted on one of the struts was
used to monitor the dynamic response of the cylinder along its axis.
This la ter  res ponse was kept to a minimu m by a d j u s t i n g  the posi t ion of
ti-ne string along the cylinde r so that no initial displacement was pro-
duced in the ax ia l  di rect ion . Tine w ir i n g  diagrams for all  the gage s and
dimens i ons of ti -ne H - s h a p e d  e l emen t s  are shown in Fi gure So .

The v e l o c i t y -  of t i -n e current  in the  channe l s-as l i m i t e d  by the  ava i l -
able d i scharge . Values  up to 2 fec -I per second w ere  ob ta ined  w i t h  a
1.1-foot w a t e r  depth .  They icc- re ex tended to 2 . 7  feet per second by u s i n g
a w a t e r  depth of 0 .8  foot . The ve loc i ty  w mu s recorded by a K ent  ~i i n i - f l o w
prope l l e r - type current meter tha t  had a propeller diameter of 0 .032 foo t .
It was positioned 0 .50  foot  upstream of the cy l inder  at the e l e v a t i o n  of
t ine  cy l inde r ’ s axi s a long the c e n t e r l i n e  of the ch annel .  The current
meter  was supported b y a track spanning  the wid th  of the ch annel and was
movable in the  v e r t i c a l  di rect ion so tha t  ve loc i ty  prof i les  could be
measured.

2.  Ex ie r i m e n t al  Procedure and Ranges of Vari ables.

a. C a l i b r a t i o n .  The fi rs t step w- m im ; to measure ti-ne damp ing of the
elastical ly supported cylinder in air in order to ext ract the hydro-
dynami c ef fec t on damp ing from the vibration—decay curves im wm u t e i- . This
was done by tapping the cylinde r, which was positioned in an empty channel
as shown in Figure 35, and then measuring its response. The vibration -
decay was fo un d to he exponent ia l  w i th  

~~ 
(pe rcent)  equal to 0 .096.

The method of c a l c u l a t i o n  is d i scussed  i m u t e r .

The second step was to perform a dynamic calibrmntion whose results
could be used to obtain the -added mass from naturmu l frequency- measure-
ments  in w a t e r  and to de te rmine  the  g e n e r a l i z e d  s t i f f n e s s , K~ , of the
dynamic  sys tem w i t h  respect  t o  the  g e n e ra l i z e d  coordinate , X.  The
dy n a m i c  c a l i b r m n t n o n  ucm ns p e r f o rmed in a i r .  h i  f teen  pieces  of 1/ 16-inch
i c -mi d  h u s h i n g  w u n _ c- , each p iece about  5 feet  long and w e i gh i n g  about 0.  10
poun d , were m-. rm ip p c - d a r ou n d  t i- ic ou t s ide  of ti -ic c y l i n d e r .  The n a t u r m u l
frca~uc~n i cy  of t ine  c y l i n d e r  w m n s  m e a su red  w i t h o u t  t h e  w i r e  and a lso a f t e r
each p i ece was added.  The measurements  sen -c o b t a i n e d  fronn t ine  recorded
dynaj in i c response wi - i en ti -ic cyl i u-ide r w m u s  t n i p p e d .  i i i  t hou t  the  w i re  t ine
na t  ura l f r e q u e n c y ,  o~ , was 190 r mt d i a u i s  11cr second  (31 .7  cycles  per
second) ; w i t h  a l l  the w i r e  wrapped ti - ic n a t u r a l  f requency  was 103 radians
pe r  si- con -nd (16 .  I cyc les  per second) .
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The theoretical relationship between the mass of the wire , M,, and
the corresponding oscillation frequency , o~~, can be expressed b y th e
fol lowing equation :

2
M
t 

= M: [ (.
~

) - 1]. (75)

is approximately equal to M~ because the diameter of the cylinder
is small in comparison with the length of the struts. M~ includes the
effects of the cylinde r and its supporting struts .

A strai ght line was obtained when N ; was p lo t ted  ve rs us (a
~

/o
~
)2-1;

its slope M* was measured to he 0.0159 slugs . This equation was then
used to obtain the generalized added mass , M

~m i by replacing o~ with
the  measured na tu ra l  frequency , o

~~
, in w a t e r .  M

~ m is a p p r o x i m a t e l y
equa l to 1’1am because ti-n e added mass of the struts and flanges is small
in comparison to that  of the cy l inde r .  K~ is equa l to

The f ina l  step was to perform a s t a t i c  ca l ibra t ion  in water  whose
results could be used to measure the steady-state drag forces an-nd the
cylinder displacements. A series of known horizontal loads was app lied
to the cylinder under submerged conditions and thorn the corresponding
pen deflections were recorded. This resulted in a s t r a i gh t  li ne relat ion-
ship between load , F, and pen deflection , L~n , defined by F = k0A ,
that was used to measure the steady-state drag forces . The static and
dynamic displacements , X, were obtained from:

X = (k
s
/K;) A

b. Submergence of the Cy linder. One of the requirements was tha t the
experiments simulate condition -is representative of an infinite fluid.
Consequently , it was necessary- to position the cylinder so that effects
of the free surface and imperme able bo t tom be negli gible.

The location of ti-ne cylinder with respect to ti-ne free surface was
d e t e r m i n e d  by measuring the  c o e f f i c i e n t  of added mass, Cam, for different
submergences as the channel was being filled. The procedure was to tap
t h e  c y l i n d er  and measure the r e s u l t i n g  O~~~. ~am was obtained usimg the
method explained previously and Cam was then determined by dividing
Mann by ti-ne equiva lent wm u ter mass of tine volume of the cylinder between
the s t ru ts .

The results are shown plotted in Fi gure 37. Beyond a submergence of
three di an ete rs , Cam remained at a constant value of 1.07. On the  basis
of these resu l t s  a subme rgence of -1 .2 diameters 5 m m used For a l l  t~n e t e s t s .
I-or the 0.8-foot depth the cylinder was closer to ti-n e bottom , 0.36 foot
abov e n , b u t  n o c in an ge  in Cann was detected. C o n s e q u e n t l y - , i t  was
m i ss u med  t h a t  t h e  bottom had no inf lt in-nc e .
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c. Measurement of Steady-State Forces. Steady-s ta te  forces were
measured only for the 1.1-foot-depth case. Seven different centerline
velocities , ranging from 0.40 to 2 feet per second were used. These
corresponded to a Reynolds n umber range from 5.5 x to 2. 4 x 10~ ~it
a t empe rature of 740 Fah renheit for which the kinematic viscosity , v ,
is about l0-~ square feet per second.

d . Cu r rent -Veloci ty  P ro f i l e s .  Lateral  and vertica l profiles were
measured for a centerline current velocity of 1,-! feet per second at mi
position of 0.5 foot upstream of ti-ne cylinder. The lateral variation
was measured at 10 stations spanning the width of ti-n e channel. The
results are shown p lo t ted  in Fi g ure 38. They were used to correct  the
drag coefficients based on centerlin~ veloci t ies .  The ver t ical  p r o f i l e
was measured at ti-ne centerline of the channel . It was found to be
un i fo rm over the e l eva t ion  range of ±2 . O D wi th  respect to the axis of
the cyl inder .

e. Me asu rements of V i b r a t i o n  Decay . Vibrat ion decay of thc cy l inder
fo r ti-n e 1.1-foot depth was measured for three dif  e r ’n t  i n i t i a l  displace-
ments , X0: 0 .00 15, 0,0030 , and 0.0078 foot. Th i s  corresponds to Xo/D
of 0 .012 , 0 .024 , and 0.0625, respect i vel y. Onl y ti -n e maximum valc ue was
tested for the 0.8-foot-water depth . The i n i t i a l  displace m ent was pro-
duced by a wei ght as shown in Figure 35. The string was cut at ti-ne wei ght
by a pair of sharp scissors and the subsequent respomse was recorded.
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Data were obtained in stillwater and flowing water . Eight different
current velocities , up to 2 feet per second , were used for the 1.1-foot-
water depth . Six values were used for ti-ne 0 .8 - foo t -wa te r  depth , four of
which were less than 2 feet per second and the other two reached up to
2.7 feet per second.

3. Analysis and Results.

a. Steady-State Drag Coefficients. The steady-state force measure-
ments were converted to drag coefficients , CD, by the following equation :

C
D 

= 
~ ~2 

~U-2/~~~
) (75)

where

A = projected area of cylinder and flanges,
U = centerline current velocity averaged over t ime ,

u = curren t velocity at any lateral location averaged over time .

The term in the parentheses is the correction factor for CD due to the
nonuniformity of the current velocity across the width of the channel.

~~ is the average value over the width of the channel of time square of
the lateral-velocity - profile of Figure 38 for U = 1.4 feet per m~ccond .
The correction was applied to all CD ’S by assuming the  velocity profi les
for the other values of U were similar.

The resulting CD’s are shown plotted vers as Reynolds n urmnbei- in
Figure 39. The average value is about 0,9 up to a Reynolds n umber of
1 .6 x 1C-~ and about 1.0 for the rest of the range. The contribut ion-n due
to wave resistance was estimated using equations presented by Wehausen
and Laitone (1960) of Havelock ’s (1936) “first app roximation ”. It was
found to be less than-n 1 percent of the measured C0’S .

b. Da~ pin~ and Adde d Mass. Sample records of the v i b r a t i o n  decm iy
data for the 1.1-foot depth are shown in Fi gure 39. The upper two
records werC obtained in stillwater for the maximum and minimum initial
displacenents , respectively . The lower t w o  reco rds were obta~n cd in
flowing water whose velocity was 2 fee t p er  second. Simi l m i r records
were obtained for other veloci ties.

The records sh owed th a t  ti -ic n a t u r a l  f requency in - i  w a t e r  wmus  not
af fec ted  by the ve loc i t y  of ti -n c c u r r e n t  and did not change as t i -ic - u l m u l i l i —
tude of vibration decmiy- c- d; it remained at ti-n e sti li wnu ter value of 1 n
radians pci - second (20 cycles per second) . Consequent ly, tine coeffi cic nn~
of added mass w;us also constnujn t , equa l tO I .07 t h m u t  was  measu red  d u n i  nn g
t ine  sub l i nerger n ce  t e s t s  m i  s t i l l w m i t e r.
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Fi gure 39. Drag coeffi ci ent for still cy l inder.

An i n i t i a l  anal y s i s  i n d i c a t e d  t h m u t  t ine v ib ra t ion -decay  was exponen-
t i m n l in t ime , i m p l y i n g  tha t  ti -n e dannp ing  is due to mu force that is di icc-
tl y proportiona l to the  velocity of the cylinder. This info rmation ,
t o m~L-ther with the results of the static calibration ti-nat showed the
imposed force to be linearl y related to displacement and the invariancy
of ti-nc added mass with respect to the amplitude of vibration , imply mu
l i n e m u r  dynamic  sy s t e m  whose  equa t ion  of mot ion  for free v i b r a t i o n s  can
be w ritten as:

5~(t ) + ~~~~ X(t) + C
2 X ( t )  = 0 , (~77)

wi m c r -.-
* * *= ~~ N - CM + M )+  ~ -

- S S S am v 1 ’

= s t ruc tu r a l  d am nmp ing measured in air ; equal to 0 0000u

= h y d r o d y n a m i c  damping .

Using equation - n 75 and i t - - ~um b- - equent discussion , E~, can be
c \ pr e s sc d  as

= 
2 

+ 
~v i ’

(c c )
s nm
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where t he  firs t te rm is equal to 0 .0004.  was assumed to be equal
to ~ because this first term was less than 5 percent of the measured
values of ~~.

The calculation of ~ was based on the following well-know n solution
of the above differential equation for the initial conditions X(0) = X0
and X(0) = 0 (Biggs , 1964):

-C ~ t
X(t) = X 0e n (~~si nç t + coso t ) .  (80)

For small values of ~ this reduces to:

— C
X ( t )  = X0e C o s Ct .  (81)

If t = 2nr m/ a~ then X(t) coincides with the m-th amplitude , X
~
, (m < 1)

of t he  vibration-decay curve which is given by:

X X0 e 2
~~~~. ( N i )

This relation is also valid for the (in + n)-th amplitude that is scaled
by an arbitrary constant and therefore can be used to obtain ~ for any
part of the vibration-decay record using arbitrary units for ti-n e amp li-
tude.

~ was calculated for each record on the basis of the 16 cycles near
the beginning of the records ti-nat are d e l i n e a t e d  by the arrows in Fi gure
-10. The first few cycles were not used because of d i s tu rbances  created
by cu t t ing  t i -n e s t r i n g .  Equat ion -n  (82) was assumed to represent the
vibration- decay over these 1 cycles except that N0 corresponded to
th e f i r s t amp l i tude  pr ecedi n g t h e 16 cycles . For this purpose \~ will
be denoted by X~ in the following logari thmic veu-sion:

flX~~~~~Lfl X~~ -2 T~~ m (83)

~ as w e l l  as 2-n X~ w er e  assumed unknown  am i d s o l v e d  for by a I c - m i s t -
squared-error procedure. X111 was def ined by one-hal f of t i n e  d i s t a n c e
between a trough and the following crest. This eliminated effects of
fluctuations whose time scale was large r than ti-nc natural period of the
oscillations . For each initial displacement and U two i-ecoi -Js ~ erc
avai l able and conse~~i en i t 1y  two va lues  of ~ were  c a l c u l m u t c - d . These
were averaged for plotting purposes .

Ti-n c values of ~ are shown p l o t t e d  in  F i g u r e  41 t e n - s os U mmm d ,i n n
o s c i l l a t i o n - n  S t rouha l  numb ci - , a~~D / 2 T T ( J .  The v a l u e s  c o r r e s p o n d i n n g  to

= 0. 00030 foot are no t  shown he e mu um-m e they w e r e  ess c- n u t  i a 1 ly t ine  ~ m mme
as for the  o ther  two N 0 ’ -s excep t  for  t h e  twe l a rge s  v a l u e s  of 1~I .
In th is  casc- , ~ p l o t t ed  between t hose c o r r e sp o n d i n g  to = 0.0015 and
1). (1078 foot
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4. Discussion of Results.

a. Comparison of Damping with Predictions Based on the Modified
Morison Equation. The differential  equation of motion for free vibra-
tions of the cylinder in a steady current for the case where the viscous
forces are represented by the drag-force interaction term of the modi fi ed
Morison equation is given by:

C (P/2 )A
x + 

D I~:-ii I (k— lb + a2 x =  0 , (84)
n

where

* * *M = M  # Ms am

(In this equation structural damping is not included.)
If X << U, the equation can be linearized to yield the following
approximation:

• C PP~U 2D -  k + ~~~x =0. (85)

Comparing the damping force of this equation with that of equation (77)
implies that

c PAiJ
D 

(86)
2 a M

Assuming that  the average CD is equal to 1.0 , as m&~~sured from the
st eady-state  forces , this equation becomes equal to:

• = 2 .48 U. (87)

Fi gure 40 shows that the theoretical results overpredict the measured
• values . The me asured values increase gradually to about 1.8 feet per

second and then become asymptotic to the predicted results for wh ich CD
is about 0 .25 .

The dotted line represents theoretical results obtained from a
numerical solution of the “exact” equation (equation 84). A fourth-order
Runge-Kutta technique (Hamming, 1962) was used with a time step equal to
1/20th of the natural period of oscillation . The accuracy of the numer-
ical method was checked by applying it to solve equation (77) for which
an analytical solution could be obtained. The numerical and analytical
results were indistinguishable for this time step . Therefore , the nuiner-
ical method was assumed valid for the exact nonlinear equation. The
numerical solution showed that the vibration-decay was not exponential.
Therefore, the dotted line does not have the same meaning as for the
linear system; it simply indicates when the linearization becomes valid.
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b. Interpretation of Comparison. It can be shown by use of dimen-
sional analysis that the force acting on a submerged cylinder that is
forced to oscillate with an amplitude X0 in an oncoming current can
be specified in terms of the following three parameters : (a) X0/D ;
(b) o~D

2/v; and Cc) o~ D/2irU.

The significance of the first two parameters can he understood best
if they are interpreted for the case of no current. The first parameter
is a measure of the ratio of the force due to the local acceleration of
the fluid to that due to the convective acceleration. It can also be
interpreted as a measure of the distance that vorticity , generated by
the cylinder, is convected in relation to D during one cycle of oscil-
lation. If it is small , then according to Batchelor (1967), the vor-
ticity cannot be convected too far away from the cylinder before the
convection velocity reverses thereby generating vorticity of the opposite
sign. Consequently , no net vorticity is generated. Keulegan and
Carpenter (1958) have shown experimental ly that this parameter controls

• the generation of vortices in the wake of a fixed cylinder that is sub-
jected to an oscillating flow field (in this case, X0 is the amplitude
of the water particle excursion) . The second parameter is a type of
Reynolds number. It is a measure of the distance that the generated
vorticity of one sign diffuses with respect to D during one cycle
(Batchelor , 1967). In order for the vorticity to be confined in a
boundary layer this parameter must be much larger than unity (Wang, 1968).

For most practical situations in which the cylinder is oscillating
( rather than the external flow) X0/D w i l l  be s ign i f i can tly less th an
one and ci~ D2/v w i l l  probably be larger than l0~~. In that cas e the

• vort icity w i l l  be contained in a boundary layer. As a consequence sep-
aration of the boundary layer will be inhibited and the rest of the flow
field will be irrotational. This implies that in still water the added-
mass forces can be adequately predicted by potential theory and the
viscous forces can be calcul ated by using linear boundary-layer theory
in which the convective accelerations are neglected.

The results of the experiments in this section verify the latter
V 

conclusions regarding the forces in still water. Figure 37 proves that
• potential theory adequately predicts the me asured coe fficient  of added

mass for the case of large sub mergence . The viscous forces are also
adequately predicted.  Calculations using Batchelor ’s (1967) result for
the viscous force yielded a value of 

~vj ( ~
) = 0.46 wh ich gives ~(%) = 0.50

when corrected for structural  damping by use of equation (79) .  This
latter value is close to the measured value of 0.70 .

The effect of the current is defined by the third parameter , herein
re ferred to as the oscillation Strouhal nuther, S0. Lighthill (1954)
and Pedley (1972) studied the importance of this parameter in def in ing
the flow in the boundary l ayer for the case of a fixed cylinder in a
current with  superimposed fluctuations . The velocity of the f luctuat ions
was taken to be always less than or equal to the mean current so that
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flow reversal would not have to be considered. Their conclusions apply
as well to the case where the cylinder oscillates in a steady current .
They show that the quasi-steady assumption is approached as this param-
eter becomes small. But at the other extreme , wh en the parame ter becomes V

large , the oscillatory boundary layer is contained within the boundary
• layer caused by the mean current and there fo re the two flow fields may

be considere d independent .

• According to the foregoing anaiysis , the present experimental results
for damping, as plotted in Figure 41, are in the reg ion for wh ich the
quasi-steady assumption is not valid. This appears to explain qualita-
tively the difference between the damping predicted by the drag-force
interaction term and the measured values . The increase of ~ with
decreas ing S0 indicates that interaction of the oscillatory flow with
the mean curren t becomes increas ingly important and acts to incre ase the
damping. The mechanism invo lved in causing the increase of E~ cannot

• be determined fro m this data; howeve r , the gradualness of the increase
suggests that it is due to increased shear stresses caused by the
interaction .

The validity of the quasi-steady assumption for low values of S0
has been shown by Parkinson and Modi (1967) and Novak (1969). They
present data on the transverse respons e of p r i smat ic  cylinders to steady
wind and show comparisons with the quasi-steady predictions. Good agree-
ment is found provided the vortex shedding frequency , o

~
, is suffi-

ciently high w ith respect to the natural frequency of the cylinders .
The required separation distance of the two frequencies depends on the
shape of the cylinde rs .

The implications of the present data and current understanding of
the interaction problem on damping of offshore platforms are not entirely
clear. As stated at the beginning of this section the major part of the

• damp ing implied by the drag- force interaction term w i l l  occur during the
passage of the largest waves . In th at case , S0 could be calculated in
order to see if the damping mechanism is operative. U could be assumed

.4 to be equal to the maxi mum water particle ve loc ity at the I~fi~L for a wave
whose hei ght and period is the s ignificant hei ght and significant period ,
respectively, corresponding to the design condition. If the resulting
S0 is much lower than 0 .20 (the va lue at wh ich o~1 = o v) then the quasi-
steady assumption may be valid and the damping mechanism operative .
Otherwise vortex shedding may provide additional excitation energy if
S0 is too close to 0.20 and the damp ing may be insi gn if icant  if S~ is
much h igher than 0.20.

c. Effect of Current on Added Mass. The coefficient of added mass
was not affected by the current and was equal to the potential theory
value. This was also discovered by Protos, Golds chmidt, and Toebes (1968)
for forced oscillations of circular and triangular cylinders in the direc-
tion transverse to an oncoming current. Their experiments covered the
range of cn/av from 0 to 2.0; their relative oscillation amp litudes ,
X0/D, were less than 0.072. It appears that potential theory is valid
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for predicting coefficients of added mass provided the oscillation ampli-
tudes are small in comparison to the cylinder diameter. The motion of
the surro un ding water does seem to influence the potential  theory values .

V. SUMMARY AND CONCLUSIONS

A theoretical and experimental study was undertaken to investigate
the “added mass” and hydrodynami c damping for offshore plat forms .

Classical potential theory with linearized boundary conditions was
used to formulate the steady-state dynamic response problem for a plat-
form idealized by a vertical surface-piercing cylinder of constant
diameter in finite water depth . The hydrodynamic forces due to wave-
making and added mass were investigated as a function of oscillation
frequency , cylinder diameter, water depth , and mode shape . Importance
of waveinaking as a damping mechanism was investigated for idealized and
prop osed platforms. The following findings were made :

1. The nondimensionalized wavemaking force and the coeffi-
cient of adde d mass are functions of only two parameters , kh
and ka or al ternatively , a 2h/ g  and D/h , and the mode
shape ip(y) .

2. The wavemaking forces may be considered localized in
the near-surface zone for most practical applications . In
that case the force depends on only one parameter , F0 =

and may be considered independent of node shape.

3. The coefficient of added mass consists of two components :
(a) a “local” component concentrated in the near-surface zone and
(b) an “overall” component that  extends over the total water
depth . As a result the coe ff ic ient  depends on both parameters

• and the mode shape and varies with respect to elevation . It
ranges from values si gnif icant ly greater than one all the way

• to negative values . A uniform value of 1 may be used over
all elevations if D/h is less than 0.01.

4. The effectiveness of wavemaking as a damping mechanism ,
specified in terms of fraction of critical damping, E~~, depends
o n e , h , D , ~p(y)  and the structural mass. Values of damping
ranging from 2 to 4 percent of c r i t i ca l  could be a t ta ined for

t platforms that have natural  periods of about 4 seconds in a
water depth of 600 feet provided the cyl inder  diameters are
larger than 30 feet.

5. Damping for a number of proposed p la t fo rms  proved to
be negli gible because the di ameters in the near-surface zone
were smal l .

[~xperiment s were conducted to ve r i fy  the w avemaking  and added-mass
forces predicted by the po t en t i a l  theory . Ri g id  ver t ica l  cylinders were
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oscillated with simple-harmonic motion in a translation mode . The oscil-
lations were performed in still water. Total forces and radiated waves
were measured. The following findings were made :

1. The measured wavemaking forces compared very wel l  wi th
the theoretical predictions . In the range where deepwater waves
were generated al l  the measured values plotted on one curve as a
function of F0 irrespective of the cylinder di ameter and water
depth .

2.  The measured coefficients of added mass also compared
very wel l  w i t h  the theoretical predictions .

3. Wavemaking forces derived from the measure d radiated
waves were on the average underestimated by 20 percent .

4. Exte rnal hydrodynamic forces on o s c i l l a t i n g  bodies can
be reliab ly measured provided li ghtweight  mater ia l  is used for
the bodies and great care is taken in des igning the me chanical
equipment so that all components are rigid.

An experimental study was made in an attempt to veri fy the hydrody-
namic damping implied by the drag-force interaction term of the modified
Morison equation . Decay of vibrations and the corresponding hydrody-
nainic damping were measured when an elastically supported circular
cylinder was given an initial displacement and then suddenly released.
The cylinder was completely submerged and its motion was constrained to

V be in the direction of an oncoming current. Coefficients of added mass
were also measured. The following findings were made :

1. The drag- force interaction term predicted damping
values that were about 4 times as large as the corresponding
measured values . However, boundary-layer theory indicates
that the quasi-steady assumption in the modi fied Morison
equation is_valid only whLr1 the oscillation Strouhal number ,
S0 = a~ D/2ir U , approaches zero . Consequently , the disagre ement
between me asure d and predicted values of the damping is probably
due to the fact that  S0 was large for the experiments .

2. The measured coefficien t of added mass corresponded
to the potential theory value for all current velocities .
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APPEND IX A

THE FUNCTIONS l’1(x), P-,, \SH P3

Computer results for these functions are plotted in the figure to
this Appendix . The following are approximate representations of these
functions , accurate to within 1 to 2 percent , for large and small
arguments. They are deri ved using a combination of computer results
and expansions of Bessel functions as given by Dw ight (1961) .

2/ ~r x(a) P1 (x) = 
J’j (x)2 + Y~j (x)

2

for x < 5; P1 - x 3

for x > 2; P1 1.0

(b) P 2 (x) = - [J 1(x)J1(x) + Y 1(x)Y’j(x)]/[J~ (x ) 2 + Y~~(x ) 2]

for x < 3; P2 x

for x > 3; P2 l/ 2 x

(c) P3(x) = - K 1(x)/K~ (x)

for x <  .2 ;  P 3~~~ x

for x > 20; P3 ~ 1.0
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The functions P 1 (x), P2 (x) , P3(x).
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APPENDIX B

EQUATIONS USED TO CALCULATE R~m

For any mode sh ape:

R~ {(~)~~1 rG (kh)P (ka ) coshk (y+h)
am h a i L O  2

—h - .

+
~~~~~~~~ 

G(~~~ ) P 3
(~~ a ; c o s % ( h +Y) ] ~~~~)dy}/5( 

~ J ~~~~~~~~

1. Cantilever mode; ~ (y) = 1 - cos r/2(1 + y/h) .
( V~~)

(a) ~ 1 2 
- 0. 228 .

2
* 2 .~~,2 kh r ir(kh)

(b ) R = (1/ . 228) {kh (s inhkh coshkh +kh )L 1_ 2tanhkh [ (kh) 2
+( ~ ) 2)

+ 2(~.’\ 
S1I1~~~~~ h 

V

ka ~aj  L 
~~ h)

2(sin~ hcos~ h+~~ h)
i n l  m m m in

I rr(o~-h) 2
- 

2tana
~
h((

~
)
2_ (h)

2)l 
P3
(~~a)} .
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2. kiter ~~E.s; 4~(y) = sinh ii/2( 1 + y/h ): n 3, 5, and 7.

(a) 
~ 

j’ *~
(y) =

~~~~~
.

n+l

+ (-1) 2 kh si nh kh.12

(b) = 5i~hkhCøShkh+kh 
[ 2 

(kh)2 
+ (~~n) 2

~~~~~ 4fh\ 
P3
(~~a)

(ka) + 
~a)  L sino~ heo s~ h+~ h

in m inm 1

n -f l

(—1) 2 
~- h s i n a h 2

L (~
TT
)
2 

- (~~ h ) ’~

I
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