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SELF SIMILAR SOLUTION OF PLASMA EQUATIONSI

K. E. Lonngren

Mathematics Research Center
University of Wisconsin
Madison, Wisconsin 53706

Near the end of the nineteenth century, Boltzmann (1894) noted in
his study of the linear diffusion equation, that the two independent vari-
ables space x and time t could be combined into a ncw independent
variable ¢ where ¢ = £(x,t) . With this relation, the diffusion equation
which is a partial differential equation (PDE) could be transformed into an
ordinary differential equation (ODE). Boltzmann had the "Ansatz" that
the new variable should be ¢ = x/'\]_t_‘ -

At approximately the same time, Sophus Lie (1881) attempted to
construct a general integration theory for differential equations utilizing
the theory of algebra. Using the idea of continuous groups of transfor-
mations, he was able to reduce the order of an ODE and in some cases
obtain a solution. Although not developing a general integration theory,

he also examined some first and second order PDE. :

In 1952, Morgan (1952) and Michal (1952) presented an interesting

simplification of Lie's work to obtain a complete picture of the group

structure of partial differential equations. Using their ideas, as
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summarized in the books by Ovsjannikov (1962), Ames (1965, 1972) and
Bluman and Cole (197%), it is now possible to remove the mystique sur-
rounding Boltzmann's "Ansatz" and, in fact, have a methodical procedure
to construct self similar variables ¢ = £(x,t) and to examine the self-
similar behavior of partial differential equations.

An alternative approach to examine the self similar behavisr o
PDE is to use the ideas of dimensional analysis to construct the sel?
similar variables. This approach, as outlined in Sedov (1959), does not,
however, yield the extensive opportunities that the group theory approach
affords and will not be discussed further.

To date, the major application of self similar analysis has been
restricted to the areas of fluid mechanics and heat transfer where exten-
sive application to boundary layer phenomena has been made. Applica-
tion to physiological and electrical circuit problems has also
recently been discussed (Shen (1976), Lonngren et al. (1975)). Plasma
physics is rich in phenomena which fall into the self-similar category and
should receive equivalent attention. To date, it has not. It is to this end
of stimulating our colleagues that this review is directed.

In Section II, the detailed procedure to obtain the self-similar vari-
ables and the resulting ODE will be presented. We shall focus on the
linear diffusion equation as being the vehicle to lead to an understanding
of the procedure. Certain constraints imposed by either boundary or initial

conditions or by conservation laws will be discussed.
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In Section III, this procedure shall be applied to several problems

which are found in plasma physics and that we have treated, mainly with
colleagues at Iowa. They include;

(1)  One-dimensional diffusion where the diffusion coefficient is
nonlinear or inhomogeneous as might .be found in an electron cloud ex-
pansion, multipole experiments, or in studying the evolution of the distri-

bution function of particles in plasmas supporting various aperiodic in-

stabilities;

(2) Diffusion in more than one dimension with the inclusion of a
preferred direction of drift;

(3) The Korteweg-de Vries equation which can be used to model ion
acoustic waves;

(4) Sets of ion acoustic wave eguations;

(5) The Vlasov model of a plasma.

In each of the problems that is discussed, references to other
theoretical and experimental work will be made.

Self-similarity is not the panacea to solve all problems. Some
difficulties that we've encountered are that the ODE with transformed
boundary conditions may not be amenable to solution, neither analytical
nor numerical. Second, if solvable mathematically, the solution may not
describe a physically interesting phenomena. Third, the technique is
limited to problems where no scale length nor time scale such as fixed

boundaries exist in the problem.




II Self-Similar Procedure

In order to find the similarity variables, we make use of a theory
growing from the Lie theory of groups where it has been shown that the
similarity variables are identical to the invariants of a particular one
(or more) parameter group of transformations. We shall briefly outline
the procedure, detaiis and references can be found in the texts by Ames
(1965, 1972). We shall examine the one-dimensional linear diffusion
equation: i

g =g, =0 (1)

where the subscripts denote differentiation with respect to x and t.

We shall define a one parameter ("a", a is positive and real) group

G as:
p=a"p
G={ x=aP% (2)
t =a't

This is called the "linear" group. Other groups exist and there is a

“most general" group called the "infinitesimal group". This latter group
yields all possible similarity variables but one is soon lost in a sea of al-
gebraic formulas that it is difficult to discern the procedure in the reams
of scratch paper. One can refer to Ames (1965, 1972), Bluman and Cole
(1974) or Shen (1976) for examples. It is not, however, entirely hopeless, ?

as computer programs can now be written to handle large arrays of

willa




simultaneous symbolic algebraic equations.

In (2), a, B, and y are constants which are determined such that
(1) is "(absolutely) constant conformally invariant" under the group G
(Ames 1965, 1972). A function F(y) is said to be "constant conformally
invariant" (CCI) under G if F(y) = f(a) F(?) where f(a) is some
function of the parameter a . If f(a) =1, the constant conformal in-
variance is called "absolute". (ACCI)

Substituting (2) in (1), we write

a-2p3 - a-y -
a p;()—(-a ,t—O. (3)

For (3) to be ACCI under the transformation group G one requires

@ ~ 2P = =y (4)

or y =2B . We shall defer until later the further specification of these
constants.

Instead, we now seek to determine the "invariants" of the trans-
formation group G . This is achieved by employing a theorem from group
theory (Ames (1965), (1972)). The invariants are obtained from QI =0

where 1 is an invariant and Q is the operator

9p 5  0x 5  of 9
Q= = e C— e o
9
2a 52y dp al g ox 9a el t
0 0 )
= -ap 5})— - BX % - Yt 9t . (5)
-5-




The solutions of QI = 0 are obtained by solving the Lagrange subsidiary

equations

dp dx dt
ey S| sl JE i (6)
~-ap -‘SX -Yt

According to the theorem developed by Morgan (1952), these "in-

variants" are the self similar variables. Solutions of (6) are

:p(x!t) d - X ;
*(€) ¢ @/ g : B/Y {n

From (4), we found that B/y = 1/2 . Therefore the Boltzmann transformation
is recovered. Note that we could have combined (6) in a different order

and obtained

SO o %) G TROY.
#ipa = Seg el e (8)

Having found the self-similar variables, let us transform the PDE

(1) using the self similar variables (7) into an ODE. The result is

13 S0
¢g§+2¢g Y¢> (9)
or
2 -4Z 4=0.
¢§_§ +2(£/2) ¢g/z Y ¢ (10)
22 ]

Writing the ODE in the form (10) allows us to recognize that its solution

can be written in terms of complementary error functions (Gautschi (1964))
2= 2< i
d=ai Y erfc(%-) + BT erfc(-£/2) (11) i

-y
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Y is an ordering parameter and

p 2
T £/2 = -__i— b /4
N
iO erfe £./2 = erfcgz- (12)

% 1

i" erfe £/2 = f i
£/2

effetdt, n=0012..,. .

a/y is still arbitrary. We shall specify

At this stage, the parameter

it to satisfy boundary conditions or a conservation law. We note that two

boundary conditions on p(x,t) have necessarily "consolidated" into one

for ¢, namely

p(x=022,t)=0
= og=n) = 0 (13)
=0) =0 .

p(x,t

The third boundary condition could have one of two forms which would yield

self similar solutions. They are
(14)

p(x = 0,t) = constant

o0
f pdx = constant . (15)

0
Since p(x = 0,t) transforms via (7) to ¢(£=0), we note that (14) requires
that a«/y = 0. The self similar solution (11) for this boundary condition
is !

o
3




p=¢ = Aerfc(§/2) = A erfc(

) (16)
NEE

where the constant B = 0 in order to satisfy (13).

Although not proven to our knowledge but generally accepted as a
"Similarity Postulate" (Moran and Gaggioli (1969)), the conservation law
given in (15) should be invariant under the group transformation in order

to have similarity solutions. Applying (2) to (15), we write
o v, o0
fpdx=aaﬁfp—>d>-(. (17)
0 0
For this to be ACCI, we have

s.Bo 1
el

< |R

The self similar solution (l1) that satisfies this conservation law and (13)
is

2A' : -x2/4t
N7 Nt

P(X, t) = (18)

¢

Nt

where the constant A' can be determined by evaluating (15) using (18).
The procedure, as described in this section will be applied to

several examples found in plasma physics in the next section.




[II Applications to Plasma Physics

Plasmas are a particularly interesting and fruitful area in which to
pply the self similar technique. This is particularly true when it can be
argued that there is no scale length that is important. However, there
usually is a relevant scale length such as the Debye length in most plasma
problems, at least in some initial stage. The self similar analysis may,
in those cases, yield valuable information for some asymptotic state
(Barrenblatt and Zel'dovich (1972)).

In the following, we shall select several examples from plasmas
which fall into the self-similar class. To analyze each problem, we follow
the procedure given in Section II and only describe the physical phenomena,
list the PDE, the self similar variables, the ODE, and if possible, the

solution to the ODE without repeating the procedure for each problem.

References for each problem are also presented.

A. Linear 1-D Diffusion Equation, Inhomogeneous Diffusion Coefficient
In studies of the evolution of the distribution function of particles
in plasmas supporting various aperiodic instabilities or in calculations
involving the forward scattering of photons by plasmons, it has been found
that the problem could be modeled with a diffusion equation (Peyraud and

Coste (1976)).

pp =[x o 1 - (19)
Using the linear group G (2), we find the self similar variabies to be

-9-




X )
¢ and ¢ = —b— . (20)

Equation (19) transforms to

—Y' o + F‘-‘&_ r‘)E (é & )E {3_1)
E 3 1
] The requirement of "consolidation" (13) specifies that ‘;— B > 0 .0r

mE 2z .
The constant «/y can be specified to satisfy two boundary con-

ditions, namely (14) and (15). The solutions for the two cases p(0,t) =

0
constant and f pdx = constant are (Lonngren (1976)):
0

Zi-mm
1 £ =5
K — exp —( :] dg - l} (22)
{fgm [ <2-m>2)

p(x, t)

and

K XZ-m
p(X, t) = — ——— exp [: -——] (23)
t1/(.2.m) t(Z_m)z

respectively and where K is a constant.
As the diffusion equation can be also used to model a distributed

RC transmission line (eg. Lonngren, et al. (1975)), there can be a practical

application of this result. In particular, let us assume that all the capacitors
have the same value and the resistors are distributed inhomogeneously

-m
such that R ~ R0 X . If such a line were constructed and it were suf-

ficiently short such that exponential term in (23) remained approximately

constant, then the voltage response of the line to an impulse source would

«10=




2=
be proportional to l,/t(l/ 1) . Such a line has been used in biomedical

applications for the value m =1 (Caqne: and Poussart (1976)).

B. Nonlinear 1 - D Diffusion Equation
Several phenomena in plasma physics can be modeled with the

nonlinear diffusion equation.
n

i =0 . 24

lo o, - (24)

For example: (1) Recent experiments in multipoles have confirmed that in
certain regions, the diffusion coefficient for particles across the magnetic
field depends on (the density of the particles)_l/z. (Drake (1973),

Berryman (1976));(2) In studying the skin current penetration into turbulent
plasmas where the conductivity depends on (the local electric field)n
(Hirose et al. (1970)), it has been shown that the governing eqguation is

of the form of (24) (Hirose and Alexeff (1973)). An examination of this
equation allowed us to comment on penetration times under various stages

of ion acoustic turbulence (Lonngren, et al. (1974)). (3) As the conductivity
of the turbulent plasma saturated with increasing field (Hirose et al. (1970)),
we could model the conductivity as ¢ ~ % exp(-E) and have been able

to obtain (24) with n = -1. (Ahmadi, et al. (1976)). A similar equation
describes the expansion of a Maxwellianized electron cloud into a

vacuum (Lonngren and Hirose (1976)).

For these problems, the self similar variables are of the form




‘ —T—-E——— (25)
t =28 .1
o

where the parameter B/y is chosen to satisfy the boundary conditions or

conservation laws and ¢ satisfies

(6"6 )

B
§€+ \(gtP

L8
-—R2E5 -Yo=0 . 26
¢ “(Y )o (26)

Again the boundary conditions (14) and (15) can be applied. Using
(15), we find that g/y = - 1; (2 B/y - 1) and (26) can be directly integrated

(Ames (1965), Gilding and Peletier (1976)) to yield

2
CEI9F

o(t) = (27)
= 0 cre,

1/2
where goz[-z—(%ii] S =0

This could be considered a "sharpfront" solution in that

o i

™ le=t,) = 0

(28)

d¢n+l

3t =0 .

£=¢,

For -2<n<0, say n = -1; the solution is

a]lZ =
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(29)

9
which is valid for ;l 5-5 -0 as x - » (Lonngren and Hirose (1976)).

To apply the second boundary condition (14), it is convenient to

let & = ¢~ " and note that the constant @/y = 1/2 . Equation (26) be-
comes

(e i g ), + L T =10 (30

Yedg * 3 b, =0 )

The solution for n = -1 with the boundary conditions WE=0) =1 and
U(£ =») = 0 has been treated by Fujita and is described in the classic
book by Crank (1964). Approximate solutions were recently discussed by
Ahmadi, et al. (1976).

Solutions of other one-dimensional diffusion equations have been
given by e.g. Phillip (1960), Singh (1967), Swan (1976) and Tuck (1976)

and should be referred to.

C. Diffusion In More Than One Dimension

In several cases in plasma physics, it is important to examine ,

diffusion of particles in more than one dimension and in cases where the
parallel and perpendicular diffusion coefficients are not equal, parallel

could be interpreted as being along an external magnetic field. In such
cases, the linear diffusion equation becomes

~2
Pyt WPy = Dip Pex * D,ij.p 5D

<1 3=

I
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where w is a drift velocity. As Dll and DJ_ are assumed at this stage

to be linear, we can renormalize the transverse coordinates such that

) 2
= v .
D_L le D11 lp (32)

In addition, letting

2
w w
R P

11 11
(33)

= Dllt

(31) becomes

N =N _+V N. (34)

Using the procedure outlined in Section II with the addition of two

terms to the group G (2), it follows that the group invariants are

g 2,0 L, ps 2 0-— (35)

’ ’ ’

b ST Traca

where y and z are in the transverse direction. Substituting (35) in

(34), we obtain

1 a2
¢-5[§¢§+c¢ +u¢p]=¢§g+vl¢ (36)

2

Y 4
a2 2

where VJ_ indicates Vl in the transformed transyerse variables ¢ and

[T

We shall examine the conservation law only (15). For this problem,

|
|
{
|
|
{

-14- Q

it generalizes to
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f N dxdydz = constant (37)

which implies that «/y = -3/2 . Using this in {36) suggests that we

write

+(p¢)p] = i +Vl¢ (38)

1
-3 l(ed) + (2o "

g

which is amenable to a treatment using separation of variables and inte-
gration. Note that if the problem were posed in cylindrical coordinates,

the proper conservation law would be

f Ndrdx = constant (39)

as there is a fixed scale length of 27 in the third coordinate. This im-
plies that a/y = -1.
The procedure that follows is straight forward and will not be re-

produced here. In cylindrical coordinates, we find

2 2 2
const o L X w wt
o= ——=—u} ( ———) exp [- - + (x - —u—ﬂ (40)
Dut) 0 8D_Lt 8Dlt 4Dut 2D11 2

This agrees with a result of Eastlund (1966), who examined diffusion in
a Q-machine.

This diffusion equation (31) has found importance in several non-
plasma areas also. We cite as examples: Dispersion in uniform porous
media flow of ground water (Shen (1976)) and in the spread of cancer in
the uterus (Swan (1975)). Extensions to nonlinear and inhomogeneous
problems would be worthwhile as we've observed in the one dimensional

case.

-15-




D. Korteweg de Vries Equation
Considerable attention has been given to understanding the Korteweg-

de Vries equation.
p, +pp. + & p 1) 41
f X XXX - g ( )

For example, Washimi and Taniuti (1966) showed that the low frequency
ion acoustic wave could be modeled with this equation as a first approx-
imation for including nonlinear effects.

Using the linear group G, given in (2), one computes the self similar

variables to be

X
£ = and ¢ =—£—~ (42)
t1/3 t-2/3
where ¢ satisfies
2 1 2
- - = =0
3¢ 3§¢§+¢¢§+6¢§§§ (43)

A discussion of the solution of (43) is given in Berezin and Karpman (1964).

Two extensions to this solution have been given. For cases where
the nonlinear term PPy in (41) can be neglected, the self similar solutions
for (41) can be written in terms of Airy functions or integrals of Airy
functions which have the argument of the similarity variable (42). These
two solutions satisfy the conservation law (15) and the boundary condition
(14) respectively (Ikezi, et al. (1974)).

The second extension by Shen and Ames (1974) uses the infinitesimal
group rather than the linear group that we've used and has ascertained all

-16-
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possible similarity variables for the KdV equation. They find

2 /3 2 253
¢ = (at + &) * T (a -—3—ap)§a /
(44)
£ = lz <1-5/3[za2\( - 3a(at+ 6) + b((*4%-(/16)]/(at+6)1/3

where a,a,B, and &6 are constants and ¢ satisfies (43)

h E. Ton Acoustic Wave Equations, Fluid Model
In a series of two papers (Hsuan, et al. (1974) and Shen and Lonngren

(1976a)), the similarity properties of four sets of fluid equations that have

been used to describe the propagation of ion acoustic waves in a plasma
are discussed. The sets of equations are; (a) multiple species fluid
equations truncated at the third moment plus Poisson's equation;

(b) massless isothermal linear electron fluid and cold nonlinear ion fluid

1
plus Poisson's eqguation; (c) massless isothermal nonlinear electron fluid
and cold nonlinear ion fluid plus Poisson's equation; and (d) massless a
isothermal electron fluid and cold nonlinear ion fluid with a quasineutrality
assumption.
Set (c) is the most general and the infinitesimal group was applied %

in addition to the linear group G (2). (Shen and Lonngren (1976a) Shen
(1976)). As a result several possible similarity variables were found which
included those quoted by Zhmudsky (1975) and the traveling wave variables.
Numerical difficulties prevented a complete integration of the resulting of
ODE (Shen (1976)). Also a scale length (the Debye length) existed in the

problem.

-17- ;




Set (d) has been frequently studied in plasma problems (eg. Alexeff
et al. (1971), Allen and Andrews (1970)). The equations are identical to
those in ordinary fluids.

Finally, set (c) was examined in a nonneutral plasma approximation
where the effect of the electrons was.neglected (Shen and Lonngren (1976Db)),
Such a model extends a paper by Gintsburg (1974) and is germane to re-
lativistic electron beam devices.

Below, we tabulate the sets of PDE, the similarity variables and the
1>sulting ODE. The results for sets (a) and (d) were obtained using the
"linear" group, (b) was obtained using the "spiral" group and (c) was
obtained using the "infinitesimal" group. Details appear in (Hsuan et al.

(1974), Shen (1976) and Shen and Lonngren (1976a)).

a) The PDE are:

13
& Tax T
9
T e
e b 5

ot X ml nl ox m1
op, oy, 8P, =)
e o WlEe tYiex 9

q
9 « 9
g
X i eo 1

The similarity variables are:

-18-




The ODE are:

d d
I (U - M g N, - 2N, =0,

d 1 4 act
&ngl+(A-l)Ul+Ulngl+mN 2Pt

11 1

(47)

d d d

i &

e
Nl
dg i

€ 1

~A

€ =

=
o

b) The PDE are:

2 (48)

The similarity variables are:

urr
]

t exp(-ax), N n, exp(2ax) ,

i
(49)

2
1"

v, exp(ax) ,

n, exp(2ax), U i

-19-




The ODE are:

dN
1 i du
(; - £0) _d?;— - §Ni 3t 5NiU =0 ,
dN
1 du e : 2
(;-gU)-d—g' E‘—d"c:— -ZNO-U—O,
> d N dN 1
¢ Ze+5§d +(*’r—'7)N:0
dg a
c) The PDE are:
on, 9(n.v))
dat ox
) 9
e S
at i 0x ox
2
0
_2 g = 1

= £

v & v

€ = -—[1r1(t+-p-)+ ],
t+£ ” 4 t+_ﬂ

¥ v

P £\2
N(E) = (t +-7) n,(% g

. L )
Vi(£) = v,(x,t) - 5 In(l +7) ,

N_(8) = (t + )% n_(x,1

=-20-

(50)

(51)

(52)




The ODE are;

£ d
lpk -1; N YLd(NiVi) ; 6 dNi 0
e dg¢ ¥ dE ;
dVi | dNe 6 dVi
(V. -8) 3¢ E\I—e—&—';—(—a—g—-l)=0, (53)
dN
a1 e
dag ‘W & Vo=
d) The PDE are:
on . afnvy
ot FTax Sy
2 (54)
dv av VA an
~ tv— +— — =0 .
at Ix n ox
0
The similarity variables are:
X v n
gl ==ty U = TG N = ’ (55)
tA tA 1 tZ(A-l)
The ODE are:
dN d(NU) _
-2 5 +2(A-DN + =g = 0 ,
> (56)
\Y
dU dU A dN
(A-I)U—Agdg +Ud€ B;dg =

F. Vlasov Model for Ion Acoustic Waves

The distribution function for ions in the absense of a magnetic field

can be computed from the Vlasov equation

of

5 of
T

Vay‘ﬁ 8y'5\-/

S

e By B

(57)




With a quasi-neutrality assumption, n(3 o~ ni and with a Boltzmann ap-

proximation for electrons n, = N, exple v /Te], we write (57) as

of of  8f d(ln [ fdU)
at T Vox C au dx B {38}

Standard dimensionless parameters are used in (58), namely

n Yy w
n:n—e,t:wpiT,U:——v—,x: P
0 “]Te/M \/Te/M.

1

Applying the linear group G (2) to (58), we find that the self

similar variables are

X f
£== and ¢ = (59)
t ta/y
where ¢ satisfies
do. b2 Q_L_d““dg‘*’d‘”:o . (60)

Y d¢ d¢ ~dU
Again, we have two possible boundary conditions that can be treated ;

(14) and (15). In a pioneering series of papers, Gurevich and Pitaevsky

examined the solutions governed by boundary condition (14), i.e.

f(x = 0,t) = constant. Their work has been summarized in a recent review

paper (Gurevich and Pitaevsky (1975)). Experiments performed by Korn,

Marshall and Schlesinger (1970) and others seem to confirm the predictions.
The second boundary condition (15), f f(x, t)dx = constant has re- ’

ceived considerable attention from Jensen and his colleagues in their

-22-




investigation of the Green's function for a linearized version of (58)

(Anderson et al. (1971) Jensen et al. (1974) Christoffersen et al. (1974)).
They found that the leading term in the series for the Green's function is
the self-similar term %- h(ti) which is noted by setting «/y = -1 in (59).

Equation (60) in this case is written

d[(U-£)¢] _dé d[ln [ ¢dU] i

dt du dE

1 e
or ¢_U-g 30 lnf¢dU

They also experimentally confirmed their findings in a Q machine.

a2 %




IV Conclusion

In this tutorial and review paper, we have summarized the technique
of self-similar solution of partial differential equations and presented
several examples where it has been applied to problems found in plasma
physics.

The authoir wishes to acknowledge H. Hsuan, H. Shen, A. Hirose,

and W. Ames who actively contributed to this work.

\: -24 -




REFERENCES

Ahmadi, G., Hirose, A. and Lonngren, K. E. 1976, IEEE Trans.

to be published.

Alexeff, 1., Estabrook, K. and Widner, M. 1971, Phys. Fluids 14, 2355.

Allen, J. E. and Andrews, J. G. 1970, J. Plasma Phys. 4, 187.

Ames, W. F. 1965, Ind. Eng. Chem, Fund. 4, 72.

Ames, W. F. 1965, 1972, Nonlinear Partial Differential Equations

in Engineering, (Academic Press).

Anderson, S. A., Christoffersen, G. B., Jensen, V. O., Michelsen, P.
and Nielsen, P. 1971, Phys. Fluids 14, 990.

Barrenblatt, G. I. and Zel'dovich, Ya. B. 1972, Ann Rev. of Fluid

Mech. 4, 285,

Berezen, Yu. A. and Karpman, V.1964, Sov. Phys. JETP19, 1265.

Berryman, J. G. 1976, Phys. Fluids, to be published.

Bluman, G. W. and Cole, J. D. 1974, Similarity Methods for

Differential Equations (Springer Verlag).

Boltzmann, L. 1894, Ann. Physik 53, 959.
Christoffersen, G. B., Jensen, V. O. and Michelson, P. 1974,

Phys. Fluids 17, 390.

Crank, J. 1964, The Mathematics of Diffusion, Oxford University

Press.
Drake, J. R. 1973, Phys. Fluids 16, 1554.
Eastlund, B. 1966, Phys. Fluids 9, 594.

Gagné, S. and Poussart, D. 1976, IEEE Trans. BME-23, 16.

-? 5w




Gautschi, W. 1964, Error Functions and Fresnel Integrals, in Handbook
of Mathematical Functions, M. Abromowitz and I. A. Stegun, Eds.,

Nat. Bur. of Stand.

Gilding, B. H. and Peletier, L. 1976, J. Math. Anal. Appl. 55, 351.

Gintsburg, M. A. 1974, Sov. Phys. Dokl. 19, 216.

Gurevich, A. V. and Pitaevsky, L. P. 1975, Prog. Aerospace Sci.

l6, 227.
Hirose, A., Alexeff, 1., Jones, W. D., Kush, S. T. and Lonngren,

K. E. 1970, Phys. Rev. Letters 25, 1563.

Hirose, A. and Alexeff, I. 1973, Phys. Fluids 16, 1087.

Hsuan, H. C. S., Lonngren, K. E. and Ames, W. F. 1974, ]. Engr.
Math. 8, 303.

Ikezi, H., Kiwamoto, Y., Lonngren, K. E., Burde, C. M. and

Hsuan, H. C. S. 1973, Plasma Physics 15, 1141.

Jensen, V. O., Michelson, P. and Hsuan, H. C. S. 1974, Phys.
Fluids 17, 2208.

Korn, P., Marshall, T. C. and Schlesinger, S. P. 1970, Phys. Fluids
i

Lie, S. 1881, Arch Math. (Kristiana) 6, 328.

Lonngren, K. E., Ames, W. F., Hirose, A. and Thomas, J. 1974,
Phys. Fluids 17, 1919.
Lonngren, K. E., Hsuan H. C. S., Malik, N. R. and Shen, H. 1975,

IEEE Trans. CAS-22, 882.

Lonngren, K. E. 1976, ]. Appl. Phys. to be published.

aBbw

A

.




Lonngren, K. E. and Hirose, A. 1976, Phys. Letters, to be published.

Michal, A. D. 1952, Proc. Nat. Acad. of Sci. 37, 623.

Moran, M. J. and Gaggicli, R. A. 1969, ]. Engr. Math. 3, 15].

Morgan, A. J. A. 1952, Quart. J. of Math. 3, 250.

Ovsjannikov, L. V. 1962, Gruppovye Svoystva Differentsialny Uravneni,

Group Properties of Differential Equations (G. Bluman, transl. 1967)
Cal. Tech.
Peyrand, J. and Coste, J. 1976, Phys. Fluids 19, 388.

Phillip, J. R. 1960, Aust. J. Phys. 13, 1.

Sedov, L. I. 1959, Similarity and Dimensional Methods in Mechanics

(Academic Press).
Shen, H. and Ames, W. F. 1974, Phys. Letters 494, 313.

Shen, H. and Lonngren, K. E. 1976a, J. Engr. Math. 10, 135.

Correction to be published, 1l.
Shen, H. and Lonngren, K. E. 1976b, IEEE Trans. PS4, 144.
Shen, H. 1976, Ph.D. Thesis, University of lowa, unpublished.

Shen, H. T. 1976, J. of Hyd. Div. Proc. ASCE HY6, 707.

Singh, R. 1967, J. of Hyd. Div. Proc. ASCE HY5, 43.

Swan, G. W. 1975, Math. Biosciences 25, 3l9.

Swan, G. W. 1976, Bull. of Math. Biology 38, 1.

Tuck, B. 1976, J. Phys. D Appl. Phys. 1559,

%

Washimi, H. and Taniuti, T. 1966, Phys. Rev. Letters 24, 206.

Zhmudsky, A. A. 1975, Ukrainskii Fizicheskii Zhurnal 3, 492.

=27 =




T ——————————

UNCILASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRU
REPORT DOCUMENTATION PAGE BEDCEE Coient BEe ToRN
REPORT NUMBER "Tz GOVY ACCESBION NO.| 3 RECIPIENT'S CATALOG NUMBER
1698 _ - l

8 TYPE OF REPORYT & PERIOD COVERED
Summary Report - no specific
reporting period

i
e O S g . - / /—Q PERFORMING ORG. REPORT NUMBER
. )

J8 TITUE rand subtitie) .

r‘%[lLr SIMIL AR SOLUTION OF PLASMN I(WAII(“F S|

\
W)

o
Y T o (/J,_ggn_TRACT OR GRANT NUMBER(s)
// . r/I onngren | / \:] DAAG29-75-C-0024
A ——— // Sﬁr-—ENG 76-15645
o 10 . PROJECT, TASK

9 PERFORMING ORGANIZATION NAME AND ADDRESS

NT,
Mathematics Research Center, University of  _~ AREA'S WORK UNIT NUMBERS

610 Walnut Street Wisconsin
Madison, Wisconsin 53706
11, CONTROLLING OFPICE NAME AND ADDRESS o~ ‘2 REPORT_QALE___,/
(// Novemiser 1976 |
> Item 18 below. \ 413 NUMBER OF PAGES
il

4 poNlYOﬁlNG \GENCY NAME & ADDRESS(// different from Controliing Office) 15. SECURITY CLASS. (of this report)
/ N ‘,’, ] ) ; ’ ] UNCLASSIFIED

/ 3 { / 7 D& {

/// } i } ' f A 15a. DECL ASSIFICATION/DOWNGRADING

/ SCHEDULE

17 ATEMENT (of the.absteact entered in Block 20, If different from Report)

18 SUPPLEMENTARY NOTES
U.S. Army Research Office
P. O. Box 12211 National Science Foundation

and .
Research Triangle Park Washington, D. C. 20550

North Carolina 27709

19. XEY WORDS (Continue on reverse aide if necessary and identity by block number)

Heat Equation, Nonlinear Equations and Systems

20 ABSTRACT (Continue on raverse side If necessary and Identify by block number)

\This paper describes the method of self similar solution of partial

differential equations and reviews its applicaticu to zeveral problems found

in plasma physics.,
N\

DD ,‘on'ys 1473  E0ITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED ¢~ ‘_,x";‘ }\ ) J

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




