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ABSTRACT

A general theory is developed for the estimation of linear functionals,
in three distinct classes of nonlinear problems. The functional is linear in
the solution vector X0 of the problem, an example being (xo,p) where p
is assignable.

The considered problems are all generated via the gradients of some
given quadratic or non-quadratic Lagrangian functional over two inner
product spaces. This may be a saddle functional, or it may be constructed by
embedding a given nonlinear problem with the aid of a Lagrange multiplier.
Many different problems in applied mathematics are thereby included.

In some cases the assignable coefficient can be chosen in such a way
that the bounds calculated for the linear functional are pointwise bounds on
the solution vector. In general this requires further investigation, but

estimation of the deflection at a point on a cantilever beam is illustrated in §6.
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GENERAL ESTIMATES FOR LINEAR FUNCTIONALS IN
NONLINEAR PROBLEMS

M. J. Sewell and B. Noble

1. Introduction

(i) Scope of the investigation

This paper presents the results of a general study of systematic

methods for getting upper and lower bounds to the solution-values of

linear functionals.

A new theoretical framework is set up for this purpose. It contains
a wide class of linear and nonlinear problems which can be defined in
terms of the gradients of some given quadratic or non-quadratic generating
functional. It is often important to be able to construct, using an
assignable coefficient, a linear functional of the solution of such a
problem, and to estimate its value. This can be related to the problem of
finding pointwise bounds.

The framework exhibits in a natural way three different types of
situations, requiring different methods which we call the general optimiza-
tion method (§ 2J, the general embedding method (§4), and the nonlinear

programming method (§ 5).

This research was sponsored in part by the United States Army under Contract
No. DAAG29-75-C-0024, and in part by the University of Oxford Computing
Laboratory and the University of Reading Mathematics Department.




Underlying these situations is an appropriate generalization (§ 3)

of the second mean value theorem, already indicated in our earlier joint
paper (Noble and Sewell, 1972, equation (5.3)). In particular this can be
used to provide sufficient conditions for satisfying a saddle inequality

in the form proposed by Sewell (1969, equation (2.50)). A saddle
functional generates a wide class of problems in applied mathematics,

as described in the papers cited and in Sewell, 1973a, b, where elasticity
and plasticity are treated in detail from this viewpoint. The general
optimization method applies to saddle-generated problems.

Under different hypotheses on the generating functional, such as
boundedness {instead of positivity) of operators representing its second
derivatives, the saddle hypothesis may be lost. In this case the general
embedding method can be available. We show how it recovers some recent
results of Barnsley and Robinson (1976).

Problems generated by inserting a given scalar functional into
governing conditions expressed as sets of inequalities are covered in
the section on nonlinear programming methods. They also lead to
inequalities on linear functionals.

Remarks on applications are made in §6.

(ii) Origin of the research

This investigation began in an attempt to generalize to nonlinear

problems some approximation methods described by Fujita (1955), who gave




an elementary proof of a theorem of Kato (1953) on pointwise estimates

for a solution of the linear decomposable operator equation
T'Tx - f . (1.1)
Here x 1is the unknown and f is given, both 'vectors' in the same
linear space. T is a linear operator and 7" is its adjoint. For example,
if T~ grad and T*~ - div, (l.1) is associated with Poisson's equation.
Fujita's paper subsumes in a compact way earlier work on pointwise bounds
by Diaz, Greenberg and Weinstein, Prager and Synge, and others (see
the references in Fujita's paper). It is convenient to recapitulate here
some of Fujita's conclusions, as an introduction to some of the ideas
required later on.
We introduce an intermediate variable u in order to decompose
the problem (1.1) into the pair of operator equations
Tu=-f, ()
(1.2)
T x = -n . (B)
Both here, and in the main general theory below, we regard the variable
X as an element of a real vector space E having inner product (:,:),
and u as an element of another, and normally different, real vector
space F having inner product (-,:). The linear operators map
subspaces E' and F' of E and F (respectively) according to the

scheme

T:E =F

T sP=FE. (1.3)




Mutual adjointness of these two operators means that

(x,T*u) = {u, Tx)
forall x in E' and all u in F'. For example, when differential
operators form part of T and T* , (l1.4) 1is a compact way of writing
the integration by parts formula. Many examples of these and other
relevant simple ideas from functional analysis are given in an Appendix
to the paper of Noble and Sewell (op. cit.).
We emphasize those values of x and u which satisfy both

(1. 2¢) and (1.2B) by x i.e. by attaching a subscript zero. Thus

O’ UO’

Xy is an actual solution of (1.1). Let u, be any solution of the single

constraint (1. 2«). Let x_, u, be any pair satisfying only (1. 28),

B’ B
so that xﬂ is an arbitrary vector in the domain of T and generates
a consequent uﬁ. In other words

Tu =-f Tx. = -u

a i P B

In general u_ # ua unless both are Uy belonging to the actual solution.

P

Then Fujita's conclusions can be summarized as follows.
(a) The dual extremum principles, giving what can be called upper and
lower "energy" bounds in appropriate contexts, are (Fujita, equation

(2.3))

1 2 1
2 M 172 g g, 0 = 3 I 12 2 0,20 - 5 M 12

The norms here are all in the space F, but later on it will not

(1. 4)

(1. 5)

(1.6)
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cause confusion to use the same symbol for norms of elements of

E. These principles bound a linear functional of x with given

0!
coefficient f in E. This can be the actual work of given forces

in mechanical problems.

(b) If g is an arbitrary vector in F', the linear functional

sk
(uo,q) = - (xO,T q)

is bounded on both sides by (Fujita (3.6))

1 i =
= Ilua = gl > ¢ 3 (U, + ug) - up,a) | 1.7)
and also by (Fujita (3.8))
||ua - Uy [ llall > |<u;3 - uo,q>| (1.8)
and
”ua b Mgl > l(ua - uo,qH ; (1.9)

We call (1.8) and (1.9) Fujita's 'weak' estimates and (1.7) his 'strong'

estimate because more is given away to get the weak inequalities

than the strong one. We shall recover some of these results below,

by proofs different from those of Fujita, as simple illustrations of

our framework.

Equations (1.7) - (1.9) suggest the following approach to the problem
of obtaining pointwise bounds. Remembering that u, = -Txo, choose ¢
so that T*q has a delta function behavior in such a way that

(Uo,q> = -(xO,T*q) = '(Xo)p (1.10)




where txo»p denotes the value of the exact solution X at the point P.

Then (1.9), for example, gives

”u“ = Ui” lall > ;r.v.”;p : /uu,g,,'f 2 (1.11)

and we have found pointwise bounds on xo at P. This procedure is
useful for one-dimensional problems and in two and three dimensional
problems for bounding quantities on the boundaries. But if, for instance,
we try to bound the potential at an interior point in a problem involving
Poisson's equation, g has to behave like grad(l/r) near this point

| involves a divergent integral. This difficulty has been

and g
circumvented by various authors in an ingenious way, the essence of

which depends on choosing g to have the form g =q' - Tp', where
Tﬁq' and T Tp' have exactly the same type of &-function behavior,
with g' such that (1.10) is true with ¢' in place of g, and p' is

in the domain of T. We can deduce from (1.9)

= Hqgr - i i = t 3 142
I, upurq Tp'll 2 [Cug, a) (f,p)+(x0)pf (

The expression on the left is finite since gq' and Tp' are chosen so
that their singularities at P cancel. A numerical example is discussed
in Fujita (1955).

Although we have been able to obtain pointwise bounds in a number
concrete nonlinear problems by essentially generalizing (1.11), as for
example in §6 below, we have not been able to find a natural generalization

of (1.12) in the abstract nonlinear setting of our work.
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Our formalism throws light on some bounding principles developed
by Martin (see, for example 1964, 1966) in the special context of elasticity
and creep. Martin exploits ideas conneccted with energy, complementary
energy, virtual work, etc. We show in §6 that his formulae apply in a
quite general context by exploiting simply convexity and the structure of
the basic equations. The relevance of convexity in the dual extremum
principles of continuum mechanics was originally pointed out by Hill (1956).

(iii) General governing equations

Our general theory is set in the same two inner product spaces having
typical elements x in E and u in F which are described after (1. 2).
We consider the class of possibly nonlinear problems of generalized

Lagrangian type

'Z—i =0, (a)
(1.13)
L (8]
generated by a given functional L[x,u] of x and u (Sewell, 1973a,
equations (25)). The partial gradients in (1.13) are Gateaux differentials,
as in the familiar process of computing a 'first variation' and picking out
the coefficients of increments in the varied argument. Thus the pair (1.13)
is effecting a variational principle.
The problem (1. 2) is recovered from (1.13) with the special example
L=(x,Tu+ (fx) + El(u,u) : (1.14)




using adjointness (1.4) before computing oL/éu. More generally the
example

L (x,T'Fu) - X x.al (1.15)
where X[ x,u] is another given possibly nonquadratic functional of x

and u, generates from (1.13) the equations

T;':u _()_X , ()
9x
(1.16)
Tx Q—( . (B)
du
of Hamiltonian type proposed for study by Noble (1964). Another concrete
example is generated by
% _l- & .l :
L=(x,Tuj+(x) -5 px,x)+75 (u,u) .7}
where o is a given scalar. As with (1.2}, it is possible to eliminate
u from (1.13) with (1.17) and recover a single decomposable generating
equation
(T'T+ plix = £ (1.18)

where 1 is the identity operator. Dual extremum principles for this when
p > 0 were studied by Noble and Sewell (op. cit., §14).
Problems whose ab initio version is nondecomposable via an
intermediate variable in the above sense may still be brought into the
scheme (1.13) by embedding. For example, if the ab initio equation is
N(x) = 0 (1.19)

where N is a possibly nonlinear operator, we may seek to identify this




equation as (1.138) by introducing a u to appear linearly in some L[ x,u]
like a Lagrange multiplier. This embedding précedure induces a second

'adjoint' equation (l.13a) to be considered in conjunction with (L9,

and perhaps containing an assignable coefficient in the linear functional
to be estimated. It is in this way that the work of Barnsley and Robinson (1976)
is brought into our framework. Even if the ab initio problem is decomposable,
it may still be embedded in the stated manner into a larger problem.
Barnsley and Robinson (1974) do this in their study of the linear equation
(L8 for pl=L:

In the general problem (1.13) certain additional hypotheses are
required about the general functional L[ x,u] . Typically these set bounds
on the second derivatives. In particular the functional may be a saddle
functional. For example, (1.17) is strictly convex in u and, if p >0,
strictly concave in x. If p =0 asin (1.14) it is only weakly concave
in x. If p <0 itis nota saddle functional. Such hypotheses are
made precise in the next Section.

Another source of generalization is that the equations (1.13) can
be replaced by systems of inequalities (inequalities (33) and (34) of
Sewell, 1973a) and dual extremum principles can still be proved under the

saddle hypothesis. These sometimes contain direct estimates for linear

functionals (see § 5).




2. General Optimization Method

(i) Saddle functional

Suppose that L[ x,u] 1is a given saddle functional defined over
some domain in the product space E X F.
The analytical expression of the saddle property is in terms of

arbitrary pairs of 'points' in this domain, which we label x , u, and

‘ -

x , u and refer to as the 'plus point' and the 'minus point' respectively.

Then L[x,u] is called a (weak) saddle functional if, for any pair of
distinct points in its domain,

8L oL
L, -L —(x,—x,—f e e i e (i (2.1)
- : - ox |, B - L

The subscripts attached to L and its gradients mean evaluation at the
indicated points. Such a functional is concave with respect to x at
each fixed u, and convex with respect to u at each fixed x - hence
the name, and Fig. 2.1 is a schematic illustration of its individual cross-
sections with the spaces E and F. The weak inequality permitted in
(2.1) for distinct pairs of points means that the surface can contain linear
segments such as straight lines or plane facets. Otherwise it would be
called a strict saddle functional.

This analytical statement of a saddle functional was given by
Sewell (1969, equation (2.50)). For simplicity in what follows we adopt

the convention that the vertical bar attached to gradients is omitted.

=1 0=




Fig. 2.1. Saddle functional L[x,u]

For example, 0L/ox _ will denote the Gateaux differential with respect
to x evaluated at the plus point X,y U, (and not merely a gradient
with respect to  x ).

Unless otherwise stated, plus and minus points will always be
arbitrary points in the domain of L, throughout the paper. Our entire
theory will rest on the facility with which different and eépecially
convenient interpretations may be assigned to them. Such choices will
be indicated by an appropriate suffix.

For example, when L is used to generate the governing equations

(1.13), we can divide them into the two subsets labelled (a) and (B).

Sll=




Each subset considered separately is an underdetermined problem whose
solutions will be supposed known. They may be easier to find than the
solutions to (1.13) itself. We shall use xQ, ua to denote any solution

of (1.13a) alone, and x_,, u, to denote any solution of (1.13B) alone.

g’ B

In other words,

oL oL

— -0 == . . .

09X 5 au k 2%
o B

Neither point need satisfy the other equation, except when it happens to
be a solution of the complete problem (1.13).

In what follows we shall often, for the sake of emphasis, denote an
actual solution point of (1.13) by Xo uo, and attach a subscript zero
to other quantities evaluated there, as we did for (1.2). Such a solution

point need not be unique.

(ii) Dual extremum principles

First choose the particular interpretations

X oo, =X

Yy L and x_,u =xX,,u (2:3)

0’0
in (2.1). By (2. 2] there follows immediately the stationary minimum

principle La > LO' Next choose

X, ,u, = X,,u, and x ,u_= xp,uB . (2.4)
in (2.1). This implies the stationary maximum principle L0 > Lﬁ' Thus we
arrive at the dual extremum principles

>
Ib—LozLﬁ (2.5)

«12-




derived with increasing generality in our earlier papers (Noble and Sewell,
op. cit., inequalities (1); Sewell 1973a, inequalities (31) and (32)).
For problem (1.1) they are illustrated by (1.6) in which

& %

. B

1 L 1
L, =7l 0% 1g = xg,0 - Fl1x (2.6)

The second order quantities given away to get these particular estimates are

1 & 1 2
L -Ly=5le -u 5, LO-LB-ZHUO-uﬁ” : (2.7)
The extremum principles (1.6) can be rewritten as error estimates in terms
of the difference between the bounds
rl 2
N
1 2
L, - Ly =3l -ugll®2] (2.8)
L &
=fu, -u
(2" 0
(iii) General bounds for linear functionals
If we choose
X, ,u, arbitrary, and x_,u_ = X0, U, (2.9}
in (2.1), we find
oL oL
. Lot = ==y .10
L+ LO (x+, 5 ) > (xo, . ) (2.10)
+ +
If instead we choose
X, U, = X,,U and x_,u_ arbitrary, (2.1}
then (2.1) gives
oL oL
- ==\ > ). :
Ly =L+ {0, 5 22 (ug, ou_ (2.12)

=13




Next we add L0 - L}3 >0 to (2.10), giving

als . oL
L ~Lp-(x‘,;—x—;;—(xo,é—);-). (2.13)

Also we add L‘ - LO 2 0 to (2.12), giving

L

al, gL
L = v/ ) / \ .
« L Y4 an / = (Uos ou A (2.14)

It can be seen that (2.13) and (2.14) offer bounds on the linear

: oL oL
funct == e i i
unctionals (%45 ox, and <u0, = ) of the solution variables Xgs Up
The bounds on the left are in terms of arbitrary assignable points X, U, #
or x , u, andthe supposedly known «- and p-points.

(iv) Optimization of the extremum principles

The choices made in (2.3) and (2. 4) are special choices of the
pairs of points in (2.1), made with particular solutions of (2. 2«¢) and (2. 2p)
respectively, and designed to lead immediately to simple conclusions (2. 5).
Such particular solutions need not be unique, and in specific problems it

may be possible to decrease La and/or increase L. by optimizing

S
within subsets of particular solutions. In general the problem is to find

such subsets.

In the case of problem (l.2), Fujita (op. cit. §4) specifies subsets

appropriate for improving the bounds (2.6). Here we make a rather different
remark about that problem to help motivate our subsequent procedures.
Noticing that the Lagrangian (1.14) implies that the left side of (2.1) is

exactly equal to

14~




|2

‘;'||u+ e . (2:15)
we consider the possibility of minimizing this ‘square of the error’' among
those plus and minus points which have the property
(2.16)

=g =N + pu -
+_uapﬁu0

for disposable scalars N and p. This simultaneous procedure corresponds
to finding the minimum of an elliptic paraboloid. A special feature of
(1. 2) leads the simultaneous optimization to the improved pair of dual

extremum principles

La:LaZLOZLBZLﬁ (2.17)
where
2
i (£}
LB - -—-E—T}E' X (2.18)
: 2 ” Tx
B
The result of the simultaneous procedure is therefore the same as the
two usual separate choices of first (trivially) setting X\ =1, p =0,
and secondly setting N\ = 0 and optimizing the nonhomogeneous L‘3
with respect to the scale factor .
The special feature of problem (1.2} which leads simultaneous
and separate procedures to the same result is an orthogonality property
- — 2.19
<up,ua uo) 0, (2.19)
*
i.e. any ug = -Tx‘3 is orthogonal to the null space of T , since
* *
Tu =T u, ==f
o 0

-15-




(v) A general class of competing vectors

Looking ahead from (2.16) to the problem of optimizing the bounds
for linear functionals for general L[ x,u], and noting that it is desirable
to free Fujita's proofs from their dependence on Schwarz's inequality
(which is a consequence of minimizing a single quadratic), we propose to
study choices of the plus and minus points which have the properties

X ~-X =rx +sx_+hp+ix
- % ‘3

L 0

(2.20)

+ kg + ju

W = N +
et ua Hu

p 0"

Here the eight coefficients r, s, h, i, A\, u, k, j are disposable real

scalars which will be normalized here by taking i = 1, j =+1. The

s
choices (2.3) and (2.4) are special cases of (2.20) with h =k = 0.

The elements p in E and q in F are to be regarded as
assignable. Note that dual extremum principles such as (1.6) estimate a
linear functional lz (xo,f) whose coefficient f was already given in the
statement of the problem, and was therefore not necessarily assignable.
Our basic objective is to estimate a linear functional whose coefficient
may be chosen without that constraint.

Before attempting to use the class (2. 20) to improve the general
bounds for linear functionals given in (2.13) and (2.14), we notice one
more thing. Addition of the extremum principles to (2.10) and (2.12)

eliminates the unknown LO’ but at the expense of giving away the

first or second term in the identity

1t -




0 (La - LO) 1 (LO - LB) = (La - LB) - (2.21)

In Fujita's linear theory this is masked by the special orthogonality
property (2.19) in the form

- 2 Ay o P
l +2”u0—u [ -ZHua u |I°. (2.22)

!
—uOB. 2“ua-u B 5

0 =
(9 -uq;u 0

3
His weak estimates (1.8) - (1.9) require that the first or second of (2. 22)
be given away, and do not therefore depend on the orthogonality per se.
It is therefore his weak estimates which we shall be trying to generalize
when we optimize (2.13) and (2.14).

On the other hand, his strong inequality (1.7) does not give away
the stated terms La - LO and L0 = LB’ but it does seem to depend

critically on the orthogonality property

1]

] Zanlt 2
NE (ua i up) - U, < - Z”ua - UBH

(ua - uo,u‘3 - u0>

JaX =l )0, (2.:23)

B = gl My

il

For this reason we expect his strong inequality to be harder to generalize,
even though something may be achieved in particular cases (see § 2(x)).

(vi) Intermediate generality

In seeking to optimize the general bounds (2.13) and (2.14) on
linear functionals, we find it illuminating to concentrate first upon some
cases which are more general than (1.14) or (1.17), but less general
than an arbitrary saddle functional L[x,u]. These are separable cases

of type

J7 -




L-(x,T u) - N(x) + G(u) (2.24)

in which N(x) and G(u) are convex functionals of the single variables

x and u respectively. In passing we can notice that

L - (x,T u) - NxG(u] (2.25)
is concave in x and convex in u, provided both G >0 (or N linear)
and N <0 (or G linear) in addition to the convexity of N and G.
Examples of (2.24) in which one of N(x) or G(ul are linear
arise in fields such as network theory and elasticity. In the latter x
can be a generalized stress (cf. Sewell 1973a,b) or bending moment
entering a convex N(x), with displacement u appearing in a linear G(u).
In the next subsection we carry out the optimization for
L= (x,Tul+ (£x + Glu] (2. 26)
obtained from (1.14) by letting G be any strictly convex functional,

instead of gquadratic. From (1.13) this generates the problem

T u=-f, (@)
(2 27)
T == gliuy (B)
where
g(u) = G'(u)
A prime will signify gradients of G(u), and also of g(u) below.
The inequality (2.13) reduces to
& TH 46 - Gu) > -(x,., 2= (2. 28)
(u+) - (XB, u|3 uﬁ > 0’ E)x+ «2

=18«




in which

2Ty 4 f
8x+ +

P

Here u, is any element in the domain of T,
The inequality (2.14) reduces to

oL
S

oL
G(ua) - (f,x )+ (u_, ot Tx ) - G(u ) _>_(u0, Bu_

in which
gL
ou

T:::u =t f
@

)
Here x_is any element in the domain of T, and u 1is any element

in the domain of g(uj.

(vii) Optimization of the first bound

Recalling (2.20), we choose for the u, in (2. 28) the restricted class

Tx_ = - )3 .
: X g(uB (2.29)

(2.30)

=Tx + g(u_) : (2. 31)

W, = e kg (2.32)
+ @

for any q now in the domain F' of T* and any scalar k. Then

Y

(2.29)1 with (2.31), implies

1

and (2.28) becomes
G(u + kq) - (x T*u + f) - G(u
(u +kq ( B 8 ) ( B
We now optimize this inequality approximately with respect to 1’2

It will turn out under suitable circumstances that k is small. Acting

on this assumption we write

-19-

e (2.33)

) 2 k(xy, T a) - (2.34)




. . . 12 : 5 3
G(u +kq)=G(u )+ k({(gu),q)+5k(g'(u)g,q) + 0(k”) . (2.
@ a @ 2 @

Inserting this in (2.34) and omitting the higher order terms gives

%C4F1k+ %Blkzzo (2.36)
with the following shorthand for the coefficients
1 *
ECEG(ua)-(xB,T uﬁ+f)_G(up):La'LpZO’ (Z2.37)
F)={glu) - gluy),q) = (glu ),aq) + (xO,T*q) : (2.38)
ig 2—1<q g'(u )a). (2.39)
2l 2 4 a
A sufficient condition for the strict convexity of G(u) can be given
in terms of a mean value theorem (see §3), and implies that
cs<ua-uﬁ,g'(3)(ua-uﬁ)>>o (2.40)
when u, and uB are distinct, where the operator g'(a) is evaluated
at some intermediate u between u, and uﬁ. It also implies the strict
inequality
Bl >0 (2.4l)
for g +0.
Under these two strict inequalities, we optimize (2. 36) with respect
to k by considering two cases.
(a) k>0 implies
E:-4~2F + Bk >0, (2.42)
k 1 I

P

35)

1
|
i
§
1
,




!
The left side is least, e.g. by completing the square, at k (C/Bl;‘

and the best result is
Fl+(CB)~’30. (2.43)
(b) k<0 implies

(@
> = + B ko, v
0= " 21‘l B1 (2.44)

1
The right side is greatest at k -(C/Bl)“, and the best result is

1

0>F, - (CBI)a : (2.45)

Inequalities (2.43) and (2.45" for the objective linear functional

(xO,T""q‘» = -{glu,),q) (2.46)

of the solution variable xO can be summarized as

I(g(ua'),q> 4 (xO,T:‘:q}I < (CB e (2.47)

1
It has to be remembered that this result is not rigorous because
higher order terms were omitted in going from (2. 35) to (2. 36). Rigorous

bounds can be obtained by inserting
1

k :d:(C/Bl)é (2.48)

into (2.34). These values of k will not in general provide the best

bounds on (2.46), but if P uﬁ they will be close to the optimum bounds

because C = Z(La - Lﬁ) will then be small. Without loss of generality

we can assume that B. is of order unity so that the resulting k is

1




small, and the neglect of higher order terms in (2. 36) will be justified.

(%4

Obviously the best bounds are obtained when u and up are as
nearly equal as possible, since as W Uﬁ’ C - 0 and the left side
of (2.47) tends to zero,

The linear problem (1. 2) is recovered with

’

l A
Gl(u) E’u,m, giu) = u g =1 (2.49)

so that

d 2 | 2
e Huu-uﬁﬂ, B = llal”.

The result (2.47) is then exact, namely

e ~aalte - ug g | (1.9)

o
which is one of Fujita's weak estimates.

(viii] Optimization of the second bound

Inequality (2. 30) is the basis for the second bound, and it involves

both x_and u . Againrecalling (2.20) we choose the class of points

E s S U =u ok {2.50)
. 8 P, B 8 q
for any p inthe domain E' of T, any g such that u  (like uﬁ\
is in the domain of g(u), and any scalars h and k.
Insertion into (2. 31'!2, expanding and using (2. 29\2 implies
oL 2
——— + kg' Jg + 0(k .51
bu_ hTp + kg (quq (k™) (2.51)

2 : : N
with an obvious extension of the 0(k~) notation. Here g'(u,) is an

P

~D D=




operator acting on g. The inequality (2. 30) expanded about the B-point

3
X u‘3 becomes, after omission of O0(k ) terms,

‘3)

—éC*FZPJ'%BZkzzo (2.'52)
because the terms in h cancel exactly. Here C =2 (La - Lﬁ) as in
(2.37), but the other coefficients are now
F2=<uﬁ-u0,g'(uﬁ)q>, (2.53)
~lB = ‘l<q g'(u gy . (2.54)
23 T 2 htneiip

The form of these shows that it would be enough to regard g'(uﬁ)q = Q
(say) as arbitrary, i.e. to have begun with q = [g'(uB)] @ inl (2.50]).

Optimizing (2. 52) exactly as before, we find

1
l<u‘3 - uD,Q>| < (CB,)? (2.55)

in place of (2.47). Again this is approximate, but rigorous bounds can

be obtained by using

1

k =& ((:/BZ)‘2 (2.56)

to deduce exact values from (2.50) for substitution in (2. 30).

In the linear problem (l.2) we have only to put g'(u) =1 in (2. 53)

and (2.54) to see that (2.55) becomes

l¢u, - uo,q> | < ||ua -y, g (1.8)

P

which is Fujita's other weak estimate.




(iv) Optimization in the general case for weak bounds

Here we indicate the optimization procedure that would be required
in the general case for weak bounds, i.e. as it would apply to (2.13)
and (2.14).

At certain points we shall need to suppose that a 'Taylor' expansion

of the following type can be employed (see also the discussion in §3(i)):

: oL oL
Lix+¢g, u+v] =Lx,u] +(§, 2) + v, T
2 2 2
1 LT oL 1 g L
1., 8L g g y
P8 T8 ) L, Gu ) T 2T Y
X du

+ higher order terms.
In this expansion on the product space E X F, the linear operators act
on the elements of E or F which follow them as before, and with the
assumed property that

BZL

’ Juox

aZL
= m g
oXou

(€, =Lp £) .

This last property is exemplified by the adjointness statement (l.4) for
the particular bilinear functional L = (x,Ta\u) = {(u,Tx). In general

2 2 SRR :
8°L/oxou # 8 L/dudx, as T # T illustrates. It is assumed that

82L/8x2

and BZL/BUZ are self-adjoint.
First we wish to optimize (2.13) with respect to all plus points in

a suitably chosen family. We consider a family centered on the «-point,

i.e. we choose (cf. (2.20) and (2.32))

o

{2k 5}

{2.58)




X, xa+hp, u =u +kgq

(03
and optimize with respect to the scalars h and k.

The expansion of L,

O

(2.59)

according to (2.57), and the operator expansion

of 8L/ox,, are simplified because bL/axa - 0 by (2.2). They are

2 2 2
ol | 8 L . L I o L
¥ k(g, ==Y+ = =p) ¢ += e
L, La k(a, ou ' 2h ‘P, 2 B} *hkip, axou / Zk {a, . 2q>
@ X a ou
{}t [°3
4 (2.60)
and
. e 2
oL _p3L, 2L ., (2.61)
X e oxadu
+ ox a
03
The dots will consistently denote higher order terms in h and k. Using
(2.61) to eliminate the cross-derivatives from (2.60), and substituting
the result back into (2.13) gives \\\
oL gL
- - = —— + —_——
b T hp BB, < B T PR
+ @
2 2
--lth "d—"Lp +—1k2<q,i—Lq>+--.>o. (2.62)
2 4 7 2 2 =
X au
(04 a
We can also expand aL/aua about the solution point X5 Ugs giving
2 2
8L 8L 9L :
u, " Budx, X "Xl P 5w, -ag) 4 el
a 0 ou
0
since aL/au0 = 0. Insert this into (2.62), together with (2.61). If we
assume that all second order derivatives can be taken at X, instead

’

“2Ba

u
a




ot xo, UO’ to the order of accuracy retained,

P 2

o L o L

- 1 - - e 1 / _ S e

b < hg w Bl = B B FR(R, m W, T gl

dX du

(o3 (04
2 2
L. 2 3L ] 2 an'l,

= == h e fe = e = —_— B e :
- P, , Zp) 2} a, 2q) >0 (2.64)

\ 90X ou
a (%3

Omitting now the higher order terms, (2.64) is of the form

G+ ZFlk t Blkz t ZGlh + Alhzzo (2.65)

: . 1
in which E C = La - Lﬁ > 0 by the dual extremum principles, as before.

Alse B, 20 and A

1 130 because L 1is concave in x and convex in u.

7 2
If o L/t)xa =0 sothat A G1 - 0, or if we arbitrarily set

h = 0, we can choose k in (2.65) to find optimum bounds for Fl as

in (2.36), and this gives

’

tu -u, TEgyl< Z(LQ—LBs<q,'——q> . (2. 66)

Similarly, if E)?"L/au2 so that B, - Fl = 0, or if we arbitrarily set k =0,
a

we can choose h to obtain optimum bounds for Gl as

2 2. ¢
5°L 9°L
(x - X, ”—2— pl| < [-2L, - Lo, P . (2.67)
axa bxa

153 Al > 0 and B1 > 0 the inequality (2. 65) can be rearranged in the form

( Gl)"‘ ( Fl)"‘ G
7230 2 SR~ A M ) e S R B e B
1 1 1 A1 B1

0 (2.68)

-26 -




and the choice h = Gl/Al’ k FI/BI leads to

2+BG2

ABC >AF +BG .

171
Inequalities (2.66) and (2.67) can be deduced from (2.69).
A similar general analysis can be carried out to optimize (2.14)
by expanding x , u_ about the p-point, in place of (2.59).

(x) Strong bounds

(2.69)

We return to the remark made after (2.23). When it turns out that L0

happens to be a linear functional of X or ug, it may be possible to

build estimates on (2.10) or (2.12), without needing to give away the
additional guantities L0 - L6 or La - LO required to arrive at (2.13)

and (2.14). Such estimates can be called 'strong' in the sense of {1.7).

We may therefore envisage the optimization of (2.10) and (2.12) in such

special uses, using ideas associated with those described for (2.13) and (2.14).

In the linear problem (l.2), we can see from (1.6) that

and (2.10) reduces to

1
+ #T g

l Sk

—_— By =

> (u u) 2 -(x,T u
for any u, in the domain of T . The appropriate optimization no longer
involves an expansion about either the a-point (as in (2.32)) or the

B-point (as in (2.50)), but about another point in the family (2.20) midway

between them, i.e.

(u +u ) +kqg.
a

™ =

u =
8

p

=27

(2.70)

(2.71)

{2573}




Fujita's strong estimate (1.7) can now be recovered by optimizing (2.71)

with respect to the k of (2.73).

Nothing new is achieved from (2.12), since this reduces to
1 o |
E<U_,U_>Z’(XO,T u_+3f) (2.74)
for any u in the domain of T*, which is therefore exactly the same
as (2.71).

Instead of offering more general theory, we give the explicit example

described in §§6(ii) - (v), in which LO has the linear form (6. 22).

-28-




3. Basic Theoretical Framework

(i) Mean value theorems

Underlying all of our general theory is a result whose essence was
stated in equation (5. 3) of our earlier joint paper (op. cit.). To begin
with let L[x,u] be a function of two real variables, defined over a
rectangular domain which allows us to join an arbitrary pair of points

X, , u, and x

. u by a two-segment path parallel to the axes and

’

lying entirely within the domain, as in Fig. 3.1.

0. e s

u ORI

Fig. 3.1. Mean value theorem route

s




Then two uses of the second mean value theorem for one variable,

namely u on the single-barred segment and x on the double-barred

segment, give

L ~-L = {x -x)—(&--(u—u‘au—
= + = g + - ou_
! 2 2L 2 o2L
E(u4 —u_) 7— E(x_ =% 1 —E (3.1)
du oX

The bar and double-bar over the second derivatives denote evaluation
at different and unknown intermediate points on the single- and double-
barred segments respectively.

In our function space setting we can generalize (3.1) by using the
abstract form of Taylor series with integral remainder given by, for
instance, Cartan (1971), p. 70, and Rall (1969), p. 124:

1
fa+h) = f(a) + f'@) - h+ [ (1- v)f"(a + thi(h)%at .
0
This leads to the following generalization of (3.1} for the case of the two

inner product spaces introduced after (1. 2) to be

oL (AL
L -L ~fx -x, ax*) « {8 ~u , ——au_ )
1 & ks 1 8:2;
fE(u* -u, ——?:(u4 - u_\> -E(x+ “ X ,_E(X«L “% 3, (3.2
su ox

=30=




1 2

a L g L

B J (l—t)—*z(x‘,u +t(u, - u ))dt
ou 0 ou .

gl ie 0 L

’ 2—] (l-t)“‘—( 2(x++t(x_-x+),u+)dt.
0X 0 ox

In specific applications these can be replaced by the appropriate mean-
value theorem. The expression on the left in (3. 2) corresponds to the saddle
quantity appearing in (2.1), but is not now assumed necessarily to be
one-signed. The symbols reminiscent of second derivatives on the right
have now to be regarded as linear operators acting on the elements of F

or E which follow them, as for g'(u) in §§ 2(vii) and (viii). Further
details on higher derivatives in vector spaces are described by Rall (1969,
§§18, 19).

Note that a bilinear functional, like (x,T*u) or the Lagrangian
which generates linear programming (Noble and Sewell, op. cit., §10(ii)),
has only mixed second derivatives, and so contributes identically zero
to the saddle quantity. This is evident from the right side of (3.2), and
can be verified on the left side by direct substitution.

For certain purposes, ultimately connected with embedded problems,
we shall also draw conclusions from mean value statements for gradients of

the type

«3]-




[eb
—
Q
=

oL oL

o =% |4 o, =8 . (3.4)

Q
c
e
e
(=
lob)
x
T
°
+
)

Precise statements about mean value theorems for operators are given by
Rall (op. cit., §20). Examples of second derivative operators which happen

also to be constant are found in the problems generated by (1.14) and (1.17),

where
o’L B
S -pl, =
oxX ou
(3.5)

BZL * BZL

e = I = =

9xou 2 ouox

(ii) Boundedness hypotheses

We have now removed the saddle hypothesis (2.1), and in its place -
we begin to build our theoretical framework upon the following boundedness
hypotheses. We suppose that there exists a rectangular domain of the
product space E X F in which real numbers kx’ ku’ orn K . K , Or
both pairs, can be found such that

(a) for each given u, and every pair X, 6, X

42 “a
| 12 = 2
Klx, -x "2 -(x -x,=5(x -x) _>_kx”x+ -% e, (3.6)
X
(b) for each given x_ and every pair u,, u_
: oL :
K oy -u 1% 2¢u, -u, -8-:2-(u+ ~u ) 2kl - 17 (3.7)

e
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In general it may be that kx and KX depend on u,, and that

and we sometimes emphasize this by writing

k and K depend on x ,
u u -

k (u), K (u), k (x_), K (x). (3.8)

Of course they may sometimes be constant over the domain. We allow
that these bounds (3.8) may have either sign. For quadratic functionals
such as (1.17) there exist the trivial bounds

K =k_=op, K =k =1, (3.9)
X X u u

Evidently (3.2) with (3.6) and (3.7) may be written

ak oL
B, 2L -L - -x, __ax+) ot LSS o 1z b, (3.10)
with the shorthand
_ 1 e 1 - 2
B, =5 K (wllx, -x 7+-k G )llu -u 7,
(S

& |

o _ 1 :
b, =5k w)lx, - x 117+ 5k x)llu - u

Sufficient conditions for L[x,u] to be a saddle functional concave

in x and convex in u are that

k (u)>0 and k (x )>0 (3.12)
b u =

over a rectangular domain, so that b+_ > 0. Then (2.1) follows from (3.10)
without need of Kx and Ku' [ Alternatively L 1is convex in x and
concave in u if 0> KX and 0 > Ku’ without need of kx and ku'

But this can be reduced to the first case by turning the saddle functional

upside down] . Sufficient conditions for a strict saddle are strict inequalities




in (3.12), and then any solution X9 Yy of (1.13) is unique (Sewell, 1969,

inequality (2.52)).
The type of theory presented in § 2 is available when (3.12) hold
with at least one of the inequalities strict.
However, there are many situations when such sufficient hypotheses
fail, such as nonlinear elasticity or nonconvex optimization, and in which
there may still be a need to bound linear functionals. There will now be
a different linear functional to bound for each different solution, and the
needed alternative hypotheses will refl ect the attention which must be
given to domain boundaries separating the individual solutions.
Consider the example of a function of two real variables
S %axzibx + c)u - px (eicalzh)
with scalar coefficients a,b,c,p. For this Ku ku =0 and (3.10) reduces to
K >(3§24a‘1u >k (3.14)
X = e XS
for some mean x between x, and x . Evidently in the half-space u, >0

k (u ) =au Kx does not exist , (3.15)

whereas in u, < 0 kx does not exist but KX = au, . Therefore a
sufficient condition for (3.13) to be a saddle function strictly concave in x

in w >0 is a>0. (3.16)

This illustrates (2. 25).

«3d -




When a < 0, however, the equation 9L/du - 0 is a quartic
in x which might not have a unique solution. Its solutions will be
separated by the turning points of the quartic, which we specified by the
roots of

2
ol

Juox

i.e. x3+ax+b>0. (3.17)

The required new hypotheses would avoid such roots. It is no accident
that (3.17) is also the equilibrium surface for the cusp catastrophe (e.qg.
see Sewell, 1976, for diagrams and mechanical examples), and further
insight can be obtained by pursuing this connection.

At this point, however, we have said enough to motivate the following
choice of alternative boundedness hypotheses required when the
sufficient saddle hypotheses (3.12) fail. We assume that in a rectangular
domain there exist real numbers

c. (u >0 andfor e .(x ) >0 (3.18)
SET AR == MR

depending possibly on u, and X as indicated, such that for every

pair of points

8°L
ey, zcxllx+-x_l!, (3.19)
2L (u, ~uifl>c flu -u | 0)
Bxau 4+ Al & Sy W . (3.20)

If it is also the case that there exist real numbers

d (u)>0 and/or d (x )>0, (3. 21}
% = u -




again depending possibly on u, and x ,

of points
9 L
d, ||x4 -x | > — (x,
oX
s (L
d fhu, -u 2 155 @,
ou

then Schwarz's inquality allows the values

k =K =d >
X X X

and

sk =K =d %

for the numbers (3.8). Therefore (3.22) and (3. 23) can be used when

the sufficient saddle requirement (3.12) fails

(iii) Error estimates

We draw some conclusions from (3.10), first of ail without any

X

assumption about the signs of kx’ ku’ KRR

(a) Choosing x,,u =x ,u and x ,u
2 al o —H

without the saddle hypothesis) implies

B.>L <=L._>Db

(b) Choosing X, ,u and x ,u =

+ = XY
without the saddle hypothesis) implies

Bop 2 Lo ~ Lg 2P

=36 =

such that for every pair

s

0

0

u

=% uO (as in (2. 3) but

O,

el U (as in (2.4) but

P’ P

0B "

(3,22)

(3.23)

{(3.25])

(3.26)

(3. 27) 1




(c) Choosing X, ,u x ,u and x ,u =x_,u  implies

¥ + a’ o«

pT P

>b

BopsNa " e Z Ve

Then (3.26)1* (3.27\l with (3.28')2 implies

+ G~ =
Ba0 BOBZIu Lﬁ~ba‘3

and (3.26";2 + (3.27)2 with (3.285l implies

BaﬁzLQ— Lﬁzba0+b05'

These last two inequalities, with (3.11), can be regarded as composite
error estimates for the solution quantities in the left of (3.29) or the

right of (3.30). For example, the latter written explicitly is

L o=t >

e JE L4 . gt
o 5 k (uaJ “XJ Xo” +ka(uo)“x{3 xon

4
2 X

1 . 2 1 : 2
- Zku(xo’”ua - uo “ + Zku(x )Hu u ll

B P 0
In the case of a saddle functional satisfying (3.12) with

k (u)>0 andlor k (x,)>0
SN u B

more can be given away from (3. 31) to imply

2 2
L T - lx - x, |
X o
and/or
2 i 2
(L -L)> llu, -u 1.
ku(xﬁi g g 0

7

(3.,28)

(3. 29)

(3.30)

(3.31)

(3.32)

{3 33)

(3. 34)




l'hese simple error estimates are the appropriate generalizations of (2.8)

and they improve results given by Zago (1976, Chapter 2).

Next suppose that, instead of the sufficient requirement (3.12)
for a saddle functional, both (3.19) - (3.20) and (3.22) - (3.23) hold.
Then the triangle inequality applied to the mean value statements (3. 3)

and (3.4) leads to

« Nl | 1 .YL o) l
-d (u )jlx -x | + c (x Jijhas =u H < ( *(Ll 5 (3. 35)
A + - u - 4 =5 Tl IX
{ | L ';L
o (u,»HxJ - b e Mo cm el —— I (3.36)
X + - - == lleu, au

Because the basic problem (1.13) is stated in terms of gradients (satisfying
also (2. 2)), the right sides of (3.35) and (3. 36) can be regarded as
known, in particular under choices of the disposable plus and minus
points like those in (a) - (c¢) above. Therefore these inequalities are the
basis for another class of error estimates different from (3.33) and (3. 34).

)

Their usefulness may depend somewhat on the extent to which Cx’ cu

d

- du are actually constant over the considered rectangular domain.

In any event, if it is also true that

e e, ~dd >0, (3.37)

(3.35) anc. (3.36) can be solved to give

« 38 =




1l n . 1 ¢L oL oL gL
Il x - e i d ~ ERSRi - - . )
o ~-t—eac ~dd [u ox ox u [|ou ou ] 4 (3. 38)
¥ u X U + - + E
1 oL oL gL aL
u =y i - + - . .
u, _ll_cc e [cx e SN it ] (3.39)
X U X U 4 - + -

These can be substituted back, with (3. 24) and (3. 25), into (3. 20) to give
an upper bound for B, . and a lower bound for b+ K They can also be
substituted, after Schwarz's inequality, into either or both of the inner
products appearing in the centre expression of (3.10), finally giving bounds
for what is left there.

For example, we can add

oL

X
e

: oL
2l Sk, o 2 ~hx, - x |

oL

Ix, - x_| (3.40)

4

to (3.10), and then substitute (3.38) and (3. 39) into both of the resulting

bounds, giving

I oL
X o _ =Uoe
IL, - L_ u - U, oo )
oL
o oL oL 3L 8
< d - S | s ey
- ¢ ~dd u||ox ox ou ou
X u X u + ~ + =
7
1 9 oL oL L. 8L
T 7 - X _ax_ +Cu ou_ du
. {cc s = did ) % i = ot <
X .U X U
: 2
1 du oL oL oL oL
0 2 {°xllex. " @ xllou " au : s
fe.o, ~d.d )¢ LEISR B ¥ .
X U X U

In the next Section we give an example of this result.
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4. General Embedding Method

(i) Embedding

We consider now a problem given ab initio in the form (1.19). We

can allow that it be decomposable or nondecomposable, linear or
nonlinear. Identify the variable in the problem with the x of an inner
product space E, and suppose the operator N ranges in a second inner
product space F. The typical element u of F is employed in the role
of a Lagrangian multiplier by constructing the functional
L[ x,u] = -{u,N(x)) + (p,x) (4.1)

where p is an assignable vector in E.

Suppose the adjoint N - of the Gateaux differential N‘ exists
(Barnsley and Robinson (1976} give technical details in the case of two
Hilbert spaces). Then the gradients of L are

oL "
28 U == - _N(x) . 4.2)
- (x)u + p, 50 (%) (4.2

Then (1.13) in the form

N (xju-p=0 (a), N(x) =0 (B) (4.3)
contains (1.19) embedded as (4.3p), with (4. 3a) as an auxiliary equation.

The real objective now is to estimate the linear functional (p,x

B

since x_, is a solution of the ab initio problem, and p is an assignable

P

vector.

The significance of the result (3. 41) for this purpose is that because

u appears linearly in (4.1) as a Lagrangian multiplier, the quantity




estimated on the left of (3.4l) is

oL
| <u+ - u_,m—)v —(u+,N(x+) - N(x_)) + (P,x, - x ). (4.4)

Therefore the choice

X, U, arbitrary, x =x (4.5)

introduces the objective functional (p,x,) directly into (4.4), which becomes

B
-<u+,N(x+)> +(p,x,) - (p,xﬁ) (4.6)
since N(xﬁ) = 0. The first two terms in (4.6) are assignable, so (3.4l)
gives an estimate for (p,xB) provided the hypotheses leading to (3.41)
can be verified.
The linearity of (4.1) in u allows
du = 0 (4.7)
in (3.23) and (3.25). With
d_= llu, fla>o (4.8)

in (3.24,, the constant d corresponds via (3.22) to a bound imposed by
Barnsley and Robinson (op. cit.) on the second derivative of the operator N(x).
Suppose there exists

c (u)>0 (4.9)
X

such that, for all X,y U,

InGe ) I = INGe,) - Neeg) 2 ¢ llx, - x| (4.10)

so that cx in (3.19) is effectively a bound on the first derivative of N(x).

wif]e




Because of (4.7) neither c, hor (3.20) are required, and with (4.5) the

right side of (3. 4l) reduces to

|

Substituting (4. 2) and recalling (4.6) leads finally to the explicit estimate

A
(o
X

oL
ax
4

oL
fou

d
; flu |l
ZCE ‘

oL |
Ju ‘
4

l . (4.11)

[-¢u, ,N(x, )} + (p,x,] - (p,xBSf

u, I liNex ) 12 (4.12)

¢« 2 ln ¥ mm = ol N 1+ =2

- & 4 4 S 2

X 2€

X

This corresponds to the result of Barnsley and Robinson (op. cit.,

inequalities (3.6)), but is obtained here from a different viewpoint.

(ii) Example

We can indicate very briefly how the procedure works by referring

to the algebraic example (3.13). Then (4.3) becomes

4

2
(x3 + ax + bju = p (a), X '%ax + bx+ ¢ =0 (B - (4.13)

B =

To satisfy (4.10) we have to distinguish not more than four domains of
the x-axis, separated by the stationary points of the quartic. In any such
fixed open domain the slope (and therefore the cubic coefficient of u in (4.13a))

is nonzero, and a bound € for it can be determined. Recalling (3.14),

the right side of (3.22) is

2
‘(33{'2+ a)u+(x+ ~-x )l < |x+ -x |- |u+| - max [3x" + a| ; (4.14)

2 ;
and therefore in (4.8) we choose d = max ]3x + a | over the domain., If

W




there is a solution xB of the quartic in that domain, a bound for px[3

can be obtained from (4.12) with any u, and any X, . The first term on

the right of (4.12) can be made to vanish if we choose the arbitrary
: 3
u i.e. (X  +ax +bju =p (4.15)
[0 (o3 a

but this is not essential. Improvement of the bounds is another matter,
however, and Barnsley and Robinson (op. cit.) mention the connection

with Newton's method. They discuss a particular case of this example
inwhich a =0, b=¢ = - for which the quartic is actually convex.

’
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5. Nonlinear Programming Method

(i) Governing conditions

Suppose that the basic problem (1.13) is now replaced by a new problem
governed by the following different conditions, but again generated from
a given scalar functional L[x,u] of the elements of two-inner product

spaces E and F.

oL )
=<
ax“o 2 el
x 2 00 (B) > (5.1)
oL
6%, E)x) s J
oL N
BUZO , (B)
u>o0, (a) (5.2)
A
(u, au)- 0l Y

The presence of inequalities of course implies that the elements of E

and F are built up ultimately from real numbers (e.g. via the individual
entries in real matrices), to which the inequalities are applied. In other
words, all elements are ordered so that the inequalities are defined.

These governing conditions have again been divided into two subsets
labelled (@) and (B) (and a third unlabelled subset, of 'orthogonality
conditions'), A point xa,ua now denotes any solution of (5.1a) + (5. 2al,

and a point x_,u_ is any solution of (5.1B) + (5. 2p).
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(ii) Dual extremum principles

When L[ x,u] is a saddle functional in the sense of (2.1), the

choice (2. 3) implies the minimum principle

oL oL 6L
o —_) - - A ) T B &
by TR E é)xa) kg = =k &g axa) (v, auo> = {2 3)

On the other hand, the choice (2.4) in (2.1) implies the maximum principle

L 3L 3L
~ 4 —) > - + —_—
Lo = Ty * A0, ouy = | Xg) axo) (ug, bu,

P R (5.4)

Therefore, in place of (2.5) we have the following dual extremum principles

oL oL
= —_) > - Ao
o Bxa) 2he e N Bug

i

) (5.5)

proved in Sewell (1973a, §IIc). The extrema are not in general stationary.
A suffix zero refers to a solution value for the whole problem (5.1) + (5. 2).

(iii) General bounds for linear functionals

In place of (2.9), choose

x, arbitrary, any u >0, and X _,u_ =X ,U, . (5.6)

The consequent (2.1}, when added to (5. 4) to eliminate LO’ is

oL 9L
B, =( , == =L # (u. ., ===7
+ S 8X+ B B auﬁ
oL oL
> (%, 22 4 (u, =)
0’ ox, 0’ au‘3
oL
z ~(%q, 8X+) - (5.7)
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The left side is a supposedly known estimate for either of the two linear
functionals of x() and uo on the right.

Instead of (5.6}, modify (2.1l) to choose

Lok, xo,u0 and any x_ >0, arbitrary u . (5. 7)

The consequent (2.1), when added to (5.3} to remove LO’ is

oL gl

L - (x,2%)-L +(u, =)
@ - aX% = -7 gu

o ¥

oL oL
2 - X s l/u
LR Mg Rt L S,

(03 Lot

ol
> ¢ Ly
“UO’(’U (5.8)

Again the left side is a supposedly known estimate for either of the two
linear functionals of X, and u0 on the right.

The general bounds (5.7) and (5.8) are extensions of (2.13) and
(2.14). Optimization of them is unexplored, but their brevity warrants

their inclusion here, for completeness.

(iv) Embedding method

When an ab initio problem (1.19) contains an operator N(x) which
happens to be convex in some domain, then we can construct a functional
(4.1) for which the left side of (2.1) is

{u ,N(x ) - N(x, ) - N(x )x_- x, 1) (5.9)

v -

which will be nonnegative in the half-space u, Z 0, as in the case of (2. 25).
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Then (4.1) is a saddle functional., This suggests seeking to embed the

problem in a variant of (5.1) and (5. 2), namely

)

-N':'(xm +p=0, (a) (5.10)
-N(x) >0, (B
uzo, (@) (5.11)
-{u,N(x)> =0 .

Thus we take (l.13e) with (5.2). The orthogonality condition is taken to
imply that N(x) - 0 whenever the strict inequality u > 0 holds, and
in that sense the embedding is achieved.

The objective now is therefore to bound (p,xo) corresponding to

Uy > (0 in the actual solution of (5.10) with (5.11) (and not to bound

(p,xs) as in §4, because (5.118) is not itself the ab initio problem). The

dual extremum principles (5.5) still apply, and for (4.1) become

) > (p,x,) . (5.12)

0 p

-(uQ,N(an +(p,x )2 (p,x
These are themselves the required bounds. The bound on the right is not
necessarily stationary because possibly first order terms have been given
away in its derivation, but it may be easy to find.

In the algebraic example (3.13), the ab initio problem was the quartic

e B R e ) (4.138)

N(x) = >

W {—

There are either one or two domains in which it is convex, and at most one

domain for which it is concave (for which case the function can first

be turned upside down before applying the procedure). In a convex domain




the bounds (5.12) read

N S (S
L = b = 4 4 + = >
ua(4 X, 5 ax, bxa c) px, 2 pxo > pxB {5.13)

where x‘3 is any solution of

4+—1axz+bx e <10 (5.14)

1
e %a" 7 Ve T P8y

and x is anything for which
(04

3
(x +ax +bju =p, u >0 (5. 15)
a o (04 (e3

can be satisfied. Evidently the cubic coefficient ought not to vanish in
(5.15), and (4.9) is a formal way of avoiding this.

The embedding of ab initio linear equations can also be illustrated,
either via a form of (4.10), or by embedding in a linear programming
problem (cf. Noble and Sewell, op. cit. §10(ii)). Linear problems in
which the operator has special structure have been discussed by Barnsley

and Robinson {1974, 1975/6).
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6. Applications

(i) Introduction

We have carried out some preliminary calculations applying the
general optimization method of §2. These include an analysis of an
electrical network with resistors having nonlinear voltage-current relation-
ships, and a verification that a basis used by Martin (1964, inequality (21})
for displacement bounds in elastic bodies under certain dynamic conditions
is a consequence of ideas like those of (2.13) or (2.14) above. Barnsley
and Robinson (1976) illustrate the result (4.12) by applications to a non-
linear integral equation in communication theory, and a nonlinear differential
equation in a thermal problem. Fujita (op. cit.) mentions examples for
the linear problem (1.1).

We have concluded, however, that a fully representative illustration
of the optimization method merits a separate investigation which we ought
not to attempt here. A comparative study of the relative merits and power
of the three methods described in §§ 2, 4 and 5 must also await the study
of a number of examples.

The main objective of the present paper has been to esta;blish some
perspective by trying to uncover the structure of the requisite general
theories. One may anticipate that in some later instances more rigorous
statements may be required, but we have nut conceived that to be necessary

for our purpose here.
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(ii) Nonlinear cantilever beam

In particular it is by no means clear from the literature that one-
dimensional problems are genuinely representative of a theory which is
to estimate pointwise bounds. Nevertheless it is a natural engineering
starting point, and we conclude the paper by giving the reader a handle
to the machinery of §2 in such a case. This example was examined by
Martin (1966) by an ad hoc engineering analysis, and a description from
scratch of some of its connections with the present theoretical framework
was given by Noble (1974) at an earlier stage of this research.

(iii) Hamiltonian representation of the beam problem

We first show how the elementary governing equations of the problem
can be cast into the Hamiltonian form (1.16). This will illustrate how
the appropriate spaces and operators can be constructed ab initio
in a one-dimensional problem. Corresponding material in three-dimensional
boundary value problems of elasticity and plasticity was given by Sewell
(1973a,b).

We consider a thin straight cantilever beam made of nonlinear material.
After conversion to nondimensional variables, let s denote distance
measured along the beam from the built-in end s = 0 to the free end s = 1.
Suppose the beam is loaded transversely in a plane by a load w(s) per
unit length. (See Fig. 6.1). The transverse small deflection (or deflection-

‘rate') in the direction of w(s) is denoted by wu(s), and M(s) is the

=50 -




Fig. 6.1. Continuously loaded thin cantilever

internal bending moment. With an appropriate sign convention, elimination
of the transverse internal shear force by differentiation leads to the single

equilibrium equation

dZM
5 = w(s) . (6.1)
ds
The boundary conditions will be
u(0) tg}i = [0 M(l) = ae 0. (6.2)
ds 0 G ds 1

The material is supposed to respond according to the 'creep law'

d’y SN 6.3)
ds
for some given n.
Our purpose in this sub-section is to express (6.1) - (6.3) in the
formalism of (1.16). The space E 1is chosen to consist of matrices like

M(s)
M= | M(0) (6.4)
0



constructed from real integrable functions Mf(s), the three entries

being associated respectively with the interior and with the two end-
points s =0 and s -1 of the beam. (The identity symbol emphasizes
a definition.) The inner product for E 1is defined as
1
(M, N) = | M(s)N(s)ds + M(0)N(0) (6.5)
0
for any two members M and N of E. The space F 1is chosen to

consist of matrices like

u(s)
0 = 0 (6.6]
u(l)
constructed from real integrable functions u(s), the three entries again
being associated with the interior and the end-points of 0 < s <1,
with the same ordering as in (6.4). The inner product for F is defined as
1
(u,v) = [ u(siv(sids + u(ljv(l) , (6.7)
0
for any two members u and v of F. Notice that there is a slight
clash between the notation M, u just introduced by the definitions (6.4)
and (6.6) for elements of the spaces, and the conventional way in which

the real scalar functions M(s), u(s) have been abbreviated in (6.1) - (6. 3)

by omitting explicit mention of the argument s. This need not cause

confusion.



It would have been possible to redefine E and F, by replacing
the zero value entries in (6.4) and (6.6) by the values M(l) and u(0)
(respectively) of the considered integrable functions, regarding these
values as unassigned at this stage (they would later be given zero values
in the subspaces E' and F'). Then M(I)N(l} could have been added to
the definition of (M, N), and u(0)v(0) to thatof {(u,v). The two inner
product spaces would then in fact be the same space. But there is no
advantage in that, for we shall next be obliged to consider subspaces E'
and F' which are not the same. In any event, from the viewpoint of
general theory it is more fruitful to regard the presence of two (occasionally
more) distinct spaces as the rule, and their coincidence as an exception.

The subspace E' is now defined to consist of those elements (6.4)
of E which are constructed from functions (typically M(s)) which are
not merely integrable, but also

are single-valued and continuous, with continuous first derivatives,

i 0= sRarls

have piecewise continuous second derivatives in 0 < s < 1;

have zero values at s =1, e.g. M() = 0.
The subspace [F' is defined to consist of those elements (6.6) of I which

are constructed from functions (typically u(s)) which again are not merely

integrable, but also

53




are single-valued and continuous, with continuous first derivatives,
in. Qi gl ks
have piecewise continuous second derivatives in 0 < s < 1;
have zero values at s = 0, e.g. w{@) =10,
The last property in each of these definitions shows that E' # I'', even
though we could h‘ave chosen E - I as described above.

We can now define operators T and T mapping according to

(1. 3) by the matrices

-
(=
I
|a
=
o
[0.¢]

™M = 0 . (6.9)

dM
ds

L L

It can be verified that the statement (1.4) of adjointness, namely

(M, T u) = (u, TM) (6.10)
for all u in F' andforall M in Ef, hele represents a double

integration by parts written as

S
M
[ M as+ Moy | =/ 0 M gs - u) . (6.11)
2 ds 2 ds
0 ds 0 0 ds 1
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The jumps allowed in the second derivatives do not affect the validity
of this, and the properties M(l) = 0 = u(0) of the subspaces have been used.

Finallv we can introduce the Hamiltonian functional

1

n+l
+1M

1
X(M,u] = [ [ + uw |ds . 6.12)
0

n

This has no boundary terms, which is exceptional, and so its gradients are

M"
oX
8M - 0 ) (6.133
0
w
oX
. (0] I (6.14)
0
The equations (1.16) now appear as
aX
D= Y ()
(6.15)
oX
TV = Bis (B)

which can be seen as an alternative statement of the original equations
(6.1) - (6.3), bearing in mind also the properties of E' and F'.
The problem is thus generated from equations (6.15) by the Hamiltonian
functional X[ M,u] of (6.12), which is strictly convex in M if n is
an odd integer (or convex in the half-space M >0 if n is any integer),

and linear in u. A classical elastic beam has n = 1.
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Thus the problem is very similar to the Fujita problem (1.14) when
n =1, orits generalization (2.26) when n >1, except that the role
of the variables is reversed. In applying the general theory, we therefore
expect to have a case of intermediate generality like that of subsections
2(vi) - (viii).

(iv) Lagrangian generating functional

Evidently (6.15«) can be regarded as the ‘constitutive equation’, and
(6.153) as the ‘equilibrium equation’. The quote marks remind us that
these equations in fact contain some of the boundary conditions embedded
in them as well. The equations can also be regarded as generated from

(1.13) via the Lagrangian functional

L[ M,u] = (M, T u) = [ndM“‘LH uw]ds
0

bi-t=

= f Mg——uz-ds+ 1\/1(0)—;-1—‘l - X[ M, u]
0 ds Sl

= (u,TM) - X[ M, u]

= udl‘;‘ds-ua)%\f‘ - X[M,u] . 6.16)
0 ds 1

In other words, the constitutive equations may be derived as

P

» 3" MJ

ds
oL E3 oX -
aM_Tu-aM_ _(_i_\_l' :0, (6.14&\

ds

0
\—0 —
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and the equilibrium equations as

The underdetermined class of solutions

M , u
B” P

element ua must be constructed from a function ua(s) which satisfies

W) =
a

double integration of (6.17a) with any integrable function Ma(s), using

dummy variables

of (6.17p), are generated from (6.4) and (6.6) as follows. The

’

and t,

S

0

we have

t

0

dZM -w-\
ds2
0
_daM
g ds i

M
a’

u
[¢%

0. because it must belong to the domain F'

u(s)=f [ [M ()] dadt .

of (6.17«), and

T;‘: . Bya

The element Mi’ must be constructed from a function Mﬁ(s) which

satisfies

p

M (1)

because it must belong to the domain E' of T.

By a double integration of (6.178) with any integrable loading function

w(s),

we have

M _(s)

o)
"

w(o)dodt

r-—-%‘_f

w(s - 1)2 if w(o) = constant .

Nothing need be said about a function uﬂ(s) or its associated element

u because this is absent from (6.178).

B’

(6.17p)

(6.18)

(6.19)




In other words,

and linear in u,
the extremum principles (2.5) with these specific expressions (6.18) - (6. 2l).

The difference between the energy bounds for odd n is

The total potential energy associated with any such e-solution is

0X
Lu (Ma’ aM ) - ¥ Md’ua]
(03
b f n +1
| MY Ly w]ds (6.20)
RS oy a
LA
RLE
[ =2 m" . m Mas
0 hn*l a B«

The total complementary energy associated with any such p-solution is

e 0X
-Lg = ~(ug, Buﬁ> $X[(Mg,u

S s (6. 21)
0

1 1
n n+l h 1 A+l
_f[n#l 0 -uow}ds—-fn+lM0 ds
0 0
. w
:-£u0n+lds. (6.22)

L0 is itself a linear functional of uo.

is odd, L[M,u] is a saddle functional concave in M

and the standard energy methods are applications of
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1
1 ‘ n : n n
SR : : :
Wk Yok ljo [nM_ (M M) M (M, Mg)lds 2 0
£ 2
=[ (M -M_ s when n-1. (6.22)
2 0 a p

(v) A strong bound

Recalling the remarks of § 2(x) and noticing that (6. 22) reduces L

0
itself to a linear functional of Ugs we enquire if a strong bound can
be constructed for the beam problem.
Substitution of the Lagrangian (6.16) into (2.12) leads to
7
1 ! n+l ; o M~ nw dM—
n+1f M~ dszf U, > —n+1ds~uo(l)—d—; (6.23)
0 0 ds 1

after using the matrix expression (6.17p) for the nonzero gradient 8L/8u_
in the inner products defined via (6. 7).

Since the minus point in (2.12) is arbitrary, so is the bending moment
distribution M (s) except that it must be in E', the domainof T
specified above for this problem.

This makes a precise connection with Martin's (1966) result, if we
now choose M (s) to be in equilibrium with the fictitious loading

distribution shown in Fig. 6.2. That is to say, M (s) isto satisfy

dZM- nw(s
& = et in 0<s<l (6.24)
ds
dM
- ~ = t :l .
ds P a s (6.25)
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Fig. 6.2. Fictitious loading on cantilever

in addition to M (1) = 0 already required by the subspace E', where P
is a given number. Such a choice is made because it allows the pointwise
estimate

1

1 n+l
ol s e l)P{) M ds (6.26)

to be obtained from (6. 23) for the deflection uo(l) at the end of the
beam under the actual loading of Fig. 1.

When the distributed load w is uniform, the required solution

of (6.24) is

TPRTLS T R (6.27)

M-(S) 7 n+1 E i
whence (6. 26) becomes Martin's (1966) pointwise estimate (12).

(vi) Weak bounds

It is possible, for example, to optimize (2.14) by identifying the
above choice of M_ with

M =M_+hp (6.28)
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where h is a scalar and p a member of E'. But we already know that,
in a sense, more than necessary has been given away in this particular
problem, and the result does not seem to be helpful. For example, in

the case n -1 we arrive at

1 1
1 2 l 2
<[f (M - M )st] [f st] (6.29)
— a B p * .
0 0

A reason why we said that this problem has only limited representative

1
|f0 (MO—Ms)pds

value can now be seen. It is because, since we are at liberty to choose
any Ma(s) for insertion into (6.18), and since we know MB(S) from
(6.19), we can choose

M (s) =M _(s). (6.30)
a §

This is the perfect choice bearing no margin of error in (6.29), and in fact
corresponds to the exact solution Mo(s). The exact solution when n =1

and w = constant is

1 2

Mo(s) = 2w(s -1

u_(s) i ws (52-4s+6) e
0 24 :
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