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I • INTRODUCTION

A Monte Carlo method has been developed to solve the time-dependent heat

conduction or diffusion equation. The method has been implemented in a versa-

tile computer program, and applied to obtain the solution of heat conduction

- V problems in complex geometry. Other possible applications include particle

diffusion and neutron slowing down.

- : The Monte Carlo method is a generalization of the “floating sphere” method

developed by Haji-Sheikh1 and by Muller2. It is shown that the solution can be

estimated by constructing a random walk based on the selection of position and

time using probability distributions based on known Green’s functions. These

Green ’s functions satisfy appropriate boundary conditions on the surface of

arbitrary volumes. They can be obtained for a wide class of volum es3. The form

of the known solution simplifies if the volume is wholly contained within a

homogeneous medium , but Haji—Sheikh ’s restriction of the volume to a sphere

• is not necessary. Our approach is to specialize the class of volumes to rec-

tangular parallelepipeds of arbitrary size. This leads to an exact solution of

the heat transfer problem if all the boundaries of the configuration are planar,

and to a solution with any arbitrarily preset degree of accuracy if curved

V 
boundaries are involved.

V The method provides the possibility of solving time-dependent heat conduction

problems with internal heat sources and a variety of boundary conditions. The

• current program treats the various boundary conditions, but not internal heat

sources. An exact trea~ nent of the linear heat conduction problem is obtained.

If the conduction properties depend on the local temperature, we linearize the V

r problem by breaking up the calculation into small time steps, assuming no

temperature dependence of the parameters during the time step.

S



Complex three-dimensional configurations can be treated. The geometrical
- 

description is of the Combinatorial Geometry4 type. Geometrical bodies are de-

fined in terms of intersections of quadratic surfaces. Geometrical regions are

defined in terms of intersections of bodies.

V.
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II. THEORY

1. The Heat Conduction Equation

Let us consider the heat conduction equation:

- V~K7T(x,t) + ~T(x,
t) 

= Q(x,t) (1)

-I.
T(x ,t) is the temperature at point x , time t. K is the thermal conductivity ,

P is the density, c the specific heat , and Q the heat source density. The

problem is defined for xc~ where ~ is a volume surrounded by a surface Z.

K,p, c, are continuous functions of position, except across specified internal

boundaries . The boundary conditions on T are specified as follows:

- Internal boundaries :

T continuous 1
(2)

• Xn,VT continuousJ

— External boundary E

The external boundaries conditions we will consider are either:

T(x,t) known for xcl, O<t<t 0 (3a)

or: i~ KVT (x,t) h(TG(x,t) 
-

~ for xeZ, O<t<t0 (3b)
h, TG(x,t) known 

J

where i~ is the outward normal to the external boundary at point x, and h is

the coefficient of surface heat transfer.

— Initial conditions:

T(x,O) known for xc~ (4)

r

7
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2. The Green ’s Function Method

The problem we consider consists of finding the temperature T (x 0,t0) at

a point x0 c~2 , t0>O•

Let us surround the point x0 by a volume Vdl , the volume V being bounded

by a surface S, and define a Green ’s function G(x 0-x,t0—t ) for xcv, t<t 0. It

satisfies the differential equation

1. aG(x0—x,t0—t)V . K V —
~~~ 

G(x 0—x ,t0—t ) + 
~t 

= 0 , (5)

the boundary conditions are as follows :

— Internal boundaries — or portions (if any) of the internal boundaries of the

full config~iration which are within V:

G continuous •1
pC 1) (6)

1 •I~ —
~~~ G continuous

- External boundary S

G(x 0—x ,t0 t) = 0 for xcS , 0<t<t0 (7)

— Initial condition

G(x 0—X ,O) = 5 (x—x 0) (8)

A particular linear combination of Equations (1) and (5) can be written

in the form
.

~~~~ ft odt 1 ~~T(x ,t) V~~ ~~ G(x 0—x , t0—t)

+ G(x 0—x ,t0-t) ~~~V~~ T(x ,t)~ dV (9)

+fodtj G(x 0—x ,t0-t) _! Q(x ,t) dv

j0dtj~~T(xt) 
~G(x 0-x,t0-t)

+ G(x 0—x ,t0—t ) ~~~~~~~~~ dV



The first volume integral of the left hand side can be reduced to a

surface integral by applying a generalized Green ’s theorem. The time integra-

tion of the right hand side can be performed. One obtains:

~
J

~
tO

dt~
[ f_T (x P t) KV —! G(x 0—x ,t0—t )

+ G(x0—x ,t0—t) 
_
~~KVT (x~t~

} 

45x

+ f 0dt ~fG(x0-x~t0-t) .~1 Q(x ;t) dv (10)

=[T (x i~t0
) G( x0—x ,O) dv

_ f
T(x~0) G (x0-x,t0) dv

The second term of the surface integral vanishes because of the boundary

condition (7). The first volume integral of the right hand side can be evaluated

taking the initial condition (8) into account. One therefore obtains , after re—

arranging the terms , and substituting t t 0-T:

T(x0,t0) =f °dT ~fG(xo
_x

~ T) ~! Q(x ,t0—t ) dV

+J

r
T(x,O) G (x0—x,t0) dv (11)

+ f 0 atJ~_ T( x~to
_t )  KV —

~~~ G(x 0—x , r) ~~~

Equation (11) can be considered as an integral equation for T(x
0,t0)



The choice of the volume V is arbitrary , provided vc~7. If V=~ and the

corresponding G is known, the problem of finding T(x 0,t0) is reduced to quadra—

tures (assuming that T is known on the external boundary E=S) . In practice ,

the choice of V is limited to volumes for which the Green ’s function G is known,

or readily computable , such as spheres , rectangular parallelepipeds , etc .

3. The Monte Carlo Method

A conceptually simple Monte Carlo technique can be constructed for the

solution of Equation (11) . Before describing it , a lemma has to be proven.

Let us consider an arbitrary volume V , with rio internal heat sources

(Q=0), and boundary conditions T(x ,t)=l for xsS, t>0 and T( x ,0 ) 1  for xcv .

The solution is then T(x ,t)=l for any internal point x , at any time t>O , in

particular at x0 ,t0.

• Substituting this into Equation (11) we obtain :

1 =f G(x 0
_x ,t0)dV

~ +f 0dt f_Ky ~~ G(x 0-x , t)~ ~~~ 
( 12)

Letting t0-~ 
in Equation (12) we get:

f r x~ 1 1 -
~1 = d~ -1(7 — G(x -x ,t ) .dS

as him ~f G (X 0 X :t0)dV 

~~ x

t
0
-~co V

Substituting that result into Equation (12) we obtain :

f t0d tf 5_K7 ~! G(X 0-ic ,t )  4s~ .JG(X o
_mC .to ) dV

~ ~13)

A Monte Carlo algorithm for the solution of Equation (11) is then as

follows.

First estimate the time—volume integral involving internal sources (if

any) . For estimating the remaining two terms , first select a time T>O f rom

p(~ )d~ = f_KV 
—

~~~ G(x 0—x , t ) .~ S dt (14)

10
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• 
If r>t0 

(which, according to 13, happens with probability J
G(x 0

_x~t0)dV )~
- V 

the second term of Equation (11) has to be sampled: sample a point x in V with

density proportional to G(x 0-x ,t0) ,  and score the (known ) T(x ,O) as a contri-

bution to T(x 09 t0) - the history terminates. If T<t
0

, the last term of Equation
1 -

~ 
+• (11) has to be sampled. Sample -KV —~~G(x 0-x ,T ) • n for a point x on S. (n is

the outward normal to S at x; T (x ,t0— T ) is the estimate for T(i 0 ,t0) .  Two cases

can occur : in one case , the sample x is on a common part of S and E , then

T(x ,t0
_ r ) is either known (if Equation (3a) applies ) or obtainable (if Equation

(3b) applies) as described in Section 11.5 below , and the random walk terminates.

In the other case , x is on S but internal to Z. The point x is then surrounded

by another volume V~~ , and the procedure to estimate T(x ,t0-T) is identical to

that just described to -~~timate T(x 01t0) .  In all cases the random walk terminates

when a known temperature is encountered (either at t=O or on the boundary) .

4 . Inhomogeneous External Boundary Conditions

V The case of inhomogeneous boundary conditions can be treated in the same

fashion as the case of known temperature condition, provided some adjustments

are made.

If , at any step of the random walk , the surface S surrounding V has a part

S2 (S=s1 + in common with a portion of ~ where inhomogeneous boundary condi—

tions apply , the boundary conditions imposed on G (Equation 7) either have to ,

or can be modified to:
F - I

- • • G(x0—x ,t0—t) = 0 for xcS1, O< t<t 0 (l5a)

~
.Ky ~.! G(x 0—x ,t0—t ) = h —

~~~ G(x 0-x , t 0-t)

for XCS 2 , O<t<t 0 (l5b) -
•

I

11
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r Equations (9) and (10) are stihi valid. The first term of Equation (10) is

rewritten in shorthand notation as:

F f o  r KV G + G —
~~~ KVT~ •~ SJo J s L  pc Pc 

J 
a

= 
ft 0 f K~ G + G ~~ KVT~ •~ SJo Js1L 

PC PC J ri

+ f o dtf {_T KV G + G ~~ KVT~~.~ S~

V The second term of the S1 
- integral vanishes because of the boundary condition

(15a). In the S
2 

—integral , we replace T by its expression obtained from (3b) ,

and G by its expression obtained from (15b). We obtain

F = f Odtf T XV G.aS + f O dtf ~~

_ (Ta- ~~~~~
. KVT ) K

- (~~ XV G) ~~ KVT~~ 
.
~~~~h pc

Combining terms , one is lef t with

F f o f j  KV ~~ G.aS ~1 _T
G KV ~~ G4S~

r V 
The equivalent of Equation (11) is then

• 
T(x

0,
t
0
) = f O d f G Q dv +f T( x ,O) G dv

(16) 
V

+ J 0 dT{f
_T XV ~~ G4S + f~G K~ ~~ G.aS~

12
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Equation (11) collapses if x0 is on S. Equation (16) collapses if x0 is on

• 
S1, but is well—behaved if x0 is on S2 (provided h<a~) .  This shows that one

may use Equation (11) (with simpler Green ’s functions) until the necessity

occurs to estimate the temperature at an external boundary where inhomogeneous

boundary conditions are imposed. At that point , one has to switch to the more

complex boundary condition (l5b) , which heads to Equation (16).

The Monte Carlo procedure corresponding to Equation (16) is to estimate

the internal heat source term (if any) first. Then select r from Equation (14) .

If 17t
0
, sample the second term and terminate the history . If r<t 0, sample the

surface terms. If xcS2, estimate TG and terminate history. If xcS1, estimate

T(x ,t0
_ r) either as a known temperature, or by estimating it using Equation (11) .

5. Linearization of a Non—Linear Conduction Equation

The heat conduction equation (1) is non—linear if the thermal properties

(K ,P, c) depend on the temperature T. Consider a(T) which depends explicitly

on temperature only.

Let us introduce the new variable

e = rT a(T)dT ( 17)
Jo

It follows from (17) that

~~~~~~~~ , VO a V T  (18)

Substituting (18) into (1) we obtain

-— !  ~~~~~~~~~~~~~~ ...! 
~Qe a a~~t pc

Or:

a K a- s—- — -
~~~

-
~~~~~— Q  ( 19)

• 1- -V

-

F 
13
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If the problem at hand is such that one can choose an “a” so that K/a is

time independent and position independent in any region (thus exhibiting only

discontinuous variation across specified boundaries), Equation (19) can be

V simplif ied to

1(~~2~~~~3O = -  Q (20)

In practice this situation occurs in problems involving a single homogeneous

material. If the configuration is heterogeneous, we propose to choose a value

of a such that K/a is constant for the most important material. Regions involv-
~V I

ing other materials can be subdivided into small enough subregions so that K/a

does not vary appreciably. In that case, Equation (20) holds as a reasonable

approximation.

In any case , the diff usivity K/pc is still temperature (arid therefore 0) —de-

pendent . We propose to subdivide the entire configuration into small enough re-

gions so that the diffusivity K/Pc can be reasonably approximated as being

constant within each region.

The time—dependence of the diffusivity can also be handled approximately

by splitting the time span from t=0 to t—t 0 into time steps short enough

so that the thermal parameters do not vary appreciably over each time step.

Knowing the temperature at the beginning of the time step , the thermal parameters

• can be calculated and considered as constant throughout the time step. The

F temperature has to be calculated everywhere at the end of the time step — and

• the new temperature distribution can serve as initial conditions for the next

time step. V

If the time span has been subdivided into small enough time bins, and the

V 
homogeneous regions have been subdivided into small enough subregions as dis- 

V

cussed above , Equation (20) applies with:

K/a = const
Pc/a = corist

in each subregion and in each time bin.

L i .  14
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Equation (20) is identical in form to Equation (1) provided one makes the

- following substitutions:

O b y T

V K/a by K  (21)

• Pc/a by pc

The only remaining problem is that of treating the inhomogeneous boundary

• condition (3b) . it is Jcnown3 that the transformation (17) cannot be performed

V 
exactly in the presence of such inhomogeneous boundary conditions. One can ,

V however, write the boundary condition in the form

K ~O (x ,t) = 
~~~ ~~ — G (x ,t) 1 (22 )

where :

• O
G

(x
~~

t)  = G(x,t) + a(T
G (x,t) 

— T(x,t)) (23)

The problem is that 00 (x ,t) is not a known function, as it involves the unknowns

®(x ,t) and T(x ,t) .  We propose , however , the following approximation, which is

in the spirit of all those made in this section:

• • e
~
(x ,t) = G (x,O) + a(TG (x ,t) — T(x ,0) )  (24 )

- 4 Equation (22 ) is then identical to Equation (3b) when substitutions (21) to—

gether with the replacement of

h/a by h

(25)

- O b ~~T~

are made.

t~~~
V

V 
V 

V
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-
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III • GEEEN ’S FUNCTIONS IN HOMOGENEOUS RECTANGULAR PABALLELEPIPEDS

V The Monte Carlo method described in Section II is valid for any volume V

surrounding x0, provided V is entirely within the configuration under examination.

In practice, the choice of volumes V is limited to such shapes for which the

Green ’s functions are known or easily computable. Muller1 considered a variety

of shapes for the solution of the Dirichlet problem. Haji—S heikh2 considered

only spheres for the solution of heat conduction problems. Carslaw and Jaeger 3

give Green ’s functions for a variety of shapes.

In this section , we give all the relevant properties of Green ’s functions

defined over rectangular parallelepipeds. The restriction of volumes V to be

rectangular parahlelepipeds permits an exact solution in the case of configura-

tions with piece—wise planar boundaries, or solutions to an arbitrary degree of

accuracy if curved boundaries are involved . Throughout this section , we assume

that K and the combination pc are constant, and introduce the coefficient

of diffusivity

D K/pc. (1)

1. Separation of Variables

-~~ - We propose to solve for G(x 1 ,x2 ,x ,,t) which satisfies

D + .L~~. + i_2~.] 
— = 0 (2)

.~~ I X
1 

ax 3
• 

- for xcV , where V is defined by

+
~~~. <x . <~~ . , i. = 1,3

1 — 1 — 1

and t>O ,

V •

16
t •

~~
V

________



with the boundary and initial conditions

G(x1,x2,x3,
0) = 5(x1

)~5(x2)~S(x3
) (3)

+ aG (x11x2,x3,t) ±
G(x1,x2,x31t) = — 8i ax . 

x . = 
~~~

. , i=1,3 (4)

± ± 
1.

where 
~~~

. , 
~~

. are given constants:

+
i = l ,3 (5)

+

( ± 8  > 0  i = l ,3 . (6)
2.

+
The inequalities (5) insure that the point x~ ”O is inside V. If all

are zero , the boundary condition (4) is tailored to that of Equation (11.7) .
+

Positive values of can be chosen to reproduce the boundary condition (II.l5b) .

Let us assume that the solution G can be written in the form

G(x1,x2,x3,t) = X1(x 1,t )X 2 (x 2 ,t )X 3 (x 3, t) (7)

Substituting (7) into (2) we obtain

3 a~x ax .
z ~~~ [D ~ — = 0 (8)

~.=i 2. ax.
3.

A solution of (2 ) with the conditions (3) ,  (4) is therefore (7) with

I’ 2a x .  ax .
• D ~ — -j ~~= 0  i — l ,3 (9)

ax~
with the initial and boundary conditions

x
i
(x
i~
0) = tS (x~) i — 1,3 (10)

+ 3X .(x.,t) +
X~ (x~1t) 8 

2. 

~~ 
x . = cij 

i 1,3 (11)

The four—dimensional problems (2-4) have been reduced to three independent two—

dimensional problems (9—li) .

17
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2. Sampling the RPP Green’s Fui~ction

V As discussed in Section 11.3, one first needs to sample a time t from

the distribution (Equation 1.13—14)

Jt
P(t

~~t = fG
(xl~ x2~ x3i t) dx

1dx2dx3 (12)

Using the expression (7) for G, we obtain

V 

J”’P(t)dt  =J’ i X1(x1,t) dx1JT X2~~ 2, t) dx2 X3
(x
3
,t) dx

3

I = F1(t) F2 (t) F3
(t) (13)

where
+

-

• F . (t) = ,f ’  X. (x.,t) dx. , i = 1,3 (14)

To sample the cumulative distribution (13) we can sample each of the three

cumulative distributions (14) and retain the smallest sample.

Indeed, the probability density function (pdf) of the retained sample is:
V I -

dF dE dP
p(t)dt = F2F3 

+ F1 F3 + F1 F2 ~~
. (15)

= 
~~~~~

. [F1F2F3] QED.

V 

As further discussed in Section 11.3, the sample t has to be compared to a

given cutoff time t0
. If t>t0, a position x1,x2,x3 has to be sampled from a

pdf proportional to G(x11x2,x3,t0). As G is separable, the problem is reduced

to sampling x
1 from Xi(x~,to), for i=l ,2 ,3.

V k
k

18



V 
If the sample t is less than t0, a point x11x2,x3 has to be sampled on

V 

S from a pdf proportional to _1)~a_ G(x
11x2,x

3,t). The probability of such a

point being on either of the two sides of the parallelepiped which are parallel

to the x2,x3 plane is:

V 

D [ . ~~ (_
~~j ,t) + ~.J. (ci~ ,t)] j ” X2 (x 2, t)dx2 J 3  x3(x3,t)dx3

r 1 a2X1
(x1,t)

= [D J — ax  
2 dx1J F2(t)F3

(t)

V 

1

Using Equation (9) we obtain

a dp (t)
V 

= [J’ 1 
~~~~~ 

X1(x1~ t)dx
i] 

F2 (t)F 3 (t) = dt F2 (t)F 3
(t)

1

The probability P1 of selecting a point on either one of the pair of sides 1 is

-; 
I~ therefore proportional to having selected the smallest time t from the cumu ].a-

- 
VI tive distribution F1

(t) (see Equation 15). This can easily be generalized to

- 
the pairs of sides 2 and 3.

~
V . 

- +

~ 
Having selected i, (say i—h), x1 

is set to or with probability

ax ax
• 

V - .
~~~~~~

. ( a~,t) or .5—! (a~ ,t ) ,  respectively. Th. remaining two coordinates
1 1

(i=2,3) have to be sampled from X
~
(x.,t).

V 
~•V• •~

7’

‘ VI-
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3. The One-Dimensional Green’s Function Vanishing at Boundaries

We now consider the case of Green’s functions with 0=0 boundary conditions

at both boundaries.

The Green’s function satisfies

D 
a2X (~,~) — 

3X(x,t) 
= 0 (16)

: 1  ax

with the boundary and initial conditions

X(x,0) = 15 (x) (17)

X (+a/2,t) — 0 (18)

therefore treating the symmetric case ~~ =—c~ =. a/2.

Let us introduce the reduced variables V

T = Dt/a2 (19)

4 G(~ ,t)  = X(x,t)

Equation (16—18) become

a20(çt) 
- 

aG(~~,t) = 0 (20)
a~

2 at
G ( ~ ,0) = I5(~~ ) (21)

• -~ G( +1/2 ,t) = 0 (22)

• The solution G can be expressed either in the eigenfunction expansion :

G(E ,T) = 2 E cos((2n + lhr~)•exp [_ C2n + l)21T2:j, (23)
n 0

- 

-
• or in the image expansion:

G(~ ,T) = 
1 ~ (-l)~ exp ~ - (~~ + n) 2

/4T 1  . (24)
2/~~ri=-0’

The expansion (23) converges rapidly for large t , whereas expansion (24) • r~.
converges rapidly for small T• rV

i~ 20
L~~~~
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4. Monte Carlo Algorithms for Sampling One-Dimensional
Green ’s Functions Vanishing at Boundaries

The cumulative time distribution corresponding to Equation (14) is given

by

F(t) 1/2 
G(~ ,t ) d~ (2 5)

—1/2

Using the eigenfunction expansion (23) we obtain:

F(T)  = 

~ 

exp [_(2fl+l 2t21] (26)

corresponding to a probability density function

= ~~ 
n=0 

(—l)’~(2n+l) exp [_(2n+l)2t2T] (27)

The expansion (27) is absolutely convergent for VO , and the absolute values

of the terms are monotonically decreasing for t>T ( ’) , where

= &n(3~~1r2 0.0139

At early times, an approximation is suggested: keep only the terms n 0

and n=+l in the expansion (24) . Substituting this expression into (25) one

obtains
2

F (T)  = 1. — ± I e~~ du (28)
/~ Jl/4/~F

Compared to Equation (26) , Equation (28) gives at least five place accuracy for

r<0.075.

• To sample a time, one can set a time breakpoint T
1 

(0. 0l4<t i<0.075) and

use the early time approximation for T<T
1 

and the eigenfunction expansion for

r >r 1. Optimum computer times are achieved by setting t1=0.05. At that time,

only the first two terms of the eigenfunction expansion are non—negligible.

~14
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The Monte Carlo algorithm consists in precalculating Fit1). A random

number ~ is sampled. If E>F(t1), the early time case applies. If

the late time case applies.

4.1 Early Time Case

One first has to select from Equation (28). Let u1 = l/4 /~1.2
F 

Select u>u1 from e
’
~ du and set ~=h/(4u)

2.

As u1 
is of the order of unity, an efficient technique to select u is to

select IS from exp (—2u115) 
and accept the sample with probability exp (_52)~

When ~ is accepted, u is set equal to

Once r has been selected, the coordinate x has to be sampled.

If diffusion occurs to a boundary , it occurs with equal probability to

either boundary as

(h/2,t) = — (—l/2 , r) (29)

If an internal point ~ has to be sampled , its density is proportional to

G(~ ,t)  as obtained from Equation (24 ) ,  which can be rewritten in the form

G(~ ,t )  = (4~
2 T) _l/ 2 

~~~~ [_ (~ +2n) 2/4~]

- exp [- (~_2n_l)2/4T] - exp [_(~ +2n +l) 2/4~~

+ exp [
~ 

(~ +2n+2)/4~~~~ (30)

V The selection is performed as follows:

First ~>O is sampled from exp (— i ~
2/4t) . Then the lar gest integer n is found such

that 

= 2n + ~ , ~>0

If ~>h/2 , the sample ~ is rejected . V 
•~~~~

L 
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When r~ is accepted , the samples n , ~ are tentatively accepted as samples

I of the first of the four terms constituting the n—th term of Equation (30) . I
The remaining three terms are taken into account by a rejection technique:

Let r1 = exp {- E~_2n_ l 2 
- (~ _ 2n) 2] /4t~

= exp {— E~~
2
~~

1 2 
— (~ _2n) 2] /4t~

= exp {
~ 

[~~+2n+2) 2 
— (~ —2 n)~~ /4t~

The sample ~ is accepted with probability l-r1—r 2+r 3. In practice, this is

broken up into three steps. Only r1 is calculated , and the sample is accepted

with probability l—r 1. If not accepted , r 2 and r 3 are calculated, and the re-

maining tests are performed.

4.2 Late Time Case

One first has to select T< T 1 f rom Equation (27 ) .  Keeping only the

first two terms of the expansion, one obtains:

— 4Tr [exp(_ 1r2 r) — 3 e~~~(~ 91T~~r~j  dt (31)

Let x = exp (—7r2(t— T
1)) V

C = exp (—8 112 t
1)

or 

p(x)dx ( 1—3 Cx 8)dx

p(x )dx = 
i:C/3 

dx + ~~~ ~~
. (1-x

8)dx

To sample x , with probability (1-3c)/( l—e/3) one samples the first term by setting

V 

x equal to a random number. With remaining probability, (8/3) c/ (l-c/3) , the second

term needs to be sampled. x can be set equal to any of nine random numbers except

for the largest of these nine. This technique turns out to be time consuming. A

more efficient technique consists in setting x to a random number , and accept x

with probability 1—x 8. If x is not accepted , it is mulitphied by another random

V number. The product is a valid sample x.

L L V 

23

- 
~~~~~~~- .~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~pr s rtV V~~~V



Finally, the time variable is set to

= —

Once T has been selected , the coordinate x has to be sampled.

• If diff usion occurs to a boundary , it occurs with equal probability to

either boundary , as Equation (29) still applies .
- • If an internal point ~ has to be sampled, its density is proportional to

as obtained from Equation (23), keeping only the first two terms

G(~ ,t)d~ = 2[cos(~~ )exp (_rT 2t) + cos(3 1r~)exp (_ 9Tr 2
r]d~

cos(irE ) + ~ cos(3ir~) (32)

cos(1T~) + C [4cos
3(7T~) — 3cos (ir~~

where C = exp (~8lT2t).

Substituting sin (~~ ) 2x— l into equation (32):
p(x)dx (1—3c)dx + l6cx( 1—x)dx

p(x)dx = 1:c/3 dx + 6x(l-x)dx (33)

To sample equation (33), with probability (1—3 c) / ( l— c/ 3)  set x to a random number.

With remaining probability, (8/3)c/(1—E/3), sample three random numbers and set

x equal to the one in the middle in the order of magnitude.

5. The One—Dimensional Green ’s Function with Homogeneous Boundary Conditions

We seek the solution of the equation

D 
a
2
x(x,-t) 

— 
ax(x,t) 

= 0 (34)
F ax 2

• 

V 
with the boundary and initial conditions

x ( x, 0) = IS (x ) (35)

X ( 0 ,t) = ~ 3X (O,t) 
(36)

X( 1,t)  = 0 (37)

therefore treating the case of the source point x=0 on the boundary x 0 :

c 0 , c~ =l, with homogeneous boundary condition at x=0 (~~ >O) and zero boundary

condition at x=a (8~~ O)

24 
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Let us again introduce the reduced variables (19) :

~~~~x/a

T = Dt/a2 
(38)

V G(~ ,t) = X(x ,t)

Equations (34-37) become:

~~G(~ ,t) — 
aG(~,t) = 0 (39)

G(~ ,0) = tS (~) (40)

G(0 ,t)  = ~
, a G ( o,T) 

(41a)

G(1,T) = 0 (41b )

The eigenfunction expansiofl:

G(~ ,T) = E c~ sin(~~ (~
_l)) exp (—c 2T) (42)

n=l

satisfies the differential equation (39) and boundary condition (41a), (4lb).

• Substituting (42) into (4la) we obtain the eigenvalue equation:

tan 0n 
— 

~~n 
n>l (43)

Taking (43) into account, one can show that

rl
J o  ~~~~~~~~~~~~ ~~~ ~~~~~~~~ 

d~

= (1 + y cos2cz )/2 for n~ n
fl (44)

= 0  for m~n

Equation (44) shows that the expansion (42) is in terms of an orthogonal

set. A necessary condition for (40) to be satisfied is
I V  

V (1
J o sin(a (~ -~l) ) 6 ( ~ )d~ J 0 sin ( ( ~~ l) )  G (~ ,0)d~ (45)

Substituting (42 ) into (45) and taking (44) into account , one obtains

—2 sinct • V V -

nC = (46)

V 

~~ l+yCoS2cL

Expression (42) is theref 

ie 

solution of (39)-(4l) Provided ~~4) and (41
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5.1 Solution of the Eigenvalue Problem

The solution of Equation (44 ) is graphically represented in

Figure 1. The solutions can be written as:

a = n i r — n  (4 7)
I fl fl

- where

- tanc*

Figure 1 — Solution of tana —y cz

r~ is a solution of• n

tan ( — f l ) = — y (nii —n ) (48)

f o rn l , 2 , ... .

LL 26
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Equation (48) can be rewritten as

or

flfl 
= Arctan ~~~ — 

~~~ 
(50)

n = l ,2 ,

thEquation (50) can be used for an iterative method of solution , where the m

iteration can be obtained from the (m_l)th using

in m—].
= Arctan (ynir — 1’

~n 
( 51)

The iteration can be started by using an approximate expression for

tan n ° ~ ~~°/(t/2 - fl °) and substituting in Equation (49):

0 0 0
ri / ( i r/2  — ) = ynt — 

~ n (52)

= + y~/2+l —] (ynv + y~/2+l) 2—2n y 
2~ 2 (53)

Recapitulating the results of the present section, the eigenvalues 
~n

can be obtained by using the starting value (53), iterating to convergence

using Equation (51), and substituting the solution r into Equation (47 ) .

For ~pO and n large enough ct~~+(n_ l/2 ) V Tr .

5.2 Early Time Approximation

V 
• The expansion (43) is rapidly converging for large values of ~~. It

does not converge for r=0. In order to derive an approximation to G(~ ,t) for

small values of r , let us first solve a problem satisfying Equations (39)— (4la),

and replacing Equation (41b) by V 
-

~
V
.V1

• G (~~, t )  -
~ 0 as ~ -‘~~ (54 )

Li

‘
1

_______________ V 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 
— —, —

~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _ _ _ _ _



_ _ _ _ _  _ _ _ _ _ _ _ _

V 

and denoting its solution G(~ ,t) as G0(E ,t).

- I Let us define the Laplace transformation of G0.

F (~~,~~) =J e~~ G0
(~~,t )dt  ( 55)

V 
It satisfies the differential equation

(56)

The general solution of (56) satisfying the boundary conditions (40)
V 

and (54) is

e~~~~ 1°~ e~~~~~~ ”~F(~ ) = — + / d~ f ( ~~) (57)
1(A) Jo

V 
the function f (~ ) is to be determined from the boundary condition (4la):

+ f d n f ( ~ ) ~~~~~~~~~ [ -
~ 

+ 
f ~~n f ( ~)e~~~~~~~l

for ~ = 0 , or:

V r=d~ f ( ~ )e~~~~~ ~~l// 
= 1 - — 

2 ( 58)
J 0 ~~i//(A)

The left hand side of Equation (58) defines a Laplace transform of f ( n ) ,

• - with the transform variable s=~j . The inverse transform of the right hand V

2 —
~/ ~side is d ( n )  — e .

Therefore

f ( r ~) = IS(~ ) 
— e T

~’Y ( 59)

h
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Substituting this into Equation (57) we obtain

~~~~~~~~~~~~~~~~~~~~~ I e~~
”
~~‘( Jo

The inverse transform of F with respect to w is

G0
(~,t) ~~~~~~~~ [e~~~

/ 4
~ - ~ f ~~n e~~”( e

_
~~~~

2/4ul (60)

The function

G(~,T) = G0 (~ ,T) — G0(2— ~,
T) (61)

satisfies the differential equation (39) , as well as the boundary conditions

(40) and (42). For small enough t , G
0
(2,t)<<G0

(0,T), and therefore from (61) :

G(0,T) ~G0(0,
t); for small enough T , expression (61) approximately satisfies

V 
boundary condition (41).

• The function G(F ,r) defined by Equation (61) can therefore be considered

as an approximation to the solution of Equation (39), (4lb).

6. Monte Carlo Algorithms for Sampling One—Dimensional

Green’s Functions with Homogeneous Boundary Conditions

Starting from the exact eigenfunction expansion (43 ) ,  we obtain the

following expressions for distributions of conduction time. V

The p.d.f. of time passage through the boundary at which G = —Y is:

aG 2a sina —a T• 0 3G(O , t)  n n n
— — = + = E 2 

e (62)
n 1+ ’~cos a~

For the boundary at which G=0 , it is:

V 

aG(l,-~) 
2sin%(_cosan

) 
n —c2~

2
t

= — = — ax = 2 e (63 )
n l+ ycosa

2sina —ci 2~
F
0
(t) = p0(t)dr 2 e (64)

• n ct~~(l#~cos ~~ )

I L
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and

P, 2sina (—cosct ) —ci 2 •r
F1( r ) = j p1(r) dr  n 

2 e (65)
V J r n a (1+ycos a )

For r=O , the following equalities can be derived:

F0(r) = (1~~) 
(66)

- 

V F1(t) = l—F0 (t )  (67)

On the other hand , starting from the approximate early time expression of

G(~ ,r), we obtain the following: 
-

F Cr) = ___ - 2 [fe

2
/4T

d~~i T~dn e~~
”( f a~~_~~~~~2/4t }680 l+y i. ~~~ ‘(Jo Jo

= - 2e ’(
~~~
’( 2 f  e~~ du (69)

1/2i~+ vçj- ,

and 
2 2

F Cr) = + e T/’1 ~! I e~~ du (70)1 l+y

Expressions (68) and (69) have been calculated numerically for a range

V 
of y, and compared to the exact eigenvalue expressions (64) and (65), keeping

up to 900 terms. At least five place agreement occurs for r<O.1. For that

value of Vt, convergence of the eigenfunction series occurs with only 8 terms

(all 900 terms are required for t=0.0l). We can therefore define a time break—

point r1(=O.I) below which the early time approximation applies, and above

which the eigenfunction expansion has to be used. ~~
•V~ V

-
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We now turn to describe specific algorithms for time and position

selection for ~~~~ 1 and t> Vt  
~~~

. In both cases three possibilities have to be

covered: conduction to the ~ =0 boundary at time r , conduction to the ~
V 

boundary at time r , and diffusion to an internal point 0~~< 1 at time Vt .

6.1 Case of Early Times

V 
6.1. 1 Conduction to the ~=0 boundary

A time r has to be sampled from F
0
(r) as given by Equation (68).

Introducing the new variables

v = (~+~ )/2/~ (7 1)

= 1/2iT,

Equation (68) becomes

F (~ ) = 
~~~~~~~~ 

- —~~~ e~~ du - 
~ 

d~, e~~”( e ”~ dv] (72)
‘( J o

e1’1’( f°° - /Multiplying the u-integral by —v-- ~ 
e ‘( dC, which is equal to unity, and

J].
changing the variable r~ to C—l , Equation (72) becomes

F(~ ) = - 
~~~~

- 
~~~~~~~~~~ 

f e ~~ ”~~~ [f e~~
2
du -f e

_V
dv] (73)

The probability density function of is proportional to f ~~ =

f ( w) = ~ e~~~ 11 e~~”( dC e~~ [1 - Ce~~~Wl (74)

Expression (74) is positive for all ~ provided w>l. As and

= l/2Vç = l/2/1= 1.58, the condition is satisfied. 
F

• 

V
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The problem of selecting t < r 1 from Equation (72) is therefore reduced to

- 

I 

selecting w>w1 from Equation (74), where

= l/2J~~ (75)

This can be done as follows:

1) select 21 from
2

2) select ~~~~~~~ from e
W d~

2 2
• 3) accept the sample with pro)~ability l— Ce~~~ 

1) tV I )  and

set t=l/(2~)
2
. If rejection occurs, repeat steps 1,2,3.

- • 6.1.2 Conduction to the ~~ 1 Boundary

A time r has to be sampled from F
1
(~) as given by Equation (70).

The selection for O<~<= is rather simple:

2 2  2
Vt = y A /4v

2-A 2 -vwhere p ( A )  = e and p (v) = — e

V 
However , what is needed is selection in a finite range ~~~~~~~ where

can be rather small.

To develop a selection technique, let

X
i

v
~~~~

/y

Equation (70) becomes

2 r 2
x 2 1 -uF(x)a~e — e du

1~~Jx

_! r= e~~~~~~~~~~~’~~du
/ rJ x -

~~~ V

Let u — x = v  
~~~V V

2 -v(v+2x)
V P (x)~— e dv

1~~Jo

V 
I -Vj

1 t

32
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V 

The probability density function of x is

p
~~

(x) = - —~~~ f 2v e~~~
’
~~~~dv (76)

Let us define the pdf

¶ 2 -v (v+2x )p(x ,v)~ — 2v e (77)
liv

(x) is the marginal distribution of (77 ) .

V The marginal distribution of v is:
V 

~~~~~ f i  p (x ,v)dx —a- e ’~
2 

[1 
-2vx

11 (78)

If v is selected from (78), the conditional distribution of x is ratio of

(77) to (78) :

— 2vxp~~
(
~~

v) 2v e O<XV<X
1 

(79)

To select v from (78), the following techniques are efficient :
2

If x1 is not small with respect to unity , select v from e ’~ , and accept
-2v x1with probability l-e

2
If x1 is small , select v from 2v e~~ (v= /x , p ( X ) = e X ) ,  and accept with

* 
-2v x

probability (1-c l)/2~~ The optimum breakpoint value of x1 is 1~/2.

L The overall efficiency of the rejection technique is 100% as x1-.O and as

it reaches a minimum value of 54% at x1 =

V Once v is selected, the selection of x from (79) is trivial: select A

from e~~, 0<A<2vx 1 and set x = — A/2v.

Finally the time is given by

2 2  2 2  2
V t ’ ( X  iI’ ’( A / 4 v .

*The probability is > (1-vx1). This fact can be used to avoid
, with high

probability, the necessity to compute an exponential.
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6.1.3 Conduction to an Internal Point

The problem consists in selecting a position coordinate x from the pdf

(61), at a given r.

This equation can be written as:

G(
~
,t) ~~ e~~~

’( ~~~~
2
/4 

- e~~~~~~~~
2
~

4T 
•

— e
_ (2 ) 2

1’4t ~ e
2_

~ 4 fl)
2
14tj~ 

V 

2
To select ~ from (80) one can first select rj from ~ e n~”

(, ~ from e~~ 
I’~ T

and accept the sample with probability

p = [1 - e E ~~~~
2
~~2] /4T 

- e 
[(2_~~

2_~2] 14~ + ~~

- [(2_ ~ +~ ) 2_~ 2] /4T1

The efficiency of the rejection technique deteriorates for small values

of g = 1/2~c. In that case, another algorithm becomes efficient.

2
With probability l/(l+g ,’~ ) ,  sample x from xe~~ and u from 2ue U 

. With

2 _ 2 
— 

2
remaining probability sample x from x /2 e X and u from 2/J,~ e 

X 
• In both

cases set n 2/E gx and ~ = 2/~ u, and accept the sample with probability

= p.4r/( (2~ 4 m) ) ~

• For optimum operation the first sampling technique should be used for

the second one for g<g 0. The optimum value of g0 can be calculated for

g0 =
~/-4~

- + 4 ••••,
~/—i:• 

= 0.479

The efficiency of the mixed algorithm is 100% as g+0 and g-~~. It assumes a

minimum value of 47% at g = g0.

_______________________________ -________ - — -_~~~~~~~ — ~ -
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6.2 Case of Late Times

6.2.1 Conduction to Either Boundary

The time is sampled by sampling a random number r and solving the equation

V 
rF
~
(0) = F

~
(Vt) i = 0 or 1 (81)

i = 0 or 1 corresponds to boundary ~ = or ~ = 1, respectively.

V For each sample (each value of Y), the eigenvalues of coefficients are cal-

culated. The solution of (81) is obtained by performing a binary search: if

t1< t<t
2
, where Fi(Vt

~
) is known for j  = 1,2, the next approximation of Vt is Vt

3

obtained by linear interpolation between Vt
1 
and t2. The value F~ 

(Vt
3

) is calcu—

lated numerically, and t
3 
replaces either Vt1 or Vt 2, thus reducing the interval

Vt
1

— Vt
2
. The search is terminated if F~ (T1)~F~

(T
2) becomes small enough (5% of F.(0)).

If = (e.g., at the beginning of the binary search), the “linear interpolations”

for Vt
3 
is replaced by selection from the first term of expansion (3) or (4):

Vt 3 = — log (r.F
~
(r
1))

a
1

6.2.2 Conduction to an Internal Point

At late time Vt , the pdf of ~ 0<~<1 is proportional to:

22sinci —a r
G(~ ,Vt ) = Z l+~cosci sin(a~~ )e n

The cumulative pdf of ~ is therefore

V 

I 

2 n %
P (~) — J G ( ~~ , Vt ) d~ — 

~ a (l+~~os a ) 
(1—cos a ~) e (82)

0 n fl

As in the case of time distribution, the selection is performed by solving



7. In~portance sampling of RPP Green’s Functions with

V 

Hon~geneous Boundary Conditions

Biased sampling of the Green’s functions becomes necessary if boundary con-

V 
ditions of the type

T~~• T g
= _  

~~~~~~~~~

occurs with large values of both P~ and ~~.

The natural probability of scoring Tg 
is small, but Tg 

is much larger than

- I any local temperature T. This leads to a high variance of the estimates. The sit-

uation can be corrected by proper biasing if reasonable estimates Tg of T~ and T

of the local temperature T can be made.

Let us assume that the RPP is oriented along the x1x2x3 axis, that zero

boundary conditions are satisfied in the x1—x 3 and x2—x 3 planes as well as on one

of the x1—x 2 planes. The condition G = — is satisfied on the other x1—x 2

plane. The procedure outlined in Section 3 is altered: the time t1 of diffusion

to the x1—x 3 planes and to the x2—x 3 planes are sampled first. The smallest of

t0, t1, 
t2 

is determined and set as tm~ 
where t0 is the time cutoff . tm is scaled

to the frame of x3: rm Dtm/a3
2. If P

0(t) 
is the function defined by Equation (64)

or (69) of Section 6, then, with probability

Pg 
= Fo

(O)
~
Fo

(•t
m
)

the score will be T
g• 

With remaining probability (l—p) it will be a local tempera—

ture: with probability

= Fi
(O)_F

1(t m
)

the score will be a temperature Ta at a point on the opposite side of the x3

interval, and, with probability

= l_F
o (Vt m ) — Fi

(T
m) (Pg + 

~a 
+ = 1)

the score will be a temperature T~ at a point internal to the interval of x3.

-~~ ~~~-—-~~~~ V - V ~~~~~~~~~~~~
-- -
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Assuming that Tg is reasonably close to and that both Ta and Ti are

reasonably close to P, reasonable biased probabilities and associated weight

factors can be defined as:

Pg = PgTg/N Wg N/~g

= PaT/N W N/T

Wi =N/
~

where N = PgTg + (l~Pg)T•

The associated scores will be Wg
T
g~ WaTa? ~~~~ which are all approximately

equal to N.

37 ~~ •
-

~~ •j~~V 
• — T r— 

~~~~~~~~~~~~~~~~~~~~ V



--- --- -~ 
~~-r~~~~~~~~~~~~~~~~~-- _ -

F 
__ _  -

~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

IV. GREEN’S FUNCTIONS IN INHOMOGENEOUS RECTANGULAR PARALLELEPIPEDS

The Green’s functions defined for homogeneous ppp in Section III can be

V used provided the RPP is fully contained in a homogeneous region. Another type

of Green’s functions has to be introduced when a point x0 is placed on the

interface between two dissimilar materials. As in the previous section, we re-

strict the shape of the volume V to a rectangular parallelepiped. The inhomogeneity

is restricted to two media with a planar interface, the interface being parallel

to a side of the RPP.

To be more specific, the volume V is defined by: V

— + • 
V

a .  < x .  < ci . 1 = 1,3 ( 1)
— 1 —  1

The diffusion parameters are:

K = K
1 for x

3
>0

~c~~~~c1J

(2)

K = K  12 
~ for x3<0

PC 
= P~~2 J

4 Equations (5)—(8) of Section 1.2 can be rewritten as:

• K ~
2
G 

+ ~
2G 

+ ~ 

2~ 
- = 0 (3)

pc 2 2 2 ~t3x
1 

ax
2 

3x3 V

with the boundary and initial conditions

G(x 1,x2 ,x3,0) = I5 (x
1

)FS (x
2

)l5 (x
3

) (4)

G (x 1,x2 ,x3 , t)  = 0 , x. = ci .  , i = 1,3 (5)

~~~ 

G(x11x210~,t) = —i-— G(x1,x2,
0 ,t) (6)

~~~ 
G(x~ ,x~,O ,t) = ~__a G(x1,x2,O ,t) (7)pc ,c

____________ 38
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V 
Unfortunately, separation of variables does not apply to this problem. Par-

tial separation can be achieved in cylindrical symmetry (if the RPP is replaced

by a cylinder around the x
3
—axis). The remaining problem is three—dimensional

(r,z,t—dependent), and an eigenfunction expansion can be written down. Attempts

to implement an approach based on this eigenfunction expansion have been given up.

The solution of the eigenvalue problem is too time consuming to be carried out

during the course of a Monte Carlo calculation. Precalculation of sampling tables
+

for a representative set of parameters (IC,
1,K2,pc1,pc2, cz~) appear to be impractical

as the tables would be too bulky to keep in computer core.

An approximation (which can be reduced to any degree) has been introduced.

It is well known that the diffusion equation can be considered as an approximation

of the transport equation in the limit of small mean free paths. Conversely , the 
V 

-

diffusion equation can be approximated by a transport equation with small mean

free paths.

V Consider the transport of radiation in a homogeneous medium with the following

properties: The root mean square free path of a particle is c, the velocity is v ,

scattering is isotropic. For small enough e~ 
the diffusion approximation applies ,

*
with a diffusivity

D = K/p c = vE /6. (8)

The distribution of free paths is irrelevant in the limit of small e. We are free

to take constant free paths of length 
~~~
.

At the interface between two different materials, the scattering is anisotropic :

with probability p1, it is isotropic into medium 1, and with probability l—p1, it

is isotropic into medium 2. In order to satisfy the boundary conditions (6),(7)

P1 = v’K1.pc~ / (/K Ji c + /K2.~~c )  (9)

*
In neutron transport, the root mean square free path c = 2>~, where A
is the mean free path, giving the familiar D = vX/3.
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The accuracy of the method is determined by the smallness of c. Once

c~ is chosen for medium i , i=1,2 , the velocity v1 is determined from Equation ( 8) .

An adequate accuracy is achieved by setting 
~~~

. to the smallest of €~~~~~~~~, c .

where

~~ 

= /6 D .t 0/25

= L./6 where L. is the smallest of
1 :1.

+ + +
+ci1 , ~ct 2~~ ci

3 
if i=1, —~~3 

if 12.

Setting c = will insure 25 collisions before reaching a given time cutoff

t0. Sett ing €
~~~~ 

= will insur e a number of collisions of the order of 25 before

leaking out of the RPP .

Once the particle diffuses away f rom the interface, one can switch to the

floating homogeneous RPP method. Optimum computing times are achieved if this

switch occur s when the particle diffuses a distance of ~6e!~ from the interface.

‘1

~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _  
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V. HEAT TRANSFER GEOMETRY PACKAGE

1. Geometrical Description

The geometrical description is of the combina torial type4 . Regions are

described in terms of intersection of bodies. Bodies are described in terms

of intersection of quadratic surface.. The only surfaces currently being im—

plemented consist of planes , sph eres , cylinders, and circular cones (corres-

ponding to combinatorial bodies RPP , aox , SPH , ~~C , TRC , ~~~~ ARB, but exclud-

ing REC and ELL) .

If a configuration is ix aLlv repetitive , ~rV~~ -/ a single repetitive element

needs to be described , a~~ exp~ a~~ e~: ~n Ssctxon VI: .3. The geometrical package

is completely general. f{owever , ~f the :onf -~zi ’-ion exhibits at least partial

cyclindrical syimnetry , more ~~~Lien t isat ~~~~ r~~~:er c~~. ~~~i~~~~~ fls w i l l  be per—

formed if the axis is in the z— direc t i on ~~~~ subroutine SOUSET is affected.

See Section VII.5).

2. Geometrical Input

The input consists of

1) Title Card

2) Surface Data

3) Body definition in terms of above surfaces

4) Region definition in terms of above bodies

• It is envisioned to develop a preprocessor which will accept as input com-

binatorial bodies.

I 
- 2.1 Title Card (14,l9A4)

IPR If zero - input and processed data will be printed back.

HOLL Any hollerith information serving as a title.

2.2 Surface Input (2X, A3, 8E9.3)

The input number c required for each surface can be regarded as a surface

thickness. Its meaning is described in Section V.4.1.
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Plane: PLN ~ V1 V2 V3 H1 H2 H3

where V is a point on the plane , and H is orthogonal

to the plane, pointing “inside” the plane (arbitrary

normalization)

Sphere: SPH c V1 V2 V3 R

where V is the center and R the radius

Cylinder: CYL c V1 V2 V3 H1 H2 }1
3 R

where V is a point on the axis, H points along the

axis (arbitrary normalization) and R is the radius

Cone: CON c V1 V2 V3 H1 
H2 H3 T

where V is the vertex, H points along the axis

(arbitrary normalization) , and T is the tangent of

the angle of aperture

End of surface input marker: END

2.3 Body Input (2X, A3 , 1515)

V GEN N1 N 2 N 3 ...
where NJ is surface number N1>O implies that the body is inside

the surface , Nj <O — outside. The first N1 = 0 implies the end of

list at i—i. If none, end occurs at i = 16.

End of body input marker: END

2.4 Region Input (2X, A3, 1515)

~~~~ ~i 
N 2 N 3 ...

vihere ANY is any three characteis (~ END) and IN ~~I = body number .

N.>0 implies the region is inside body, N .<O — outside. N~ = 0

end of list marker.

End of region input marker: END
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3. The Input Processing Routines

GENI, GENIP, GENICK

These subroutines read card input and store processed data into a single

V dimensional array called AST in floating point mode and MAS in integer mode.

The layout of the information is shown in Table 1.

The surface data is processed first , and stored sequentially in the first

available location IS of the array . One word is left blank for future use. The

TYPE is changed to a numerical code as shown in Table 1 • The vector H is normal-

ized to unity. An exhaustive search of surface duplicates is performed. Each

t ime a surface is read in , the previous list is examined for an identical surface.

If a duplicate is found , the new surface is ignored, and the parameter c of the

old surface is changed to the smallest of the old and new r . The address JS

constitute the only identifier of the surface. A temporary dictionary

ISLOC(IS)~ .YS is generated , which defines the surface identifier JS corresponding

V to the ordinal surface number IS. In the case of a new plane identical to an

old plane except for the vector H pointing in the opposite direction , the old H

is left unchanged, but the dictionary entry of the new plane is tagged with a

negative sign: ISLOC(IS)——JS.

The body definition is read in next. The information is stored in terms

of surface identifiers as determined from the surface dictionary ISLOC. A tern—

porary body dictionary IBLOC is generated , which defines the body identifier in
~r .

terms of body input number.

The last block of information read in is the region definition. The in-

formation is stored in terms of body identifiers as determined from the diction-

ary IBLOC . A permanent region dictionary ISLOC is generated, which defines the

region body list identifers in terms of the ordinal region numbers. (The on—

ginal surface dictionary ISLOC is destroyed.)
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TABLE 1

Layout of the MAS - AST Array

LOCATION CONTENT

BLAN~fl
2 ITYPE ~ surface “1”

H- 

3 V
l

JS BLANK*

JS+l ITYPE 1 = SPR 2 = CYL 3 = CON 4 = PLN
JS+2 V1 R H

1 H1 H
1

JS+3 V
2 H2 H

2 
H
2 

R

JS+4 V
3 H3 H3 H3 A

sin~i C
E--— -cosct

S,t

lB BLANK

IB+l + JSl

IB+2 +JS
— 2

- 

•

~ --- -—- Body “ 13”
IB+i~.— l + JS

—

r~ IB+ Z 0

__________ V 
VV ~~~~~V V ~~~ V ‘~~L iTT:~~~~~

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~. -~~~~- -—-~~ — - • -
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TABLE 1 (continued)

• LOCATION CONTENT

IRE = ISLOC (IR) BLANK

IRB+1 +1B1
IRB+2 +IB2 region I~

body list

IRB+m—l + I B

IRB~+in 0

IRS IBLOC (IR) JS
1

IRS+l BLANK

IRS+2 BLANK

IRS+3 BLANK

IRS+4 JS2

IRS+5 BLANK

IRS+6 BLANK

IRS+7 BLANK region IR

surface list

1S14 IRS+4 (n—i) JS~
• - 

V 1514+1 BLANK

IsM+2 BLANK

ISM+3 BLANK V

* 

IRS+4n 0

V 
All blank locations are zeno’d in at input time

~V V ~V

L. V - V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______ V V V~~~~



The final task of the preprocessing routines is to build, for each region,

the list of surfaces involved in defining the region boundary. The list is in

terms of surface identif iers, and is stored in the HAS array . A permanent re-

gion dictionary IBLOC is generated, which defines the region surface list iden-

tifiers in terms of the ordinal region numbers. (The original body dictionary

V IBLOC is destroyed.)

Throughout the input processing, a rather thorough search of errors and in—

consistencies is performed. Error or warning messages are issued. If possible,

fatal errors are temporarily fixed up to allow continuation of scanning. If

any fatal errors occurred, a stop is executed at the end of input processing.

4. The Geometry Subroutines

4.] . The Box Fitting Subroutine GBOX

The principal purpose of this subroutine is, given a point in a region, to

construct a box centered around the point , and fully contained within the region.

The secondary purpose is , given a point on the boundary of a region , to construct

a box ful ly contained within the region, with one face centered around the

point. In both cases the box has to be “as large as conveniently possible” .

The ill—defined statement in quotation marks can be qualified as follows. The

eff iciency of the diffusion code requires on one hand that the smallest dimension

of the box be as large as possible , and, on the other hand , that the largest

fraction of the surface area of the box coincides with the region boundary. The

eff iciency of the box construction routine, however, requires avoiding lengthy V

calculations and tests. The subroutine GBOX implements a reasonable compromise

between these conflicting requirements.

The requirement that a fraction of the surface area of the box coincides ,

at least occasionally, with the region boundary is a necessary one for termina-

tion of a Monte Carlo history. This can be achieved exactly if and only if the
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region boundary consists of planar facets. To avoid this restriction, we con-

sider the curved surfaces as slightly diffuse. A point within a distance c

f rom the surface is considered to be on the surface, where e is the input

V num~ber defined in Section 2.2 , which should depend on the diffusion properties

of the materials on either sides of the surfaces.

The construction of a box abutting a single surface is shown in Figure 1

and 2 for convex and concave surfaces. The distance D1 is the distance of

closest approach , plus or minus c depending on the convexity of the surface.

is the length of the diagonal of the largest box , one face of which can be

considered as being entirely “on” the surface. R is the length of the diagonal

of the abutting rectangle. If R is the small radius of curvature of the sur-

face, R2 — 4Rc — c2, or R ~ ~~~~~ (R5 = R for a sphere or a cylinder, R3 
=

for a plane, and R is determined as a function of position for the cone).

The subroutine examines each surface of the list IRS. It calculates the 
V

distance of closest approach, and, if this turns out to be the currently short-

est one, calculates also R, D2, as well as where is the vector from the

point of closest approach to the given point X. The distance of closest

approach to the next nearest boundary is stored as D3.

When the list of surfaces has been exhausted, a box is tentatively con-

structed. The diagonal of the box is D~ , the shortest of D2 and D3. The di—
V 

mension of the box along is 2D1. The other two dimensions are equal to 2D~ ,

with D~ _J(D~
2 

— D,
2)/2. The address ISM (see Table 1) for the closest surface

is saved.

The box just generated is perfectly valid. For efficiency purpose, two

tests are performed to investigate the possibility of a “better” box:
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Figure 1 — concave surface

X IR

closest surface

C 

R

Figure 2 — convex surface
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 4 - “long box” replaced by large cube
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1) The box does abut a surface which is part of the definition of the

region boundary. But does it abut that part of the surface which really

defines the boundary? The situation is described in Figure 3. The point of

closest approach is tested using subroutine REGCK described in Section 4.2.2.

If the point X0 turns out not to be on the region boundary, the box is changed
V 

to a (larger) cube with diagonal D
3
: D

1=D2 =D3/ li. The vector Q is changed

(arbitrarily) to 0,0,1. ISM is set to 0. However, if X0 
is on the real boundary,

the following test is performed:

2) Is the abutting side of the box much further than the non-abutting

sides of the box, which we implement as D1>2D2? If yes, diffusion to the abutting

side is rather unlikely, and a cube of diagonal is more efficient.

(D
1—D~—D~/)i

,Q—O,o,l,IsM=o). The situation is sketched in Figure 4.

The above discussion describes the construction of a box centered around an

internal point X. To obtain that case, the variable JSM in COMMON/GEOM/ has to

V be <O.

For the case of X “on” (in the diffuse sense) a boundary, the variable 3514

has to be set to the identifier of the particular surface. The box construction

proceeds in much the same way as previously described, except that abutting is

forced to surface JSM. The tests to replace the box by a cube are bypassed .

The vector Q is ill—defined. Another vector , QIN is generated, which is the in-

side normal of surface JSM at X.

4.2 The Point Checking Routines

The package consists of subroutine REGCK , STJRFCK.

The variables of interest are found in COMMON/GEOM/ and consist of

X(3) point being checked
IR region number
IRP neighbor region number
JSM identifier of surface “on” which the point is assumed to be
LOOP the Guber number
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The Guber number should be familiar to all combinatorial geometricians.

It is initialized to zero by subroutine GENI. It should be incremented by

unity each time X changes between calls to any point checking routines. Its

function will become apparent in the following subsections.

4.2.1 The Surface Checking Routine SURPCK(JS,ILOOP)

JS is the surface identifier. ILOOP should be numerically equal to LOOP.

(Do not use LOOP itself as an argumentl) The subroutine performs simple alge-

braic tests and determines whether X is “inside” or “outside” the surface.

The output ILOOP=LOOP if X is inside JS, ILOOP=—LOOP if X is outside JS.

The output ILOOP is also stored in MAS(JS) (labeled as ‘blank’ in Table 1).

4.2.2 The Region Checking Routine REGCK(JRB ,JLOOP)

The purpose of this routine is to check if a point X is in a region IR

(JRB=ISLOC(IR)). JLOOP should be numerically equal to LOOP. The subroutine

handles differently the case of a point inside a region or “on” (in the diffuse

sense) a boundary .

4.2.2.1 Testing a Point Inside a Region

The “inside” case will be discussed first. If the point is not intention—

ally ‘on” a boundary, one should set JSM<0.

The output of REGCK is JLOOP=LQOP if X is inside IRS, JLOOP=-LOOP if X is

outside IRS. The output JLOOP is also stored in HAS ( IRB) .

The subroutine functions as follows :

It accesses the region definition in terms of bodies, and examines each

body lB in turn.

It first examines MAS(IB) and compares its absolute value with LOOP. If V

they match, the body has been tested before for the same point X and the

following set of tests can be bypassed.
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If I MAS (Ia) I does not match LOOP, the body definition in terms of sur-

faces is accessed, and each surface JS is examined in turn.

If J MAS (JS) = LOOP the surface has been examined before. If not, a call

to SURFCK is performed. In both cases the sign of HAS (Js) indicates whether X

is inside or outside JS. The examination continues as long as the result of

V the tests match the body definition. The first mismatch indicates that X is out-

side the body ; iC~OOP is set equal to -LOOP. No mismatch until the end of in-

formation (Js—0) marker is reached indicates that the point is inside the body ;

KLOOP is set equal to +LOOP. In both cases I~ OOP is stored into MAS(IB).

Whether determined previously or by the tests described above , the sign

of MPIS (IB) indicates whether X is inside or outside lB. The examination continues

as long as the results of the tests match those of the region definition. The

first mismatch indicates that X is outside the region; JLOOP is set equal to

—LOOP . No mismatch until the end of information (IB=0) marker is reached in-

dicates that the point is inside the region; JLOOP is set equal to +LOOP . In

both cases JLOOP is stored in MAS(IR B) .

4.2.3 Testing a Point “On” a Surface

In addition to X and LOOP, the following variables have to be set:

JSM identifier of surface “on” which X lies

IR known region number on one side of the surface

IRP neighbor candidate being tested on the other side

of the surface

- 
-
~ IRS (argument) IRB—MAS (IRP )

V The body checking proceeds as usual unless surface JS=JSM is encountered.

If it is, the testing of that particular surface is bypassed, and the remaining

surfaces are considered. If the final result of the body test indicates that

the point is outside the body , either assumption of X inside or outside JS=JSM

will not change that result and the logic of the region checking is unaffected .
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If, however, the result indicates that the point is inside the body, the point

X is actually on the boundary of the body . If the region IRP being checked

is equal to IR, the result can only be false, and is therefore set as such. If,

V however, IRP ~ IR, the body test is tentatively assumed to match the region de-

finition of IRP, the code proceeds to check the next body, and the logic pro-

ceeds along the lines of Section 4.2.2.1. The tentative assumption involves a

definite assumption on the position of IRP with respect to surface JSM. That

assumption is recorded as a signed integer K. In the event that, for another

body, the opposite assumption has to be made the neighbor IRP is declared as

invalid.

For a successful IPP, the subroutine also generates a vector QB which

points from IR to IRP . This is done by setting QB=+QIN, where QIN is a vector

(generated by GBOX, see Section 4.1) pointing into surface 3gM , and the sign 
V

is determined by the sign of K.

4.3 The Neighbor Finding Subroutine NESFND

The purpose of this subroutine is to find the neighbor IR? of a region IR

at a point X “on” a particular surface. The surface is defined by the variable

ISM (set by subroutine GBOX) . Referring to Table 1, the n-th surface of the

IRS list is defined by ISM~IRS+4(n—l).

For efficiency purposes, the subroutine builds up a list of neighbors pre-

viously determined, for each region across each surface. The list is stored

in the HAS array. The first entry (if any) is stored in MAS(ISM+l). The

second one (if any) is stored in MAS(ISM+2). If a third entry becomes necessary,

the first available location LS in the MAS array is determined , and the entry

is stored there; the address of LS of that third entry is stored in HAS (ISM+3).

LB is set to LS+3 to reserve a location for a possible four th entry , and for the
-- V

location of a possible f i f t h  entry , etc . The buildup of tables stops if the

NAB array has been filled.
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The detailed operation of the subroutine is as follows: it examines the

first candidate (IRP MAS (ISM+l)). If IRP=O, no candidate exists and the

following step is bypassed. If IRP>O, REGCK is called for checking IRP. If

IRP is found valid , the subroutine returns to the calling program. If not ,

the next candidate is examined, until either a validity check or IRP=O is en-

countered. In the latter case, a loop over all 1BPs is initiated. The first

V check performed is whether the region has been tested before (IRB ISLOC (JRP) ,

I HAS (IRS) I = LOOP?). If yes , the next IRP is considered. If IRP has not been

tested before , the next test consists in determining whether the boundary of

V IRP includes the particular surface. If not , the next IEP is considered. Other-

wise, IRP is checked further by calling REGCK. If the region is found invalid ,

the next IRP is considered . The first valid IRP terminates the loop. It is

stored as a next candidate. Before returning to the calling program , the

f act that IR is a neighbor of IRP across the same surface is also recorded.

4.4 The Region Finding Subroutine REGFND

The subroutine determines the region number IR for a point X. Error

messages are printed if the region is undefined or multiply defined. Subroutine

REGCK is called for all regions.

4. 5 The Tracking Routines Cl, G1P
+

D 
a region IR , the subroutine calculates

4
the number NI of intersections , and

D
3 

the intersections DI (I ) ,  1=1, NI of

region IR and of the line passing

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

:) 
Given a point X, a unit vector Q, and

through X in the direction Q.

D2 IR

D
~ 

V
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The operation of the subroutine is as follows :

First , all the intersections with all the surfaces which are involved in

the definition of lB. are calculated. These include all intersections with lB.,

and may include some intersections which are not on the surface of IR. Sub—
V 

routine G1P first orders all the intersections, then weeds out the extraneous

ones. The point X is moved to below the first intersection (thus to a point

definitely outside IR) . Subroutine REGCK is called , with a special switch

JSM=—33333 which forces REGCK to check all surfaces wi thout returning at the

first mismatch encountered. A loop i~ initiated, which runs through all the

tentative intersections. For each intersection, the logical information of

whether x is in or out of the corresponding surface is negated. Subroutine REGCK,

which czueries that information, and its logical output (in or out of IR) is corn—

pared to its previous logical output. If the two match, the corresponding

intersection is not on the surface of lB., and is weeded out. If the two do not

match, a true intersection has been encountered and is therefore retained.
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V VI • THE MMOR MONTE CARLO HEAT TRANSFER SUBROUTINES

The main program of the heat transfer code is a rather complex driver

calling input subroutines , source generating routines , and , under their con-

trols , the main heat transfer routine GETEMP. Finally , edit and output rou-

tines are called. The description of that operation will be given in

Section VII.

The prese~. t section is devoted to the description of the main Monte Carlo

routine GETEMP, which delivers a single estimate of the temperature at a given

+
point X in region IR , implementing the algorithm described in Section II • 3,

and to the descriptions of the main subroutines called by GETEMP , which per form

the calculations described in Section III and IV.

1. Subroutine GETEMP

The subroutine GETEMP is the main Monte Carlo routine which follows the

histories along the lines described in Section 11.3. It delivers a single esti-

mate TEMP of the temperature at a point X at time TB in region IR.

we first describe its operation under normal circumstances , which is invoked
V 

when all DFAST(IR) are set equal to zero. The weight W is set to 1. Subroutine

GBOX (described in Section Iv.4.l) is called. A box is therefore constructed

+
which is wholly in region IR, and which is centered at X. A call to subroutine

DIFFUS (described b~low) samples the RPP Green’ s function with zero boundary

• conditions along the lines of Section 111.2. A subsequent call to subroutine

MOVE (described below) moves the point X to the sampled location and updates
V 

the time variable • If the time variable is zero, the temperature at t—O in IR

is scored and a return is executed . If t>O , a test is made whether the new point

is on an abutting boundary. If it is not, a new box is constructed around the

new point. If this construction indicates that the point was within a distance c V

V (defined in Section IV) of the abutting surface , the point is treated as being

on the abutting surface. If not on the abutting surface, the sequence of calls
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to DIFFUS and MOVE continues until either the time variable reaches zero, or

the point has diffused to a region boundary.

V 
If the point is on a boundary , the neighbor region number IRP is deter—

mined. The diffusion coefficient DP of the neighbor region is looked up. The

V V convention is that if DP=O, the neighboring region is one with known temperature.

If DP<O then inhomogeneous boundary conditions apply with ~~—DP/ K (~ is defined 
V

in Section 11.2). If DP>O, the neighboring region is a conductive one.

If DP~O, a score is made, and a return is executed. If DP~O, a “half box”

is constructed in region IR: this is a box one side of which is on the surface

of interest , centered around X. The box is fully contained in IR . A “half box”

is also constructed in IRP .

If DP>O , the subroutine MENDEL is called. Subroutine MENDEL is described

below; it samples the two region P2? Green ’s f unction along the lines discussed

in Section V. A call to subroutine MOVE moves the point X and updates the time t.

If t 0 , a score is made and a return is executed. If not , a new diffusion loop

is started as described above.

If DP<O , the subroutine NORMAN (described below) is called. It samples the

RPP Green ’ s function with inhomogenous boundary conditions along the lines of

Section 111.5 and updates the weight value.

Prior to the call to NORMAN, y is set, as well as are the estimates T and

V T needed for importance saxnpl ing. These are taken to be the value of the gas

V temperature in IRP and the value of the temperature in IR at t=O. If the

~art1~ 1e diffuses to the abutting boundary , a score is made. The same is done

if — becomes zero . In both cases , a return is executed. If neither occur , a

new diffusion loop is initiated .

~~~~~~~~~~~ - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~ - .  - V -——a



The number of diffusion steps within a region is limited to be less or

equal to NRSTEP. The number of region crossings is limited by NRCR. If any

of these is reached , a return with TEMP~—l. is executed. The same error return

occurs if any of the three dimensions of any box becomes smaller than DTINY ,

V 
presently set to l0~~~ . Experience in running the code should teach how to

avoid such collapsing boxes — a rarely occurring event anyway. NRSTEP , NECR

are currently set to 200 and 5000 , respective Ly .

The above description is applicable if the input parameters DFAST (IR ) is
V set to zero for all regions lB.. It turns out that , in solving heat transfer

V 

problems with expected high temperature gradients , homogeneous regions have to

F be subdivided into rather small subregions , to satisfy the requirement that

the diffusion properties be constant in each subregion . With such a detailed

geometrical subdivision , the calculations involved become excessively slow,

because each boundary crossing involves two calls to subroutine GBOX and a call

to the boundary crossing subroutine MEMDEL. The accuracy of the calculations

involved in such a detailed treatment for crossing imaginary boundaries cannot

be justified, and an approximation to speed up the calculation is in order .

Selected regions can be declared on input as not requiring completely accurate

boundary treatment. This is specified by setting the input quantity DFAST (IR)

for selected regions IR. The approximation consists in assuming that the diffu-

sion parameters are constant within a (small) distance DFAST (IR) from any

point in region IR , including points on the boundary of IR.

Before the call to GBOX , subroutine GETEMP examines the value of DFAST (lB.) .

If zero , the calculations proceed as described above . If the value of DFAST(I R)

is positive , the call to GBOX is performed and the smallest dimension of the

RPP is compared to the value of DFAST(IR) . If smaller , the calculations are

performed as described above . If larger , a cube of dimension DFAST(I R ) is set

up and the calls to DIFFTJS , MOVE , are replaced by a call to subroutine CUBE.

If the value of DFAST (IR ) is negative , the call to GBOX is bypassed altogether ,
.
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a cube of dimension I DFAST(IR) I is set up, and the calls to DIFFUS , MOVE ,

V 
are replaced by a call to subroutine CUBE. Subroutine CUBE (described below )

f V  +
moves the point X to its new position , updates t , and , if necessary, changes

the region number IR.

2. Subroutine DIFFUS

Subroutine DIFFUS samples homogeneous PPP Green ’s functions with zero

V 
- boundary conditions , as discussed in Section 111.2.

The input consists of a time cutoff value T, and of FOX( I )=~a . 2/D, where

a ,  i l 3  are the dimensions of the RPP , and D is the diffusion coefficient.

It is assumed that a1 = a2 = 2*Dl and a3 = 2*D2.

The output consists of a time variable TMIN<T and of a local vector

X X (I ) < a / 2 .

The time selection is achieved by three calls to subroutine PICKT. The

position selection is achieved by calls to subroutine PICKX .

3. Subroutine MOVE
4- +

This subroutine displaces the absolute position X by the displacement XX
4-

generated by subroutine DIFFUS . The local vector XX is given in a coordinate
.4-

system in which XX (3)  is along the absolute vector Q; the remaining two co—

- 

•; ordinates are orthonormal but otherwise arbitrary.

The time T is set to T-TMIN.
r. 4. Subroutine CUBE

V Subroutine CUBE is a speeded up version of the combination of DIFFUS and

MOVE , under the simplifying conditions that

FOXX=FOX(l)=FOX ( 2) FOX(3 )

and that the vector Q points along the absolute z-axis , i.e., that the local

coordinate system XX is parallel to the absolute system X.
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5. Subroutine NORMAN

Subroutine NORMAN is the equivalent of DIFFUS, except that homogeneous

boundary conditions are imposed at XX (3)=O. Importance sampling is implemented

and the calculations follow the lines described in Section 111.7. The selection

of times t1 and t2 is achieved by calls to subroutine PICKT. The selection of

t3 is via a call to a subroutine PICKTG. Similarly, selection of XX( l)  and

xX (2)  is via calls to PICKX , whereas the selection of XX (3)  is via a call to a

subroutine PICKXG.

6. Subroutine ~~NDEL

This is the boundary crossing subroutine. First the diffusion coefficients

and the heat conductivities in the two regions are compared. If both comparisons

show agreement within 5% , an average diffusion coefficient is calculated, and

a call to DIFFUS is followed by a return.

If the homogeneity test fails , the subroutine switches to the method de-

scribed in Section IV. The part of the calculation involving the floating P2?

method is performed in subroutine D1140R.

7 • Subroutine DIMOR

Constructs an RPP within an RPP , and samples time and position via calls

to PICKT and PICKX.

8. Auxiliary Subroutines

V 
Special subroutines perform sampling of one dimensional Green’ s functions,

as described in Section III. These include :

PIcXT, PICKX — See Section 111.4

PICICG, PICKXG — See Section 111.6.2.

When appropriate, the early time approximation is invoked by calls to sub-

routines EARLTG , EABLXG. (See Section 111.6. 1.) When appropriate , the eigen—

values are calculated by a call to subroutine TRANS. The function X=GAUSS(I)

returns X>0 sampled from 2/v’~ exp (—X 2 )dx . The function y~ECHERF (X ) returns 
V

2 ix 2y~ 2/vi~ exp (X J ~ 
exp (—y )dy .

59

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~~~ V~~~~~~~~~~~ - -~~~~

VII. THE THREE DIMENSIONAL TIME DEPENDENT

ADJOINT MONTE CARLO HEAT TP)~NSFER CODE

The simplest application of the code is to a problem where the diffusion

V properties of the medium are independent of the local temperature. In that

case , the operations of the code are reduced to reading the geometrical descrip—

V tions, the initial conditions, the boundary conditions, the coordinates of de-

tector points, the value of the time variable at which the temperature needs

to be calculated , and the number of Monte Carlo histories to be followed. The

code then performs that many calls to subroutine GETEMP , calculates the effected

temperature and its variance , and prints the results .

A more complex problem arises in the case where the diffusion properties

do depend on the local temperature. The time span between initial and final

time must then be subdivided into a number of time bins . The time bins must be

small enough so that the local diffusion properties can be considered as constant

throughout the time bins . Homogeneous regions must be subdivided into subregions.

Each subregion must be small enough so that the local temperature at any point

in the subregion does not differ appreciably from the average temperature in

the region.

Given such a subdivision of space and time , the operation of the code is

as follows. The initial conditions are read for the very first time bin only.

The boundary conditions are also read in. The diffusion properties are calcu-

lated for each region at the value of the initial temperatures . These are assumed

to remain constant throughout the time bin. The code then estimates temperatures

at the end of the time bin for all regions . These calculated temperatures serve

as initial conditions for the next time bin.

The calculation of region temperatures is performed in the following order.

The code searches for the region wi th the highest known temperature at the end

of the time bin. (This is restricted to external regions only at the beginning
‘1

of the calculation.) Its neighbors are examined. The first neighbor found for

- S
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which the temper ature has not been calculated yet is then picked up, and the

temperature is estimated by adjoint Monte Carlo. When all, the neighbors have

been completed , the region is excluded from the list , and the next region with

the highest known temperature is searched . The calculations continue as long

as such highest temperature is appreciably higher than Tm , where Tm .is set

slightly, higher than the lowest temperature T of the configuration at the be-

ginning of the time bin. All remaining regions are surrounded by regions with

temperature less than Tm; their temperature is set equal to T .

The calculation of temperatures averaged over regions is performed by cal-

culating the temperature at points distributed uniformly over the region; the

sampling of such points is described in Section VII.5 below. The efficiency of

that sampling may be improved by providing additional input as described there.

1. The Main Program KEATON

The main program is a driver which reads input , and , under its control,

calls additional input and processing routines , and calculational routines.

A complete description of the input is given in Section IX. The first

card read provides the main specifications: NHIST is the number of histories to

be run for each region , for each time bin (or for each point if point detectors

are specified) . NSTAT (<20 0~ is the size of a group of histories for the pur-

pose of source generation. ITCUT is a CPU time cutoff: the calculations will be

properly terminated at the end of a time bin , and a restart tape will be written

V if CPU time is nearing that limit . ITl is the first time bin to be considered

-‘ 
(ITl~ l at f irst , if no restart tape is available) . IT2 is the last time bin

to be considered. If IPD-0, the last time bin 1T2 is treated like any other ones .

If IPD>O, the temperatures are calculated only at the given IPD point detectors

for time bin 1T2. IREZ should normally be equal to zero. If set equal to 1,

geometry input will not be expected , but geometry information will be picked up

from a restart tape even if IT1~.l. IPLO is a flag controlling the quantity of
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printed output and calls to subroutine PLOT. If IPLO is even (including

zero or blank) , all input quantities are printed back . If odd , the bulk of the

output is suppressed , except for estimated temperatures. Subroutine PLOT will

be called if IPLO is equal to 2 or 3. LRN controls the initialization of the

random number routine. Leaving that as blank will leave the random number as 1

if ITl=l , or as recorded on the restart tape. If non-zero, it must be an odd

integer.

The geometry input (if called for) is read in by subroutine GENI (see

Section V ) .  The coordinates X , Y , Z , of a point within the configuration must

also be provided .

V The next item of input deals with reflection regions and translationally

repetitive arrays . These are described in Section VII.9.

Optional input to improve the efficiency of source generation is read in by

the main program. The meaning of that input will become apparent in Section 5.

For those regions for which no input has been specified , or for which none is

available from the restart tape , the information is generated by subroutine

SOUSET. If either input or generated , the information is checked by subroutine

SOUCK.

The physical compositions are defined next . The temperature dependence of

the diffusion parameters is defined as follows:

Product of density and specific heat:
V 

p C = r0 + r 2 T2

Thermal conductivity V

K k
0 

+ k
2 

T
2
, where k~~,O.

The input consists of the parameters r0, r 2, k0, k 2 for the NCOMP materials pre— 
V

sent in the problem. The first material entered is assumed to be the main one. 
V 

V

The transformations discussed in Section 11. 5 are per formed on its basis.

The meaning of the quantities DFAST is described in Section VI.l.
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If IT1—l , the initial conditions are read in. The reading of the boundary

V conditions is done by subroutine REATIM.

If IT2~0, the coordinates x ,y, z of point detector are read in and the sub-

routine REGCAL is called to calculate the temperature at that point.

If 1T2>ITl , the calculation of region—averaged temperatures is done by

V subroutine TIMSTP .

Two restart tapes are generated: TAPE 8 involves processed geometry informa-

tion, including information learned about neighbors , and source generation in—

formation. TAPE 9 involves the temperatures at the end of the time step .

2 • Subroutine REATIM

The subroutine reads the parameters of boundary conditions at the end of

the current time step. Linear interpolation is assumed between the beginning and

the end of the time step.

3. Subroutine TIMSTP

The subroutine searches for the region with the highest known temperature,

examines its neighbors , and , for each region for which a calculation is needed ,

calls the subroutine REGCAL.

4. Subroutine REGCAL

The subroutine either calls the source generating routine SOUSET, or picks

V up the coordinates of a detector point , and performs NHIST calls to subroutine

GETEMP (see Section VI.l) . It calculates the mean and root mean square tempera—

ture and prints one line:

JR region number

TQ — mean temperature T

TR root mean square temperature 
V -

TR = mean o -

see Section 11.5
TS - root mean square OJ
CPU = CPU time in seconds for that calculation. ,~!

___________  - 
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5. Subroutine SOUSET

W J ’  2w

xo,yog,zo

>y

The subroutine produces NSTAT points uniformly distributed in region IR,

under the asusmption that the region is completely enclosed by the sector of

a circular cylinder defined by the two figures above. The relevant parameters

are:

XSTART(l,IR) = x
0

XSTART(2,IR) = y0 central point on axis

XSTART(3,IR) z
0

XSTART(4,IR) = R Outer radius

XSTART(5,IR) = r Inner radius

XSTART(6,IR) = W Half Height

AZIM (1, IR) 
1 

Minimum azimuth

AZIM(2,IR) = = Maximum azimuth V~~ V

t
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I

The code samples points uniformly distributed in the sector , and rejects

the sample if the point is outside of IR. In the process, the subroutine -

checks for point in IR with a distance to the axis which is either greater than

R or smaller than r. If such points are found , R and r are properly updated ,

and points previously generated within the current aggregate are properly

corrected if necessary . No such check is performed ~~fl W , 
~l’ ~2

The efficiency of the routine depends on the f i t  of the sector to region

IR.

6. Subroutine REGSET

Subroutine REGSET generates the XSTART parameters for those regions for

which that input has not been provided . The minimum azimuth is set equal to 0,

and the maximum azimuth to 2~r ; thus only full cylindrical annuli are generated.

The first region considered is one for which any internal point P ( x ,y, z)

is known. If none other , it may be the point read in by the main program after

the subroutine GENI has been called . A ray is fired isotropically from P and

points of intersection of this ray with region IR are generated. The point P

is moved to the midpoint between the pair of points which are most distant from

each other. A new ray is fired from the new P position, and intersections are

added to the list.... The process terminates when 200 points have been gener-

ated on the surface of IR. This population of points is then fitted by the

V “best ’ cylindrical annulus in the z—direction.

The fitting is actually to the smallest finite cylinder in the z—direction.

The cylinder extends from the smallest z—coordinate to the largest z—coordinate.

The smallest circle enclosing the population of x, y points is determined. This

V is done as follows. A first pass through all pairs of points determines the

pair of points X1, x2 with the largest separation distance. A tentative circle

of radius equal to one half of that distance is centered at the midpoint of

that pair. If all points are within that circle , the tentative circle is the
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smallest possible circle. To find out, a next pass through all the points de-

termines the point x3 
with the largest distance to the tentative center. If

that distance is larger than the tentative radius , the circle is drawn as

passing through the points x1, x2, x3
. Although this last circle is not neces—

sarily the smallest possible one, it is kept as is.

During the process of ray firing, the neighbor IRP of region IR is deter-

mined at each intersection. If no starting point has yet been determined for

IRP , the intersection point (slightly displaced) is stored as one.

7. Subroutine SOUCK

This subroutine performs the same operations as subroutine REGSET , but

with many more checks . It also keeps track of the efficiency. The content of

the XSTAi~~ and AZLM arrays is printed. If the efficiency becomes intolerable,

the hollerith information BAD is also printed , thus suggesting that source in-

formation be specified on input.

8 . Subroutine PLOT

This subroutine provides a rather limited capability of obtaining printer

plots of x—y cuts thro ig h the geometry.

9. Reflection Regions and Translationally Repetitive Arrays

Only regions described as single planes can be declared as reflection

regions. If the corresponding composition number ICOMP is set to any positive

number , reflection boundary conditions will be imposed on the plane defining

that region.

The geometrical description of a configuration consisting of groups of

regions called cells which are translati~nally repetitive can be simplified to

the descr iption of only one cell with the use of translationally repetitive

arrays. The conditions for repetitive geometry are given by the follow ing.
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4.
Given a vector D , a repetition number m and a total number of regions n.n*,

4. 4.
if a point X is in region i then point (X+~) is in region (i+n), provided

4 .4 .
i+n<n.m , and point (X—D) is in region (i-n), provided i-n>0 (see Figure 1).

For the configuration shown in Figure 2, in repetitive cells can be de—

fined. To describe the entire configuration, only the primary cell needs to

be defined. Thus, in Figure 3, consider the first cell which can be described

by n regions. The boundary surfaces are described by regions i1 and i2 , such

that 0<i1<n,0<i2<n. The rest of the cell can be arbitrarily subdivided into

V 
(n—2) regions numbered 1, 2, . ..n excluding i1 and i2. The configuration is

composed of m of these cells so that the external configuration surfaces are

defined by regions i1 and i2 + (m— l)~~n. The boundary conditions at these sur-

faces are determined by the signs of JCOMP (i
1) and ICOMP(i2-4- (m—l)•n) . If

ICOMP (J)<O , the usual conventions hold, i.e., 0-known temperature, <0-radia-

tion types; if ICOMP(I)>O, reflection boundary conditions are imposed.

The input to describe repeating arrays arid reflection regions consists

of a list of up to 10 region numbers. The first two regions correspond to

regions i1 and i2 defined above, i.e., regions on either side of the first

cell. The remaining regions in the list are reflection regions in the first

cell. The repetition number is also read in. If there is only one region

number in the list or if m”l, then every region in the list is a reflection

region.

With the use of repeating arrays , the region and helps (ITEM 6) input is

reduced in that only one cell of n regions need be described. Computer memory

requirements are also reduced. Temperature , composition and DFAST array input

still consists of data for all n .m regions.
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Region i-n Region i Region i+n

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FIGURE 1 — Translatiorially Repetitive Geometry

Cell ~l Cell #2 Cell #3 Cell #m

ii 
i2
+(m l) n

FIGURE 2 — Configuration with Repetitive Cells

Cell #1

il

FIGURE 3 - Primary Cell



- VIII • ADDITIONAL PROGRAMMING INFORMATION

Table 2 provides information on large arrays. Table 3 gives information

on all the subroutines provided.

I
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TABLE 2

D II4ENS I ~N ~F LARGE ARRAYS

*
~TX)M~ CN BLOC K ARRA Y NAME DIMENSION

BLANK IBLOC NDQ1

ISLOC NDQ1

MAS NDQ

SOU XS 3’ n1
XSTART 6•NDQ2

AZIN 2.NDQ 2
p 

IN? DIFF NDQ3

AAK NDQ3

TO NDQ3

TI. NDQ3

V RES ICON?

FAST DFAST NDQ3

DI ALP - n

GO

CC fl 2

*NDQ = large enough to store geometry information and neighbor information

NDQ1 > NS = number of surfaces

NB = number of bodies

NR = number of geometrical regions

NDQ2 > NR = number of geometrical regions

NDQ3 > ~wHYs = NBI*NR = number of physical regions •1
n1 = 200 = maximum size of statistical aggregates

n~, = 200 = maximum number of eigeri functions
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II
TABLE 3. INFOR MATION ON SUBROUTINES

NEATON X 
— 

X X X X X X X X X X X )C VII.1
CUBr X X X X X X X — — VI • 4
DIFFUS X X X X VI ., 2

DI~~R X X X 
— 

X — — VI • 7
V EARLTG X X VI.8

EARLXG X VI.8

V ECHERF 
— — 

. 171.8
GAUSS 

— — 
X 

— — 
VI.8

GEOX X X - V.4

GEN I X x x X V. 3

GENICK X x x 
J 

V.3

GENIP x x x V.3

GETEMP X X X X K X K X X VI .1

Gi X X L_ 
— 

V . 4 . 5

G1P x - X _J X V.4.5
MENDEL X X X X 171.6
MOVE X X 171.3
NEBFND X X V .4 .3

V NORMAN X X X 171.5

PLOT X X X X 
- 

X 1711.8
PI~KT X VI.8
PICXTG X X X VI.8
PICXX X 

— — 

171.8
PICXXG X X 171.8
REATIM X X X X X X X X VX I . 2

REGCAL _ [ _  x x x x x x x ‘111.4
REGCK X X X V . 4 . 2 . 2

REGFND X X V . 4.4

REGSET X X X VI I .6

SOUCK X X
_ _ _ _— _ _— _ — — —_ _- -—1~~-SOUSET X X X 1711.5

suprclc X — — — 
J 
— — 

X — — — — — — — 
j  17.4 • 2 ~~~

TIMSTP X X X X X X VII.3

TRANS X X  
- VI.8
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V IX. INP UT DESCRIPTION

— 

The card input consists of the following items :

Item 1 FORMAT (715,120)

• I NHIST Number of histories

NSTAT Group of histories (<200)
V 

ITCUT Real time cutoff

IT1 First time bin to be treated (> 1)

1T2 Last time bin to be treated (>IT 1)

IPD Number of point detectors

IREZ Restart option switch (1 on, 0 off)

IPLO Output control: input printed back if IPLO=O or 2
plot routine called if IPLO= 2 or 3

LRN Random number initialization (0—use default - must be
odd positive otherwise)

- Omit Items 2—4 if IT1>l or IREZ~ O

Item 2 GEOMETRY INFORMATION

Item 2.1 Header card FORMAT (14 ,l9A4)

IPR If zero , input and processed data printed

1; HOLL Any hollerith information

Item 2. 2 Surface input FORMAT (2X ,A3 ,8E9. 3)

V 
TYP Surface type identifier

EPS “Surface thickness”

x
Y coordinates of vertex —

Z

— as specified in the following table: 
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TABLE 4

V ‘
~~~ -.C~ LUMN 3—5 6—14 15—23 24—32 33—41 42—50 51—59 60—68 69—77
SURFA~~ -~~ TYP V E R T E X A1 A2 A3 A4TYPE 

______ ______ ______ _______ _______ _______

PLANE PLN C X Y Z H1 H2 H3
(inside normal)

SPHERE SPH c X Y z R
(radius

CYLINDER CYL C X Y Z H
1 

H
2 

H
3 

R
(axis) (radius)

CONE CON C X Y Z H1 H2 H 3 T
(axis) ( tan )

END OF
LIST END

~~~~~~
V

l

r
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Item 2.3 Body input FORMAT (2X ,A3 ,1515)

TYP Body type: only GEN allowed. END is end of list.

+ is1 ”)
- 

- (, List of signed surface numbers

• 
± 1S

2 j

Item 2.4 Region input FORMAT (2X ,A3 ,l515)

ANY Any three characters. END is end of list.

+1B1 ~— 

List of signed body numbers
+ lB2

Item 3 FORMAT (3E 15.5)

X l
‘
~ Coordinates of any point within the configuration
z J

Item 4 Repeating Array - Reflector regions

Item 4.1 FORMAT (1015)

NREF No. of regions given (NREF<lO)

1R
2 1 .

Region numbers

p IRUREp~

NBI Repetition number

Note - Omit Item 5 if IPL~~ 0 or 1

3
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It~~ 5 x-y plot input FORMAT ( 5El2.4)

For each plot enter

x
li

y1 coordinate of left-upper corner
V z J

K2 coordinates of right lower corner (x
2
>x
1, y2

<y
1
)

A blank card terminates plot input

It

~

n 6 Optional input for source generation

Item 6.1 FORMAT (15)

NHE Number of regions for which input is provided

Note - omit Item 6.2 if NHE=O

Item 6. 2 FORMAT (15,10E7.O)

For NRE regions , enter a card consisting of the description :

IR Region number

The following defines a sector of a cylindrical annulus parallel to the

z—axis , which encloses region IR:

x0 
~1Y 0 ~ 

Coordinates of midpoint on axis

z0 J

R Outer radius of cylinder
- & r Inner radius of cylinder

w Half height of cylinder

A 009*1 
A arbitrary - *1 minimum angle

V I If A~’0, * is set to 0A cos*1j 1

B cos*2 B arbitrary - *2 ~~~cimum angle

B sinlP
2 J If B 0 , ‘~‘2 is set to 21T

(Notation refers to Figure in Section VII.5)

* Information for selected regions can be entered in any order . The information
currently entered for region IR will be recorded on a restart tape. That in-
formation wtll overide information recorded on a prev ious restart tape (if any).

- - - 
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Item 7 COMPOSITION INFORMATION

V 
Item 7.1 FORMAT (15)

NCOMP: Number of compositions

[ Item 7.2 FORMAT (4E15.5)

For each of the NCOMP compositions, enter:

RC
0 

parameters defining the product of density

V RC2J and heat capacity pC = RC0 + RC 2 T2

K
0 

parameters defining the heat conductivity

K2 J K = K
0

+ K
2 

• T2

(The first composition entered is the main composition of the problem.)

Item 7.3 FORMAT (1015)

(ICOMP (IR) , IR=l ,NR ) For regions internal to the configuration, enter

composition number. For external regions , enter 0 if

temperature is known, and -l if boundary condition of

the radiation type applies. Enter any positive number

for reflection regions.

Item 8 INFORMATION FOR “SMALL BOX APPROXIMATION” FORMAT (8ElO.2)

(DFAST(IR) ,IR=1,NR) Enter zeroes for no approximation. See text , otherwise:

if DFAST<0 , diffuse with box of ¶ixed size 
I
DFABT

I 
. If

DFAST>O diffuse with either actual box, or box of size

DFAST, whichever is larger.
V Note - Omit Item 9 if IT1>1

Item 9 INITIAL CONDITIONS

V 
Item 9.1 FORMAT (E 15.5)

TBl : Initial value of the time variable V

Item 9.2 FORMAT (5El5.5)

(Tl(IR) ,IR=1,NR): Initial temperatures for all regions.
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Note - Repeat items 10—12 for each time bin.

It.~~ 10 FORMAT (E 15.5)

TB: vilue of the time variable at end of time bin
V 

Item 11 Boundary conditions FORMAT (5El5.5)

T2 (IR 1) Final temperature of first region with ICOMP (IR1)<0

T2 ( IR2 ) Final temperature of second region with ICOMP (1R2)<0

T2 ( IRL ) Final temperature of last region with ICOMP (IRL)<0

Item 12 Coefficients of surface heat transfer. FORMAT (5E15.5)

H(IR1)

H( 1R2 ) Enter value of coefficient if ICOMP (IPN)<0.

H (IRL ) ~ Leave blank if ICOMP(IRN )~~O

Note — Omit Item 13 if IPD=0

Enter Item 13 IPD times

Item 13 Detector input FORMAT (3El5.5)

x l
y ) Coordinates of the point detector
z J

Item 14 END OF FILE

Input Tapes

Tape 5 - Card input

Tape 8 — Geometry restart tape - needed if IT1>1, or if ITl=l and IREZ=l.

Tape 9 — Initial conditions - needed if IT1>1.

Output Tapes

Tape 6 - Printer

Tape 8 - Geometry restart tape

Tape 9 — Final conditions — generated if 1T2>l or if 1T2=1 and IPD O.

“/
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