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The existence of a non-negative solution of the boundary-value

problem
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’ +{y - ( l+4 ) } y = 0

y(0) = 0, y(c~ ) = 0

is proved by a shooting argument. The equation arises in an
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THE EXISTENCE OF A NON-NEGATIVE SOLUTION OF AN ORDINARY

DIFFERENTIAL EQUATION ARISING IN ELECTROMAGNETIC THEORY

I. B. Mc Leod

1. Introduction

We are interested in the boundary-value problem associated with

y

~

’ + y + ft - (1 + 4 )]y = 0 (1. 1)

where the function y(r) satisfies the boundary conditions

y(0) 0, y(oo) 0 . (1. 2)

This problem arises in an electromagnetic theory of strong interaction which

is disc ussed by Bergstr3m in [1], altho ugh the equatIon (1. 1) is not specifically

d erived in [l], and I am Indebted to Seymour Parter for bringing the problem to

my attention.  We want to show the existence of a non-negative solution to

t his problem , and the method of attack is to shoot from the origin. To this

end we prove the following sequence of lemmas , which we state now with the

proofs given later.

r
:~ 

Lemma 1. Given any a > 0, there exists  a un i que  solution of (1 . 1) which

has the asympt otic behaviour

y(r)  — ar as r —~~ 0

and pla inly this solution is non -ne gat ive  ir1it i~~iy (i. e. for r suff icie~~jy~

small) .

Lemma 2. Any solution y(r )  of (1. 1) which is ini t ia l ly  non-negat ive must

posses s one of three mutual ly  exclusive properties:

Sponsored by the United States Army under Contract No. DAAG2 9-7 5-C-0 024 .
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(I) it remains non-negative for only a finite range of values of r

(II) it remains non-negative for all r , and y(r) -
~~ 1 as r —

~~ 00

(iii) it remains non-negative for all r , and y(r) — .. 0 as r —. 00

Lemma 3. The set of a( > 0 )  for which the solution given by Lemma i has

the property (i) of Lemma 2 is denoted by S7 and is open in the topology of

- - the positive semi-axis.

Lemma 4. The set of a ( > 0 )  for which the solution given by Lemma 1 has

the property ( i i)  of Lemma 2 is denoted by S2 and is open in the topology

of the positive semi-axis .

Lemma 5. If a ( > 0 )  is suff ic ient ly  large, then the solution given by

Lemma I has the pro perty (I) of Lemma 2 , so th at a E S1

Lemma 6. If a (>0 )  is sufficiently small, then the solution given by

Lemma 1 has the property ( ii) of Lemma 2 , so that a E S2

Once Lemmas 1-6 are proved , as they are below, then the following

existence theorem becomes an easy consequence.

Theorem. There exists a non-negative solution to the boundary-value problem

( 1. 1)- (l .  2), the solution being in fact strictly positive except at r = 0 -

Proof. Lemmas 3-6 imply that  the sets S1, S2 are open and non-empty .

Since the positiv e semi-axis is connected , not all a > 0 can belong to

S1, S2 . Hence there exists at least one value of a wh ich is in neither

S1 nor S2, and for which therefore the corre sponding solution given by

-2-
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Lemma 1 has the property (iii) of Lemma 2. This complete s the proof , ex-

cept for the trivial observation that the solution must be strictly positive

for r > 0, since if it were not it would have to touch the value 0, at

r = r0, say, when y(r
0) = y’(r 0) = 0, and this implies from (1. 1) that

y 0, contradicting a > 0 . 
-

It is perhaps worth remarking that there is a difference in character

between Lemmas 1-4 on the one hand and Lemmas 5-6 on the other. Thus

Lemma 1 is a statement about the asymptotic behaviour of solutions of

the equation at the origin , and this is something that an analyst can ex-

pect to discuss relatively easily, even for a much more compl icated

equation than (1. 1), provided only that the coefficients in the equation are ,

asymptotically at the origin , of a fairly simple character. In the same

way, Lemma 2 is concerned with the asymptotic behaviour at infinity ,

and Lemmas 3-4 are statements about the continuity of the solution in the

inItial parameter a - All these lemmas are therefore accessible to

analytical proof , again even for a more compl icated equation; and con-

versely, since Lemma 2 is a statement about all (and so an Infinite

number of) solutions of a certain kind , and since infini ty and continuity

are not concept s which the computer recognizes , it is diffi cult to see how

these lemmas could be established other than analytically.

The purpose of Lemmas 5-6 , however , is only to show that there

exists one solution in the set S1 and another solution in the set S2 .

( More than this is stated (and proved) in these lemmas , but the existence

i.
t a ,. ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
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of one solution in each set is all that is required in the application. )

To establish such results , a solution has to be followed , not only for

small and large r , but also in general for moderate r as well , and In

the case of a complicated equation , this may well prove impossible for

the analyst.  Even in the present case the analysis is delicate. On the

other hand , since we are concerned with only a finite number of solutions,

it may well be possible for the computer to follow these solutions and ,

with the aid of interval analysi s or some comparable argument , prove

that the solutions so followed satisfy the inequalities that place them

in the required sets.

The point of these remarks is that a shooting argument thus break s

naturally into two part s, one of which should be accessible to the analyst

and the other to the computer. It becomes therefore a very powerfu l tool

for the proof of existence of solutions of two-point boundary-value problems.

2. Proof of Lemma 1

We can write (1. 1) in the form

2 2• y” -4- — y ’ - -
~~~

- y = (1 - y)y , (2. 1)
r

and since two linearly independent solutions of

2 2
y” -4- — y ’ - —~- y = O

are y = r , y = 1/r
2
, the variation of constants formula shows that (2. 1)

is equivalent to the integral equation

y Ar + B/r
2 

+ L f (r - ~~
) {l - y(t) } y(t)dt

3 r 0 r

e -4 -
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where , for any fixed r
0 > 0, all solutions of (2. 1) which exist in some

neighbourhood of r = r0 are given by arbitrary choices of the constants

• A, B - In fact , since we are interested in solutions for which y

we can actually choose r0 0, sInce the integral continues to have

meaning then , and we shall then have to choose B 0, A = a - Thus

• such a solution satisfies the equation

- 1  r 3
y ar + 

~ 
f  (r - 

~~) (1 - y(t )} y(t)dt , ( 2 . 2 )

and the usual approach of solution by iteration shows that this equation

has one and only one solution for which y — ar , and so the lemma is proved.

3. Proof of Lemma 2

We first note from (2. 2) tha t

y < a r  + ~ - ~~~) y( t )dt
O r

from which it follows that y < Y, where Y is the solution of the integral

equation

1 
r

Y = ar + 
~ 

f (r  - ~~~) Y(t )dt , (3. 1)
0 r

with Y ar as r —~ 0.  But It is easy to deduce from (3. 1) that Y

r - satisfies a linear dif ferent ia l  equati on , and so exists for al l r and is

bounded In any compact set. Since a non-negat ive solution y of (2. Z )

Is bounded below by 0 and above by Y, it follows that  y exis ts  for

all r and Is bounded In any compact set. Hence , if a l ternat ive  (I) in

the statement of the lemma doe s not hold , the n cer tainly y exis ts  for

all r and we have only to prove tha t  y 1 or y 0 as r .

-5-
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We therefore assume for the remainder of the proof that alternative

(I) does not hold, and show first that, if y is ultimately monotonic ,

then y -
~~ 1 or y —

~~ 0 . For if we suppose for contradiction that

y( oo ) = k � 0, 1, where y( 00 ) exists since y Is monotoriic , then either

0 < k  < 1 or k > 1 (with possibly k = +00) - If 0 < k < 1, (2. 1) gives

- 

- 
(r 2y ’) ’ -r 2y { y - ( 1 +2 / r 2 )}

• so that

(r 2y ’) ’ — r2 k( l -k )

r2y ’ — ~ r
3 k(l -k)

y’ ..~~~ rk( l _ k) ,

which contradicts y —
~~ k, and a similar argument disposes of the case

k > 1 .

Thus if y is ultimately monotonic , then y —
~~ 1 or y -

~~ 0 . It re-

mains to discuss the case where y is not ultimately monotonic. Then

multiplying (2. 1) by y ’ and integrating fro m some value r 0 > 0, we have

[~~~
I Zf + f dt + - 

f~~y 2
}~ -

0 r0 0 0

- ~ 
y (t)y ’( t ) dt = 0 . (3. 2)

t

Now

y( r ) = 1

r 
y’(t)dt

1 r 1
< r~ { f  y ’ 2 ( t)dt } 2 , by Cauchy-Schwarz.

-6-



Hence

2 j
r 

y ( t ) y ’( t )  dt ~ 
r 

+ 2 f y
2
(t) dt

r
0 

t t r
0 r

0 
t

~~~~ 

+ 2 f (f y 2
(u)du)~~

z[~~fy ’
2
(u)duf 

y~
2
(t)~~

t r~ 0 0 r

so that (3.2) gives

{ L yS 2 + 
1 y3 - 

1 2 
- 

Y 
+ 

Z 
j  I Z

~~~~d ]  < ~ - (3 3)
t 0 r

0

• Since y3 dominates y
2 

for large y, this last inequality plainly implies

bound s on both y and y’ as r —

Now we are assuming that y oscillates , a nd we may further suppose

that it oscillates finitely,  i. e. that  y(oo) doe s not exis t .  For if y(00) exis ts .

then the argument used when y is monotonic will show that either y~~) 0

or y(00) 1 . From the now-established boundedness of y and y ,  we see

from (3.2) that

y’
2
(t) dt (3.41

r 0

is bounded as r -~~ 00, and since it is monotoriic, it must converge. We

thu s have
- 7 —



1 2 1 3 1 2
~- y t -i- j . Y  -~~- y  -‘ L, say, as r — 0 0  , (3. 5)

and three cases now arise , depending on whether L = 0; L = -1/6; L * 0,

-1/6 - (The cases L = 0, L = -1/6 are the cases in which the roots of

1 3 1 2-~~y -~~~y - L = 0

are not distinct. )

If L = -1/6 , then the possible extreme values of y (in the limit as

r ~~~00), i.e. the roots of the equation

1 3 1 2 1
~~y -~~~y +~~~= 0

are readily verified to be 1 (twice) and -1/2 - Since y is non-negative,

this implies that y -~~ 1 - (Alternatively, i f L -1/6 , then (3. 5) give s

1 2 1  2
y’ + ~-(2y 4- 1)(y - 1) —

~~ 0

from which it immediately follows that y -* 0, y -. 1 .)

If L � 0, - 1/6 , th en th e roots of

1 3 1 2
r.. -~~y -~~- y  - L = 0

are dist inct , and none of the m are 0 or 1 - In the limit as r —.00, y

oscillates between two of these root s as extreme values , and in the course

of a complete osci l lat ion , y is smal l  if and only if y Is near these ex-

treme values. Further , from (1. 1), y ” is not small when y is near the

extreme values , since the extreme values are neither 0 nor 1 - Hence

-8-
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in the course of a complete oscillation , y S (r) is small if and only if r

is near a value for which y~(r ) = 0 , and so y (r) is not small for most of

the r -ran ge of the oscillation. From this it follows easily that

Y’ (t) 
dt

r
0

is not bounded as r — ~ cc, and this is a contradiction to what we proved at

(3 .4 ) .

If L = 0, the possible extreme values are 0 (twice) and 3, ”2

There is no immediate reason (as there was with L = - 1/n ) why the solution

should not oscillate (in the limits as r ~~~~~ bn~~~ en 0 and 3 ‘2 , and the

argument employed when L � 0 , - 1/6 does not apply because it is prima

facie pos sible for the solution to remain small  (y , y ,  y ’ all smal l )  for

long intervals of r , inc reasingly long every time the oscil lat ion is repeated ,

and this si tuation doe s not necessari ly cont rad ic t  the boundedness of (3 .  4 ) .

To argue that the solution cannot osci l la te  indef in i te ly  between 0 and

3/2 , we must therefore look more deeply.  Consider  the funct ion

F(r) = ~~
y 2 

+ - ~~~ 
y 2 

- (3.6)

We are supposing (for contradiction) that F(r) -~ 0 os r - r • while y

oscil lates indefini tely between 0 ~nd 3. ” L • As r increases from a local

maximum r0 of y to a local min imum r 1, so tha t  y < 0 in (r 0 , r 1) ,  it

is clear from ( 3 . 2 )  that

F(r 1) - F(r 0 ) < 0 .

-9-c
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so that F decreases between the maximum and the min imum.  Further , at

a local minimum of y (at least once r is sufficiently large that y is small

at the local minimum), F < 0, since y = 0 and - ~-y 2 do minates 
~~

- y3 -

If therefore we can show also that F’ decreases as r increases from a

local minimu m of y to a local maximum , the n we are done , since F

(evaluated at local maxima and minima of y) will be negative decreasing,

and so cannot tend to 0

The decrease of F between a local minimum and a local maximum of

y will be established from (3. 2) if we can show that

Y ( t ) 
- 

I y(t)yt (t) 
dt > 0 , ( 3 . 7 )

r0 r
0 

t

r0 being the minimum and r 1 the maximum . We sta rt by demonstrating that,

given a- > 0 , small but fixed , we h ave

y(r) < Ky(s) ,  r 0 < S  < r <r
1 , 

r - s < o -  , ( 3 . 8 )

• where K is a (posi t ive-valued ) f unc t ion  of  a- but not of  r 0
, r1, i. e. K

is independent of how far out the oscil lat ion is . For fro m (1. 1) we have , for

t E [r 0 , r 11

• I y l ( t )  < Zy(t) ,

• at least if r0 > ~T , which we may suppose , and then by integration

~~ Y I 2~ <
~~~

2
~: • 

-

-10- L
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and

y (t)  ~ y ( t )  ~~2 - (3. ‘~ )

Then y ( r )  - y(s) = ( r - s )  y ( ~~I , S ~ < r

< o -~J~ y ( r )

f r n m  which (3. 8) t of lows.

We next e s t ab l i sh  tha t

y ( t )  > K y ( t )  for t e [r 0 ~ a- , r1 - a-] , (3 .  10)

K again  a (pos i t ive -va lued ) f u n c t i o n  of a- but not of r
0 . r 1 . (K may not

be the same funct ion  as before , but it wi l l  cause  no confus ion  to use the

same notat ion f o r  both . ) For , since F(r )  -— 0 as r — ‘, we can r e a d i l y

deduce that  y is bounded away from 0 (and so a for t ior i  y > Ky)  so

as y is bound ed away from 0 , 3/2 • Since y is bounded aw oy from 0

when y is near 3/2 , the s ta tement  that  j  is bounded away from 3 ‘~~~ is

ecu iva lent  to the s ta tement  t ha t  r is bounded away from r 1, and so we

c ” r t a i n l y  have

y (t )  > K y ( t )

if t E [r 0 + a- , r 1 
- and y ( t )  is bound ed •iw~ y from 0 • But if T E [r 0 . r 1]

and y(T) is near 0, say y ( T )  <~~~~~. then , from (1 . 1),

y~ ’ ( T )  4y (T)~~~~~~~~~
T )  

> y (T )  - 
2y ( T ~

so that , i n t e g r a t i n g  over [r , ri with r > r + a- , we have0 — 0

— 11 —
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- y ’( r ) > 
~ 

f  y(t)dt  - L {y(r) - y(r 0 ) }

> 
I 
f
r 

y(t)dt - -
~~
-

r-o- 0

> ~~
- a- y (r-a-) - -

~~
— y(r)

> (~~ - y(r), from (3. 8),

which proves the required result since a- (and K) are independent of r 0
and r0 ca n be chosen so large that

2 a-

If we now consider the d i f ference  in (3.  7) ,  we see that it exceeds

r
1 -a- 2 r

0
+a- r

1f (~~~~~~~~~~ ) d t f  ~~ - d t - f  Yf dt
r0 +a- t r~ t r1 —a- t

r 1— a- r 0+a- r 1
> {K(r 0+a-) - l} 5 ~~—dt - 5 

-~~-dt -f dt
r0+a- t - r

0 
t r1-a- 

t

from (3. 10)

r
0
+2o- r

1 -a-

> {K(r 0 + a - ) - 1 }  {f + 5 
} ~f d t  -

r0+a- r 1 -2o- t

- dt - ~~~ dt - (3. 11)
r
0 

t r1 -a- t

• -l2~
I ~. -
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Considering suff ic ient ly  the integrals involving r 0 , we sce rh jr

r 0 -f2a- 2
5 ~~~~~- d t >  Kf Zg- dt , from (3 .  10)
r
o

-4-o- t r
0+~

- t

• 2y (r 0
+o-)

> Kcr
(r 0+2a -)

while

r
0
+a- r

0+~
- 

2

5 q-th < ~iT 5 ~~~ 
dt, from (3.9)

r0 t r
0 t

2
y (r +o-)

< a -  2
r
0

from which it is clear (for r
0 su f f i c ien t ly  large)  that the cont r ibution  from

these integr als to (3. 11) is positive . With similar  arguments  for the ir~egr al s

involving r 1, we see that (3. 17), and so the lemma , are proved .

4.  Proof of Lemma 3

This is an immediate consequence of the fact that the solution y(r , c~)

of (2 . 2) is cont inuous in a - Thus if y(r
0. a~ ) < 0, we must also have

y(r 0 , a) < 0 for a su f f i c ien t ly  close to a
0

5. Proof of Lemma 4

Let us su ppose that for a = a
0 

the corresponding solution y(r, a
0

)

given by Lemma 1 has  the property that  y(r , a’s
) -. 1 as r -— ~ - We have to

- ‘3-
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show tha t , for a SL~ -~ntly close to a0, we still have y(r ,, . -. 1 as

~.

Since y(r, a0
) 1, we -v that the quantity F(r, a~~) introduced in

(~~~. 
r - )  (we now make exp licit  its ~ ~~ndence on (1 1 has t h t ’  I -r op e r t y  that

F(r . a0
) - as r

an d that ( f r - - m h~ r r i v ’ s t i i  i v ~n o~ the r s ~ - L = -1/’ in Lemma 2) y(r,

~~) 0 • 1’ is t~ • n ei— ’ \ con~ :u~ -n -e th ~~‘ the ex ~ r ’ S Sn n in [ . . ]

in ~3. 3), w~ i h  w~ w~lI r~’ ~~~~~ by i t . • i ) ,  h . t - ~ t h  : r  ; ‘ - r ’ v  that

‘ , f t . p ) * — — IS
0

Hence , y i v~ n ~ > 0 . w’ an !i:.~ r
0 ~~

f~z ienUy I i r ~~ that

L~Ir  , Ll <- — - “ 4- ~~ •O H —

and so, using c - n t i n u u s dep endence on a , for (~ sufficiently close to t
a , w . have
0

a) < - 3- ÷ 2~ -

From (3.  3) we can deduce for r0 that

G(r , a) < - + Zc , (5 .1)

a:id it i s then clear that y(r , a) cannot become zero for a f ini te  value of r

or have y(~~, a) = 0; for if either of these alternative s were to occur , then

G(r , a) would become non -n egative either at a finite value of r or in the

-14-

~~~~~~~~~~ ~~~~~~~~ —_~~~~~~~~~~~~~~~~~~~
- -~ 

~~~~~~ ‘ ~~~~~~~~ ~~•:~~~~~~
— —-

~~
- 

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ — -~~~ - ~~~~-‘- ~L



-

~~~~~~~~~~
-T IiT:TTI --

~ ~~~~~~~~~~~~~~~~~~~~~~ ~~

-

• 
li mit  as r cc, and this contradicts (5. 1) wIth ~ < 1/12 - The only re-

maining possibility is that y(r , a) — 1 as r — cc, and the lemma is proved .

6. Proof of Lemma 5

We start by making a change of variables in (1. 1) to take account of

the fact that a is large. Thus we set

r , Y( t)  = ~~2/3 y(r)

and (1. 1) becomes

Y” + Y’ + {Y - 
~~ 

2/3 
+ ~~) }Y  = 0 , (6.1)

where primes now denote differentiation with respect to t . The ini t ia l

conditions are

Y(0) 0, Y (0) = 1 , ( 6 . 2 )

and we consider in tandem with (6. 1) the equation

- ~ ~~ + - ~~ = 0 , (6. ~)

• with the same initial conditions

Y0(0) = 0, Y~(0) = 1 .

If we can show that Y0 (t) beco mes negative for some f in i te  t , then since

(for sufficiently large a)  the solution of (6. l)-(6. 2) can be made as close

as we please to Y
0(t) in any compact t-interval , it will follow that Y(t)

-1
also becomes negative , a nd the lemma is proved .

-15- 
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To prove that become s negative, we note that Y0, Y~ are

initially positive , and that t2Y~ is increasing unt i l  meets the function

2/t2 
. Thus must meet z/t 2 (at a finite point), since z/t

2 is de-

creasing .
2 ‘ 2We now ask whether Y0, after passing above 2/t , meets 2/t

again. Suppose for contradiction that it does not. Then t
2
Yb is decreasing,

arid it must become negative , since otherwise Y0 is increasing and (6. 3)

implies that becomes strictly negative , which ulti mately forces

to br. negative. We thus have Y0 
positive and negative , and so the

• solution is bounded and exists for all t , and t2Y~ -. L (say) as t — 
~~~ ,

with L < 0 . We shall suppose L finite, a similar  argument applying if

L = - Thus Y~ L/t
2
, Y0 

-. M (say), M finite , and it is clear from

(6. 3) that the only possible value for M is M = 0 - Thus

Y0~~~~
-L/t ,

and (6. 3) gives
:-

(t 2Y~ )’ — -L
2

—

which is a contradiction.

Thus meets 2/t 2 a second time , and at the point of meet we

must have

• = z/t 2 , y~~ < -4/t 3 
.

-16 -
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Now the solution of the equation

2 2

t

with the initial conditions (at some ooint t0 )

z(t0) = 2/t~, z’(t
0
) =

is precisely the ~~nction z/t
2 , which remains positive but tends to zero

as t -. cc, and comparing the equations for and z = 2/t
2
, we have

(Y0 
- z)” + ~~(Y0 - z) - 

~~~~~ (Y0 
- z) =

whence, as in Section 2,

- z = At + - 

~~~ 

(t -~~~~~~~ )Y~(u)du

with the conditions

(Y 0 - z)(t 0) = 0 , (Y 0~~
z ) ’ ( t

~
) < O

This lead s easily to the inequalit ies A < 0, B > 0, and so, as t — 
~~~

Y0 
- z = At +~~~

- - L(t), say,

where L(t) is positive increasing . Since A < 0, this certainly implies

that Y0 beco mes negative and complete s the proof of the lemma.

-17-
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7. Proof of Lemma 6

• Arguing as in Lemma 4 , we see that the lemma will be proved if we

can show that , for a sufficiently small , there is some r 0 , possibly de-

pending on a, for which

G(r 0, a) < 0 - (7 .1)

In order to establish the existence of such an r 0 , we write (1. 1) in the form

2 2 2y” + — y - (1 + —
~~

- )y = -y , ( 7 . 2 )

and note that the solutions of

2 2y ” + — y ’ - (1 + -~-)y = 0

are

f( r ) = !.(l — L), g( r ) = ~~
— (1 + ~~. ) -

Using the variation of constants formula , we can write ( 7 . 2 )  in the form

(taki ng account of the initial conditions)

y = a(f + g) - 

~ f {f(r) g(t) - f(t) g(r) }t
2 
y2(t)dt

• from which the usual iteration process assures us that

3 2 
- -

y - ~~- a(f + g ) = O(a ) as a - 0  ,

the estimate being uniform in any fixed interval [0, RI - We shall therefore

certainly have established (7. 1) if we can show that there exists a fixed r
0 

j
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(i ndependent of a) for which (7 . 1) hold s for a suff ic ient ly  small in the

for m

G(r 0, a) < -K a 2

where K is a positive constant independent of a and , in evaluating G ,

we set y = ~~ -~(f +g )  - S in c e  the t err~ ~ y 3 in G is 0(a 3
) , it will be

sufficient  to prove that there exists a fixed r 0 fo r which

y S (r 0 ) - ~~y (r 0 ) - 2 ~~~ 
f  y ’

2 (t)dt < -K a 2 (7 . 3 )
0 0

for a sufficiently small , with y = -~- a ( f + g )  . In evaluating the le f t -hand

• side of (7. 3), we can neglect the f acto r (~
- a)

2 which is common to every

er 1term , and if we replace f + g by j u s t  f = — (I - — ) ,  then we neglect only

term: which (for large r0
) are at Worst polynomial  in 1/r 0 - With therefore

y = — (I — — ) ,  it is standard to show that , as r -. ~

2 r Zr1 2 1 2  y 2 2 3 e
• ~~y ’ -~~ y - --~~

- + —  5 y (t )dt  — -~~~~~ —
fr 0 r

which certainly implies that , if r is fixed su f f i c i en t l y  large , then the term
Zr 0

aris ing from -~~~
- e /r 0 on the left  of (7. 3) will  dominate any of the other

terms , and so prove (7. 3) and the lemma.
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