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SIMPLIFIED POINT AND INTERVAL ESTIMATION
FOR REMOVAL TRAPPING

Andrew P. Soms

(] 1. Introduction

A thorough discussion of the removal trapping method of estimating
animal and insect populations, togetﬁer with limitations, is given in [6],
pp. 182-6. It is pointed out in [4] that this method is particularly suited
for insect populations. Briefly, there are assumed to be m organisms
in some fixed area, k trapping or sweeping periods, k > 2, and each organ-
ism is assumed to have a constant probability p of being captured in any of
the k periods, independent of the other organisms (The organisms are
not released when captured). If the trapping probability is p, then, as
pointed out by Moran [5], p. 308, the joint density of the n,, l<i<k,
the number of organisms trapped in each of the periods, is
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where 0 < p < 1. The above is seen to be a multinomial distribution,

i-1
with k + 1 categories, and parameters m and p_1 = p(l—p)1 ; liiik 5
k . k i-1
T (I=p)" =1 - \‘: pi =1 - E p(l-p) . It is desired to estimate
1 1
m and p and give asymptotically exact confidence intervals. In [5] a

and pk*
method based on maximum likelihood is proposed, which is elaborated

upon by Zippin (7]. In addition to replacing m! by Stirling's approxi-
mation, the effect of which is not clear, both Moran [5] and Zippin (7]

state that the usual reqularity conditions for the joint asymptotic normality
of the maximum likelihood estimators are not satisfied in this case (in
addition to other assumptions, it is assumed that the parameters being
estimated, m and p, remain constant, which is not true here, since

the asymptotic behavior is for fixed p as m - %), and then they pro-
ceed in the hope that somehow a justification may be produced without
giving it. Further, even if these difficulties are neglected, the estimating
equations are either implicit, requiring iteration, or after some approxi-
mations, require charts. Here two theoretically justifiable methods are
discussed, both based on the limiting distribution of the multinomial,

which give the estimates explicitly as functions of Nyyevey Dy o The

first is a modified method of moments and the second is based on regression

estimates.
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2. The Modified Moment Estimates

-1

1

1=k

geometric mean of the k -1 estimates to obtain the estimate

r AL By e 1=y Pk 1 /k-D
q:]-p:(n—;l-—,..;——') =(—n"‘) ’
1 2 k-1 1

only if n,_ >n

k I’
k
0 . Since E(% ni) = m(l~(1-p)k), the moment estimate m of m is
§
n,
i o0 TN
% B
1-(1-p)

Since Eni /Eni =1-p=aqa, 2<icx<k, equating expectations to
the observed values gives ni/ni =1-p =434 . Note that this is defined

onlydfin > ni . To minimize this effect it is reasonable to take the

and this is the estimate to be considered here — note that it fails to exist

an event which will be shown to have limiting probability

Consider now the problem of asymptotically exact confidence inter-

vals - a reasonable assumption is that p stays constant and m — «©

The asymptotic distributions of p and m will be obtained by using two

results - the joint asymptotic normality of n = (nl, e nk) and a result

given in Anderson [1], pp. 76-7. It is well known that as (pl, ey p‘<)

stays constant and m - » |

s i W
(——71, 1<i<k) =~ NO,R) ,

2
(mpiqi)

w
("= " means convergence in distribution), where

(2. 1)




1
2

R= Iwij], p;y =1 and for i j Pij = ~(pipj/(qiq )

j

(see, e.g. Johnson and Kotz, [3], p. 284) - recall that here P, = p(l—p)i.l ;
l< i < k (also for notational convenience p1 = p, GI == P = q), and
hence it suffices to keep p constant. The result cited in Anderson is.
Let f(;) be a function with first and second derivatives existing in a

neighborhood of ¥ = E, b= (bI, v s ’bk) a fixed vector, and suppose

Vn(U(n)-b) % N(B,T) . Then

N (£(U(n)) - f(b)) W N(O,2;Te,) , (2.2)
where &' = (~a—f R o The mptotic distribution of 1-5
e axl""’axk)b asympto p

will now be obtained. It follows from (2.1) that

[N

— 1
Vmn/imea) ) - (0/a)?, 1<i<k ¥ N, R, (2.3

1
= = ] o 2
where R = [pij]’ Py l, and for i#j, pij (pipj/(qiqj)) . Take

f(x) to be
1/(k-1)

(2.4)

LY [

= 1
In all that follows, b = ((pl/ql) y owug (pk/qk)’) - Then, using (2. 2),

V(o /mp 5 By < R en gDy
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since




of 3

L LS g /
‘axl)b = -(1/(k-1)) a(a/p) * ,
2.5)
of ; k- k-1 4 (
(Gam)z = (1/k-1) a((d-pa” ) /tpa" T2
k

2
and ¢' R® :o-p . Therefore also

I (B - p) % N(o,crf)) i

where p=1 - (nk/nl)l/(k'l), or, equivalently, D is asymptotically

A

N(p,cri/m) . Using the same technique on m, let '

k/(k-1)
~ k 1 x, NP _d
g(x) = () x.(p,a)?)/|1- S kX ; (2. 6)
Byl = Bl AT

Then

1

1 k
—Z )~ = 2/l . i
(ax)b—(piqi) /l-q”)y for 2 <i1<k-1,

9 1 k 1 k

(3205 = (pQ)7 - (k/(k-1)a (a/P)?)/1-a") , (2.7)
1

2Ly~ = ((p.a )% + (k/(k-1))a(p, a )%/p)/(l-qk)

Bx,'b " kK k'k

Since g(g) =1, by (2:2)

Jm (i /m-1y 2 N(O, @} T2 ) ,

9 0
where @ =(5f-,. —

b 450y axk )g In order to evaluate

1 1
' ¥ 2 2
q) g T¢ b} let a = ((plql) y =9y (pqu) ) |




1

, k 3 ]
and b' = (-(k/(k-1))(1-p) (q,/p)“,O,---,0,(k/(k-l))(l-p)(rly':y)" p) . Then

QJ'b'I‘d)b = a'Ta + 2a'Tb + bTb, and after some algebra,
: 2 k+l k k-1
b'Tb = (k/(k-1)) (@ /pMa +pa ~+1) ,
a'Th =0

’

SEPai=VlE qk - (l-q(‘)Z

2 k-
Hence @110, = ((k/(k-)"(a" " /p)(1+pa" T +a") +a" (10 /0% = 02

So Nm(p-p)X N(o,ai) and (m-m)/m ZV»N(O,O'an). Since p— p

A 2 2 2 2 .
and m/m - 1 in probability, crg W S S in probability (o'é and

2 2 A
G%n are obtained from ap and e by replacing p by p, g by a) and

7t o L
the limiting distribution of both (f)-p)/(rra/mz) and (m-m)/(cr?nm s
the standardized normal, and therefore asymptotically exact (marginal)

l-a confidence intervals for p and m are

D + 2z A I?l
p do—p/ ’

(N[

-~
m £ z2 oA
a m

B

where za is the upper 100c>zE percentile of the standardized normal. A
Monte Carlo example is now given to illustrate the asymptotic theory.

Three cases were considered: p=.4, k= 3, and m = 100, 200, and 400.

In each case 1000 random samples (using computer generated random numbers)
were taken and for each sample the point estimates and confidence inter-

vals calculated. Two coverage relative frequencies were computed - the

relative frequency Cl of the estimate lying within *¢ and % 2¢ of the

ot i

true value, and the relative frequency C2 of the estimated confidence

interval covering the true parameter value - the latter is, of course, of

b o




the greatest interest. The results are given in Table 1. Here ¢ is the
theoretical standard deviation (st. dev.) and ¢ is the standard deviation

estimated from a sample.

1. Monte Carlo Results for 1000 Samples

a. p

Sample Sample E e
P m Mean o st. dev. Cl(#le) Cl(#2¢) C2(zlg) C2(%20)
.4 100 . 397 .092 . 090_ .68 .96 ;70 .97

O
.4 200 .399 . 065 —bos- .68 .96 . 68 . 96
.4 400 .401 . 046 . 045 .70 .96 7.0 .96
b. m

.4 100 105.0 13,7 22.1 .69 - 92 ~ TS 092
.4 200 204.1 19.4 22.3 .69 .93 .13 +93
.4 400 403.7 27 =5 28.8 .69 . 94 .69 . 94

An alternative procedure to using ¢ in the confidence intervals is
to correct for bias in the point estimate (e.g., for m =100, 5.0 is sub-
tracted from the estimate and this is considered to be the new estimate)
and to use the sample standard deviation s (here based on 1000 random
samples). As might be expected, this results in slightly conservative
intervals. The results are given in Table 2, based on 1000 simulations
in each case. In practice the sample estimates would be used as the true

values in the simulation.




2. Coverages with Bias Substracted

when Sample Standard Deviation is Used

a. p

p m Cl(=s) Cl(%25s) C2(%s) C2(%25s)

.4 100 .68 .96 .70 « 97

.4 200 .68 .96 .68 .96

.4 400 .70 . 96 .70 . 96
b m

.4 100 .61 93 . 89 .97

.4 200 .65 . 94 T .96

.4 109 267 =95 . 69 . 96

Sometimes before the trapping experiment is begun, a preliminary
estimate of p is available. In this case k, the number of trapping periods,
can be chosen so as to minimize the variance of p - because of the im-
portance of p in this method of estimation this is a reasonable optimality
criterion. The function to be minimized, apart from multiplicative con-

2 k-1 ; : . .
stants, is f(k) = 1/(k-1)"(141/g" ") . The minimum is obtained by setting *

the derivative equal to 0, the resultant equation being
z
g +1=(«inqg/2)z ,

z =k -1. Table 3 gives the nearest integer to the exact minimum value,

which is readily obtained by iteration, as a function of selected g




3. Optimum k Values

a i
® .95 14
90 22
85 15
80 11
70 it
60 5
50 4

The customary statistic used to test the adequacy of the model is

i-1

AR 2 A A A A A
Z = (ni = mpi) /(mpi), where P o= o(l1-p) . It is not at all clear,

= o

in this or, of course, the maximum likelihood case, that Z has an
asymptotic (p fixed, m — ) deistribution with k -2 degrees of
freedom (d. f.), since the usual regularity conditions (see [2], pp. 500-1,
506) are not satisfied. The empirical approach given here consists of
using (2. 2) to obtain the expected value of the limiting distribution of Z
and then to fit a x2 distribution (as is done with good results in fitting
the distribution of sums of xz random variables) by estimating the d. f.
using the parameter estimates. The observed value of Z is then compared
to the upper 1000:5}l percentile of the fitted xz (using interpolation on the
d.f., since in general the fitted d. f. will not be integral). Specifically,

consider

1 i
~ = 5 st — ~ i-l
(%) = x,(p,0)7 - g(x)(1- ) (Ex)) T,




where f(x) and g(x) are given by (2.4) and (2. 6), respectively.

Note that fi(b) 0 and thus from (2. 2),

1 ;

L Loy ny /(mpL a0 %) - \/mfi (u)

LY

\mfl, (nl (m(pl:‘x,1

— anad-l w2 :
f\‘m((ni-mpq )’m)—’N(O.ui) g (2.:8)
9f (x of (%
where o & ‘e TOD -~ e (jfi(X) fiu) 5
e T e Ml N 5

Z .
Using (2.5) and (2.7) and the chain rule, an expression for o, can be
obtained, e.gq.,

af (% ) ) ~ .
Tgagive. ss = 9g(x) o el )
( o, ol b, el iast sk

and similarly for the other derivatives. Even though explicit expressions

2
do not appear practical, o, is easily evaluated by means of a short

1
2

computer program. Since (m/m)? - 1 and Bi—»p in probability, it

follows from (2. 8) that

AAni-]

A A —-l-
(n, - mpa )/(mpi)2

2
-~ N(0, 0, /Di) )

k
AAni-l12 A A
and therefore the asymptotic mean of 2 = S (1’1i - mpg ) /(mpi) is

k 1
2
= Z o—i/pi . Replacing the parameters pi and qi by their estimates
1
A
pi, ai in p gives the estimated d. f. of the distribution of Z, and using

these d. f. a cut-off point for the adequacy of fit test can be obtained

from tables.

* 0=




3. Regression Estimates

The method of mcments given above depends on the "extreme"
values nl and nk and therefore in cases where the trapping periods
are too short and hence the data show considerable fluctuation, it may be
preferable to use an estimate of p depending on all the data. As sug-
gested in [4], a simple check is to plot ny against i on semi-log paper
and see whether the plot approximates a straight line. If yes, the method
of moments with its attendant computational simplicity can be used, and

if no, then the regression method discussed below may be used.

It is pointed out in [5] that log Eni = log Hy lie on the straight line
log B, = i log(l-p) - log(l-p) + log p + log m , (3.1)

but this method then is dismissed in [5] by saying that the usual assump-
tions of regression theory are not satisfied. Here a different approach is
taken - namely, the point estimator of p suggested by regression theory
is used but then, in place of the usual regression theory, the limiting
distribution is obtained from (2.2). The regression equation suggested

by (3.1) is
logni:i6+a+ei, I=igk ,

where B = log(l-p) (to any base), « a constant, and & the error term

which will be of no interest here. The least squares estimate ﬁ of B is

k
k+l k+l 2
B = ttognytd - /0 -

=1l =




k
Since \ﬂ’ i~ = (k)(k+D)(2k+l) /6
1

)

k+l
2

it i

“
)/(k(k™-1)/12)

B = ,(logn))(i -

—

Then the corresponding estimator 1 -f) of 1-p is

c

i
e (3.2)

k
1-8= Tl n
1
. 2 .
where E0% (i-(k+1)/2)/(k(k -1)/12) . In order to show that (3.2) is
consistent for p and to obtain its asymptotic variance, it is just as
easy to consider general estimates of 1-p of the form (3.2) with the ci
arbitrary and to determine the conditions on c,1 needed for consistency.

Let

0 h

k
he) = The o)y . (3. 3)
R
Then, using (2.2) and P, = p(l-p)i'1 y

C,

Lt B

et k Ci i k Ci
N (TTn, ' /m =les,
p 1 ] @
k k k-1
k e, ;ci ;ci Z; oin
i
= m (T n,*/m B (=9 )
1
k
Therefore a sufficient condition for consistency is E ci = 0 and
k-1 1
Y ic, , = l, and in this case
LT 4]

1

]




ke,
N (TT ni1 - (1-p)) z N(O,Ui) )
1

2
where gr is determined in the usual way from (3. 3) using (2. 2). It is

noted that for €y = (i- (k+1)/2)/(k(ki-l)/12) these two conditions are
k
satisfied, since clearly TI gy = 0 and, letting ¢ = k(kz-l)/lz ’

k-1 k] k-1, k-1
}; G ) i(i+ 1-——)/ (Zl‘ 1° = (k=12 ; i)/c

(k-1)(k)(2k-1)/6 - k(k>-1)/4)/c = ]

2
So, for this choice of S &y = @ B0

b b
Bh(x oh(x 16
b:(La(:—)-,...,—g%—))g and since —— (x) (c/x)ﬂ—(x (pq) )
1 k i
dh(x),_ _ 1
Co e /e g s (3.4)

i
2 7 K 2
t — c SN2 C
Therefore, after some algebra, 4L q (; i(qi/pi) ;<2;' cy j)
A satisfactory estimator of ?n is obtained by the same argument as

for the moment estimator, namely,

A
m =

ak
ni/(l‘(l-P)) ’

v—-MW

where 1-p is now given by (3.2). As before, let

g(x) = T X /(1-(TT(x qu)
1

=] 3=




H Then, by (2.2),
£ w 2
\'nw(;; -1 - rq(o,oin) ,
y d d
whats ot & ' T® _,®' = (gf- ,...,-a—xg)g and
P e F 1 k
5 ok
( g, _ (p,q,)* + kci(qi/pi) (1-p) b
8xi b 1-(l-p)k
k 22 RS o]
2 .
Therefore, after some algebra, o _ = E it kg ) c,2 =
4 m k ke 2 R D
l-.gw (I-g) 1 i
2 V‘ (&)
7

It should be noted that the moment estimator of 1-p, (nk/nl)l/(k'l) ,

is a special use of (3. 2) with c = -1/(k-1), By 0, 2<i<k-1, and
k-1
= = i (2 = v i = - - =
Cy 1/(k-1), since | te, 0 and L e, (k=1 /(k=1) = 1.

The discussion of lack of fit is completely analogous to the method
of moments, except that the partials are different but again obtained by

the chain rule using (3.4) and (3.5) and evaluated by a short computer

program. Specifically, let fi(;c) = xi(piqi)% - g(;)(l_h(;q))(h(;))i'l
Then
Mo osgiEpo el oo geE BhE). | 1Al ShiR)
(gj")b = ~l&5s N5 P4 = (shipg (T)b +q (W)b ;

1
for i #j, andif i=j, (picli)2 is added to the above expression in

which j has been replaced by 1i.

<Jd=




4. Numerical Examples

The two methods of estimation discussed above are applied to the
data in [4] and [5]. First, consider the rat data in [5] consisting of

k =18, n = (49, 32, 31, 34, 16, 33, 22, 27,17,19, 18,16, 18, 12, 14, 12,17, 7)

3
If a semi-log plot of n1 against i is made, it can be seen that there is

a large variability in the data, suggesting that the intervals are too short.

small compared to the line sug-

In addition, n1 appears large and n18 .

gested by the other points, and thus the moment method should under- |
estimate m, which Table 4 shows (This is also reflected in the large
calculated Z wvalue). If however the data are grouped into 9 trapping
periods with ngi =N LT S R =R 2R, I ithelisemi-1ogi pletiis

much smoother and the moment method gives comparable point estimates to
the regression method, even though the variances are somewhat larger, as
is seen in Table 4. The maximum likelihood estimates and their estimated

standard deviations (s.d.'s) given in [5] are m = 520, 32.9 and p=.0756 ‘

. 00933 (the estimated standard deviations for the estimates discussed here

o)

for 1?1). Note that in

~ l A A
are understood to be 54 /m? for p and oA m

terms of p for the original data, the probability of capture p' for the

grouped data is p' = p + p(l-p) .




4. Moment and Regression Estimates for the Rat Data

—

Original data Grouped data ‘

Parameter |
j Moments Regression Moments Regression

P . 108 . 0737 . 141 . 139 ‘

s.d. . 0212 .0100 . 0260 .0186
)

m 452 5217 529 533

s.d. 29.4 37.0 51.0 39.0

Test of fit
Z 31.9 17.4 2.00 2.08
d. f. 23. 3 16. 1 11.2 7.11

It is pointed out in [4] that removal trapping is sometimes the only
feasible method of estimating insect populations. The example discussed
there consists of the number of maccolaspis flavida, ni, caught in k = 10 1
sweeping periods (the data in [4] were actually grouped), with n =

(72, 63,44, 32, 31,23,17,18,11,13). Using a somewhat involved graphical

method, which does not yield any interval estimates, Menhinick obtains

B = .212 and m = 359. The complete results for this example, for both

the moment and regression method, are given in Table 5.

-16-




for the Insect Data

5. Moment and Regression Estimates and Fitted Values

Parameter

s.d.

Data

72

63
44
32
31
23
17
18
11
13

»n © W A o

.
—

O B B

Moments
. 173

. 0289
381

24.8

Test of fit
4.59

12.3

Predicted Values ﬁi

=
—-
1
=}
-

o
T S I S B R R L =

5 | 59

Regression

. 188
.0198

370
14. 8
3.28
8.29
ni ni-ni
69.5 =255
56.5 -6.5
45.9 5]
37.3 5.3
30. 3 - .7
24.6 1.6
20.0 3.0
16.2 -1.7
13.2 ol
10.7 -2.3




5. Concluding Remarks

The purpose of this paper has been to give two statistically justifiable
and computationally simple methods, the moment and the regression, as an
alternative to the maximum likelihood approach which suffers from two
deficiencies; the standard regularity conditions for the joint asymptotic
normality of the maximum likelihood estimators are not satisfied and the
estimating eguations are either implicit or require the use of charts.

Listings of short computer programs that calculate either the moment

or regression estimates, standard deviations, and the adeguacy of fit

statistics are available from the author. The moment and regression estimates
and their standard deviations are also readily computed by hand.

The methods discussed here should also be useful in other cases where
the data is multinomial and the standard maximum likelihood regularity

conditions are not satisfied.

T
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Two methods, the generalized moment and the regression, both based . :
on the limiting distribution of the multinomial, are given for estimating the
parameters in the removal trapping method of estimating animal and insect
populations. Some finite sample size results are provided indicating the speed ]
of convergence to the limiting distribution. Numerical examples are also
discussed.
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