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i ABSTRACT

k An algorithm is described that determines a stationary

point of a quadratic minimization problem in a finite number

of steps. This finite termination property is based on the use
of conjugate directions. The main feature of the algorithm is
a new update procedure which preserves conjugate directions

if the set of active constraints changes.
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AN EFFECTIVE ALGORITHM FOR QUADRATIC
MINIMIZATION PROBLEMS

M. J. Best and K, Ritter
1. Introduction

A method of conjugate directions is presented for the solution of quad-
ratic minimization problems with linear inequality constraints, The algorithm
terminates after a finite number of steps with a stationary point, It is a modi-
fication of methods of conjugate directions for general nonlinear objective
functions described in [1] and [3].

With each point x determined by the algorithm an (n,n)-matrix is
associated, where n is the number of variables. If g < n constraints are
active at x , then n - g columns of this matrix are conjugate and orthogonal
to the gradients of all constraints active at x . This property allows an easy
construction of search directions which are either Newton directions or are
conjugate to certain previous search directions. Combined with an appro-
priate policy for dropping active constraints this choice of search directions
results in the finiteness of the algorithm.

A critical feature of the method to be presented is the procedure used
to update the matrix associated with x . If at the next point % , constructed
by the algorithm, no new constraint becomes active this matrix is updated in
the same way as the basis matrix is updated in the simplex-method. If how-
ever, a new constraint becomes active at Q, the normal update procedure
results in the loss of the conjugate directions. Therefore, a new update
formula is developed which allows the preservation of conjugate directions in

a simple and computationally efficient way,

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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2. General description of the algorithm

We consider the following quadratic minimization problem: Minimize
Q(x) =c'x + i x'Cx
subject to the constraints
Ax <b,

n m ) ) , ,
where c, x¢e E, be E , C is a symmetric (n,n)-matrix and A is an (m,n)-

matrix,

If x¥* is a local or an optimal solution to this problem it follows from

the Kuhn-Tucker-Theorem (see e.g [2]) that there is a vector u* ¢ Em such

that

(2.1) c + Cx* = A'u¥

(2.2) u*'(Ax* - b) =0, u*x <0
{(Z2.:3) Axk < b.

Any point satisfying the conditions (2.1) - (2. 3) is called a stationary
point. If C is positive semi-definite then Q(x) is convex and every stationary
point is an optimal solution to the given problem.

Throughout the paper we assume that for any x with Ax <b the gra-

dients of all constraints, active at x , are linearly independent and that the

set {x| Ax <b and Q(x) < Q(x,)} is bounded.
Let = with ij <b be a point determined by the algorithm. For ease
of notation we assume that
aixj = (b)i’ R L

and

i]




where a'

l,...,a' denote the rows of A .
m

If g<n, set
TJ. = {x| aix =0, 8 PR |
We first assume that C 1is positive definite., Then we can construct a
set of n-q vectors
(2.4) Cij‘ Tj’ =gkl e Sn
which form a basis of the subspace Tj and are conjugate with respect to C ,

i.e., have the property

g c! - ' = i i =
(2.5) vijCij =0 Cijccij Oij it ky ik = gl .. ,0
With
8 S I .
{2.6) DJ’ (al""’aq’ OqH,J‘C gl g ni€ %nj!

it follows from (2. 4) and (2. 5) that

-1
DJ e (c].j"..’cnj)

exists and has the vectors (2.4) as its last n-q columns.

In the algorithm this matrix Dj-l and the numbers

s ! g g
eij = [cijccij] p L=agtl, .. .n

are associated with xj .
Given the point xj the algorithm determines a new point
X, = X, - 0.8,
j+l j G 5
n 1
where sj ¢ E is the search direction and o-j ¢ E 1is the step size.

In order to motivate the choice of sj (see Step | of the algorithm) we

write the gradient of Q(x) at xj in the form

q m
2R e+ X, = A, .a +§“ R g, &
( ) j Z O i ij ci]
=1 i=q+l
If )\ij =0, i=qg+l,...,n, i.e., if the orthogonal projection of c + ij
-3-




onto Tj is zero, then xj is said to be a quasi-stationary point,

First we assume that x_  is not a quasi-stationary point. If we set

n
(2.8) s, = ) (e, c g, with g =c + Cx,
R HOUT j j
then
X - 8
) )

1s a quasi-stationary point. Indeed, it follows from (2. 4) and (2. 5) that the

vectors ch e ,cnj form a basis for Tj. Furthermore, for every k¢
’

lq+l)- . yn} )

ckj VQ(x}, ~ sj) ij(c + ij - Csj)

1l

n

¢l.g ~a Cf E (a..clgie, .l
kj7j kj i=q+l 1R L i
clivg B el M@ e el gl =
ngJ ki “kj kj ngJ

Assuming that A(xj - sj) < b, we can choose c) =1 and x,

is a quasi-
j+l e

stationary point which in the case of a convex objective function is an optimal

solution to the problem

min{Q(x)|a;x = (b)i, fr=llos o ise, aix < (b)i’ o o SR
Since the same constraints are active at xJ, and at xj+l we have Tj = TJ'+1
and can, therefore, choose Dj-il = D;l (Step 3 of the algorithm).

Next we assume that xj is a quasi-stationary point. Multiplication
of (2.7) with cij’ i =2ly..q59 ¢ gives

oo g =0N
Ugl 1)

Thus, either xj is a stationary point or there is at least one positive number

¢c.9,. let
l)gl
., = max{el g | i=1,..4 - 0
C‘qJ {Ug]‘ ’ )Q}

1f we set sj = COIJ , it follows from (2. 6) and the definition of the inverse matrix

-iis

il i s o A ' —JM




that sJ is orthogonal to C Cij’ i =q+l,...,n. Therefore, for all ¢,

VQ(xJ. -0 sJ) is orthogonal to ch,J,. “ s ,crlj ;

If ’&j is the optimal step size, i.e., ,
Q(xJ - &jsj) = min{Q(xJ_ -0 Sj)| >0},

then VQ(xj - ?rj s)) is orthogonal to Sj =

af q+l,j’ ’an Assuming that

A(xj - 6-‘). sj) <b , we can choose aj = c?J. . Then xj+1 is again a quasi-stationary

point. Since

Tj+1 = e aix T S S ST 5
we obtain the matrix D! from D' by replacing a with 6 _.Cc .. Then
j+l j q LN
-1
By = 66 gud oSl

where (see Step 4 of the algorithm)

i © %qj
o G e C DRl el
i,j+l ij chE e, jiet 2 4
) ) qj qj q)
= &, ) i:q,...,n.

c, .
i,j+l ij

Thus the vectors c crlj are again conjugate with respect to C .

0% 1 A

then x, is

Therefore, if no new constraint becomes active at x)_“, 41

a quasi-stationary point and it is easy to obtain a set of conjugate directions

forming a basis for Tj+ 1f a new constraint becomes active at xj+1’ the

1
situation is completely different. To be specific assume that sj is given by

(2.8) and that a 51 is the gradient of the new active constraint, In order to
q

guarantee that s, is a feasible search direction, the vectors a

i+l

have to be among the columns of D;H , i.e,, we have to replace one of the

l,...,aq+l

) ith a . sume
vectors ch+1,j’ 3 cn] wi qtl As

DJ.Jrl = (a ..,enjC cn.).

Ll g o 0 Bl e
L4 "Tq+l’ Tq+2,] q+2,j’ j

5= |
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Then the columns of DJ_:

c

q+l, j+l
7
Thus the vectors

= A e

A similar argument applies to the case where sj

Of course it is possible to construct a new set of conjugate directions
which form a basis of Tj
this is a time consuming procedure and the resulting algorithm cannot he ex-
pected to be very efficient.
formula for Dj.I which allows us to easily '"'transfer'' conjugate directions

from the subspace Tj into the subspace Tj

straint is active

lemma.

Lemma !

Let re {l,...

there are vectors

with

and

1

+1°

j+1

n
pl,---’pri E

pika:O’

are given by

c
___qtl,)

; a

Cqtl, i%q+

Oy 8 +1

ci'_clJ qa Ca+l, §’

J gtl, ;g )
Cq+2, jE2 Cn,j+1
Irens el
aqu span(al,. .,aq, &

are conjugate if and only if c'i_ a

C ¥
qtl, ]

However, if q is much smaller than n , then

Therefore, it is important to develop an update

+1

at x. .. Such a procedure can be based on the following

,n} and let G be a symmetric (n,n)-matrix such that

in the case where a new con-

F—




n
Let ae¢ E be such that

¥
\!

p;a
P = meremerees Ly, RO

Eid !

& piGpi i

Lot £ e V), ...,r) . o P'IG P, p'a —(p} a)‘a =0, set
R P SRR

otherwise set

p! a(l - tp) a)
i ¢

qi:pi- o p-tpiapl, 1 (SRR O 1 /A

where t is a solution of the equation

tz(p'[Gp[ p'a-(p‘pa)z) L2 tpl e -l = 0,

{
Then h
i) a'qi =10 =) [P o i# 4
11) q'quk=O, b L i =Rl i#k
1ii) inqi — piGpi>0, = Ly i#48
iv) spanip, d,, il sh A = span{pl,...,pr}
Proof.

Suppose p; G P, p'a - (p‘f a)2 = 0., Since

o (pa)? .
1 ta = N 1
p,Gppa=p,Gp, L TG} (p,a)

11 i

i#4

it follows that pi a=0, i=1,...,r, 1#1 , Hence the first 3 statements of

the lemma are true, If p} G P, p'a - (pé a)2 + 0, then the quadratic equation
defined in the lemma has two distinct real solutions. Set
(2.9} d =G p, di :Gpi, pizpia, Y= et

and observe that p'a = p'd and

pla, = pPGp, =d'p = 8p =8y dZhaee,T,




a'q, = d'q, = (P, - ——g=——p - t B, B,}

:dpi-ﬁiﬂﬁiﬁf-t{sidpl:o for L =1,...50, 1 #£ 1,

Furthermore, for i,ke {l,...,r} - {8},

f’fi(l =t ﬁl) [5k(1 = tﬁl)

L Sl T S raedl A e s
e _ﬁiﬂ-tﬁﬂ)p +Bi“-tﬁf)ﬁﬁt+t2 SR
= Hh d'p k dp kP BPy PyYy

B.p
, e e B 2
= pika.

This proves parts ii) and iii) of the lemma. In order to prove the last state-
ment of the lemma, it suffices to show that the vectors p, 9, -5 9, 12 99410
-, g, are linearly independent., Let

AP + )\lql+ i xf_qu_l+ )\l+1qf+l+ ARE: o )\rqr:O .

Skalar multiplication with Gp and ka , respectively, gives
Ap'Gp=0 and )\kpl'(ka = 0

i 1 = = =X\ = =
from which it follows that \ )\1 )\l -] I IR )\r 0

In order to show how this lemma can be used to construct a basis of
conjugate directions for Tj+l we assume that aq+1 is the gradient of the con-

straint that becomes active at x,

j41° Setting G =C, a =aq+1, r=n-gq, £ =1

and pi = ch i’ i=1,...,r, we conclude from the lemma that the vectors
g

= q,, 1 =2y,005F

(2.10) Ca+i, j+ i

form a basis of conjugate directions for

Tj+l = 1x|aix:0, Fel,. .. 94},




I f s} 1S given by (2.8), then the first g+l constraints are active at

X and D' (a
4T

j+l ).

e 5.8 (B! >
1 1 ’Tq+l’ T q+2, j+l q+2, j+l’ ’On,j+lC °n,j+1

e -1
Therefore, the remaining columns of DJ,+ are given by (see Step 5 of

1

the algorithm and Lemma 2).

e = b
+ 3 1
q+l, j+l R
Cij aq+l
R e e T T TR S 7

g+l

If on the other hand sj is equal to cqj , the g-th constraint is not

active at xj+l' Thus we need a basis of conjugate directions for
*< ,
; 5 = ixla{x =0, a

i+l B, 4 =1, ,a-1}.

q+lx E

In order to apply the lemma we observe that by (2. 6) the vectors

cqj, e ’an are conjugate with respect to C and are elements of the sub-

space
{x] ax=0, i=1l...,q9-1}.

With G=C , a = a r=nh=igtl, 2 =1 and p =

q+l’ cq-l+i,j’ B

follows from Lemma | that the vectors

Tolpigtl TR

s
form a basis of conjugate directions for Tj+1' Since

(2. 1k} D! = e 5 a 0 5o G o

j+l tay *Tq-1’ " qtl” gl j4l cq+1,j+1’ "en,j+lccn,j+l)
the remaining columns of Dj—il are given by

“q,i+l ~ —%—

qd,) p q+l

cij aq+l
e S e iy IS R e i
i, j+l ij p aq+l

So far we have assumed that C is positive definite. If this is not the

case and if sj = cqj it can happen that s; < sj < 0 since then Q(xj -0 sj)

. .




is linear or strictly concave no optimal step size exists and a new constraint

becomes active at x)&-l' Since :(";J (S :qJ < 0 we cannot apply Lemma |

directly. However, we observe that the vectors (2.10) obtain by applying

Lemma l to ¢

e e C together with
q+l,) T A

ct,a
. _9j gtl

4 = C
q+l, j+l q) p =

r"q+l

b3
form a basis of conjugate directions for Tj-H .

Indeed, since all tnese vectors
arein T ‘+1 and since the g, are conjugate it suffices to show that
j i

q'ichj:qi(?p:O, BT R
Observing that Tj+1 = aix =0, i=1,...,9} we conclude from (2.6) and

the definition of Dj_l that q' C qu = 0 for all ge TH Furthermore, since

1

d'qi = a’qi it follows from (2.9) and part i) of the lemma that q; @0 iay

Y = 2,5 deyls
Since p'C cqj = 0, we have
(Céjaq+ﬁ2
2.12 el e " =G C e e e R Gl
( ) q+l ,j+l g+l , j+l qj qj p'a - 4

g+l

If this number is positive, then C is positive definite on the subspace T;H >

is given by

As in the case of a positive definite matrix C , the matrix DJ,+1

(2.11). However, since c is constructed differently p and c

q+l,J+l q+l, j+l

are in general not conjugate. This results in a more complicated formula for

the vectors c¢ (See Sten 7d of the algorithm). If (2.12) is

1,j+l""’cq,j+l'

not positive we choose

' - [ = c
Dj+1"(al"'"aq-l’aq+1’aq’9q+2,j+lC cq+2,j+1""’en,j+1C Vn,j+1L

<10=




A

Then (see Step 7c¢ of the algorithm)

ij aq+l
€ =T, = =] A AP
i,j+1 ij p'aqJrl 4 A i

even though the g-th con-

Note that aq is the (g+l)-th column of D;H

straint is not active at x., .. In order to correct this situation we choose s.

i+l i+l
darallel to ¢ L Since X - S, is concave no optimal ste
o q+l, j+l QA e JH) S 8
size exists and an additional constraint is active at xj+2. Thus after a

finite number of steps we have either an extreme point (Step 7a of the algo-
rithm) or a positive number (2.12). (Step 7d of the algorithm). In either case
aq is removed from the corresponding matrix D;+v

3. Detailed statement of the algorithm,

It is assumed that the algorithm starts with a feasible extreme point of
the set {x|Ax <b}. If such a point is not available it can be determined by
solving a linear programming problem.

We describe now a general cycle of the algorithm., At the beginning
of the j-th cycle the following data are available: a feasible xj , the
gradient gj =c+ ij of Q(x) at xj, the numbers {3), OO 6J =0

or 1, the matrix D]._1 = (i "cnj) and the set ](Xj) = ia”,...,a ks

iy nj

The aij's are nonnegative integers. If aij =0, then cij is a conjugate

direction. If aij >0, then the constraint with subscript ui] is active at

xJ and the i-th column of Dj is equal to the gradient of this constraint.
Bj =1 if and only if a new constraint became active at xj. 6]. is equal to
1 if and only if s], = cﬂj is a search direction along which Q(x) is not

strictly convex. Step 7 of the algorithm is used to deal with this situation.

Finally, yj =0 or -l is determined in Step | of the algorithm, Y = 0 if

w3l




and only if the search direction sj 1s such that all constraints active at

xJ will also be active at x,

j+L°
Step 1.
a) Compute
el for all i with = ()
1] ) 1]
If
C..9, = 0 forall i with o . =0
1)) 1)

go to Step 2b, otherwise set
Sl ' 2
Sy g sci giye =0
) “:o( 1 5418415 - Y]
and go to Step 2. .

b) Compute ¢ such that

9, > clg.  forall I with a . >0 .
15[ I 1)
If c'“gj <0, stop; otherwise set
S = g A |
SN G N Y

and go to Step 2.

Step 2.
Compute

a's | m

i j) ) )
If

ars. > =il o g M

10 = ’ ’ ’
set

Fs
o = o}

otherwise compute k such that

o X - (b)k aixj - (b)1

TR 7 “""“a‘i'“;**- for all i with a;sj<0




T, = 0 if s, C8, < @ and v, = ]
) J A ]
gs.
,JJ if 8;:.Cs >0 and y, = -]
LS:Cs. J J )
)
Set
S e ]
o, = min{c. , crj}
= XK. = =
41 j crjsj 4 gJH e+ Ex. |
b3
1 if crj _<_t?j
B, , =
13l <
4 0 iif 0';: > €j 4

If 6J_ =1 go to Step 7a, otherwise do the following. If Bj+1 =0 and Wy = 0,
go to Step 3. If ﬁjH =0 and Yj = -1, go to Step 4. If Bj+1 =1 and Yj =10,

go to Step 5a. If Bj+l =1 and yj = -1, go to Step 6.

Step 3. (BJ.H = \’j = 0, no change in set of active constraints)
Set
polosopt Jix.. .J) =Jix) and
- e Gk o R
52 ey =0, . for all i with o, =0,
i,j+1 i ij

Replace j with j+l and o to Step lb .
Step 4, (Bj+l =, Yj - 1 ""dropping a constraint')

Set

5 it %
ci,j+l cij for all i with aij 0

0,j+l = Caj

wl3e




(o149 - g,
8 g1 =0 C’,’(’ JH)Cz' forall i #¢ with a >0
i,] j 23195 - 9 U ij
= = n Ly
l,j+1 ’.J b 1 1) b p | 1
= 0
%, i+l
Gl = B for all i with «. . =0
i,j+l ij ij
-1
Al = "ligt gl
l;]'{'l [] J]
L T AR R T W R R e
i+l 00 | b 1 1 T j+1 417" "7 n, 4l

Replace j with j+l and go to Step lb.
"adding a constraint'')

a“ = 0 and compute

Step 5. (ﬁj-f-l:l, YJ-:O’

a) Choose any f ¢ {l,...,n} such that
N !
(eij cij ak)cij -

Set oz“ = k and go to Step 5b,
2
D S - ! = t

b) Compute wj pj ak I wj e“(c”ak) 0, se

T S e for all i with e, . =0

i,j+l ij ij

and go to Step 5c), otherwise compute
+ \/6“0).

o SRRk j
; i . ’
wj el]'(cfjak)
set
¢!, a
11 K
=g e (RN C L= Ytcl, '
Ci,1'+1 ij © (1 j ljak) ®y ( j nak)cu

for all i with ail' =0 and go to Step 5c¢)

c) Set
P,
C = —L
2,5+l W,
) Elie
= - — i#0 wit >0
ci,j+1 i “’j pj for all i # with a”
ol




ul,JH e i=1, e

%0, j+l B

Oi,j+l = 0_”, for all i with ai,j+l =

D'l = (c c ) I(x.) = {a o |
1 SRR T = 9 ol TN I LR it t 5% O A W T

Replace j with j+l and go to Stzp la .

Step 6. (ﬁjH = yj = -1 "adding and dropping a constraint'')

If SJ"CSj <0, go to Step 7a, otherwise set 6j+l =0 and
-1
6,. = (s!Cs, . Compute
£j ( j J) &
p:V(ec'.a)c + (6. .c! a e
j ~ ik el 2j 2j k' £j
a, =0
1]
and go to Step 5b).
Step 7.
a) If aij = 0 for at least one i go to Step 7b), otherwise compute
: iy 1
£,j+l c“ak
a
ik
€, o = o S s g o=l S SR
i,j+l ij Cijak 2]
Set ] =1 =
p)+1 2 6j+l
ai,j+l = aij’ b= o il e al,j+l =k
-1

KEgal = WG e vty ad By = L

Replace j with j+l and go to Step lb.

b) Choose any re {l,...,n} such that arj =0 , and compute

, = 8. .C a. )6, . 'a

and

alBu




k
|
|
E%
p
el

[ &4 =
r,j+! ‘Nj
If 0 (c'.a )Z =0 set
o R Gleke
o) =R for all i #r with o, =0
i,j+l i,) ij

and go to Step 7c, otherwise compute

oy =4 k ak + \/TT
§ T Ta e, e a]
Set
c'ijak
Sapa T Sy e hE B s (e 8, e

for all i# r with aij =0 and go to Step 7c.

c) Compute
¢ .a
2j k
B -— d ' .
"0l S o T TR
1 > = d t
If Cl,j+l C Cl,j+1 0, set 5j+l 0 and go to Step 7d), otherwise se
6j+l =1 compute :
er ak
€ Ly =C, - ————p forall i # ¢ with a,, >0
i, Jj+l ij wj j 1)
and go to Step 7e)
d) Set
t,i41 = 9,541 € a1 |
|
c!.a |
TNk |
B ! - ——— ¢! )
Pi) 8y, 1l 441 C Sy o 1,341 © Byl
and
17k
=C,, -~ ——— - : forall i #¢ with a,. >0
“Laet T T Tw BT RS ij

j
and go to Step 7e .




e Set 3 =
) € ‘J+l )iz YJ+1 1
ai,HliaiJ’ R Xchynas e TES 2y A
ar,j+1 :
a ) a“ if 6j+l =l
.
2 14l 6 ¥ 6 . =8
j+ 1
Set &, = 0,, for all i #2 with o, . =
i,j+l ij i,j+1
-1
X = & 6 e =
Wk = A% rt s Mgy = 08 pves 5%, gy
1f 6j+l =0, replace j with j+1 and go to Stepla. If 6j+1 =1, set
: . 3
o, 541 It S ety 20
s =
j+1 : .
s T Somd g 2

Replace j with j+1 and to to Step 2.
Remark.

It follows immediately from Step 2, that every xj is feasible. Further-

more, if sj is determined by Step 1, then g}sj >0 and Q(xj+1) < Q(xj)
unless crj = 0. This could happen if several new constraints became active
at xj since only one is used in the update procedure for Dj-.ll' 1f sj is
computed in Step 7 of the algorithm, then Q(xj -0 sj) is concave and

g;sj > 0. Thus we have always Q(xj_H) < Q(xj).
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4. Termination properties.

In this section we prove that the algorithm terminates after a finite
number of steps with a stationary point. The following lemma establishes
-1 . :
the properties of the matrix Dj on which this result is based.

Lemma 2.

o0 }
t = e } 2= iy vias d be determined
Le Dj (Cij’ ,Cm), J( J) {alj, ,am} an 0ij e determine

by the algorithm. Set

T. = {x|a" %x=0 forall i with a . >0},
) Oij 1)
Then
i L. = spanie.. all i with o, =0
) j ks T i i
et T =0,',l>0 , E.Ce . =0 forall 1%k
1] 1) 1] 1) kj
with aij = akj =
i.e. the vectors cij’ for all i with aij =0, form a basis of conju-
gate directions for Tj .
ii) c,.Cc.=0 forall k with a ., >0 andall i with
kj ij kj
a,, =0 .,
1)
iii) a e. =1, & € =0 forall 1+ k with a,, >0
o, ij a . Kkj ij
ij ij
>
and akj 0.
Proof.

The proof is by induction. Since X is an extreme point the lemma is

true for j = 0. Suppose it is true for j 2> 0. If Step 3 of the algorithm applies
E -1
Dj+11 = Dj and there is nothing to prove. In the case that Step 4 of the

algorithm is used we have

= {xia;x:O forall i #2 with o« >0)

93
j+1 ij i)

=18«




and

o e for i =2 and all i with «. =0,
i,)+] ij 1)

This proves the first part of the lemma. Furthermore, c¢c' .  Cc . =0 for
i, il ke il
any k# 2 with o >0 and any i with «,, =0 because c' Cc . =0 and
kj ij ij kj

\:EJ £ Cl) = 0. The last statement of the lemmas follows from the observation

that a' ¢, =0 forany i#1
By o

Now suppose D;i is determined by eitherStep 5, 6 or 7c. Then the first

1

part of the lemma follows from Lemma l. For every i # £ with aij =0 and

every v with avj > 0 we have

1jak
14

Gl e R A T (0 8 Rl 1| S R (S
i, 161 v, i+l i,jt+1 V] i L+l P

The first term on the right hand side of this equality is zero since

Sy, 441 & READ {cij | all i with a;; = ULy

the second term is zero because, by Lemma 1, c and pj are conjugate

i,j+1
with respect to C . The last statement of the lemma is obvious since pj € Tj :

If Step 7a applies, then x.

-1
i n t oint and has t
i+1 S an extreme poin Dj+ s the

1

required properties. Finally assume that Step 7d is used. Part i) of the

lemma is a consequence of Lemma | and the equality

R G =cht 8 - —————— p! Bre =
Cl,)+l Ci,j+l IJCC1,1+1 w, j il

for all i with aij =0, Furthermore,

& 0

B 14 =c, . o L PG =
i,J+lccv,j+l i,)+lccv1 wj Cl,]+le} pv101,1+lccl,1+l
for every i with aij =0 and every v # £ with avj > 0. The last statement
of the lemma is true because
a p. =0 and a' ¢, ARl

j £, j+l
ai] ) a” y)

for every i # £ with @ > @




S —————

The following two lemmas give conditions under which xj+l is a

quasi-stationary point,

Lemma 3.
1) If aJ < U}“ and sj is determined by Step la, then xj+1 is a quasi- '
stationary point,
1) If oj < 0'}* 3 xj is a quasi-stationary point and sj is determined by
Step lb, then xj+1 is a quasi-stationary point,
Proof.
1) It suffices to show that g;+lcij =0 forall i with aij =0, We have
el g, =een g el g
kjdj+ 1 ngJ kj j
= cl.q, = el C >‘ 6..c .g.)ec..
ngJ Kj [—'_ ( ij 1ng) ij
a, . =0
1)
= chigh g c EE e e gl =00
e S e
for every k with akj > 0.
ii) Since xj is a quasi-stationary point
cligs =00 for all i with o, =0,
L) 1]
Thus s. =c, and c',Cc, =0 forall i with a,, =0 implies
j £j ij L] ij
! = (0 11 i it .. =0,
Cijgj+1 for all i with an
Finall ¢l. g.., =0 sifce ¢, =9g.s5,/8. Cs,.
Yr Cg5 9541 5T j/ j j
Lemma 4.
i) If Uj < 0'3", then x,_H is a quasi-stationary point .
J

ii) If xj is not a quasi-stationary point, then either xj+1 is a quasi-

stationary point or there are more constraints active at XJH than
there are at xj ‘
i t v %5y i 1-
iii) For every j at least one of the points xj, xj+l’ ’x3+n-1 is a quasi ]

stationary point.

-20- 4




Proof.

1) If O'J_ < o’"}f , then s) cannot be determined by Step 7e, Indeed, if sj
is determined by Step 7e, then Yj = -1 and s} & sj < 0. Thus ?rj = 00
ande, = ok .

J J
Since X, is a quasi-stationary point, it follows from Lemma 3, that
the statement is true for j = 0. Now assume that the statement is true
for j-1. Then either xj is @ quasi-stationary point or sj is determined
by Step la). In either case it follows from Lemma 3, that Xj+1 is a
quasi-stationary point provided 0‘}, < (r}i‘.

ii) If xj is not a quasi-stationary point, then by the first part of the

lemma, crj_1 = cr;k_l. Therefore, sj is either determined by Step la or
Step 7e. In either case all constraints that are active at xj will also
be active at XjH and the statement follows from part i) of the lemma.

1ii) Since every extreme point of {x [ Ax <b} is a quasi-stationary point
the last statement of the lemma follows immediately from part ii).

Theorem.

The algorithm terminates after a finite number of steps with a stationary
point,

Proof.

Suppose the algorithm terminates with xj. By Step 1 of the algorithm

either Uj-l <<r;¢<_l or cijc_:;j =0 forall i with Qij = 0. Thus using part i)

of Lemma 4 we see that xj is a quasi-stationary point. This means that

there are numbers )\i such that

g, = VQ(xj) = ¥ kA X

) a.. >0 ij
ij

«2] =




Since by Lemma 2, and Step | of the algorithm

1

: e s chg <0 forall & with o, > 0,

1 | 1 el 5 1]

the Kuhn-Tucker-conditions are satisfied;i.e., x}, is a stationary point,
If C is positive definite, then there are only finitely many quasi-

stationary points. If C is not positive definite then there can be infinitely

many quasi-stationary points. However, there are only finitely many with

different values of Q(x). If xj 1s any quasi-stationary point such that

% xj, then Q(xj+ ¥ < Q(xj). Therefore, it follows from part iii) of

TS| ]

Lemma 4, that the algorithm terminates after a finite number of steps.

Remark,

A numerical study involving the method given in this paper and se‘veral
other algorithms for quadratic minimization problems is currently undertaken
at the University of Waterloo. The results will be reported elsewhere.
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