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ABSTRACT

A genera l theory is developed for the estimation of linear functionals ,

in three distinct classes of nonlinear problems. The functional Is linear in

the solution vector x 0 of the problem , an example being (x 0, p) where p

is assignable.

The considered problems are all generated via the gradients of some

given quadratic or non-quadratic Lagra rigian functional over two inner

product spaces. This may be a saddle functional , or it may be constructed by

embedding a given nonlinear problem with the aid of a Lagrange multiplier .

Many different problems in applied mathematics are thereby included.

in some cases the assignable coefficient can be chosen in such a way

that the bounds calculated for the linear functional are pointwise bounds on

the solution vector . In general this requires further investigation , but

estimation of the deflection at a point on a cantilever beam is illustrated in ~ 6.
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GENERAL ESTIMATES FOR LINEA R FUNCTIONALS IN

NONLI N EA R PROBLEMS

M. J . Sewell and B. Noble

1. Introduction

(i) Scope of the investigation

This paper presents the results of a general study of systematic

methods for getting upper and lower bounds to the solution-values of

linear fu nctiona ls.

A new theoretical framework is set up for this purpose. It contains

a wide class of linear and nonlinear problems which can be defined in

terms of the gradients of some given quadratic or non-quadratic generating

functional. It is often important to be able to construct , using an

assignable coefficient , a linear functional of the solution of such a

problem , and to estimate its value. This can be related to the problem of

finding pointwise bounds.

The framework exhibits in a natural way three different types of

situations , requiring different methods which we call the general optimiza-

tion method (~ 2) , the general embedding method (~~4) , and the nonlinear

programming method (~ 5) .

This research was sponsored in part by the United States Army under Contract
No. DAA G29-75-C-0024 , and in part by the University of Oxford Computing
Laboratory and the University of Reading Mathematics Department.
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Under ly ing  these s i tuat ions  is an ippropri ate generalization (~ 3)

of the seco nd mean valu e  theorem , al ready indicated in our earlier j oint

p3per (Noble and Sewell , 1972 , equation ( 5 .  3 ) .  In pa rticular this can be

used to provide suff ic i ent  conditions for sa t isfying a saddle inequality

in the form proposed by Seweli (1969 , equa tion (2 .  5 0 ) ) .  A saddle

f unctional generates a wide class of problems in applied mathematics ,

as described in the papers cited and in Sewell , l973a , b , where elasticity

and plastici ty are treated in detail from this viewpoint . The general

optimization m ethod applies to saddle -generated problems.

U nder different h ypoth eses on the generating functional , such as

boundedness (instead of positivity ) of operators representing its second

derivatives , th e saddle h ypothesis  may be lo st. In this case the general

embedding method can be available. We show how it recovers some recent

results of Barnsley and Robinson ( 1976 ) .

Problems generated by inserting a given scalar functional into

governing conditions expressed as sets of inequalities are covered in

the section on nonlinear programmin g methods.  They also lead to

inequalities on linear funct ionals .

Remarks on applications are made in §6 .

(ii) Origi n of the research

This Investigation began In an attempt to generalize to nonlinear

problems some approximation methods described by FuJita ( 1955) , who gave

-2-
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a n elementary proof of a theorem of Kato ( 1953 )  on pointwlse estimates

fo r a solution of the linear decomposable operator equation

T T x  f . (1 . 1)

Here x is the unknown and f is given , both ‘vectors ’ in the same

linear space . T is a linear operator and T~ is its adjoint . For example ,

if T.. grad and T . . - div , ( 1.1) is associated with Poisson ’ s equation.

Fujita ’ s paper subsumes in a compact way earlier work on pointwise bounds

by Dia z . Gree nberg and Weinstein , Prager and Synge , and others (see

the references i n Fujita ’ s paper) . It is convenient to recapitulate here

some of Fuj ita ’ s conclusio ns , as an introduction to some of the ideas

required later on.

We introduce an intermediate variable u in order to decompo se

the problem ( 1.1 into the pair of operator equations

T * u — f , (~ )
( 1. 2)

T x ~~~-u .  (~3)

Both here , and in the main genera l theory below , we regard the variable

x as an element of ~ real vector space E having inner product ( .
,.) ,

and u as an element of another , and normally different , real vector

space F having inner product ( •  , .) .  The linear operators map

subspaces E’ and F’ of E and F (respectively) according to the

scheme

T : E ’ -’~ F , T* : F I ~~.. E .  (1 .3)

-3-



Mutual adJointness of these two operators means that

*(x , T u ) ~u , Tx) ( l .4

for all x in E and all u in F’ . For example , when d i f f e rential

*operators fo rm part of T and T , ( 1.4) is a compact way of writ ing

the integration by parts formula.  Many examples of these and other

relevant  simple ideas from functional analysis are given in an Appendix

to the pap er of Noble and Sewell (op. c i t . ) .

We emphasize those values of x and u which satisf y both

(1. Za) and (1. 2~ ) by x0, u0, i. e. by attaching a subscript zero . Thus

x0 is an actual solution of ( 1.1) . Let u be any solution of the single

const raint (1. 2n ’) . Let x~ , u~ be a ny pair sat isfying only (1. 213) ,

so that  x~ is an arbitrary vector in the domain of T and generates

a consequent u~ . In other words 

Tx~ -u~ . (1. 5)

In general u~ # u unless both are u 0 belonging to the actual solution.

Then Fuj ita ’ s conclusions can be summarized as follows.

(a) The dual extremum principles , giving what can be called upper and

lower ‘energy ” bounds in appropriate context s , are (Fuj ita , equation

( 2 . 3 ) )

~ I iu ~ 112 � ~ (x0, f) = ~ llTx 0 11 2 
� (x~ , f) - ~ Il Tx~ 11 2 . ( 1.6)

The norm s here are all in the space F , but later on It will not

-4-
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cause confusion to use the same symbol for norm s of elements of

E. These principles bound a linear functional of x0, with given

coefficient f In E. This can be the actual work of given forces

in mech anical problems.

ib~ If q is an arbitra ry vector In F’ , the linear functional

(u 0 ,q )  - (x 0, T q)

is bounded on both sides by (Fujita ( 3 . 6 ) )

~ Il u~ - u~~lI ll~ ll ~ 
(u + u~ ) - u 0 ,q )  I (1 .7)

a nd also by (Fujita ( 3 . 8 ) )

lu - u~ lI I1~~Il ~ l < u ~ - u~,q)  I ( 1.8)

and

J lu - u~~il lj q li ~~~ J (u - u0, q) I . ( 1.9)

We call (1.8) and (1. 9 )  Fujita ’ s ‘weak’ estimates and (1 .7) his ‘ strong ’

estimate because more Is given away to get the weak inequalities

than the strong one . We shall recover some of these results below ,

by proofs different from those of Fujita , as simple illustrations of

our framework .

Equations (1.7)  - ( 1.9) suggest the following approach to the problem

of obtaining pointwise bounds. Remembering that u 0 = -Tx 0, choose q

*so that T q has a delta function behavior in such a way that

(u 0 ,q )  ~(x0, T*q) = -(x 0 ) (1.10)

-5-
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where x ion to the vr ilue of t h ’  exr io t  n Iuti , i x it the p o in t  P .o p 0

Then ( 1 . ’ , f~ r e x a m p l e , gives

lu - u II II ~ II (x ‘u ,~~~ ) I , ( 1 . 1 1 )
, 0 — 

~~p

and we h~iv e  found pointwise  bounds on x0 ~t P . This procedure is

useful  Lr one-di mensional  pr ,b lems and in two and three d imensional

problems for bounding :u m nt i t i e s  on the boun i~i r i e s .  But if , for  instance ,

we try to bound the potent ial  at an interior point in a problem involving

Poisson ’ s equat ion , a na s to i~chave Ifte gra 1 1/r) near th i s  point

and lI: ~ if involves a divergent  in tegral .  This diff icul ty  has been

circumvented by various authors in an ingenious way,  the essence of

which depends o n choosing q to hav e  the form q - Tp ’ , where

*T q ’ and T Tp h ave exactly the same type of s- func t ion  behavior ,

with ; such tha t  (1 .10) is true with q in place of q ,  and p ’ is

in the domain of T. We can deduce from (1 . 9 )

- u , Ii q ’ - Tp~ 1 > , q)  - ( f , p ’) + (x ) . ( 1.12)
L~’ O p

The expression on the left is finite since q ’ and Tp ’ a re chosen so

that their singularities at P cancel.  A numerical example is discussed

in Fujita ( 1955 ) .

Al though we have been able to obtain pointwise bounds in a number

conc rete nonlinear problems by essentially generalizing (1. 11) , a s for

example in § 6 below , we h ave not been able to find a natural generalization

of ( 1.12) in the abstract nonlinear setting of our work .

-6 -
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o u r  t r ~~i l i sm throws light on some boundi ng principles developed

by Mar t in  see , to r  example  1~ 64 , l”’~~ in the special context of elasticity

and cr oeç~. ~~rt in  exploits  ideas conn cted with energy, complementary

energy , ‘~‘ir tu ri l w r k , etc . We show in §6 that his  formulae apply in a

quite genera l  c •n t e x t  by exploi t ing simply convexity a9d the structure of

the basic equa t ions .  The relevance of convexity in the dual extremum

principles of cont inuum mechanics  was originally pointed out by Hill (19 56) .

(iii Ge neral governing eq uations

Our general  theory is set in the same two inner product spaces having

typical  e lements  x in E and u in F which are described after (1. 2 ) .

~vV~~ consider  the class  of possibly nonlinear problems of generalized

Lagrangian  type

(c ~cx
(1. 13)

( 1~
)

generated by a given funct ional  L [x , u~ of x and u (Sewell , 1973a ,

equations ( 2 5 ) .  The partial gradients in (1.13) are Gateaux differentials ,

as in the fami l ia r  process of computing a ‘first variation ’ and picking out

th e coefficients of increments in the varied argument . Thus the pair (1 .13)

is effecting a va riationa l principle .

The problem (1 .2)  is recovered fro m ( 1.13) with the special example

L = (x , T u )  ~ (f , x) ~ (u , u) , (1.14)

-7-
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us ing  a dj o i n tn e s s  ( l . 4~ before comput ing  oL/èiu . More genera l ly  the

example

I. = x , T u i  - X[ x , u~ , ( l . 1 5

where XI x , ul is another given pc ss ibly  nonquadra t ic  funct ional  of x

and u , generates f r o m  ( 1.13 )  the equat ions

T u  ~~~~~~ , ( a )
ciX

(1.16 )

1~~’ = ,

of H a m i l t o n i a n  type  proposed for study by Noble ( 1 9 ( 4 .  Another concrete

example is generated by

L (x , T u )  + (f , x~ - p (x , x) ~ (u , u> ( 1.17)

where ç is a given scalar .  As with (1. 2) , it is possible to eliminate

u from ( 1. 13) with ( 1. 17 ) and recover a single decomposable generating

equation

(T~ T pI )x f ( 1.18)

where I is the identity operator. Dual extremum principles for this when

p > 0 were studied by Noble and Sewell (op. cit . , §14) .

Problems whose ab in it io version is nondecomposable via an

intermediate variable in the above sense may still be brought into the

scheme (1. 13) by embedding . For example , if the ab initlo equation is

N( x) 0 (1.19 )

where N is a possibly nonlinear operator , we may seek to identify this

-8—



equation as ) I . l 3 ~3) by introducing a u to appear linearly in some L[x , u]

like a Lagra nge mult ipl ier .  This embeddi ng prdcedure induces a second

adjoint ’ eq uation ( l . 13a to be considered in conjunction with (1.19 ) ,

and perhaps containing an assignable coefficient in the linear functional

to be es t imated .  It is in this way that  the work of Barnsley and Robinson ( 1976 1

is brou ght in t o  our framework . Even if the ab initio problem is decomposable ,

it may  still be embedded in the stated manner Into a larger problem.

Barns ley and Robi n son ( 1974) do this in their study of the linear equation

( 1.18) for p 1.

In the general problem ( l . 13~ certain additional hypotheses are

reqoired about the general functional  L{ x , u l .  Typically these set bounds

on the second derivat ives.  In particular the functional may be a saddle

funct iona l .  For example , ( 1.17) is strictly convex in u and , if p > 0 ,

strictly concav e in x. If p = 0 as in ( 1.14) it is only weakly concave

in x. If p < 0 it is not a saddle functional.  Such hypotheses are

made precise in the next Section.

Another source of generalization is that the equations ( 1.13) can

be replaced by systems of inequalities (Inequalities (33 ) and (34) of

Sewell , 1973a ) and dual extremum principles can still be proved under the

saddle hypothesis .  These sometimes contain direct estimates for linear

functionals (see § 5) .

-9-
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2. General ( )j ;t i r : . i zat i~~n Metho d

— a d d l e  f unc t iona l

Suppose tha t  LI x , u~ is a qiv saddle func t iona l  defined over

some domain  in the product space E 1’ .

The ana ly t i ca l  expression of the sadd le  property is in terms of

arbitrary pairs of ‘ points ’ in this domain , which we label x 4 , u • and

x , u and refer to as the ‘ plus point and the ‘ minus  point ’ respectively .

Then LI x , u~ is called a (weak )  saddle fu nctional if , for any pair of

dis t inct  p c i r i t s  in its domain ,

L - L - (x  - x , 
— ) - (u  - u . — ) > 0 . (2 . f l

- - - -. - ou 
- 

—

The subscripts  at tached to L and its gradients  mean evaluation at the

indicated points .  Such a fu nctional is conca ve with respect to x at

each fixed u , and convex with respect to u at each fixed x - hence

the name , and Fi g. 2 . 1 is a schematic i l lustration of its individual cross-

sections with th e spaces E and F. The weak inequality permitted in

(2.  1) for distinct pairs of point s means that the surface can contain linear

segments such as straight lines or plane facets .  Otherwise it would be

called a strict saddle funct ional .

This analytical statement of a saddle functional was given by

Sewell (1969 , equation (2 .  50 ) ) .  For simplicity in what follows we adopt

the convention that  the vertical bar attached to gradients is omitted .

- 10-

L ~~- -  ----~~~~- - - - -~~~--



- — -
-

L

Fig . 2 .1.  Saddle functional L[x , u~

For example , ~L/Oi x~ will denote the Gateaux differential with respect

to x evaluated at the plus point x~~, u+ 
(and not merely a gradient

with respect to

U nless otherwise stated , plus and minus points will always be

arbitra ry points in the domain of L , throughout the paper. Our entire

theory will rest on the facility with which different and especially

conveni ent interpretations may be assigned to them. Such choices will

be indicated by an appropriate suffix .

For example , when L is used to generate the governing equations

(1.13), we can divide them into the two subsets labelled (a) and (~3) .

—11— 
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Each subset considered sepa rately is an underdeterm ined problem whose

solutions will be supposed known. They may be easier to find than the

solutions to ( 1. 13) I tself .  We shall use x , u to denote any solution
a a

of ( l . 13~ ) alo ne , and ~~~ u~ to denote any solution of ( l . l 3~ ) alon e.

In other words ,

= 0 ~~~~~ = 0 . ( 2 . 2 )au
a

Neither point need satisfy the other equation , except when It happens to

be a solution of the complete problem (1.13).

In what follo ws we shall often , f or the sake of emphasis , denote an

actual solution point of (1 .13) by x0, u 0, and attach a subscript zero

to other quantities evaluated there, as we did for (1. 2). Such a solution

poi nt need not be unique .

(ii) Dual extremum princ~p1es

First choose the particular interpretations

x+,u+ =x a,ua 
and x ,u =x 0,u0 (2.3)

in (2.1). By (2.2) there follows immediately the stationary minimum

principle L > L0. Next choose

~~~~ =x 0,u0 
and x ,u =x~,u~ , (2 . 4)

in (2.1). This Implies the stationary maximum principle L0 > L~ . Thus we

arrive at the dual extremum ~rinciples

L >L >-L (2.5)
a 0 )3

-12-
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derived with increasing generality in our earlier papers (Noble and Sewell ,

op. cit. , Ineq ualitIes ( 1) ; Sewell 1973a , InequalIties (31) and ( 3 2 ) ) .

For problem ( 1. 1) they are Illustrated by (1.6) in which

L =~~I Iu H 2 , L~ (x~,f) - ~~DTx~ 11 2 
. ( 2 . 6 )

The second order quantities give n away to get these particular estimates are

La 
- L0 ~~ I I u - u0 11 2 , L0 

- L~ ~~ I I u 0 - u~ II 2 
. (2.7)

The extremum principles (1.6)  can be rewritten as error estimates in terms

of the difference between the bounds

Il 2i HIu - u  II
a 0

L - L =~~ ll u - u jj 2 > ~ . (2.8)a ~3 2 a
I i  2
I,...i~ ~p -

~~i) General bounds for linear functionals

If we choose

x+,u+ arbitrary, and x ,u = X 0, U
0 

(2.9)

in (2.1), we find

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2.10)

If instead we choose

~~~~ = x0,u0 
and x ,u arbitrary, (2.11)

th en (2 .1)  gives

L0 - L + ~~u ,~~~~- ) > ( u 0,~~ -T~- - ) .  (2 .1 2 )

-13-
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Next we add L
0 

- L
)3 

0 to (~~. l O ) . giving

),L . ~iLL - L - ( x  , — i  > - (x , 
— ) . (2.13)

i ~ (
~X 0

Also we add L - L0 > 0 to ( 2 . 1~~ , giving

L - L ~u , > ‘ u ~L ) (2 .14 )
- - (

~U — 0 01.1

It can be seen that  ( 2 . 1 3 )  and (2 . 14  offer  bounds on the linear

fu nctionals (x 0, ~~~ and (u 0, ~~~~~ ~ of the solution variables x0, U
0

.

The bounds on the left are in term s of arbitrary assignable points x+ , u~

or x , u , and the supposedly known a- and )3-point s .

(iv) Optimizat ion of the extremum principles

The choices made in ( 2 .  3) and ( 2 . 4 )  are special choices of the

p airs of points in (2 .1 ) , made with particular solutions of (2 .  2a) and ( 2 .  2)3 )

respectively , and designed to lead immediately to simple conclusions (2. 5) .

Such particular solutions need not be unique , and in specific problems it

may be possible to decrease La and/or increase L~ by opti mizing

within subsets of particular solutions. In general the problem is to find

such subsets.

In the case of problem (1. 2) , Fujita (op. cit. § 4) specifies subsets

• app ropriate for improving the bounds ( 2 . 6 ) .  Here we make a rather different

remark about that probl em to he lp motivate our subsequent procedur es.

Noticing tha t the Lagrangian ( 1.14) implies that  the le ft side of (2. 1) is

exactly equal to

¶

-14-
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~ I I u 4 - u~ , (2. 15)

we consider the possibility of minimizing this ‘square of the error ’ among

those plus and minu s point s which have the property

u - u  = X u  + fiu - u  (2 .16)
+ - a )3 o

for disposable scala rs ~ and ~~. This simultaneous procedure corresponds

to finding the minimum of an elliptic paraboloid. A special feature of

(1. 2~ leads the si multaneous optimization to the improved pair of dual

extremum principles

L ~~L > L  > L  > L  (2.17 )
a a 0 )3 p

where

— 
(x~~ f ) 2

L = . (2.18 )
~ 2 f j Tx~~Ij 2

The result of the simulta neous procedure is therefore the same as the

two usual separate choices of first (trivially) setting X 1, ~ = 0 ,

and secondly setting )~. = 0 and optimizing the nonhomogeneous L~

with respect to the scale factor i.

The special feature of problem (1. 2 ) which leads simultaneous

and separate procedures to the same result Is an orthogonality property

~u , u - u ) = 0 , (2.19 )
) 3 a  0

Le . an~~~u~~= -Tx~ is orthogonal to the null space of T*, since

-15-
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(v ) A general class of competing vectors

LooKing ahead from (2 .16 ) to the problem of optimizing the bounds

for li near funct ionals  for general L[ x , u ] ,  a nd noting that it is desirable

to f ree  Fuj ita ’ s proofs from their dependence on Schwarz ’ s ineq uali ty

(which is a consequence of minimizing a single quadratic) , we propose to

study choices of the plus and minu s points which have the properties

x - x  = r x  + s x  + h p -~ ix
- a 0 (2 . 20)

U4 
- u = XU a + ~~~ + kq + ju 0

Here the eight coefficients r, s, h , I, )~. , ~~~ , k , j are disposable real

scalars which will be normalized here by taking i ± 1, j = ± 1. The

choices ( 2 . 3 )  and (2.4) are special cases of (2.20) with h k = 0 .

The elements p in E and q in F are to be regarded as

assignable. Note that dual extremum principles such as ( 1.6) estimate a

F linear functional ~ (x 0, f) whose coefficient f was alread y gi ven in the

statement of the problem , and was therefore not necessarily assignable .

Our basic objective is to estimate a linear functional whose coefficient

may be chosen without that constraint.

Before attempting to use the class (2.  20) to improve the general

bounds for linear functionals given in (2.13) and (2.14) , we notice one

more thing.  Addition of the extremum principles to (2.10 ) and (2.12)

eliminates the unknown L0, but at the expense of giving away the

first or second term In the identity

~ I
-16 -
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0~~~(L - L  j + ( L  - L  ) - ( L  - L  ) .  (2 .2 1 )
a 0 0 )3 a

In F ujita ’ s linear theory this is masked by the special orthogonality

property l~~.l9 ) in the form

0 - (u  - u0~ u )3 - u 0~ - ~ IIu -u 0 11 2
+ ~~!fu 0 - u ~~Ii

2 - ~ I I u - u ~~lI
2 

. (2.22)

His weak estimates ( 1 .8 )  - ( 1.9 )  require that the first or second of (2.  22~

be given away, and do not therefore depend on the orthogonality per Se.

It is therefore his  weak estimat es which we shall be trying to generalize

when we optimi ze (2 .13 )  and ( 2 .14 ) .

On the other hand , his strong inequality (1 .7)  doe s not give away

the stated term s L - L0 and L0 
- ~~ but it does seem to depend

critically on the orthogonality property

1 2 1  2H (u u ) - u 11 - H?u - u = <u - u , u - u
2 a )3 0 4 a a o p  o

= ( T u  - u0 ) , x 0 
- x~ ) 0 . ( 2 . 2 3 )

For this reason we expect his strong inequality to be harder to generalize ,

even though something may be achieved in particular cases (see § 2 (x ) ) .

( vi) I ntermediate generality

In seeking to optimize the general bound s (2.13) and (2.14 ) on

linear functionals , we find it Illuminating to concentrate first upon some

cases which are more general than (1.14) or (1.17) , but less general

than an arbitrary saddle functional L[x , u ] .  These are separable cases

of type

-17 -
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L (x , T u )  - ~dx~ G(u~ ( 2 . 2 4 )

in which N~x and G(u ~ are convex func t ional s  ot the s ing le  var iables

x a n d u respectivel y.  In pass ing  we can notice tha t

L - (x , T u i  - N t x : G u i  ( 2 . 2 5 )

is concave in x and convex in u , provided both G ~ 0 (or N linear ~

a nd -N < 0 (or G l i n e ar i  in addition to the convexity of N and G.

Exampl es  of ( 2 .  24) in which one of N x  or G ( u i  are linear

arise in f ie lds  such as network theory and elasticity . In the latter x

can be a generalized stress ( cf .  Sewell 197 3a~ b ) or bending moment

entering a convex N (x , with displacement  u appearing in a linear G(u ) .

In the next subsection we carry out the opt imizat ion for

L = (x , T u )  + (f , x G (u )  (2 .2 6 )

obtained from ( 1.14) by letting G be any strictly convex funct ional ,

instead of quadrat ic .  From ( 1.13) this generates the problem

T u  = -f , (a)
(2 .  27)

Tx = -g(u )  ,

where

g(u~ = G’(u)

A pri me will signify gradients of G (u ) ,  and also of g(u)  below .

The inequality (2 .13 )  reduces to

G(u~ ) - (x~~ T u ~ + f )  - G(u~ ) 
~‘ -(x 0 , tL) (2 .  28)



_________________________________ -— 
- - - ‘

~~:

in which

T u ~ + 1, Tx~ -g(u ~ ) . (2. 29)

Here u~ Is any element In the domain of T’ .

The inequali ty (2 . 14 )  reduces to

G( u )  - (f , x )  + Ku , - T x )  - G(u ) > < u 0, ~~~~~~~~ 
(2.  30)

in which

T u = -f , — z Tx + g(u ) . (2 .3U
a ~u - -

Here x is any element in the domain of T , a nd U is any element

in the domai n of g ( u ) .

(vii) Optimi zation of the first bound

Recalling (2 .  20 ) , we choose for the u~ in (2.  28) the restricted class

u = u  + k q  ( 2 . 3 2 )
+ a

for any q now in the domain F’ of T , and any scalar k.  Then

(2. 29) i with ( Z .3 1)
~ 

implies

aL— = k T q (2 . 3 3 )
ax~

and (2 .28 ) becomes

G(u 4 kq )  - (x , T u  + f)  - G(u ) > -k(x  , T ’ q) . (2 . 3 4 )
a 3 )3 0

We now optimize this Inequality approximately with respect to k.

It will turn out under suitable circumstances that k is small. Acting

on this assumption we write

-19 -
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G(u k q)  G(u ) k~ g(u ) , q> + ~ k 2( g ( u ) q , q) 0 (k 3 ) . (2 .  35 )

Inser t ing this in ( 2 .  34) and omit t ing the higher order terms gives

C F1k + ~ B 1k 2 > 0 (2 . 36)

with the following shorthand for the coefficients

1 *— c  E G(u ) - (x , T u + f )  - G(u ) = L - L > 0 , (2 .37 )
2 P P a

F ~~~g(u ) - g(u ) ,q ) - K g ( u  ) , q~ + (x ,Tq) , ( 2 . 3 8 )
1 a 0 a 0

(2.39)

A sufficient condition for the strict convexity of G(u)  c~~n be given

in term s of a mean value theorem (see § 3), and implies that

C E (u - u ,g’(u)(u - u )) >0 (2.40)
a a 3

when U
a 

and u~ are distinct , where the operator g ’(u) is evaluated

at some intermediate u between u and u . It also implies the strict
a

inequali ty

B1 > 0  (2 .41 )

for q � 0 .

Under these two strict inequalities , we optimize (2.  36) with respect

to k by considering two cases.

(a) k > 0 implies

~~~- 2 F 1 + B 1k > 0 .  (2 . 42 )

-20 -
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The le~t side is least , e .g .  by compl eting the square , at k (C/ B 1~~

and the best result  is

F 1 ~ (CB 1)~ > 0  . ( Z . 4 3 i

b k < 0 impl ies

0 > 2F
1 

+ B
1
k . ( 2 . 4 4 )

The right si de is greatest  at k = -(C/B 1
) 2 , and the best result is

0 > F1 
- (CB 1) 2 

. ( Z . 4 5 ~

Inequal i t ies  ( 2 .  43 )  and (2.  45 ’ for the objective linear functional

(x 0, T q ~ = -~ g(u0
),q~ (2.46)

of the  solution variable x 0 can be summarized  as

(g(u i ,q ) (x 0,Tq) I < (CB 1
)~ . ( 2 . 4 7 )

It has to be remembered that this result is not rigorous because

higher order terms were omitted in going from (2. 35) to (2. 36). Rigorous

bou nds can be ob ta ined by insert ing

k =th (C/B
1
)~ (2.48)

into (2. 34) .  These values of k will not in general provide the best

bounds on ( 2 . 4 6 ) , but if u — u they will be close to the optimum bounds

beca use C 2(L - L ) will then be small.  Without loss of generality
a

we can assume that B
1 

is of order unity so that the resulting k is

-21 -
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sm ill , • m d  the  qie  t ot h i g h e r  r !er t e r t : s in (~~~~~. 
) wi l l  be j u s t )  f i e n .

() bvi os lv  th e  L . - : ; t  b onds • m ~ m bt i i n ~~ w h en  u and u are as

ne ar l y equal  as p ) s s i h l  ~, s i n ce as  u • u , C 0 and  t he  le f t  side
‘I

of (~~~~~. 47~~ te nds te z r  -

Fhe l i n e a r  pr ~b le t :  ( 1. I is r ecovered with

G( u i  ~~~~~ g( u )  u , g ( u )  1 (2 .49 )

so tha t

C - i l u - U
13 ~~~~ B1 

• II q 11 2

The resul t  ~~. 47 is then exact , namel y

- u , q ) ~~< Ilu - u IHI q l! ( l . 9 )
~i 0 & p

which is one of Fu j i t a s weak e s t i m a t e s .

( viii Qpt i mizat i~~n of  the seco nd bound

Inequali ty (2 .  30) is the basis for the second bound , and it involves

both x and u .  Ag a in  recal l ing ( 2 .2 0 )  we choose the class of points

x x~ ~ h p ,  u = u~ 4- kq (2 .  50)

for any p in the domain E’ of T , any q such that u (like u~ )

i s in the domain of g (u , and any scala rs h and k.  -

• Insertion into (2 .  3l) z . exp anding and using (2.  29) z implies

hTp + k g u 3 )q ‘ 0(k ~~ (2 .  51)

• with an obvio us extension of the 0(k 2 ) notation . Here g ’(u ~ ) is an

-2 2 -
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)p er at  r •~ ct 1nq un q .  The inequal i ty  (2.  3O~ expanded about the p -point

~~ u~ becomes, a f te r  omiss ion of 0 (k 3 ) terms ,

-
~~ C ~ F 2

k ~ B 2k
2 

> 0 (2. 52)

because the terms in h cancel exactly . Here C = 2 (L - L ) as in
a

( 2 . 3 7 ) , but the other coeff icients  are now

F 2 ~~~ - u 0, g ’(u ~ )q > , ( 2 .  5 3 m

~ 
( q , g ’(u ~ )q )  . (2.  54

The form of these shows that it would be enough to regard g ( u ~ )q = Q

( say ~ as arbitrary , i . e .  to have begun with q = [ g ( u ~~)~ 
1Q i n ( 2 .  50) .

Opt imiz ing  (2 .  52 )  exactly as before , we find

I ( u ~ - u 0 .Q ) l  < (CB~~~ ( 2 .  ss

in place c;• f ( 2 .  17) .  Again  this  is approximate , but rigorous bounds can

be obtained by using

k - ± ( C / B 2 )~ ( 2 . 5 6 )

to deduce exact val ues from (2 .  50) for substitution in (2 .  30 ) .

In the linear problem (1. 2) we have only to put g ’ ( u )  = I in (2.  53)

and (2. s4) to see that (2 .  55) becomes

l~ u~ - u 0,q ) I < I I U  - u~~t l l~~II ( 1 .8 )

which is Fuj i ta s other weak estimate .



• _ _  -

liv~ Optimi zation in the general case for weak bounds

‘ 
He re we indicate the :ptimization procedure that would be required

in the general case for wea) : bounds , i . e .  as it would apply to ( Z . 13

and (2 . 1 4 .

At certain points we shall need to suppo se that  a ‘Taylor ’ expansion

f the following type can be employed (see also the discussion in § 3 ( i ) ) :

-
• L [x  4 

~~, u L[x ,uI 4- (
~~~ , 

L ) t u~

2 2 2
1 ~~L 1

• + ~~~~~~~ ~~~ (
~~, ~~~~~~~ ~ ~~~~~~ —~~u )

-4- h igher order te rms .  (2 .  57 )

In this expansio n on the product space E > <  F , the linear operators act

on the elements  of E or F which follow them as before , and with the

assumed property tha t

(~~~, = < u , 
~~~~~ 

(2 .58 )

This last property is exemplified by the adj ointness statement ( 1.4)  for

the particula r bilinear functional L = (x , T u )  = (U, Tx) . In general

a 2L/axau ~ a 2L/auax , as T ~ T* illustrates.  It is assumed that

2 2 2 2
• ~ L/ax and a L/au are sel f -adj o in t .

First we wish to optimize ( 2 . l ~ ) with respect to all plus points In

a suitably chosen family . We consider a family centered on the a-point ,

I .e .  we choose (cf .  (2 . 2 0 )  and ( 2 . 3 2 ) )

-24-
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= x hp , u • u + kq ( 2 .  59/

• an d  • p t i~size with respect to the scalars h and k.

The exp ans i~ n •~ f L according to ( 2 .  57) , and the operator expansion

et -L/ x , are simplified because ~L/a x 0 by (2 . 2 ) .  They area

L = L k ’q , ~~~~~~ ~~h 2 p , ~~~~ p) h k ( p ,  •
0

,
L

q)  ~~~ k 2
’q , ~~~~q)

(2.60

and

2
= h p 4- k d L q + . . . .  . ( 2 . 6 1 )cx - 2 ax( uciX

a

The dots will consis tent ly denote higher order term s in h ari d k.  Using

(2 . 61 tn eliminate the cross-derivatives from ( 2 . 6 0 ) , and substituting

the resul t  back in t s  (2.  l3~ gives

L - L - (x - x , - )  4 k’ q ,a ~ a 0 ix c,u

- ~ h 2 ( P ,  ~
2L 

~ ~ k
2

<q, ~~~~~~~ .
~~~

. > 0  . ( 2 . 6 2 )

We can also expand aL/au about the solution point x , u , givinga 0 0

BL a 2
L a 2L

aua x 0 
ka 

- x 0
) 

~~~ 
(u - u 0 ) + (2 . 63 )

since aL/~u 0 = 0. Insert this Into (2 . 6 2 ) , together with (2 .61) . If we

ass um e that  all second order derivatives can be taken at x , u instead
a a

-25-
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et x0,  U
0
, t .  the order of accuracy retained ,

. 2 2c LL - L ~~ - h x  - x  , — p )  k 1 u - u  , — -q )
~ 0 2 ~ 0 . 2

(‘ X dU
a a

-~~~h 2 p ,~~ -—-~~p) ~~~~~
Z / q ±

2L q ) 4 . . . > o  (2 . 64)

Omitt ing now the higher order term s , ( 2 . 6 4 )  is of the form

C 2F 1k B
1k 2 ZG 1

h A
1
h 2 > 0 ( 2 . 6 5 )

in which -
~~ C = L - L~ > 0 by the dual extremum principle s , as before.

Also B1 
> 0 and A

1 > 0 because L is concave in x and convex in u .

If ~
2L/i~x

2 
= 0 so that  A = G 0 , or if we arbitrarily set

a 1 1

h = 0 , we can choose k in ( 2 . 6 5  to find optimum bounds for F1 as

in (2 .  36) , and this gives

( U  - U 0,  q) < [z(L - L
3

) ( q , ~~~ q)] . ( 2 . 6 6 )

Similarly , if a ZL/au Z so that B 1 F
1 

0 , or if we arbitrarily set k = 0 ,

we can choose h to obtain optimum bounds for C1 as

- x0, ~~~~~~ < ~ - L~ ) ( ~~ . (2 .67 )

If A
1 

> 0 and B1 > 0 the inequality (2 .  65 ) can be rearranged in the form

G 2 F 2 G~ F 2

A1 h - ~~-~ ~~B1 k - ~~~ ‘ C - ~~— -~~~- > 0  (2. 68)

- 2 6-
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and the choice h = G1/A1, k = F1/B1 lead s to

A
1B1

C > A
1F~~ + B

1
G~ . (2. 69)

InequalitIes (2 .66 ) and (2 .67 ) can be deduced from ( 2 . 6 9 ) .

~\ s imilar  genera l analys is  can be carried out to optimize (2 .14)

by exp anding x , u about the p-point , In pl ace of (2.  59) .

(xJ Strong bounds

We retu r n to the remark made after (2. 23). When It turns out that L0

happens  to be a linear functional of x0 or U0, it may be possible to

build estimates on (2 .10 or ( a . l 2 ) , without needing to give away the

additional qu antities L0 - L
6 

or L - L0 required to arrive at (2.13)

and (2. 14 .  Such esti mates can be called ‘ strong ’ in the sense of (1 . 7 ) .

We may therefore envisage the optimization of (2 .10 )  and (2 .12  in such

special uses , using ideas associated with those described for (2 .13 )  and (2 .14 ) .

In the linear problem (1. 2) , we can see from (1.6) that

L0 =~~~(f , x0
) ( 2 . 7 0 )

a nd (2.10 ) reduces to

• ~~ (u ~ , u) > -(x 0, T u 4 # f I  ( 2 . 7 1 )

fo r any u in the domain of T .  The appropriate optimization no longer

involves an expansion about either the a-point (as In (2. 32 ) )  or the

~-polnt (as in (2 .  50) ) , but about another point in the family (2 .  20) midway

between them , i . e .

1u = — (u + u ) + kq . ( 2 . 7 3 )
4 - 2  a’

-27 -
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Fujit a s strong estimate (1 .7 )  can now be recovered by optimizing (2 .71 )

with respect to the k of ( 2 . 7 3 ) .

Nothing new is achieved fro m ( Z . l 2 , since thi s reduces to

~ (u , u )  ~ -(x 0, T u  ~ f )  ( 2 . 7 4 )

• for any u in the domain of T , which is therefore exactly the same

as (2 .7 1).

Inst ead of offering more general theory , we give the explicit example

described in §~ 6( u ) - (v) , in which L0 has the linear form (6 . 22).

-28 - 
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3. BasIc Theoretical Framework

) i~ Mean value theorems

Underl ying all of our general theory is a resul t  whose essence was

stated in equation (5. 3) of our earlier joint paper (op . c i t . ) .  To begin

with let L[ x , u~ be a fun ction of two real variables , defined over a

rectangula r domain which allows us to join an arbitrary pair of points

x + . u 4 and x , u by a two -segment path parallel to the axes and

lying entirel y within the domain , a s in Fig. 3.1.

F

U . - - _____________

-f

U ~~~~~
- -

_ _ _ _ _ _ _ _ _  • Ex x
- +

Fig. 3.1. Mean value theorem route
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Then tw uses of the second mean value theorem for one variable ,

namely  u on the s ingle -bar red  segment  and x on the double-barred

segment , give

• L, L •L - L - (x - x - (u - u
- - - cmx -

1 2 ~
2L 1 . 2

- (u - u l  - -
~~ (x - x —i . (3 .1)

du dx

The bar and double-bar  over the second der ivat ives  denote evaluat ion

at d i f fe rent and unknow n intermediate  points on the single- and double-

barred segments  respectively .

In our funct ion space set t ing we can general ize ( 3 . 1 )  by using the

abstract form of Taylor series with integral  r emainder  given by, for

in stance , Carta n ( 197l , p. 70 , and Rail ( l~ 69) , p.  124 :

f( a  h I  = f a )  f ’ ( a )  . h + 
f 

(1  - t ) f ” ( a  4- t h d h 2
dt

This leads to the following general izat ion of ( 3 . 1 )  for the case of the two

inner product space s introduced af ter  (1. 2) to be

aL aLL - L - (x - x - )  - ~u - u , 
—

+ - -‘- - ‘ 8 x 4 + -

‘u 4 - u , (u 4 - u ) )  - (x
÷ 

- x , (x - x ) )  , ( 3 . 2 )

-30-
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where

2 1 d L
= j  (1 - t —

~~ (x , u t(u~ - u ))dt
au 0

•~~ 1
= (1 - t ~~~~~ (x + t (x  - x 4 ) , u )dt

In specifi c applications these can be replaced by the appropriate m ean-

value theorem. The expression on the left in ( 3 . 2 )  corresponds to the saddle

quanti ty appearing in (2 .1) , but is not now assumed necessarily to be

one -s igned.  The symbols reminiscent of second derivative s on the right

have now to be rega rded as linear operators acting on the element s of F

or E which follow them , as for g ’( u) in §~~ 2(vii ) and (v iii ) .  Further

details on higher derivatives in vector spaces are described by Rail (1969 ,

§~~l8 , l~~ .

Note that a bilinea r functional , like (x , T u) or the Lagrangian

which generates lin ear programming ( Noble and Sewell , op. cit . , § 10(u )) ,

h as onl y mi xed second derivatives , and so co ntributes identically zero

to the saddle qua ntity . This is evident from the right side of (3.  2) , and

can be ve rified on the left side by direct substitution.

For certain purpose s , ultima tely connected with embedded problems ,

we shall also draw conclusions from mean value statements for gradients of

the type 



• —~~~~~~~—-—----——~~ • • • ::,.L. .~ • ~~~~~~~~~~~~~~~ 
— — —‘——

2(JL aL ~~ L d L= ( x - x  ) -4- (u - u  ) ( 3 . 3 )
m x ~ix 2 ~ - dx du -

- ax

-i--aL aL a L  a L( x - x ) ~~~— ( u - u ) .  ( 3 .4 )
du d u cu ax + - 2 4- -

- au

Pr ecise statements about mean value theorems for operators are given by

Ra Il (op. cit . § 20 ) .  Examp Ies of second derivative operators which happ en

also to be con stant are found in the problems generated by (1.14 ) and ( 1.17) ,

where

a 2L a 2L
= -P I, = I

ax au
( 3 . 5 )

____ - T Tax au ‘ au ax -

(ii) Bou ndedness hypotheses

We have now removed the saddle hypothesis (2 .1) , a nd in its place

we begin to build our theoretical framework upon the following boundedness

hypotheses. We suppose that there exists a rectangular domain of the

product space E x F in which real numbers k , k or K , K , orx U’ x u

both pairs , can be found such that

( a )  fo r each given u~ and every pair x~ , x

K
~~lIx ÷ 

- x 11 2 
~~~ 

-(x~ - K , (x - x ) )  > k lIx 4- 
- x 112 , (3. 6)

(b) for each given x and every pair u , U

K
~~Ilu~ 

- u Il 2
~~ <u ~ - u , ~~~~(u~ - u ) > > k

~~H u + 
- u 1 1 2 

. ( 3 . 7 )
j
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In general  it may be that k and K depend on u 4 , and tha t

k and K depend on x , and we sometimes emphasiz e this by writing

k (U I , K (u )
, 

k (x )
, 

K (x ) . ( 3 . 8 )x -1- X - 4 -  U - u -

Of course they may someti mes be constant over the domain. We allow

that these bounds (3. 8) may have either sign. For q uadratic functionals

such as ( 1 .17 )  there exist the trivial bounds

K k p ,  K k = 1 . ( 3 . 9 )
x x U U

Evidently ( 3 . 2  with ( 3 . 6 )  and ( 3 . 7 )  may be written

B 4 > L 4 - L - (x4 - x , ~~~
- )  - (u ~ - u , ~~~ - )  > b (3 .10 )

with the shorthand

1 2 1  2B E K ( u ) x+ 
- x + - ~~K ( x ) u - U

( 3 . 1 1)
1 2 1  2b~ ~~~ k ( u 4 ) x~ - x +~~~k ( x ) u - u

Suff ic ient  conditions for L[ x , u] to be a saddle functional concave

in x and convex in u are that

k (u 1 > 0 and k (x ) > 0 (3 .1 2 )
x 4-~~~~ U - —

over a rectangular domain , so that > 0. Then (2.1)  follows from (3.10)

without need of K and K . [ Alternatively L is convex in x and
K U

conca ve in u if 0 > K and 0 > K without need of k and k
— x — U’ x U

But this can be reduced to the first case by turning the saddle functional

upside down~ . Sufficient conditions for a strict saddle are strict inequalities
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~~ ( 3 . 12 • :~m n • 1  the n any  s lu t i u n  x0 ,  u 0 of ( 1. 13) is unique (Sewell , 1969 ,

inequa l i t y  ( 2 .  5 2 ) .

The t ip e  L f  theory pr esente~ in ~ 2 is avai lable  when ( 3 . 1 2 )  hold

with at leas t  one of the inequal i t ies  s t r ic t .

H owever , there (-ire m a n y  s i tua t ions  when such suf f ic ien t  h ypo theses

fai l , such as non l ine ar  elast ici ty or nonconv ex op t imiza t ion , and in which

there m ay  st i l l  be a need to bound l inear  f u n c t i o n a l s .  There will now be

a d i f fe ren t  l inear  func t iona l  to bound for each di f ferent  solution , and the

needed a l te rna t ive  h ypotheses will refl  ect the a t tent ion which mus t  be

given to domain boundaries separat ing the individual  solut ions.

Consider the example of a func t ion  of two real variables

1 4  1 2L = - (~~ x ax bx -4- c)u  - ( 3 .13)

with scalar coefficients  a , b , c , p . Fo r this K k = 0 and (3.10)  reduces to

K > (3 _2 
4- a m u  > k (3. 14x x

for some mean x between x 4- and x .  Evidently in the ha l f - space  u + 
> 0

k (u I au K does not exist (3 .15 )x

whereas in u < 0 k does not exist but K = au . Therefore a-4- x x -1-

sufficie nt condition for ( 3 .13 )  to be a saddle function strictly co ncave in x

in u > 0 is a > 0 . (3.16)

This i l lustrates (2 .  2 5 ) .
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.‘Aien 3 < 0 , however~ the equat ion aL/au 0 is a quartic

in x wh~ c~i might  not have  a uniqu e  solution. Its solutions will be

separated by the turning points of the quartic , which we specified by the

roots of

2
0 i .e .  x 3 

4- ax + b 0 . ( 3 .17)

The required new h ypotheses  would avoid such roots. It is no accident

that (3 .17 )  is also the equil ibrium surface for the cusp catastrophe ( e . g .

see Sewell , 1Q7 6 , for diagrams and mechanical  examples) , and fur ther

ins igh t  can be obtained by pursuing this connection .

At this  point , however , we have said enough to motivate the following

choice of a l te rna t ive  boundedness h ypotheses  required when the

suff ic ient  saddle h ypotheses ( 3 . l 2  fail . We assume  tha t  in a r ectangular

domain there exist  real numbers

c (u I > 0 and/o r c (x I > 3 (3.18 )x - 4 - —  u - —

depending possibly on u 4 and x as indicated , such that  for every

pair of points

~2
C) L (x - x I > c x - x , (3.19 )dud x + - — x 4- -

(u~ - u )  > c~ IIu 4 - u . (3. 20~

If it is also the case that there exist real numbers

d (u ) > 0 and/or d (x 1 > 0  , (3. 21 1x - 4 - —  U-
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aga in  depending possibly un u 4 and x , such that for every pair

of poi : t~

d 11x 4 - x 1 
~ 

(x 4 - x i  , (3 .  2 2

d fI u ~ - u II > (U - U )  , (3. 23 )

then Schwarz ’ s inqu a l i ty  allows the value s

• - k = K  = d  > 0  ( 3 . 2 4 i• x x x~~
and

-k  K = d > 0 (3. 2 5)

for the numbers  (3 . 8) .  Therefore ( 3 . 2 2  and (3. 23) can be used when

the su f f i c i en t  saddle requirement  (3. l2  f a i l s .

(iii Error est imates

We draw some conclusions from (3 .10) , f irst  of all without any

assumption about the signs of k , k , K , Kx u •  x u

(a Choosing x , u = x  , u and x , u = x  , u (as i n ( 2 . 3 )  but
~ -4- a’ a - - 0 0

wi thout  the saddle hypothes is)  implies

F B > L  - L  > b  . (3 .26 )a 0 —  a 0 —  aO

(b ) Choosing x4 , u = x 0, u 0 
and x , u = ~~~~~ (as in ( 2 . 4 )  but

without the saddle hypothes is)  Implies

B0~~> L 0 
- L~~> b

0~~ . ( 3 .2 7 )
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) c) Choosing x , u 4 = x  , u and x , u = x  , u impli es
• ~~~~a - -

B > L  - L  > b  . ( 3 . 2 8
(i)~) 

— 
~~ )3 —

Then ( 3 . 2 6
~~

4 ) 3 . 2 7 1~ with (3.28 )
2 im plies

B 4 B > L - L > b 1 3 .  Z’n

a’O 0)3 — a )3 43

and (3. 26)
2 

-4- ( 3 .  27)
2 
with (3. 28)1 

implies

B :> L - L > b + b . (3 .  30)
a )3 

aO 0)3

These last  two inequal i t ies , with (3 .11 ) , can be regarded as composi te

error es timates  for the solution quant i t ies  in the left of (3 .  29 ) or the

right of ( 3 . 3 0 ) . For example , the latter written explicitly is

1 • 2 1  2
L - L > — k (u lx - x + — k (u ) ix - x Il

a ) 3 2  x a a 0 2 x 0 )3 0

1 • 2 1  2
4 k ( x )  u - u  + k ( x )  u - u  . ( 3 . 3 1 )

2 u 0  a 0 2 u ) 3  3 0

In the case of a saddle functional  sa t is fying (3 . 12 ) with

k (u ) > 0  and/or k (x ) > 0  ( 3 . 3 2
x a u

more can be given away from (3.  3 1) to imply

2 
(L - L I >  lix - x jj 2 (3 . 3 3 )

k ( u )  a )3 
a 0

x a

a nd/or

k ( x )3
) (L - L )3

) >  lt u )3 
- u 0 j~2 

. ( 3.  3 4)
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The n~ s im p le er r • o es t imates  a r ’  the  3~~pr • ;  r i m t o  ( J ( m i e r m l i / a t i o o s  (,f 1 2 . 8 )

and they improve resul ts  g iven by Z a g  ( 1 , 7 ( ~, Chap t -r 2 .

~ ext suppose  t h a t , in s t ead  •f th~ s u f ( i c i e n t  r e q u i r o r ~en t  3. 12

f o r  a saddle f u n c t i o n a l , both ( 3 . l ~~ - ( 3 .  2 0 )  and (3 .  22 - ( 3 .  23 h o ld .

Then toe t r i a o g le  i n e q u a l i t .’ ap p l i e  t • t o e  m e a n  value s t a t om e n t s  (3.  3

and ( 3 . 4 )  l e ad s  t •

• - d ( u ) x  - c ( x )~~u - U  I l K  H~~ - 
~~~~~~~~~~ , ( 3 . 3 5 )

c (u , l~x - x - d (x ) ~u - u II ~ 
AJ~ ( 3 .  36)

X - u - - — ( )U (mu

Because the  basic problem ( 1.13) is s tated in terms of gradients  ( s a t i s f y i n g

also (2 .  2 d , the right  sides of (3.  35 )  and ( 3 .  36) can be regarded as

known , in part icular  under  chnj ces of the disposable plus and minu s

po ints like those in ( a )  - ( c m  above. Therefore these inequal i t ies  are the

basis for another class of error estimates different from (3. 33) and (3. 34).

Their use fu lness  may depend somewhat  on the extent  to which c , c ,

d d are actual l y cons tant  over the considered recta ngular domain .
x u

In any event , if it is also true that

c c  - d d  > 0 , (3 .37 )
x u  x u

( 3 .  3 5  a nr . (3.  ~( )  can be solved to give

i~I1Iri1•1.~ ~ . 
I
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X - X 
~~~~~~~~~~ 

- 
. L ~~~~ c - , (3 .38 1

lu , - — 
1 r~ ~~~!L - ~~~~~~~~~~~ d ~~

-
~~~~~

-- - ~L.~j1 . (3.  39
— c c  - d d  L X  ax 4 ax x au4 bu J

These can be subst i tu ted  back , wi th ( 3 .  24) and ( 3 .  25) , into ( 3 .  20 to give

an upper bound for B 
- 

and a lower bound for b 
-

. They can also be

substituted , a f te r  Schwarz ’ s inequality,  into either or both of the inner

products appearing in the centre expression of (3.10), finally giving bounds

for what is left there.

For example , we can add

lix~ - x II > (x~ - x , ~~~~~ ~~ - 11x - x (3 . 40 1

to (3. 10) , and then subst i tute  ( 3 .  38) and (3. 39 ) into both of the resu lt ing

bounds , g iv ing

I L - L  - ‘u - u  , -~ - - ) l
-4- - -4- - au

o X 4 r ~ aL aL
c c - d d Ldu ~~~~ 

- + C -

x u  x u  -4- +

d r ~~ aL aL l2

2 ( c c  - d d )
2 LU  oX

+ 
ax U 3u4 au

1 
d aL aL aL ~

2 ( c c  ~~~~~) 2 ~~~~ 
- + d ~~~~~~

- - -i—— J . ( 3 .41 )

In the next Section we give an example of this result.
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4. Gene ral Embedding Method

(i Embedding

We consider now a problem given ab initlo in the form (1.191. We

can allow that it be deco mp osable or nondecom posable , l inear or

nonlinear.  Identify the variable in the problem with the x of an inner

product space E , and suppose the operator N ranges in a second inner

product space F . The typical element u of F is employed in the role

of a La grangian mult ipl ier  by constructing the functional

L [x , u] = - f u , N(x ) )  ~ (p ,x (4.1 )

where p is a n assignable vector in E .

Suppose the adj oint  N of the Gateaux differential  N ’ exists

(Ba rnsley and Robinson (1976) give tech nical details in the case of two

Hu bert spaces) . Then the gradients of I. are

= - N (x)u + p , = -N(x)  . (4 . 2 )

Then (1.13) in the form

N (x ) u - p 0 (a) , N( x) 0 ~3) (4 .3 )

con tains (1.19) embedded as (4.3 )3 ) , with (4. 3a) as an auxiliary equation.

The real objective now is to estimate the linear functional (p ,x~),

since x~ is a solution of the ab initio problem , and p is an assignable

vector .

The signi ficance of the result (3. 41) for this purpose is that because

u appea rs linearly in (4. 1) as a Lagrangian multiplier , the quantity

-40 -
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est imated on the lef t of (3 .41 ) Is

L 4- 
- L - < u 4- - u ,~~~~ ) = -<u ,N(x4-

) - N (x )) ~ (p ,x~ - x )  . (4 .4

Therefore the choice

x+ ,u+ arbitrary , x = x~ (4 .5

introduces the objective functional (~~ x~ ) directly into (4.4), which becomes

- (u 4 , N (x~ ) >  + (p , x~ ) - (P ~~X~~) (4 .6 )

since N( x )3
) 0. The firs t two terms in ( 4 . 6 )  are assignable , so (3.41)

gives an esti mate for (p ,x
)3

) provided the hypotheses leading to (3.41)

can be verified .

The linea rity of (4 .1) in u allows

d = 0  (4 . 7 )u

in ( 3 . 2 3  and ( 3 . 2 5 ) .  With

d = Fl u l i d > 0  ( 4 . 8 )x +

in (3. 24, , the constant d corresponds via (3. 22) to a bound imposed by

Barnsley and Robinson (op. c i t . )  on the second derivative of the operator N (x ) .

Suppose there exists

• c (u ) > 0  (4 .9 )x +

such that , for all x , u~

IlN( x~ ) ii IF N (x ) - N(x
)3

) ii > c 11x - x)3 Fi (4.10 )

so that c in (3.  19) is effectively a bound on the first derivative of N (x ) .

-41 -



rip.— • - -— —
---•- •- -.--- - - - - - - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~

Because ~f (4 . 7 nei ther  c nor ( 3 .  2 f l )  are required , and with ( 4 . 5 1  the

rig ht side [ ( 3 .  41) reduces t

1 ) m L  ‘
~ bL ‘ 

d 2
— —

~~~ +—IIu II . (4.11 )
c ~x ( J U  2 c)Ux Zc

K

Substi tut ing ( 4 . 2 )  and recal l ing (4 . 6)  leads f ina l ly  to the explicit est imate

NIx )) 4- (p , x , - (p , x 3
) I

<~~~~ F l N ’ x u 4- - p I J IJ Nix ~~J J 4 ~~~~ JJ u J j J N ( x ) IJ
2

. (4 .12 )

This correspond s to the result  of Barns ley and Robinson (op. cit.

inequal i t ies  ( 3 . 6 ) ) , but is obtained here from a d i f fe ren t  v iewpoint .

(ii) Example

We can indicate very brief l y how the procedure works by referring

to the algebraic example ( 3 . l 3 . Then ( 4 . 3 )  becomes

(x 3 
ax 4- b ”u  = p (a) , ~~~~ 4- ~~ax ~ bx 4 c 0 ~~) . ( 4 . 1 3 )

To sat isfy (4 .10 )  we have to dis t inguish not more than four domains  of

the x-axi s , separated by the sta t ionary poi nts of the quart ic .  In any such

fixed open domain the slope (and therefore the cubic coefficient of u in (4 .  l 3 a ) )

is nonzero and a bound c for it can be determined.  Reca l l in g  ( 3 . 1 4 ) ,x

the rig ht side of (3 .  22 ) is

+ a)u ~ (x 4 - x )  I < Ix 4 - x l  Iu~ I max 3x 2 
~ a I , (4 .14 )

and therefore in (4.8) we choose d = max 3x 2 4- a I over the domain.  If
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there is a solution x
)3 

of the quartlc in that domain , a bound for px~

can be obt ained from (4 .1 2 )  with any u+ and any x~ . The first term on

the right of ( 4 . 1 2 )  can be made to vanish if we choose the arbitrary

x , u = x , u , i . e .  ( x 3 
+ ax + b)u = p (4.15 )

+ 4- a a a’ a a ’

but this is not essential.  Improvement of the bounds is another matter ,

however , and Barnsley and Robinson (op . c i t . )  mention the connection

with Newton~s method . They discuss a particular case of this example

in which a = 0 , b = c = - , for which the quartic is actually convex .
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5. Nonlinear Progr amming Method

(i l Governing conditions

Suppose that  the basic problem (1.13) is now replaced by a new problem

governed by the following different  conditions , but again generated from

a given scalar functional  L [x , u] of the elements of two- inner  product

spaces E and F .

(a)ax —

x > 0  , ()3 ) (5.1 )

(x , ~
—) = 0

1
u > 0  , ( a )  (5.2)

0 .  J
The presence of inequalities of course implies that the elements of E

and F are built up u l t imate ly  from real numbers ~e. g. via the individual

entries in real matrices) , to which the inequalities are applied.  In other

words , all elements are ordered so that  the inequalities are defined .

These governing conditions have again been divided into two subsets

labelled ( a ’)  and ~~ ) (and a third unlabelled subset , of ‘ o r thogonal i ty

condit ions ’) . A point x , u now denotes any solution of ( 5 . l a )  1 ( 5 . Za ,
( (  a

and a point x
)3~
u
)3 

is any solution of (5.l)~ ( 5 . 2 ) ~ ) .
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(ii~ Dual extremum principles

When LI x , u~ is a saddle func tional in the sense of ( 2 .1 ) , the

choice (2.  3) implies the minimum principle

aL aL aLL - ( x , — ) - L  > - ( x , — ) + ( u , ) > 0 .  ( 5 . 3 1
a (~X 0 0 ax a au —

a 0

On the other hand , the choice ( 2 . 4 )  in (2 .1 )  implies the maximum principle

L
0 

- L~~ ~~~~ 
aL ) > ~~~~ -

~~~~ ) + (u 0, ~~~~) > 0  . ( 5 . 4 )

Therefore , in place of ( 2 . 5 )  we have the following dual extremum principles

L
a ~~

( X
a~ 

-
~~~~~

-) > L
0

> L
)3 

- (u
)3~ ~~~~ (5.51

proved in Sewell ( 1973a , § t ic) .  The extrema are not in general stationary .

A suff ix zero refers to a solution value for the whole problem (5.11 + ( 5 .  2 1 .

(iii ) General bounds for linear funct ionals

In place of (2.9), choose

x 4- arbitrary , any u~ > 0 , and x , u = x0, u 0 . (5.61

The consequent (2 .1 ) , when added to (5 .4 )  to eliminate L0, is

L~~ - ( x ~ ,~~~~~) - L
)3

+ ( U
)3 .~~~~~ >

> 
~(X o, ~~~~~) + <u s,

aL
> - ( x 0, -

~~~~~
- )  . 

. 

(5.7’)
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The left side is a ~;upp •~n 11y wn e s t i mat e  for  either of the two linear

func ti cn a l s  • t :.~ and U
0 

on the right.

Ins t ead  of (5 . 6) , r r . od i t v  ( 2 .  111 to gh .ose

x ,u x
0
,u
0 

a nd any  x ~~0, arb itrary u . (5.7)

The consequent (2.1) , when added tn ( 5 . 3) t remo ve L0, is

L - ( x  , — )  - L -~ ~u ,
(1’ 11 ( ( K  — — au

> - ( x , T~~~~ ) 4-
~~~U ,~~~~ — )

— I) (
~X 0 ( ‘U

> ‘ u .
—~~~~~. ( 5 . 8)

— 0 “U

A g a i n  the left  s i i e  is a supposedly known estioate for either of the two

linear  f u n c t i on a l s  of x 0 an d  u 0 on the r i ght .

The general bounds ( 5 . 7 )  and ( 5 . 8 )  are extens ions  of ( 2 . 1 3 )  and

( 2 . 1 4 ’) .  Op t imiza t ion  of them is unexplored , but their brev ity warra nts

their inc lus ion here , for completeness .

(lv) Embedding method

When an ab initio oroblem ( l . l ~~) contains  an op e r at o r  N ( x )  which

happens  to be convex in some doma in , then  we can construct a funct ional

(4 .1  for which the left  side of ( 2 . 1 )  is

‘u , N(x ) - N(x4) 
- N ’( x 4 ) ( x  - x 4 )) (5 . 9)

which will be nonnegative in the h a l f - s p a c e  u 4 > 0 , as in the case of ( 2 .  2 5 1 .
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Then ( 4 . 1 )  is a saddle functional . This suggests seeking to embed the

problem in a variant of (5.1) and (5. 2), namel y

-N ) x ) U  p 0 , (a) (5.10)

-N (x )  > 0 , ( ( i i

u > 0  , ( a )  (5.11)

0

Thus we take ( l . 13a) with (5.  2 1 . The orthogonality condition is taken to

imply that  N (x )  = 0 whenever the strict inequality u > 0 ho lds , and

in that  sense the embedding is achieved .

The objective now is therefore to bound (p , x0
) corresponding to

u0 
> 0 in the actual  solution of (5 .10 )  with (5.11) (and not to bound

(P~ K
)3

) as in §4 , because (5. 11)3) is not itself the ab initio problem ) . The

dual extremum principles ( 5 . 5 )  still apply , and for (4 .1)  become

- ‘u , N ( x ) )  -4- (p , x I > (p , x 1 > (p ,x 1 . (5 .12 )
a a a 0

These are themselves the required bounds. The bound on the right is not

necessari ly stationary because possibly first order terms have been given

away in its de rivation , but it may be easy to find .

In th e algebraic example (3.13 ) , the ab initio problem was the quartic

N( x) ~ x4 
~ ax 2 

+ bx + c = 0 . (4.13)3)

There are either one or two domains in which It is convex , a nd at most one

domain for which it is concave (for which case the function can first

be turned upside down before applying the procedure) . In a convex domain
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the bounds (5.12) read

-u (~ x4 
+ ~~ ax 2 1 bx 4 c) + px > px > px ( 5 .13 )a 4  a 2 a a ~ 0

where x~ is any solution of

1 4  1 2
~ x~ ~ ~ ax 3 + bx )3 

4- c < 0 (5. 14)

and x is anything for which

(x 3 + ax 4 b)u = p , u
a 

> 0 ( 5 .15 )

can be sa t i s f ied .  Evidently the cubic coefficient ough t not to vanish in

( 5 .15 ) , and ( 4 . 9 )  is a formal  way of avoiding th i s .

The embedding of ab initio l inear equations can also be il lustrated ,

either via a form of ( 4 . 1 0 ) , or by embedding in a linear programming

problem (cf .  Noble and Sewell , op . cit. §lO ( i i ) . Linear problems in

which the operator has special structure have  been discussed by Barns ley

and Robinson ( 1974 , 1975/6 1.
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I . ~pjdication S

1’ i n t r 0 d u c t i ~~n

We have carried out some prel iminary calculations apply ing  the

genera l  n n t i r a i / a t i o n  method of § 2. These include an a n a l y s i s  of an

electrical  n e tw r) : with resistors havin g  nonlin ear voltage-current relation-

a h i p s , and a v er i f ica t ion  that a basis used by Martin (1964, inequal ity ( Z l ) )

Lr  d isp lacement  bounds in elastic bodies under certain dynamic  conditions

is a conse~ uence of ideas like those of ( 2 . 1 3 )  or (2 .14 1 above . Barns ley

and Robinson ( l ’4 76 i l lustrate the result (4 . 121 by application s to a non-

linear integral  eauiition in communicat ion theory , and a nonlinear di f ferent ia l

e - r u a t i on  in a thermal  problem. Fuj i ta  (op. c i t . )  mentions examples for

the l inear  problem ( 1. l~ .

We have concluded , however , that  a fully representat ive i l lustrat ion

of the op t imiza t ion  method merits a separate invest igat ion wh ich we ought

not to at tempt here . A comparat ive study of the relative merits and power

of the three methods described in § § 2 , 4 and 5 must  also await the stud y

of a number of examples .

The main objective of the present paper has been to establish some

perspective by trying to uncover the structure of the requisite general

the r i e s .  One may anticipate that in some later instances more rigorous

statements may be required , but we have m t  conceived tha t  to be necessary

our  purpose here.
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• N n i l n , r n a n t i l e v e r _h e m

In ~rU -nl Ir it  is by m -c a as d c  r o m the  l i t e r  ture that one —

j im en s i  )n a l  p r - bles s r ’  - qe ouinely re~ r n - e r t t i v e  of a theor’! which is

t estir: itc pointv.i se b ut , ~s. h e . ’( - r t h e l e s s  it is a natural  engineer ing

s t a r t i t i c  i o t , a n d  we conclude the pape r  by giving the reader a handle

t • th e  m a c h i n e r y  of § 2 in such a case. This example ‘~~ c examined by

h~ ~r t in  (1’~66) by an ad aoc engineer ing  a n a l ysis , and a ~esc r ip t i on  f r n

sc ra tch  of some of its connect ions  with the r e sen t  theoret ical  f r am ework

was -aiven by No ble ( 14 -~74 at an earlier st a ~~e of th is  research .

(iii H a m i l t  ni~~n re: rosentation of the b earn or oh iem

. V c-  t i r s t  sh ov~’ how the e lementary  g v o r r i o q  equat ions  of the problem

can be cast into the Hamiltonian form 1. 16~. This will illustrate how

tn ’~ a pp r o p r i at e  snaces  and onera tors  can be cons t ruc ted  ab i n it i o

in a one-dimensional problem. Corresponding material in three-dimensional

boundary value problems of e last ici ty and plast ici ty was given by Sewell

( 197 3a , b) .

We consider a thin straigh t ca ntilever beam made of nonl inear m ateria l.

After conversion to nondimensional  variables , let s denote distance

measured along the beam from the bui l t - in  end s = 0 to the free end s = 1.

Suppose the beam is loaded t ransverse ly  in a plane by a load w ( s )  per

unit  length . (Se e Fig.  6 .1 ’ . The t r ansve r se  small  deflect ion (or deflection-

‘rate ’) in the lirection of w(s) is denoted by u(s), and M I s )  is the
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w ( s)

F ig .  6 .1 .  Cont inuously  loaded th in  cantilever

in ternal  bending moment . With an appropriate sign convention , e l iminat ion

of the t r ansverse  in te rna l  shear force by d i f ferent ia t ion  leads to the single

e~ ui 1ibr ium equa t i c r

d
= w ( sj  . 

( .11
ds

The b oundia r v  : :o i i t lo r 4 s will be

u ( 0 ’ )  0 . M( 1) = 0 . ( 6 . 2 )ds 0 
ds

1

The mater ia l  is supposed to respond according to the ‘ creep law ’

2

9 = M
n 

6.3)
ds

for some given n.

Our purpose in this sub-section is to express (6.1) - ( 6 . 3 )  in the

fo rmal i sm of ( I .  1(’ . The space E is chosen to consist of matr ices  like

rM(s~
M JM(0 )j (6.4)

L o J
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censtru - t -o f r  s real integrab le f ur e t i o r i s  Mi ’ s) , the  three entr ies

being associated r ’sp i ’c t iv e ly  with the inter ior  and with the two end-

i n t n  s 0 and S 1 of the beam. (The ident i ty  s y m bo l  e m p h a s i z e s

a de f in i t ion . The inner  pr duct  for E is defined as

I
(h i , N )  

f 
M~ s )N ( s ) d s  M ( 0 ; N ( 0  (6 . 5 ,

0

f or  a ny two memb ers M and N of E. The space F is chosen to

consist of matrices like

ru(s~
u E  ( 0 ( 6 . 6 )

L U I J
constructed from real integrable functions u ( s) , the three entries again

• being associated with the interior ari d the end -points of 0 < s < 1,

with the same ordering as in (6 . 4 ) .  The inner  product for F is defined as

1
(u , v) 

f 
u ( s lv ( s ) d s  + u ( 1)v( 1) , ( 6 . 7 )

0

for any two members u and v of F. Notice that there is a slight

clash between the no talon  M , u just  introduced by the def ini t ions  (6 . 4 )

and ( . 6 1 for elements of the spaces , and the conventional way in which

the real scalar functions M ( s ) , u ( s )  have been abbreviated in (6 .1)  - (6.  3)

by omitt ing explicit mention of the argument s. This need not cause

confu sion.
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It would have been possible to redefine F and F , by replacing

the ‘or value entries in ~~~~. 4 and ( 6 . 6 1 by the values M ”o and u ( 0 )

(res ; = -t i ve ly  of the considered integrab le funct ions , regardi ng these

values as unass igned  at this stage (they would later be given zero values

in the subspaces E and F ’ ) .  Then M ( 1) N ( 1)  could have been added to

the def in i t i ’ n of (M , N , and u ( 0 ) v ( 0 )  to tha t of ‘u , v ) .  The two inner

p n n : u i : t  spaces would then in fac t  be the same space . But there is no

advantage  in t h a t , for we shall  next be obliged to consider subspaces IT

and F which are not the same.  In any event , from the viewpoint ol

general  theory  it is more f ru i t fu l  to regard the presence of two (occasionally

re ~ s t inct  spaces as the rule , and their coincidence as an except icr ..

The subspace F’ is now defined to consist of those  elements  6 . 4 ,

of E which are constructed from funct ions ( typical ly M ( s o  which are

not merely integrab le , but al so

are s ing le-va lued  and continuous , with continuous f i rs t  derivatives .

in 0 < s < 1 ;

have  piecewise continuous second derivatives in 0 < 5 < 1:

have zero values at s = 1, e . g .  M( 1) 0.

The subspace F ’ is defined to consist of those elements ( 6 . 6 )  of F which

are constructed from functions (typically u ( s ) )  which again are not merely

integ rable , but a lso
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are s i n g l e -v r u l u e 1 ano  c~~n t i n u u u S , with continuous f i r s t  derivatives ,

in  0~~- s ~~~l:

have  p iecewise cont inuous  second derivatives in 0 < s < 1:

have  ze ro values  at S - 0 , e . g .  u ( 0 )  = 0.

The last properi~’; in each of these defini t ions shows that F � F’, eve n

though we could have chosen E F as described above .

We can now define operators T and T ’ mapping according to

11. 31 by the matrices

2
d u

ds
2

T u E  du , 
(6. 8’

ds

0

2
d M

2
ds

T M ~~ 0 . 
(6 . 9 1

dM
- 

ds 
1

It ca n be verified that  the statement 1.4 1 of adjoint f le sS , namely

(M,Tu ) = ‘u , TM ) (6 . 10)

fo r all u in F and for all M in E’ , he re represents a double

integration by part s written as

f 
M 9 ds + M ( O )  = u ~~~~~ds - u(f l  . ( 6 . 11)
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The jumps  allowed in the second derivatives do not affect the validity

of this , and the prope rties M (l )  = 0 = u (0 )  of the subspaces have been used .

Finall” we can introduce the Hamil tonian functional

X[M , u] r 

~~

‘
[n  ~ 1 M~~~’ + uw]ds . (6 .12)

This has no boundary terms , which is exceptional, and so its gradi ent s are

M’1

I 

(6 . 1 3 1

[~~1 

(6 . 14 )

The equations ( 1.16) now appear as

~ EX
T u = ~~~~ (a) ,

(6 .15 )

T M

which can be seen as an alternative statement of the original equations

• (6 .  1) - (6.  3) , bea ring in mind also the properties of E’ and F ’ .

• The problem is thus  generated from equations (6.15) by the Hamiltcnian

functional X[ M , uJ of ( 6 . 12) , which is strictly convex in M if n is

an odd integer (or convex in the half-space M > 0 if n is any integer) ,

and linear in u. A classical elastic beam has n = 1.
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Thus the probl em is very similar to the Fuj ita problem ( 1.14) when

n 1, or its generalization (2.  26) when n > 1, except tha t the role

of the variables Is reversed. In applyi ng the general theory , we therefore

expect to have a case of intermediate generality like that of subsections

2(vi — (viii’).

(iv ) Lagrangian generating functional

Evidently (6 . 15a1 can be regarded as the ‘consti tutive equation ’ , and

(6 .15 ) 3 )  as the ‘ equilibrium equation ’ . The quote marks remind us that

these equations in fact  contain some of the boundary conditions embedded

in them as well . The equations can also be regarded ~s generated from

(1 .13 )  via the Lagrangian functional

L[ M , uI (M , T u )  - 
~ L ~ ~ 

M~
4-1 

+ uw~ ds

M 9 ds M (0)  - X ( M , u}

(u , TM) - X[ M ,u]

f 
U ds - u( 1) - X[ M ,u] . (6 .16)

In other words , the constitutive equations may be derived as

2

9~~~M~
ds

OL * ~X = 0 , (6 . l7 a )
ds

0

-5 6- 

--~~~~• •



- - 

~—~~~~~~~~~~~~~~~~~~~ TT

and the equilibrium equations as

• TM - = 0 0 . ( 6 . l 7 (~n

dM
- 

ds 1

The underdete rmined class of solutions M , u of (6 . 17a and
a a

?v1~~, u~ of (6 , 17)3) , are generated from ( 6 . 4 )  and ( 6 . 6 )  as follows . The

• e lement  u mus t  be constructed from a funct ion u ( s )  which satisfies
a

u ( 0 ,  0 , because it must  belong to the domain F of T . By a
a

double integration of (6 . 17a)  with any integrable function M ( s) , u sing

d u m m y  variables ~ and t , we have

• s t
• U a

(5) = J f ~ M (( ) }
nd(Td~ . (6.18 )

0 0

The e lement  M 4 must be constructed from a function M
)3

( s )  which

satisfies M )3
( l )  = 0 , because it must belong to the domain E of T.

By a double integration of (6 .17 ) 3)  with any integrable loading function

w( s) , we have

S t
M )3

(s) f f w(r)dadt
1 1 (6 . 19)

w(s - 1) 2 
if w ( n )  = constant

Nothing need be said about a function u )3
(s )  or its associated element

because this is absent fro m (6 .17 ) 3 ) .
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The total potent ia l  energy associated with any such ~ -so1ution is

L ) M , ~
-
~~

— )  - X [M , u ]

1 

~ 1 M~
4- 1 

- u w]ds (6 .20 )

l r  1

• j  [ n M r
~
4
~ - M M”jds .n 1 1  a

The total complementary energy associated with any such (3-solution is

-L )3 = - ( u
)3~~~~~~) 4 X 1M )3~

u
)3}

I 

n + 1 M~~~ ds . (6 .  21)

Any actual solution value L0 of L is

L0 = 

1 

[n~~ 1 M~~~
1 

- u 0w]ds - 

1 

n + 1 M~~~ ds

- u 0 n ~~ 
ds . (6 .  22 )

In other word s , L0 
is itself a linear functional of u0 .

When n is odd , L[ M , u~ is a saddle functional  concave in M

and linear in u , and the standard energy methods are applications of

the extremum principles (2. 5) with these specific expressions (6.18 ) - (6 . 21) .

The difference between the energy bound s for odd n is
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1
1. - L - 

~ j I nM~~(M - M ) - M (M n 
- M~~~ ds > 0

~, ~3 n~~~l 0 a (3 (3 a (3 
—

1

~ J i’M - M
)3

) 2ds when n 1 . (6 .  22 )

(v A strong bound

Recalling the remarks of § 2 (x)  and noticing that  (6.  22) reduces L0

itself to a linear funct ional  of u 0, we enquire if a strong bound can

be constructed for the beam problem.

Substitution of the Lagrangian (6.16 ) into ( 2 . 1 2 )  leads to

1 1 d 2M dM

~ 
/ M~~~ ds > 

f 
u
0 [ 2  

- ~~~1]d s - u 0
(1) (6 .  23 1

af ter  us ing the matrix expression (6.17 )3 )  for the nonzero gradient aL/au

in the inner products defined via (6 .  7) .

Since the minus  point in (2 .  12) is arbitrary , so is the bending moment

dist ribution M ( s I  except that it must be in E’ , the domain of T

specified above for this problem.

This makes a precise connection with Martin ’ s ( 1966) result , if we

now choose M ( s)  to be in equilibrium with the fictitious loading

dist ribution shown in Fig . 6 . 2 .  That is to say, M (s )  is to satisfy

d 2M
- 

=
~~~~~~~—~~~~~ in 0 < s < l  ( 6 . 2 4 )

2 n + 1
ds

dM
- - P at s = 1  ( 6 .2 5 )

ds
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Fig. 6 . 2 .  Fictitious loading on cantilever

in addition to M (l ) = 0 already required by the subspace E’ , where P

is a given number. Such a choice is made because it allows the pointwise

estimate

u 0
( l )  

~ (n ~ l)P M~~~ ds (6 .  26 1

to be obtained fro m (6.  23) for the deflection u 0 ( 1) at the end of the

beam under the actual loading of Fig. 1.

When the distributed load w is uniform , the required solution

of (6. 24) is

M (s )  = 
1 ~~w(l - ~~~

)
2 

+ P(l - s)  , (6 . 27 )

whence (6. 26 ) becomes Martin ’ s ( 1966) pointwise estimate (12).

(vi) Weak bounds

It is possible , for example , to optimize (2.14) by identifying the

above choice of M with

M = M
(3

+ h P  (6 . 28 1
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where h is a scalar and p a member of E ’ . But we already know that ,

in a sense , more than necessary has been given away in this particular

problem , and the result does not seem to be helpful .  For example , in

the case n = 1 we arrive at

(M
0 

- M~~ p ds 
< [I

’ 

(M - M/ds~~ [J 
2
d 1  . (6 .  29 )

A reason why we said that this problem has oniy limited representative

value can now be seen. It is because , since we are at liberty to choose

any M ( s  fo r insertion into (6 .18 ) , arid since we know M~ (s )  fro m

(6 . 19) , we can choose

M (s )  = M ( s )  . ( 6 . 3 0 )
a (3

This is the perfect choice bearing no margin of error in (6.  29) , and in fact

correspond s to the exact solution M 0 (s ) .  The exact solution when n = 1

and w consta nt is

1 2M
0

(s )  = w(s - 1)

1 2 2 
( 6 . 3 1)

u 0
(s)  ~~ ws (s - 4s + 6)
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