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ABSTRACT

Two methods are presented by which mechanical low-~pass filters
can be designed using electrical network synthesis techniques. The

desired response can be any low-pass filter function that is realizable

as a planar reactive ladder network. The resultant response of the
synthesized network will be slightly different from the desired response,
but this difference is predictable and can be taken into account when
considering the specifications for the design of the filter.

These techniques can be used to design either a filter network
with a relatively small source mass driven by a constant force or a
filter network with a relatively large source mass moving with a constant
velocity. The two methods are compared and an example is given to

illustrate the implementation of one of the methods.
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CHAPTER I

INTRODUCT ION

Statement of the Problem

designer strives to have the filter meet certain criteria. Usually,
these criteria are that the filter has (1) a low resonant frequency,
(2) a reasonably damped resonant peak, and (3) an adequate amount of
rolloff above the resonance.

The first and second criteria are usually met by adjusting the
mass of the source or the stiffness constant of the filter and by
adjusting the damping of the filter at resonance. Meeting the third
criterion, however, may not be so easy.

Whenever a filter needs more than a 12 dB per octave rolloff

above resonance, the simple spring-mass resonator shown in Figure 1.1(a)
will not suffice. A compound or multi-degree-of-freedom system as

shown in Figure 1.1(b) can give any multiple of 12 dB per octave rolloff
depending on the number of stages used. However, there will in general
be N resonance peaks corresponding to the N stages. The response curve
showing force transmissibility (lFORCEou
something like the curve shown in Figure 1.2 for N = 2 . Figure 1.2
is typical of the transmissibility curves for a two-degree-of~freedom

system as treated by Snowdon.

In designing an antivibration filter or vibration isolator, the

put/FORCE |2) will look

t input

(1) By adjusting the damping in each




stage, the peaks can be reduced or even removed, but this is a rather
inefficient way to go about producing a particular rolloff function.

It has long been known that there exist basic analogies between
electrical and lumped component mechanical networks, such as the type
of networks shown in Figures 1.1(a)-(c), where the springs are
considered massless and perfect. These analogies make it possible to
express the behaviour of a mechanical network in terms of the behaviour
of its analogous electrical network.

Approximately thirty years ago, methods were developed by which
two terminal pair electrical networks having specified realizable
transfer functions could be synthesized. Most of these networks are
filters consisting of purely reactive components terminated at one or
both ends in resistors. The advantage of this in the design of
mechanical networks is that the terminating resistance provides the
damping for the entire network. In the case of a "maximally-flat"
transfer function, the terminating resistance provides critical damping
for the network and thereby eliminates any resonant peaks

Mechanical antivibration filters are analogous to electrical
low-pass filters and should therefore be subject to the same methods of
design. In this way, a mechanical network can be produced having any
realizable transfer function. There are, however, some practical
requirements to be taken into account. First, the electrical network
that produces the desired transfer function may nct result in a desirable
mechanical network due to the presence of transformers or to a
mechanically undesirable topology. Second, the electrical synthesis

methods produce networks that are driven by ideal voltage or current




generators which correspond to ideal force or velocity sources. Any

real source will, of course, not be ideal and this will produce some

deviation away from the desired response. Third, if the filtering
network is to support the vibrating object, the final supporting member
must be a spring since a mass cannot be supported on a dashpot. The
termination of the analogous electrical network will therefore be a
capacitor in series with a resistor, that is, a load containing
reactive components.

Since most of the synthesis methods of practical interest result
in networks terminated in an open circuit, a short circuit, or a purely
resistive load, the required series complex load will undoubtedly affect
the performance of the network. This paper will deal with the problem
of modifying the classical synthesis techniques to produce the required
complex load and how these modifications will affect the desired

network response,

i Purpose of the Research

While research in antivibration filter design has been gecing on
for many years, most of the designs fall into one of three categories.
Figures 1.1(a) and (b) denote the first two categories and Figure 1.1(c)
is representative of the third category - the dynamic absorber. All
three of these categories and their many permutations have been treated

(2)

extensively by Snowdon for rubber or rubberlike mounts. There does
not appear to have been developed a general theory that can be applied

to the design of an antivibration filter of any required degree of

complexity. The purpose of this research is to attempt to develop such




a theory. In this study, it will be assumed in the beginning that all
the elements are simple, i.e., as being lumped and having a mass,
compliance or resistance that is independent of frequency. The effect

of viscous damping in the springs will be discussed afterward.

E3 Analysis Techniques

Classically, the response to excitation of a spring-mass system
has been analyzed by the use of differential equations. The requirement
of a complex response function, however, would result in a very
difficult equation to solve. It was for this reason that a different
method of analysis has been developed. The method adopted is one that
has been used in the classical development of filter theory, namely, to
calculate the impedance or admittance as a function of the complex

frequency 's'. The transfer impedance and admittance are defined as

ZT(s) = V2/1l and YT(s) = I,/V , respectively.

20

There are two ways to represent the mechanical analog of an
electrical network, namely the "impedance" and '"mobility'" analogs. For
the sake of consistency, it was necessary to make a choice between the
two representations. The representation chosen for use throughout this
paper is the '"impedance' analogy. 1In this analogy, a mass is
represented as an inductor, a spring as a capacitor and damping as
resistance. Also, force is analagous to voltage and velocity to current.
Therefore, a series constant voltage generator will represent a constant
force source and a parallel constant current generator will represent a

constant velocity source.
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CHAPTER II

GENERAL NETWORK SYNTHESIS TECHNIQUES

Z.1 Network Selection Criteria

In designing a low-pass mechanical filter capable of supporting
a vibrating object, there are several criteria to be considered.

1. The filter should be simple in design. Figure 2.1(a) shows
the type of mechanical network under consideration to control vibration
in the vertical plane. There may be resonances in the system which

would be achieved by the spring-mass resonator consisting of elements

52 and M2 . Also, the element above the supporting spring need not
be a mass; it could be another spring. Note that the electrical
equivalent of Figure 2.1(a) is the reactive ladder network shown in
Figure 2.1(b). Also note that the last supporting member in Figure 2.1
(a) is, as required, a spring designated 'S' in parallel with a dashpot
designated 'R'.

2. Space and cost considerations require the filter to be as
compact as possible. Since these factors will be proportional to the
number of elements, synthesis methods yielding canonic or nearly
canonic networks are desirable.

3. Because of the variety of situations in which a low-pass
mechanical filter is used, there will be many different response

functions required. The synthesis method must be able to yield a

network having any desired realizable low-pass response function.

. — R 'm_..-,__J.
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4. In an antivibration filter, the stop band is of greater |
interest than the pas band. Any undesirable characteristics of the
filter, such as resonances or deviations from the desired response,

should be limited to the pass band.

22 Synthesis Methods Suitable to This Problem

In order to find the one or two synthesis techniques best suited
to this problem, it is necessary to form some basis on which the various
methods can be judged. First of all, the method should synthesize a
network having a purely reactive ladder-type topology. Many synthesis

techniques can be eliminated by this constraint alone. A second

necessity is that the network can be realized without employing perfect
transformers.

One synthesis technique that satisfies these constraints, at
least for some transfer functions, is the Darlington Point Impedance
Synthesis. A partial answer to the question of when this method will
not require perfect transformers is provided by the following theorem:

The Darlington network is realizable as an unbalanced

ladder network without transformers if, and only if,

ZT(s) has its zeros located on the jw axis.

A proof of the necessity of this statement is obvious if it is observed
that the zeros produced by a reactive ladder network are always zeros
of a shunt arm or poles of a series arm. Since the Darlington network
is purely reactive, its zeros may therefore lie only on the jw axis.
Sufficiency of the above theorem will be proven in the section dealing

with the Cauer and Guillemin network of the same form.
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It must be pointed out that this theorem does not provide a
complete answer as to when the Darlington method will not require
transtormers since there are many other network topologies possible
besides the ladder network. However, since the topology of interest to
this research has the form of a ladder network, the theorem provides a
sufficient answer to the transformer question in this case.

The Darlington synthesis method also has the advantage of being
economical in the required number of circuit elements. This comes from
the use of the minimum-reactive input impedance in the synthesis
calculations. This is a unique quantity for any one specified transfer
impedance ZT(s). One disadvantage of the Darlington method is that it
requires rather lengthy calculations compared to many other methods.
However, since it satisfies all the criteria in Section 2.1, it will be
considered a viable technique in the synthesis of mechanical anti-
vibration filters.

While not being able to synthesize all realizable network
functions, a method developed by Cauer and Guillemin also appears to
satisfy the criteria in Section 2.1. In many cases, the networks
synthesized by this method are identical to those obtainable by
Darlington's procedure, but it has an advantage in that it is a

computationally simpler method.

2.3 Darlington Synthesis Method

Darlington's technique for the synthesis of a reactive network
terminated in a resistive load with a specified transfer impedance

ZT(S) makes use of his point impedance synthesis method, published
(1)

in a 1939 paper. Since the impedance synthesis method is rather




REACTIVE
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Figure 2.2 Dariington Network
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involved and need not be used for the synthesis of low-pass network
functions, it will not be discussed here. However, it is useful to 1
look at how the transfer impedance synthesis method works.

As indicated in Figure 2.2, the normalized Darlington network

is purely reactive and terminated in a 1{ load. The squared

magnitude of the transfer impedance, \ZT(s)l2 , where ZT = V2/I1 y 18

some specified function of frequency and satisfies the appropriate
realizability conditions. Letting Rin(m) = Re[Zin(s)] , where
Zin(s) is the input impedance of the network, the power Pin delivered

to the network by the constant current generator is

= . . 2
By & (32} Rin(w) |1|

Since the network is purely reactive, the power delivered to the network

is equal to the power delivered to the load, i.e., Pin = PL , where

Therefore,

SO P SR 1,
R, (W) = |v2/11 = |z(s)] (2:1)

and it can be seen that the input resistance can be determined from the
magnitude of the transfer impedance, ZT(s)
Darlington's method of synthesizing the network to yield the !

prescribed ZT(s) consists of three steps as follows:
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1. Determine Rin(w) as outlined above. J
2. Find a realizable Z, (s) such that Re[Z, (s)] = R, (w)
in in in

3. Use Darlington's impedance synthesis procedure to derive

i

a network having the prescribed Zin(s) terminated in a 10 1load.

One proof of an input impedance Zin(s) satisfying step 2 is

(3)

due to Bode. In order for Zin(s) to be a realizable impedance,

its poles must be in the left half of the complex frequency or 's'
plane. A partial fraction expansion of fZT(s)]2 is made and Zin(s)
is constructed from the roots corresponding to the left half-plane
29 and i§3,
The Zin(s)

poles. For example, if lZT(s)I2 has poles at +s +s

1’
then Zin(s) will have poles at =815 Sy, and =S4 -
so constructed will be minimum-reactive. This method has the dis-

advantage of, in general, being rather complex, thereby making it

unsuitable for numerical purposes.

(3)

An alternate method of determining Zin(s) due to Gewertz,
using the method of undetermined coefficients, also results in the
minimum-reactive input impedance, [Zin(s)]MR , a unique quantity.

Since Zin(s) must be a realizable function, it can be expressed as

the ratio of two polynomials (where the subscripts 'e' and 'o' refer to

the even and odd powers of 's', respectively), i.e.,

P (s) + P (s)
2, (8) < 2

in = Qe(s) = Qo(s) . (2.2)

Using Equation (2.2) in connection with Equation (2.1) yields for

s = jw,
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. P (s) Q (s8) = P (5) Q (&)
R, (w) = lzl(s)lz - == = 2 2 2 (2.3) *

it q()° - q ()

By setting

2

Qe(b) = aj + a,s Y i LTI

QO(S) = a;s+ a3s3 S RS
2

Pe(s) = bO - bzs +

and
P (s) = b.8+ b 53 o
o] 1 3

in Equation (2.3) and matching the coefficients of |ZT(S)|2 , the a

k
and bk can be determined. The minimum~reactive input impedance is
then

B+ 'b.s + b.a+ + .
st 0 i 2
(2, ) g i e ) (2.4)
0 34 2
where the a, and bk are always positive.
A more general input 1mpedance
Aks
= —— . > =
2,0 (2, g+ s+AS8. 3 A >0 , k=1,2,3 ..
S +wk

could be used since it has the same input resistance, but because it is
not minimum-reactive, it would lead to a more complicated circuit. The
desired network can now be synthesized from Equation (2.4) in the form

of a reactive network terminated in a 12 load.
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This research is interested only in the design of low-pass
ladder filters having a minimum reactive input impedance. These can be

(a2 which is a

constructed using only the Cauer I synthesis techniques
simplified special case of the Darlington Impedance Synthesis technique
and, therefore, 1t will not be necessary to go into the detail of the 4

Darlington Impedance synthesis. This input impedance (which has no jw

axis poles) can be expressed as the continued fraction

[Zm(s)]MR = Zl(s) +

il i
+
ZZ(S) 23(s) +

1 1
Z,(5) £ A

(2.5)

for the ladder network in Figure 2.3. The coefficients of the
continued fraction expansion can be obtained by synthetic division

of [Zln(s)]MR :

2.4 Cauer and Guillemin Synthesis Method

(5)

(6)

As stated in Section 2.2, the Cauer and Guillemin synthesis
method will usually yield the same network as the Darlington method in
the synthesis of low-pass filters. The Cauer and Guillemin methed 1is,
however, much simpler computationally. The synthesis method is based
on the following two facts:

1. The poles of Z.,(s) 1in a purely reactive network are

12

simple. Moreover, le(s) and 222(3) possess these same poles.

2, Every zero of the mutual impedance le(s) in a reactive

ladder network must be a zerc of a shunt arm or a pole of a series arm.




Figure 2.3 Ladder Network




This synthesis method consists of only two steps, as follows:

1. Determine le(s) and Z»»(S) from the transfer impedance
. 2., . (8)
= = R
Z {8) ™t 227(5) (2.6)

2. Synthesize sz(s) as a reactive ladder network using the

Cauer I method, but in such a way that the zeros of le(s) are pro-

duced. Cauer suggested that (s) and Z_,.(s) could be determined

llZ 22
by remembering that the ratio of the even to odd parts of a Hurwitz

polynomial is a realizable reactance. Since 222(5) must be a

realizable reactance and le(s) must be a 'reactance-like" function,

the appropriate identifications are easily made.

The synthesis of 222(5) is accomplished by taking one of the

zeros of le(s) and removing it from 222(5) . Referring to Figure

2.4(a), it is obvious that if 22(3) were to have a pole at frequency

s = jwl [where Wy 1s the frequency of some zero of le(s)] that

Zy,(s) = Z,0)

s=jw s=jw

1 1

Solving for Zzz(jwl) gives the value and type of the reactance Zl(s).

This reactance is then removed from 222(5) leaving

1

Z(l)(
1/222(5) = 1/Zl(s)

22

s)

Letting ZB(ij) be a zero of the shunt arm allows the removal of
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7(1)

29 (s) leaving [Figure 2.4(b)]

ZZ(S) from

(I (1Y) e
Z22 (s) = 122 (s) + Az(b)

This procedure is carried on until all of the zeros of le(s) have

been produced in 222(5) . The same method would be used if the leading
element, Zl(s) , was a series instead of shunt element.

If there are N different zeros of le(s) , there will be at
most N! different ways of synthesizing the network to give the
desired ZT(S) (within a constant multiplier). This multiplicity of
solutions can be advantageous in that it allows the user to select a
network meeting some prerequisite such as the least overall inductance
(mass) or the reduction of large element values in general. However,
even though all of the networks have the same ZT(s) , there is no
reason to expect that they will all have the desired topology, in fact,
many of them will not.

The fact that the Cauer and Guillemin method can synthesize

. T ’ ;
without transformers any Z (s) having its zeros located on the jw

axis constitutes a proof of the sufficiency of the theorem in Secticn

2.2 regarding the Darlington synthesis method.
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Figure 2.4 Partial Synthesis of Reactive Ladder Network




CHAPTER III

METHODS YIELDING A LOW MASS SOURCE |

3.1 Modified Transfer Admittance Method (Darlington)

In this section, an example of a network synthesis using the
Darlington method will be worked out in detail. The network function
to be synthesized is that of a 3-pole Butterworth or maximally flat
filter having a transfer admittance

2

[2 H
6

[YT(s)[2 = [12/vS
l1+w
This example will be used throughout the next two chapters in order to
get a feeling for the problem and to facilitate the comparison of the
different methods. The results obtained from this example will then be
generalized in Chapter V to provide the basis for the synthesis of other

network functions. A theoretical example using the generalized results

is presented in Chapter VI.

The network for the 3-pole Butterworth is shown in Figure 3.1 for
H =1 yielding a transformerless design and hence, the maximum gain.
Note that the mass of the source will be taken as Ll , the lead
inductor. As stated in Section 2.1, the final supporting member of
the mechanical network must be a spring as shown in Figure 2.1 (a).

The electrical equivalent of this spring 'S' and its associated dashpot
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Y R=1Q
S
Figure 3.1 j-Pole Butterworth Network
13._..
L. (@) (a)
1 Lza a

+
V <~ Cl(a) R=1Q
S

Figure 3.2 Desired Modified 3-Pole Butterworth Network




'R' is a capacitor in series with a resistor ['C' and 'R' in Figure 2.1
(b)}. Since the network in Figure 3.1 does not have a capacitor in
series with the load resistor, the transfer admittance will be
"modified" (hence, the name of the method) by changing the nature of
the load.

It is desired to create the 3-pole Butterworth response across a
load consisting of a capacitor in series with a 1{! resistor. By
inserting the series capacitor and specifying that the transfer
admittance with respect to the series resistor-~capacitor load remain
unchanged, the transfer admittance with respect to the load resistor
alone has been modified by

|13/12

(LB SRR SRS
1+ 1/as

The desired network topology is shown in Figure 3.2 for the modified

transfer admittance

P S, S 2
[Y,(e)[% = [Y () [" - |14/1,]
- B . } 1 2
1+ w6 1+ 1/as
2.2 2
_ 2 -a H's
= [Tyt = 32 & 28 ° k34
1 ~-~-as -8 -as
where the value of the inserted capacitor is 'a'. This network will

have the 3-pole Butterworth transfer admittance across the resistor-
capacitor load combination instead of across the resistor alone

provided that it can be synthesized in this configuration.
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The Darlington method will now be used to synthesize this

modified transfer admittance.

such that

The first step is to determine Yin(s)

24

SRR VYT Ry

2 ';
RelY, ()] = [Yi(s)|° . ,

The method of undetermined coefficients results in [using Equation (2.3)]

Q(s) ~ Q¥(s) = 1 - a%% - 4

ZaOa2 - a

2a_a, ¥ ag - 2a.a

2a_a. = Za a_ = a2

and 2

With suitable manipulations,

and

+

the roots are found to be:

2 8
&gl ..0r

-a ,

i

a+ 2 ,
2a + 2 ,
2a L
a

0
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By similar methods, the coefficients of Pe and Po are found to be

b0 w {y
b, = o[l + (28 + 1)%/3(a° + 28 + 22 + )1/a + 2 ,
b a2(2a + 1)2/3(a3 + 2aZ + 2a + 1)
dﬂd 3 3 2
b3 = g (2a+ 1)/3Ca + 2a” + 2a 4+ 1) |,

and the minimum reactive input admittance is

. Ga k1P a2 . a (£ 1) 3
(L + - )s + 5" + S
’ _ a+ 2 3€ 3¢ 3¢
[\in(h)lﬂk = P 3 4 (3.2)
‘ 1+ (a+ 2)s+ (2a+ 2)s” + (2a + 1)s™ + as
e 3 2 3
where £ =a” + 2a + 2a + 1
The Cauer I synthesis method can now be used to synthesize
Equation (3.2) in the form of a reactive ladder network terminated in
8 1 resistive load. Doing the synthetic division yields
1
{(s) = — —
in i 5"5 l
ot 2
a(2a+1) a (2a +1) 8 . 1
3E(a + 2) (a + 2)zs_+(a + 2)+ (a + 2)25
a(2a + 1) 2

a s

which results in the network shown in Figure 3.3(a). This network
satisfies the requirement of having a series resistor-capacitor
combination for the load. Figure 3.3(b) shows the network normalized

so that the resistor is 1 . The value of the series capacitor,




3
a (28 b 1' 12—_"
a+d a
alka+1 +2
+
Vv @ 32 (2a + 1»2 ’ (@ + 2)2
g 3@+ 2) 2
@) E=a3+2a2+2a+1
v 2 v
Ve ~> b(2b-3° 2 19
5 C (e
3 2
(b, g = = db it 6b i 3
Figure 3.3 Network Synthesizing }\'T(s)lz = _8282
” | - M 1 - a252 - 56 + azs
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however, is not 'a' but b = a + 2 . This change in the value of the

series capacitor from 'a' to a + 2 means that the exact 3-pole
Butterworth response cannot be obtained with the circuit containing a
series capacitor. However, in the limit as 'a' or 'b' + = , all of the
elements in Figure 3.3 return, as expected, to the values shown in

Figure 3.1. The lower limit of 'b' is predictable in advance as will

be shown in Section 5.3.

S Modified Transfer Admittance Method (Cauer and Guillemin)

As stated in Section 2.2, the Cauer and Guillemin method in
many cases will yield the same network as the Darlington method but
requires fewer calculations. Generating the ak Caa ko)

synthetic division to find the coefficients of the continued fraction

K and doing the
expansion of Yin(s) is not an easy task. This section will show hcw
a network having the same transfer admittance, Y;(s) , as in Section
3.1 may be generated using the Cauer and Guillemin technique.

Since the squared magnitude of the transfer admittance IY;(S)IZ
is the specified quantity, Y;(s) must be determined first. Having

found Y;(s) to be

Has

1+ (a+ 2)s + (2a + 2)s2 + (1 + 2a)s3 + as

T
YM(S) L 4 )
where the denominator contains the left-half plane roots of the

dencminator of |Y;(S)|2 , the admittances le(s) and Y,,(s) are by

22

inspection [using the admittance form of Equation (2.6)]:




Has

1 + (2 + 2a)b2 + as4

and

(2 + a)a + (1 + Za)s3

2 4
1 4+ 2 + Za)g® + as

It can be seen that (s) has a simple zero at s = 0 and a triple

YIZ

zero at s = @ . Referring to Figure 3.4(a), we see that by letting

Y (s) be a zero at s = = ;

<
—
~
w
~
I
<
ro
N
~
03]
~

The residue of Y_,(s) at s == is (1 + 2a)/a which corresponds to
a series inductor of value a/(1 + 2a). Removing the inductor from

Yzz(s) yields

. _ : " (la)
l/Yzz(s) asAl + 2a) = l/Y22 (s)
and
2.3
(1a) (L + 2a)s” + (1 + 2a)(a + 2)s
Y22 (s) = 5 .
(38 + 4a + 2)s + (1 + 2a)
It can be seen that Y;éa)(s) still has a zero at s = 0 that can be
removed. The residue of Yé;a)(s) at s =0 is a + 2 and,

therefore, a series capacitor can be removed from Yé;a)(s) leaving

(a o+ 2)C0 & 2a)%s" & (1 + Je)le & I)s°
(3a3 + lOa2 + 8a + 3)s3

(1) %
Y22 (s) =




l
l Y
| 1
I
| 1
Y {
(
2 iQ—YZZ(s) 4—Y22 s)
I
|
(a)
| I
| | %
2 ! | ke
| |
| (2) | (1)
o
||<—Y22(s) ) r—vzzm
| |
| |
I |
(b)
Figure 3.4 Cauer and Guillemin Synthesis of Y;(s)
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A pole at s = 0 (shunt capacitor) can be removed having a value of

2
€z & 2)(1 + 2a)°
9a° + 10a° + 8a + 3

leaving

(1 % Ja¥ita & 2%

(3a> + 10a° + 8a + 3)a

a series inductor. By letting a + 2 = b , the same network as shown
in Figure 3.3(b) has been synthesized Since there are two zeros of
le(s) , there is one other way of synthesizing Y;(s) . The other
synthesis will place a capacitor in series with the generator instead

of the load resistor and therefore is not usable.

3.3 Response Characteristics

In the evaluation of the performance of an anti-vibratiocn
mechanical filter driven by a constant force generator, transmissability
or the ratio of the driving force to the force exerted on the foundation
is the quantity of most interest. The following section will analyze
the response characteristics of the 3-pole Butterworth network
synthesized in Sections 3.1 and 3.2.

The network synthesized using the modified transfer admittance
[Y;(s)l2 and the corresponding mechanical network are shown in Figures
3.5(a) and (b), respectively. The synthesis methed requires the mass
of the vibrating object to be equal to M, . If the object mass 1is

1

less than Ml , additional mass can be added until the total mass 1is

equal to Ml , or, the values of the other elements may be altered by
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a constant multiplier o , such that

1 Mob_ject

Changing the impedances of all the elements in a network by a constant
multiplier will not alter the overall response of the network.
The object mass Ml is seen to be an integral part of the T-

C and M, . The response

filter consisting of elements Ml y 1 2

2
{Vz/Vl! of this T-filter is computed as follows; the transfer

admittance of the network in Figure 3.5(a) is

2 2 2
il 2 - - 2 H
[Ty " = (bz 2 : o 28 e
1 -(@(-2)s -s + (b-2)s
for normalization to b = (a+ 2) and R = 12 . The voltage V across

2

the load is equal to the impedance of the load multiplied by the current

flowing through it; therefore, V2 = IZZ , where Z =1+ 1/bs . The

squared magnitude of the response function V2/Vl can then be shown to

be:

2 1+ b2w2
[ 22 . 6 78 »3:4)
1+ Mb-2)"w+w +b-2)w

2 T 2
[0,/951" = [5¢s)] |z
where H = (a + 2)/a for a transformerless design. This has been
plotted in Figure 3.6 on a decibel scale for values of b = 4 through

12 in increments of 2 over the range 0 < w < 2 . For the unmodified

network, |Zl2 = 1 . Therefore, IVZ/V1|2 = [YT(S)|2 C |ZI2 Y w6)

where H =1
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(3)
36° - 4 + 6b - 3)
Ll = [\11 = 2 - L4
FOR % b2 (2b - 3)
ORCE1$ 1 b
2
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Figure 3.5 Analagous 3-Pole Butterworth Networks (Darlington)
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Figure 3.6 |V7/\’ll2 vs. Omega for the Modified Transfer

Admittance Method




The most obvious thing to notice is that the response function of

the modified network does not behave in the same way as the unmodified
network (shown by the dashed line). The response of the unmodified
network drops at 18 dB per octave for w > 1 . The rise in response
varies from approximately 5 dB at w =1 for b =4 ¢to 1.5 dB for
b = 12 . For values of w greater than 1, the difference in response
is fairly constant

Since all the curves describing the modified network are higher
in amplitude than that of the unmodified network, the 3 dB down point
has moved up in frequency. For C2 =4 (a=2) , the 3 dB down point

has moved to approximately w = 1.35 , almost one third of an octave

increase This effect lessens as the value of C2 becomes larger.

F 0l Network Limitations

As with any kind of synthesis technique, the methods used here
have certain limitations and restrictions. Some of these restrictions
have already been mentioned in Sections 2.1 and 2.2. However, there are
alsc limitations and restrictions in the networks synthesized by these
techniques These shortcomings and their effects on the applications
and usefulness of these filters will ncw be discussed.

Referring back to Section 3.1, notice that when the synthesized
3-pole Butterworth network [Figure 3.3(a)] had been normalized to a load
resistance of 10 the value of the load capacitor became b =a + 2 ,
where 'a' was the value of the capacitor used to modify the transfer
admittance. Therefore, if the value of the modifying capacitor had

been a = 0 , the resulting locad capacitor would have a value of b = 2.

SRS AGTRIS, A, <Y
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Since 'a' cannot be zero (this results in zero or infinite element
values), there is a lower limit on the size of the load capacitor, i.e.,
b > 2 (for R = 19).
In terms of the mechanical system [Figure 3.5(b)], the supporting

spring S cannot have a greater stiffness constant than 0.5 N/m in the

2
network normalized such that the dashpot has a value of 1 Mech. { and
the cutoff frequency is w =1 . With such a small stiffness constant,
the rest of the system must be very light so that a long spring is not

required to support the static load.

As an example, for b =4 and R = 1{{ , the 3-pole Butterworth

mechanical network [Figure 3.5(b)] has the element values

Ml = 0.78 kg

Sl = 3.15 N/m

M, = 0.4 kg

SZ = 0.25 N/m

R = 1k%kg/s = 1 Mech. Q

The total force due to M1 and M2 alone on the supporting

spring S is over 11 Newtons which means that the spring must be over

2
46 meters in length just to support the static load. Obviously, this

i1s not a satisfactory situation. Since the element values of the network

are all (except the dashpot) functions of the supporting spring 82 s @

renormalization of the element values to some different value of the
dashpot will make no difference. As the value of the dashpot goes up,

so will the value of the masses and the stiffness of the springs.

‘.l.ﬁ-unmnh-h-..-h-n-ﬁ-Il-l.I'-I---.--.....--.-u---n-nr : VLS T DRI R
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Remember, however, that this network has been normalized to a cutoff

n

frequency of w =1 or ¢ 0.159 Hz, an extremely low value. By

raising the cutoff frequency to w = 1000 or f = 159 Hz, for example,
the value of the masses Ml and M2 will be reduced by a factor of

1000 and the spring stiffnesses will be increased by a factor of 1000.

Using these new values, the supporting spring S is compressed a total

2

of 0.046 millimeters by the static load of masses M1 and M2 , quite
a large change.

Notice that this method favors low source masses. For a 3-pole
Butterworth network normalized to a cutoff at w =1 and a load of
R = 100 , the source mass could not be larger than 1.5 kilograms or lower
than 0.75 kilograms, depending on the value chosen for the stiffness of

the support spring S As the source mass becomes larger, the springs

2
must be increased in stiffness proportionately. Eventually, the spring
stiffness would become too large to work with; at this pcint, the
"Capacitor Shift'" method, to be described in the next chapter, has the
advantage 1n that it works better with larger source masses.

While the subject of lossy elements, particularly lossy or damped
springs, will not be exhaustively treated in this paper, it 1s possible
to give a qualitative description of their effect on the network
performance. Referring to Figure 3.5(b), it can be seen that there 1s
only one spring (Sl) that has no loss associated with it. Since any

real spring will be somewhat lossy, the response curve as shown 1n

Figure 3.6 will be affected to some extent

Any loss inherent in spring S will show up as a resistance

I

in series with capacitor C1 in Figure 3.6(a). This resistance will
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be negligible at low frequencies where the impedance of capacitor C1
is large. At high frequencies, however, the resistance can no longer
be considered negligible; in fact, its impedance will eventually become
larger than that of the capacitance. When this happens, the response
curve will cease to drop at 18 dB per octave since the capacitor
cannot create a zero in the shunt arm. Instead, the response will drop
at 12 dB per octave for these higher frequencies.

The change in the response characteristics will, of course, not
be abrupt and over what frequencies this change takes place will be
determined by the extent of the damping. As the damping becomes larger,

the deviaticn from the desired response will occur at ever lower

frequencies.




CHAPTER IV

METHODS YIELDING HIGH MASS SOURCES

=~
—

Capacitor Shift Method

The two synthesis methods discussed so far result in a low source

mass network driven by an ideal voltage generator. There may, however,

be occasions when the source is a large mass moving with a constant

velocity. The following method is applicable to the design of a network

driven by this type of source. We will start by assuming the source

mass to be infinite and then consider how the response is modified when

the mass 1s made large but finite.
The 3-pole Butterworth network can be designed as a T-network

driven by an ideal constant current source. If an additional finite

impedance 1s inserted in series with the source, the current into the

original m-filter will remain the same. In other words, the source will

continue to generate the same current no matter what the load.

With this in mind, a series capacitor can be inserted between
generator and the first shunt capacitance of the 3-pole Butterworth
network in Figure 4.1(a) and not affect the response of the circuit

[Figure 4.1(b)]. This series capacitor can now be "shifted'" through

the

the

network until it is in series with the resistor, its desired position.

The following impedance transformation is the method by which

this 1s accomplished. The network shown in Figure 4.2(a) is specified

to have the same input impedance as the network in Figure 4.2(b) and

SISHDINE NS SR
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Figure 4.1 Equivalent 3-Pole Butterworth Networks




three equations relating the elements in each network are found. They

are:
Cl = l/(l/C3 - l/ca) 1 (4.1a)
C2 = 63 - Cl (4.1b)
and 2 2
LA = (C3 + Cb) ZB/C3 . (4. de)

It can be seen that Figure 4.1(b) corresponds to the circuit
shown in Figure 4.2(b), where C3 = ol C/4 = 3/2 , and ZB is the
rest of the network from the series inductor to the load resistor. The
first time through the transform from (b) to (a) results in the circuit
in Figure 4.3(a). The series capacitor has now been "shifted" past the
first shunt capacitor and all of the original element values have now
become functions of the inserted capacitor. The positions of the series
inductor and capacitor can now be interchanged and the process repeated
to chift the capacitor in series with the load resistor, its desired
position. This second transformation results in the network shown in
Figure 4.3(b). Normalizing the series capacitor to a value of b = a + 2
and the resistance to 1 results in the network shown in Figure 4.3(c).
Care must be taken, however, in the normalization of these networks.

When transforming from the original network [Figure 4.1(b)] to
the network in Figure 4.3(b), the power dissipated in the resistance
will remain the same. Since the resistance in Figure 4.3(b) is

(a + 2)2/a2 , the output voltage must therefore be (a + 2)/a times

the voltage V in Figure 4.1(b). Normalization of the load resistor
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to 1ii [as in Figure 4.3(c)) causes the output voltage to be reduced

. Sy e 2 .
by the factor (a + 2) /a or V' =V a/(a + 2) . The magnitude of the
output voltage is important in determining the network response as will

be demonstrated in Section 4.3.

r
I3

This method is computationally quite simple and results in'a
network having a current generator or high impedance for the source. -

+

As expected, the element values return to those of a 3-pole Butterworth

4.2 Capacitor Shift Method (Cauer and Guillemin)

The Cauer and Guillemin synthesis method can also be used to
generate the same network as derived by the Capacitor Shift method in
Section 4.1. In this case, the synthesis method will use an unmodified
transfer impedance function rather than the modified transfer admittance
function used 1n Section 3.2. Having found the transfer impedance
function for the 3-pole Butterworth to be

2 (s) = 1 ,

852 252 - 53 1

the impedances le and 222 are [using Equation (2.6)]:
H
do o (B el
A 28 & 53
and
2
. e
Zzz(s) -————iai -
2s + s

In order to achieve a series resistor-capacitor load, the first step is




N R RN Sy SR PRI SEe.

to remove a series capacitor of value 'b', the limits of which become

apparent later. This results in 5?
a2 - 2 i
+ 2s s :
Zy,(8) = Z,(s) - 1/bs = LA x2S ;
= = bs(2 + s7)
or
R Lok (2b = LIk ~ 2)8"
Z,,(8) = ‘ 28 . (4.2)

2b/(b - 2) + b‘o;/(b - 2)

The triple zero at s = ® has yet to be synthesized. Since the rest
of the network is in the form of a purely reactive ladder network, the

Cauer I synthesis method can be used to finish the synthesis of this

1

network. Letting 222(5) be the continued fraction expansion,

1
7 =
22(8) s 1
G5 =
2
! 1
GBI I e,
i C.s
1D
then 2
30 S [
ziz(m . R — 4.3)
‘ ) -
‘Cl + 62)5 + Mlchzs

By equating Equaticns (4.2) and (4.3), the values of Cl , M. , and

C are determined to be

2
i 3b°
1 (b -2)(2b -1) °
Ml y (2b } 1)
3b
and " g
2 2b -1 °




where C{ =b and R = 102 . I'hese element values are the same as

generated by the Capaciror Shift method for the network shown in
Figure 4.3(b).

Recall, though, that the size of 'b' has been left arbitrary to
this point For the elements to be real, they must be positive and this
constrains 'b' to be within certain limits. These limits are, in this
case, 2 < 'b' < w , It is possible, however, to predict the lower

limit of 'b' as will be shown in Section 5.5.

4.3 Response Characteristics

Recall that the networks shcwn in Figure 4.3 are driven by
infinite source masses. This 1s due to the fact that constant current
sources are analagous te infinite masses moving with a constant velocity.
Since any real source is finire, an inductor must be placed across the
current source. The magnitude of this inductor is equal to the magnitude
of the scurce mass, MO . The 3-pole Butrerworth network synthesized
using the Capacitor Shift method [Figure 4.3(c)] and its corresponding
mechanical network are shown in Figures 4.2(a) and (b), respectively,
with the modification of a finite scurce mass.

the force

Although the quantity of interest 1s ﬂVZ/V1{2 5

transmissability of the network, it is worthwhile to first calculate
12

WV -7 ko

,/T17 , the transfer impedance of the network. While |V2/1|2 may

be readily calculated and plotted, a better understanding comes from
making a simplistic analysis of the network.
The network shown in Figure 4.1(b) has a magnitude squared

transfer impedance
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Figure 4.4 Analagous 3-Pole Butterworth Networks (Capacitor-Shift)




and an input impedance

7= (g) = 1 (a =k Z3eb (2 4a/3)52 + (1 + za/3)s3

i as(l + 2s + 252 + 53)

The transformed netwcrk [Figure 4.3(b)] must be virtue of the
impedance transformations Figures 4.1(a) through (c), have the same
input impedance. It does not, however, have the same transfer impedance.

It has already been pointed ocut that, for Figure 4.3(b),

Vo= v

and therefore,

2 (a: 2)2/a2
6

1l +w

12y |2 = v

By normalizing to a resistance of (a + 2)/a (the square root of the
transformed resistance), the magnitude squared transfer impedance is

once again IZT(5)|2 = 1/(1+ n6), but now the input impedance 1is

as shown in Figure 4 3(c)

The addition of the inductor MO shown 1in Figure 4.4(a) causes

a low frequency resonance in the transfer impedance function. This




resonance 1s between the inductor M and the capacitor C and 1is

0 35

caused by the fact that the 7-filter consisting of elements C, , M.,

1 1

and C, mno longer sees a constant current source. Letting

] = ' - = 2

\l Lo Lln(s) (I Il ) Mos .
then

M o - . - -

1 [JO: = Zln(a)] I Mos

or
M.s
Iln ; Jo_
+ Ms + 27 (s)
0° in

Since the transfer impedance of the original network is

] g 2

;zT(s)lz = v /1, = ;,1+u6) ,

in
the total magnitude squared transfer impedance with the additional
inductor MO is
M.s 2
PP R 1 ) e 6', L (4.4)
1+ w l M.s + Z; (s)
0 in |

However, the quantity of interest 1s |V2/1(2 , and thus Equation (4.4)

is modified by the factor

tXElz —A O i e
V7 ta + 2)2,*)2
to yield
2 { 1 , 2 M02“J2
T = e wé 1 +1/(a+2)w ]]M ez (s)|2 (4.5)
0 in

U —— il .‘
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Equation (4.5) 1s plotted in Figures 4.5(a) and (b) for MO = 10

and 100, respectively, for C3 = 2 through 10 in increments of 2. The
curves all converge to the desired response (dotted line) by the cutoff
frequency (w = 1) . As expected, the resonant peak moves down in
frequency as MO increases. There is alsc a slight dependence on the
final capacitance Cj , the peak moving lower in frequency as the
capaciltance increases

In order to provide a basis for comparison between the Capacitor
Shift and Modified Transfer Admittance methods it is necessary that the
networks have the same source configuration. Assume that the source
mass to be isclated 1s known to be moving with a constant velocity but
is too large for use in the modified Transfer Admittance method. The
Capacitor Shift method can be used 1in this case to synthesize a network
having the proper scurce configuration. The 3-pole Butterworth network
synthesized by the Capacitor Shift method [Figure 4.4(a)] is altered to
obtain the source configuraticn of a mass driven by a force generator.

In order to do this, the parallel combination cf the current
source and the inductcr M, must be replaced with a series combination

0

of a voltage source and the same inductor M0 . Figure 4.6 shows the

two equivalent sources which are related by

VS = 1m [Mos + Zln(s)] .

Therefore, replacing the current generator by the voltage generator

(Figure 4.7), the magnitude squared voltage transfer function is
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(4.6)

!’-“ e [ + 1/(a + 2) 5
| 's| 1 +w |Mos + Z;n(s)l

Equation (4.6) 1is plotted in Figures 4.8(a) and (b) for MO = 10 and

100 respectively for values of C3 = 2 through 10 in increments of 2.
Notice that the force transmissibility drops 6 dB per octave

faster than the desired 3-pole Butterworth response. Also, the actual
response curve 1s separated from the desired response by quite a large
amount These differences are caused by the last term in Equation (4.6).
The extra 6 dB per octave rolloff can be accounted for in that the series
source mass adds an extra pole to the response function. What originally
was a 3-pole response 1s now a 4-pole response. The constant offset at
s

higher frequencies is equal to 10 * Log(l/M and 1is fairly constant

0
above the cutoff frequency since the value of Z;n(s) 1s approximately
1 ag s =1

Since the difference between the desired and resultant responses
1s known, the response that was originally used [that is, the respcnse
of the network in Figure 4.1(a)] can be altered so that the final
network will have the desired response. For example, the Capacitor
Shift merhcd would require an original response function of a 2-pole
Butterworth in order to produce approximately 3-pole Butterworth response
after the source change. Or, the cutcff frequency of the original
response can be raised so that the resultant curve will meet the desired
criteria at the correcr frequency. This is shown diagramatically in

Figure 4.9 where the resultant response has a higher cutoff frequency

than the original response.
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4.4 Network Limitations

I'he networks synthesized by the Capacitor Shift method have a
set of limitations similar to those of the Modified Transfer Admittance
method Specifically, there is the same upper limit on the stiffnese of
the final support spring and the method works well only for source masses

in a particular range. The range, however, is different; the Capacitor

Shift method working best for large source macses.




CHAPTER V

EXTENSIONS OF THE SYNTHESIS METHODS TO THE GENERAL CASE

Bk General lLimitations

In Chapter III, it was stated that although the purpose of this
study was to establish a technique for the design of a filter with any |
general realizable transter function, the initial study would be confined
to a 3-pcle Butterworth response In this chapter, the results that
were obtained will be summarized and extended to the general case.

In regard to the results cbtained in Chapters III and IV, it must

be remembered that a limitation of all electrical network synthesis
techniques 1s that they must produce a reactive network terminated in a
resistive load. It 1s nct pessible tc specify what the response will

be at any point within the reactive part of the network. All that may
be specified is the network configuration. Thus, we must be satisfied
with the element vilues as specified by the synthesis method. It 1is
possible, however, tc predict what the value of the final capacitor will
be and its effecr on the final network response. This will be discussed

now in relation to the methods developed in Chapters III and IV.

D Derivation of the Output Mcdifying Function for the M.T.A. Method

Recalling Figure 3.6 from Chapter 11I, it was shown that the

response function of the network produced by the Modified Transfer

r Admittance methcd was different from that cf the original desired
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response function, 1.e., the 3-pole Butterworth. The reason for the
modified respconse 1s, of course, the series capacitor 1in the load. By

modifying the original transfer admittance by the factor

and then multiplying the modified transfer admittance by

to find the quantity 1V2/V1!2 , the criginal 3-pcle Butterworth function

has been changed by the factcr [after normalization of H to a/(a + 2)]

L4 e ® D) ow

=E azwz

(5:1)
where 'z' was the value of the original added capacitor. This output
medifying function is plotted in Figures 5.1(a) and (b) showing,
respectively, the overall curves and the low frequency detail for several
functions of 'a'. As would be expected from Figure 3.6, the function
rises quickly from zero dR at w = 0 tc a constant for larger values

of w . The magnitude of the cconstant increase at high frequencies 1is
RNl

inversely proportional to the value of 'a

By modifying Equation (5.1) toc be [H = a/(a+-Ls)]

1+ (a <% L )2w2

(5.2)

Nln
-

L =¥ azm
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where Ls 1s the total series 1nductance of the original network,
Equation (5.2) will then be the correct modification function for any
network synthesized by this method The reason for using Ls will be
made clear in Section 5.3. It is easy to see that Equation (5.2) can
be obtained from Equation (5.1) by noting that the total series

inductance of the original 3-pole Butterworth network (Figure 3.1) is

53 Derivation of the Final Capacitor Lower Limit for the M.T.A.
Method

The lower limit for the value of the final capacitor for any
network synthesized by the Modified Transfer Admittance method is easily
calculated. It is a function of the configuration and element values
of the original network. Figures 5.2(a) and (b) show a general network
which 1s being modified to give a series load capacitor using the
Modified Transfer Admittance method. The original transfer admittance

is defined as [for Figure 5.2(a)]

L P |

where 'a' 1is the value of the modifying capacitor. Since

> 2 3
Y n (8 bO bls + bzs + b3s e o

Ypp(8) 1A als + a 52 + a 53 = e

12
1 +
22 2 3




vs ()

Figure 5.2 Modified Transfer Admittance Method on a General
Impedance
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\!z(b) =
where the dk and
LIMIT Yq)
g Qe A
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serles inductance

The Modified

the form of an inductance and a

e ——
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b are all positive. As the frequency becomes low,

) must therefore be the total

of the original network or a,6 =L

S it S

Transfer Admittance method results in the network

shown 1n Figure 5.2(b) where there 1s the required series capacitor;

therefore,

YI(E)

"

Then,

¥ . (s)
)9 IS
I+ Y, .(s) e
14
(b. +b.8 + b 4 + )
- as O 25 AS
' . ’ ) + as(l + s + 2 + )
+ 31~ + 323 ¥ ) as a]s aZS
as(b,. + bls - b252 + b353 + )
I # (al + a)s + (az £ aal)s + (a3 + aa2)53 +
2 3
1+ (42 + aal)s + (aa + aa3)s -

+ a)s + (a, + aa2)53 =

(a1 3

Fer very low frequencies,

LIMIT Y.
g <<1

22

(s) =

l/‘\a1 + a)s




which has the form of a series capacitor Since a, = L the minimum

1 s’
value of the series capacitor 1s L _ , the total series inductance of
=
the original circuit This result will hold for any network having a

Cauer I or similar (there may be resonances in the series arms) ladder

structure.

ol Derivaticn of the Qutput Modifying Function for the C.S. Method

As with the Modified Transfer Admittance method, the Capacitor

Shift method alsoc produces a network with a response function that is

different from the original desired response function. This difference
is caused by the addition cof an inductor across the source to produce a
finite source mass and the requirement of a series capacitor in the load.

The modification funcrion for the Capacitor Shift method is more
complex than that of the Modified Transfer Admittance method. This
functicn

{1 = LfCa ok Ls)zwz] g

7
]Mos + zm(s)l

can be broken down intc two parts The first term is

IVZ/V'I2 = [1+ 1/(a + Lc)zwzl

and relates the vcltage across the resistor to the voltage across the
resistcr-capacitor combination As in Section 5.2, LQ is the total
series inductance of the original network. The proof that L_ 1s the

correct value to use will be shown in Section 5.5
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The second term of the modification function contains the terms
relating to the finite source mass. This term relates the current seen
by the network with an infinite source mass to the current seen when

the source i1s made finite:

The low frequency resonance is due to the term Z;n(s) in the
dencminator which 1is the input impedance of the network after the
capacitor has been shifted and the transfer impedance has been

normalized back to its original value.

Sed Derivation cf the Final Capacitcor Lower Limit for the C.S. Method

The iower limit on the value of the load capacitor for the
Capacitor Shift method may be easily calculated. Referring to Figure
5.3(a) and (b) and using the transf-rm Equations (4.la), (4.1b), and

(4.1c), it is easily shown that

and

and that therefore (having normalized to the same locad resistance),

where 'a' is the value of the inserted capacitor.




(b)

Figure 5.3 Shifting a Capacitor Through a General Network
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This lower limit on the final capacitance (upper limit on the
stiffness of the final supporting spring) raises many of the same
problems as menticned previously in Section 3.4 in regard to the
Modified Transfer Admittance method The solutions to these problems
are the same; by raising the cutoff frequency, the final support spring
stiffness 1s increased and masses internal ro the filter are decreased.
However, there 1s one major difference, that being that the source mass
Ms 1s independent of the value of the final supporting spring. Because
of this, the frequency of the rescnant peak varies [Figures 4.5(a) and
(b)] inversely with the value of the source mass. This, in effect, sets
a lower limit on the value cof the source mass, that limit being where
the resonant peak moves into or near the rolled-off frequency band. The
resonant peak moves lower in frequency with increasing scurce mass;

hence, the statement that this method works best for larger source

masses.




CHAPTER VI

THEORETICAL EXAMPLE

6.1 A Low Source Mass Force Generator

The following is an example of how the procedures previously
presented may be applied to a practical situation. A machine weighing
51.5 Kg. has an cut-of-balance mass rotating at 3600 rpm. This un-
balanced mass produces a sinusoidal force at 60 Hz which is transmitted
to the foundation There are several other lower amplitude peaks at
higher harmonics of the 60 Hz fundamental. The design objective 1s to
reduce the force transmitted to the foundation by the vibrating machine.
The fundamental must be reduced by at least 50 dB and the higher
harmonics by at least 30 dB

If the fundamental were specified to occur at twice the cutoff
frequency, there would be several ways of cbtaining the design
specifications. The first would be to use an 8~pole Butterworth filter
which would be down approximately 48 dB at twice the cutoff frequency.
This network would be rather complex and, since the higher harmonics
need not be reduced so severely, a simpler alternative is tc use a
4~pole Butterworth filter with a zero at twice the cutoff frequency.

This allows the fundamental to be well suppressed without so severely

reducing the higher harmcnics
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Since the scurce mass 1s small, the Modified Transfer Admittance
method will be used The transfer admittance describing the 4-pole
Butterworth with a zero at twice the cutoff frequency is (for a cutoff

frequency of 1 radian/second)

2
(1 + '-:~/Z+)2 H2

{as 58

¥ rah 1< -

The modified transfer admittance 1s

o |0

7 2
yYM(s)l =

and the resulting electrical and mechanical networks are shown 1n
Figures 6.1(a) and (b), respectively. The approximate element values

are as follows:

1211a® + 126602’ + 545122° + 12334a° + 1825472°

M =
> 4+ 268287a"

644a> + 89208’ + 51018a° + 155025a

(V5]

+ 172649a° + 106339a® + 36384a + 4372

E]
+ 265300a° + 14716122 + 45905a + 5257

/,
S 12112 + 126602’ + 545125° + 123342 + 182547a"
%+ §2163%a"

1870a° + 22652a’ + 111384a® + 287155a

+ 17264920 + 106339a% + 36384a + 4372
+ 368547a° + 200484a% + 63665a + 9946

bl

4 3 2
. 248a" + 128a° + 1938a” + 260a + 69
6 4(83a" + 493a° + 913a” + 56ia + 71)
s, = uM,




E
2
TTLIAAS A LA
(b)
Figure 6.1 Analagous 4-Pole Butterworth Networks with a Zero at

Twice the Cutoff Frequency




and
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The element values for three different values of 'a'

Figure 6.2

Since spring S

a =

stiffness might become prchibitively large.

be tried first

73

2
3la™ + 82a + 17

J.5a" + 0

NJ

9a -~ 20.5

ol

2y

are shown in

has twice the stiffness at a = 3 than at

3

5 , upon normalization to the correct cutcff frequency, its

Therefore, a = 5 will

When normalized to a cutoff frequency of 30 Hz, the

element values are:
M = 0.0054 Kg ,
S1 = 86 N/m r
M2 = 0.00209 kg ,
3 SZ = 296 N/m 5
S. = 3170 N/m 5
3
G- = 4.7
54 2 N/m
and
R = 1 Mechaniczl Ohm
It can be seen that 1ncreasing the element values by a factor of
10,000 will bring the required source mass near the value of the mass

of the machine,

Therefore,

the final element values are:




= 10 =5 =3

MS 1.37 Kg 1.02 Kg .76 Kg

S1 0.547 N/m 0.456 N/m 0.382 N/m
M2 0.49 Kg 0.394 Kg 0.60 Kg

82 1.96 N/m 1.57 N/m 2.42 Kg

S3 11.63 N/m 16.81 N/m 39.56 N/m
Sh 0.079 N/m 0.131 N/m 0.178 N/m
R 1 Mech. @ 1 Mech. @ 1 Mech. @
Figure 6.2 Table of Element Values for Figure 6.1 as a

Function of

~J
=

RaeA T




5

M_ = 54 Kg

il = 8.0 % 105 N/m ,

M - <6

12 20.6 Kg ,

- [

S, = 2,96/ x 10" N/m

53 = 3.17 x 107 N/m ,
5

S4 = 2.47 x 107 N/m

and
R = 10,000 Mechanical Ohms

The original machine needs to have 3.5 Kg additional mass added to it
in order to satisfy the network requirements. The alternative would be
to normalize to a resistance of 9,337 Mechanical Ohms. In this case,
no additional mass need be added

The cutput modifying functicn for this system is

1L+ (a+y &+ 2 /—2~>2w2

1+a w

[H=a/(a+/4+ 2V2)] and is shown for several values of

Figure 6.3. Figure 6.4 shows the rezponse §V2/V1|2 of the netwcrk

wm

in Figure 6.1(a) for a = 5 . As expected, the extra capacitor ha
nct changed any of the characteristics of the zerc in the respcnse
except that it is a little narrower. This narrowing cf rhe zero means
that the tolerance of the element values must be smaller in order for

the frequency of the zerc to exactly match that of the fundamental

While the subject of internal damping has not been widely

discussed in this paper, 1t iz easy to show the effects of damping 1in
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Figure 6.4 IVZ/V112 for the Network in Figure 6.1(a)




the resonant circuit consisting of elements 32 and M2 . Figure
6.5(a) shows the configuration of a damped rescnmant circuit. A damped
spring, however, is equivalent to a capacitor in series with a recsistor
- not in parallel Therefore, the resonant circuit consisting of 52
and M2 has the elements in Figure 6.5(b) as its electrical equivalent.
The elements C~ and R~ are slightly different from € and R ar
resonance Since a mass cannct be lcssy, the loss associated with it
can be lumped in with the loss of rhe spring, therefore achieving the
same overall damping. The damping in the spring is R 4+ R™ or
approximately 2R . Figures 6.6(a) through (d) show the network in

Figure 6.1(a) when the spring S is lossy. The overall damping varies

2
from 0.0001 to 0.1, respectively, or twice that amount in the spring
alone.

There obviocusly must be a Iimit to the amount of damping allow-

able in the rescnance arm. Tco much damping will ncot allow the design

cbj

[l

a 50 dB reducticn in the force of the fundamental to be

m

CL1ive O
met This 1s clearly seen in Figure 29(d) The highest allowsble
overall damping is about 0.0l as shown in Figure 6.6(c) Figure 6.7
cshows 3 derail of the respouse near the zerc. The respcnse -f the
modified network 1is down 6C dB at twice the cutoff frequency, thus
allowing approximately a +3% tclerance 1n frequency at 50 dB down.
Nctice that, abcve the resonance, there is no longer a 4-pole response
This is becaus= the spriang 52 shunts the mass M2 at high
frequencies The resulting response 1s that of a 2-pole filrer with a

12 dB per octave drop above the resonance This 1s clearly shown in

Figure 6.8.




All of the requirements of the filter have therefore been met

with this design.

The resonance reduces the fundamental by at least

50 dB for damping less than 0.0l1, and the higher harmonics have been

reduced by over 30 dB. The element

should be easily obtainable

values are not unrealistic and
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Figure 6.5 Equivalent Damped Resonant Circuits
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CHAPTER VII

CONCLUSION AND RECOMMENDATION FOR FURTHER RESEARCH

It has been shcwn in Chapters III and IV rthat it is possible to
use electrical network synthesis techniques to design mechanical anti-
vibration filters of any degree of complexity. The methods and network
designs produced by these methods meet all four of the criteria as
outlined in the beginning of Chapter II. This chapter will summarize
the strengths and weaknesses of the two methods along with proposals for
areas for further research.

The Mcdified Transfer Admittance method produces a network driven
by a constant force generator in which the source mass is an integral
part of the low-pass filter. The transmissibility of this type of

netwcrk is related to the original proposed transfer admittance by the

modification function
1% (& * LS)2 w?

bl
10y azwz

where L_ 1is the total series inductance of the network having the
S

proposed transfer admittance and 'a' is the value of the mcdifying

capacitor. This modification function causes the transmissibility of
the low-pass filter tc rise at low frequencies (relative to the desired

response) and then to remain at a constant difference from the desired
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response at high frequencies. The magnitude of this difference depends
on the value of the inserted capacitor. This value, while arbitrary,
does have a lower limit, thus restricting the maximum stiffness of the
support spring which can cause some problems.

The Capacitor Shift method produces a network driven by a constant
velocity source. This method favors high source masses and produces a
configuration where the source mass is not part of the filter. A large
rescnant peak 1s produced at low frequencies and the transmissibility
drops 6 dB per octave more rapidly than the transfer impedance. There
is also quite a large cffset 1in the transmissibility function which is
proportional to the log of the inverse of the mass. This offset causes
the filter tc be able to meet its criteria at a lower cutoff frequency
than the Modified Transfer Admittance method. The transfer impedance of
this network has the same low frequency resonant peak but, abcve the
cutoff frequency, has the proposed response function. The Capacitor
Shift methocd also has the restriction of a maximum support spring
stiffness. However, this restriction is not so serious in this case
Since the source mass is independent of the filter, the filter impedance
can be changed without neccessitating a change in the impedance of the
source mass. The peaks in the transmissibility function do not present
a serious problem as techniques have been developed for reducing or
eliminating them by the use cf dynamic absorbers,(2’7’8)

A potential source of trouble in both methods is the possibility
of abnormally large cr small element values. Upon synthesizing filter

networks, it is not possible to specify what the element values will be.

Occassionally, the synthesis will require an element magnitude to be
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quite a bit larger or smaller than the other elements in the network.
This can cause problems upon changing the overall impedance or cutoff
frequency of the network in that the magnitude of the component can
exceed the bounds for practical implementation.

The methods presented in this paper were derived for perfect,
massless and lossless springs since this represented a first attempt at
formulating a general design theory. Any real spring, of course,
cannot meet these requirements and results must differ to some degree
from those presented in this paper. A possible area for further study
would be to define the limits for which the results of this study apply.
Other possible areas of further study include the adjustment of abnormal
element values and research into synthesis methods that allow for lossy,

non~linear or non-lumped components.
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