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CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI)
UNITS OF MEASUREMENT

T T T P —y

U.S. customary units of measurement used in this report can be converted to metric (SI)
units as follows:

Multiply by To obtain
inches 25.4 millimeters
2.54 centimeters
square inches 6.452 square centimeters
cubic inches 16.39 cubic centimeters
feet 30.48 centimeters
0.3048 meters
square feet 0.0929 square meters
cubic feet 0.0283 cubic meters
yards 0.9144 meters
square yards 0.836 square meters
cubic yards 0.7646 cubic meters
miles 1.6093 kilometers
square miles 259.0 hectares
acres 0.4047 hectares
k foot-pounds 1.3558 newton meters
B ounces 28.35 grams
E pounds 453.6 grams
fd! 0.4536 kilograms
“ ton, long : 1.0160 metric tons
:: ton, short 0.9072 metric tons
[\ degrees (angle) 0.1745 radians
E Fahrenheit degrees 5/9 Celsius degrees or Kelvins'

'To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use formula: C = (5/9) (F — 32).
To obtain Kelvin (K) readings, use forumla: K = (5/9) (F — 32) +273.15.




SYMBOLS AND DEFINITIONS

projected area of horizontal cylinder and flanges;
equation (76)

cylinder radius

coefficient of "added mass"
coefficient of drag
coefficient of inertia

nondimensional amplitude of the total force on vertical
cylinder due to a periodic incident wave; equation (60)

nondimensional amplitude of the total wavemaking force
for translational mcde of oscillation; equation (40)

Cam averaged over the water depth

generalized daﬁping coefficient; equation (23)
generalized structural damping coefficient
cylinder diameter

dynamic magnification factor; equation (61)
ov¥D/g

amplitude of the total wavemaking force for the
translational mode of oscillation

amplitude of the total viscous force for the
translational mode of oscillation

steady-state drag force

generalized hydrodynamic force acting on cylinder;
equation (8)

generalized force due to incident wave; equation (20)

distributed hydrodynamic force acting on vertical
cylinder

distributed '"added-mass'" force

distributed wavemaking force




SYMBOLS AND DEFINITIONS--Continued

fg distributed force due to incident wave

G function of amh and Y(y); equation (35)
Go function of kh and y(y); equation (33)
g acceleration of gravity

H wave height

/
Hgl), Hgl) Hankel function of the first kind of order one and its
first derivative

/
ng), ng) Hankel function of the second kind of order one and its

first derivative

h water depth

Im(b) imaginary part of a complex number, b

Iy modified Bessel function of the first kind of order one
i integer; also the complex number V-1

Jl, Ji Bessel function of the first kind of order one and its

first derivative

Ky, K3 Modified Bessel function of the second kind of order i
one and its first derivative

K& generalized structural stiffness
k wave number
ji L wavelength
P M; lumped structural mass at elevation y; where i is

an integer

Mam total added mass

M* generalized total mass
Mg generalized structural mass

m integer

N number of vertical legs supporting platform

n integer
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SYMBOLS AND DEFINITIONS--Continued
functions of Bessel functions; defined in Appendix A
dynamic pressure acting on cylinder

dynamic pressure acting on cylinder due to its motion

dynamic pressure acting on cylinder due to wavemaking;
equation (36)

dynamic pressure acting on cylinder due to added mass;
equation (37)

real part of the complex number b

effective coefficient of added mass for mode-shape
Y(y); equation (55)

radial coordinate; Figure 2
oscillation Strouhal number, an/Zwﬁ
period of oscillation

time

velocity of the current at the centerline of the channel
averaged over time

horizontal component of the wave water particle velocity
and acceleration, respectively, at x = o as if the
structure were not present

displacement, velocity and acceleration, respectively,
of vertical cylinder at the mean water line; also, the
displacement, velocity, and acceleration, respectively,
of horizontal cylinder .

oscillation amplitude at the mean water line for the
vertical cylinder; also, the initial displacement of
the horizontal cylinder

amplitude of dynamic response

amplitude of static response

horizontal coordinate and the displacement of the
vertical cylinder at elevation y with respect to

1ts mean position; also, the argument of the functions
Pl’ Pz and P:’)
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SYMBOLS AND DEFINITIONS--Continued

velocity and acceleration, respectively, at elevation y,
of the vertical cylinder

amplitude of radiated wave

Bessel function of the second kind of order one and its
first derivative

vertical coordinate; Figure 2
ith elevation

horizontal coordinate; Figure 2

nth root of the equation oc2?h/g = - aph tan aph,
where oyh = 0 and m="1, 2, ... «

angular coordinate; Figure 2
kinematic viscosity
fraction of critical damping
fraction of critical damping due to structural effects
fraction of critical damping due to wavemaking
fraction of critical damping due to viscous effects
mass density of water
radian frequency
natural frequency in water
natural frequency in air
velocity potential

b1, %ps op velocity potential due to the incident wave, due to the
diffracted wave and due to the motion of the body,
respectively

¢g = 91 + ¥p velocity potential due to the interaction of the
incident wave with a motionless vertical cylinder

oR spatial part of %g; equation (26)

mode shape of the vertical cylinder




HYDRODYNAMIC DAMPING AND '"ADDED MASS'" FOR FLEXIBLE OFFSHORE PLATFORMS

by
Charles Petrauskas

I. INTRODUCTION

The discovery of oil in water depths up to 1,000 feet is one of the
primary factors that has stimulated research on the problem of dynamic
response of fixed offshore platforms. In water depths less than 400 feet
a static design based on the force due to an expected maximum wave during
the lifetime of the platform is usually sufficient to guarantee a stiff
platform whose first-mode frequency is sufficiently high so that dynamic
response due to waves can be neglected. However, in deeper water eco-
nomical static designs will tend to decrease the first-mode frequencies.
For example, Burke and Tighe (1972) cite first-mode frequencies of 2.6,

1.7, 1.4, and 1.0 radians per second for proposed platforms in water depths
of 400, 600, 800, and 1,000 feet, respectively.

Wind-generated waves are a major source of frequency-dependent energy
for the dynamic excitation of these platforms. The energy of these waves
is usually specified by a spectral density function (wave spectrum) that
defines its distribution as a function of frequency o, and direction, 6.
The one-dimensional (integrated over 8) spectrum that was developed by
Pierson and Moskowitz (1964) is commonly used. It is a unimodal function,
defined either in terms of windspeed or the significant wave height. The
effect of increasing windspeed is to increase the energy level at the peak
and shift the peak to lower frequencies. The wave energy for frequencies
above the peak has been measured by many investigators (Phillips, 1966)
and postulated by Phillips (1958) on the basis of dimensio al analysis to
be proportional to 0~>, These same measurements appear to show that the
factor of proportionality is a universal constant. However, this has been
recently disputed by measurements of Barnett (1972) that show the factor
to be dependent on fetch in such a way that for short fetches the factor
and consequently the wave energy can be up to 10 times higher.

The combination of decreasing first-mode frequencies and the variation
of wave energy with respect to frequency implies that dynamic response
could be a significant factor in the design of these platforms in deep
water.

1. Present Representation of Hydrodynamic Forces on Flexible Platforms.

To study the effect of surface waves on dynamic response requires an
equation that defines the forces on the members of the platform. The
presently used representation of hydrodynamic forces on flexible platforms,

- - == | ".' ;
— o o 5 e s ¥ A
BN~ ISEETN d | Bl

3 2 \
L3 ” NOT FILMED
| 718 BT FIUED.

———

D




e

as defined by the horizontal force, df(y,t), on an element, dy, of a
vertical structural member whose motion is constrained in the x-y plane
(Fig. 1(a)) is given by the following equation:

2 2

m . m" ..
df(y,t) —{CI PTu(y,t)-Ca P = x(y,t)

m

+CD-p—2D— juty,t) = x(y,) | [uty,t) -x(@y,t)] }dy. (1)

where

€3 = coefficient of inertia,

(@]
[}

am = coefficient of "added mass,"
Cp = drag coefficient,
u, u = horizontal components of the wave water particle
s . p C r p
velocity and acceleration at x = 0 as if the

structure were not present,

and

X, X = velocity and acceleration of structural member.

The equation as written applies to unidirectional waves traveling in
the x-direction that are either periodic or random. If random, the equa-
tion is assumed valid for a realization of the stochastic process defining
the surface waves. For a nonvertical member and multidirectional seas the
equation may be used to define the force in the direction of the member's
motion, assumed to take place in the plane that is normal to the member's
undeflected orientation, provided the component of the fluid's motion is
also in the same direction.

The equation is a modification of one that was developed by Morison,
et al. (1950) for wave forces on a rigid vertical piling. The modifica-
tion attempts to take into account the forces due to the velocity and
acceleration of the structural members. The equation will be referred
to as the "modified Morison equation."

a. Rationale. The first two terms of the equation represent the
effect of the relative acceleration between the structural member and the
fluid. Their appearance as additive terms proportional to G and X,
respectively, can be explained by use of potential theory if each differ-
ential element, dy, of the vertical cylinder is considered moving with
an acceleration X in a two-dimensional uniform flow field having an
acceleration a (Fig. 1(b)). Batchelor (1967) derives the force on an
arbitrary body in an inviscid fluid by selecting an accelerating frame of
reference such that the velocity of the fluid in this frame of reference
is zero far away from the body. Then the force on the body is found to

e ———
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(b)

Figure 1. Definition sketch €or modified
Morison force equation.




consist of two parts. The first part is an effective "buoyancy' force
due to the pressure gradient needed to accelerate the fluid. The second
part is identical to the '"added-mass' force on a body moving in a still
fluid with an acceleration X - U. The net force on the circular cylinder
in Figure 1(b) can then be expressed by:

2 2
[ e wole, @

where C,;, = 1. Comparing this result with the first two terms of equation
(1) shows that they are identical provided Cy = Cyp + 1.

The effect ~f relative velocity is represented by the third term of
equation (1), defined here as the drag-force interaction term. Its form
is that of the drag force on a circular cylinder in a steady flow of
viscous fluid at high Reynolds number. At each instant of time the drag
force is assumed to be the same as in a steady flow of velocity u - X.
This quasi-steady approach has been used successfully to predict trans-
verse oscillations due to a steady wind of elastically supported prismatic
cylinders for the situation where the vortex shedding frequency is much
higher than the natural frequency of the cylinder (Parkinson and Modi,
1967; Novak, 1969).

b. Implications. The present force equation implies two effects due
to platform motion. The added-mass force, being proportional to X,
implies an increase in the effective mass of the platform and therefore
lowers the modal frequencies. Because of the rate at which wave energy
decays with increasing frequency, any lowering of the first-mode frequency
provides a large increase in the amount of wave energy that is available
for dynamic excitation.

The assumed form of the drag force interaction term implies the exist-
ence of hydrodynamic damping. This can be clearly seen by imagining that
the platform is excited by random waves such that on the average X << u
and sgn(u - x) ~ sgn u. Then the following approximation can be made to
the drag-force interaction term to isolate the damping effect:

PD

CD_Z— ‘u—:’c‘ (u-x) a-.CD%Q lulu-CD PDIu‘)’:. ' (3)

The term CD pD|uli is a positive damping force because being proportional
to |u| it always opposes the velocity of the platform members. Its
proportionality to Tu] also implies that the damping increases with
increasing wave height.

c. Applications in the Literature. The present equation has been used
in a number of theoretical studies to evaluate the importance of dynamic
response and the hydrodynamic damping implied by the drag-force interaction
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term (Shubinski, Wilson, and Selna, 1967; Selna and Cho, 1972; Foster,
1970; Burke and Tighe, 1572; Malhotra and Penzien, 1970; Penzien, Kaul,
and Berge, 1972). The coefficients C; and C,, used by the investi-
gators, usually have corresponded to the two-dimensional values of 2 and
1, respectively. In instances where specific values were not cited the
authors assumed that Cap = Ct - 1. Cp ranged from 0.7 to 1.4; in some
cases specific values were not given. The most informative studies were
made by the latter three groups of investigators. They show that a
dynamic analysis is important for deepwater fixed platforms, and that
the hydrodynamic damping can be significant.

The equation has also been used to predict dynamic response of plat-
form models in the laboratory. Nath and Harleman (1969, 1970) studied
the response of vertical cylinders and multileg platforms to incident
pericdic and random unidirectional waves. Measured response compared
well with the theoretical predictions based on the equation without the
drag-force interaction term and C; and Cgp equal to 2 and 1, respec-
tively. The good comparison was in part fortuitous for the following
three reasons: (a) Use of cylinders whose diameters were sufficiently
large compared with the wave heights so that inertial forces predomi-
nated, (b) use of plastic cylinders whose damping was large so that
hydrodynamic damping was masked, and (c) use of structural mass that
was large compared with the added mass so that results were insensitive
to free-surface effects on added mass. :

2. Objectives and Scope of Research.

In view of the possible importance of dynamic response, research was
undertaken to develop information on added mass and hydrodynamic
damping.

The major part of the research was directed toward developing quanti-
tative information on the effects of the existence of a free surface which
causes the coefficient of added mass to vary with elevation and permits
the generation of waves by the oscillation of structural members that are
located in the near-surface zone. This latter effect acts as a damping
mechanism because energy of the generated waves radiates away from the
platform. A vertical surface-piercing circular cylinder was chosen as
an idealization of the platform because the vertical members forming the
legs of the platform are usually larger in diameter than the horizontal
and diagonal bracing. Consequently the forces due to wavemaking and
effects of the free surface on the added mass will be most important for
these vertical members. In some cases the platform itself may consist of
a single vertical column.

In Section II, classical potential theory with linearized boundary
conditions is used to derive the differential equation of motion for the
dynamic response of the circular cylinder to incident waves. The mode
shape of the cylinder is assumed known a priori in order that the response
could be considered from the point of view of a single-degree-of-freedom




system. The wavemaking and added mass forces are derived and studied as
a function of cylinder diameter, water depth, oscillation frequency, and
mode shape. Energy dissipation due to wavemaking is examined and its
importance evaluated for fixed offshore platforms.

Section III discusses the experimental program to verify the results
of the potential theory. Rigid vertical circular cylinders were oscil-
lated with simple-harmonic motion in a translational mode. The resulting
external hydrodynamic forces and the generated waves were measured and
then compared with the theoretical results.

The oscillations were performed in stillwater and consequently the
verification is a limited one because a prototype structure in nature
oscillates in an incident wave field. However, for the linearized
boundary conditions the velocity potential and consequently the forces
due to the incident waves are theoretically independent of the motion
of the structure. Some experimental evidence of this independence for
models of ship hulls is given by Vugts (1968).

A smaller part of the research is devoted to an experimental study
aimed at verifying the hydrodynamic damping implied by the drag-force
interaction term in the modified Morison equation (Sec. IV). An elas-
tically supported horizontal cylinder was positioned within an open
channel so that its axis was normal to the direction of a steady current.
The motion of a cylinder was constrained so that the oscillations were
in the direction of the current. It was located deep enough so that
the free-surface effects were considered unimportant. Dynamic response
to an initial displacement was measured for a range of current speeds.
The measurements are compared with the damping predicted by the drag-
force interaction term. Added mass was also measured as a function of
current speed. The experiment was designed so that the natural frequency
of the elastically mounted cylinder was much higher than the highest
frequency of vortex shedding. This was done to avoid any possible feed-
back due to vortex shedding.

Vortex shedding was not studied although it could be an important
mechanism for providing additional excitation energy at the modal fre-
quencies of the platform. Bidde (1970) and Wiegel and Delmonte (1972)
present laboratory measurements of transverse forces on rigid vertical
circular cylinders subjected to unidirectional periodic waves. They
show transverse forces up to 60 percent of the inline forces. Bidde's
results for deepwater waves appear to show that the ratio of transverse
force to inline force depends on the ratio of wave height, H, to
cylinder diameter, D. This dependence on ' H/D seems reasonable because
Keulegan and Carpenter (1958) show that the initiation of vortex shedding
and the number of vortices shed depends on the excursion of the water
particle relative to D. The frequency of vortex shedding in waves is
not well known. The data of these investigators show average frequencies
of 2 to 6 times the wave frequency. For large values of H/D, such that
a large number of vortices are shed, an estimate of frequency can be made




by using the Strouhal number of 0.25 measured by Roshko (1961) for steady
flow at supercritical Reynolds number. Then for deepwater waves, if the
maximum water particle velocity at the mean water line (MWL) is used, the
vortex shedding frequency is approximately 2(H/D) times the wave fre-
quency. In that case vortex shedding may act as a mechanism for trans-
ferring energy from low-frequency waves to the structure at high frequency.
The level of this energy at the first-mode frequency could be much higher
than that available directly from the surface waves because most of it
would be supplied by the larger waves with frequencies centered about the
peak of the wave spectrum. It seems that such a mechanism of energy trans-
fer would be important for unidirectional waves, but it is not clear if it
could be effective in random multidirectional seas.

II. POTENTIAL THEORY MODEL FOR DYNAMIC RESPONSE OF PLATFORMS

Classical potential theory with linearized boundary conditions is used
to formulate the steady-state dynamic response problem for a platform
idealized by a vertical cylinder. The hydrodynamic forces due to wave-
making and added mass are investigated in detail and used in the equation
of motion to study the importance of wavemaking as a damping mechanism
for idealized and actual platforms.

1. Idealization of Offshore Platform.

The platform is idealized by a single vertical surface-piercing
circular cylinder of diameter, D, with the deck mass, M;, concentrated
at an arbitrary distance, y;, above the MWL. It is assumed to respond
dynamically predominantly with a mode shape ¥(y) only in the x-y plane.
Y(y) 1is defined such that y(0) = 1.0. The deflection of the platform
is assumed infinitesimal so that the platform behaves as a linear system.
Figure 2 is a definition sketch and presents the coordinate system that
is used.

2. Differential Equation of Motion.

With the above assumptions the dynamic system can be simplified to an
equivalent single-degree-of-freedom linear system with a generalized struc-
tural mass, M, generalized structural stiffness, K&. and generalized
structural damping, C}), excited by a generalized force, F*(t). The
generalized displacement is X(t), the deflection of the cylinder at the |
MVL. The differential equation of motion for X(t) is then given by:

. . 2 * *
= 4
X(t) + 2§s cs X(t) + ch(t) F (t)/Ms s 4
where
Og = /K;?Mg = radian natural frequency of the system in air, (S)
Eg = Cg/ZMgos = fraction of critical damping in air, (6)
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Figure 2. Definition sketch and coordinate system.

20

- o ——— g AP s — N —— —
- p T
h g . i




The structural damping of the platform in air is specified in terms
of a single quantity, &g. This representation of damping is commonly
used in the modal method of dynamic response analysis where £g is
specified for each mode. A more detailed representation of structural
damping is not used or warranted because there is at present no method
for specifying in detail the energy dissipation capabilities of all “he
members and connections in a structure. The values of &g wused in prac-
tice are based on experience and on the few data that are available from
shaking tests of land structures, such as reported by Hoerner and
Jennings (1969). In this study the specification by &g is partic-
ularly convenient because the hydrodynamic damping due to wavemaking can
be specified in equivalent terms and thereby comparisons can be made.

The generalized quantities M# and F*(t) are derived by the appli-
cation of the principle of virtual displacement, first formulated by Jean
Bernoulli in 1717. In essence it states the following: If forces acting
on a structural system are in equilibrium, and if the system is subjected
to a virtual displacement compatible with the geometric arrangement or
kinematic constraints, then the total virtual work done is zero. Appli-
cation of this principle to the dynamic system of Figure 2 yields the
following:

Y1
* 2 \ 2
M, = fms(y) ¥ (y)dy + ZMi vy, (7)
-h i

where
mg (y) = distributed structural mass per unit length,

M; = concentrated mass at elevation Y

and
y1
* £
F (t) = J fly,t) y() dy, (8)
-h
where

f(y,t) = distributed hydrodynamic force per unit length.

F*(t) is the generalized hydrodynamic force acting on an oscillating
cylinder in the presence of surface waves. The water is assumed inviscid
so that f(y,t) is derivable from a velocity potential ¢(r,8,y,t). With
the further assumption of linearized theory, f(y,t) can be calculated
by integrating the pressure, p(r,6,y,t), corresponding to ¢, around
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the circumference of the cylinder at its mean position, r = a. The
following equation results:

2n
f(y,t) = -a I p(a,8,y,t) cosd d9. 9)
(]
The relationship between p and ¢ according to linear theory is given
by:
p=- Po3/ct - pgy. (10)

This relationship is derived by integrating the Euler equations of motion,
yielding Bernoulli's Law, and then neglecting the higher order terms that
are due to convective acceleration. Then,

0 2n
F*(t) = f f Padd/ 3t |r=a Y(y) cospdbdy. (11)
-h 0

Consistent with linear theory, the integration with respect to y extends
only to the MWL, and consequently the hydrostatic pressure in equation
(10) has no net effect.

According to linear theory (Wehausen and Laitone, 1960) ¢ can be
represented as the sum of three velocity potentials:

=0 % QD & QB’ (12)

where ¢; is the potential of the incident waves, ¢ is the potential
of the diffracted waves, and ¢g 1is the potential due to the motion of
the cylinder. The physical interpretation is that OF ® Opy = $p iS5 the
velocity potential due to the interaction of the incoming wave with a
motionless vertical cylinder and ¢ is the velocity potential due to
the motion of the cylinder in a disturbance-free fluid. Substitution of
equation (12) into equation (11) then yields:

0 2n

*

Fa = [ [apae re/et] | 460 coseasay. (13)
~h O

For the steady-state case of simple-harmonic motion defined by:

x(t) = x 0e'%, (14)
where

X

amplitude of the cylinder oscillation at y = 0,

radian frequency of oscillation,
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the dynamic pressure, Py> due to the motion of the cylinder can be

decomposed into two parts that are proportional to X(t) and i(t),
respectively, as follows:

EEe. it
P = PoéB/atlr=a=q0(a,8,y)e

=qy(@,6,y) X(t) +a,(a,8,y) X(0), (15)

where qy is complex but q; and q, are real. Then the generalized
force becomes:

0 2%
* =
Fr(t) = _f f alPag./at|
-h 0
- q, % (t) - q25<'(t)] cosb y(y) dedy, (16)
where
21
- I a q, cos8X(t)ds , 17}
0

is the distributed wavemaking force, fu(y,t), per unit length of the
cylinder. It is an energy dissipation term because it opposes the
cylinder velocity. The term:

2m
- 'f aq, cosBX (t) dé , (18)
0

is the distributed added-mass force, fam(y,t), per unit length of the
cylinder. It has the same effect as the inertial force due to structural
mass.

Incorporating equation (16) into the equation of motion yields:

"3 % h i & 4 )\ * Y
X (t) +zon[§5.\ts/(ms : "Iam) + Ew] X (t)

2 * * *
+0 X(t) = FG(t)/(nIS M), (19)

e




where
Fé(t) = generalized force due to the diffraction of the
incident wave on a motionless cylinder
0 2n
= 2
af _[ Pa§./3t| _ cosey(y) dedy, (20)
-h O

MXn = generalized added mass

0 2nm
r
= j J aaycos8 y(dedy, (21)
=h @
g = radian natural frequency in water
y ¥.7 o * *
= ,\/xs/\ms U (22}
Ci = generalized wavemaking damping coefficient
0 2m
= I Jr aq, cos® ¢(y) dedy, (23)
-h O
&w = fraction of critical damping due to wavemaking
* * *
Cw/[ZOA(Ms & Mam). (24

3. Hydrodynamic Forces Due to Motion.

The hydrodynamic forces on the cylinder due to its motion are

derivable from the velocity potential ¢

and in linear theory are

independent of the forces due to the incident waves. In this section
g is derived and a theoretical investigation is made of the wavemaking

and added-mass forces.

a. Derivation of Velocity Potential.
state simple-harmonic motion of a vertical
inviscid fluid of constant depth, h, and
The motion of the cylinder is specified by

¢p is derived for the steady-
cylinder in an incompressible
of infinite radial extent.
its velocity

X(y,t) = Xgoy(y)elot .

Figure 2 is the definition sketch.




The derivation of ¢p 1is similar to that for a flap-type wave maker
in finite depth for which the velocity potential was derived by Havelock
(1929) and rederived and its mathematical aspects discussed by Biesel and
Suquet (1952). In both instances separation of variables is used to solve
the Laplace equation with linearized boundary conditions. The main differ-
ence is that ¢p 1is here three-dimensional and requires a solution in
cylindrical coordinates, (r,8,y), whereas the flap-type wavemaker prob-
lem is two-dimensional. This difference is important because it results
in a vertical variation of added mass that is very different from that of
the two-dimensional problen.

It is also similar to the derivation of the diffracted potential for
the case of a vertical cylinder in an incident wave field as solved for
finite depth by MacCamy and Fuchs (1954). Here the difference is in the
boundary condition on the surface of the cylinder. For the diffracted
potential the velocity on the boundary in the radial direction must be
such that no flow crosses the boundary. The solution results in out-
wardly radiating waves. But for ¢ the boundary condition is specified
by the motion of the cylinder. This results not only in radiated waves
but also in a nonprogressive disturbance that is maximum at the cylinder
and decays exponentially with distance. This latter disturbance contri-

butes to the added mass.

The potential for the case of a circular cylinder in infinite water
depth has been derived by Havelock (1929). Although his solution could
have been used for obtaining the wavemaking forces in deep water, the
added-mass forces required a finite-depth solution. Consequently all
derived forces are based on the following solution in finite depth.

(1) Partial Differential Equation and Boundary Conditions.

©g must satisfy the Laplace equation in cylindrical coordinates, that is,

2 2 2
Vgéa =0 = (ji§ + —25 3 15 —§§> 3 (25)
¥. & r“ %’ B

in the region a S r < eo;-h sy £0; and @ £ 6§ & 2m.

Because ¢ 1is sought for steady-state simple-harmonic motion the
time factor can be separated out, yielding:

¢ =g (r,ee’ ™, (26)
where ¢, also must satisfy Laplace's equation, the following linearized

boundary conditions,
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2

3 S E =
(3) (._. =3 E_) @B = 0 on y = O‘

:.B
\ = = -~h
(b) s 0 on ¥y .

2 b s =
(C) -E—r— -XO oY(y) cosd on r = a,

and the radiation condition that:

.
lim r*(&p_ /ar + ike ) =0,
4o B \oB

where Kk 1is the wave number. The radiation condition guarantees that

the solution for QB is unique and implies that the generated wave is
outgoing and its amplitude decays as r~?¢ (Wehausen, 1971).

(2) Elementary Solutions. Using the standard separation-of-

variables technique, the elementary solutions for ¢p that satisfy the
boundary conditions are as follows:

@) (kr) + B H(z)

+ oH) (kr)] coség,

(a) <cosh k(y+h)[A0H
(b) cosah(y+h)[AmIl(ohr) + Bmxl(ahr)] cos§, (27)

where kh and aph satisfy the following transcendental equations:

2
0 h/g = kh tanh kh, (28)
2. 7
¢ h,g = ~aoah tan-a h
m m
for
umh PO and m = 3,2,...;% (29)

The first equation is the classical relationship between wavelength
and frequency that is derivable from the free-surface condition for small
amplitude plane surface waves. In this case it is simply a functional
relationship between Ozh/g and kh and has the classical meaning only
for the radiated waves far from the cylinder. The second equation has no

simple physical interpretation. The solutions aph  can be interpreted
geometrically as shown in Figure 3,
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Figure 3. Geometrical interpretation for the roots of

2h/g = -agh tan agh.

Hgl) and ng) are the Hankel functions of the first and second kind

of order one. Their asymptotic behavior, as represented by the first term
of their asymptotic expansions (Dwight, 1961), are:

(kr) i (xr-31/4),

1
H{ ) (2 /ﬁkr;ke

ééd(kr-Sﬁ/4).

I

2
Hl( ) (kr) (2/mkr)

I'f they are multiplied by the time factor, eict, the products repre-

sent an incoming and an outgoing wave, respectively, with an ampli tude
that decays like r~7?. .

I} and K; are the modified Bessel functions of the first and second
kind, respectively, of first order. The first terms of their asymptotic

series (Dwight, 1961) are:

4




; ar

. 3
s Li(@r) =e " /en o ¥},
1
) ~& P 3
F Kl(a ¥} = B (m/2a 1) °.

ﬁ m m

These functions are analogous to the exponential functions that result
k from the solution of the flap-type wavemaker. They represent a non-
progressive disturbance that decays rapidly with the radial distance.

E (3) Expansion of Boundary Condition on Surface of Cylinder in
- Terms of Elementary Functions. ¢gp 1s a linear combination of the ele-
mentary solutions, but to satisfy the radiation condition the coeffi-
cients Apt m = 0,1,2,...,° must be identically zero. Consequently,

P =BOH1( ) (kr)cosh k (y+h) cos 8

(-~

-
+) Bmxl(ahr)cosoh(h+y)cose. (30)
m=1

The constants B : m = 0,1,2,...,% are determined from boundary condition
(c) for the normal velocity on the surface of the cylinder. Substitution

of into the boundary condition yields:
Xo¢(y)=BkH(2),(k) h k (y+h
0 o KHy a)cos (y+h)
@
Y B ¥
+
/. B, K (aa)cos o (y+h). (31)
m=1

The functions in equation (31) form a complete orthogonal set over the
interval -h <y < 0 and therefore the coefficients are given by:

X o (2,
Ee, i [, A 2 \
Bo = @) J Y(y)cosh k(y+h) dy/ | cosh k(y+h)dy),
kH1 (ka) i -
0
Xy0 r ’ 2
Bm e e (‘} ¢(y)cosam(h+y)dy/ I cos gy (h+y)dy)-
kKl(ama) s

-0 -h
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Then

: . »
QB = QPB(r. 9:}’)e1°‘t -‘=XOCh[GO (kh)cosh k(y+h) Hl( )(kr)/H{2) (ka)
+ 1 G (o h)cosa (h+y) K, (o r) /K! (¢ 2)] cosé ei‘Jt (32)
L m m Y 1" By . ’
m=1
where
0
(2/n) I Y (y) coshk(y+h) dy
..h L
) = e rashie . R ' (33)
0
(2/h) I W('y) cosam(h+y)dy
Gah) = .l , (34)

sin o hcoso h +& h
m m m
s B SERR R

(4) Dynamic Pressures Due to Wavemaking, PB, and Added Mass,

P8.m To obtain Pg,, and PBam? the functions q; and q, must be

related to ¢p. Because ¢p 1is a complex number it can be written as
Re(ch) + iIm(wB). Then:

s = : iot
pg=-Paep/at| _ =-Pol iRe(yy) - In(yp)] b ™ (35)

Equating this with equation (15), where X = Xooewt, yields:

a; = PP I | _

1
and

4y = =~ (P/XO)Re (5p) _—

Taking the real and imaginary parts of @y yields the following results
for the dynamic pressures:

Py = Pch G0 (kh) Pl (ka) cosh k (y+h) cos® X (t), (36)
W

where

P, (ka) = 2/{nka[J1’(ka)2 + ¥ xa)21},

&
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and

Pg * ph[Go(kh)Pz(ka)coshk(y+h)
am
@
t 37
+ E: G(ohh) Ps(aha) cosah(n+y)] cos @ X(t), (37)
m=1
where
P, (ka) = - [J, (ka) J{(ka)
+ Y, (ka) ¥ (ka)] STJY (ka) 2+ ¥! (ka)Z]
1 (ka) ¥y (ka)l /0J; (ka l( 15 i
= - ! 3
P, (o a) Kl(oha)/Kl(aha). (38)

J; and Y; are Bessel functions of the first and second kind,
respectively, of the first order. Behavior of the functions P;, P, and
P3 is discussed in Appendix A.

b. Wavemaking Forces. The distributed wavemaking force, f£,(y,t),
as defined by equation (17) is given by:

£ (y,t) = -Prach Gp(kh) P, (ka) cosh k(y+h) X (1). (39)

f, is maximum at the MWL and decays with respect to y like the
velocity potential of a small amplitude free-surface wave. In non-
dimensional form, it is a function of two independent parameters, xh and
ka and the mode shape Y(y). Because k 1is related to the oscillation
frequency o by equation (28) the wavemaking forces and consequently the
damping due to wavemaking are frequency-dependent.

(1) Total Wavemaking Force for Translation Mode, y(y) = 1. To
gain a better understanding of the wavemaking force, the theoretical
result for total force was studied for the case of translational oscilla-
tion that would occur, e.g., if a rigid cylindrical structure were excited
by simple-harmonic ground motion. This theoretical result, in terms of
the nondimensional amplitude C; of the total force, F,, defined as the
coefficient of the wavemaking force is:

2 2
= 1. = b s 3 - c A
cw Fw/pg‘a XO (o"h/g) sinhkh Go(kh) Pl(ka)/ka y (40)

L,

where for Y(y)

2 sinh kh
kh (sinh kh coshkh + kh)

Go(kh)

(41)

It is derived by integrating the amplitude of f,(y,t) over the water
depth.
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F, is solely due to wave generation. This can be shown by considering
the limiting case where kh -+ 0. For small values of kh, such that
h/L < 1/25, use of the shallow water approximations (sinh kh ~ kh and
cosh ~ 1.0) yields the result:

2
C, ~ (kh) P, (ka) /ka ; (42)
then
lime = 0,
w
kh=0.

This result is expected because when kh 1is zero, so is o%h/g, and
therefore the free-surface boundary condition for the velocity potential
implies that the vertical velocity is zero. The free surface is in effect
a lid so that the flow field is the same as for the two-dimensional case
of a cylinder oscillating in an infinite motionless fluid for which the
part of the force that is proportional to velocity is zero.

[f kh > 0, then the free-surface condition permits the existence
of waves, resulting in a force that opposes the velocity and consequently
net work is done on the fluid over each cycle of oscillation.

For the case of deep water, for practical purposes defined by
h/L > 1/2(kh > m), the wavemaking force depends on only one parameter,
F, = 0V¥D/g. This can be shown by using the deepwater approximations
(0%h/g ~ kh, ka ~ o2a/g and cosh kh ~ sinh kh ~ ekN/2) in equation (40),
which yield:

G 4B CFS/DIFS . (43)

The dependence on one parameter is expected because for kh > 7w the
radiated waves are not influenced by the bottom. Then the wavemaking
forces do not depend on the water depth. As kh increases, the extent
of the zone over which f;, is significant decreases, so that for practi-
cal purposes the radiated wave energy is characterized by the motion at
the WL and does not depend on the exact mode shape. This simplifies

the estimation of damping for offshore platforms because the wavemaking
force can then be assumed to act at the MWL as a point force having an
amplitude determined by equation (43). However, the estimate is always
on the high side. The magnitude of the error is determined as a function
of kh and Y(y) 1in the next section.

As stated previously, the wavemaking force is frequency-dependent.
This dependence is illustrated in Figure 4 showing C, Plotted versus Fo.
The shape of the curve implies that the damping due to wavemaking could
be important only for a small range of Fj values, so that for a given

diameter, energy can be effectively dissipated through a small range of
frequencies.
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Figure 4. Coefficient of the wavemaking force for o?h/g > =
(data from force measurements).

(2) Effect of Mode Shape. First the mode shape affects the
distributed wavemaking force and secondly enters into the calculation
of the generalized wavemaking damping coefficient, C%, as defined by
equation (23).

In the first case, the effect of the mode shape is included in the
function Go(kh), to which f; is proportional. Assuming first-mode
shapes to be contained within the class of shapes defined by (Fig. 5):

1) =1 ~ aly), (44)
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where 0 < q(y) < 1 such that q(0) = 0 and q(-h) = 1 yields the result

that:

5 2sinh kh
Go (k) = 33 (sinh kh cosh ko + kh)
0
r1 ML J (y) coshk(y+h)d ] (45)
L* ~ Sinhkn J Y y ¥ §-
-h

If q(y) is equal to zero for all y, Go(kh) corresponds to the trans-

lation mode. Otherwise the second term within the brackets is positive,
so that the effect of q(y) is to reduce f, for the translation mode
by a factor that depends on kh and the shape of q(y).

U
(/ q/(y ) = qa = QIV)

1]

=y
|
|
|
|
l

I

|
I
|
|
|
I
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Figure 5. First-mode shapes.
Assuming q(y) can be expanded in a Taylor series about y = 0,

n -
q( )(O)y /n!
The major contribution to the integral in the above equation will come
from the second term of the expansion which is the slope of q(y) at
y = 0. Substitution of the second term yields the following result for
deep water:

a@y) =q@) +q’ @)y +...+

-kh ’
G, (kh) ~ 28 [1 - Q__(O_)h_], (46)

0 kh kn




A reasonable first-mode shape is given by:

¥(y) =1 - cos g a+d, (47)

which corresponds approximately to the first mode for a cantilever column
having a constant cross section and mass per unit length. Then q'(0) =
n/2h and the error made in using the translation mode is approximately
(m/2kh). 100 percent.

In the case where C} is calculated, y(y) acts as weight function
for the amplitude of f,. Because f|; is distributed with depth like

cosh k(y + h),
0

2
- _ _kh f : )
c, = (1 ot J q (y) cosh k(y+h)dy ) , (48)
=h

and therefore the result for the translation mode will represent an upper ]
bound for C*. The error made in using Cy based on the translation 'A

mode will be twice that for f£,.

In most practical situations the error will be small. For example,
the platforms analyzed by Burke and Tighe (1972) yield values for ogh/g
(or equivalently kh) ranging from 32 to 84. The corresponding errors
range from 9.8 to 3.7 percent. Therefore, for practical purposes C¥
can be considered independent of Y(y). Then the deepwater results for
C, as plotted in Figure 4 can be used because

SR 2
cw " O pg{ra /o). (49)

c. Added-Mass Forces. The distributed added-mass force, Lam(st) s
as defined by equation (18), is given by:

fam(y,t) = =~ PTTah[GO(kh) Pz(ka) cosh k(y +h)

G(ohh) P3(oha) cosah(h+y)] f(t). (50)
&

+
N ~1g

m

It consists of two components. The first varies with depth in the same
way as the distributed wavemaking force so that in deep water it is con-
centrated in the near-surface zone; it will be referred to as a "local"
force. The second component is defined by an infinite series and acts
at all elevations even for deep water; it will be referred to as an
"overall" force.

In nondimensional form, f,, is completely defined by two parameters,
ka and kh, and the mode shape yY(y). This can be clearly seen for the
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local force although it is not so obvious for the overall force, which is
defined in terms of aph and apa. But because apa = aph(ka)/(kh) and
the set {amh: m=1,2,...»} are determined uniquely by ozh/g, which is
itself determined by kh, the same two parameters completely define the
overall force. For plotting theoretical results, the alternate parameters,
ozh/g and D/h, were used because they are related directly to the char-
acteristics of the dynamic system, whereas kh and ka require the
calculation of k for a given ¢ and h.

The added-mass force per unit length over a width ma for the two-
dimensional flap-type wavemaker is given by

Iam £
ka-ew

am

for which P,(ka) = 0 and P3(apa) = 1.0 (App. A). In this case the local

component no longer exists. This results in an added mass distribution
that is very different from that for the circular cylinder.

(1) Added-Mass Forces for Translation Mode, y(y) = 1. The added-
mass forces for the translation mode are as simple to obtain as the wave-
making forces and provide a better understanding of their nature. Calcu-
lations are presented showing the variation of added mass with respect to
elevation and its dependence on the parameters o2h/g and D/h.

(a) Distributed Coefficient of Added Mass, Con@)is  The

variation of added mass with respect to elevation is specified by Cam(®y)
defined as follows:

amp[fam(y.t)]

Cam(y) = (51)

ot amp[ X (y,t)]

where the term "amp(z)'" means amplitude of the quantity 2z which is
assumed to be simple harmonic in time. X(y,t) is the acceleration of
the cylinder at elevation y and therefore amp[x(y,t)] = w(y)xooz.

For y(y) =1,

5 ;
Cam(y) =;[§0(kh)P2(ka)coshk(y+h)

-
G (th)PS(aha)cosoh(h+y) s (52)

+
n~1g

where Go(kh) is defined by equation (41) and
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m

(53)

¢ (v h) = - .
m ahh(51nohhcosohh +°hh)

Cam(y) was evaluated by computer for a series of czh/g values and for
D/h = 0.50 and 0.10 and are plotted in Figures 6 and 7. The overall com-

ponent was based on 30 terms, each of which required an iterative solution
for aph.

Certain trends can be noted from the plotted results. As o%h/g

becomes small, Cap approaches a constant value of one, The explana-
tion is identical to that for the wavemaking forces. For o%h/g = 0,

the boundary condition on the free surface implies the existence of an
impermeable lid. Consequently, the flow field is identical to the two-
dimensional case of a circular cylinder accelerating in a fluid of
infinite extent for which the coefficient of added mass is one.

At the other extreme when ozh/g becomes very large the local com-

ponent goes to zero and aph, as can be inferred from Figure 3,
approaches mn/2 where m = 1,3,5,...,». Therefore,

¢ P, (G )
_8h oo T 02T R mﬂ( X)
;im Cam(y) rz = Ei sin g et CUS S 1+ Wk (54)
0°h /g " m=1,3,5 s

and consequently Cgp(y) for larger o2h/g can be considered dependent
only on a/h. The function P3 is monotonically increasing and is always
less than one. For large a/h,P; will be close to one so that the terms
of the series decrease approximately as m %, making the first term domi-
nant. In that case Cap(y) will vary approximately as cos m/2(1 + y/h).
The result for o¢%h/g = 50 and D/h = 0.50 in Figure 6 illustrates this
case. However, o%h/g is apparently not large enough because in the
limit Capm at y = 0 should be zero, whereas a negative value results.
(Negative added-mass values have also been derived by Ogilvie (1963) for

a submerged horizontal circular cylinder oscillating with simple-harmonic
motion in the horizontal direction. He used linear theory and found nega-
tive values for some cases of low submergence.) As a/h becomes small,
Cam approaches a constant value of one. This can be seen by considering
the case of a/h -~ 0 in which

mir a
B S
and therefore,
@
lim c _(y) =4 Z sin(mn/2)
2 am n m
o h/g=x, a/h-0 m=1,3,5
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The series converges to the value w/4 (Dwight, 1961) and consequently,
Cam(y) = 1.0 except at the MWL where it is zero. The tendency toward
uniformity can be seen in Figure 7 for Ozh/g = 50 and DB/h = 0.10. In
fact, it can be shown theoretically that for ail ozh/g,Cam approaches
the value one as a/h becomes small. This tendency can be seen by com-
paring the results for D/h = 0.5 with those for D/h = 0.1 where Cy
is approximately one for a much larger part of the water depth.

The limiting case of o2h/g > « can also be derived by solving for
the velocity potential function with its value equal to zero at y = 0.
This boundary condition results when o2h/g + = for the free-surface
boundary cendition. This approach has been used by other investigators
with the intent of applying the results to earthquake-excitation problems.
The boundary condition, being homogeneous in time, implies that the added
mass is not time-dependent and consequently the added-mass forces are
directly proportional to any time function representing the base accel-
eration. Jacobsen (1949) studied the added mass by this approach for
fluid outside and inside rigid circular tanks. He found that the dis-
tribution of added mass with respect to elevation for the inside fluid
is similar to that outside except that it approaches uniformity more
quickly with decreasing a/h. Garrison and Berklite (1973) studied it
for fluid outside arbitrarily shaped bodies using a numerical procedure
based on the distribution of singularities on the bodies' surface. He
included the circular cylinder as a special case for comparison with
analytical results based on equation (54). Chopra (1967, 1968, 1970)
studied it for vertical-wall dams excited by earthquake-produced ground
motion.

At the MWL, C,, ranges from values greater than one (up to 1.5 for
the plotted results) all the way to negative values. This variation is
due to the combined effects of the local and overall components. For
small values of o2h/g the local component dominates. In fact, for
o?h/g » 0 it can be seen from Figure 3 that aph > mm so that
G(aph) > 0 because sin agh = 0. Consequently, the overall component
contributes little. As o0%h/g increases, the local component becomes
concentrated near the surface, but the overall component at y = 0
provides a negative contribution because the product G(aph) cos aph is
always negative. Eventually the overall component dominates, resulting
in a negative Cup and implying that the force on the cylinder at this
level is in the direction of the acceleration rather than opposite to it
as is usually the case. As o02h/g > » the contribution from the local
component disappears. At the same time aph > mn/2 where m 1is odd so
that G(aph) cos agh > 0 and consequently Cam > 0.

A

(b) Average Coefficient of Added Mass, 6am' Cam
average value of C,,(y) for the translation mode. The computation of
this quantity is simpler than C,,(y) because the terms of the infinite
series are proportional to m~3 rather than m 2 and therefore the
series converges more rapidly. Calculations were made by computer for
many different pairs of o¢%h/g and D/h covering the range of laboratory

is the
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experiments and field conditions.

have converged when an additional term caused less than 0.01 percent
change in the cumulative sum. The results are plotted in Figure 8
(experimental data are discussed in Section III).

The infinite series was assumed to

These results illustrate more fully the influence of the two para-
meters. For practical purposes: (a) oh/g can be considered infinite if
it is greater than 100 so that Cup(y) as defined by equation (54) can
be used, and (b) the influence of D/h is negligible for values less than

about 0.01 so that a constant Cgp(y) of unity can be assumed to act at
all depths.

(2) Effect of Mode Shape. The effect of y(y) on Cyp(y) was
not studied directly. Instead its integrated effect, as included in the
generalized added mass, Mi,, defined by equation (21), was investigated.
This choice was made because Mip 1s a measure of the kinetic energy com-
ponent due to hydrodynamic effects and consequently enters into the eval-
uation of effective energy dissipation due to wavemaking as defined by
the fraction of critical damping, §&,, in equation (24).

The effect of mode shape was studied in terms of a normalized
generalized coefficient of added mass, Rip, defined by:

0
1 2
EJ Cam(y) Vv (y)dy
* ~h
B , (55)

)

1 2

gf Y (y) dy
-h

where Cap(y) 1is now a function of y(y) as defined by equation (51).
The numerator is the average value of Cap(y) weighed by wz(y) and 1is
equivalent to Mgm/pwazh. The denominator is the same quantity for the
case where Cap(y) = 1.0. Therefore, Rzm is an overall measure of the
deviation of Cy,(y) from a uniform value of one as influenced by the
combination of Y(y), ozh/g and D/h, It is the equivalent constant
coefficient of added mass, applied at all elevations, that yields the
correct natural frequency in a fluid for a prescribed mode shape.

The four mode shapes studied were the cantilever mode, defined by
equation (47), and approximations to three higher modes defined by:

Y(y) = sin rlg (L + y/h)sn = 3,5, and 7. (56)

The results are plotted in Figures 9 and 10; equations used to obtain
results are given in Appendix B.

The significant result for the cantilever mode is the increased
sensitivity of Rj. to D/h when compared with results for the
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BASED ON RESULTS
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translation mode. This effect is primarily due to the weight function

¥ (y) being applied to the variation of C,,(y), as exhibited in Figures
6 and 7, rather than due to effects of y(y) on C,,(y). This was clari-
fied by study of the higher mode shapes.

Figure 10 shows that as the number of nodes increases for the higher
modes, R%, for a given D/h and 0%h/g decreases. The results are a
combination of effects due to ¢(y) and the presence of a free surface
and an impermeable bottom. As n increases, the effect of the free
surface and bottom contribute less and less to Rj,. The primary contri-
bution comes from Y(y). The resulting R}, approaches that for y(y)
in a fluid of infinite extent in the y-direction. Evidence for this is
shown by the dotted lines that correspond to the infinite fluid result
plotted in Figure 11, calculated from the velocity potential derived by
Landweber (1967). The dotted lines were obtained from Figure 11 by the
relationship wD/S = w/4 n D/h, where S is the wavelength of the
deflected shape.
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Figure 11. Effective added mass for flexible cylinder in . %

infinite fluid.
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4. Hydrodynamic Forces Due to the Incident Waves.

The velocity potential, ¢G, for the diffraction of a plane surface
wave about a rigid vertical cylinder has been derived by Havelock (1940)
for infinite depth and by MacCamy and Fuchs (1954) for finite depth.

a. Distributed Force. For a wave of height H traveling in a
positive x-direction, defined by:

T]=gsin(kx-ct), !

where n 1is the surface elevation, the force per unit length is given by:

2PgH cosh k (yv+h)

fg(y,t) v, o P, (ka) cos (ot By (57)
where
P, (ka) = 1/[J/ (ka)? + v/ (k 2]* = [mka P, (k )/2]é 58
4 = 1 a) Yl( a) a 1 a ’ (58)
Y = arc tan[J{(ka)/Y{(ka)], (59)

f, is maximum at the MWL and decays with respect to y 1like the wave-
making forces. In nondimensional form it is a function of two parameters
kh and ka. Unlike the forces due to the motion of the cylinder, the
incident-wave forces do not depend on Y(y); this is a consequence of
linearization.

b. Total Force and its Relationship to the Generalized Force.
Although ¥(y) has no direct influence on fg, it does enter into the
calculation of dynamic response as a weight function applied to fg,
yielding F§g(t) as defined by equation (20). The force magnitude at
the first-mode frequency will be of most importance for the dynamic
response problem. This frequency will usually be sufficiently high that
f, will be concentrated in the near-surface zone and Y(y) will have
1Tttle influence. For practical purposes the generalized force will then
be equal to the total deepwater force. The error made will be identical
to that made in the calculation of f|; based on the translation mode.

The amplitude of total force, F;, in nondimensional form is defined
by Cg. For deep water (kh > m) it is given by:

P, (F2/2) -}
¢ =p /hgnauey =2 [0 1. (60)
g G Fg n

It is plotted in Figure 12; the limiting values were derived using the
limiting values for the function P; in Appendix B.

The plotted results show that the nondimensional force decreases
rapidly beyond Fy = 1. This decrease is important because the effective
exciting force can be decreased by increasing the first-mode frequency.
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Figure 12, Coefficient of the force due to the incident wave
for Ozh/g -2

5. Dynamic Response and Damping.

The wavemaking and added-mass forces of the previous sections show
that the coefficients of the differential equation of motion (equation 19)
are frequency-dependent. This implies that the dynamic system is actually
represented by an integral equation in the time domain (Tick, 1959).
Consequently, the transient part of the well known general solution of
the equation with constant coefficients is not valid in this case. To
obtain the transient part requires the solution of an initial value
problem. However, the steady-state part of the general solution is valid
and can be used to obtain the response due to either periodic waves or
random waves specified by a wave spectrum.
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The steady-state solution for the amplitude of dynamic response,
Xog» due to a periodic input of frequency o 1is given by the following
equation:

Xoq = (DMF) Xyq, (61)
where
X35 = amplitude of static response, b
DMF = dynamic magnification factor,

2

[

1

i
The DMF for constant values of & is plotted in Figure 13. It is a
unimodal function of o/on peaking at 1.0 for £ values less than about
0.20 (20 percent of critical damping). The value at resonance is inversely

proportional to §&; equal to 1/2f. Static response occurs when o/op
becomes small because then DMF =~ 1.0. The DMF > 0 as c/on > © |

/{01 - (o/e)h? + [2€(a/q,)]

In the case of damping due to wavemaking, equation (24), gives:
=g =c /20 o +M) 62
5= 5% P ™ am’ ’ 5E)
where C; and H:m are functions of o2h/g, D/h and Y(y). In deep

water this reduces to:

2
C, (F,) PgmT D™ /4

4

e (63)
20 (M_ + M )
n's am
Fo and o2h/g can be written by (o/op) on vYD/g and (o/on)? o2h/g,
respectively, and consequently & in equation (61) will be a function of
u/on. Therefore, the DMF will have a different shape from that shown in
the figure and this would have to be taken into account when calculating
the dynamic response spectrum to random waves. Nevertheless, the DMF for
constant £ is very useful for understanding the importance of damping.
[ts inverse proportionality to £ at resonance implies that even very
small amounts of damping are important in reducing the dynamic response.
For example, if the forcing function is simple-harmonic with o = op
then Xgq = (1/28) Xgs. Wave energy is usually spread over a band of
frequencies so that the effectiveness of & in reducing the overall
response, defined by the rms [X(t)], will depend to a great extent on
how far removed is the frequency o, at the peak of the wave spectrum
from the natural frequency of the structure. For example, under lifetime
design storm conditions, such that Op << Op, the static response may
dominate; but under the more frequently occurring moderate conditions such
that Ip = Opy the dynamic response will be inversely proportional to £.
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Figure 13. Effect of damping on dynamic
response (Biggs, 1964).

Consequently, the effectiveness of £ must be evaluated on a statistical
basis taking into consideration the occurrence probabilities of lifetime
and moderate conditions.

a. Idealized Platforms. ¢, and dynamic response were studied theo-
retically as a function of diameter for three idealized platforms having
natural periods of 3, 4, and 5 seconds in a water depth of 600 feet. The
objective was to determine the level of damping that can be obtained from
this mechanism and the conditions under which it is of significance.

The idealized platforms are described with reference to Figure 2. The
first platform is a single vertical cylinder extending to the MWL having a
wall thickness of 2 inches and no deck. The second platform is the same
except that it extends some distance above the MWL and supports a deck.
Both the mass of the deck and mass of the steel above the MWL are assumed
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lumped at the deck level so that the generalized mass, M*, is 400
k-slugs. This value was obtained from the mass at deck level used by

Burke and Tighe (1972) for proposed deepwater drilling platforms. The
third platform is the same as the second except that M} is assumed to
be shared by four legs. Consequently each of the legs contributes to
wavemaking; interaction between legs was neglected. 1In all cases the
shell was considered full of water adding a mass per unit length of
pmD?/4 to the structural mass. The cantilever mode shape was used

for y(y).

(1) Effect of Diameter and Natural Frequency on Ee g WES

calculated by using equation (62) with the assumption that o = o,. The
total generalized mass, M*, for the cantilever mode shape was given by:

0
* * R * 2 *
M =M, +M, =LA +PA)+PA R ] J‘ ¥ (dy +1y /N (64)
-h
where
A, = area of enclosed water ~ mD?/4
As = area of shell ~ nDd where d = wall thickness
Pg = mass density of steel
0
2
fv (y)dy = 0.228h
~h
N = number of legs

R;m is defined by equation (55).
Gy was calculated exactly, although the use of the deepwater approxi-

mation, defined by equation (49), would have resulted in an error no

higher than 10 percent. £, 1is shown plotted versus diameter in Figure 14.

The plotted results show that &, will be most important for the larger
cylinders. However, the diameter for which it becomes significant will
depend on 0,+ The results also indicate that £, generally increases
with decreasing o, but the relationship is complicated because for a
given diameter £, may sometimes be greater for the platform having a
higher o,. The following explains the theoretical results in terms of
the wavemaking forces and their dependence on the parameter, Fy = onYD/g.

The first case (one leg; no deck) represents an approximate upper
bound on the available £, because the structural mass of this idealized
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platform for diameters larger than 20 feet is less than 15 percent of the
combined added mass and mass of the internal water. The effect of diameter
on &  can be understood from the decpwater approximation for G defined
by equation (63). When F, 1is less than one, this equation implies that
£y = D2 because beth C* and MAs D2. This quadratic increase of &,
with increasing diameter is portrayed by the left limbs of the plotted
curves. When F, is greater than about two, £, = D™! pecause then
Cw « D"1 but M;m « D2, Consequently, € decays more slowly with
increasing diameter than it rises. The rise and decay imply that there
must be a diameter for which £, is maximum. This diameter is defined by
Fo = 1.4 at which (, 1is a maximum.

The effect of decreasing the natural frequency is to increase the peak
&y and shift it to larger diameters. The shift of the peak results from
the requirement that Fg = 1.4. An increase in the peak &, occurs
because both CJ and ”;m « D2; consequently Ew « 0;2. For a given
diameter monotonic relationships exist only in the limiting situations
where F, is less than one and greater than two, respectively. When
FO < &y = 0% because Cw o 0;“ and Figure 9 implies that M;m
practically independent of o, for the range of values that are consid-
ered here. When Fq > 2, &y = op* because Cy = op?. These results are

valid only for the range of - satisfying the criteria en F.. In
general, for a given diameter, &, need not be monotonically related to D

and requires a series of plots as shown here to evaluate the conditions
under which maximum damping can be achieved.

is

Similar trends exist for the other cases. The major difference is the
decrease of &, and the shift of the peak values to larger diameters.

These effects are due to the contribution of the deck mass and can be
similarly explained by a study of equation (63).

The behavior of &y for prototype structures will be approximately
represented by the region between the plots for the second and third cases.
t&w for the smaller diameters (but not < 15 feet) will correspond more
closely to the second case because one column will probably not be suffi-
cient to provide the necessary stiffness. In this case, &y will range
from 0.5 to 1.0 percent of critical. For the larger diameters it will
correspond more closely to the third case. Consequently, £y will be
higher, on the order of 2 to 3 percent of critical.

. ¢ s - s
Decreasing the water depth would increase &y because Mgy 1s propor-

tional to h. However, o, will likely be larger because stiffer plat-

forms can be constructed in shallower water. This will tend to decrease

£ . The net effect requires an analysis for each depth.




(2) Effect of Diameter and Diffraction on Dynamic Response. The

dynamic response at resonance iS given by:

amp[FZ(t)]
XOd = —_— (65)
g C
n w

Using the deepwater approximations for the amplitude of FE(t), defined
by equation (60), and Cy yields the result:

- B °
Xog” B2} = == (66)

This is plotted in Figure 15 as a function of diameter for the idealized
platforms. Because at resonance Xgpgq 1is independent of mass, all the
idealized platforms have the same response provided the same incident-wave
force acts on all legs. ]

The dynamic response, as shown in the figure, decreases with increasing
diameter due to the combined effects of diffraction and wavemaking. This
can be shown theoretically for Fg > 2 where Cy = 4/Fg and Cg ~ 8/(VWF3)
yielding Xgq/(H/2) = 1/D%. Diffraction acts as a low-pass filter signifi-
cantly reducing the response of large-diameter platforms as illustrated for
the 4-second natural period. The 'no diffraction'" curve was calculated by
assuming Cg = 2, which is the limiting value as F, becomes small,

b. Damping for Actual Platforms. The Table below represents &y for
proposed deepwater oil drilling platforms that were studied by Burke and
Tighe (1972) and Malhotra and Penzien (1969) and for the Texas Tower No. 4

Table. Damping due to wavemaking for actual platforms.

Source h (038 k-slugs1 N D Es Gy &g
i (£t) |(rad/s) -2 | (f2) (Fo) | oet)
Burke and Tighe 400 | 2.59 560 |4 | 5s.0]1.02]0.66] 0.05
1
ol 600 Lebv 900 4 5.0 1066 | 0,18 0.02

800 1.42 1,000 4 5«0 10.56 | 0.08 e
1,000 L0t 1,800 4 5.0 10.40 | 0.02 ~ -
Malhotra and 1,270 0's57 1,800 5 18.0 | 0.43 1 0.02 0.08
Penzien (1969)
Brewer Engineering 180 2.20 330 3 12.5 { 1.37 | 1.48 ) 0.56
Laboratories, Inc.
(1959)
M= LMY (yg) -
Number of legs.
52
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that was studied by Brewer Engineering Laboratories, Inc, (1959). g, for
the first five platforms in the Table is insignificant. Member diameters
of the first four platforms are much too small for this damping mechanism
to be effective, while the natural frequency is too low and the water too
deep for the fifth platform. Only for the Texas Tower is £, of some
significance because the natural frequency and diameter combine to produce
a maximum value for (. However, due to the predominance of the deck
mass, the diameter is still too small to provide appreciable damping. For
example, according to equation (63), assuming M; >> M;m’ a diameter of
25 feet could provide §&; close to 3 percent. Of course the design
static load, being predominantly due to inertial forces, would be quad-
rupled. This would have to be considered in conjunction with any possible
reduction in dynamic response.

The mode shapes and frequencies used to compute &, for the oil drill-
ing platforms were calculated from the mass and stiffness matrices publi-
shed by the investigators. The mode shapes are shown in Figure 16.

ITI. EXPERIMENTAL VERIFICATION OF THE POTENTIAL MODEL

The objective of the experimental program was to verify the wavemaking
and added-mass forces predicted by the potential model. The tests con-
sisted of oscillating rigid surface-piercing vertical cylinders in a
translation mode and measuring the total forces and the generated waves.
These oscillations were performed in stillwater and therefore the verifi-
cation is a limited one because a prototype structure in nature oscillates
in an incident wave field. However, the test is valid within the scope of
potential theory with linearized boundary conditions for which the forces
due to the incident waves and those due to the motion of the structure are
independent.

This section discusses the experimental equipment, important factors
in their design, and the experimental program and its results.

1. Experimental Equipment and Important Factors in Their Design.

A general view of the experimental equipment and arrangement is shown
in Figure 17. Some of the relevant dimensions are given in the schematic
diagram of Figure 18. A four-legged platform of welded steel structural
members supports the carriage used to transmit a translational oscillation
to the test cylinders and the necessary power transmission equipment to
impart to them an approximately simple-harmonic motion. It is placed in a
rectangular basin (63 by 150 feet) so that the shortest distance from the
test cylinders to the nearest wall is about 24 feet. The system 1is capa-
ble of oscillation frequencies up to 2.8 cycles per second and amplitudes
of carriage displacement, X,, up to 0.5 foot. An array of five gages is
positioned along a circular arc to measure the surface waves in one quad-
rant.

a. Platform. The theoretical results of the previous section imply
that the amplitude of the generated wave will be proportional to cos 6.
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Consequently, to minimize the effect of wave reflection it was necessary
to perform the experiments off a platform situated near the middle of a
wide basin; existing two-dimensional flumes could not be used. This
necessitated the construction of a platform for supporting the carriage
and power transmission equipment.

The main design considerations were rigidity and wave reflectivity.
It was very important for the platform to be rigid (have a large stiff-
ness and high modal frequencies) because frequency-dependent energy
sources dynamically excite the platform and the resulting vibrations
could contaminate the force measurements. The simple-harmonic motion of
the carriage at a maximum frequency of 2.8 cycles per second induces hori-
zontal loads on the platform at the same frequency and vertical loads and
torque on the axle of the eccentric and speed-reducer shaft at double the
frequency. Energy at higher frequencies is supplied by motor noise and
impact forces due to backlash in the speed-reducer gears and clearances
in other moving parts. Based on the experience of using a trial platform
it was determined that a very rigid platform would be required; one for
which the lowest natural frequency wouldn't be less than about 40 to 50
cycles per second. To minimize wave reflection the legs had to be of
small diameter and located as far away as possible from the oscillating
cylinder. However, this makes the platform more flexible so that a com-
promise had to be made between rigidity needs and minimization of wave
reflection.

The present platform satisfied the natural frequency criteria for the
following assumed modes of vibration: (a) a vertical mode in the z-y
plane (the y-axis points out of the page in Figure 18.) where the deck
bends as a beam assumed simply supported by the I-beams; (b) a vertical
mode in the x-y plane where the beams supporting the deck bend as if
simply supported by the legs; and (c) a horizontal mode where the deck
and the supporting beams translate in the x-z plane, the stiffness being
provided by the legs which are assumed fixed to the underside of the beams
and pinned at the basin floor.

Wave reflection from the front legs was minimized by locating the
carriage so that the mean position of the cylinder axis intersected a
line connecting the two front legs. Although according to linear theory
no energy should radiate perpendicular to the direction of oscillation,
measurements showed a small amount at twice the oscillation frequency.
This was too small to affect the force measurements and could be neglected
in the calculation of radiated energy from the measured surface waves.
Reflections from the back legs were also small and in most cases suffi-
cient force and wave data were obtained before the reflected wave arrived.

b. Carriage. The purpose of the carriage is to transmit a transla-
tional motion to the cylinder along a line. Consequently, it was essen-
tial that all elements of the carriage and supports be rigid and the
motion restrained laterally and vertically. At the same time the car-
riage had to be light to reduce the inertial loads on the platform and
on the mechanical linkages. The restraints had to be low-friction devices




for which the difference between dynamic and static friction was small
so that impact forces due to stick-slip would be minimized. Welded alu-
minum construction was used for the carriage to meet the rigidity and
weight requirements and special roller-bearing devices were used to meet
the friction and restraint requirements.

The carriage that was used is a welded aluminum frame of four
4- by 4- by 5/16-inch H-beams (Figs. 17, 18, and 19) supported on four
tracks of l-inch 0.D. solid stainless steel 60 Case-hardened and ground
shafting of material 440C. The supports and restraints are provided by
the SKF linear-motion assemblies shown in Figure 20. These assemblies
solved the difficult problem of providing a frictionless four-point
support and complete lateral and vertical restraint without the aline-
ment problems that usually occur in such cases. Each assembly consists
of two rollers enclosed within a housing; each roller is supported by
two completely sealed ball bearings. On one side of the carriage the
rollers within the housings can move along their axes, thereby prevent-
ing jamming due to any misalinement in the tracks. Each assembly can
be rotated so that the rollers can be preloaded in place onto the shaft-
ing thereby eliminating any p'ay in the vertical direction. Each of the
tracks is rigidly connected to a lower aluminum frame by means of three
shaft-support blocks (Fig. 19). The blocks are movable to allow a maxi-
mum travel of 1 foot. The lower frame acts as a rigid base for the
carriage. A rigid vertical extension of the carriage, consisting of an
H-beam whose ends are butt-welded to aluminum plates, connects to the
underside of the carriage (Fig. 18). The H-beam passes through a hole
cut in the platform and the lower welded plate provides a flat surface
for attaching the force transducers and cylinders (Fig. 21). The use of
four clamps as shown in the figure provided a sufficiently rigid connec-
tion.

c. Power Transmission Equipment. The power transmission equipment
is illustrated in Figure 19. The basic elements are the connecting rod,
eccentric and its axle, and the V-belt and pulleys.

The connecting rod transforms the constant rotational speed of the
eccentric into a periodic translation of the carriage. The motion is
approximately simple-harmonic if Xg 1is sufficiently small compared to
the length of the connecting rod and if the center of the eccentric's
axle is at the same elevation as the center of the pin at the carriage
connection point. The design length of the rod was 2.5 feet and X; was
0.25 foot for the force measurements. This resulted in the second har-
monic of the carriage displacement and acceleration that was 0.25 and 1
percent, respectively, of the first harmonic. The corresponding values
for the radiated wave measurements based on a maximum Xg of 0.094 foot :
reached 0.9 and 3.7 percent. To reduce impact loads it was essential i
that the clearance between the pins and the bearing surface of the con-
necting rod ends be as small as possible. Commercially available bushing-
type rod ends were found unsuitable because the initial wear was too great
and ball bearing rod ends produced too much noise in the measured force
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records. Consequently, split-ring type rod ends of bronze-bearing material
were designed and built. These were made with an adjustable bore thereby
providing a method for controlling the clearance.

The eccentric is a device for adjusting Xp. It consists of a 3/4-
inch thick steel plate butt-welded to a 2-inch 0.D. axle. An aluminum
block with an attached pin that connects to the rod end can freely slide
along two slots that are cut in the plate. This allows a maximum X5 of
0.5 foot. The important design consideration was the rigidity of the axle

because the axle acts as a spring for the carriage mass and the added mass.

After a l-inch 0.D. axle proved to be too flexible, the 2-inch 0.D. axle
was chosen. The noise content of the force measurements was reduced and
its frequency increased.

Commercially available cast iron pulleys and a rubber V-belt were used
to transmit the rotary motion from the speed-reducer shaft to the eccen-
tric's axle. The noise level in the force measurements was sensitive to
the tension of the belt. Although lowering the tension reduced the noise
level, it had to be maintained at a high enough tension to prevent belt
slippage and corresponding distortion of the simple-harmonic carriage dis-
placement. An optimum tension was found and used throughout the force
measurement experiments.

d. Power. The power was supplied by a combination of 1/2 horsepower
direct-current motor and speed reducer. The motor speed could be varied
over a continuous range by a variable transformer-type control. The 1/2
horsepower was sufficient because the dominant forces are inertial so
that very little net work has to be done. A d.c. motor was particularly
suitable because of its low noise level compared to an a.c. motor. The
speed reducer was a worm-gear type. Because of clearance between the
gear teeth impact forces occurred on torque reversal and contaminated the
force records. However, enough control over the noise level was provided
by the V-belt tension that special devices, such as a brake on the eccen-
tric's axle, for preventing torque reversal were not necessary.

e. Cylinders and Force Transducer. Two cylinders, approximately
1.1 feet in height and having diameters of 0.50 and 0.75 foot, respec-
tively, were used in the experimental program. These are illustrated
together with the force transducer in Figure 22.

The cylinders had to be watertight containers constructed of light
material in order to isolate the added-mass forces due to the outside
water from the total force measurements. Plastic material was suitable
for this purpose. Each cylinder was constructed of tubing having a wall
thickness of 1/8 inch. A disk was welded to one end to provide a water-
tight fit.

'The force transducer was designed to measure the total force on the
cylinders by summing the forces transmitted to the upper and lower struts
(Figure 22). The forces from the struts are transmitted to the upper-

force and lower-force load cells that consist of flexible aluminum
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elements as shown in Figure 23. The deformation of each load cell is !
picked up by the four strain gages shown in the figure; each gage acts as

a resistance element of a full Wheatstone bridge. The output from each

bridge passes through a preamplifier, the two outputs are summed and then

passed through an amplifier to yield a pen deflection on the strip-chart

recorder that is proportional to the total force.

The force transducer had to be sensitive and at the same time have a
natural frequency that is high with respect to the oscillation frequency.
The latter requirement is necessary to use the results of a static cali-
bration to measure time-varying forces and to shift the noise to higher
frequencies. The natural frequency was measured to be 43 cycles per
second when the 0.50-foot 0.D. cylinder was submerged to the maximum water
depth of 1 foot; the corresponding value for the 0.75-foot 0.D. cylinder
was not measured but calculations based on the previous measured value and
the theoretical added mass showed it to be about 35 cycles per second.

The force transducer was assumed to respond statically because the meas-
ured force data were for oscillation frequencies less than 2.5 cycles per
second.

f. Displacement Sensor. The carriage displacement, XO, was measured
by a linear potentiometer-type displacement sensor. Figure 24 shows the
sensor. The motion of the rod changes the resistance in a manner that is
linear with displacement. Figure 25 shows the sensor attached to the
carriage.

g. Wave Gages. Five resistance-type wave gages were used to measure
the radiated waves. Each consisted of two stainless steel wires 0.50-foot
long and 0.03 inch in diameter as shown in Figure 26 (the scale in the
figure is in centimeters). The wave gage acts as a resistance element in
a Wheatstone bridge network. The resistance is proportional to submergence
and therefore the gage can be used to measure water level fluctuations.

h. Amplifiers and Recorders. An eight-channel Brush amplifier-
recorder system was used to record the force, carriage displacement, and
wave data. Figure 27 shows the system in position for recording the forces
and corresponding carriage displacement. The two amplifiers on the left
side of the recorder were used to amplify and sum the outputs of the top-
force and bottom-force load cells as previously described. The carriage
displacement was measured by the bottom amplifier. Due to frequent break-

downs all eight amplifiers could not be used continuously. Consequently,
the waves and corresponding carriage displacement were recorded separately
using any six of the amplifiers that were operational. 3

2. Measured Forces, Analysis, and Results.

One of the objectives was to verify the theoretical wavemaking forces
for deepwater conditions in the vicinity of Fg = 1.4 where Cy is maxi-
mum. To do this accurately required that both the viscous and added-mass
forces be small in comparison with the wavemaking forces. These require-
ments restricted the experiments to stout cylinders for which d/h > 0.50 »
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and values of ozh/g < 8; consequently, the added-mass forces, which
depend on both parameters, were verified only in this range. The viscous-
force requirement also restricted X;/D to small values.

a. Ranges of the Variables. In order for the viscous forces to be
small in comparison with the wavemaking forces it was important to pre-
vent boundary-layer separation, otherwise the low pressure in the wake
could produce drag forces that would not be possible to separate from
the wavemaking forces. Separation can be prevented by using small values
of XO/U- Schlichting (1968) shows that for a cylinder starting impul-
sively from rest and then continuing with a constant velocity, separation
begins only after the cylinder has traveled a distance of 0.175D. If the
starting process is more gentle, then the distance traveled before sepa-
ration occurs is larger, e.g., the distance is 0.26D for a motion defined
by a constant acceleration. Consequently it is unlikely that separation
will occur for an oscillating cylinder if XO/D is less than 0.25.

In this case laminar boundary-layer theory can be used to obtain an
estimate of the viscous forces. Batchelor (1967) obtains the viscous
forces on an oscillating cylinder in a still fluid of infinite extent
(no free surface) for the case that X,/D << 1 and the Reynolds number,
oD?/v, is large in comparison to unity. The part of the force that is
proportional to velocity is due to two factors, each contributing 50
percent: (a) tangential stresses on the surface of the cylinder, and
(b) normal stresses acting on a cylinder whose cross section is that of
the cylinder plus a perturbation on the order of the boundary-layer thick-
ness. His result for its amplitude, F,, 1is shown plotted in Figure 28
as the ratio Fy/Fy versus oscillation frequency; Fy 1is the amplitude
of the wavemaking force for the translation mode. This shows that if
D/h is sufficiently large and the oscillation frequency is sufficiently
small then Fy can be made insignificant .in comparison with Fy.

The added-mass effects dictated that o2h/g be small so that Fy
could be accurately isolated from the total measured force. The impor-
tance of o02h/g can be seen from the following relationship for the ratio
Fw/Fam where Fap is the amplitude of the added-mass force:

= A 2
Fw/Fam = cw/(cam o h/g) N
(67)

However, in order to measure Cy for deepwater conditions, o“h/g could
not be smaller than m. Consequently, the experiment could not be designed
such that F, 1is very large with- respect to Fome Nevertheless, very
accurate values of Cy were obtained by the analysis technique described
previously.

Considering the simultaneous effects of viscous and added-mass forces
it was decided to use the following ranges for the variables of the
experiment:
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0.025 foot,

&

D = 0.50 and 0.75 foot,
0 = 2m to 5w radians per second (1.0 to 2.5 cycles per second),
h = 0.67, 0.83, and 1.0 foot.

The corresponding ranges for the nondimensional variables were:

Xo/D

D/h

0.05 and 0.033,

0.50, 0.60, 0.75, 0.90, and 1.12,
1.0 < o%h/g < 8.0,
1.2 < Fy < 2.2 (for o%h/g > m).

b. Experimental Procedure. Both static and dynamic calibrations were
required for the force transducer. The static calibration determined the
relationship between the total force on the cylinder and the deflection of
the recorder pen. The method of imposing a known horizontal load on the
cylinder is illustrated in Figure 29. The figure shows a string looped
around the cylinder passing over two pulleys and supporting a 1,000-gram
weight in a tin container; the cylinder is loaded at the upper-reaction
point defined as the elevation at which no output is measured from the
lower-force load cell. The procedure consisted of: (a) locating by trial
the upper- and lower-reaction points, (b) setting the sensitivity on the
amplifiers such that the pen deflection was the same for a given load
whether the cylinder was loaded at the upper- or lower-reaction point,

(c) engaging the summing circuit so that the pen deflection is proportional
to the sum of the amplifier outputs, and (d) loading the cylinder with a
series of loads at the two reaction points and midway between them to
obtain three calibration curves of load versus pen deflection. This type
of calibration was performed in air as well as water. The three calibra-
tion curves were nearly identical and therefore, it was assumed that the
pen deflection will be proportional to the total force on the cylinder
when it is forced to oscillate. The curves were also linear so that an
incremental calibration was not required for each run; the pen deflection
due to one load was sufficient. The dynamic calibration determined the
mass-in-air that would have to be subtracted from the mass-in-water to
arrive at the added mass due to the outside water. The procedure consisted
of oscillating the cylinder in air with X; = 0.025 foot at five to six
different frequencies in the range of 1.0 to 2.5 cycles per second. Using
the results of the static calibration to calculate the oscillatory forces,
the mass-in-air was obtained for each frequency and the average value used
in the calculation of added mass as explained later in this section.

A run consisted of force measurements for a given diameter and water
depth and covering the complete range of oscillation frequencies in seven
to eight discrete steps. Preceding each run the force transducer was

D




Figure 29. Force transducer calibration.
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to eight discrete steps. Preceding each run the force transducer was
calibrated statically in water using the procedure described above. Then
forces and carriage displacements, corresponding to approximately the 5th
through 15th cycie, were recorded.

c. Force Data. A sample of the force data for the 0.50-foot diameter
cylinder is shown in Figure 30. The data represent approximately the 5th ]
through the 15th cycle from the time the oscillations began in calm water.
The carriage displacement is also recorded because the phase difference
between the force and displacement records is required to separate out
the wavemaking and added-mass forces. Similar records were obtained for
each frequency and water depth. Some noise was still present in the force
records; however, its level was not high enough to introduce significant
errors in the analysis.

d. Analysis. To obtain the measured wavemaking and added-mass forces
it was necessary to first resolve the total measured force into two com-
ponents; one proportional to the velocity of the carriage, and the other I
proportional to its acceleration. Assuming that both the force and the
carriage displacement signals are simple harmonic, two pieces of informa-
tion were required from the recorded data: (a) the amplitude of the total !
force, F, and (b) the phase difference, e, between the force and
carriage displacement signals. The phase difference yields the ratio
Fx/Fx where Fx 1is the amplitude of the force proportional to velocity
and Fy 1is amplitude of the force proportional to acceleration. The
additional information provided by F was then used to calculate the
magnitudes of the components by the following equations:

F, = F/[1+1/tan®el? (68)
Ef = F*/tane. (69)

F was defined as one-half of the pe k-to-through value that appeared
to be representative of the force record. ¢ was the average of approxi-
mately 15 values based on zero-crossings of the force and displacement
records. The averaging process allowed accurate values to be obtained
even though they were small, ranging from 10° to 40°, and the records
still contained some noise.

Cy and Cy,p, were calculated using the following equations:

"

(>

2
F./Dg@— X
w > 4

0

A 2 mp%h
- & TP —— 71
M [(Fx/xoc) MS] p % (71)

Fg was assumed due solely to wavemaking because the viscous forces for all q
the data were less than 5 percent of F_. The calculation of C,, required

the subtractic of the mass-in-air, Mg, which ranged from 10 to 50 percent

of the addea mass.
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e. Results and Comparison with Theory. The C, calculated from the
measured forces are compared with theoretical results in Figures 4 and 31.
The first figure contains all the deepwater data plotted as a function of
Fy. The measured values compare well with those predicted by theory and
are shown to be independent of D/h. The second figure contains all the
data. In this case C(, is plotted as a function of two parameters,
o%h/g and D/h, because both are important for o2h/g < m. The theo-
retical values were calculated using equation (40). The measured values
compare well enough with the theoretical results that the effect of D/h
is clearly shown. Cy for D/h = 0.75 is derived from forces measured for
both diameters; no systematic effect of D is evident.

The 6am are shown plotted in Figure 8. Again the measured values
compare well with the theoretical results. The decrease of Cg, with
increasing ozh/g is clearly shown. Some of the measured values that
are past the o%h/g for which Cym 1s minimum shows the subsequent
increase of C,p.

f. Data of Other Investigators. Garrison and Berklite (1973) per-
formed a series of experiments to measure the coefficient of added mass
in stillwater for various bodies, one of which was a vertical circular
cylinder. The objective was to verify their numerical solution for the
case where o%h/g + =, Experimental values of Cym_ were obtained for
the circular cylinder as a function of D/h for o2h/g in the range of
200 to 500; D/h ranged from 0.4 to 6.0. Their results for D/h of
0.50, 0.60 and 0.90 are shown plotted in Figure 8. The deviations of the
experimental values from the corresponding theoretical ones are real
because theoretical values in the figure agree with their numerical
results.

The experimental work of Clough (1960) provides some verification of
the theoretical mode-shape effects, The objective in one set of his ex-
periments was to measure the effect of flexibility on added mass. This
was done by using flexible hollow vertical cylinders of various cross
sections that were fixed to the bottom of a tank and extended upward to
the MWL. The experiments consisted of measuring the natural frequency in
stillwater and then applying uniform weights along the cylinder until the
same frequency was measured in air. The applied weight per unit length
was then assumed to be proportional to the added mass after the effects
of the water inside the cylinders were subtracted.

One of the cylinders was circular and had a diameter of 0.25 foot.
Its natural frequency was 3 cycles per second in a water depth of 3 feet,.
This yields Ozh/g = 23 and D/h = 0.125. The average coefficient of
added mass was measured to be 0.58. This measure of added mass is identi-
cal to R}, as defined by equation (55) and plotted in Figure 9 for the
cantilever mode which approximates the first-mode shape of the cylinders
tested by Clough. His result is shown plotted in the figure. The theo-
retical results show that low values of R%, can occur for certain combi-
nations of D/h and o%h/g. The primary effect is due to the nonuniform
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distribution of added mass as illustrated by Figures 6 and 7. This
appears to explain Clough's low value. Flexibility becomes important
only for the higher mode shapes.

3. Measured Surface Waves, Analysis, and Results.

Surface waves, generated by oscillations of the cylinders, were
measured in one quadrant at five different locations along a circular
arc formed by a 3.5-foot radius (Fig. 18). At this radius the surface
fluctuations are primarily due to the radiated waves; the nonprogressive
surface disturbance due to added-mass effects is negligible. The objec-
tive of the measurements was to obtain Cy directly from the radiated
waves.

a. Ranges of the Variables. The diameters and oscillation frequen-
cies were the same as for the force measurements. Two additional water
depths (<1.0 foot) were used for the 0.50-foot-diameter cylinder. X, was
extended to larger values on the assumption that the viscous forces should

not affect the generated waves, The water depths and xo's were as
follows:

For D = 0,50 foot,
h = 1.00; 0.92, 0.83, 0.75;, and 0.67 foot,
X0 = 0.025, 0.0375, 0.05, and 0.0625 foot;

for D = 0.75 foot,
h = 1.00 and 0.83 foot,
Xy = 0.0375, 0.0568, 0.075, and 0.0938 foot.

b. Experimental Procedure. Before any runs were made all five gages
were checked for linearity over an elevation range of *+0.05 foot with
respect to the MNL. This was done for the maximum and minimum water
depths by performing a step calibration in increments of 0.01 foot. The
procedure consisted of raising each gage to t0.05 foot, lowering it to
-0.05 foot, and then returning it to original position. The submergence
of the gages proved to be linearly related to the pen deflection of the
chart recorder.

A run consisted of surface wave measurements for a given water depth
and diameter and spanning all pairs of X and o. Because an average
of six o's were used this resulted in approximately 24 wave records per
run. Preceding each run a simplified calibration was made based on the
linearity of the wave gages. All gages were calibrated simultaneously f
using a single increment equal to the maximum expected wave amplitude.
The sensitivities of all gages were made equal by adjusting the amplifiers.
Consequently, the recorded waves at each gage were of the correct height

s,




with respect to the waves at any other gage. Next, the X, was set by
adjusting the stroke of the eccentric and the first 10 to 20 waves were
recorded for each o. Approximately 5 minutes were required for the
water to become still between changes in o. The wave gage calibration
was checked at the end of each run.

c. Surface Wave Data. Figure 32 shows a sample of the recorded wave
data for the 0.75-foot-diameter cylinder. The wave height is maximum at
g = 0° (gage 5) and decreases with decreasing 6 (see Fig, 18 for coordi-
nate system). At 6 = -90°, which is perpendicular to the oscillation
direction, the wave frequency is twice the oscillation frequency. This
is an effect of nonlinearity because linear theory predicts no energy
propagation in this direction. The amplitude of these waves was found to
increase with increasing Xg and decreasing o, but it was too small to
contribute significantly to the total radiated energy.

The characteristics of the waves at the other gages were also affected
by Xgp and o. Simple-harmonic surface fluctuations occurred only when
deepwater waves were generated using the smaller values of Xy. A second
harmonic became evident for the larger Xy's. For the smaller values of
o the waves were highly nonlinear; for the lowest o the shape was asym-
metrical. The asymmetry was found to be due to the generation of a second
harmonic that propagates at its own phase speed rather than the speed of
the fundamental component. This was determined by measuring the waves at
five locations along the direction of oscillation. The records showed
that the profile differed from gage to gage because the phase of the free-
second harmonic with respect to the phase of the fundamental changed with
distance. This phenomenon has been predicted and experimentally verified
by Madsen (1971) for a flap-type wavemaker oscillating in a translation
mode. He shows that in shallow water it occurs when (H/2)/(kkh)2 > 1/67m%;
it can be eliminated if a second harmonic of an appropriate amplitude is
added to the simple-harmonic motion of the generator. An analysis of
this phenomenon was outside the scope of this study. It is reported here
because this effectively limited the measurements of C, to deepwater
waves.

d. Analysis. (g can be calculated from the radiated waves by equat-
ing the average rate of energy flux through a circular boundary at a radial
distance, r, with the average rate at which the cylinder does work on the
fluid. Using this principle Wehausen (1971) derives the relationship
between the damping coefficient, for an arbitrary body and the resulting
amplitudes of the radiated waves. His result appears to have a typograph-
ical error that yields a damping coefficient that is twice the correct
value. The correct result for (g 1is given by:

il
2
c = 32 (r/D) [sinh 2kh+2kh"

W m ﬁ:Z Lcosh2kh+1.l

Y (8 2
] L2Xn ]- - L7
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Duc to symmetry, the integration extends over one quadrant. This result
can also be derived from the following relationship:

n
2 2
Y (&)
- N Eha =¥
_L.E’( 2kh N | rdg =
4 J 2 x\} Tsionzin) L2 4
0

LE]

= 2
f v IBE .

1 i e .
71 S, - Xi(t) X@)ydt , (73)

where the integrand of the left side is the linear-theory power for a
plane simple-harmonic wave of amplitude Y3(2) and crest length rd8.

Yy was defined as one-half the difference between the measured crest
and trough elevations. This definition yields the amplitude of the first
harmonic provided the third and higher harmonics are negligible.

The measured Yu's were assumed to be represented by:

- [ -
Y0 = aocose + b0c033v. (74)
a and bO were determined by a least-squares procedure using the
measured values at three locations; 6 = 0°, -22%° and -45°. This repre-
sentation was chosen because it provided a better fit to the measured

data than the theoretical variation defined by cos 8. These three loca-
tions were used because: (a) The measurements here were the most accurate
due to the larger waves, and (b) the other locations contained energy at

i twice the oscillation frequency and therefore violated the linear-theory
A assumptions.

e, Results and Comparison with Theory. Although Gy was calculated
for all values of o%h/g only those corresponding to deepwater conditions
are plotted. The other values are not valid because in most cases the
waves contained a free-second harmonic that made the waves asymmetrical

as discussed earlier in this section. The results are plotted in two
separate figures. Figure 33 shows ( plotted as a function of Fj for
the variables of the experiments that correspond to the force measure-
ments. Figure 34 shows all the deepwater results. It is evident that

the theory forms an upper bound to the Cy's calculated from the measured
waves. This is expected because energy is lost during generation and
propagation. This was particularly evident for the larger Xp's because
in some cases the wave crest at 8 = 0° broke before it reached the wave
gage. Sometimes this resulted in a wave amplitude at 6 = 0° that was
smaller than that at 8 = —3320. On the average the measured Cy's were

about 20 percent lower than the theoretical quantities.
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Figure 33. Coefficient of the wavemaking force calculated from
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IV. HYDRODYNAMIC DAMPING AND ADDED MASS
FOR CYLINDER OSCILLATING IN A CURRENT

It is shown in the introduction (Sec. I) that if the velocity of the
structural members, x(t), is small in relation to the wave-induced
water particle velocities, u, then the damping force due to the drag-
force interaction term of the modified Morison equation can be repre-
sented by CppeDlulkx. The dominant contribution to this term will come
from the highest waves in the spectrum. The average frequency of these
waves during design-storm conditions will be much lower than the natural
frequency of the structure so that a number of oscillation cycles will
take place during the passage of the large waves. Consequently, as a
first approximation, it is assumed possible to model this situation in a
steady current.

The experiments discussed in this section used an elastically support-
ed rigid cylinder instead of a system whereby the cylinder was forced to
oscillate like for the wavemaking experiments. This was done because it
was desired to obtain data in the range where the oscillation frequency
was much higher than that of vortex shedding. The use of a forced-
oscillation system in this frequency range would have made it impossible
to extract the viscous forces that are proportional to velocity from the
total forces because they would have been (on the basis of results in
this section) less than 1 percent of the inertial forces in the range of
the present experiments.

The experiments counsisted of a series of tests in which the decay of
vibrations with respect to time were measured when the cylinder was given
an initial displacement and then suddenly released. The cylinder was com-
pletely submerged and its motion was constrained to Le in the direction
of the current. The corresponding damping values were compared with
theoretical values that are predicted by the drag-force interaction term
of the modified Morison equation. Coefficients of added mass were also
measured.

1. Experimental Equipment and Arrangement.

Figure 35 is a schematic diagram of the major experimental equipment
and its arrangement. A horizontal circular cylinder, having a diameter
of 0.125 foot and a wall thickness of 1/32 of an inch is shown positioned
in a 1-foot-wide open channel. Disk-type flanges of 0.167-foot-diameter
were welded to the ends of the cylinder in an attempt to produce a pre-
dominantly two-dimensional flow over the cylinder so that it could be 3
considered a section of an infinitely long cylinder. The flanges are
welded to rigid struts that are in turn connected to H-shaped elements 1
that act as elastic supports for the cylinder. All components are of
aluminum. The system was positioned about 36 feet from the channel
entrance.

The initial displacement was produced by weights which transmit their
load to the cylinder via a string as shown in Figure 35. Because the

85 |




L o

STRAIN GAGES 6 ]

STRAIN GAGES

RIGID STRUT I ] STRAIN GAGES
I“ x 3/32“ =
0.D.=0.125'
L
\-GAP= '/g"
.0
VIEW ALONG THE CHANNEL
CLéT STRING PULLEY
HERE
STRING Séﬁé‘é';
——
CURRENT
DIRECTION

SIDE VIEW

' ‘ 065' -

Figure 35. Schematic diagram of experimental arrangement and method

of producing initial displacement.




struts are stiff relative to the elastic supports, the initial displace-
ment and subsequent dynamic response is constrained to be along an arc of
a circle whose origin is at the elevation of the elastic supports. How-
ever, the motion was essentially a pure translation because the maximum
amplitude in the x-direction was less than 1 percent of the length of the
struts.

Strain gages mounted on the flanges of the H-shaped elements were
used to measure the steady-state forces, initial displacement and dynamic
response in the x-direction. The gages mounted on one of the struts was
used to monitor the dynamic response of the cylinder along its axis.

This later response was kept to a minimum by adjusting the position of
the string along the cylinder so that no initial displacement was pro-
duced in the axial direction. The wiring diagrams for all the gages and
dimensions of the H-shaped elements are shown in Figure 36.

The velocity of the current in the channel was limited by the avail-
able discharge. Values up to 2 feet per second were obtained with a
1.1-foot water depth. They were extended to 2.7 feet per second by using
a water depth of 0.8 foot. The velocity was recorded by a Kent Mini-flow
propeller-type current meter that had a propeller diameter of 0.032 foot.
It was positioned 0.50 foot upstream of the cylinder at the elevation of
the cylinder's axis along the centerline of the channel. The current
meter was supported by a track spanning the width of the channel and was

movable in the vertical direction so that velocity profiles could be
measured.

Experimental Procedure and Ranges of Variables.

a. Calibration. The first step was to measure the damping of the
elastically supported cylinder in air in order to extract the hydro-
dynamic effect on damping from the vibration-decay curves in water. This
was done by tapping the cylinder, which was positioned in an empty channel
as shown in Figure 35, and then measuring its response. The vibration-
decay was found to be exponential with &g (percent) equal to 0.096.

The method of calculation is discussed later.

The second step was to perform a dynamic calibration whose results
could be used to obtain the added mass from natural frequency measure-
ments in water and to determine the generalized stiffness, K& , of the
dynamic system with respect to the generalized coordinate, X. The
dynamic calibration was performed in air. Fifteen pieces of 1/16-inch
lead lashing wire, each piece about 5 feet long and weighing about 0.10
pound, were wrapped around the outside of the cylinder. The natural
frequency of the cylinder was measured without the wire and also after
each piece was added. The measurements were obtained from the recorded
dynamic response when the cylinder was tapped. Without the wire the
natural frequency, og, was 199 radians per second (31.7 cycles per
second) ; with all the wire wrapped the natural frequency was 103 radians
per second (16.4 cycles per second).
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The theoretical relationship between the mass of the wire, ME’ and
the corresponding oscillation frequency, oy, can be expressed by the
following equation:

a
o [E) 1]

M§ is approximately equal to M; because the diameter of the cylinder
is small in comparison with the length of the struts. Mg includes the
effects of the cylinder and its supporting struts.

A straight line was obtained when My was plotted versus (05/02)2-1;
its slope M* was measured to be 0.0159 slugs. This equation was then
used to obtain the generalized added mass, M;m, by replacing 9, with
the measured natural frequency, o,, in water. M;m is approximately
equal to M,, because the added mass of the struts and flanges is small

m :
in comparison to that of the cylinder. K& is equal to o2MZ.

The final step was to perform a static calibration in water whose
results could be used to measure the steady-state drag forces and the
cylinder displacements. A series of known horizontal loads was applied
to the cylinder under submerged conditions and then the corresponding
pen deflections were recorded. This resulted in a straight line relation-
ship between load, F, and pen deflection, A, defined by F = kgd,
that was used to measure the steady-state drag forces. The static and
dynamic displacements, X, were obtained from:

*
X = (ko/KS)A.

b. Submergence of the Cylinder. One of the requirements was that the
experiments simulate conditions representative of an infinite fluid.
Consequently, it was necessary to position the cylinder so that effects
of the free surface and impermeable bottom be negligible.

The location of the cylinder with respect to the free surface was
determined by measuring the coefficient of added mass, Cgp, for different
submergences as the channel was being filled. The procedure was to tap
the cylinder and measure the resulting o,. My, was obtained using the
method explained previously and Cam was then determined by dividing
Mam by the equivalent water mass of the volume of the cylinder between
the struts.

The results are shown plotted in Figure 37. Beyond a submergence of
three diameters, Cap remained at a constant value of 1.07. On the basis
of these results a submergence of 4.2 diameters was used for all the tests.
For the 0.8-foot depth the cylinder was closer to the bottom, 0.36 foot
above it, but no change in Cap was detected. Consequently, it was
assumed that the bottom had no influence. b
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c. Measurement of Steady-State Forces. Steady-state forces were

measured only for the 1.1-foot-depth case. Seven different centerline
velocities, ranging from 0.40 to 2 feet per second were used. These
corresponded to a Reynolds number range from 5.5 x 103 to 2.4 x 10% at
a temperature of 74° Fahrenheit for which the kinematic viscosity, v,
is about 107> square feet per second,

d. Current-Velocity Profiles. Lateral and vertical profiles were
measured for a centerline current velocity of 1.4 feet per second at a
position of 0.5 foot upstream of the cylinder, The lateral variation
was measured at 10 stations spanning the width of the channel. The
results are shown plotted in Figure 38. They were used to correct the
drag coefficients based on centerlina velocities. The vertical profile
was measured at the centerline of the channel. It was found to be

uniform over the elevation range of +2.0D with respect to the axis of
the cylinder.

e. Measurements of Vibration Decay. Vibration decay of the cylinder
for the 1.1-foot depth was measured for three different initial displace-
ments, Xp: 0.0015, 0.0030, and 0.0078 foot. This corresponds to Xg/D
of 0.012, 0.024, and 0.0625, respectively. Only the maximum value was
tested for the 0.8-foot-water depth, The initial displacement was pro-

duced by a weight as shown in Figure 35. The string was cut at the weight
by a pair of sharp scissors and the subsequent response was recorded.
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Figure 38. Lateral-velocity profile at centerline of cylinder.
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Data were obtained in stillwater and flowing water. Eight different
current velocities, up to 2 feet per second, were used for the 1.1-foot-
water depth. Six values were used for the 0.8-foot-water depth, four of
which were less than 2 feet per second and the other two reached up to
2.7 feet per second.

3. Analysis and Results.

a, Steady-State Drag Coefficients. The steady-state force measure-
ments were converted to drag coefficients, Cp, by the following equation:

F —_—
=2 ~2
Cc. = .__-—'L—-. (U /u \}, (76)
D P =2
=AU
2
where
A = projected area of cylinder and flanges,
U = centerline current velocity averaged over time,
u = current velocity at any lateral location averaged over time.

The term in the parentheses is the correction factor for C due to the
nonuniformity of the current velocity across the width of the channel.

@2 is the average value over the width of the channel of the square of
the lateral-velocity profile of Figure 38 for U= 1.4 feet per second.

The correction was applied to all Cp's by assuming the velocity profiles

for the other values of U were similar.

The resulting Cp's are shown plotted versus Reynolds number in

Figure 29. The average value is about 0.9 up to a Reynolds number of
1.6 x 10"% and about 1.0 for the rest of the range. The contribution due
to wave resistance was estimated using equations presented by Wehausen
and Laitone (1960) of Havelock's (1936) "first approximation'". It was
found to be less than 1 percent of the measured Cp's.

b. Damping and Added Mass. Sample records of the vibration decay
data for the 1.1-foot depth are shown in Figure 39. The upper two
records were obtained in stillwater for the maximum and minimum initial
displacements, respectively. The lower two records were obtained in
flowing water whose velocity was 2 feet per second. Similar records
were obtained for other velocities.

The records showed that the natural frequency in water was not
affected by the velocity of the current and did not change as the ampli-
tude of vibration decayed; it remained at the stillwater value of 126
radians per second (20 cycles per second). Consequently, the coefficient
of added mass was also constant, equal to 1.07 that was measured during
the submergence tests in stillwater.
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Figure 39. Drag coefficient for still cylinder.

An initial analysis indicated that the vibration-decay was exponen-
tial in time, implying that the damping is due to a force that is direc-
tly proportional to the velocity of the cylinder. This information,
together with the results of the static calibration that showed the
imposed force to be linearly related to displacement and the invariancy
of the added mass with respect to the amplitude of vibration, imply a
linear dynamic system whose equation of motion for free vibrations can
be written as:

X@) + 2q € X(t) + oi X() =0,

M/ 4w
i §s‘s st ’am)+ gvi'

g = structural damping measured in air; equal to 0.00096,
S
hydrodynamic damping.
§vi ) Y 1ping
Using equation 75 and its subsequent discussion, £, can be
expressed as:




where the first term is equal to C.0004. £,; was assumed to be equal
to £ because this first term was less than 5 percent of the measured
values of &.

The calculation of £ was based on the following well-known solution
of the above differential equation for the initial conditions X(0) = X,
and X(0) = 0 (Biggs, 1964):
-0 _Et
n

X(t) = Xoe (gsincnt+—cosont). (80)

For small values of £ this reduces to:

-cn gt
X(t) = xoe coscht. (81)
If t = 2mm/o, then X(t) coincides with the m-th amplitude, X (m< 1)
of the vibration-decay curve whicn is given by:

X =x -2TEm

. Iy ® . (82)

This relation is also valid for the (m + n)-th amplitude that is scaled

by an arbitrary constant and therefore can be used to obtain & for any
part of the vibration-decay record using arbitrary units for the ampli-

tude.

¢ was calculated for each record on the basis of the 16 cycles near
the beginning of the records that are delineated by the arrows in Figure
40. The first few cycles were not used because of disturbances created
by cutting the string. Equation (82) was assumed to represent the
vibration-decay over these 16 cycles except that XO corresponded to
the first amplitude preceding the 16 cycles. For this purpose Xy will

be denoted by Xé in the following logarithmic version:

znxmzznxé-zngm (83)

& as well as Sn Xb were assumed unknown and solved for by a least-
squared-error procedure. X, was defined by one-half of the distance
between a trough and the following crest. This eliminated effects of
fluctuations whose time scale was larger than the natural period of the
oscillations. For each initial displacement and U two records were
available and consequently two values of & were calculated. These
were averaged for plotting purposes.

The values of & are shown plotted in Figure 41 versus U and an
oscillation Strouhal number, onD/ZnU: The values corresponding to
X0 = 0.00030 foot are not shown because they were essentially the same
as for the other two X;y's except for the two largest values of U.
In this case, £ plotted between those corresponding to Xy = 0.0015 and
0.0078 foot.
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4. Discussion of Results.

a. Comparison of Damping with Predictions Based on the Modified
Morison Equation. The differential equation of motion for free vibra-
tions of the cylinder in a steady current for the case where the viscous
forces are represented by the drag-force interaction term of the modified
Morison equation is given by:

. Cpr/2)A L -
X + ——— |x-T| -0 +d x=0, (84)
M n
where
* * *
M =M_+M
S am

(In this equation structural damping is not included.)
If X << U, the equation can be linearized to yield the following
approximation:

C.PAT
- SR S (85)
M s

Comparing the damping force of this equation with that of equation (77)
implies that

cDPAE
£ =—rf. (86)
20 M

Assuming that the average Cp is equal to 1.0, as mcasured from the
steady-state forces, this equation becomes equal to:

€%) = 2.48 1. (87)

Figure 40 shows that the theoretical results overpredict the measured
values. The measured values increase gradually to about 1.8 feet per
second and then become asymptotic to the predicted results for which Cp
is about 0.25.

The dotted line represents theoretical results obtained from a
numerical solution of the "exact'" equation (equation 84). A fourth-order
Runge-Kutta technique (Hamming, 1962) was used with a time step equal to
1/20th of the natural period of oscillation. The accuracy of the numer-
ical method was checked by applying it to solve equation (77) for which
an analytical solution could be obtained. The numerical and analytical
results were indistinguishable for this time step. Therefore, the numer-
ical method was assumed valid for the exact nonlinear equation. The
numerical solution showed that the vibration-decay was not exponential.
Therefore, the dotted line does not have the same meaning as for the
linear system; it simply indicates when the linearization becomes valid.
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i b. Interpretation of Comparison. It can be shown by use of dimen-
E sional analysis that the force acting on a submerged cylinder that is
forced to oscillate with an amplitude X3 in an oncoming current can
be specified in terms of the following three parameters: (a) X,/D;

(b) opD?/v; and (c¢) o,D/2nU.

ikl R S SR

The significance of the first two parameters can be understood best
if they are interpreted for the case of no current. The first parameter
‘ is a measure of the ratio of the force due to the local acceleration of
3 the fluid to that due to the convective acceleration. It can also be
| interpreted as a measure of the distance that vorticity, generated by

the cylinder, is convected in relation to D during one cycle of oscil-
lation. If it is small, then according to Batchelor (1967), the vor-
ticity cannot be convected too far away from the cylinder before the
convection velocity reverses thereby generating vorticity of the opposite
sign. Consequently, no net vorticity is generated. Keulegan and
| Carpenter (1958) have shown experimentally that this parameter controls
! the generation of vortices in the wake of a fixed cylinder that is sub-
jected to an oscillating flow field (in this case, X, is the amplitude
of the water particle excursion). The second parameter is a type of
Reynolds number. It is a measure of the distance that the generated
vorticity of one sign diffuses with respect to D during one cycle
(Batchelor, 1967). In order for the vorticity to be confined in a
boundary layer this parameter must be much larger than unity (Wang, 1968).

-

For most practical situations in which the cylinder is oscillating
(rather than the external flow) X,/D will be significantly less than
one and onDz/v will probably be larger than 103. 1In that case the
vorticity will be contained in a boundary layer. As a consequence sep-
aration of the boundary layer will be inhibited and the rest of the flow
field will be irrotational. This implies that in still water the added-
mass forces can be adequately predicted by potential theory and the
viscous forces can be calculated by using linear boundary-layer theory
in which the convective accelerations are neglected.

The results of the experiments in this section verify the latter ‘
conclusions regarding the forces in still water. Figure 37 proves that |
potential theory adequately predicts the measured coefficient of added |
mass for the case of large submergence. The viscous forces are also |
adequately predicted. Calculations using Batchelor's (1967) result for
the viscous force yielded a value of &,; (%) = 0.46 which gives £(%) = 0.50
when corrected for structural damping by use of equation (79). This
latter value is close to the measured value of 0.70.

The effect of the current is defined by the third parameter, herein
referred to as the oscillation Strouhal number, S,. Lighthill (1954)
and Pedley (1972) studied the importance of this parameter in defining
the flow in the boundary layer for the case of a fixed cylinder in a
current with superimposed fluctuations. The velocity of the fluctuations
was taken to be always less than or equal to the mean current so that
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flow reversal would not have to be considered. Their conclusions apply
as well to the case where the cylinder oscillates in a steady current.
They show that the quasi-steady assumption is approached as this param-
eter becomes small. But at the other extreme, when the parameter becomes
large, the oscillatory boundary layer is contained within the boundary
layer caused by the mean current and therefore the two flow fields may

be considered independent.

According to the foregoing anaiysis, the present experimental results
for damping, as plotted in Figure 41, are in the region for which the
quasi-steady assumption is not valid. This appears to explain qualita-
tively the difference between the damping predicted by the drag-force
interaction term and the measured values. The increase of & with
decreasing S, indicates that interaction of the oscillatory flow with
the mean current becomes increasingly important and acts to increase the
damping. The mechanism involved in causing the increase of & cannot
be determined from this data; however, the gradualness of the increase
suggests that it is due to increased shear stresses caused by the
interaction.

The validity of the quasi-steady assumption for low values of S,
has been shown by Parkinson and Modi (1967) and Novak (1969). They
present data on the transverse response of prismatic cylinders to steady
wind and show comparisons with the quasi-steady predictions. Good agree-
ment is found provided the vortex shedding frequency, o, is suffi-
ciently high with respect to the natural frequency of the cylinders.
The required separation distance of the two frequencies depends on the
shape of the cylinders.

The implications of the present data and current understanding of
the interaction problem on damping of offshore platforms are not entirely
clear. As stated at the beginning of this section the major part of the
damping implied by the drag-force interaction term will occur during the
passage of the largest waves. In that case, S, could be calculated in
order to see if the damping mechanism is operative. U could be assumed
to be equal to the maximum water particle velocity at the MWL for a wave
whose height and period is the significant height and significant period,
respectively, corresponding to the design condition. If the resulting
So is much lower than 0.20 (the value at which o, = o,) then the quasi-
steady assumption may be valid and the damping mechanism operative.
Otherwise vortex shedding may provide additional excitation energy if
Sy is too close to 0.20 and the damping may be insignificant if S, is
much higher than 0.20.

c. Effect of Current on Added Mass. The coefficient of added mass
was not affected by the current and was equal to the potential theory
value. This was also discovered by Protos, Goldschmidt, and Toebes (1968)
for forced oscillations of circular and triangular cylinders in the direc-
tion transverse to an oncoming current. Their experiments covered the
range of o,/0,, from 0 to 2.0; their relative oscillation amplitudes,
Xo/D, were less than 0.072. It appears that potential theory is valid




for predicting coefficients of added mass provided the oscillation ampli-
tudes are small in comparison to the cylinder diameter. The motion of
the surrounding water does seem to influence the potential theory values.

V. SUMMARY AND CONCLUSIONS

A theoretical and experimental study was undertaken to investigate
the ""added mass'" and hydrodynamic damping for offshore platforms.

Classical potential theory with linearized boundary conditions was
used to formulate the steady-state dynamic response problem for a plat-
form idealized by a vertical surface-piercing cylinder of constant
diameter in finite water depth. The hydrodynamic forces due to wave-
making and added mass were investigated as a function of oscillation
frequency, cylinder diameter, water depth, and mode shape. Importance
of wavemaking as a damping mechanism was investigated for idealized and
proposed platforms. The following findings were made:

1. The nondimensionalized wavemaking force and the coeffi-
cient of added mass are functions of only two parameters, kh
and ka or alternatively, 02h/g and D/h, and the mode

shape y(y).

2. The wavemaking forces may be considered localized in
the near-surface zone for most practical applications. In
that case the force depends on only one parameter, Fy = ovD/g,
and may be considered independent of mode shape.

3. The coefficient of added mass consists of two components:
(a) a "local" component concentrated in the near-surface zone and
(b) an "overall" component that extends over the total water
depth. As a result the coefficient depends on both parameters
and the mode shape and varies with respect to elevation. It
ranges from values significantly greater than one all the way
to negative values. A uniform value of 1 may be used over
all elevations if D/h 1is less than 0.01.

4. The effectiveness of wavemaking as a damping mechanism,
specified in terms of fraction of critical damping, &y, depends
on o, h, D, y(y) and the structural mass. Values of damping
ranging from 2 to 4 percent of critical could be attained for
platforms that have natural periods of about 4 seconds in a
water depth of 600 feet provided the cylinder diameters are
larger than 30 feet.

5. Damping for a number of proposed platforms proved to
be negligible because the diameters in the near-surface zone
were small.

Experiments were conducted to verify the wavemaking and added-mass
forces predicted by the potential theory. Rigid vertical cylinders were
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oscillated with simple-harmonic motion in a translation mode. The oscil-
lations were performed in still water. Total forces and radiated waves
were measured. The following findings were made:

1. The measured wavemaking forces compared very well with
the theoretical predictions. In the range where deepwater waves
were generated all the measured values plotted on one curve as a
function of F, irrespective of the cylinder diameter and water

depth.

2. The measured coefficients of added mass also compared
very well with the theoretical predictions.

3. Wavemaking forces derived from the measured radiated
waves were on the average underestimated by 20 percent. 4

4. External hydrodynamic forces on oscillating bodies can
be reliably measured provided lightweight material is used for
the bodies and great care is taken in designing the mechanical
equipment so that all components are rigid.

An experimental study was made in an attempt to verify the hydrody-
namic damping implied by the drag-force interaction term of the modified
Morison equation. Decay of vibrations and the corresponding hydrody-
namic damping were measured when an elastically supported circular
cylinder was given an initial displacement and then suddenly released.
The cylinder was completely subpmerged and its motion was constrained to
be in the direction of an oncoming current. Coefficients of added mass
were also measured. The following findings were made:

1. The drag-force interaction term predicted damping
values that were about 4 times as large as the corresponding
measured values. However, boundary-layer theory indicates
that the quasi-steady assumption in the modified Morison
equation is valid only when the oscillation Strouhal number,
Sg = onD/ZnU) approaches zero. Consequently, the disagreement
between measured and predicted values of the damping is probably
due to the fact that S, was large for the experiments.

2. The measured coefficient of added mass corresponded
to the potential theory value for all current velocities.
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APPENDIX A

THE FUNCTIONS Py(x), Py, AND Pg

Computer results for these functions are plotted in the figure to
this Appendix. The following are approximate representations of these
functions, accurate to within 1 to 2 percent, for large and small
arguments. They are derived using a combination of computer results
and expansions of Bessel functions as given by Dwight (1961).

2/mx
J3()= + Y ()"

(@) Py(x) =

3

for X < 55 Py~ X

ST

Q
-
(]

for % > 2; Pq

() Pa(x) = - [F1031() + Y1 (0] (0]/[0102 + Y4 (0 2]

fortix <" 3 Poiix

for x > 3; PZ ~ 1/2x

(¢) Pz(x) = - K1(x)/K71(x)
for x < 2 P3 ~ X

for x >~ 20; Pz = 1.0

2 B kAP

b

(a2




P| (X), Pz(X), p3(X)

The functions Py(x), P,(x), P5(x).
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APPENDIX B

EQUATIONS USED TO CALCULATE Rjj

For any mode shape:
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Migher modes; ¥(y) = sinh w/2(1 + y/h): n =3, 5, and 7.
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