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ATOMIC TRANSPORT AND TRANSFORMATION BEHAVIOR

IN METALLIC GLASSES

Frans Spaepen and David Turnbull
Division of Engineering and Applied Physics

Harvard University
Cambridge, Massachusetts 02138

ABSTRACT

Glasses, metallic or non-metallic, are in states which are
configurationally frozen and less stable than some crystallized state.
Upon annealing glasses may relax configurationally without transforming
and then phase separate and/or crystallize. In this paper we survey the
atomic transport behavior in metallic glasses as manifested by their
flow, relaxation and transformation behavior. The rate constant for
flow, kﬂ , of a glass may be regarded as a product of a ""jump'' factor
and a configurational excitation factor. The activation energy for
jumping, or iso-configurational flow, of a metallic glass is only a small
fraction, of order 1/10 or less, of the apparent activation energy for
flow of the fully relaxed melt in the glass transition range. In con-
figurationally relaxed metallic glasses, the rate constants for phase
transformations sqale as kT] and appear to be controlled by the rate of
impurity redistribution. In some configurationally unrelaxed systems,
the indicated rates of diffusive transport persist for periods much longer
than those expected for configurational relaxation. Some possible

explanations for this behavior are discussed.
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INTRODUCTION

Amorphous solids, metallic as well as non-metallic, are in states
which are configurationally frozen, in large part, and less stable than some
crystallized state of the system. Upon annealing, these solids may relax
configurationally without crystallization but in holds at longer times or
higher temperatures they may phase separate and/or crystallize. The
temperatures of configurational freezing, i.e., the glass temperature, Tg’
of alloys lie far below the liquiduses, TI’ and typically at Trg(: Tg/Tl)
values ranging from 0.45 to 0. 65. Thus, to become glasses, alloy melts
must be quenchked through a wide temperature region of metastability in
which the crystal growth rates are extremely high. The necessary conditions
for quenching through this metastable regime without crystallization have
been specified and discussed in other papers. {A=2 In this paper, we will
survey the atomic transport behavior of glassy metals, as manifested by
rates of creep, diffusion, anelastic relaxation, phase separation and
crystallization, in and below the temperature range of configurational
freezing.

Kny of the transport rates alluded to may be considered as a product
of a kinetic factor and a factor determined by the thermodynamic driving
free energy, AG. The kinetic factor will be proportional to some frequency
or average of frequencies, k, = 1/7, of the atomic rearrangement
characteristic of the transport process. In the glass transition regime the
transport rates are all small but the flow rate, from which we may extract
the shear viscosity, 7, can be measured quite accurately. We shall denote

the frequency for viscous flow by k?’] =1/ « 1/n.




The flow rates of melts drop precipitously, though continuously,
with falling temperature in their glass transition ranges. Most models
(e.g., free volume, configurational entropy) for this behavior are based
on the concept that melt transport requires a highly correlated set of
atomic or molecular motions. (6-9) It is on the microscopic description
of the correlations that the models differ. In any event, the probability
of the required correlations should depend strongly on the average atomic
or molecular configuration of the system. Indeed, the apparent activation
energy for flow of a viscous melt often can be broken into two components.
One of these is determined by the change in the equilibrium, or fully
relaxed, configuration of the melt with temperature, while the other is
the apparent activation energy for flow in a fixed- or iso-configurational
state. The experimental procedure for dissociating these components is:
a) Allow the specimen to reach configurational equilibrium at a temperature
T, selected so that the time for thermal equilibration can be made small
compared with that for configurational equilibration, and measure the flow
rate. b) Change the temperature abruptly by §T, and, after thermal
equilibration, follow the time dependence of the flow rate. In such experi-
ments, it is often found that the initial flow rate at T + 8T is not much
displaced from its steady value at T. As time progresses, the rate
either decreases, if 8T <0, or increases, if 8T >0, toward the steady
value characteristic of T + 8T (see schematic in Fig. 1).

Based on these concepts, the rate constant for flow can be

described, roughly, in the following terms:

A
R, = P (1)

taaniaigd e s et o e




eQ. 15 1.0

0.5

Tt LE T T T T T T

equilibrium

15

Log 7 (poise)
o

(6))

|
]
(8]

Tg

Fig. 1 Schematic representation of the equilibrium and iso-configurational
viscosity of an amorphous system. Tg | and Tg 2 are the fictive
temperatures of the configurations cofresponding to the iso-con-
figurational viscosities (1) and (2).
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Here p: is the probability of some critical excitation of the configuration
required for flow, X is a parameter (e.g., free volume or configura-
tional entropy, both including a component due to compositional dis -
ordering), which characterizes the average configuration of the system
and Py is the frequency of rearrangement of the system in its critical
state. Often the configurational state of a melt-quenched glass is taken
to be specified, in place of X s by the temperature, T, (fictive
temperature) at which the system went out of equilibrium during the
quench (see Fig. 1). We suppose that the activation energy for iso-
configurational flow, EJ, will be specified by the temperature dependence
of Py At configurational equilibrium, EC(P, T), where P is the
pressure on the system; thus, the remaining part, EC, of the total
apparent activation energy for flow (ETT = EJ + Ec) of the fully relaxed
system will be specified by the temperature dependence of p:(ic). We
shall denote the transport frequency in the related system by Ei; for
Following the experimental procedures outlined above, Stephens(lo)
succeeded in measuring the iso-configurational flow rates of amorphous
selenium (non-metallic) films over a narrow range of X, values. His

results indicated that ]E)J was roughly constant at ~ %— E. Similar, but

1
less extensive, measurements of Chen and Turnbull(1 )
much smaller values of EJ, no greater than 1_10' E, for the metallic glass
former, Au77Sil4Ge9, in its glass transition range. These results
demonstrate that departures from configurational equilibrium can be
realized at which the flow frequencies, and presumably the other transport

frequencies as well, are many orders of magnitude larger or smaller

than those of the fully relaxed system at the same temperature and

indicated relatively
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external pressure. Large stresses, compressive or tensile, within the
glass can sharply alter the configurational state, and hence the transport
frequencies, of local regions. Such behavior may be especially important
(12)

in glassy metals, formed by rapid melt-quenching or condensation,

if the relatively small temperature dependence of iso-configurational
flow found for the Au based glasses proves to be a general character-
istic of such metals.

The frequencies for the other atomic transport coefficients are not
as easily measured in the high viscosity regime as those for flow.
Actually, there is considerable evidence(g) that the frequencies for self-
diffusion, kD, configurational relaxation, kc’ and crystal growth, ku all
scale as the flow frequency, kn at least from the low to the intermediate
viscosity range of 106 to 107 poise. Further the rather sketchy existing
data suggests that the rough scaling of kC and kn extends well into the
glass transition range.

The microscopic basis for these scaling relations can be discussed
conveniently in terms of the free volume model. Roed, In this model a
critical density attenuation or ''hole'' is formed in a local region by
"'random'' density fluctuations, i.e. free volume redistribution. A local
configuration different from the initial one may then be formed by the
collapse of this hole. When a stress is applied, the holes formed should
collapse preferentially to those configurations which change the shape of
the specimen in accord with the stress bias. We note that this process
may lead to diffusive transport as well as to configurational rearrange-
ment and flow. Hence we would expect that k’ﬂ’ kD and kc might scale

with each other. However, in a very dense high viscosity system it is

——————



- > B

ad
'3 2,

R b e s d

A o

conceivable that a ''hole'' could exchange with several atoms before
collapsing. In this event, the scaling law between kD and kT] would
begin to break down in the direction of kD falling less rapidly than
kT] with decreasing free volume.

Using the conceptual framework just presented, we now survey
certain aspects of the flow, diffusive and phase transformation behavior

of glassy metals.

CREEP BEHAVIOR

Homogeneous plastic flow, typically at low strain rates, of a
glassy metial, around or below Tg is usually referred to as creep.
Around T , the system is still in configurational equilibrium and, as
discussed in the introduction, the steep rise in viscosity with falling
temperature is caused by the increasing degree of correlation between
the atom motions which contribute to flow. Below Tg’ homogeneous
plastic flow is only observed at low stresses (T < 10-2 shear modulus)
and low strain rates (y< 10-5 sec—l). At higher stresses, glassy metals
do not deform homogeneously any more: plastic flow becomes localized
in a few very thin shear bands. During this kind of inhomogeneous flow,
the material in the shear band is softened, i.e., its structure is different
from that of the original material, so that the frequency kﬂ associated
with this flow process cannot simply be compared to that of the other
kinetic processes at this temperature. During creep, however, the
structure is almost constant, or at least changes sufficiently slowly to

allow a comparison of le with the frequency associated with other

phenomena.




So far, creep experiments below T _ have been reported for only

(13) (13) o 1)
075F55) Pdg,Si,,

In these experiments, a large

a few glassy metal alloys: Ni76P24, C

Cu602r40, i3] and Fe80P13C7. (2
fraction of the strain can be recovered after removal of the load. How-
ever, after a sufficiently long time, the deformation reaches steady
state (i.e., strain rate constant), and it has been shown that the strain
produced in this stage of the deformation is totally non-recoverable. In
steady state, a shear visccsity n=7 /Yy can be defined. Fig. 2 shows
N as a function of temperature for a few glassy metals. For Co3P, the
flow is Newtonian viscous (i.e., n constant for all 7); for Pd4Si, the

viscosity at the lowest stress has been plotted.

Most striking about the temperature dependence of the creep rate

in both these systems is the low activation energy ECr' For

CosP, E. = 12 kcal/mole; for Pd,Si, as plotted in Fig. 2, E_ =8 kcal/
mole. Since the total strain in these creep experiments is at most

v (e 10_4, and since the strain is roughly equal to the fraction of

the atoms that makes a jump which contributes to flow, it seems plausible
that the structure of the specimen does not change appreciably during the
course of the experiment (for a change in structure, one would expect that
almost all atoms have to jump, which corresponds to a straing y=~ 1).
This means that these creep experiments, if they are done at low enough

temperatures where the diffusion is negligible, are iso-configurational

processes. As has been pointed out in the introduction, the apparent

activation energy EJ = ECr for such a process is only a fraction of the

apparent activation energy, ET]’ for flow of the system in configurational

equilibrium. A typical value for Eﬂ’ (see Fig. 2), is 130 kcal/mole, so
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Flow experiments on some glassy metals: 1) Viscometry on Au77Si1ACe
(ref. 28). 2) Equilibrium creep in Pd77.SCU6Sil6.5 (ref. 29).

3) Iso~-configurational creep in Au77sj14k9 (ref. 11). 4) Creep in
Pd3OSi20 (ref. 14). 5) Creep (lst run) in Co75P25 (xret. 13).

6) Creep (rerun) in (1075P25 (ref. 13).
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that for these creep experiments ECr = EJ A~ En/lo, which is con-
sistent with Chen and Turnbull’s(“) estimate of EJ for iso-configura-
tional flow in Au77Si14Ge9 -

After the C03P samples had been tested at increasing temperatures
up to 90°C, a second set of tests at temperatures below this showed a
dramatic decrease (of almost a factor of 10) in the creep rate. The fact
that, in Fig. 2, the extrapolation of the creep viscosity to higher
temperatures intersects the equilibrium viscosity curve at a higher point
for the rerun than for the first run suggests that the structure of the
sample in the rerun has relaxed, probably because of the thermal treat-
ment during the test at the highest temperature, towards a different
configuration with a higher equilibrium viscosity. In the free volume
formulation, this means that the structure has densified on thermal
annealing. The creep reruns are then iso-configurational processes in
this new structure.

Finally, it is worth noting that the formulation presented in the
introduction, which describes the rate constant for flow as a product of
a kinetic and a configurational factor, can also be used to describe in-
homogeneous flow. In homogeneous flow, the material in the shear bands
is softened; in this case, the configurational factor p:(xc) in the band
is set by the external parameters of the flow (e.g., the stress), and

not by the intrinsic structural parameters.
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TRANSFORMATION BEHAVIOR

Crystal Nucleation in Glass Forming Melts

The necessary conditions for bypassing homogeneous nucleation of
crystals in melt quenching have been specified and surveyed in earlier
publications. {15 Actually the homogeneous nucleation frequency in
many non-metallic glass formers, e.g., fused SiO2 and Se, never
reaches measurable levels under any experimentally realizable
conditions. Thus, crystallization of these melts and glasses, which ex-

hibit reduced glass temperatures > 2/3, is always heterogeneously

nucleated.

Calculations based on simple nucleation theory, (4) with plausible

values(17’ b assigned to the crystal-melt tension, indicate that homo-
geneous crystal nucleation also should be imperceptible in those metallic
melts in which Trg > 2/3. A Trg < 0.6, the calculated frequencies
are large enough to insure copious nucleation at normal cooling rates but,
i 0.6> Trg > 0.45, not large enough for the occurrence of appreciable
crystallization at the very high quench rates > 106°C/sec now available
for metal systems.

The reported Trg's of the metallic glass formers are in the range
0.45 to 0.65. Thus, in these alloys, in contrast with the typical non-
metallic glass formers, it should be possible to vary widely the density
of crystallization centers, and the degree of crystallinity below Trg’ by
adjustment of the rate of quenching to Trg' At the highest quench rates,

crystallization should be almost completely bypassed. With intermediate

quench rates, a partly crystallized structure, consisting of a high number
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density of crystallites embedded in an amorphous matrix, may form.
When the cooling rate is still lower, crystallization to an actual micro-
crystalline solid may be virtually complete. The most direct manifesta-
tion of this increasing microcrystallinity may be the appearance of
sharper detail in the higher diffraction peaks of the interference function.
Certain properties of the partly crystallized alloy may differ
rather little from those of the wholly amorphous alloy. For example,
the strength and ductility of the alloy might be expected to approximate
that of the amorphous matrix provided the crystallites are isolated by

(19)

this matrix. Indeed, Chou and Spaepen showed that alloys of Pd-Au-Si
remained ductile with increasing levels of crystallinity up to 75%.
Evidently the susceptibility of the glassy alloy to crystallization
during reheating will increase markedly with the number density, PN’
of crystallites formed in the melt quench. As PN increases the
temperature, TKC’ at which rapid crystallization occurs in reheating
decreases. This temperature, often referred to loosely as the
"'crystallization temperature'', is arbitrarily defined. A more proper
designation is the ''kinetic crystallization temperature'!, taken to be
that at which the crystallization rate attains some specified high value.
The large variation of this rate with temperature in the glass transition
range leads to the impression that TKC is sharply defined. Qhen PN

is negligible T may be well above Tg' Its displacement from T

KC
will decrease as PN increases, and finally, become so small that the
glass transition behavior is obscured. In fact, when PN is very large,

the morphological evolution of the microstructure during annealing may

be like normal grain coarsening rather than nucleation and growth.
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Crystal Growth Rates

Under isothermal conditions the frequency, ku’ of crystal growth
may be limited (1) by the transport of crystallizing material to the melt-
crystal interface and/or (2) by the interfacial process itself. When
determined by the former of these steps, ku should, of course, scale as
kD, the diffusive jump frequency of the crystallizing component in the
melt. It may also scale as kD in a growth process limited by an
essential change in compositional short range order in the interfacial
region. More generally, ku should be proportional to kD whenever
crystal growth is controlled by some impurity redistribution process in
the melt or glass. (9)

When no impurity redistribution is required, the degree of
correlation of the atomic motions effecting crystal growth can be much
less than that in configurational change or diffusive transport within the
melt or glass. Under these conditions, ku can be orders of magnitude
greater than kD so that crystals may grow rapidly in the glass at
temperatures far below Tg' Indeed, it has been suggested(g) that in
this regime ku is determined by the collision frequency of atoms from
the amorphous phase with the crystal surface.

(20-23) of the rates of

There have been a number of studies
crystallization of configurationally relaxed alloy melts in their glass
transition ranges. All these studies showed sigmoidal isotherms,
typical of nucleation and growth processes. For a given system, the

isotherms differed only by time scaling factors. The time constants

decreased sharply as temperature increased, consistent with apparent

activation energies equivalent, within the large experimental uncertainties,
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to those for viscous flow in the same regime of temperature and alloy
composition (see Fig. 3). This behavior indicates that in the fully
relaxed amorphous alloy ku does scale, at least approximately, with
kn. The most plausible interpretation of such scaling is that ku is

determined by a diffusive frequency, k_, proportional to kn.

D’
There is evidence that, in some configurationally unrelaxed alloy
glasses, crystallization proceeds at temperatures well below Tg with
apparent activation energies much below those for flow of the unrelaxed
alloys at their Tg' As we have noted, this behavior may be expected
if no impurity redistribution attends growth. When limited by such re-
distribution, growth in glasses frozen in the higher energy configurational
states might be rapid initially but it is not easy to see how the high growth
rate would persist since extensive configurational relaxation might be
expected in the times needed for measurable crystallization. It may be
that the crystallization process itself perturbs the configurations in the
interfacial regions to states conducive to rapid growth and that, at
T< Tg’ the configurational relaxation rates are too small for the
annealing out of these perturbations. One such perturbation, of a gross
sort, might develop in amorphous layers between growing crystals owing
to tension set up by the decrease in volume on crystallization. According
to the iree volume model, the isothermal transport rates should be
enhanced by the dilatation resulting from the tension. Alternatively,
the theory of the '"'impurity drag'' effect, developed for the movement of
(24, 25)

intercrystalline boundaries, may have applicability to the problem

discussed here,

2
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3 Time constants for crystallization of some

metallic glasses:

2) Pd80Au3.

viscosity of Pd

4) Pd
(ref. 21).

55495,

78.1°%5.5° 15,

6) Co

1) Ni75Pl6A23 (ref. 22)

5 (ref. 20). 3) Equilibrium

Cu, Si

77.5 76 716.5
4 (ref. 23) 5) Pd Cu,Si

757165623

(ref. 29).

77.5767716.5
(ref. 22).
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Phase Separation

Chou and Turnbull presented evidence that the ternary alloy glass
Pd74Au88118, when heated into the glass transition range, initially phase
separates into two viscous melts with different compositions. This
process had been indicated by the transmission electron microscopy
observations of Chen and Turnbull. L The conclusions of Chou and
Turnbull(zo) were based on the small and large angle x-ray scattering
behavior of much thicker specirnens. Their analysis of the time
dependence of the process indicated a value, ~ - 3 x 10_17 cm2 sec_l
for the interdiffusivity in the glass transition range which is within an
order of magnitude of that, ~ -10_18, predicted by the viscosity scaling

relation. This result further supports the conclusion drawn from the

studies of the kinetics of crystallization that in the fully relaxed alloy

glass the diffusive frequency, k

scales as that, k , for flow.
D n

DIFFUSIVE TRANSPORT

We have noted the evidence from phase transformation behavior
that in configurationally relaxed glassy alloys the diffusive transport
rates scale as the flow rates. We now consider the problem of diffusion
in a glass which is frozen into a high energy configurational state,
specified by a fictive temperature, Tf. The initial diffusive frequency
at low temperature- would fall on an isoconfigurational relation kD(T, Tf)

stemming from the point at T_ on the KD(T) relation. This frequency

f

can be many orders of magnitude greater than the extrapolated value of
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ED(T). However, in the normal procedures for measuring diffusivity
accurately, many jumps per atom must occur. Therefore, when

kc ~ kD’ it appears that diffusion experiments would always yield

kD
in their earliest stages.

From this viewpoint, the results of Gupta, Tu and Asai(27) (see
Fig. 4) on the diffusivity of radio-silver into Pd8 1Si19 are surprising.
We note that their kD(: 1/'rD) values are, at temperatures much below
Tg’ many orders of magnitude greater than the extrapolated KD(T) and
indicate a fictive temperature at which n ~ 107 poise. We expect that
Ag should model, at least roughly, the siting and transport behavior of
Pd, the major constituent of the alloy. Thus, the results of Gupta et al.
imply that extensive transport of the major element can occur below T
without appreciable configurational relaxation, i.e., kD >> kc' To test
this implication, kc’ as indicated by the volume relaxation rate, should
be measured under the conditions of the diffusion experiments. A
difference between kD and kc might be explained if diffusion below T
occurs by the movement of discrete vacancies and volume relaxation by
the collapse of the excess number of these vacancies. Then, if a

vacancy jumped many times before collapsing, k_ could, indeed, be

D
much larger than either kc or kT]’ since both configurational relaxation
and flow would be effected only by the collapse of voids. Theoretical
evaluation of this possibility would be quite difficult.

Another possible interpretation of the Gupta et al. results is that
full configurational relaxation at T << 'I‘g is retarded because of

2

configurational heterogeneity, on a spatial scale of ~ 10“ to 104 atom

= KD since configurational relaxation should go virtually to completion
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spacings, which might arise from quenching non-uniformities at the
high quench rates. This state might be characterized, for example, by
some distribution of fictive temperatures over the volume of the specimen.
If, then, the overall rate of configurational relaxation were determined by
those regions of the specimens having the lowest fictive temperatures,
high rates of diffusive transport in the regions with high fictive
temperatures could persist for many atom jumps. This possibility would,
again, be difficult to evaluate theoretically. It might be tested experi-
mentally by measuring the diffusivity of glass after it had been heated
into the glass transition regime and cooled slowly therefrom. This
treatment should lead to configurational homogeneity, characterized by
a relatively low fictive temperature near the conventionally defined T

’

and hence to diffusivities orders of magnitude lower than those reported
by Gupta et al.

Diffusive jumps of the metalloid atom in a metal-metalloid glass
might occur with little relaxation of the metal structure. These and
other atomic shifts which occur without significant relaxation of the

average configuration are discussed in Dr. Berry's paper, which appears

in this volume.
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