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I. INTRODUCTION

A Monte Carlo method has been developed to solve the time-dependent heat
conduction or diffusion equaticn. The method has been implemented in a versa-
tile computer program, and applied to obtain the solution of heat conduction
problems in complex geometry. Other possible applications include particle
diffusion and neutron slowing down.

The Monte Carlo method is a generalization of the "floating sphere" method
developed by Haji-sheikhl and by Mullerz. It is shown that the solution can be
estimated by constructing a random walk based on the selection of position and
time using probability distributions based on known Green's functions. These
Green's functions satisfy appropriate boundary conditions on the surface of
arbitrary volumes. They can be obtained for a wide class of volumes3. The form
of the known solution simplifies if the volume is wholly contained within a
homogeneoug medium, but Haji-Sheikh’s restriction of the volume to a sphere
is not necessary. Our approach is to specialize the class of volumes to rec-
tangular parallelepipeds of arbitrary size. This leads to an exact solution of
the heat transfer problem if all the boundaries of the configuration are planar,
and to a solution with any arbitrarily preset degree of accuracy if curved
boundaries are involved.

The method provides the possibility of solving time-dependent heat conduction
problems with internal heat sources and a variety of boundary conditions. The
current program treats the various boundary conditions, but not internal heat
sources. An exact treatment of the linear heat conduction problem is obtained.
If the conduction properties depend on the local temperature, we linearize the
problem by breaking up the calculation into small time steps, assuming no

temperature dependence of the parameters during the time step.
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Complex three-dimensional configurations can be treated. The geometrical

description is of the Combinatorial Geometry4 type. Geometrical bodies are de-
fined in terms of intersections of quadratic surfaces. Geometrical regions are

defined in terms of intersections of bodies.
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II. THEORY

1. The Heat Conduction Egquation

Let us consider the heat conduction equation:

v Tt | 1
o V:KVT (x,t) + 3t 5 Q(x,t) (1)

-
T(x,t) is the temperature at point x, time t. K is the thermal conductivity,

P is the density, c the specific heat, and Q the heat source density. The

problem is defined for xeQ where Q is a volume surrounded by a surface L.

K,p,c, are continuous functions of position, except across specified internal

boundaries. The boundary conditions on T are specified as follows:
- Internal boundaries:
T continuous

(2)
Kn: VT continuous

- External boundary I
The external boundaries conditions we will consider are either:
T(x,t) known for xel, 05;5;0 (3a)

or: R+KVT(x,t) = h(T,(x,t) = T(x,t))

for xel, O<t<t (3b)

h, TG(x,t) known ¥
where ® is the outward normal to the external boundary at point x, and h is
the coefficient of surface heat transfer.

- Initial conditions:

T(x,0) known for xeQ (4)

£
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2. The Green's Function Method

The problem we consider consists of finding the temperature T(xo,to) at

a point x_. €Q, t >0.

0 0

Let us surround the point X, by a volume Ve, the volume V being bounded

by a surface S, and define a Green's function G(xo—x,t -t) for xeV, <t It

0 0°

satisfies the differential equation

3G (xy=x,t-t)

5t ’ (5)

]
o

3 -
V-xV e G(xo-x,to-t) +

the boundary conditions are as follows:
= Internal boundaries - or portions (if any) of the internal boundaries of the
full configuration which are within V:

-%-G continuous

P (6)
1 .

Ky EE G continuous

- External boundary S

G(xy=%,tg™%) = 0 for xes , O<tct, (7)

- Initial condition

G(xo-x,O) = S(x-xo) (8)

A particular linear combination of Equations (1) and (5) can be written

in the form

% 1
dt -T(x,t) VKV — G(x.=-x,t.~t)
0 v pc 0 0

1
+ G(xo-x,to-t) EE-VKVT(x,t) de (9)

% 1
+ at | Glxgx,tg-t) =2 Q(x,t) Qv
0 v
t 9G(x ~-x,t ~t)
=f Odtf (e, t) —a O
0 v 3t

9T (x,t)
- AR A AT AT
+ G(x0 x,to t) 3t de
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The first volume integral of the left hand side can be reduced to a
surface integral by applying a generalized Green's theorem. The time integra-

tion of the right hand side can be performed. One obtains:

tO 1
dt -T(x,t) Kv — G(xo-x,t -t)
0 s B 4

* Glxg=x,tomt) = KVT (x,t) -Esx

1 )
fT(x.t ) G(xy=x,0) av_
-ﬁT(x,O) G (xo-x,to) de

The second term of the surface integral vanishes because of the boundary
condition (7). The first volume integral of the right hand side can be evaluated
taking the initial condition (8) into account. One therefore obtains, after re-

arranging the terms, and substituting t=t-T:

)~
0 1k
'Z‘(xo,to) =ﬁ art [IG(XO-X'T) EQ(x'tO T) de

f’r(x 0) G (x5=x,t, ) av, (11)
f dr/—'r(x, =-T1) KV G(x -X,T)* dsx

Equation (11) can be considered as an integral equation for T(xo,to),
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The choice of the volume V is arbitrary, provided VeQ. If V=Q and the

corresponding G is known, the problem of finding T(xo,to) is reduced to quadra-
tures (assuming that T is known on the external boundary I=S). 1In practice,

the choice of V is limited to volumes for which the Green's function G is known,
or readily computable, such as spheres, rectangular parallelepipeds, etc.

3. The Monte Carlo Method

A conceptually simple Monte Carlo technique can be constructed for the

solution of Equation (11). Before describing it, a lemma has to be proven.

Let us consider an arbitrary volume V, with no internal heat sources

(0=0), and boundary conditions T(x,t)=1 for xeS, t>0 and T(x,0)=1 for xev.

The solution is then T(x,t)=1 for any internal point x, at any time t>0, in

particular at xo,to.

Substituting this into Equation (11) we obtain:

t
0 1 -
1 -,ﬂ,G(xo—x,tQ)dvx +L dr L—KV p—c G(xo—x,t), dsx (12)

Letting to*m in Egquation (12) we get:

o l -
1= dr ~Ky ——-G(xo~x,r)-ds
0 s = >

as lim G(xo-x,to)dvx -0
t > \"

0

Substituting that result into Equation (12) we obtain:

% 1
ftodrfs—Kv ~p—c-G(x0-x,-c)°a‘Sx —/:]G(xo-x.to) de (13)

A Monte Carlo algorithm for the solution of Equation (11) is then as

follows.

First estimate the time-volume integral involving internal sources (if

For estimating the remaining two terms, first select a time t>0 from

p(r)dr =-}[-KV ;% G(xo-x,r)-aé dt (14)
S

any).

10




If r>t0 (which, according to 13, happens with probabilityq};G(xo—x.to)de),
§ the second term of Equation (11) has to be sampled: sample a point x in V with

density proportional to G(xo-x,to), and score the (known) T(x,0) as a contri-

bution to T(xo,to) ~ the history terminates. If t<t_., the last term of Equation

0’
(11) has to be sampled. Sample =KV E%-G(xo-x,r)-; for a point x on S. (K is

the outward normal to S at x; T(x,to-r) is the estimate for T(yo,to). Two cases
can occur: in one case, the sample x is on a common part of S and I, then
T(x,to-r) is either known (if Equation (3a) applies) or obtainable (if Equation

E 1 (3b) applies) as described in Section II.5 below, and the random walk terminates.
In the other case, x is on S but internal to . The point x is then surrounded
by another volume Ve, and the procedure to estimate T(x,to-r) is identical to
that just described to =stimate T(xo,to). In all cases the random walk terminates

when a known temperature is encountered (either at t=0 or on the boundary).

4. Inhomogeneous External Boundary Conditions

The case of inhomogeneous boundary conditions can be treated in the same

fashion as the case of known temperature condition, provided some adjustments
are made.

If, at any step of the random walk, the surface S surrounding V has a part
52 (S=S1 + 52) in common with a portion of I where inhomogeneous boundary condi-

tions apply, the boundary conditions imposed on G (Equation 7) either have to,

or can be modified to:

| G(xo-x,to-t) = 0 for xesl, Ogyipo (15a)
' Ky — G( ) = « h == G{ )
nekKyY oc xo—x,t0 = oc xo-x,to-t

for xesz, 05;5;0 (15b)




Equations (9) and (10) are still valid.

rewritten in shorthand notation as:

l >
dt -1 KV == c; + G — KYT| -ds
pc n
f f{-TKV——G-PG-KV’:L
pc |
% 1 1 >
+ at ~T KV 52 G + G = KVT pods
0 s,

The first term of Equation (10) is

The second term of the s1 - integral vanighes because of the boundary condition

(15a). 1In the S, -integral, we replace T by its expression obtained from (3b),

2
and G by its expression obtained from (15b). We obtain

t t
>
=f odtf -1 KV —= G.ds +f odtf S = 2-KVT I = G
pc G h pc
0 s, 0 s,

B P 3
( b KV Y G) Y KvT ds

Combining terms, one is left with
o 1+ i e
F = dt ~T KV — G-+dS + =T KV — G°dS
pc G pc
0 Sl 52

The equivalent of Equation (11) is then

t
T (x4 ty) =f % [ G —%Q av +f T(x,0) G dv
0 ¢ P v
% g . a 1
+ art ~T KV == G+dS + | =T_ Ky —= G+dS
0 s P S, dies

1 2

e e

(16)




Equation (1l) collapses if X, is on S. Equation (16) collapses if X is on
Sl' but is well-behaved if X, is on S2 (provided h<=). This shows that one
may use Equation (11) (with simpler Green's functions) until the necessity
occurs to estimate the temperature at an external boundary where inhomogeneous
boundary conditions are imposed. At that point, one has to switch to the more
complex boundary condition (15b), which leads to Equation (16).

The Monte Carlo procedure corresponding to Equation (16) is to estimate

the internal heat source term (if any) first. Then select t from Equation (14).

JU———

If T>to, sample the second term and terminate the history. If T<t0, sample the
surface terms. If xesz, estimate TG and terminate history. If xesl, estimate
T(x,tO-T) either as a known temperature, or by estimating it using Equation (11).

5. Linearization of a Non-Linear Conduction Equation

The heat conduction equation (1) is non-linear if the thermal properties
(K,p,c) depend on the temperature T. Consider a(T) which depends explicitly
on temperature only.

Let us introduce the new variable

0 =fT a(T)dT : (17)
0

It follows from (17) that

%=a§—2,V@=aVT (18)

Substituting (18) into (1) we obtain

1 . % 130 '
*Fe Ya e rgaE Mo
or:
- 2agk L R
fe'a'C*5E "5 © (19)

15
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If the problem at hand is such that one can choose an "a" so that K/a is

time independent and position independent in any region (thus exhibiting only
discontinuous variation across specified boundaries), Equation (19) can be
simplified to

Kv2 99 a
eSS e G
pc e ot pc

Q (20)

In practice this situation occurs in problems involving a single homogeneous
material. If the configuration is heterogeneous, we propose to choose a value
of a such that K/a is constant for the most important material. Regions involv-
ing other materials can be subdivided into small enough subregions so that K/a
does not vary appreciably. In that case, Equation (20) holds as a reasonable
approximation.

In any case, the diffusivity K/pc is still temperature (and therefore 0)-de-
pendent, We propose to subdivide the entire configuration into small enough re-
gions so that the diffusivity K/Pc can be reasonably approximated as being
constant within each region.

The time-dependence of the diffusivity can also be handled approximately
by splitting the time span from t=0 to t-to into time steps short enough
so that the thermal parameters do not vary appreciably over each time step.
Knowing the temperature at the beginning of the time step, the thermal parameters
can be calculated and considered as constant throughout the time step. The
temperature has to be calculated everywhere at the end of the time step - and
the new temperature distribution can serve as initial conditions for the next
time step.

If the time span has been subdivided into small enough time bins, and the
homogeneous regions have been subdivided into small enough subregions as dis-
cussed above, Equation (20) applies with:

K/a = const

pc/a = const

in each subregion and in each time bin.

adeat i,



Equation (20) is identical in form to Equation (1) provided one makes the

following substitutions:

O by T

K/a by K (21)

pc/a by pc

The only remaining problem is that of treating the inhomogeneous boundary
condition (3b). It is known3 that the transformation (17) cannot be performed
exactly in the presence of such inhomogeneous boundary conditions. One can,

however, write the boundary condition in the form

K 30 (x,t) _h I:N ]
= —a—n-!—— = ; GG(x't) - Q(X,t) (22)
where:
BG(x.t) = 0(x,t) + a(T,(x,t) - T(x,t)) (23)

N >
The problem is that OG(x,t) is not a known function, as it involves the unknowns
O(x,t) and T(x,t). We propose, however, the following approximation, which is

in the spirit of all those made in this section:
"
G&mw=mmm+u%mm-TmM) (24)

Equation (22) is then identical to Equation (3b) when substitutions (21) to-

gether with the replacement of




III. GREEN'S FUNCTIONS IN HOMOGENEOUS RECTANGULAR PARALLELEPIPEDS

The Monte Carlo method described in Section II is valid for any volume V
surrounding Xqe provided V is entirely within the configuration under examination.
In practice, the choice of volumes V is limited to such shapes for which the
Green's functions are known or easily computable. Mullerl considered a variety
of shapes for the solution of the Dirichlet problem. Haji-Sheikh2 considered
only spheres for the solution of heat conduction problems. Carslaw and Jaeqer3

give Green's functions for a variety of shapes.

In this section, we give all the relevant properties of Green's functions
defined over rectangular parallelepipeds. The restriction of volumes V to be
k rectangular parallelepipeds permits an exact solution in the case of configura-

J tions with piece~wise planar boundaries, or solutions to an arbitrary degree of

accuracy if curved boundaries are involved. Throughout this section, we assume
f that K and the combination pc are constant, and introduce the coefficient
of diffusivity

D = K/pc. (1)

1. Separation of Variables

We propose to solve for G(xl,xz,x3,t) which satisfies

% 2 2 2

F D[jcz +9G2 +3G2] -i;-§=o (2)
F,‘. i xl 3x2 3x3

|

Ef- for xeV, where V is defined by

) - +
& o, <X, <a, L I
1_1_al ’ ’

and t>0,




with the boundary and initial conditions

b | G (%) 1%,ys%3,0) = §(x))5(x,)8(xy) 3)
‘ + 3G (%) s%X5,Xq,t) +
7‘. ; G(xl,xz,xa,t) = - Bi Bxi . xi = (!i ’ i=1'3 (4)
‘ + %
f ; where a; Bi are given constants:
E | -
*
+ a; 2 0 i=1,3 (5)
=
‘ +8 >0 1=1,3 : (6)
X :
{
|

+
The inequalities (5) insure that the point xi=0 is inside V. If all B;

are zero, the boundary condition (4) is tailored to that of Equation (II.7).
+
Positive values of BZ can be chosen to reproduce the boundary condition (II.1l5b).

Let us assume that the solution G can be written in the form

G(xyrXyrXq,t) = Xl(xl,t)xz(xz.t)x3(x3,t) (7)

Substituting (7) into (2) we obtain

- e [ azxi 2%,
XXXy L g P77 "% J"° .
i=1 i axi

A solution of (2) with the conditions (3), (4) is therefore (7) with

k) azxi 3X,
= D————=——=0 i = 1;3 (9)
5. ‘ axiz o

i with the initial and boundary conditions

; xi(xi,o) = G(xi) i=1,3 (10)
g + 93X, (x;,t) :
Xi(xi,t) = ‘Bi _'"_3;;.— v xi - Gi 1= 1,3 (11)

The four-dimensional problems (2-4) have been reduced to three independent two=-

dimensional problems (9-11).
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2. Sampling the RPP Green's Function

As discussed in Section II.3, one first needs to sample a time t from

the distribution (Equation I.13-14)

J/; p(t)dt = v/CF(Xl,X21X3.t) dxldxzdx3 (12)

Using the expression (7) for::, we obtain

+ + - +
s @y @, a,
¢ P(r)dt = X; (x,t) dx; - X, (x,,t) dx, - Xy (xq,t) ax,
1 2

3

F,(£) F,(t) Fo(t) (13)

where

+
a,
1 :
i

To sample the cumulative distribution (13) we can sample each of the three

cumulative distributions (14) and retain the smallest sample.

Indeed, the probability density function (pdf) of the retained sample is:

=5 = dF 5
PUEHE = o Pt 3 s B a (&5}
a
= [Flrzr3] QED.

As further discussed in Section II.3, the sample t has to be compared to a

given cutoff time to. 1L t>to, a position xl,xz,x3 has to be sampled from a

pdf proportional to G(xl,xz,x3,to). As G is separable, the problem is reduced

to sampling xi from xi(xi'to)' for i=l,2'3o

18
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If the sample t is less than to. a point Xy 1%, 0%y has to be sampled on

S from a pdf proportional to -D;%-G(xl,xz,x3,t). The probability of such a
point being on either of the two sides of the parallelepiped which are parallel

to the x,,x

2 plane is:

3

9X
pan g
Pl =D [ a 2 ("allt) + r (allt)] /_ X (let)dx [ X (x3rt)dx

+
e 62x1 (x,,8)
[D —:—2——" dx1] Fz (t)F3 (t)
- X
al 1

Using Equation (9) we obtain

T 3 i
P, = [ T .t)dx1] F,(£)F, (t) = —— F,(£)F(t)

%

The probability Pl of selecting a point on either one of the pair of sides 1 is
therefore proportional to having selected the smallest time t from the cumula-
tive distribution Fl(t) (see Equation 15). This can easily be generalized to
the pairs of sides 2 and 3.

Having selected i, (say i=1), X, is set to o, or at with probability

1 1
axl - X +
- =— ( a,,t) or — (a ,t), respectively. The remaining two coordinates
axl 1 3x1 1

(i=2,3) have to be sampled from Xi(xi,t).

-

o

kg



3. The One-Dimensional Green's Function Vanishing at Boundaries

| We now consider the case of Green's functions with G=0 boundary conditions

- at both boundaries.

E | The Green's function satisfies

2% (x,t) _ 3X(x,8) _

D o TS 0 (16)
X

e I

with the boundary and initial conditions
X(x,0) = §(x) (17)

‘ X(+a/2,t) = 0 (18) ‘

therefore treating the symmetric case a+ =—q = a/2.

Let us introduce the reduced variables

£ = x/a
| T = Dt/a’ (19)
g f G(E,T) = X(x,t)

Equation (16-i8) become

: %65, 1) - 36, _

(20)

a2 gt
. G(E,0) = 8(£) (21)
G(+1/2,8) = 0 (22)

The solution G can be expressed either in the eigenfunction expansion:

1 ]
G(§,T) =2 I cos((2n + 1)7E)exp [;(2n + 1)2n2;], (23)
! n=0

or in the image expansion:

- ' 2
G(E,T) =—=— I (-1)" exp [}(E + n) /4{] 3 (24)

2 /T n==®

The expansion (23) converges rapidly for large T, whereas expansion (24)

converges rapidly for small T.




e —
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4. Monte Carlo Algorithms for Sampling One-Dimensional

Green's Functions Vanishing at Boundaries

The cumulative time distribution corresponding to Equation (14) is given

F (1) -/ /2 ¢ €,1yae (25)
-1/2

Using the eigenfunction expansion (23) we obtain:

by

& 1y ot )T 2.2
F(T) = F.nio oTvE] exp [}(2n+1) m {] (26)

corresponding to a probability density function

— g§.= ar T (-1)%(2n+1) exp [}(2n+1)2"2{] (27)

n=0
The expansion (27) is absolutely convergent for t>0, and the absolute values
of the terms are monotonically decreasing for t>1(1),where

1) . 2n(3y6w2 = 0.0139

At early times, an approximation is suggested: keep only the terms n=0
and n=+1 in the expansion (24). Substituting this expression into (25) one
obtains

o 2
4 -u

F(T) =1 - — e du (28)
/T Ji/avT

Compared to Equation (26), Equation (28) gives at least five place accuracy for
1<0.075.

To sample a time, one can set a time breakpoint Tl (0.014<Tl<0.075) and
use the early time approximation for T<T1 and the eigenfunction expansion for
1>Tl. Optimum computer times are achieved by setting T

1=0.05. At that time,

only the first two terms of the eigenfunction expansion are non-negligible.
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The Monte Carlo algorithm consists in precalculating F(rl).

A random

number g is sampled. If g>F(ry), the early time case applies. If g<F(r,)

the late time case applies.

4.1 Early Time Case

One first has to select <7y from Equation (28). Let Uy
2

Select u>u, from e © du and set 1=l/(4u)2.

= 1/4/'r1.
As uy is of the order of unity, an efficient technique to select u is to
select § from exp (-2u15) and accept the sample with probability exp (-52).
When § is accepted, u is set equal to u1+5.

Oonce t has been selected, the coordinate x has to be sampled.

If diffusion occurs to a boundary, it occurs with equal probability to
either boundary as

g% 1/2,7) = - %}% =1/2,7) (29)

If an internal point ¢ has to be sampled, its density is proportional to

G(g,1) as obtained from Equation (24), which can be rewritten in the form

(41!21')-1/2 > exp [—(g+2n)2/41]

n=0

G(El T)

exp [— (g-2n-1)2/4£| - exp \:-(g+2n+1)2/41]

+ exp [; (g+2n+2)/4£1:} (30)

The selection is performed as follows:

First n>0 is sampled from exp (‘n2/4T)- Then the largest integer n is found such
that

n=2n+g, EZO

If £51/2, the sample p is rejected.




When n is accepted, the samples n, £ are tentatively accepted as samples

of the first of the four terms constituting the n-th term of Equation (30).

The remaining three terms are taken into account by a rejection technique:

Let r, = exp {— Eg—2n—l)2 = (E-Zn)zj /41?
 igasd
r, = exp {- Eg+2n+l) - (&-2n) /4Tz

ry = exp {- E£+2n+2)2 - (E-2n)§ /41}

The sample £ is accepted with probability 1-rl-r2+r3. In practice, this is

broken up into three steps. Only r. is calculated, and the sample is accepted

1

with probability l-r If not accepted, r_ and r_ are calculated, and the re-

i 2 3

maining tests are performed.

4.2 Late Time Case

One first has to select T<Tl from Equation (27). Keeping only the

first two terms of the expansion, one obtains:

Fdr=an [exp(-"z‘f) =3 exp(-9ﬂ’2ff] 4t (31)
Let x = exp(-"z(T-Tl))

€ = exp(-87°T)

p(x)dx = (1-3ex>)dx

or

_ 1=3¢ (8/3)e 9 8
pi(x)dx = ie/3 dx + 1e/3 8 (1-x )dx

To sample x, with probability (1-3€)/(1-€/3) one samples the first term by setting
X equal to a random number. With remaining probability, (8/3)e/(l-€/3), the second
term needs to be sampled. x can be set equal to any of nine random numbers except
for the largest of these nine. This technique turns out to be time consuming. A
more efficient technique consists in setting x to a random number, and accept x

with probability 1-x8. If x is not accepted, it is mulitplied by another random

number. The product is a valid sample x.




Finally, the time variable is set to

2 W ,Q,n(x)/n-z.

Once T has been selected, the coordinate x has to be sampled.
If diffusion occurs to a boundary, it occurs with equal probability to
{ either boundary, as Equation (29) still applies.
; If an internal point & has to be sampled, its density is proportional to

G(§,T) as obtained from Equation (23), keeping only the first two terms

, G(E,T)dE = Zl}os(ﬂg)exp(-ﬂzt) + cos(BNE)exp(—9w2€]d£

| = cos(mE) + € cos(37E) (32)
« cos(mE) + sElcos3(TTE) - 3cos(7TEZ‘

where € = exp(-aﬂzT).

Substituting sin(wg) = 2x-1 into equation (32):
p(x)dx = (1-3e)dx + l6ex(l-x)dx

_ 1-3¢ (8/3)¢€ o
p(x)dx = 1=e/3 dx + 13 6x (1=-x)dx (33)

To sample equation (33), with probability (1-3€)/(l-€/3) set x to a random number.
With remaining probability, (8/3)e/(l1-¢/3), sample three random numbers and set
X equal to the one in the middle in the order of magnitude.

5. The One-Dimensional Green's Function with Homogeneous Boundary Conditions

We seek the solution of the equation

2
3 X(x,t) _ 3X(x,t) _
! D > 3t 0 (34)

Ix

with the boundary and initial conditions

t X(x,0) = 6(x) (35)
’
x(0,t) = g XLeB) (36)
X(1,8) = 0 (37)

therefore treating the case of the source point x=0 on the boundary x=0:

a-=0, a+=l, with homogeneous boundary condition at x=0 (3—>0) and zero boundary

condition at x=a (B+=O).
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T

Let us again introduce the reduced variables (19):

£ = x/a

T = Dt/a2
G(E,T) = X(x,t)

y = g/a

Equations (34-37) become:

3%:(8,T) _ 3G(E,T) _ 0
aE2 9T T

G(£,0) = 8 (&)

G(0,T) =Y ______aca(g,r)

G(1,T) =0

The eigenfunction expansioi.:
@

G(E,t) = L c, sin(an(ﬁ-l)) exp (_anzT)

n=1

(38)

(39)

(40)

(41a)

(41b)

(42)

satisfies the differential equation (39) and boundary condition (4la),

Substituting (42) into (4la) we obtain the eigenvalue eguation:

tan Lt P n>1

Taking (43) into account, one can show that

1
J/; sin(an(g-l)) sin (am(E'l)) ag

= (1 +vy coszan)/z for m=n

= 0 for m#¥n

Equation (44) shows that the expansion (42) is in terms of an orthogonal

set. A necessary condition for (40) to be satisfied is

1 1
.j: Sin(an(E-l))S(E)dE - _/2 Sin(cn(E-l)) G (g,0)4g

(43)

(44)

(45)

Substituting (42) into (45) and taking (44) into account, one obtains

-2 sina
c a———;ﬂ

+ o

1+Yycos s

Expression (42) is therefore the solution of (39)-(41l) provided (44) and (46)

are satisfied.

(46)




5.1 Solution of the Eigenvalue Problem

The solution of Equation (44) is graphically represented in

Figure 1. The solutions can be written as:

an = nm - nn (47)

where

tana

-

Son
N
I
Ly
| Figure 1 - Solution of tana=-ya
L
. % is a solution of
|-
tan(-n ) = - Y(mr-nn) (48)

forne= 1, 2, oo e




Equation (48) can be rewritten as
tan n, = yam = yn, (49)

or

n, = Arctan (ynm = yn,) (50)

n = 1.2, e
Equation (50) can be used for an iterative method of solution, where the mth

iteration can be obtained from the (m-l)th using

=1
nnm = Arctan (ynm - ynnm ) (51)

The iteration can be started by using an approximate expression for

tan nno N nno/(w/z - nno) and substituting in Equation (49):

0 B o
N, /(n/2 = n ") = ynm ™, (52)

\

nno = ynr + 'Y1T/2+l - (‘an + 'Yn/2+1) 2-2nY 211'2 )/2Y (53)

Recapitulating the results of the present section, the eigenvalues a,
can be obtained by using the starting value (53), iterating to convergence
using Equation (51), and substituting the solution N into Equation (47).

For y>0 and n large enough aﬂ»(n-l/Z)n.

5.2 Early Time Approximation

The expansion (43) is rapidly converging for large values of 7. It
does not converge for t=0. In order to derive an approximation to G(f,t) for
small values of 1, let us first solve a problem satisfying Equations (39)-(4la),

and replacing Equation (41b) by

G(E,T) * 0 as &= (54)




Jp——

and denoting its solution G(f,t) as Go(gpr).

Let us define the Laplace transformation of GO'

F (£ ) =/ e 'Gy(E,)dr (55)
0

It satisfies the differential equation

(56)

The general solution of (56) satisfying the boundary conditions (40)
and (54) is

o Ve Y e-(g+n)/5
Flg) = =——=1* A Fin) S——e——
Y 0

(57)
Y

the function f£(;) is to be determined from the boundary condition (4la):

_E/; - °(§+n)v/; = ® - ]
Yw Y Vo 0

w

for ¢ = 0, or:

fmdn f(n)e'n/“& ﬂ‘dﬂ: 1 - —-_2_
0

- (58)

The left hand side of Equation (58) defines a Laplace transform of f(n),
with the transform variable s=/p. The inverse transform of the right hand

side is §(p)~- %-e-“/Y.

Therefore

ﬂm=am)-%JVY (59)

»

Al

:
1§
d
%
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Substituting this into Equation (57) we obtain

_gm-zj“e_st-E_V’a dn

Lo =~ »
Vo L Vo

The inverse transform of F with respect to w is

2 2 2
Gy (6,T) = h e E'5 AEE X e WY RN /“] (60)
V=3 Y Jo

The function
G(&§,T) = GO(E,T) - GO(Z-E,T) (61)

satisfies the differential equation (39), as well as the boundary conditions
(40) and (42). For small enough T, Go(2,T)<<GO(O,T), and therefore from (61):
G(0,T) %GO(O,T); for small enough T, expression (61) approximately satisfies
boundary condition (41).

The function G(£,T) defined by Equation (61) can therefore be considered

as an approximation to the solution of Equation (39), (41lb).

6. Monte Carlo Algorithms for Sampling One-Dimensional

Green's Functions with Homogeneous Boundary Conditions

Starting from the exact eigenfunction expansion (43), we obtain the
following expressions for distributions of conduction time.

The p.d.f. of time passage through the boundary at which G = -y %E is:

2
3G 2a_sina -a_ T
Po('l‘) DRI SN 3G(0,1) _ 5 n n_n (62)

o8 9 n 1+ Ycoszun

For the boundary at which G=0, it is:

3G, 3G (1, 1) Zsinan(-coSan) a Ot
Pi{t) = = —= = =3 e (63)
I an 3% 2
n 1 + ycos o, ‘
- 2sina_ -a 2t f,
Fgo (1) =f Pylt)dt = % . (64) |
" n un(1+Ycos Un)
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BT g
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¥ . 2 e N Ve

. 2
251nan(-cosan) -a T
Fl(t) = pl(r)dr = I e (65)
T

na (l+ycosza )

For t=0, the following equalities can be derived:

oy S
FO(T) = T (66)
Fl(r) = l-Fo(T) (67)

On the other hand, starting from the approximate early time expression of

G(&,Tt), we obtain the following:

ToEAT L e [e (g /e
Fo(1) = 1+ - D ————-dE-— ane VY[ at ](se)
i Y Jo 0 /it
or
2 « 3
FO(T) = T%? - 2e1/Y+T/Y 7% e Y au (69)
T Ji/2/+ Vil
and
-1 -T/Y2 2 ® -y
Fl(‘t) = m + e -;;_; e du (70)

Vt/y
Expressions (68) and (69) have been calculated numerically for a range
of y, and compared to the exact eigenvalue expressions (64) and (65), keeping
up to 900 terms. At least five place agreement occurs for t<0.l. For that
value of 1, convergence of the eigenfunction series occurs with only 8 terms
(all 900 terms are required for t=0.0l1). We can therefore define a time break-

point Tl(=0.1) below which the early time approximation applies, and above

which the eigenfunction expansion has to be used.
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We now turn to describe specific algorithms for time and position

selection for ™<T, and T>T1. In both cases three possibilities have to be
covered: conduction to the £=0 boundary at time T, conduction to the £=1
boundary at time t, and diffusion to an internal point X&< 1 at time T.

6.1 Case of Early Times

6.1.1 Conduction to the £=0 boundary

A time t has to be sampled from Fo(r) as given by Equation (68).

Introducing the new variables

u=¢£/2/¢t
v = (E+)/2/t (71)
w = 1/2/%,

Equation (68) becomes

® 2 2 ® 2
F) = 1L gt PR fdn e /Y eV dv] (72)
Y A Y ¥ g (L)

el/Y

Multiplying the u-integral by

changing the variable n to z-1, Equation (72) becomes

l/'Y © o = 2 © Y 2
Flo) = - S e Yar [ e % au - . dv] (73)
i VT Y 1 w wg

The probability density function of is proportional to f(w) = §§££L :
1/y i 2 - (r2qy
PP £ ikl CVY g Y [1_ za~ (% 1)“’] (74)
~S 1

Expression (74) is positive for all  provided w>l. As w>w1 and

B 1/2/%’ = 1/2/.1 = 1.58, the condition is satisfied.

o |

® _~t/Y o 3 .
Y e dg, which is equal to unity, and
21




The problem of selecting <1y from Equation (72) is therefore reduced to

selecting m>m1 from Equation (74), where

w = 1/2.71_3 (75)

This can be done as follows:

1) select z>1 from e-;/Yd;

E | 2) select dpwl from & dw

| 2 2
'; 3) accept the sample with probability l-ze (z-Dw

, and

‘ set 1'=l/(2w)2. If rejection occurs, repeat steps 1,2,3.

: 6.1.2 Conduction to the £= 1 Boundary

A time T has to be sampled from Fl(r) as given by Equation (70).
The selection for O<t<w is rather simple:
2
T = v\ 4y

3 3 = & = 2
| where p(A\) = e " and p(v) = — ¢ "
/r

However, what is needed is selection in a finite range 02-:<-;l, where T 3

can be rather small.

To develop a selection technique, let

x=/‘?/Y r X ='FT-_/'Y

1 1

Equation (70) becomes

2 -
E‘(x)«=ex —2-[ e ¥ du
/r Jx

) 14 _i f‘” > (u=-x) (u-!-x)d‘.1
/n X

Let u=x = v s

p(x)m_z. fm e-v(v-0-2x)dv N E‘
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The probability density function of x is

P .(X) = - —« = f 2v e'V(V+2X)dv (76)
X dx -
Yr JO

Let us define the pdf

P(xX,V) -2-2v e-v(v+2x)

/r

px(x) is the marginal distribution of (77).

77

The marginal distribution of v is:

X 2 ~2vx
pv(v) =/ 1 p(x,v)dx « —i e v [1 -e 1] (78)
0 /r

If v is selected from (78), the conditional distribution of x is ratio of

(77) to (78):

P (x,v) « 2v e VF Ogxex, (79)

To select v from (78), the following techniques are efficient:

2
If Xy is not small with respect to unity, select v from eV , and accept
-2v x
with probability l-e 1.
2
If % is small, select v from 2v e Vv (v=/2» P()\)=e Ay, and accept with
-2v x
1

*
probability (l-e )/2vx . The optimum breakpoint value of x, is /2.

-0 and as x,-ox;

The overall efficiency of the rejection technique is 100% as x, 1

it reaches a minimum value of 54% at X, = /n/2.

Once v is selected, the selection of x from (79) is trivial: select )\
from e-x, 0<)‘<2vx1 and set x = ~ )/2v.

Finally the time is given by

22
t = v'x® = v /a2,

"The probability is >(1-vk;). This fact can be used to avoid, with high
probability, the necessity to compute an exponential,




6.1.3 Conduction to an Internal Point

The problem consists in selecting a position coordinate x from the pdf
(61), at a given r.

This equation can be written as:

® a2 2 i 2
Glg,q) =f 2_33 VY mE /4t _ o~ (E+n) /4
0 a
\

2 2
- o~ (278)7/41, - (2-g+n) /41-} (80)

2
To select £ from (80) one can first select n from %-e n/Y, g from e & I

and accept the sample with probability

2
P = [1 s e- EE'H'\)Z'EZJ /41.' I e" [(2‘&) "52] /41‘ + e- [(2-g+n)2-52:] /4‘[]

The efficiency of the rejection technique deteriorates for small values

of g = Y/Z/;. In that case, another algorithm becomes efficient.

2
With probability l/(l+g/§3, sample x from xe * and u from 2ue © . With
2 2

* and u from 2//; e X . In both

remaining probability sample x from x2/2 e

cases set n = 2/7 gx and g = 2/t u, and accept the sample with probability

P' = p«dt/( (284m)).

For optimum operation the first sampling technique should be used for

P9y the second one for 9<9y. The optimum value of gy can be calculated for

T<<1l:

= 0.479

The efficiency of the mixed algorithm is 100% as g+0 and gs». It assumes a

minimum value of 47% at g = 99°




..

6.2 Case of Late Times

6.2.1 Conduction to Either Boundary

The time is sampled by sampling a random number r and solving the equation

!'Fi (0) = Fi (t) i

Oor 1 (81)

i = 0 or 1 corresponds to boundary £

or §

1, respectively.
For each sample (each value of Y), the eigenvalues of coefficients are cal~

culated. The solution of (8l) is obtained by performing a binary search: if

T)<T<T 0 where Fi(Tj) is known for j = 1,2, the next approximation of T is T3

obtained by linear interpolation between Tl and ?2. The value Fi(T3) is calcu-

lated numerically, and r3 replaces either Tl or 12, thus reducing the interval

T17Toe The search is terminated if Fi(Tl)-Fi(Tz) becomes small enough (5% of Fi(O)).

If r2 = » (e.g., at the beginning of the binary search), the "linear interpolations"

for r3 is replaced by selection from the first term of expansion (3) or (4):

1
b Rt T log (r Fi(rl))
%1

6.2.2 Conduction to an Internal Point

At late time T, the pdf of & 0<&<l is proportional to:

2sing -Q 21

G(g,T) = L sin(ani)e =

2 1+ycos o

The cumulative pdf of £ is therefore

Z 23:i.nu.n -ahzr
P(g) = G(g,1)dg = EGHTYCO_SGT (l-cosanE) e (82)
0 n n
As in the case of time distribution, the selection is performed by solving
r-P(1l) = P(§) (83)

using a binary search technique.
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7. Importance Sampling of RPP Green's Functions with

Homogeneous Boundary Conditions

Biased sampling of the Green's functions becomes necessary if boundary con-

ditions of the type

T - T =_B_32
g on

occurs with large values of both Tg and g.
The natural probability of scoring '1‘g is small, but Tg is much larger than

any local temperature T. This leads to a high variance of the estimates. The sit-

N N
uation can be corrected by proper biasing if reasonable estimates Tg of Tg and T

of the local temperature T can be made.

Let us assume that the RPP is oriented along the x axis, that zero

Fs
boundary conditions are satisfied in the X)X, and X=X g planes as well as on one

of the X=X, planes, The condition G = - y%ﬁ-is satisfied on the other XX,

plane. The procedure outlined in Section 3 is altered: the time tl of diffusion

to the X=X planes and to the x planes are sampled first. The smallest of

3 2 3

to, tl’ t2 is determined and set as tm, where to is the time cutoff. tm is scaled

to the frame of x,: 1m=Dtm/a32. If Fo(t) is the function defined by Equation (64)

or (69) of Section 6, then, with probability
pg = FO(O)-FO(Tm)
the score will be Tg. With remaining probability (l-p) it will be a local tempera-
ture: with probability
B, Fl(O)-Fl(rm)
the score will be a temperature Ta at a point on the opposite side of the X,
interval, and, with probability
Py = l-Fo(rm) - Fl(rm) (pg + Py * B 1)
the score will be a temperature Ti at a point internal to the interval of x

3°
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Assuming that Tg is reasonably close to Tg, and that both Ta and T, are

n
reasonably close to T, reasonable biased probabilities and associated weight

factors can be defined as:

B T /N W_ = N/T
= =

Pg = PgTy/ g g

N n Ny

Py ™ pa'r/N ¥ = N/T

7] ¥ "

here N = p T+ (1-p )T
where = + - .
Pg g Pg

The associated scores will be W§T§, waTa' WiTi’ which are all approximately

equal to N.
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IV. GREEN'S FUNCTIONS IN INHOMOGENEOUS RECTANGULAR PARALLELEPIPEDS

The Green's functions defined for homogeneous RPP in Section III can be
used provided the RPP is fully contained in a homogeneous region., Another type

of Green's functions has to be introduced when a point x. is placed on the

0
interface between two dissimilar materials. As in the previous section, we re-
strict the shape of the volume V to a rectangular parallelepiped. The inhomogeneity
is restricted to two media with a planar interface, the interface being parallel
to a side of the RPP.

To be more specific, the volume V is defined by:

- + b :
N d .= 3.3 (1)

@&, < X, < o,
I = L -

The diffusion parameters are:

!
~
o

K_

s -j for x3>0
. *p
c 3
(2)
K = K2
for x_<0
2 2
(o c,

Equations (5)~(8) of Section I.2 can be rewritten as:

K 826 32G BZG aG
— + + -=—=0 (3)
e 9x = X = Ix * 3>
1 2 3
with the boundary and initial conditions
G(xl,xz,x3,0) = G(xl)s(xz)ﬁ(x3) (4)
+
G(xl,xz,x3,t) =0, X, =a; i=1,3 (5)
1 + 1 -
E;G(xl.xz,o ,t) = EE‘;G(xl,JZ'O E) (6)
K K
1 + & -
e G(xl.x2.0 gE] W == G(xlrleo t) (7)

pc1 ax3 Ocz




Unfortunately, separation of variables does not apply to this problem, Par-
tial separation can be achieved in cylindrical symmetry (if the RPP is replaced
by a cylinder around the xa-axis). The remaining problem is three-dimensional
(r,z,t-dependent), and an eigenfunction expansion can be written down. Attempts
to implement an approach based on this eigenfunction expansion have been given up.
The solution of the eigenvalue problem is too time consuming to be carried out
during the course of a Monte Carlo calculation. Precalculation of sampling tables
for a representative set of parameters (Kl,Kz,pcl,pcz, ai) appear to be impractical
as the tables would be too bulky to keep in computer core.

An approximation (which can be reduced to any degree) has been introduced.

{t is well known that the diffusion equation can be considered as an approximation
of the transport equation in the limit of small mean free paths. Conversely, the
diffusion equation can be approximated by a transport equation with small mean
free paths.

Consider the transport of radiation in a homogeneous medium with the following
properties: The root mean square free path of a particle is e, the velocity is v,
scattering is isotropic. For small enough ¢, the diffusion approximation applies,
with a diffusivity*

D = K/pc = ve/6. (8)
The distribution of free paths is irrelevant in the limit of small e. We are free
to take constant free paths of length ¢.

At the interface between two different materials, the scattering is anisotropic:
with probability pl, it is isotropic into medium 1, and with probability l-pl, it

is isotropic into medium 2. In order to satisfy the boundary conditions (6), (7)

P, = /K _.pc. A T —— 2
1 1€, / (/Kl.pcl + "K2°0°2) 9) 13

*
In neutron transport, the root mean square free path € = 2), where A\ :
is the mean free path, giving the familiar D = vA/3. ¢
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The accuracy of the method is determined by the smallness of e. Once

€5 is chosen for medium i, i=1,2, the velocity v, is determined from Equation (8).

_ An adequate accuracy is achieved by setting € to the smallest of €y v s: ’

{ where
{
t  ce—————
e; = /6 Dit0/25
gil = Li/6 where Li is the smallest of

{ + +
- = -
a) ¢ Fay soag if i=1l, -a, if 1=2.

Setting ey = eit will insure 25 collisions before reaching a given time cutoff

t Setting g™ sil will insure a number of collisions of the order of 25 before

0°
leaking out of the RPP.
Once the particle diffuses away from the interface, one can switch to the

floating homogeneous RPP method. Optimum computing times are achieved if this

switch occurs when the particle diffuses a distance of NGeil from the interface.
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V. HEAT TRANSFER GEOMETRY PACKAGE

1. Geometrical Description

The geometrical description is of the combinatorial type4. Regions are
described in terms of intersection of bodies. Bodies are described in terms
of intersection of quadratic surfaces. The only surfaces currently being im-
plemented consist of planes, spheres, cylinders, and circular cones (corres-
ponding to combinatorial bodies RPP, BOX, SPH, RCC, TRC, WED, ARB, but exclud-
ing REC and ELL).

If a configuration is axially repetitive, only a single repetitive element
needs to be described, as explained in Sectio: VII.3. The geometrical package
is completely general. However, if the configuration exhibits at least partial
cyclindrical symmetry, more efficient heat transfer calculations will be per-
formed if the axis is in the z-direction (only subroutine SOUSET is affected.
See Section VII.S).

2. Geometrical Input

The input consists of
1) Title Card
2) Surface Data
3) Body definition in terms of above surfaces
4) Region definition in terms of above bodies
It is envisioned to develop a preprocessor which will accept as input com-
binatorial bodies.
2.1 Title Card (I4,19a4)
IPR If zero - input and processed data will be printed back.
HOLL Any hollerith information serving as a title.

2.2 Surface Input (2X, A3, 8E9.3)

The input number € required for each surface can be regarded as a surface

thickness. Its meaning is described in Section V.4.1.
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Plane: PLN ¢ V1 V2 V3 Hl Hz H3

where V is a point on the plane, and H is orthogonal
to the plane, pointing "inside" the plane (arbitrary
normalization)

Sphere: SPH ¢ V1 V2 V3 R

where V is the center and R the radius

Cylinder: CYL ¢ V1 V2 V3 Hl H2 H3 R

ER———

where V is a point on the axis, H points along the
axis (arbitrary normalization) and R is the radius

Cone: CON ¢ Vl V2 V3 Hl H2 H3 T

where V is the vértex, H points along the axis
(arbitrary normalization), and T is the tangent of
the angle of aperture
End of surface input marker: END
2.3 Body Input (2x, A3, 15I5)
GEN Nl N2 N3 .
where INil is surface number N.>0 implies that the body is inside
the surface, Ni<0 - outside. The first Ni = 0 implies the end of
list at i=-1. If none, end occurs at i = 1lé.
End of body input marker: END
2.4 Region Input (2x, A3, 1515)
} ANY Ny N, No ...
where ANY is any three characters (¥ END) and lNi| = body number.
Ni>° implies the region is inside body, Ni<0 - outside. Ni =0

end of list marker. i

End of region input marker: END

S YT
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3. The Input Processing Routines

GENI, GENIP, GENICK

These subroutines read card input and store processed data into a single
dimensional array called AST in floating point mode and MAS in integer mode.

The layout of the information is shown in Table 1.

The surface data is processed first, and stored sequentially in the first
available location IS of the array. One word is left blank for future use. The
TYPE is changed to a numerical code as shown in Table 1. The vector H is normal-
ized to unity. An exhaustive search of surface duplicates is performed. Each
time a surface is read in, the previous list is examined for an identical surface.
If a duplicate is found, the new surface is ignored, and the parameter ¢ of the
old surface is changed to the smallest of the old and new c. The address JS
constitute the only identifier of the surface. A temporary dictionary
ISLOC(IS)=JS is generated, which defines the surface identifier JS corresponding
to the ordinal surface number IS. In the case of a new plane identical to an
old plane except for the vector H pointing in the opposite direction, the old H
is left unchanged, but the dictionary entry of the new plane is tagged with a
negative sign: ISLOC(IS)=-JS.

The body definition is read in next. The information is stored in terms
of surface identifiers as determined from the surface dictionary ISLOC. A tem-
porary body dictionary IBLOC is generated, which defines the body identifier in
terms of body input number.

The last block of information read in is the region definition. The in-
formation is stored in terms of body identifiers as determined from the diction-
ary IBLOC. A permanent region dictionary ISLOC is generated, which defines the
region body list identifers in terms of the ordinal region numbers. (The ori=-

ginal surface dictionary ISLOC is destroyed.)
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TABLE 1

i Layout of the MAS - AST Array

i LOCATION CONTENT
t 1 BLANK
g 2 ITYPE surface "1"
1
3 V1
il i =i
' Js BLANK*
JS+1 ITYPE 1l = SPH 2 = CYL 3 = CON
JS+2 v R H) Hy
JS+3 v, H, H,
JS+4 v Hy Hy
‘ ——— sina
)
i -— -coso
IB BLANK
IB+1 + Js;
IB+2 + Js,
Prp— - Body "IB"
IB+48-1 + JS
i - 2

IB+2 0

]
(8]

HOpHnan
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LOCATION
IRB = ISLOC(IR)
IRB+1

IRB+2

IRB+m-1
IRB+m
IRS = IBLOC(IR)
IRS+1l
IRS+2
IRS+3
IRS+4
IRS+5
IRS+6

IRS+7

ISM = IRS+4(n-1)
ISM+1
ISM+2
ISM+3

IRS+4n

TABLE 1 (continued)

CONTENT
BLANK

+1B,

:182 region IR
} body list

+_IB,

0

Js

BLANK

BLANK

BLANK

Js

BLANK

BLANK

BLANK region IR

— surface list

’All blank locations are zero'd in at input time




The final task of the preprocessing routines is to build, for each region,

the list of surfaces involved in defining the region boundary. The list is in

terms of surface identifiers, and is stored in the MAS array. A permanent re-

gion dictionary IBLOC is generated, which defines the region surface list iden-
tifiers in terms of the ordinal region numbers. (The original body dictionary

IBLOC is destroyed.)

Throughout the input processing, a rather thorough search of errors and in-
consistencies is performed. Error or warning messages are issued. If possible,
fatal errors are temporarily fixed up to.allow continuation of scanning. If
any fatal errors occurred, a stop is executed at the end of input processing.

4. The Geometry Subroutines

4.1 The Box Fitting Subroutine GBOX

The principal purpose of this subroutine is, given a point in a region, to
construct a box centered around the point, and fully contained within the region.
The secondary purpose is, given a point on the boundary of a region, to construct
a box fully contained within the region, with one face centered around the
point. 1In both cases the box has to be "as large as conveniently possible".

The ill-defined statement in quotation marks can be qualified as follows. The
efficiency of the diffusion code requires on one hand that the smallest dimension
of the box be as large as possible, and, on the other hand, that the largest
fraction of the surface area of the box coincides with the region boundary. The
efficiency of the box construction routine, however, requires avoiding lengthy
calculations and tests. The subroutine GBOX implements a reasonable compromise
between these conflicting requirements.

The requirement that a fraction of the surface area of the box coincides,

at least occasionally, with the region boundary is a necessary one for termina-

tion of a Monte Carlo history. This can be achieved exactly if and only if the
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region boundary consists of planar facets. To avoid this restriction, we con-

sider the curved surfaces as slightly diffuse. A point within a distance €
from the surface is considered to be on the surface, where € is the input
number defined in Secgion 2.2, which should depend on the diffusion properties
of the materials on either sides of the suffacea.

The construction of a box abutting a single surface is shown in Figure 1
and 2 for convex and concave surfaces. The distance D, is the distance of
closest approach, plus or minus € depending on the convexity of the surface.

D2 is the length of the diagonal of the largest box, one face of which can be
considered as being entirely "on" the surface. R is the length of the diagonal
of the abutting rectangle. If Rs is the small radius of curvature of the sur-
face, g% = 4R_€ - 82, or R % ZVE;E: (R, = R for a sphere or a cylinder, R = =
for a plane, and Rs is determined as a function of position for the cone).

The subroutine examines each surface of thellist IRS. It calculates the
distance of closest approach, and, if this turns out to be the currently short-
est one, calculates also R, Dz, as well as 6 where 6 is the vector from the
point of closest apéroach to the given point X. The distance of closest
approach to the next nearest boundary is stored as D3.
When the list of surfaces has been exhausted, a box is tentatively con-

structed. The diagonal of the box is D), the shortest of 02 and D The di-

3’ 3°
mension of the box along 6 is 201. The other two dimensions are equal to 2D},

with Di = (052 - n.z)/z. The address ISM (see Table 1) for the closest surface

is saved.

The box just generated is perfectly valid., For efficiency purpose, two

tests are performed to investigate the possibility of a "better" box:




IR
closest surface

34

: | “\\ - L

€

Figure 1 - concave surface

closest surface

Figure 2 - convex surface

Figure 3 - tentative box abuts boundary
extension, not to real boundary.

i Figure 4 - "long box" replaced by large cube
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1) The box does abut a surface which is part of the definition of the
region boundary. But does it abut that part of the surface which really
defines the boundary? The situation is described in Figure 3. The point of

closest approach X_  is tested using subroutine REGCK described in Section 4.2.2.

0
If the point x0 turns out not to be on the region boundary, the box is changed
to a (larger) cube with diagonal D3: D1=Dz'=D3/J5. The vector Q is changed

(arbitrarily) to 0,0,1. ISM is set to 0., However, if X_ is on the real boundary,

0
the following test is performed:

2) Is the abutting side of the box much further than the non-abutting
sides of the box, which we implement as Dl>2D2? If yes, diffusion to the abutting

side is rather unlikely, and a cube of diagonal Di is more efficient.

(D,=D}=D}//3,0=0,0,1,ISM=0). The situation is sketched in Figure 4.

The above discussion describes the construction of a box centered around an
internal point X. To obtain that case, the variable JSM in COMMON/GEOM/ has to
be <0.

For the case of X "on" (in the diffuse sense) a boundary, the variable JSM
has to be set to the identifier of the particular surface. The box construction
proceeds in much the same way as previously described, except that abutting is
forced to surface JSM. The tests to replace the box by a cube are bypassed.

The vector Q is ill-defined. Another vector, QIN is generated, which is the in-

side normal of surface JSM at X.

4.2 The Point Checking Routines

The package consists of subroutine REGCK, SURFCK.

The variables of interest are found in COMMON/GEOM/ and consist of

X(3) point being checked

IR region number

IRP neighbor region number

JSM identifier of surface "on" which the point is assumed to be

LOOP the Guber number




The Guber number should be familiar to all combinatorial geometricians,
It is initialized to zero by subroutine GENI. It should be incremented by
unity each time X changes between calls to any point checking routines. Its
function will become apparent in the following subsections.

4.2.1 The Surface Checking Routine SURFCK (JS,ILOOP)

JS is the surface identifier. ILOOP should be numerically equal to LOOP.
(Do not use LOOP itself as an argument!) The subroutine performs simple alge-

braic tests and determines whether X is "inside" or "outside" the surface.

PSS

The output ILOOP=LOOP if X is inside JS, ILOOP=-LOOP if X is outside JS.
The output ILOOP is also stored in MAS(JS) (labeled as 'blank' in Table 1).

4.2.2 The Region Checking Routine REGCK (JRB, JLOOP)

The purpose of this routine is to check if a point X is in a region IR
(JRB=ISLOC (IR)). JLOOP should be numerically equal to LOOP. The subroutine
handles differently the case of a point inside a region or "on" (in the diffuse
sense) a boundary.

4.2.2,1 Testing a Point Inside a Region

The "inside" case will be discussed first. If the point is not intention-
ally “"on" a boundary, one should set JSM<O.

The output of REGCK is JLOOP=LOOP if X is inside IRB, JLOOP=-LOOP if X is
outside IRB. The output JLOOP is also stored in MAS (IRB).

The subroutine functions as follows:

| It accesses the region definition in terms of bodies, and examines each

body IB in turn.

It first examines MAS (IB) and compares its absolute value with LOOP, If

they match, the body has been tested before for the same point X and the

following set of tests can be bypassed.




If |MAS(IB)| does not match LOOP, the body definition in terms of sur-

faces is accessed, and each surface JS is examined in turn.

If IMAS(JS)] = LOOP the surface has been examined before. If not, a call
to SURFCK is performed. In Doth cases the sign of MAS(JS) indicates whether X
is inside or outside JS. The examination continues as long as the result of
the tests match the body definition. The first mismatch indicates that X is out-
side the body; KLOOP is set equal to -LOOP. No mismatch until the end of in-
formation (JS=0) marker is reached indicates that the point is inside the body;
KLOOP is set equal to +LOOP. In both cases KLOOP is stored into MAS(IB).

Whether determined previously or by the tests described above, the sign
of MAS(IB) indicates whether X is inside or outside IB. The examination continues
as long as the results of the tests match those of the region definition. The
first mismatch indicates that X is outside the ragion; JLOOP is set equal to
-LOOP. No mismatch until the end of information (IB=0) marker is reached in-
dicates that the point is inside the region; JLOOP is set equal to +LOOP. 1In
both cases JLOOP is stored in MAS (IRB).

4.2.3 Testing a Point "On" a Surface

In addition to X and LOOP, the following variables have to be set:

JSM identifier of surface "on" which X lies
IR known region number on one side of the surface
IRP neighbor candidate being tested on the other side

of the surface
IRB (argument) IRB=MAS (IRP)
The body checking proceeds as usual unless surface JS=JSM is encountered.
If it is, the testing of that particular surface is bypassed, and the remaining
surfaces are considered. If the final result of the body test indicates that
the point is outside the body, either assumption of X inside or outside JS=JSM

will not change that result and the logic of the region checking is unaffected.
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If, however, the result indicates that the point is inside the body, the point
X is actually on the boundary of the body. If the region IRP being checked

is equal to IR, the result can only be false, and is therefore set as such., If,
however, IRP # IR, the body test is tentatively assumed to match the region de~
finition of IRP, the code proceads to check the next body, and the logic pro-
ceeds along the lines of Section 4.2.2.1. The tentative assumption involves a
definite assumption on the position of IRP with respect to surface JSM. That
assumption is recorded as a signed integer K. In the event that, for another
body, the opposite assumption has to be made the neighbor IRP is declared as
invalid.

For a successful IRP, the subroutine also generates a vector QOB which
points from IR to IRP. This is done by setting QOB=+QIN, where QIN is a vector
(generated by GBOX, see Section 4.l) pointing into surface JSM, and the sign
is determined by the sign of K.

4.3 The Neighbor Finding Subroutine NEBFND

The purpose of this subroutine is to find the neighbor IRP of a region IR
at a point X "on" a particular surface. The surface is defined by the variable
ISM (set by subroutine GBOX). Referring to Table 1, the n-th surface of the
IRS list is defined by ISM=IRS+4(n-1).

For efficiency purposes, the subroutine builds up a list of neighbors pre-
viously determined, for each region across each surface. The list is stored
in the MAS array. The first entry (if any) is stored in MAS(ISM+l). The
second one (if any) is stored in MAS(ISM+2). If a third entry becomes necessary,
the first available location LS in the MAS array is determined, and the entry
is stored there; the address of LS of that third entry is stored in MAS (ISM+3).
LS is set to LS+3 to reserve a location for a possible fourth entry, and for the

location of a possible fifth entry, etc. The buildup of tables stops if the

MAS array has been filled.




The detailed operation of the subroutine is as follows: it examines the
first candidate (IRP=MAS(ISM+l)). If IRP=0, no candidate exists and the
following step is bypassed. If IRP>0, REGCK is called for checking IRP. If
IRP is found valid, the subroutine returns to the calling program. If not,

{ the next candidate is examined, until either a validity check or IRP=0 is en-
countered. In the latter case, a loop over all IRPs is initiated. The first
check performed is whether the region has been tested before (IRB=ISLOC (JRP),
IMAS(IRB)l = LOOP?). If yes, the next IRP is considered.. If IRP has not been
tested before, the next test consists in determining whether the boundary of

IRP includes the particular surface. If not, the next IRP is considered. Other-
wise, IRP is checked further by calling REGCK. If the region is found invalid,
the next IRP is considered. The first valid IRP terminates the loop. It is
stored as a next candidate. Before returning to the calling program, the

fact that IR is a neighbor of IRP across the same surface is also recorded.

4.4 The Region Finding Subroutine REGFND

The subroutine determines the region number IR for a point X. Error
messages are printed if the region is undefined or multiply defined. Subroutine
REGCK is called for all regions.

4.5 The Tracking Routines Gl, G1P

> >
Given a point X, a unit vector Q, and

a region IR, the subroutine calculates

the number NI of intersections, and
the intersections DI(I), I=1, NI of
region IR and of the line passing

-+ B
through X in the direction Q.
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The operation of the subroutine is as follows:

First, all the intersections with all the surfaces which are involved in
the definition of IR are calculated. These include all intersections with IR,
and may include some intersections which are not on the surface of IR. Sub-
routine GlP first orders all the intersections, then weeds out the extraneocus
ones. The point X is moved to below the first intersection (thus to a point
definitely outside IR). Subroutine REGCK is called, with a special switch
JSM=-33333 which forces REGCK to check all surfaces without returning at the
first mismatch encountered. A loop is initiated, which runs through all the

tentative intersections. For each intersection, the logical information of

whether X is in or out of the corresponding surface is negated. Subroutine REGCK,

which queries that information, and its logical output (in or out of IR) is com-

pared to its previous logical output. If the two match, the corresponding

intersection is not on the surface of IR, and is weeded out. If the two do not

match, a true intersection has been encountered and is therefore retained.
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VI. THE MAJOR MONTE CARLO HEAT TRANSFER SUBROUTINES

The main program of the heat transfer code is a rather complex driver
calling input subroutines, source generating routines, and, under their con-
trols, the main heat transfer routine GETEMP. Finally, edit and output rou-
tines are called. The description of that operation will be given in
Section VII.

The present section is devoted to the description of the main Monte Carlo
routine GETEMP, which'delivers a single estimate of the temperature at a given
point ; in region IR, implementing the algorithm described in Section II.3,
and to the descriptions of the main subroutines called by GETEMP, which perform
the calculations described in Section III and IV,

1. Subroutine GETEMP

The subroutine GETEMP is the main Monte Carlo routine which follows the
histories along the lines described in Section II.3. It delivers a single esti-
mate TEMP of the temperature at a point X at time TB in region IR.

We first describe its operation under normal circumstances, which is invoked
when all DFAST(IR) are set equal to zero. The weight W is set to 1. Subroutine
GBOX (described in Section IV.4.l) is called. A box is therefore constructed
which is wholly in region IR, and which is centered at §. A call to subroutine
DIFFUS (described below) samples the RPP Green's function with zero boundary
conditions along the lines of Section III.2. A subsequent call to subroutine
MOVE (described below) moves the point X to the sampled location and updates
the time variable. If the time variable is zero, the temperature at t=0 in IR
is scored and a return is executed. If t>0, a test is made whether the new point
is on an abutting boundary. If it is not, a new box is constructed around the

new point. If this construction indicates that the point was within a distance ¢

(defined in Section IV) of the abutting surface, the point is treated as being

on the abutting surface. If not on the abutting surface, the sequence of calls |
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to DIFFUS and MOVE continues until either the time variable reaches zero, or
the point has diffused to a region boundary.

If the point is on a boundary, the neighbor region number IRP is deter-
mined. The diffusion coefficient DP of the neighbor region is looked up. The
convention is that if DP=0, the neighboring region is one with known temperature.
If DP<0 then inhomogeneous boundary conditions apply with B=~DP/K (B8 is defined‘
in Section II.2). If DP>0, the neighboring region is a conductive one.

If DP=0, a score is made, and a return is executed. If DP#0, a "half box"
is constructed in region IR: this is a box one side of which is on the surface
of interest, centered around X, The box is fully contained in IR, A "half box"
is also constructed in IRP.

If DP>0, the subroutine MENDEL is called. Subroutine MENDEL is described
below; it samples the two region RPP Green's function along the lines discussed
in Section V. A call to subroutine MOVE moves the point X and updates the time t.
If t=0, a score is made and a return is executed. If not, a new diffusion loop

is started as described above.

If DP<0, the subroutine NORMAN (described below) is called. It samples the
RPP Green's function with inhomogenous boundary conditions along the lines of
% Section III.5 and updates the weight value.

Prior to the call to NORMAN, Y is set, as well as are the estimates ¥g and
; needed for importance sampling. These are taken to be the value of the gas
P temperature in IRP and the value of the temperature in IR at t=0. If ghe

3 particle diffuses to the abutting boundary, a score is made. The same is done

if t becomes zero. In both cases, a return is executed. If neither occur, a

new diffusion loop is initiated.
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The number of diffusion steps within a region is limited to be less or

equal to NRSTEP. The number of region crossings is limited by NRCR, If any

of these is reached, a return with TEMP=-1. is executed. The same error return
occurs if any of the three dimensions of any box becomes smaller than DTINY,
presently set to 10-10. Experience in running the code should teach how to
avoid such collapsing boxes - a rarely occurring event anyway. NRSTEP, NRCR
are currently set to 200 and 5000, respectively.

The above description is applicable if the input parameters DFAST(IR) is
set to zero for all regions IR. It turns out that, in solving heat transfer
problems with expected high temperature gradients, homogeneous regions have to
be subdivided into rather small subregions, to satigsfy the requirement that
the diffusion properties be constant in each subregion. With such a detailed
geometrical subdivision, the calculations involved become excessively slow,
because each boundary crossing involves two calls to subroutine GBOX and a call
to the boundary crossing subroutine MENDEL. The accuracy of the calculations
involved in such a detailed treatment for crossing imaginary boundaries cannot
be justified, and an approximation to speed up the calculation is in order.
Selected regions can be declared on input as not requiring completely accurate
boundary treatment. This is specified by setting the input quantity DFAST (IR)
for selected regions IR. The approximation consists in assuming that the diffu-
sion parameters are constant within a (small) distance |DFAST(IR)| from any
point in region IR, including points on the boundary of IR.

Before the call to GBOX, subroutine GETEMP examines the value of DFAST(IR).

If zero, the calculations proceed as described above. If the value of DFAST (IR)
is positive, the call to GBOX is performed and the smallest dimension of the

RPP is compared to the value of DFAST(IR). If smaller, the calculations are
performed as described above. If larger, a cube of dimension DFAST(IR) is set
up and the calls to DIFFUS, MOVE, are replaced by a call to subroutine CUBE.

If the value of DFAST(IR) is negative, the call to GBOX is bypassed altogether,
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a cube of dimension IDFAST(IR)I is set up, and the calls to DIFFUS, MOVE,
are replaced by a call to subroutine CUBE. Subroutine CUBE (described below)
moves the point ; to its new position, updates t, and, if necessary, changes
the region number IR.

2. Subroutine DIFFUS

Subroutine DIFFUS samples homogeneous RPP Green's functions with zero
boundary conditions, as discussed in Section III.2,

The input consists of a time cutoff value T, and of Fox(I)=ai2/D, where
ai, i=1,3 are the dimensions.of the RPP, and D is the diffusion coefficient.
It is assumed that a

= a, = 2*D1 and a_, = 2*D2.

1 2 3

The output consists of a time variable TMIN<T and of a local vector
XX(I)jgi/Z.

The time selection is achieved by three calls to subroutine PICKT. The
position selection is achieved by calls to subroutine PICKX.

3. Subroutine MOVE

This subroutine displaces the absolute positicn ; by the displacement §X
generated by subroutine DIFFUS. The local vector §X is given in a coordinate
system in which XX(3) is along the absolute vector 3; the remaining two co-
ordinates are orthonormal but otherwise arbitrary.

The time T is set to T-TMIN.

4, Subroutine CUBE

Subroutine CUBE is a speeded up version of the combination of DIFFUS and
MOVE, under the simplifying conditions that

FOXX=FOX (1) =FOX (2)=F0X (3)

-
and that the vector Q points along the absolute z~axis, i.e., that the local

coordinate system XX is parallel to the absolute system X.
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5. Subroutine NORMAN

Subroutine NORMAN is the equivalent of DIFFUS, except that homogeneous
I boundary conditions are imposed at XX(3)=0. Importance sampling is implemented

and the calculations follow the lines described in Section III.7. The selection

‘ of times tl and t2 is achieved by calls to subroutine PICKT. The selection of
t3 is via a call to a subroutine PICKTG. Similarly, selection of XX(1) and
4
3 XX(2) is via calls to PICKX, whereas the selection of XX(3) is via a call to a

b subroutine PICKXG.

6. Subroutine MENDEL

i This is the boundary crossing subroutine.‘ First the diffusion coefficients
and the heat conductivities in the two regions are compared. If both comparisons
show agreement within 5%, an average diffusion coefficient is calculated, and
a call to DIFFUS is followed by a return.

If the homogeneity test fails, the subroutine switches to the method de-
scribed in Section IV. The part of the calculation involving the floating RPP |

method is performed in subroutine DIMOR. f

7. Subroutine DIMOR

Constructs an RPP within an RPP, and samples time and position via calls
to PICKT and PICKX.

8. Auxiliary Subroutines

Special subroutines perform sampling of one dimensional Green's functions,
as described in Section III. These include:
PICKT, PICKX - See Section III.4

PICKTG, PICKXG - See Section III.6.2.

When appropriate, the early time approximation ig invoked by calls to sub-

routines EARLTG, EARLXG. (See Section III.6.l.) When appropriate, the eigen=-

values are calculated by a call to subroﬁtine TRANS. The function X=GAUSS(I)

returns X>0 sampled from 2//ﬁ exp(—xz)dx. The function y=ECHERF (X) returns

0 P ke, TIC

y=2/V71 exp(xz) /(')x exp(-yz)dy-

<R ST Y YO e o IR s A AR it T AT M e AT -ﬂ'l;‘.“ﬁwu»w.wmmm'



——

VII. THE THREE DIMENSIONAL TIME DEPENDENT
ADJOINT MONTE CARLO HEAT TRANSFER CODE

The simplest application of the code is to a problem where the diffusion
properties of the medium are independent of the local temperature. In that
case, the operations of the code are reduced to reading the geometrical descrip-
tions, the initial conditions, the boundary conditions, the coordinates of de-
tector points, the value of the time variable at which the temperature needs
to be calculated, and the number of Monte Carlo histories to be followed. The
code then performs that many calls to subroutine GETEMP, calculates the effected
temperature and its variance, and prints the results.

A more complex problem arises in the case where the diffusion properties
do depend on the local temperature. The time span between initial and final
time must then be subdivided into a number of time bins. The time bins must be
small enough so that the local diffusion properties can be considered as constant
throughout the time bins. Homogeneous regions must be subdivided into subregions.
Each subregion must be small enough so that the local temperature at any point
in the subregion does not differ appreciably from the average temperature in
the region.

Given such a subdivision of space and time, the operation of the code is
as follows. The initial conditions are read for the very first time bin only.
The boundary conditions are also read in. The diffusion properties are calcu-
lated for each region at the value of the initial temperatures. These are assumed
to remain constant throughout the time bin. The code then estimates temperatures
at the end of the time bin for all regions. These calculated temperatures serve
as initial conditions for the next time bin.

The calculation of region temperatures is performed in the following order.
The code searches for the region with the highest known temperature at the end
of the time bin. (This is restricted to external regions only at the beginning

of the calculation.) Its neighbors are examined. The first neighbor found for
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which the temperature has not been calculated yet is then picked up, and the
temperature is estimated by adjoint Monte Carlo. When all the neighbors have
been completed, the region is excluded from the list, and the next region with
the highest known temperature is searched. The calculations continue as long
as such highest temperature is appreciably higher than Tm' where Tm is set
slightly higher than the lowest temperature '1‘z of the configuration at the be-
ginning of the time bin. All remaining regions are surrounded by regions with
temperature less than Tm; their‘temperature is set equal to Tz.

The calculation of temperatures averaged over regions is performed by cal-
culating the tqnéérature at points distributed uniformly over the region; the
sampling of such points is described in Section VII.S5 below. The efficiency of
that sampling may be improved by providing additional input as described there.

1. The Main Program HEATON

The main program is a driver which reads input, and, under its control,
calls additional input and processing routines, and calculational routines.

A complete description of the input is qiven in Section IX. The first
card read provides the main specifications: NHIST is the number of histories to
be run for each region, for each time bin (or for each point if point detectors
are specified). NSTAT (f}OOf is the size of a group of histories for the pur-
pose of source generation. ITCUT is a CPU time cutoff: the calculations will be
prbperly terminated at the end of a time bin, and a restart tape will be written
if CPU time is nearing that limit. ITl is the first time bin to be considered
(ITl=1 at first, if no restart tape is available). IT2 is the last time bin
to be considered. If IPD=0, the last time bin IT2 is treated like any other ones.
If IPD>0, the temperatures are calculated only at the given IPD point detectors ;

for time bin IT2. IREZ should normally be equal to zero., If set equal to 1,

geometry input will not be expected, but geometry information will be picked up

B e e

from a restart tape even if ITl=1. IPLO is a flag controlling the quantity of e
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printed output and calls to subroutine PLOT. If IPLO is even (including

zero or blank), all input quantities are printed back. If odd, the bulk of the
output is suppressed, except for estimated temperatures. Subroutine PLOT will
be called if IPLO is equal to 2 or 3. LRN controls the initialization of the
random number routine. ‘Leaving that as blank will leave the random number as 1
if IT1=1, or as recorded on the restart tape. If non-zero, it must be an odd
integer.

The geometry input (if called for) is read in by subroutine GENI (see
Section V). The coordinates X, Y, 2, of a point within the configuration must
also be provided.

The next item of input deals with reflection regions and translationally
repetitive arrays. These are described in Section VII.9.

Optional input to improve the efficiency of source generation is read in by
the main program. The meaning of that input will become apparent in Section 5.
For those regions for which no input has been specified, or for which none is
available from the restart tape, the information is generated by subroutine
SOUSET. If either input or generated, the information is checked by subroutine
SOUCK.

The physical compositions are defined next. The temperature dependence of
the diffusion parameters is defined as follows:

Product of density and specific heat:

pC = ro + r2 Tz
Thermal conductivity
K= ko + k2 Tz, where ksz.
The input consists of the parameters Tor Toe ko, k2 for the NCOMP materials pre-
sent in the problem. The first material entered is assumed to be the main one.

The transformations discussed in Section II.5 are performed on its basis.

The meaning of the quantities DFAST is described in Section VI.1.
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If ITl=1, the initial conditions are read in. The reading of the boundary

conditions is done by subroutine REATIM.

If IT2=0, the coordinates x,y,Z of point detector are read in and the sub-
routine REGCAL is called to calculate the temperature at that point.

If IT2>IT1, the calculation of region-averaged temperatures is done by
subroutine TIMSTP,

Two restart tapes are generated: TAPE 8 involves processed geometry informa-
tion, including information learned about neighbors, and source generation in-
formation. TAPE 9 involves the temperatures at the end of the time step.

2. Subroutine REATIM

The subroutine reads the parameters of boundary conditions at the end of
the current time step. Linear interpolation is assumed between the beginning and
the end of the time step.

3. Subroutine TIMSTP

The subroutine searches for the region with the highest known temperature,
examines its neighbors, and, for each region for which a calculation is needed,
calls the subroutine REGCAL.

4. Subroutine REGCAL

The subroutine either calls the source generating routine SOUSET, or picks
up the coordinates of a detector point, and performs NHIST calls to subroutine
GETEMP (see Section VI.l). It calculates the mean and root mean square tempera-
ture and prints one line:

JR = region number

TQ = mean temperature T

TR = root mean square temperature

TR = mean 0

see Section II.5
TS = root mean square 0

CPU = CPU time in seconds for that calculation.




5. Subroutine SOUSET
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The subroutine produces NSTAT points uniformly distributed in region IR,
under the asusmption that the region is completely enclosed by the sector of
a circular cylinder defined by the two figures above. The relevant parameters

are:

|
x

XSTART (1,IR) =

0
XSTART (2,IR) = Yo central point on axis
XSTART(3,IR) = zo
XSTART(4,IR) = R Outer radius
XSTART(5,IR) = r Inner radius
f XSTART (6,IR) = W Half Height
' AZIM(1,IR) = wl = Minimum azimuth
AZIM(2,IR) = y_ = Maximum azimuth

2

o il PR TIP3 T T T et RIS




———

The code samples points uniformly distributed in the sector, and rejects
the sample if the point is outside of IR. In the process, the subroutine
checks for point in IR with a distance to the axis which is either greater than
R or smaller than r. If such points are found, R and r are properly updated,
and points previously generated within the current aggregate are properly
corrected if necessary. No such check is performed on W, wl' wz.

The efficiency of the routine depends on the fit of the sector to region
IR.

6. Subroutine REGSET

B 4

Subroutine REGSET generates the XSTART parameters for those regions for
which that input has not been provided. The minimum azimuth is set equal to O,
and the maximum azimuth to 2m; thus only full cylindrical annuli are generated.

The first region considered is one for which any internal point P=(x,y,Z)
is known. If none other, it may be the point read in by the main program after
the subroutine GENI has been called. A ray is fired isotropically from P and
points of intersection of this ray with region IR are generated. The point P
is moved to the midpoint between the pair of points which are most distant from
each other. A new ray is fired from the new P position, and intersections are
added to the list.... The process terminates when 200 points have been gener-
ated on the surface of IR. This population of points is then fitted by the
"best" cylindrical annulus in the z-direction.

The fitting is actually to the smallest finite cylinder in the z-direction.
The cylinder extends from the smallest z-coordinate to the largest z-coordinate.

) The smallest circle enclosing the population of x, y points is determined. This

is done as follows. A first pass through all pairs of points determines the

pair of points X,sX, with the largest separation distance. A tentative circle

of radius equal to one half of that distance is centered at the midpoint of &

that pair. 1If all points are within that circle, the tentative circle is the
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smallest possible circle. To find out, a next pass through all the points de-

termines the point x. with the largest distance to the tentative center. If

3
that distance is larger than the tentative radius, the circle is drawn as

Passing through the points Xys X5 X Although this last circle is not neces-

3°
sarily the smallest possible one, it is kept as is.

During the process of ray firing, the neighbor IRP of region IR is deter-
mined at each intersection. If no starting point has yet been determined for

IRP, the intersection point (slightly displaced) is stored as one.

7. Subroutine SOUCK

This subroutine performs the same operations as subroutine REGSET, but
with many more checks. It also keeps track of the efficiency. The content of
the XSTART and AZIM arrays is printed. If the efficiency becomes intolerable,
the hollerith information BAD is also printed, thus suggesting that source in-
formation be specified on input.

8. Subroutine PLOT

This subroutine provides a rather limited capability of obtaining printer
plots of x-y cuts throigh the geometry.

9. Reflection Regions and Translationally Repetitive Arrays

Only regions described as single planes can be declared as reflection
regions. If the corresponding composition number ICOMP is set to any positive
number, reflection boundary conditions will be imposed on the plane defining
that region.

The geometrical description of a configuration consisting of groups of
regions called cells which are translatinnally repetitive can be simplified to

the description of only one cell with the use of translationally repetitive

arrays. The conditions for repetitive geometry are given by the following.




b

->
Given a vector D, a repetition number m and a total number of regions n-m,

if a point ; is in region i then point (ﬁ#ﬁ) is in region (i+n), provided
i+n<n.m, and point (2;3) is in region (i-n), provided i-n>0 (see Figure 1).
For the configuration shown in Figure 2, m repetitive cells can be de-
fined. To describe the entire configuration, only the primary cell needs to
be defined. Thus, in Figure 3, consider the first cell which can be described

by n regions. The boundary surfaces are described by regions i, and iz, such

1
that 0<i,<n,0<i,<n. The rest of the cell can be arbitrarily subdivided into
(n-2) regions numbered 1, 2, ...n excluding i1 and iz. The configuration is
composed of m of these cells so that the external configuration surfaces are

defined by regions i, and 12 + (m-1)°n, The boundary conditions at these sur-

1
faces are determined by the signs of JCOMP(il) and ICOMP(iz+(m—1)-n). EL
ICOMP (J) <0, the usual conventions hold, i.e., O-known temperature, <O-radia-
tion types; if ICOMP(I)>0, reflection boundary conditions are imposed.

The input to describe repeating arrays and reflection regions consists
of a list of up to 10 region numbers. The first two regions correspond to

regions i, and i2 defined above, i.e., regions on either side of the first

3 |
cell. The remaining regions in the list are reflection regions in the first
cell. The repetition number is also read in. If there is only one region
number in the list or if m=1l, then every region in the list is a reflection
region.

With the use of repeating arrays, the region and helps (ITEM 6) input is
reduced in that only one cell of n regions need be described. Computer memory

requirements are also reduced. Temperature, composition and DFAST array input

still consists of data for all n.m regions.
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VIII. ADDITIONAL PROGRAMMING INFORMATION

Table 2 provides information on large arrays.

on all the subroutines provided.
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Table 3 gives information




TABLE 2

DIMENSION OF LARGE ARRAYS

*
COMMON BLOCK ARRAY NAME DIMENSION
BLANK IBLOC NDQ1
( ISLOC NDO1
MAS NDQ
sou XS 3en,
XSTART 6+NDQ2
‘.‘ AZIM 2-NDQ2
' INP DIFF NDQ3
AAK NDO3
TO NDQ3
T1 NDQ3
RES 1COMP NDQ3
FAST DFAST NDO3
DI ALP n,
) s B3 .
i B2 ’
cc n, !
GQ 3-n2 ,

NDQ = large enough to store geometry information and neighbor information
NDQl > NS = number of surfaces
NB = number of bodies
) NR = number of geometrical regions
NDQ2 > NR = number of geometrical regions
NDQ3 > NPHYS = NBI*NR = number of physical regions

E n, = 200 = maximum size of statistical aggregates

n. = 200 = maximum number of eigenfunctions




TABLE 3. INFORMATION ON SUBROUTINES

| Betel | lelel ], Bl e
o N 8|8 a|s|E|E]. |8|e)q|b|g|5|d]EEAm
HEATON X X X | x x |x x| x| x| x|x |x|x] vz
CUBE X X X | x X | X X VI.4
5 DIFFUS X X X X i VI.2
DIMOR £ ]z X X | vIi.7
EARLTG X X | vVI.8
EARLXG X i VI.8
ECHERF | : V1.8
GAUSS X | VI.8
GBOX X X { V.4
GENI X X X v.3
GENICK X X v.3
GENIP X X ix V.3
GETEMP x [ X% e X (X X x | x VI.1
Gl X X X V.4.5
GlpP X X X V.4.5.
MENDEL X | x X X VI.6
MOVE X VI.3
NEBFND X v.4.3
NORMAN X VI.S
PLOT X X X X x Ul vir.a
PICKT X V1.8
PICKTG XX VI.8
PICKX X V1.8
¥ PICKXG x| x VI.8
REATIM X X > I B X {x | vir.s
| REGCAL X X |I'x i [ O VII.4
; REGCK X X X v.4.2.2
REGFND X X V.4.4
REGSET X X X VII.6
SOUCK X X VII.7 .
SOUSET X b | VII.5 r
SURFCK X X | V.4.2.14
TIMSTP X X |% 2 | x!ix | VII.3 ¢
| [
TRANS X X L _VI.8 :
£ : 71 ! ¢
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IX.

INPUT DESCRIPTION

The card input consists of the following items:
Item 1 FORMAT (715,120)
NHIST Number of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>