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ABSTRACT

A continuum theory of viscoelasticity is developed which allows

non .-afflne deformation , defined in an appropriate manner.  The

constitutive equation is a generalization of that obtained from

molecular theory with the addition of one scalar parameter which

becomes Important for large deformations. The theory is applied to

simpler shear flows , the scalar parameter being determined to match

certain experimental data .  The theory shows good agreement with

all data examined. The paper concludes with the development of a

general non-aff ine thermodynamic theory .
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1. Introduction. A constitutive equation for viscoelastic fluids can

be derived systematically from the molecular theory of Gaussian networks. The

same constitutive equation can be derived from the molecular bead—spring model

with Hookean springs. (See [1] for references). It, hence, has a sound

theoretical foundation. Unfortunately, It does not describe, even qualita-

tively, some significant viscoelastic behavior such as the ~
bshear thinning”

of viscosity.

One of the assumptions of the molecular theory of networks is that the

junctions move affinely with an equivalent continuum~ The anologous assump-

tion of the bead—spring model is that the surrounding Newtonian fluid moves

affinely with an equivalent continuum. It is our object to relax the

affine assumption present In both models by developing a continuum theory

that allows two histories of deformation which may be non—affine. One

history is made to give rise to the current state of stress according to the

constitutive equation from molecular theory. The second is made the observed

smooth continuum deformation. The two motions are connected by an appro-

priate constitutive equation.

In the next section we develop the constitutive equation which allows

no~~affine deformation. It is just as easy to use as that based on the
1

affine assumption, but is able to describe viscoelastic behavior consider-

ably better for all the data we have examined. This improvement is

purchased by the addition of one scalar parameter. The constitutive equa—

tion is then used to examine shear flow and the new scalar parameter in

the theory determined to,match certain experimental data. Steady, sudden

start up and small oscillatory shear flows are examined. It is not our

intention here to make an intensive comparison with data or with the results

of the many empirical models found in the literature. Such comparisons

*Mtually it is sufficient to assume only that boundary points of the network t
~~ve affinely. It can then be proved that ensemble — average positions of
all junctions move affinely (1J.

Sponsored by the United States Army under Contract No. DAAGZ9-75-C-00Z4.
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will follow in a later paper. We here wish to develop a sound theoretical

basis for the theory and to compare results with enough data to indicate its

potential usefulness. In this regard we develop in the last section of this

paper a thermo—viscoelastic theory within the framework of generalized

continuum mechanics. This theory contains the theory of the next section as

a special case.

2. Development of the constitutive equation. Consider two deformation

histories which we denote by a and 8. The locations of particles in these

histories are described by Cartesian coordinates x1 and 
~~ 

respectively.

If the two histories are related by a compatible deformation, there is a

one—to—one correspondence

— 
~~ 

(x
1
, x2, x3, t) (2.1)

describing this deformation at every time t. The local deformation is

described by

— P~~ dx~ (2.2)

where

— a~~Iax~ (2.3)

are the deformation gradients. Define displacetient components r~ by

(2.4)

The velocity components of particles in each history, 
~~ 

and 
~~

, are related by

‘x i 
+ (2.5)

Differentiation of (2.5) gives

A
ir
P
rk 

— + (2.6)

where

3t~
~~ ~~ (2.7)

-2-
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and the comma denotes differentiation with respect to x~.

We next derive transformation rules under a change of frame of reference

for the various kinematic quantities defined above. The relative orientation

of the two frames can be described by a translation c(t) and an orthogonal

rotation tensor Q(t). Let be Cartesian coordinates associated with

the second frame and Q~~ and C~ be components taken with respect to base

vectors in the first frame. It can be shown that

Differentiation of this relation gives:

— Q~~x~ + +

Since Q Is orthogonal,

Q Q + Q Q - Oij ik ij ik

If the two frames coincide at current time, — and the above give:

(2.8)

— + + (2.9)

+ = 0 (2.10)

and also transform according to (2.8) and (2.9) so that the rules

for r1 and are:

rj — 
~1. — + (2.11)

Differentiation of (2.9) and (2.11) give the rules:

Zi,k 
+ l

~ik (2.12)

rjj — 
~jj 

+ 6ikFkj — (2.13)

From (2.6), (2.12) and (2.13) we obtain

~~~ 

— + (2.14)
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If histories a and B are identical, we say they are affine . Then ,

— tS~~~ r1 — 0 and Au — 
~~~~ 

Non—affine histories may be incompatible

in which case a global correspondence (2.1) is not defined. Eqs. (2.3),

(2.4), (2.3) and (2.7) then cease to have meaning. We still make use of

fields r1, ~~~ xi and ~~ which satisfy Eq. (2.6) and transformation

relations (2 8) throug~i (2.14) . History cx, which is assumed to be smooth

and homogeneous, is taken as the history observed on the macroscopic scale.

History B will be taken to give rise to the stress field in a manner to

be made precise presently. F represents the local deformation of a to

B according to Eq. (2.2) and A represents the velocity gradient of history

B in a local sense also.

If tensor A is made to depend on ic1 ~ by making F and i~
depend on i~ 

~~

, there will result a continuum model which represents a

simple fluid.
’ 

We develop a theory of this type based on the following

assumptions :

(a) F~~(t) — At current time the spatial labelling of both

histories is the same.

* (b) ~~ is a linear Isotropic function of i
4 J ,j i,j

(c) The Cauchy stress T depends on the history of tensor A.

(d) The deformation is incompressible according to the equation:

ui,i — 0 (2.15)

By assumptions (a) and (b), the velocity gradient A becomes a function

of the gradient of a. Assumption (c) says that the stress depends

on the history cc, which is the constitutive relation of a simple fluid.

Assumptions (b) and (d) result in the following form:

— b uu ,j + c ~~~ (2.16)

L 1 .  -



where b and c are constants. Use of assumption (a) and Eqs. (2.6) and

(2.16) yield:

— (b+1)i1~~ + c (2.17)

We require (2.17) , which plays the role of a constitutive equation, to be

form invariant under a change of frame of reference. Substitution of (2.12)

and (2.14) in (2.17) and use of (2.10) results in:

(c_b)~~1~~
_ O

which must hold for arbitrary antisymmetric ~~~. Hence, c — b and we write

both in terms of another constant a , as follows:

c b ’
~~
j
2

Eqs. (2.16) and (2.17) become

(a—i) X (j j )
(2.18)

a+l . a-i .A — x  +—xij 2 i,j 2 j,i

where x is the symmetric part of( ,j) ,j
Eq. (2.18) says that the antisymmetric parts of ~~~ and are the

same . That is, a and ~ have the same vorticity. The syimnetric parts

are related by:

A(j ,j) - a x(i j) (2.19)

Hence, the rate—of—deformation of elements in B is a times the rate—of—

deformation in ci. a 1 corresponds to affine motion , the deviation from

this value measuring the deviation from af fine motion.

There are various ways assumption (2.16) can be generalized and still

result in a simple fluid theory. t can be allowed to be a nonlineari,j
isotropic or anisotropic function of ~~~ or it can be allowed to depend

on the history of Xj j •
-5-
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Assumption (c) is written in the form:

t
T + p1 — F {E(r ,t)) (2.20)

I
where p is a scalar pressure and ’ E is a deformation measure defined as

the solution of:

aE(r,t) A(t) E(t,t), E(t,T) — 1 (2.21)

where aE/at is a material time derivative. It can be shown that E also

satisfies:

3E(r ,t) = —E(t,t) A(r ) , E(t ,t) — 1 (2.22)

With the generality of Eq. (2.20) ‘this theory is equivalent to the

usual simple fluid theory . Something new is obtained when a special con—

stitutive equation is used. A constitutive equation derived from molecular

theory Is given by [11:

t 1•T + p 1 —  1 m(t—t)K(T,t)K(T,t) dt (2.23)

where K is the gradient ax(t)/ax (r)  and in a scalar kernel func—

tion. Eq. (2.23) is derived from a molecular network model of Gaussian chains

where the junctions are assumed to move affinely with an equivalent continuum.

It can also be derived from a bead—spring molecular model where the springs

are flookean and the bead—spring system is assumed to be surrounded by a

Newtonian fluid which moves affinely with an equivalent continuum. One of

the most important features of this model is that it predicts a constant

viscosity in steady sheaf flow, a result in disagreement with most measure—

mnents. We note that tensor K satisfies the equations (2.21) and (2.22)

with E replaced by K and A replaced by velocity gradient i~,1 of
deformation a.

~~~1. 
-~~~~
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A continuum model which relaxes the affine assumption is achieved by

identifying the equivalent continuum of the models with the history ci but allow-

ing the molecular models to move affinely with history B by replacing

K in Eq. (2.23) with E.

t
T + p1 — I m(t_T)E(T,t)E(T,t)t dT (2.24)

In what follows the consequences of (2.24) will be investigated. There is

one additional parameter, a, in this new theory as compared with the aff ine

molecular models which lead to (2.23). The choice of this parameter allows

better agreement with experimental results than can be obtained with the

affine model. In particular, the viscosity is now found to vary realisti-

cally with the shear rate.

An alternate constltutive equation is obtained by integrating (2.24)

by par ts, to obtain

t 
1-

T + p1 — I G(t—T)E(t,t)D(T)E(T ,t) dT (2.25)

where

m(t) — — 0(t)

and 

D - (A + At) (2.26)

is the rate—of—deformation tensor of 8. Note that D a * fromij (i,j)

Eq. (2.19). When a — 1 the new model agrees, of course, with the affine

molecular model (2.23). ‘As a -~~ 0, it becomes the co-rotational model of

Goddard and Miller [7]*that is discussed by Bird , Hassager and Abdel—Xhallk 
‘

[3]. In what follows we assume that 0 < a < 1 because it is found that

values of a in this range yield good results when compared with experi—

ment whereas negative values of a do not yield good results. Note that

*Iu taking the limit, Ga is held fixed as the kernel in the co—rotational
model.

7-



a — —l corresponds to a so called covariant model (equation 2 of table 6.4,

ref. [1]).

3. Simple shear flow. We next examine the results predicted by the

non—affine model for simple shear flow. This flow is defined by:

— K(t) x2 , *2 
= x3 0 (3.1)

the velocity gradient and rate—of—deformation tensors are

0
’

A —  0 0 (3.2)

0 0 0

ro 1 o [
D ”~~~a K  J i  0 o J (3.3)

Lo o oJ
Integrating system (2.21) yields

E11 E22 cos(X s) 

7

E12 — sin(A s) 
.

(3.4)

— — sin (A a)

E31 — E13 = E32 E23 0 , E33 — 1

where

A — .
~ I”i~~ , I K(t ’) dt’ (3.5)

The constitutive Eq. (2.25) yields:

-8- :
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T12 — a G(t—t) K ( r )  cos(2As) dt

+ p — a I G(t—t) K(r) sin(2As) dt

(3.6)
1—a• T22 + p — — j ~~~ (T11 +p)

T33 + p — O  , T13 — T 23 = 0

Normal stress differences are given by:

• — T22 
-
~~~~~ I G(t—t) K(T) sin(2Xs) dT 

7

1 (3.7)

• 
T22 — T33 — — -

~~~ (1—a) (T11—T22) J
For the sudden start of shear defined by K(t) = 0 for t < 0 and

K(t) — k — constant for t > 0, we obtain for t > 0 ,

t
— a k I G(t) cos(2Akt) dr

0
(3.8)

T11 — T22 ~~ I G(t) sin(2Akt) dT 
-

Note that the first maximum of T12 occurs at strain kt = mr/4 A and is

• 
-
~ independent of shear rate. In this theory the parameter a can be chosen

~~~
, 4 to cause the first maximum to occur at any given strain, whereas in the
‘I• 
• 

I co-rotational limit the first maximum must occur at kt = 1T/2. The affine

molecular model, with A — 0, does not predict overshoot. Examination of

same data for solutions given in [3] indicates that the maximum occurs at

a strain of 2.9 to 3.4, which corresponds to A between 0.23 and 0.27 and

a between 084 and 0.89. For a melt data [8] indicates a maximum at a

strain of 4.7 which corresponds to A — 0.17 and a — 0.94. We note that

our model , as does the co-rotational model , predicts stress components that

undergo an infinite number of damped oscillations with time. For normal

U —, ~~~ - _______—- -—~~~~~~~~~~•—~~•~~‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



stress dif f erences, the first maximum occurs at twice the strain as the first

maximum of shear stess.

• For steady shear flow, K = k = constant for all time, we obtain s =

• 
k(t-t) and viscometric functions:

T

~ (k) — —
~~~~~ = -

~~ a I G(T) cos(2Akt) dtk 2 a

T - T
‘V (k) — 

11 22 = ~~~~ I G(t) sin(2Akt) dt (3.9)
1 k2 2Ak

‘V2
(k) = 

T22-T33 
= — (1—a)

The present model predicts negative ‘V2, which agrees with most experimental

results. If we take a = 0.87 for solutions and a = 0.94 for melts, we

obtain ‘V2 
—0.07 ‘Vi 

and ‘V2 
= —0.03 ‘Vi, respectively.

Any of relations (3.9), which are Fourier transforms, can be inverted

to yield expr essions for kernel G in terms of fl, ‘V~ or ‘V
2
. In

principle, we can use these relations to determine C from data on 11,

or ‘V2. If the experimental material behaves exactly according to our model,

each equation will yield the same result. The co—rotational model can be

used in the same manner to determine C. The affine molecular model predicts

constant n and ‘V and gives ‘V 0 for every C.1 2
These equations can be used to derive relations between the viscosity

function n and the normal stress functions ‘V1 and ‘V2. For example,

f rom (3.9),

~ 
Tl(x1 ri Ck) dx —

~. dx
— a ~ 2 2 ~ G(t)[cos(2Arx) — cos(2Xik)] di

O k  — x  0 
~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



On interchanging the order of integration and using

7 cos(ax) — cos(ak) ~~ - sin(ak) (3.10)
0 k — x

we obtain

~~ 
~~~~~~~ : :~‘~ 

dx — j~ l’1(k) (3.11)

Eq. (3.10) can be derived by writing the integral as a Cauchy pr incipal

• I value and evaluating it using contour integration. Eq. (3.11) can be made

to match experimental results for polymer melts and for polymer solutions

given in [3] by taking A — 1/6 and A — 1/4 respectively*. These values

of A agree well with those obtained from the shear start up experiments.

• Note that the value of the first maximum of shear stress in sudden start

up is related to the steady shear viscosity given by (3.9) by

co cos(~~x)
T — — k I fl(kx) dx (3.12)
maX iT 0].— x

2

where k is taken to be the same in each flow. This equation is obtained

• by inverting (3.9) to obtain G(t) in terms of ri(k) and substituting

the result in (3.8)i with t — Trf4Ak. This result is independent of

mater ial quantities 0(t) and a. In par ticular this prediction agrees

with that of the Goddard—Miller model.

• For oscillatory shear flow, we set

K( t) — k cos(wt)

8 — (sinwt —, sin~rr)

in Eqs. (3.6) and (3.7). If the factors cos(2As) and sin(2As) are

expanded in series of powers of k and the leading terms retained , we

obtain the following results for small amplitude oscillatory shear flow:

*Eq. (3.11) was derived in [31 for the co—rotational model, A — 1/2, and
empirically modified to the form (3.11) in order to fit experimental data.

,
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ :

__ - ‘ -  

~~~~~~~~~~~~~~~



T12 — k (ri ’ coswt + fl” sinwt)
(3.13)

— T22 k2(0 + 0’ cos2~t + 0” sin2wt)

where

r)’(w) — -
~~~ a I G(T) cos~ r di

0

— -
~~~ a 1 0(T) sinwi di

0

— i~ 1 0(T) siniirr di (3.14)
0

0’ — ~~~~- I G(t)(sin2wr — sinwr) di
0

— I G(t)(cosorr — cos2urr) di

Comparison with Eqs. (3.9) shows that the large deformation viscosity functional

forms are related to the oscillatory forms as follows:

— n(~
) (3.15)

= x ‘V1(~~ ) (3.16)

0 (x) — ri ”(x) = -

~~~ ~~~~~ 
(3.17)

8’(x) = ~~~
- [ri ” (2x) — ri ”(x)] = — 

~ 
V~~-~~~ (3.18)

0”(x) a !  [~ ‘ (x) - n ’ (2x) ] A [n(
~

) - T~~ )1 (3.19)

From data on ~~
‘ and r~ parameter A can be determined by shifting curve

Ti’(x) horizontally until it coincides with curve n(x) and us ing Eq. (3.15).

It can also be determined by shifting curve to coincide with ‘V1 and

using Eq. (3.16). The horizontal shifts are performed with the data plotted on

semi—log paper, of course. Data given in (3] for a polymer solution determine

• -12 -
L _ .  

~~~~~~~~~~~~ • 
—~~~~~~~~~
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A — 1/4 from both equations. From data for a melt given in [3] both also

give A = 1/4. f .is is the one melt in six discussed in [3] ~or which

Eq. (3.11) also gives A 1/4. For the other five (3.11) yields A — 1/6.

• For a soap solution, data given in [4] gives A = 1/4 for both shifts.

In conclusion, all data we have examined give values of A between 1/6

and 1/4. We have found that A 1/4 for all polymer solutions and A — 1/6 for

all polymer melts save one. Corresponding values of a
2 are 3/4 and 8/9.

• Note that, from the form of expressions (3.14), the small amplitude oscil-

latory motion can be used to determine the product aG, but cannot determine a

separately. In this sense, the parameter a is relevant to finite amplitude

motions. Note that aG is the “relaxation modulus” of linear viscoelasticity [9].

4. A non—affine general thermo—viscoelastic theory. We now formulate

a theory within the frame work of generalized mechanics [2] that permits

a deformation which is not affine with an equivalent continuum.

The assumptions of §2 are relaxed so that a theory of some generality is

achieved which includes the previous results as a special case. This theory

is useful in that it shows the assumptions made in §2 are consistent

within a more general framework; and it provides a proper setting for

extensions of the special theory.

The governing equations are derived from the first and second laws of

thermodynamics by application of appropriate invariance requirements. This

method is due to Rivlin and Green. We do not include kinetic energy or the

work due to body forces in this formulation. As a result both inertia and

body force terms are left~ out of the equations of motion. These effects

can be added if one wishes.

The law of energy balance and the Clausius—Duhem inequality are :



I ~~p d V — * — . I qdA (4.1)
R A

I b p d V > -  / (4.2)
R A

where

• * — 
A ~~~~ 

+ m~?1] dA (4.3)

is the rate—of—work. p is the stress vector conjugate to velocity i of

• 
history a. t is a generalized velocity field and rn the stress vector

conjugate to it. x and t are identified with the same quantities of §2

by a8su~ing they transform according to Eqs. (2.9), (2.11) , (2.12) and

(2.13). R is a neighborhood in the x~ 
— coordinate space with surface A. u

is the internal energy density, p the mass density, q heat flux, 0 temperature and

s the entropy.

Tetrahedron analysis of (4.1) yields:

+ m~i~1 — q — (P
1~X1 

+ — qj
)mj (4.4)

where P and M are stress tensors 
~ 

the heat flux vector and n the

unit normal. Tetrahedron analysis of (4.2) gives

q — q~n~ (4.5)

Under a translation of frame given by (2.9) and (2.11) with Q — 0 we

require that (4.4) remain invariant. This implies that

P
1~n~ (4.6)

Equations (4.4), (4.5) and (4.6) imply

M n  (4.7)

Use of (4.4) and the divergence theorem in Eq. (4.1) allows one to write

the latter as a single volume integral from which the local form of the

first law follows.

-14-
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~ 

— P
ij,j

ki + P
ijii~j + ~~~ ~~~ 

+ — q
~,1 

(4.8)

For (4.8) to remain invariant under a translation, we must have

Pij,j 
a Q (4.9)

which is an equation of motion expressing the balance of linear momentum.

With (4.9) one term can be deleted from (4.8) . For (4.8) to be invariant

under transformatiotis (2.9), (2.11) , (2.12) and (2.13) for all ~ satisfying

(2.10) , we must have

+ Mi~~~
r
~ 

+ MjkFjk —

— P~1 + Mjk kr~ + MjkFjk — (4.10)

which is an expression of the balance of angular momentum.

The local form of law (4.2) is

— + q1 0,1 (4.11)

Introducing the free energy h u — Os and eliminating q1~~ 
between

(4.8) and (4.11) gives:

pf — psO + P1~i1,~ +

1 .+ M
1~
r
1~~ 

— ~ q1 
0,~ + i,

where the la8t term has been added with a pressure multiplier p to account

for the assumed incompressibility constraint

(4.13)

F As thermodynamic extensive variables we use 0, and where

the latter are defined as solutions of the systems

• 
V 

(t , r) xi,kH)~j  , H
~V(T ,r) 

~ 
(4.14)

-15-
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(ti) — 
~i;it~i~~ ‘ H~~~(T,T) — (4.15)

The free energy is assumed to depend on the history of these variables as

well as explicitlyon 0(t).

t
h(t) — ii {t, 0(t), 0(r), H0~ (t,r), H~

2
~(t,r)} (4.16)

A chain rule* for nonlinear mappings yields:

i1(t) — -

~~~~~ 

+ è(t) + ~5i~1(t,O( t) , O(r) , ~~~~ H~
2
~ ; 

aH U)

t aH , H ~ at ~ (4.17)

where -
~~~~~ indicates partial differentiation with respect to explicit depen-

dence on t holding the other arguments fixed and 6h
1 and 

~~2 
are

mappings which are linear in their last arguments. The use of this linearity . -

• and Eqs. (4.14) and (4.15) allows us to conclude that is linear in

I ~(t) and 6h2 linear in t1 k(t) to obtain the forms:1,..

(1) ‘2’ 
______(t ,e(t) , 0(r) , H , H’ ‘; at (4.18)

t
•~~ • .6 h 19)(t~O(t ) ,e(~r)~ ~~~~ ~ (2)

) i
1~~
(t)

• 
• (1) (2) 

_____

• ~~2 (t ,O(t ) , 0 (t) , H , H ~ (4.19)

— Sh~
2
~ (t ,6(t) 0(r) , ~ (l) , H~

2
~) i~ (t)

ii ,.1
t~~.

rules of this type are discussed in (51

• 
_ _ _



_ _ _

Using (4.17), (4.18) and (4.19), the second law, Eq. (4.12), takes the form:

+ ~ q1 0,~ < -  p(s + 
~~~~~~ 

O(t) +

+ (P~~ + ~~ 
- 

~ ~h~~~) I~~ (4.20)

+ (N~~ - ~ 6h~~ ) 
~~~If the rates 0 , i , and f~ are independent, (4.20) can hold fori ,j i,j

all values of the extensive variables only if

• 5 ae(t) (4.21)

N — O  (4.22)ij,j

+ p - p 6h~~~ (4.23)

— p 6h~~~ (4.24)

The Cauchy stress tensor is given by

- P~~ + - - p61~ 
+ p ~~~~ + p ~~~~ (4.25)

The second law (4.20) reduces to

~ 0 (4.26)

With (4.22), Eq. (4.10) takes the form

+ N~~F~~ _ M
~ a + NjkFik - N~1 (4.27)

while the first law (4.8) becomes

+ ~~~~~~ — (4.28)

When the rates in (4.20) are dependent, we postulate that Eqs. (4.21) through
(4.28) still hold. These equations then imply that the second law in th. form
(4.20) holds but are more restri ctive.

-17 -
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The basic equations are (4.9), (4.13), (4.14), (4.15), (4.21), (4.22), (4.23),

(4.24), and (4.28). To these must be added a vector equation of heat con-

duction. The variables in these equations are P~~, M~~, x~, rj~ qj, a, 0,

and ~~~~ Note that p is considered known and u in (4.28) is

given in terms of other variables by u — h + Os. The constitutive equations

(4.23) and (4.24) must be compatible with (4.26) and (4.27).

In the special theory of §2, we have

• y
i~ - A~ - + (4.29)

If we take the free energy functional (4.16) in the form

h(t) — f  m( t— r ) tr (E E~) di (4.30)

and carry through the steps leading to (4.17), (4.18) and (4.19), we get

-

~~~~~ 

— ~~~~ n(0Y + I ~~ (t—r) tr (E E~) dr (4.31)

— a -
~~~~~ 

f  m (t— r )  EikEjk dr (4.32)

Substitution of (432) in (4.25) yields the constitutive equation (2.24).

Substituting (4.31) in inequality (4.26) gives a restriction on the kernel

function m.

• • 5. Concluding Remarks. Under assumptions of ~2 the history 8

coincides with the smooth deformation a at Current time, but at other

times 8 represents an incompatible deformation of a. In this sense we

can. say that the deformation B is inhomogeneous. This idea is similar to

that used by Noll (2] (4] in developing a theory suitable for describing

a continuous distribution of dislocations where use is made of an

-18..
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inhomogeneous reference state. Noll’s theory would seem to be more suitable

f or describing the behavior of materials with a preferred reference state

whereas the present theory is more suited to fluids.

We note that In the thermodynamic theory developed by Coleman (see [51

for references) the free energy is assumed to depend explicitly on the

current value of a strain measure and to be differentiable with respect to

this measure. In the present theory an assumption of this kind is not

needed , the free energy functional (4.16) depending only on the history of

strain measures ~~~~ and ~~
(2)

• It has been pointed out by Astarita and

Sarti [6] that this assumption made in the Coleman theory is a serious one,

implying that the material can support a jump in strain, a deformation not

possible in a Newtonian fluid. Thus the Coleman model excludes Newtonian

fluid behavior . Since this assumption is not made in our model, it may

be more suitable for the description of fluid behavior , both viscous and

• viscoelastic. The reason the assumption is not needed here is because of

the use of strain measures H~’~ and H~
2
~ defined by differential

equations (4.14) and (4.15).

Finally we wish to thank our colleagues in the Rheology Research Center

for their helpful discussion of this paper. We especially thank

Professor R. B. Bird for his detailed suggestions and Professor Arthur Lodge

who provided the motivation for this paper by pointing to the need to relax

the affine assumption of the molecular network theory (Ref. [1], pp. 232—235).
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