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EFFICIENT LASER LIGHT ABSORPTION BY ION ACOUSTIC FLUCTUATIONS

This Letter presents a new absorption mechanism which gives efficient
absorption of intense light by a laser produced plasma, The basic idea is
that in absorption, the laser energy flux is converted into an electron
thermal energy flux Q flowing into the plasma, In order for charge
neutrality to be maintained, there must be a return current of low velocity
electrons flowing toward the laser (in the negative x direction), This
return current excites ion acoustic waves, also propagating toward the laser,
The laser light then experiences enhanced collisional damping on these ion
density fluctuations in the underdense plasma, The absorption of the laser

light then creates that very electron thermal energy flux which was required

1,2,3 3

in the first place, Values of Q/nmve are small enough that a fluid
model (dominated by anomalous transport) is valid. Finally, we show that a
magnetized plasma should give both higher absorption and also remove some of
the approximations inherent in the calculations presented here for an
unmagnetized plasma,

Results of our theory seem to be in good qualitative agreement with many
absorption, scattering and x-ray measurements at MRL,*”7 It would be very
difficult to explain these measurements by resonant absorption.e The
measurements consistently show high fractional absorption (in excess of 50%4)
which is relatively independent of both polarization and angle of incidence,®
In addition, NRL experiments indicate a fdirly smooth critical surface for
distance scales above about one micron,” Also light absorption by enhanced

ion density fluctuations would not tend to strongly produce non thermal

electrons, Energy flux is found to be carried principally by electrons at

Note: Manuscript submitted November 23, 1976.
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about two or three times the thermal speed, This also seems to be in

4,6

agreement with hard x-ray measurements, Finally, layered target

g experiments4 indicate a value of Q/nmvz less than 0,2 which is also in

agreement with our calculations, We now describe our calculations, and

will close by giving more detailed comparisons with experimental results,
The relevant steady state fluid equations have been written out and discussed

elsewhere.” We summarize them here as:

& PRt 8 2y _
3% nT <+ neE + = = a (Ei +Er) = Cve (a)

3x 8o o (b)
2
zinTz-bz-E(neE** e-— —B-[E2+E2])-C (c)
23 e 2 m maqf 8x i . o N 6 )
(1)
nv = const, (d)
nm§§+-§;nri-nes=-cve (e)
& v .
g; 2T, + 0T, T2 = - Cp, ()

where E is the ambipolar electric field, Ei(r) is the intensity of the

incident (reflected) laser light, Q is the electron thermal energy flux in

the x direction, Q is the laseruliéhq frequency, Van is the anamalous

collision frequency, and Cve’ Cie: C&e are quasi-linear collision terms which

i

describe the.electfon?momen;uq; thermél energy and thermal energy flux loss
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due to interactions with unstable waves, In Eq, lc, the effects of

ponderomotive force have been included, All other notation is standard,

Coupled to this fluid system are equations for the incident and

reflected laser light and also equations for the unstable ion acoustic

waves, These are

d 2 wze 2 o 2
& Jeleaee = -(;Lz' By " (+)van_; E (), @

where 8 is the angle of incidence of the laser light and

4 e, ® _ e 3, =) 2
dxl Te ' —2(V/(V (Te/m) )) ‘ Te ‘ 3)

where v is the growth rate.l
The final quantities to specify are Cve’ CTe’ CQe and A The

quantity Ve depends on the component of k in the direction of gi (for

instance the y direction), Thus the angular spectrum of the ion acoustic
fluctuations is needed, We make use of results of many numerical

simulations of ion acoustic turbulence in two dimensions,® which show a

cone of unstable waves out to an angle of between about 45 and 60 degrees.
We use this basic result and assume a three dimensional conical spectrum

uniform in angle up to 55° to the x axis a f§>:hendr0pping sharply to zero,

Making this assumption, we £ind*
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where k and k are the minimum and maximum wave numbers included in the
min max

summation, In our calculations we take kma

=0.75 kyand k . =k /9.

X max

The C's are calculated as in Ref. 1, only making the same conical
approximation to the wave spectrum,

Now it is worthwhile pointing out that if a transverse magnetic field
biC

exists, as is usually the case for laser light focused on a sla the

ion acoustic wave no longer propagates parallel to Q, but parallel to gi,ll
Thus not only would Vs increase, but also there would be no need to make
any approximations concerning the angular width of the spectrum, 1In a
future publication, we plan to discuss the problem of absorption in a
magnetic field,

Equations 1 through 4 are a coupled set of equations which we solve
numerically starting at x = O and integrating backwards towards the laser,
As initial values, we start with parameters characteristic of the low
density shelf as explained in Ref, 12, and:E:]ggla =105, Ata given
subcritical density, the flow velocity v, and VOZ/Ve are determined,?
Also EZ = Ei at x = 0, Choosing an electron temperature is then essentially

i

equivalent to choosing an incident laser power, The remaining initial




parameters to be specified are TilTe and Q, The parameter Q(x = C) is
found by iteration so that Q(x = -®) = O,

Results are shown in Fig, la-d, Figure la shows the spatial dependence
of T, Q, E?, Ei and [:E: 122%51’2'] : where T, (x = 0) = 12 keV,‘
T, (0)/T, (0) = 1/30, wie(C)/Qz =0,7, and 8 = O, Following Ei back to -,
we see that the incident laser flux is 10°° W/cme, Q(O)/nmv:(o) ~ 0,1, and
the absorption efficiency is 664, The unstable wave spectrum peaks at
about k ~ kD/2. The electrons which principally absorb the laser light have
velocity ~ Q/k ~ Bve so that an energetic tail is not expected to be
substantially produced., Figure 1b shows the absorption efficiency as a
function of density on the low density shelf assuming Te(O) = 12 keV and
Te(O)/Ti(G) = 30, Figure lc shows values of Q(O)/nmvz(o), Te(O) and absorption
efficiency as a function of laser power where n(0C) = 0.5 n.. and
Te(O)/Ti(C) = 30, The high temperatures calculated here, of course, exist
only in front of the critical surface, At higher densities, the temperature
would be much lower. Figure 1d shows the absorption efficiency as a function
of angle for n(0) = 0.5 ncrc0329 (see Ref, 12), Te(O)/Ti(O) = 30 and
Te(C) = 12 keV (the incident laser flux was in the vicinity of 2 X 10%% W/cn®),
The fractional absorption would be substantially increased at higher power
and/or with higher density shelves as is apparent from Figs, lb and lec,

To summarize, our results show good absorption by the thermal part of
the distribution function which is nearly independent of both polarization
and angle, and with Q/nmvg of typically about 0,1, Finally, we wish to point

out that similar results results were found by numerical simulations, >
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We will now discuss more fully some of the related experimental results,

Figure le (taken from Ref, 5) shows the reflected light as a function

of angle of incidence and polarization, for laser irradiance of 5 X 10*° W/cm®.
Notice that the absorption efficiency is not strongly dependent on either
polarization or angle of incidence for tilt angle less than about 6C°; just

as predicted in Fig, 1d,

We now discuss the relevance of an experiment in which the transport of
energy was studied a% an irradiance of 10°° W/en® through a thin layer of
polystyrene into an &luminum substrate,® The intensity of aluminum line
radiation is shown as a function of polystyrene thickness in Fig, 1f, The
absorbed energy flux Q is measured., Assuming a particular value for Q/nmvz
then allows one to calculate the average electron energy near the critical
surface, Since the laser energy must ultimate heat the electrons in the
polystyrene to this energy, one can calculate how much laser energy,
at given irradiance, is needed to just burn through a given layer of
polystyrene (i,e,, to cut off the aluminum line radiation),

A value of Q/nmv: of about U,1 is consistent with the upper limit of
Q/nmvz ~ 0,2 inferred from the dependence of Al x-ray radiation to polystyrene
thickness shown in Fig, et

The experimental situation is closely one dimensional, The asymmetry
of specularly reflected light indicates that, on the average, the center of
the critical surface bulges by only about 1 u compared to the half energy
content focal diameter of 30 u, However, Fourier analysis of the specularly
reflected light does show enhanced density fluctuations near 1 u, which is
close to the peak ion fluctuation wavelength,

Finally, we would like to make a few remarks on hard x-ray data, Our

own'® and other theories® have shown that resonant absorption creates electron

e




distributions having non thermal tails extending from about 5ve to 6 or 7ve,
If 10*° W/em® is conducted by the electrons and Q/nmv: ~ 0,2 as indicated
in Ref., 4, then the thermal energy is about 6 keV, Thus the non thermal tail
would extend from about 6C keV to about 300 keV, The layered target
experiments and others” show very few hard x-rays above 100 keV, Thus there
appears to be no indication of a strong superthermal taii to the electron
distribution function,

In summary then, there are good theoretical and experimental indications
that light absorption by enhanced ion density fluctuations is a very

important process for laser fusion,
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