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The existence of a non-negative solution of the boundary-value

problem

2 2
vii=yt Hivs ity =0,
r

y(0) = 0’ y(o) =0

’

is proved by a shooting argument. The equation arises in an

electromagnetic theory for strong interaction in charged media.
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, THE EXISTENCE OF A NON-NEGATIVE SOLUTION OF AN ORDINARY
{ DIFFERENTIAL EQUATION ARISING IN ELECTROMAGNETIC THEORY

{ J. B. Mc Leod

| 1. Introduction

We are interested in the boundary-value problem associated with

2 2
y"+-r—y'+[y-(1+—2-)]Y=0 (1. 1)
r

e e

where the function y(r) satisfies the boundary conditions ¢

y(0) = 0, y(»)=0. (1. 2)

This problem arises in an electromagnetic theory of strong interaction which

is discussed by Bergstrom in [1], although the equation (l.1) is not specifically
} derived in [1],and I am indebted to Seymour Parter for bringing the problem to
| my attention. We want to show the existence of a non-negative solution to
this problem, and the method of attack is to "shoot" from the origin. To this

end we prove the following sequence of lemmas, which we state now with the

proofs given later.

-y

o Lemma 1. Given any a > 0, there exists a unique solution of (1.1) which

A has the asymptotic behaviour

‘ y(t)~ ar as r=0 ,

and plainly this solution is non-negative initially (i. e. for r sufficiently

small).

Lemma 2. Any solution y(r) of (l. 1) which is initially non-negative must

possess one of three mutually exclusive properties:
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(i) it remains non-negative for only a finite range of values of r

(ii) it remains non-negative for all r, and  y(r) = 1 as r—- o ;

(iii) it remains non-negative for all r, and y(r)— 0 as r—» o

Lemma 3. The set of a(>0) for which the solution given by Lemma 1 has

the property (i) of Lemma 2 is denoted by S, and is open in the topology of

the positive semi-axis.

Lemma 4. The set of a (>0) for which the solution given by Lemma 1 has

the property (ii) of Lemma 2 is denoted by S2 and is open in the topology

of the positive semi-axis.

Lemma 5. If o(>0) is sufficiently large, then the solution given by

Lemma 1 has the property (i) of Lemma 2, so that ae S1 ;

Lemma 6. If a(>0) is sufficiently small, then the solution given by

Lemma 1 has the property (ii) of Lemma 2, so that a ¢ S2 :

Once Lemmas 1-6 are proved, as they are below, then the tollowing

existence theorem becomes an easy consequence.

Theorem. There exists a non-negative solution to the boundary-value problem

(1.1)-(1.2), the solution being in fact strictly positive except at r =0 .

Proof. Lemmas 3-6 imply that the sets Sl’ S2 are open and non-empty.

Since the positive semi-axis is connected, not all o > 0 can belong to
S, S

p S Hence there exists at least one value of a which is in neither

S1 nor SZ’ and for which therefore the corresponding solution given by

-l e
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Lemma | has the property (iii) of Lemma 2. This completes the proof, ex-
cept for the trivial observation that the solution must be strictly positive
for r > 0, since if it were not it would have to touch the value 0, at
say, when y(ro) = y'(ro) = 0, and this implies from (1.1) that

y =0, contradicting « >0 .

It is perhaps worth remarking that there is a difference in character
between Lemmas 1-4 on the one hand and Lemmas 5-6 on the other. Thus
Lemma 1l is a statement about the asymptotic behaviour of solutions of
the equation at the origin, and this is something that an analyst can ex-
pect to discuss relatively easily, even for a much more complicated
equation than (l.1), provided only that the coefficients in the equation are,
asymptotically at the origin, of a fairly simple character. In the same
way, Lemma 2 is concerned with the asymptotic behaviour at infinity,
and Lemmas 3-4 are statements about the continuity of the solution in the
initial parameter « . All these lemmas are therefore accessible to
analytical proof, again even for a more complicated equation; and con-
versely, since Lemma 2 is a statement about all (and so an infinite
number of) solutions of a certain kind, and since infinity and continuity
are not concepts which the computer recognizes, it is difficult to see how
these lemmas could be established other than analytically.

The purpose of Lemmas 5-6, however, is only to show that there
exists one solution in the set Sl and another solution in the set S2 .

(More than this is stated (and proved) in these lemmas, but the existence
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of one solution in each set is all that is required in the application.)

To establish such results, a solution has to be followed, not only for

small and large r, but also in general for moderate r as well, and in

the case of a complicated equation, this may well prove impossible for

the analyst. Even in the present case the analysis is delicate. On the

other hand, since we are concerned with only a finite number of solutions,

it may well be possible for the computer to follow these solutions and,

with the aid of interval analysis or come comparable argument, prove

that the solutions so followed satisfy the inequalities that place them

in the required sets. )\
The point of these remarks is that a shooting argument thus breaks

naturally into two parts, one of which should be accessible to the analyst

and the other to the computer. It becomes therefore a very powerful tool

for the proof of existence of solutions of two-point boundary-value problems.

2. Proof of Lemma 1

We can write (1. 1) in the form

2 2
e i b AR b 4 S (2.1)
r

and since two linearly independent solutions of
bR
y + y e rz y = 0

are y=r, y= l/rz, the variation of constants formula shows that (2.1)

is equivalent to the integral equation

2 1 r t3
y=Ar+B/f +< [ (r-5) (1-y®)] ytydt
r
0
sl
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where, for any fixed i 0,

all solutions of (2.1) which exist in some
neighbourhood of r = r0 are given by arbitrary choices of the constants
A,B . In fact, since we are interested in solutions for which ¥ Sar .,
we can actually choose ro = 0, since the integral continues to have

meaning then, and we shall then have to choose B = I SAY="o s SThis

such a solution satisfies the equation

-ar+— f (r- ){1 y(O)} y(tydt (2.2)

and the usual approach of solution by iteration shows that this equation

has one and only one solution for which y ~ ar, and so the lemma is proved.

3. Proof of Lemma 2

We first note from (2. 2) that

1 r t3
y<artzg fo(r-r—3)y(t)dt ;

from which it follows that y <Y, where Y is the solution of the integral

equation

r A
[ --) Y(tydt (3.1)
0 r

Y =oar +

w['—‘

with Y ~ ar as r— 0. But it is easy to deduce from (3.1) that ¥
satisfies a linear differential equation, and so exists for all r and is
bounded in any compact set. Since a non-negative solution Yy ol (2.2)
is bounded below by 0 and above by Y, it follows that y exists for
all r and is bounded in any compact set. Hence, if alternative (i) in
the statement of the lemma does not hold, then certainly y exists for
all r and we have only to prove that y =~ 1 or y —‘ 0O @48 rt=m ,

ohu




We therefore assume for the remainder of the proof that alternative
(i) does not hold, and show first that, if y is ultimately monotonic,

then y =1 or y— 0. For if we suppose for contradiction that

y(®) =k # 0, 1, where y(») exists since y is monotonic, then either

0<k<1l or k>1 (with possibly k = +0) . If 0<k <1, (2.1) gives
Py = Loyly -2/,

so that

(y)" ~ 2 k(1 -K)

b
3
rzy' ~ %— r k(l-k) ,
1

¥~z IK(l-k)
which contradicts y - k, and a similar argument disposes of the case
k>t

Thus if y is ultimately monotonic, theny -1 or y~ 0. It re-

mains to discuss the case where y is not ultimately monotonic. Then

multiplying (2.1) by y' and integrating from some value r0 >0, we have

E 2
1. 28 ¥ 1 3 f ol - e
[ZY ]r0+fr t dt+[3)"]r0-[2y]r-

s 0
r 1]

a3 -m)z—ut—)dho (3.2)
ro t

Now
r

y(r) = [ y'(tdt
0

N

r 1
< r {f y'Z(t)dt}Z, by Cauchy-Schwarz.
0

b=




Hence

r
y(t) y'(t) v y (t)
2fr Z dt [t2]+2f 5 dt
0 Wi
yZ r r t 2
< [;2- ]Ir r2 (fo y'“ (wydu) =
0 "o
yZ ¢ ] t 2 : r 'Zt
= [-—2~] -Z[t—fy' (u)du]r +2f L?-(-ldt,
1 ro 0 0 rO
so that (3.2) gives
2 E r
R 3 B g 2
[Zy +3y-2y -2+tfy(u)du] <0 (3. 3)
t 0 ro

Since y3 dominates y2 for large vy, this last inequality plainly implies
bounds on both y and y' as r— «,

Now we are assuming that y oscillates, and we may further suppose
that it oscillates finitely, i.e. that y(®) does not exist. For if y(%) exists,
then the argument used when y is monotonic will show that either y(®) = 0
or y(©) =1. From the now-established boundedness of y and y', we see
from (3. 2) that

T
f l-t—(—t-)-dt (3.4)

0

is bounded as r -+ »©, and since it is monotonic, it must converge. We

thus have
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-y +§y -Ey - 1L, say, as r-—»>o , (3.5)

and three cases now arise, depending on whether L =0; L= -1/6; L#0,

-1/6 . (The cases L =0, L= -1/6 are the cases in which the roots of

3

1
s R -L=0

3
2
are not distinct. )

If L=-1/6, then the possible extreme values of y (in the limit as

r »o), 1i.e. the roots of the equation

S R
3Y'2y 6_ ’

are readily verified to be 1 (twice) and -1/2 . Since y is non-negative,

this implies that y -~ 1 . (Alternatively, if L = -1/6, then (3.5) gives

Z ) 2
y' +g(2Y+l)(Y—l) -0 ,

N

from which it immediately follows that y' -~ 0, y—=1.)

If L+0, -1/6, then the roots of

0
37

are distinct, and none of them are 0 or 1. Inthe limitas r—=» vy
oscillates between two of these roots as extreme values, and in the course
of a complete oscillation, y' is small if and only if y is near these ex-
treme values. Further, from (l1.1), y" is not small when y is near the

extreme values, since the extreme values are neither 0 nor 1. Hence

=B




in the course of a complete oscillation, y'(r) is small if and only if r
is near a value for which y'(r) = 0, and so y'(r) is not small for most of

the r-range of the oscillation. From this it follows easily that

B 2
f Y (t) at
r t

0

is not bounded as r—+ o, - and this is a contradiction to what we proved at
(3. 4).

If L =0, the possible extreme values are 0 (twice) and 3/2 .
There is no immediate reason (as there was with L = -1/6) why the solution
should not oscillate (in the limits as r - ) between 0 and 3/2, and the
argument employed when L # 0, -1/6 does not apply because it is prima
f_a_ci_e possible for the solution to remain small (y, y', y" all small) for
long intervals of r, increasingly long every time the oscillation is repeated,
and this situation does not necessarily contradict the boundedness of (3. 4).

To argue that the solution cannot oscillate indefinitely between 0 and
3/2, we must therefore look more deeply. Consider the function

3

- P
POy =<y o SRet 6 N (3.6)

1aS) R

We are supposing (for contradiction) that F(r) = 0 as r o, while y
oscillates indefinitely between 0 and 3/2 . As r increases from a local

maximum r_. of y to a local minimum r so that y'< 0 in {(r

0 ,rl). it

Ii§ 0

is clear from (3.2) that

F(rl) - l"(ro) L)

-9-




so that F decreases between the maximum and the minimum. Further, at

a local minimum of y (at least once r is sufficiently large that y is small

3

Z
at the local minimum), F <0, since y' =0 and -%—y dominates y

1
3
If therefore we can show also that F decreases as r increases from a
local minimum of y to a local maximum, then we are done, since F
(evaluated at local maxima and minima of y) will be negative decreasing,
and so cannot tend to 0 .

The decrease of F between a local minimum and a local maximum of

y will be established from (3.2) if we can show that

r 2 15
fl yIm Y g s
ro i

T 2 ) (3.7)
0 (&

r. being the minimum and r

0 the maximum. We start by demonstrating that,

1

given ¢ >0, small but fixed, we have

y(r) < Ky(s), r0<_s<r_<_r r-s<e , (3.8)

1 2
where K is a (positive-valued) function of ¢ but not of ro, rl, i.e. K
is independent of how far out the oscillation is. For from (l.1) we have, for

te [ro,rl] 3

y'(t) <2y(t) ,

at least if r0 2 N2 , which we may suppose, and then by integration

1 E t

2 2
gyl 2




y'(t) < y(t) N2

y(r) - y(s) = (r-s) y'(£), g <g<r ,

<oNZ y(r) ,

from which (3. 8) follows.

We next establish that

y'(t) > Ky(t) for te [ro to, 1 - oullEn. (3.10)

K again a (positive-valued) function of o but not of ro, r (K may not

L
be the same function as before, but it will cause no confusion to use the
same notation for both.) For, since F(r) - 0 as r -+ ©, we can readily
deduce that y' is bounded away from 0 (and so a fortiori y' > Ky) so long
as y is bounded away from 0, 3/2 . Since y" is bounded away from 0
when vy is near 3/2, the statement that y is bounded away from 3/2 is
equivalent to the statement that r is bounded away from r,, and so we

1

certainly have
y'(t) > K y(t)

it e [ro + o, r - o] and y(t) is bounded away from 0 . Butif Te [ro. rl]

and y(7) is near 0, say y(T) <12~, then, from (l.1),

_2y'(m
)
To

205 Ly

y"(7) > y(n) -

so that, integrating over [ro, r] with r > Cs + o, we have

wil]
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P S

r

1 2
v >3 [ ymdt - = {y(r) - v(r))

r 0
0

B gk 2
>3 [ v - =y
r-o 0

1 2
>E o y(r-o) - — y(r)
‘o

> & -%)y(r), from (3. 8) ,

which proves the required result since ¢ (and K) are independent of To

and T can be chosen so large that

ARG
T 2K

If we now consider the difference in (3.7), we see that it exceeds

r, - r. 4o r
SR 0

1 1
¥ ¥y o 0
fr+(_t_—-t2)dt-fr t2 dt-fcrt?‘ =
1 0 5
O r +o ['1
yy' ¥ ' 4
>{K(r0+(r)-l}f -t - J Lt o =,
r0+o- | © ro t rl-cr t

from (3.10) ,

r0+20' rl-o'
yy'
> {K(r0+c)-l}{f +f }-;-Z—dt~

r0+0' rl -20




b
.
¢

Considering sufficiently the integrals involving r , we see that

0
r0+2<r iz r0+Za 2
[ - dt>kf 12— dt, from (3. 10) ,
r0+0' t r0+o' t
2
Y (r to)
0
e o
(r0+20')
while
r +o : N r0+0' 2
] }%Ldt <z ’;—dt, from (3.9)
ro t ro t
2
Yo (£ Fo)
0
< o N2 > -
‘o

from which it is clear (for ro sufficiently large) that the contribution from

these integrals to (3.1l) is positive. With similar arguments for the integrals

involving Iy we see that (3.17), and so the lemma, are proved.

4. Proof of Lemma 3

This is an immediate consequence of the fact that the solution y(r, )
of (2.2) is continuous in « . Thus if y(ro, ao) < 0, we must also have

y(ro,a) < 0 for o sufficiently close to @y

5. Proof of Lemma 4

Let us suppose that for o = a, the corresponding solution y(r, ao)

given by Lemma | has the property that vy(r, 00) -1 as r—-oo, We have to

«13a=

i b
yon

|
|
|
|

asin s




show that, for a su antly close to @y, we still have y(r,«) -1 as
r—- o
Since vy(r, ao) -1, we w that the quantity F(r, ao) introduced in
(3.6) (we now make explicit its ¢ >ndence on a ) has the property that
F(r ) - l— as r—- o
' ao . 6 )

ii and that (from the investigation of the case L = -1/6 in Lemma 2) y(r, ao) -1,
Y‘(f.an) - 0 . It is then an easy consequence that the expression in [ . ]
in (3. 3), which we will d« .¢ by G(t, @), has the property that

4 1
t,a,.) > as t - @
0 6

Hence, given & > 0, we can find o sufficiently large that |

1
p € o &
(1([0, 00) < 3 R .3
and so, using continuous dependence on a, for « sufficiently close to r
2 1 g we have
; Gir., a) £ LR
i - -
4 0’ — 6 €

From (3. 3) we can deduce for > To that

i G(r,e) < - % +2¢e , (5.1)

and it is then clear that y(r, @) cannot become zero for a finite value of r
or have y(%,a) = 0; for if either of these alternatives were to occur, then

G(r, @) would become non-negative either at a finite value of r or in the

| §
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limit as r - o and this contradicts (5.1) with ¢ <1/12 . The only re-

maining possibility is that y(r,a) -1 as r— % and the lemma is proved.

6. Proof of Lemma 5

We start by making a change of variables in (l.1) to take account of

the fact that o is large. Thus we set

1/3

tea’ . ¥ :Q‘Z/

3
i),
and (l.1) becomes
2 =20/ 3D,
Y"+t—Y'+{Y-(a +t—)}Y:o i (6.1)

where primes now denote differentiation with respect to t . The initial
conditions are

Y(0)=0, Y'(©) =1, (6.2)

and we consider in tandem with (6. 1) the equation
1 2 ' 2 o
Y0+t YO+{Yo-t2}Y0_0, {6..3)
with the same initial conditions

Y(0) =0, Yi(0)=1.

If we can show that Yo(t) becomes negative for some finite t, then since
(for sufficiently large «) the solution of (6.1)-(6.2) can be made as close
as we please to Yo(t) in any compact t-interval, it will follow that Y(t)

also becomes negative, and the lemma is proved.

.
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To prove that Y0 becomes negative, we note that YO’ 10 are
initially positive, and that tZYb is increasing until Yo meets the function

Z/t2 . Thus Y, must meet Z/tz (at a finite point), since Z/t2 is de-
creasing.

We now ask whether YO’ after passing above Z/tz, meets "Z/tz
again. Suppose for contradiction that it does not. Then tZYb is decreasing,
and it must become negative, since otherwise YO is increasing and (6. 3)
implies that Ya becomes strictly negative, which ultimately forces Yb
to be negative. We thus have Y0 positive and Yb negative, and so the
solution is bounded and exists for all t, and tZYb - L (say)as t— o |
with L < 0. We shall suppose L finite, a similar argument applying if

L=-o . Thus Y, ~ L/tz, Y - M (say), M finite, and it is clear from

0
(6. 3) that the only possible value for M is M =0 . Thus

Y, ~ A/t

’

and (6. 3) gives

- 2
(t7Yg) ~ -L

|
2
Y, T S

which is a contradiction.
Z i
Thus Y0 meets 2/t  a second time, and at the point of meet we

must have
& 7 3
X" T, Yy < -4/t

-16 -
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Now the solution of the equation
2 2
zZ" + — (o -
T z > Ze=10
t
with the initial conditions (at some point to)

2 , i 3
z(t,) = 2/t0, z (to) = -4/t0

; ! 2 : E 8
is precisely the function 2/t”, which remains positive but tends to zero

as t— o and comparing the equations for YO and z = Z/tz, we have

" ,2_ ' _2__ -
(Yo-z) +t(YO-z) -tz (Yo—z)~-Y§ it

whence, as in Section 2,
t 3

B 1 u 2
Yy-z=fi= - f (t - = )Y (u)du

t
& 0 t

with the conditions

(¥g-2)ty) =0, (¥ -2)(t;) <O

This leads easily to the inequalities A<0, B >0, and so, as t~x |

Y ~z=At+E—L(t), say,
0 t2

where L(t) is positive increasing. Since A <0, this certainly implies

that Y0 becomes negative and completes the proof of the lemma.

o]7-




7. Proof of Lemma 6

Arguing as in Lemma 4, we see that the lemma will be proved if we

can show that, for « sufficiently small, there is some r possibly de-

0’

pending on «, for which
G(ro, a) <0 . (7. 1)

In order to establish the existence of such an rO, we write (1.1) in the form

' 2 2 2
P A s ey (7.2)

and note that the solutions of
W o ke T
y + r y i (l 4 rz )Y (== O

are

e 1 e’ 1
gy = ok SEye=={l +=)
Using the variation of constants formula, we can write (7.2) in the form
(taking account of the initial conditions)
r

2
[ s - 11 g h” yima
0

’ L
% 2

Njw

a(f+qg) -

from which the usual iteration process assures us that

Y-%a(f+g)=0(a2) as a-—=0 ,

the estimate being uniform in any fixed interval [0,R] . We shall therefore

certainly have established (7.1) if we can show that there exists a fixed r

-18-
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(independent of «) for which (7.1) holds for o sufficiently small in the

form

G(ro, a) < -Kaz :

where K is a positive constant independent of o and, in evaluating G,

3

we set v = %n(f+g) . Since the term 13 Y in G is O(a3), it will be

sufficient to prove that there exists a fixed o for which

vi(r,y) ‘0
12 ]2 g 2 2 2
S ¥ Yy s +r—(; fo y'“(t)dt < -Ke (7.3)

‘o
for o sufficiently small, with y = —23—a(f+g) . In evaluating the left-hand

2
' side of (7. 3), we can neglect the factor (% a) which is common to every

J 1
term, and if we replace f + g by just f = ?— (1 -r—), then we neglect only

terms which (for large ro) are at worst polynomial in l/r0 . With therefore

T
e 1
e (1 -r—), it is standard to show that, as r - «

’

2 E 2r
[ v?wat ~ -

’

N | w

e
4

(=]

| §

) which certainly implies that, if o
2r

arising from -5 e 0/ré on the left of (7. 3) will dominate any of the other

is fixed sufficiently large, then the term

terms, and so prove (7. 3) and the lemma.
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The existence of a non-negative solution of the boundary-value problem

P syirfy = thr£yly =0, Y0y =0, vy =0,
r

is proved by a shooting argument. The equation arises in an electromagnetic

theory for strong interaction in charged media.
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