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PREFACE

As military aircraft fly with more and more stores, the problem of predicting the
critical flutter speed becomes more and more complicated.  Apart trom the lack of
aerodynamic knowledge which makes it almost impossible to predict the unsteady
acrodynamic forces, the non-lincar behaviour of wing-stores configurations leads to fresh
difticulties in the interpretation of ground vibration tests and flight flutter tests.

Mr Haidl's paper helps in the understanding ot these ditticulties with the support of
eround and tlight experience on modern aircraft. His contribution will be of great value
tor all concerned NATO countries.

G.COUPRY

Chatrman, Sub-Committee on
Acroclasticity and Unsteady
Acrodynamics




SUMMARY

Examples of non-lincar vibration behaviour in ground resonance tests of an aircraft
are shown. Model tests for a simplified system with non-linear properties have been
performed to study the effects of friction and backlash with respect to ground resonance
test and tlight flutter test.

With symmetric and asymmetric non-linear stiffness characteristics effects of
amplitude dependent frequencies, mode coupling, mode asymmetries and the consequences
in parameter identification in vibration tests are pointed out and discussed.

[n case of flutter critical modes the problems of apparent damping caused by non-
lincar system properties are shown and recommendations are given to reach a represen-
tative flutter clearance with respect to this non linear system behaviour.
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NON-LINEAR EFFECTS IN AIRCRAFT GROUND AND FLIGHT VIBRATION TESTS

by

G.HAIDL

MESSERSCHMITT-BOLKOW-BLOHM GmbH.
Unternehmensbereich Flugzeuge
8, Munchen 80, - West Germany

PROBLEM SURVEY

There have been many improvements in equipment and test methods for ground resonance
tests and flight flutter tests. The determination of the dynamic characteristic of real
aircraft structures 1is still difficult in case of non linear system behaviour.

Some examples taken from previous tests and investigations may help to give a problem
survey.

The first example refers to a ground resonance test on a F 104 G "Starfighter" air-
craft, described in AGARD Report No. 592, sce [Hef. 1] Two multinationale comparative
programs have been performed to define and improve the aerodynamic and elastomechanical
basis for the evaluation of aircraft aeroelastic stability. Test results of intensive
ground resonance tests indicate the common trend of slightly reducing frequency with
increasing amplitude ([Ref. 1], Table 23 and 24). A strong non linear behaviour has
been found for a fin torsion, tailplane coplanar rotation mode (r = 4)., With increasing
amplitude the resonance frequency drops from 12.7 Hz to a minimum ot 10.2 Hz but in-
creases to 11.2 Hz with higher amplitudes. Such non linear effects may be caused by
backlash, friction, complex actuator stiffness, liquid loads, or engine installation.

An investigation of dry friction effects to an aileron rotation mode of a glider
has been performed by O0.N.E.R.A. [Ref. 2].
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Fig. 1  Influence of an Auxiliary Excitation (60 Hz) on the Aileron Rotation Mode




Fig. | shows frequency and amplitude vs excitation force (curve A and B) and with
auxiliary excitation at a frequency situated outside the analyzed frequency range
fcurve C and D). In case of high static friction and lower gliding friction this
auxiliary high frequency excitation is a possible way to reduce friction effects.

An 1nvestivation on a wing-aileron system with different non linear stiffness
characteri=tics of the aileron has been performed by E., Breitbach, D.F.V.L.}{, Gottin-
gen (see [lft'l. 3t e
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Fig. 2 Effects of Symmetric Backlash to the Wing-Aileron Flutter Stability

In Fi1g. 2 the considered non linear stiffness characteristic with backlash and the
consequences to the flutter stability of this system are shown.
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Fig. 3  Effects of Non Symmetric Backlash to the Wing-Aileron Flutter Stability (Preloaded System)

Fig. 3 shows the same parameters for a '"preloaded" system or a system with "asymmetric
stiffness characteristic",
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Fig. 4  Effects of Non Linear Stiffness to the Wing-Aileron Flutter Stability

Fig. 4 rev.oals the most critical behaviour of the system with the shown degressive
stiffness characteristic. This flutter behaviour is very dangerous because there 1is
no amplitude limitation after the system reaches the initial amplitudes of the shown
stability boundary.

All these examples may illustrate the problems in the ground resonance test to de-
fine the amplitude dependent dynamic characteristics of a structure and if possible
to find a representative '"linearisation' at a reference point close to operational
conditions.

lhe following examples from a recent ground resonance test on an aircraft with
sweepable wing and underwing stores may show the limits of this linearisation technique
and possible consequences to the test philosophy.

I want to acknowledge the work of Mr. John B.Cox from Mechanical Test Department
of BAC-Warton, who has contributed considerably to the A/C test examples which are
shown 1n this paper.

Nen Linear Effects in A/C Ground Resonance Test

The non linearities which will be dicussed here are effects of backlash and friction,
influencing the dynamic system behaviour. Fig. 5 gives a sketch of the simplified vi-
bration system.

Fig.5 Sketch of the Simplified Vibration System




lhe wings are sweepable i1n teflon coated bearings and are driven by wing sweep
actuators. The triction moment in this teflon bearings 1s relatively high (~2 kNm)

because of "shrunk in procedures'" and static loads, which 1s much higher than usual

availlable excitation moments with GRI equipment. As long as the external exciting
moments or the internal moments of the vibrating system in wing-yaw direction are
below the triction moment, actuator backlash and actuator spring stiffness have no
or limited 1ntluence. The system properties are changed when the bearing 1s moving.

lhe wing slot sealing 1s introducing additional stiffness and friction, varying
with wing sweep angle.

l'he attachment of the actuator at the wing carry through structure has a lateral
deflection characteristic which has an 1influence on asymmetrical modes whereas for
symmetrical modes the lateral forces normally are compensated.

Considering the store yaw mode, there 1s a similar friction coupling mechanism in
the teflon bearing of the pylon spigot. This friction and backlash in the pylon sweep
drive rod mechanism generates similar non linear system behaviour as discussed before.
lhe attachment of the store to the pylon creates additional backlash and friction
effects.,
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Fig.6 Effect of Input Power on Resonance Frequency for Wing Yaw-Mode

Fig. 6 shows measured decrease of the resonance frequencies with forcing level for the
wing yaw mode (curve A). After a back and forward sweep of the wing a change in fre-
quencies have been found (curve B).

This trend of frequency decrease is given by increasing effects of short movements
in the bearing, changing the stiffness and damping of the system. It should be mentioned
here, that the friction coefficient for teflon in static and gliding condition is about
the same. That means that the part time movements during one vibration cycle are limited
for durating system moments higher than the friction moment. By this reason an auxiliary
excitation as mentioned before cannot '"break'" this friction.

Effects of a preload in wing aft direction to the wing yaw mode can be seen in the
time histories of the actuator forces, Fig. 7a.
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More severe effects of friction and backlash have been found for the store modes.
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lhe trace of the relative motion in Fig. 10 demonstrates the part time movements in
the friction coupling during a vibration cycle. As long as there is a relative motion,the
decay curves show the effects of gliding friction together with structural damping.
After the relative motion 1s stopped the decay curve shows the structural damping
only.
Fig. 11 and Fig. 12 illustrate the change in the decay curves for increasing exci-
tation moments and the same friction moment.
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lhe time history in Fig. 13 shows a case with higher friction moment, Similar meas-
urements with backlash in the spring attachment of damper part 1 indicated a relatively
rapid stop of the relative movement in a position somewhere within the backlash range.
In Fi1g. 14 the ampiitude dependent effects of a constant friction moment to the
apparent system damping are shown,
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Fig. 14 Apparent Damping vs Exciter Moment
(g9 = 1,3 % Structural Damping Included)

With
rour

increasing amplitudes the damping reaches a maximum and decreases.
demonstrates the misleading effects upon the system damping expressed in % g and

This behav-

it demonstrates the reason, why friction damper are not allowed to suppress flutter.

An analytical approach of this system behaviour with the so called method of "Har-
monic Linearisation" was performed. An example of the calculated resonance amplitudes

and frequencies compared to test results are shown in Fig. 15.
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The actual amount of backlash and friction of such a system can be determined by
quasi static measurement of the "hysteresis diagram", see Fig. 16.
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Fig. 16 Hysteresis Diagram

This stiffness characteristic is measured with an exciter moment acting on the store
(frequency 0.02 Hz). The diagram of store rotation (curve A) and rotation of damper part
1 (curve B) reveals the amount of backlash and friction of the actual system.

Effects of Friction and Backlash to Data Analysis of Flight Flutter Tests

Different excitations have been used in the model test in order to study the effects
to the data analysis with different methods [kef 5, 6] .
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Fig. 17 1s a time history of a test with random excitation which shows the random
excitation signal, the lateral response Vy at forward and rear store and the relative
movement in the friction coupling. The model has a backlash of 0,1 mm ( 1,4 + 1677 rad)
in the attachment otf the "pylon sweep rod" springs.
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Fig. 18 shows the increase of relative movements in the friction coupling with in-
creasing excitation, affecting the system damping and resonance frequency.
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Fig. 19 Time History of a Test with Sweep Excitation

Fig. 19 illustrates the dynamic response of the system to a frequency sweep input.
Relative motions in the friction coupling appear, when the excitation frequency is
running through the system resonance.
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Fig. 20 Time History of a Test with Sweep Excitation
Fig. 20 shows the dynamic response of the same system excited with higher force
resonance

level. There are considerable time variant effects to the system damping and
frequency.

In a flight flutter test with artificial frequency sweep excitation and superimposed
random excitation there is a combination of the shown behaviour for random and sweep
excitation.

A mix of different effects of the friction moment and different resonance frequen-
cies in the response signal are the consequence .

Digital data analysis with statistical methods is based on the assumption of a linear
system. Changing resonance frequencies with amplitude will produce an apparent damping,
which is not existent in the system. As shown before in Fig. 14,a friction moment is in-
troducing similar misleading effects of apparent damping.

Fig. 21 is an example of data analysis of a random excited model test with "backlash".
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Fig. 21 Frequency and Damping Analysis of Random Excited Model Data




It shows the computed complex plot of the transfer function H (i& ) and after a
“"Fast Fourier lTranstorm'" the impuls function h and the "log. magnitude" of the
, L (1) LS
impulsfunction.

In the impulsfunction there is no more an indication of amplitude dependent fric-~
tion etfects and frequency change. The analyzed apparent damping is considerably
higher than the structural system damping.

CONCLUSTONS AND RECOMMENDATIONS

ihe shown effects of friction and backlash to an A/C wing yaw mode and store yaw
mode may be rather extreme examples of non linear effects. But the intent of the
studies 1s to provide information leading to a better understanding of non linear
system behaviour and to show consequences in the identification of important system
parameters,

Considering the stiffness characteristic of the non linear "store yaw model' as
shown before in Fig. 16 the boundary conditions of the system are defined by pylon
"rixed by friction" for small amplitudes and pylon spring in series with the spring
"sweep drive rod" for large amplitudes.

Between these small and large amplitude boundary conditions a decreasing and in-
creasing effective stiffness with amplitude 1s caused by the amount of friction and
backlash., The minimum of the effective stiffness is a further important condition in
respect to parameter variation in the "linear" calculation. This minimum effective
stiffness is strongly dependent on change in friction and backlash. Without friction
moment, the effective stiffness within the backlash range would be zero. In order to
have a representative variation, differences within the production line and wear
effects must be covered.

Asymmetries in the stiffness characteristic caused by preload give a change in
effective stiffness compared to the symmetric case.

Vibration measurements somewhere within the backlash range cannot be used to assess
the range of necessary parameter variation in the vibration calculation or to verify
the calculation. In such a case the separate determination of the hysteresis diagram
is a valuable step.

The Aircraft Ground Resonance Test in the store yaw mode and wing yaw mode hes
shown, that a test approach to the boundary condition "large amplitude'" as discussed
before, could not be reached.

The model tests with harmonic excitation, with random excitation and with frequency
sweep excitation can provide necessary informativas on the behaviour of the non linear
system.

The effects of these non linear system properties to test methods used in ground
resonance tests and the data evaluation in flight flutter tests have been demonstrated
in the model tests.

As shown in the different examples, the non existent apparent damping in the data
analysis caused by amplitude dependent resonance frequencies and misleading effects
friction depicts a very serious problem in the flight flutter test.

Asymmetries in the modes, preload effects and crossing frequencies of the store
yaw mode with store pitch mode are causing additional problems in mode separation and
damping.




An essential step with respect to flutter stability or fatigue is to determine
whether or not these non linear features are important in the flutter behaviour of
the A/C. Following aspects have to be considered:

. modes relevant for flutter

. modes coupling with relevant flutter modes

B asymmetries in modes affecting the flutter speed
. effects of apparent damping in the data analysis

Recommendations to achieve a representative flutter clearance in case of severe non
linearities are:

. careful parameter identification in static tests
- calculations with corresponding parameter variations
o wind tunnel tests to find out the influence of asymmetries and non linear

features to flutter
. non linear analytical investigations

. ground resonance tests and flight flutter tests with a modified test airplane
(reduced damping and backlash) to cover the worst condition.
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