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ABSIT.ACT

This report revises and extends an earlier report entitled "Mechanical

Four-Pole Parameters and their Application" (Journal of Sound and Vibration,

15, 307-323, 1970). Newly considered are so-called transmission matrices,

which enable the transverse vibration response of beams with discontinuities

to be analyzeJ readily. Further, the transmission matrices used in the

report result in more concise beam analys-,s than the matrices generally

employed in the literature. Additional example.s that are considered here

include end-driven cantilever beams or stanchi.:,ns that are propped by a

damped spring; or that carry -n end mass having a finite moment of in-

ertia; or that carry a mass that divides the staichicn into two stages ef

arbitrary lengths and cross-sectional area.,; %i, that carry an end mass and

subsequently comprise three stages having arbi-trary lengths and cross-

sectional areas.
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1. 11MODICTION

Your-pole parameters have been utilized for many years in electrical

circuit theory a. an effective means of analyzing four-terminal networksl•;

more recently, with mchanical notetion, they have been used to solve vibra-

tion problems 2.r!olv-ing rotational 7 and translational 8 "II motion, The four-

pole parameters of a veriet.' •f mechanical ,lfments that can be vrewed as

four-terminal devices Are described here; for example, four-p,;te pW-ameters

-re derived or stat#.d for simple lumped systems such as a spring, a mass,

and a dynaml? ;ibration abeorber, and for di±tribui ed systems such as a

uniform rod in longitudinal vibration. Alsots~ated are the parameters that

describe the berding vibrations of a BernoulIi-Emler beam and a thin circular

dplate, both of which may be envisioned as four-teizminal systems if they are

driven and terminated ao that only symmetrical vibrations about their mid-

points are excited.

Four-pole parameter theory is actually a simple theory of transmission

miatzices. When more complicated situations are encountered than those

mentioned hitherto, four-pole theory becomes inadequate and a transmission-

matrix theory of wider applicability rust be utilized.15"23 For example,

if a beam is not terminated symmetrically (as a cantilever), or is

driven symmetrically (as a simply supported beam driven off-center), it must

be viewed as an eight-terminal system, and reliance must be placed on h x 4

transmission matrices rather th'an on the 2 x 2 matrices that typify bhe

simpler four-pole theory.

Following a discussion of relevant four-pole parameters, and examples

of their application, the more general transmission-matrix theory is developed

P,ýd used, for example, to determine the transmissibility across a mass-loaded

cantilever beam that comprises three sections of arbitrary lengths and cross-

section&l arexe and across a cantilever beam that is mass loaded at an
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arbitrary point marked alao by a change in beam cross section. Although

such problems are cumbersome to analyze conventionally, they are readily

tractable using transmission-matrix theory.

2. BASIC FOUR-POLE THEORY

A linear mechanical system is shown schematically in Fig. 1. Ile

system mar be ccmprised of one or more lumped or distributed elements, or

be constructed frcm any cmbination of such elements. The input side of

the system vibrates sinusoidally with a velocity in response to an

applied force F,. In turn, the output side of the system exerts a force

2 on the input side of acme further system, sharing uith it a common

velocity V.. Thus, the system sho,4n is said to have input and output

terminal pairs, a force F1 and velocity V1 at the input terminal pair

giving rise to a force F2 and velocity V2 at the output terminal pair,

the reaction of any subsequent mechanical system beiang accounted for.

Forces are considered positive when directed to the right.

Consider now the sinasoidal vibration of a mass M and a spring K in

the context of the foregoing tiscussion. From Newton's second law or

Hooke's law, and frr, reference to Fig. 2(a) or 2(b), it is possible to write

1. Mass M

- - dV dV2

"l ý2 dt M dt
or

and

V1 V2 (2)

where t is time and w 5.a angular frequency.

2. Spring K

1 = 2 V -2)dt



or

F = F (3)

and

VI 2 K

Inspection of Eqs. 1-4 suggests that the vibration response of the four-

terminal system of Fig. 1 can be represented by the following equations:

directly apparent that

F - -

a , = - ( 8)

g ~and.

a12 - (IoI

22 2'

and.

V2 F=_02



where the subscript V 2 0 indicates that the output terminal pair is

blocked and the subscript P2 = 0 indicates that the output terminal pair

is free (unrestraiued). The parameters all and a2, are dimeasionless;

a12 has the dimensions of impedance and a., the dimensions of mobility.

In general, the four-pole parameters are frequency-dependent com-

plex quantities. Of considerable advantage is the fact that the para-

meters characterize only the system for which they are determined; their

value is aot influenced by the preceeding or subsequent mechanical systems.

Equations 5 arA 6 enable expressions for the driving-point and trans.,

fer impedances land for the force and displacement transmissibilities across

the system to be written down concisely. Thus,

driving-point impedance,

1 ý T - L-22 )iaTV2 (1V 1 11

transfer impedance,

La• 2 (all Z + C'2) (l)_
V2

force trsanmi:,sibil.ty,

T (13
iFi

and displacement transmissibility,

T D1 =- ( iz .
1



I

In these equations, ZT 92/2 is the driving-point impedance of the
mechanical system subsequent to the one under consideration.

3. RECIPROCITY AND TRANSMISSIBILITY EOREMS

It is now instructive to return to the four-pole Eqs. 5 and 6, which

are easily inverted to yield the equations

F2 F, 1 V, (~

and

V2 A + -t V'

where

A=(a "22 - .1)2 W2,

If the original output terminals are now vis',alized as the input terminal

pair, the relevant four-pole equations follow immediately from Eqs. 15 and

16 in which the direction and, therefore, the sign of the forces and 2

are reversed; thus,

F ý =-F +-V 12ý (18)2 a I A

and

V2 = -- f- +-V (19)

The Reciprocity Theorem states that the transfer impedance or mobility

between any two terminal pairs in a network is independent of which ter-

minal pair is taken as the input or output station; consequently,
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(20)
2. F=__0 1 Fl=0

21

or

ii V2
~L _ =~L(21)

2 ýo F1 V170

From either equation, reference to Eqs. 3 and 18, or Eqs.'6 and 19, shows that

A (' 1  2 " 12 •-2 1 )= . (22)

Consequently, Eqs. 1 and 19 may finally be written as

2 '~22 F + cý2 V1  (23)

and

v 2 'lFI+ (X1V 214)

It follows from Eq. 22 that knowledge of only three of the four-pcle

parameters is sufficient to specify the performance of the system com-

pletely. Further, in the special case of a symmetrizal system (when it

does not matter which terminal pair is input or output), Eqs. 23 and 24

,rust be identical to Eqs. 5 and 6. That is to say. for a symmetrical

system,

all a22 (25)



18

and knowledge of only two independent four-pole parameters is sufficient

to deter ine the eyte perforznce crmpletely.

ninally, an import2ev result, which is sometimes referred to as the

Tnsr~ssibility Theore, follms imediately frcm Eqs. 5 and 24; thus,

II•~F V, -- (26)

2' 1 v2 1

or transmissibility T is auch that

- Tm . (27)

Again, fro Eqs. 6 and2 3,

= ~ TL(28)
vi 22 V I=O

or

T~,• T vz• (29)

Equations 27 and 29 show, as has frequently been noted and utilized in the

past, that the force and displacement (and, therefore, velocity and acceler-

ation) transmissibilities in oppcsite directions between the two terminal

pairs of a mechanical srstem are identical.24-27

4. CONNECTION OF MECHANICAL FOUR-POLE SYSTEMS

If the output terminal pair of one m~ehnical system is rigidly connected

to the input terminal pair ,f another srstam (Fig. 3), so that the output from
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the first is exactly the input to the second, the two systems are connected

in series. Thus, in matrix notation, if

11

C1 2 (30)
=I 0ý2 t ý_

F21 KS. .2 FF3  (31)

i! L".J L3..J

and

22 ft+ 17 (32)V n LýI '2 V(o+l)J

then

P, a~i .2 C1 [ CL1 2 [.... a -C1 (~)(

Li] LL ý1,j a2l c2 La21 a22 JL (n+l)j

For a two-stage system,

F, ' (34 )

S-i.ere

lae + + (35)

L0-21 2  Ja 1 22 21CS + a.l a.C2 + 2C 2 J

If the input terminal pairs of two or more mechanical systems are

j connected rigidly so that they move with the same velocity (Fig. 4), and



if the net input and output forces are equal to the sum of the input and

output forces of the component systems, then these systems are connected

in parallel. Thus,,

[] [O 012 F2
I'll I-'-~t(36)

where

Oil = A/B, (37)

= (AC B2 )/B (38)

02 = 1/B, (39)

and

j 022 = c/B. (40)

In tese equations,

A ~ ~ (41)

B !

and

C

T--



For only two systems in parallel, I
A - -I Jý -l • , (44)

II II

c2l + <"%' ,
c = .'-",2,1i ) ' •

and

C 22 1(46)

so that

031= (/3(47)

012 = 022 Wq~E) W oE) ,(8

S= -! ,(49)

and

22 = x/. (so)

5. VALUES OF FOUR-OLE PAPAMMS (LUMPED SYSTEMS)

1. Mass M rnig. 2(a)]

Equations 1 and 2 show that, for this symmetrical system,

al1 -a =, (51)

0ý Jam, (52)

0,2 1 =0 (53)
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and

2. Spring of Stiffness K (Fig. Z(b)]

Equations 3 and 4 show that

a12 = 0, (56)

Ga). = jUw/K (57)

and

= (58)

Equally well, for a rubberlike material having a complex modulus Gi, K

would simpxly be replaced by the complex stiffness kG,, where k is an

appropriate constant having the dimensions of length. 2 7

3. Dashpot of Viscosity - (Fig. 5)

F-2 (59)

and

V ~F /~+V .(6o)
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Consequently,

an 2a " , (61)

= 0o, (62)

a 1 =1A (63)

and

F~ 1  01 FfL~iLd " T  1] LV2J•)

4. P-ralel SPring and D.saot (Fig. 6)

F 2 (65)

and

V ý + V (66)

where

, = • •(67)

Consequently,

13J. =a2 1,(68)

ý = o, (69)

a2 = , (70)

and
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[L"]= [~ i �[J,] = [Ll+(jm/K) L] [
This equation shows that, the parallel spring and dashpot combination may be

regar•ed as a single spring of complex stiffness K K[l + (j•wi/K)].

•. Dynamic Absorber (Fig. 7)1

It follows directly that

]= (a)L i [:~~~ l+JWMKc* [:iýzeoin (2

A dynamic absorber is nor y u ernated (ZTequalszero

which case its driving-point impedance Za may be written simply as

L =o2:= (73)

6. Mechanical System with Dy7umic Absorber (Fig. 8)

Az before, let

K2c1 1 1



If the driving-point impedance of the dynamsic absorber is again Za a then

P1 = "2 +ZVa (75)

and, since V, = V it ia possible to write

21' = 0 j L V2 * 
(76)

It simply follows that

or

V - 0ý1 a22 F (78)

vhereZ, is given by Eq. (73).

!a

-3



6. vALuE oF FVUR-FoLE PARAmmTEs (Disnnrzn sysTEm4 wimh ITERNL DAwIN)

6.1 uniform Thin Rod

For the longitudinal vibration of this symmatrical system, 7 which is

shown in Fig. 9,

1~ =Cos n 9=aý (79)

al* sin n*, (80)

F2=O

and

a., (1  2 ")_ (-sinn*2) = -sin n** (8:Qa12 • R sin flA

where

=(JoI~n 2) ,(82)

and I and are the length and mass of the rod; n* is the complex wave-
mtmber. 27

Knowledge of the four-pole parameters enables expressions for the

impedance and force and displacement transmissibilities of the rod to be

written down directly from reference to Eqs. 11-14. The termination impedance

in these equations can have any value. When ZT = 0 or w, results for the

limiting case of a free-free rod or a free-clamped rod nan be obtained. If

the rod is connected to other lumped or distributed systems, equations equiva-

lent to Eqs. ll--4 will describe the vibration response of the resultant system.
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For exmple, the force transmissibility TB12 across a rod loaded by a mass

M at its driven end, and terminated rigidly at its opposite end, follows

directly from inspection of Eq. 13; that is to say,

T = , (83)

where

0, 02JCCM cos n2. 9RsinnaA
2 22 Lo0 1 *-'a@'a coo. *

Consequently, -

This equation has been used, as in Ref. 27, to provide a guide to the

character of so-called 'wave-effects" in antivibration mountings, where

the force-driven mass M and the rod are visualized as a vibrating machine

and a resilient mount, which has self resonances by virtue of its elasti-

city and finite mass MR.

6.2 Bernoulli-Euler Beam

In general, transversely vtbrating beams must be viewed as eight-

terminal systems, since the application of rotational as well as trensla-

tional forces and velocities must be accounted for. However, in the restricted

but important case where the beams are excited in symmetrical vibration

by sinusoidal forces, they may be visualized as four-pole networks if

their output forces can be shared between dual output terminals. Then,

for a center-driven beam (Fig. 10), two sets of four-pole parameters re-

late to the two pairs of boundary conditions that are most frequently

Scnsidered in practice. Thus, if it is assumed that the bending moment is



alvays zerc. at the ends of the beam, the adoption of blocked or ?ree ter.,

minai pairs will provide the limiting cases of a simply supported or a free-

free beam. Alternatively, if it is assumed that the eras of the beam are con-

strained to have zero slope, the adoption of blocked or free terminal pairs will

provide the limiting cases of a clamped-clamped beam or a beam with ends

free to slide witbou=t restraint (zero shearing force). In either

case, it must be assumed that half the driving-point impedance ZT, of

the subsequent mech.iAdcal system can be placed at each end of the beam;

IBqs. U1-14 then remain directly applicable.

(1) Zero Bendi Moment at Ends of Beam

Reference to the expressions for beam impedance and transmissibility in

Chaps. 7 and 9 of Ref. 27 shows thai; the relevant four-pole parameters are

(2= (ch.c. (86)

= c\ h.+c .)(nna) *

ash.c.-ch.s , (88)
•a = •-'•\ ch. 4.--. (%

and

a ch ac+1 *(89)
'(n'a)

where

-n= ( j<,/n a) (90)

Vb*

M and a are the mass and the half-length of the beam, and n* is its complex

wavenumber. 27  Abbreviations such as (ch.c.)( for example, are used
'n a)



19

to repre,•ent the term cosh n-a cos n a. Although the beam responds as P

symetrical system I the following discussion, it has not done so here

because all j a22 (Eq. 25).

.(2) Zero S1ope at Ends of Beam

The four-pole parameters now beccme

all= = (sh.c."ch.s. ( (91)

\sh+s. /((n) )
= %* -~(fla) ,(92)

and 1 (2h~e-3(s
= \sh.+-- "(n a)

(3) FbcaMpes

Knowledge of the foregoing four-pole parameters and of the results of

Eqs. 1i-14 enables expressions for beam impeaa'ce and transmissibility to be

written down directly. For example, reference to Eqs. 11 and 91-93 shows that

the dri-ring-point impedLnce Zm of a beam centrally loaded by a mass M, and

rigidly clamped at each end, can be written as

z -(94)
m

where

F1 Jar] (sh.c.+-ch.s.) 2%*(sh.s.)1

] (sh.+s. )(L01 () L (ch.c.-l) (sh.c.+ch.s.)21 22 n. } a) bon*a)

'i

S.
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consequently,

Jii n 1(h.c.-l)

Likewise., from Eqs. I.1 and 86-89, the driving-point impedance Zo of

a free-free beam, the ends of which are loaded equally by lumped masses M

having negligible rotary inertia. is given by the equation

z = -- (97)
~22

where

4 31 (c.12 (na 2(ch.c.) ~ ½(sh.c.-fCh.s.3) 0 1jt

-21 0 (ch.-C.) 1(* l(sh.c.-ch.s.) (ch.a.+l) 0(*a) L
consequently

z F(sh.c.lch.s.) + 4 (M/Mb)(n*a)(ch.c.) (
I * I : •(99)

ja:, (n*a) L(ch.c.+l) + 2 (M/Mb)(n a)(sh.c..ch.s.) (n.a)

Note that, because the beam is loaded by a total mass 2M, a corresponding

impedance of 2jaM appears in the final matrix of Eq. 98.

FinaLly, the force transmissibility T.12 = Tm acrnss a simply supported

beam that is centrally loaded by a mass M can be written from Eqs. 13 and

86-89 as follows:

T m I 1  " , (13-o)

where now
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14n *7 e h0 • ( s)'1 (,h.c.-ch.s.) (ch.c.+l) I (101)

It ~(nar)

consequentl.y,

Tm = ch.4c) - -(3.02)=2(ch.c.) + (M/)( n*a)(sh.c..ch.s.)l na)

6.3 Thin Circular Plate

The transverse vibration of a thin circular plate excited symmetrically

by a sinusoidallY varying force (Ref. 28) can also be predicted by the use of

four-pole parameters. Such a plate of mass M and radius r = a is shown in

Fig. 11. The plate is driven by a central point force FI that gives rise

to a force F2 per unit arc length at the plate boundary. Associated with

these forces are the velocities Vi and V

In common with the beams considered in the foregoing, two sets of

four-pole parameters relate to the two pairs of limiting plate boundary

conditions most frequently encountered in practice:,

(1) Zero Bending Mment at Plate Boundary

In this case, the extreme values of ZT = (2va F2/V2 ) = o or

in Eqs. 11-14 provide results for a plate with a free or a simply

supported boundary. The four-pole parameters of the plate are

S= I *, (103)

S= au* e~l•*, ( 1(•. )

anl (n*a) . .*.. ... *4.* (105)
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Ok = (n*a) 0*/I * (106)

where

A = 21i, (107)

g-* = - + ( +o(n*a) (o108)

C =C- 0 1 CN+ *(J01 + o10)](n*a) (13)9)

_*=(J0 + I) C+ 'a *j + II)J(n•a) (o0)

* J
8 [ = -(J 1, + J 1 Io) + 20a JI]nn),

0*= (L(Jo+Io)(Y,-A K1)-(JI-I 1 )(Yo-A K)] - 2 $a*CYl3.- J 1 K1)3(nl*t.) , (112)

and

T* = (2(Y I o A JoKo) + a *r(Jo-I )(Y+A. •)-(J+l)Y +A Ko) (
0 0 00 ao 0 '(n*ea)

In these eqpations, n is the complex waventmber of the plate,- abbreviations

such as (JoY)(n•a) refer to the product Jo(n*a)I,(n*a) of the ordinary and modified

Bessel Function3 of oxders zero and .ne having the complex argument (n*a), and

= (i - v*)/(n*a) , (114)

28
where v* Is the complex Poisson's ratio )f the plate material.

(2) Zero Slope at Plate •oundsx

In this case, the extreme v-alues of ZT = 0 or cc in Eqs. 2-1-1

provide results for a J with a sliding or a rigidly cleped bound-

ary, and



23

"1 " '(n*a)

\jl + Il(n•a) 'C.

and

- +1 (n•a)

where

S= -(Io-)(Yl + A ' l)-("1+Io)(Y + A Ko )](9)

(3) Exampes

As an example, if in Case (1) the terminating impedance ZT at the

plate boundary is not specified, reference to Eqs. 13, 103, and 104 shows

that the force transmissibility TF2 = TFO across the plate is simply

T : + ... . (120)

This equation states thatif the boundary of the plate is completely free,
TF= 0; alternatively, if it is simply (rigidly) supported,

Likewise, in Case (2), if the boundary of the plate is built-in (clamped),

and if a dyzmmic absorber is attached to the plate where it is driven by

t i
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the central force F- then the transmissibility T across the plate follows1, Fa

directly frco reference to Eqs. 78, .15, and 117:

Ta= ,2ia i/Fli = i(a + ZIa %i)i 1 I
~Ir 8(J 1 + I, ) (122)

- ( ,+ Jl1 1) + 7cnaz* aj'P. (n9Ea)

where the driving-point impedance Za of the dynamic absorber is given by Eq. 73.

The use of a dynamic absorber to reduce the vibration of platelike

structures is discussed in Refs. 14 and 29-33. Because of the practical impor-

tance of the dynamic absorber in such applications, transmissibility curves

that have been computed from Eq. 122 are plotted and described in the

following section.

7. DYNAMIC ABSORBER ATTACHED TO A CIRCULAR PLATE

CLAMPED AT ITS BOUNDARY

Calculations of the transmissibility TFa can be made from Eq. 122 more

conveniently if the impedance of the dynamic absorber is written from Eq. 73

as

Cl(0/%) +~ [ j (wci/K] (13a

Here, the subscript a relates K, M, and ri specifically to the ab3orber, which

has the natural freqcency

aWa k( K/Ma)½ (124)
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The dimensionless quantity (u•a/Ka) can be expressed in terms of a frequency

ratio (w /wm) and a damping ratio

Ila I a 
(12521 a wa Tjac f

this is explained in detail in Ref. 27, which considers the attachment of

dynamic absorbers to cantilever beams. In the present applications, wm is

m

the frequency of the fundamental plate resonance t' which the absorber is

tuned; ac is the value of the coefficient of viscosity required to damp

the absorber critically; and the frequency to is related to the plate wave

number28 by the equation

S= (na 2 (126)

m

where N = 3.1962 is the va-ae tcken by na at the fundamental resonant fre-

quency co hen the internal damping cf the plste is negligible. u

Optiuum design of the dynamic absorber is achieved,, for any giver,

value Of M , by suitable, choicý_ of value.; for the frequeacy or tuning

ratio a) /tM and the dampir r etio iFor these eo-called opr'etmn valuest ,

v hich will be writt-n c,, (co /ejm ) aad (8Ro the tran.ý-i.-:ibility Ta at

the fundamental plate resonance is suppx.Gssed in a uniform and S.-mmetrics-i

manner. The optimum values are chosen heare in- ex-actly the seame w*.y as is

described in Ref. 27. Results obtained for sever~l vaiues of the mass

I ratio M /M_ appear in Table 1 together with the rasualtant values of the

maximum transmissibIlity (TFa)max across the plate Vcx its fundamental re-

sonance. In each case, the plate damping factors are equal to 0.01,

-k



and the tabulated values of (T..),. may be c wpared with the large

maximdm value of transmissibility TF • 170 observed when no absorber

is attached to the plate.

Representative calculations of TFa for the two heaviest absorber masses

considered here are plotted in Fig. 12 as a function of the dimensionless

quan~tlty ha., which is proportional to the square root of frequency. The

danbed-line curve shows the transmissibility across the plate in the ab-

sence of the dynamic absorber. As observed for the cantilever beam in

Ref. 27, not only is the absorbir effective in suppressing the resonance to

N&-Ich ihti is tuned, but its relatively large damping is also effective in

suppressing the plate resonances at higher frequencies. Thus, tie dis-

placement of the absorber mass decreases rapidly at frequencies above

a) aso that the mass becomes a "fixed" point from which the absorber dash-

pot is able to restrain the motion of the plate at resonance.

Sh.rald the plate be simply supported rather than clamped around its
boundary, N = 2.2325 and the optimu values of (w /um) and % become those

listed in Table Ii. Although these values differ from those of Table I, the

rcsultant levels of maxi•m transmissibility change only by approximately i%

•Li
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8. VALM 0F TOF A M SSION ARtCES (LUMED SYSTDE)

As explained in the Introduction, transversely vibrating beams are

properly regarded as eiht-termina systems because, in general, it is

nectissar to account not only for their Itranslatlonal velocity response

but also for their rotational velocity response : to an impressed
force F and/or bending mament L. The simple transmission matricee of the

iumped elements of mass and stiffness considered hitherto can readily be

extended to an eight-terminal fonrat. Because this extension is primarily

to facilitate analyses of combined beam-lumped element systems, the new

matrices are developed according to the sign convention utilized previously

in beam analyses.27 Thus, at the left-hand end of a beam positioned along

the x axis, force is positive downard and bending mcment is anticlock-

vise positive; at the right-hand end of the beam, force is positive upward

and bending mnoent is clockwise positive; translatioLa2 displacement y is

always positive upward; and rotational displacement c)/x is always positive

anticlockwise.

1. •ass M [rig. 13(a)]

if the mass has a negligible moment of inertia, it is pcssible to

state that

1, = i2 'jV 2  (127)

~ =v 2  ,(128)

B, = B2  ,(129)

el e2 (130)



28

1 -JA 0 0 P2
0 1 0 0 VM

0 1 j :(.131)
0 0 1L 0 B2

0 0 ;

where J4 a cind 21aYfcC

2. Wsa H Having a Finite Mment of Inertia I [Fig. 13(b)]

74'2ations 2 17, 128, and 130 remain relevant, but Eq. 129 now becomes

+ JCI,2(1.32)

so that

F1  1 -JaM 0 0 F2

V, 0 1 0 0 V2
~ :~ (133)

B. 0 0o 1 Jcn B 2

1 2

3. Spring of Stiffness K in Cascade [Fig. l4(a)]

If the spring also possesses a rotational stiffness "R,

F, = F2  ' (13)

V, . (JW/) P2+ V?(135)

B, B2  , (136)

and

~ I e ~82+ (jw/KY (137)1 0
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howmver, if the rotational stiffness K is very large,

-z • (138)

in vhih case 9 e2

F F, 1 0 0 0 F2
- 10 1 0 0 o I (139)
1 K

B1  0 01 0 B

e 0 0 e

4. Supported Spring of Stiffness K [Fig. 14(b)]

If the spring now has negligible rotational atiffness, Eqs. 136 and

138 remain relevant and Eqs. 134 and 135 beccme

P1  F2 -(K/Jo)VZ (140)

and

(141)

consequently,

F1  1 -~ 0 01L-I -

V0 1 0 0(12
1 .

81 0 0 0 lJ 1ezj

5. Dashpot of Viscosity I [Fig. 14(c)]

Equations 134 and 136 remain applicable, Eq. 138 is also applicable

if the dashpot has very large rotational viscosity, and (i11) replaces

II (J(/wK) in Eq. 135; thus,
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F1 0 0 0
11

V--* 1 0 01 = 1' v2  (14.3)

B, 0 0 1 0 B2 1

0 0 o0 10j

6. Parallel Spring and Dashpot

The appropriate transmission matrix is readily seen to be that of

Eq. 139 in vlich the element - (jm/K) has b•.n replaced by - K*, where

K* is defined by Eq. 67.

7. Dynamic Absorber

If the translational driving-point impedance of the (xnterminated)

dynamic absorber is Zap as in Eq. 123, the appropriate transmission matrix

is that of Eq. 131 in which the element - JaM has been replaced py - Za.

9. VALUES OF TRANSMISSION MATRICES (BERNOULLI-EUER BEANS

WITH INTERNAL DA.MPI•)

The expressions given in Ref. 27 for transverse beam displacement and

its successive time derivatives make it possible to state that

= *C- * (P*si n*x + Q sin n *x + Rcosh n x - S cos n*x) et , (144)

= • (P *cosh, ex + Q*cos n * -+ R¢sinh n *x + S'*sin n*x) e• ,w (145)* * * * * x

ja(*cosh n*x - Q'cos n +R sinh nx -S sin A) ej't (146)

and



jf n x-Q nn*x+Rcosh n*÷ ; (147)

• ** - 8"

in these eVationu, P , Q , R , and 8 are arbitrary complex constants and

C* = E*I~n*>Z l•
jCL)

where n is the complex beem wavenmmber, I is the second momeut of area of

the beem cross section, and e is the complobx Young's modulus of the beam

material. Equations 144 - I7 can readily be expressed in matrix form as

Sn*,*SiLnhn A a e a in n x n*e cosh n x -n e cos A *

k cosh n x cos n x sinh n x sin n x eju
Scosh n x -e CoIs n x e sinh n x -e sin a*x R*

.n sinh nx -n sita n cosh n x n cos n x S

(119)

Suxlyise, now, that x 0 at the beam input terminals (location 1 in

Fig. 15); then

0 0 ne n
11 00

V1  =j 000 • . (150)

B - 0 0 R-

0 n n S

The square transmission matrix of this equation can be inverted in a straight-

forward way if the equation is considered to have the two components

I
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FilF~ 1 S~

and

FV2 1 1 Fp1(52J

for wbich it can be stated that

F-i (153)

2jon e -

e V,(154i)

"ctsequently,

1n * e

-S 0 0 *~ e
n e n
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Again, suppose that x = A at the beam output terminals (location 2 in

Fig. 15); then, fro Eq. 149,

- - -n c sho n e a, n e ch. -n Cf c.

V2  Ch. C. sh. S. j

B2ech. -e C. e sh. -e S. R

* * * Ii(156)
L n sh. -n s. n ch. n c. L-St. " (n*j)

where the bbreviations ch., c.., sh., and s., are used to denote the quantities

cosh n A, cos n I. sinh n 1, and sin n 2.

From reference to Eqs. 155 and 156 it is possible to sl ate that

where the column vectors

(r1] = i=,2 x

Bi

I-•re

and the matrices

ElI
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Ln ah. flesa n ch. -n c..

0 14

nsb z rB nch c

11 0

0~ 0

ii and

(ch.+c.) n**e(sl.s) n*(s.) e*(ah.)

(ch.-c.) n*(sh.) 4* (sh.+s.) (ch.4,c.)

Further,
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where it can be verifted that

(ch.4c.) -n* * (sh.+s.) - n* (sh.-s.) e*(ch.-c.)

-11.
.(-h.-:.) (ch.c.) (--- (ch.) --c *

n e n

S- (sh.+S.) *(ch.-c.) (ch.+c.) - (sh.-so) "
n n (163)

-i (ch.-c.) n*(sh.-s.) - - (sh.+s.) (ch.+c.)

An advantage exists to relating the state vectors at the input and

output beam terminals 1 and 2 by the m.%trix Eq. 162 rather than by Eq. 157.

Thus, apart from maintaining similarity with the matrix equations encountered

in previous Sections, two of the elements of the colusn vector fr.)] will

always be zero for the simply supported, frt.e, or clamped beam terminations

that are usually discussed in the literatur-,; coutversely, in forced-vibration

problems, only one or none of the elements of the ccltnn vector (r ) will be

zero. Consequently, when a beam with several discontinuities has to be

analyzed, and the overall transmission matrix incorporates the product of

several component transmission matrices having the form of Eq. 163, there

is no need to calculate three or all four columns of the overall matrix;

rather, throughout, only two columns need to be calculated and algebraic

complexty is minimized. Even the analysis of a uniform beam is facilitated

to some extent. Thus, as a simple example, the bending-moment impedance

BZO at the center of a beam (Fig. 16(a)] without discontinuities, and with

simply supported terminations for which B2 = V2 = 0, can be determined as

follows: One half of the applied bending moment is con=idered to act
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on one half of the beam oZ leigth a = 1/2, producing at the driving point

an intar2 ahcaring P,)rce P, and P. xotational velocity Of" Equatior- 162 i
cn then be written M

(ch..•.) . 2(h .1

0(.e) . • _° (Sh.4-.) 0
n n

1 (h +c

where the hyperbolic and circi.Oaar funct-ions vitain the teusmimssioua matrix

have been assigned the argument ni a. It follows that

; /•6"5')) . " (sh.-s.) 0 (165)

n n *

j "* sh))(n*a) n (ea)

0 (:h.--c. ) + (ch.+s.) (1.67)"(n'a) " (M%*)

therefore, if Eq. 165 is used to eliminate F2 fitm Eqs. ýj and 167, and the

ratio is taIvn cf the resultant expressiors fcr L and ýi, the required

moment impedance is

I
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BZO, = ;"ýs~. N _ 168)
S1 ~(na) a

This quantity is convpnientLy nrmsalized by di-ision by a moment impedance

Jcob--the impedance at the midpoint of an ideally rigid free beam of the

same dimensions and mass Mb as the simply supported beam under consideration
here; Vthu,

b• (na)• (a),
-,&ere the icwAent of inertia lb =Mb 02/3. taba

To conclude this Section, it is Instructive to note that, if a beam

termination has the translational and rotational impedances , = F2 /V2

and ZR the matrix Eq. 162 may be rephrased as follows:

L"ýl a12 C'13 C'14I F 2/

I % 3 
(170)

,. ) %2 2 a,.--c.)

Ua•= - n (sh.-s.)(e. etc.; the negative sign in the definition of

7, arises because, at the beam termination, the positive directions of

B and 0e are opposed (Fig. 15). It is readily seen that
2
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(lk+ aý2)P2 (a±Z a

1, aý)ýa + (%_a3ZR - a.4B 2' , (172)
V,2ZT 2ZR

and

(a 17-ZT + aS>)F (a 3 z-xiB

These cumbersome equations become tractable if either PF or is zero. For

exurgple, if 1 = 0, as vo'd be true if there were no applied bending moment

at the free (input-terminal) end of a beam such as a cantilever or free-free

beam, then it is possible to eliminate the parameter

ZR (a:5lT + US 2 (74

frcm Eqs. 171 and 172 to yield expressions for impedance and transmissibility

that are analogous to those given Lnitially (Eqs. 11-14) for a four-terminal
system. Thus.,

driving-point impedance,

* (175)
-VI

transfer impedance,

TZIZ -V L 16
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force transmissibility,

Z'l

and displacement transmissibility,

again, the negative signs are introduced in the definitiuns of Z and TZI2

because the positive direction of P1 is opposed to that of the velocilies

V and V In the foregoing equations,

* (aZT + r)(ta)3Z- - )- (arvZ. + "12) (337P - (179)

-* f(31ZT + -32)O3zO - a4) - (a2Z1 + a22)(C ( zR - 0a4)1 (!8o)

and u 2 Z ~ ~ 11

For a clamped beam termination, Z, = Z= and,, for example, the

equations for driving-point impedr-nce and force tranmissibility simplify

az follows:

""(1,•.a - aola.*,
= -~l~)(182)

and

T FU 3 ý1 1 (183)
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INote that elements from only the first and third columns of the transmission

matrix (Eq. 170) appfoar here. For a simply su:pported termination, 71T

and Z R 0; consequently,

ZI i.1l3I - allal') (281f)
Ya21a3 4. - a31a211.

1K1 S~TFI2 (a'1•

In this case, elements frrm only the first and fourth columns of the trans-

mission matrix are preseat. Finally, for a free termination, ZT, = = O,

Tm = 0, and the relevant equation for driving-point impedance containr

elements from only the second and fourth columns of the matrix.

10. CANTILEVER BEAM HAVING VARIOUS CONFIGURATIONS

Several important cantilever-beam vibration problems that can be

analyzed readily and concisely by transmission matrices are considered in

this final Section. Three of the problems concern fcrce-driven beams with

clamped terminations for which Eqs. 182 and 183 remain directly applicable.

Considered in a fourth problem in a beam driven by a frorce and a bending

moment simultaneously.

10o.1San tlever Bam

Determined fIrst, as a simple example, are the driving-point impedance

and trausmissibility of a force-driven beam that id supported by a spring of

ca-.ý!ex ;tiffness K = K(O + J8K) at its free end, as in Fig. 16(b). Reference

to Eqs. 142 and 163 shows that
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0 1 0 0 (Ch.-c.) . -n(,h.-C.) .

0 o0 1 0 - L- (sh.-s.) - (ch..c.) 0

0 0 0 1 0 (sh.+s.) . (ch.+c.) B
n2

0l 0 01z -;l(ch.-c.) . :•(sh.+,.) . 0

(186)
and, consequently, that the overall transmission matrix possesses the

elements

S= h [(ch.4c.) + k*(sh.-s.)](n*•) (187)

Cn [(sh.-s.) + k*(ch.-c.)](,*) (188)

= - .-*.*(*) , (189)
2n1'

123 (190)= i -(ch.-c.)(,)( )

a, = .- 1 (sh.+s.)( , (±91)

and

tC ' (eh.+C.)(n0) (192)

It readily follows that

(�"�a~a~c- 1c) = 4 [(ch.c.+l) + k*(sh.c.-ch.s.)](*) (193)
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- , - - (sh.c.-ch.s.)Cn~) (1914)j
(aC3 Cl.,) 2n * t114

"y•, from inspection of Eqs.. 182 and 183, that

F(ch.c.+1) + k*(sh.c.-•.s.) (

"1 £(sh,+.c.-ch.s. ) (n g)

and

(ch.c.+1) + i*(Sh.h.. ) (nL)

In these equations,

k * K 3 + JS
* * M * K)(197).

Jon c (*) 1 -+ 85

where % is the besm damping factor and IT= 3EI/,L is the static stiffness

of an unsupported cantilever beam loaded transversely at its free end.

10.2 Cantilever Beam with a Tip mass M Having a Finite Mnent of Ine.-tia I

In this example, the cantilever beam is driven simultaneously by a

vibratory force F and a bending mraent B, at its free end, as in Fig. 16(c).

Reference to Eqs. 133 and 163 shows that the resultant vibration response of

the beam i1 governed by the equation



I&3

I -jam 0 0 (ch.+C.) -n (sh.-s.) . F2

---(sh.-.s.) * -(ch.-c.) .0

0 1 0 0 (ch ---
n e

0 0 1 ja - (sh.+s.) (ch.+e.) . B2
n

0 0 0 1 (ch.-c.) - (sh.+s.) 0

(n)

[(Ch.+•.) +- (sh.-.)] -n [(,h.-s.) + .i.M (ch..c.)] "
ne ne

.. (sh...) __Lo (ah._c .)

jC ~* C

vhere

72 7( *1 (199)

N n II

! (c(i- 2) n 7 (f h.s.A)

and

Loa-_L. (*)3 (n*,t)3 (200)

(Recall here that w 2 4b/3 is the moment of inertia about the end of a

rigid free beam having the same length, cross-sectional area A, and density

it
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p as the cantilever beam under discussion; and that (* 2p/r 9E

-pA/E*I, where r is the radius of gyration of the beam cross section.)

It is readily seen from Eq. 198 that

2F1 - FL(ch.-c.) + •,(n*l(sh..s.)](n.W ) . B2 n [(sh.-s.) + y(n *A)(ch.-c.)](n.A) (201)

and

-42 C(sh.+s.) a( +3( _C.),c) ~ ) s.+.~2B, n t7(nlA)h. +)J*A -~h+. (*13 (s.+.(n*2)

(202)

Therefore, if B2 or P2is eliminated from this pair of simultaneous equations.,
it is Possible to write

IL2 f[i +c. a(n* )3 (sh.+s.)] + (n*28)f*(w)[(sh-s) + y(n*W)ch.-c.) f

I~n 1)

Tshor u

Sj( ( c h .4 c .)+ y ( n A ) ( s h .-s . ) ] + [ (n * ) ** (w ) ]l[ ( s h . + s . ) - a (n ) 3 ( c h.-c . ) j

I f n'',

(n-•o,* ,

(2o4)

where

= (n)(h-cs~ 3 *4 -S[(ch.c.+l)+ Y(n*)(sh.c.-c.s.)- a(n*1) (sh.c.4ch.s.)- ,a(n2) (ch.c.-l) ((*1) (205)

and

~ ~1 (~,~ f*()(2o6)
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The function of frequency f (w) will be specified for each problem of con-

cern, and it will be a real rather than a complex number if the applied

with a mass having finite moment of inertia has been considered in

Refs. 3•-137, attentioa was confined to the natural frequencies of the

beam in free vibration; beam response to forced vibration was not con-

sidereda, as it has been here.

Representative calculations of force transmissibility are plotted in

Fig. 17 as a function of ni, a dimensionless quantity that is proportional

to the square root of frequency. It has been assumed that f(c) = 0.5,

7 = = - I/2 = 0.05, and that the beam damping factor

BE = 0.01. The solid-line curve of lig. 17 shows the force transmissibility

Tp12 predicted by Eq. 203; the chain- and dashed-line curves show how TF12
changes if either the moment of inertia I of the loading mass or the

applied bending moment becomes zero [a = 0 or f(w) - 0, respectively].

Clearly apparent from the two lower curves are the beneficial reductions

in T. that result from the introduction of I.

10.3 Cantilever Beam with an Arbitrarily Located Mass Load

Figure 18 shows a stanchion or vertical cantilever beam that comprises

an upper stage of cross-sectional area A1 and length 4.±, and a lower stage

of cross-sectional area A2 = L2 A1 and length (1 - g)l. The densities p

and complex Young'& moduli of the two stages are assuimed to be identical.

If required, the choice of different values for A, and A2 can provide a

first approximation to the performance of a tapered stanchion of total

height 2. Located at the point of juncture of the two stages is a mass

load M = ', where
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1
bpllP £.+ (1-~JL.V (207)

is the beam mass. The momdnt of inertia of M is assumed to be negligible.

TL2 wavenubers and the parameters e (Eq. 148) of the two stages are con-

vaniently related as follows:
I

. = (rgl/rg) V (208)

and

e2 _ r 92r(n.)

-- 2 2 2 (209)
g Ar(, n, 2  '12 '12

where rgI and rg 2 are the radii of gyration of the beam cross sections of i

areas A, and A2.

If the free end of the stanchion is driven horizontally by a vibratory

force F, it is possible to write

11

Cr1] = ] 3 C] = It C' 2] , (210)

where

(r1 ) = 1 (211)

0

L 1



47

and

S0 • o(21 2 )

.0B2

In addition, the matrices 111 and 11 are given by Eq. 163 in which the

relevant arguments are now wjjAl i = and (1 - •)n2  = (1 - nlj =

N2" respectively; that is,

n,. ni

* *,** * **

.1.ll~3 .2k 1' 21¢ .

.i * 
** 

*

-ni4 -T3 1  Ti
21 1

L* ~ L

and

11



T12

*12 " 8

-1*

Tf

* 22 * 2

"3 -1

-here

T = (ch.40r) 9*t A (215)

2, (ch.-c.)N* (216)

= (217)

- (sh.-.)8 * (i = 1,2) (218)

ConsequentlU'j.. oecaa•e IT is the tr~n.mi2cion matrix of the lumpd mass M

(Eq. 131), it is possible to state that
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(229

*-ýk 2 T12

1* -n.

and

Tr (220)I3
where

a12 (T1 9- + %T42) 2

6 2= (T42 + LmT2) (22

al 2,2 p (222)

(41A~. 12 1 1T4~2 + v1 0T41T7 + 12VTl2

+ * * ~1* V2 L1 2 ~T 2  (224)

C l (T&l 1 :2 + V12LT.T42 ijV12T2T +. 1 2L12T31 "22 )
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3 332+ V1 2 C12T2 1 T1 4 2 + V1 2 TUT32 2l, 12 T41 T22  , (2s

01T112+ v 1 2 L1 2 T4 lT 4 2 +vl2T 3 lT2 vl2-L1 2 Tl3T2 2) 26

n,.*** 
**

=1 -2-~ (T41TZ12 +vn'PT 21 T3 Z + V1 2T 1"2 + 1 2 1 2%1T2 2 )

"**3 (TVT1 1 2 '3-T31'3 + lTt +- V2L 1 2 T2T2 2) ,(228)

1 +** 3 + 2 (229)
= ý . (Tlili + 12 '12' 41 "' 2 4 " 1 2T3  42 + 12 ' 1 2T2lT2(229

and

* *j 3 * ** * 2* *

-i3T27 132 '12Th3YT32 + v T212AN-r + V1 2 L1,T 41 T22 ) '20

inEas 221 anid 222,

* ____(231)

~~~- * 7(lAv 2  h 2 + (1L)

Because there is no bending rmomcl~ applied to the beam, Eqs. 175-178 for

impedance and txanumissibility are applicable here and., in ,*act, they rAy be

simp~i.ified be.-ause thf, b*&mz in rigidly termina~ted (Zý = oo); for example,,

Eq. a5snd 177I for dr'iviig-polnt iL'*edance Z I and force trsansmissibi2.ity

reduc'+ toFo- 1-82 &ane 18,-$ which are phrased con~isely in terms of



the foregoing parameters a. The Eqs. 223-230 for these parameters also

simplify for a uniform stanchion having stages of identical cross-sectional

areas ard identical radii4 of W=rUtion, because then n2 = n. = n

2  and V 12 = 1.0. Should the beam b losded in this

case by a dynamic absorber of impedance Za (Eq. 123), rather than by r-

lumped mass M = 7Mb, then the expression for 9m' which reduces to

g (* ) ,(232)

can be replaced by

K I (233)

I no other modification is necessary.

Representative calculations of the force transmissibility across a

uniform Ptanchion have been made frau Eq. 183 in which the foregoing

parameters a vere stbstituted after simplification. The stanchion is

loaded by a mass M - 10 Mb(,I = 10) that is consecutively positioned

vhere 4 = O, 0.1. end 0,9 (Fig. 18). The resultant transmissibility

curres are plotted in Fig. 19 on a scale that i.s propositional tc . ;

the dashed-line curve shows the transmissibility in the absence of M.

In all cases, the beam damping factor 68 = 0.01.

When 4 = 0, treansmissibility T falls off rapidly as frequencyF12
increases, in the manner that has come to be associated with mass-loaded

structures, the effTctiveness of added mass in reducing transmissibility

being fully apparent. However, the unexpected result is noted that when

= 0.1 (chain-.line curve), the reduction in TF! 2 is much less than wnen



0•. 'Whereas at lw frequencies TF12 remains < 1.0 following the initial

beam resonance, at higher frequencies TlM closely approaches the v•el

of T., noted whey 7 = 0 (dashed-line curve). Moreover, when p = 0.9

(upper solid-line cit lve for which M lies near the botton of the

stanchion)t forne is amplified (Ti > 1.0) at ael frequencies, and thb

use of additional mass must be considered detrimental. Clearly implied

here is the importance of introducing mass for vibration control only

when it car be located directly in opposition to the impressed force.

Another possible disadvantage to mass loading the stanchion or other

cantilever beam near its root is demonstrated by the curves of Fig. 20,

where frequenny ratios / an are plotted verdus the para-

meter that controls the distance cf the loading mass from the free end

of the beam. Here, ci, aý, and aý are the first three rtsonant frequencies

of a uniform bfam9 which is loaded, for exmplee, by a mass M = 0.25 M.

Both s a•ad ca become harmonics of aI when p is slightly greater than

0.89 a fact that can be det-imental to effective vibration control,

38
although it has provon fortuitous in musical applications. The fre-

quent-y aý, for exaiple, also becomes a harmonir of X1 when L, 0.30 and

10.4 Mss-Loaded Three-Stage Cantilerer Beam

Consider, finally, a cantilever beam that ip mass loaded and driven

by a vibratory fcrae at its free end; the beam comprises three stages of

arbitrazy lengths and arbitrarv b-•t uniform crose-sectional areas A,.,

P and A... as in Fig. 21. A similar three-stage beam w-ithout a mass

load has been considered in Refs. 39 and 40. It is assumed here that
.the densities p and complex Young's modujii E of each beam stage are
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identical--and th..t there exists continuity of force and bending moment,

and continuity of translatonal and rotational velocity, -where the beam

stages are connecteA at djs" - cq s of gIl and g2 from the driving puint.

The far end of the beam is rigidly terminated so that Eqs. 182 and 183

for driving-point impedance Z, and force tranmissibility TF12 remain

applicable,,

The wavemnbers of the beaw stages, and the parameters

i- Ajrg.(n)/Jaz (i 1,2.3) (234)

are conveniently related as in Sec. 10.3; thus,

n/n * (r/rI) (235)

•/n (rglfr 3  3 (236)

•/_- r/ = 1 (238)-
and

= ~ (237)

I where 1 ~=A1 /A2  (239)

C A1 .A ()o)
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and r are the radii of gyration of the beam czoss sections of areas
9L

Ai (i = 1,2,3). As before, it is convenient to define a mass ratio

M/- M where the beam mass

Mb pA1l [l_ + (2 - P1 )(l1 ) + (1 - 2)(L 1 3 ) - = pAlIU (241)

It can now be stated that

(ri = UOTlITIL3 (r.) =11 (Y) (242~)

vhere fr,) and fr.) are given by Eqs. 211 and 212; -1 is given by Eq. 213;

11 is also given by Eq. 213 in which the second subscript to the parameters

T !s always 2 rather than 1, and in which * , I *

T13 -n 3T

qI

-1 1

=**

:}:

D3 3  63

; ~(243)

-T3 3  . T1
rJ13

* T23 -. ;T3 3
L( 3 93J

and
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a31  . ý33

The parameters T of the transmission matrices H,1. L.ad".ar3eie

"-: i

by Eqs. 215218i n vhLWLLC~in.L- 1, 2. 3. x1 z1 .lfl_,3 21, (,,2 - ý n,

vL,(L, - t.)n.,, and * = (1 - ga)n = v 1 3(l - 42 )n. Whsn the product

of the matrices I,12I% is multiplied by the square transmission matrix

1O of the loading mass M (Eq. 131), the following expressions for the

cmcmplex parameters a are obtained:

all = (73.1 + "gma%:) (245)

1 + * * -1 26

-__(. ll + ,1 2v,12 Aa + viTA 31 + , 1 2T 3• 1Al) (2148)_'31 _ 21 2 1  2 T 31  v 2 T 4 A

S1 = -l + 2o1) , ((48)

:.• * * *A * -l -•*,

-,1 (T22A1 + V12'T 1 4 1 A2 1 + V1 2 T1 A3 1 + V1 2 ',2T2A 4 1 ) ,(18

a + pma* (2149)

13 * * 21 * * 3 *)

t3 (T233 + + 1 A + V12 12TUA43)

1. * *3 *+v 2 ~ 4 (251)
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and

%,= 3. * * *A* e * * 3 _*.*,

+ý TA3 T11 + V3.23.241"23 + V3L.L'411T 3 J , 252

where -

_,All + 1* L + LvT2 1 A4 1  (253)ii *: *** ** - **-

2 3

A + v•TA5 + LL • + 1 A2 3 + (254)

and

"= )U (255)
Im nithJ

In the foregoing equations,

V•* ** -1 + * v (256

A21 (T4 2 T1 + u T 2 T43 + v 4 T + uv Te•) T(256)

• * * * * -1 ****

A3 (T32T1 + u T, 2T4,3 + 2T 2 T33 + uv T4,T, 3 ),(27

4.=(2 ~+ u TT + v T~T 3 +u 4 T 3  (258)
* * * * * -1 3* * * *

=4 7~22T1. + 2T +" T3 2T3 + uv TlT. 3 ) 29

A1 = (T4 2T13 + Y v24 + uv T3 2T23 + v T,%3 (260)

A 2 3 = T 2 2:T13+ vT 4 2 T 4 3 + w T1T 2 3 + uv T23)(261)

•* * * * * -T T* * • * (262

2 2

"33 (T3T1 + v T32T43 + u' T,,.3 + uv *4T3 (22
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F?+ V 2 T 3  (263)

where

u = (L v•/LvZ) (264)

and

V = (265)

From knowledge of the complex parameters a (Eqs. 245-252), the

driving-point impedance Z and transmissibility TF12 of a mass-loaded

three-stage beam can be calculated from Eqs. 182 and 183 in terms of

the wavenumber n, of the first stage. However, to compare the effects

of changing the cross-sectional geometry of the beam, and the relative

length of its stages, it is helpful to calculate impedance and trans-

missibility in terms of the wavenumber nfu of a uniform reference

beam having the same length 1, density p, and mass Mb as the beam

under consideration. The cross-sectional area of this uniform beam

is readily shown to be

Au = AU ,k(266)

where U is given by Eq. 241.

Attention is first directed here to three-stage beams having

rectangular and uniform outer cross-sectional dimensions. The inter-

mediate stages of the beeaus are slotted centrally in either the

vertical or horizontal direction. In the first case [Fig. '2(a)],

every beam stage has the coaon depth dl = Au/wU _, where w, is the

outer width of the beam, and
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V1 =v13 = = 1.0 (267)

If the corresponding uniform reference beam also has rectangular cross

section and depth du =dl, it can simply be stated that

ul ~5 *(j du) = .,- (268)

In the second case [Fig. 22(b)], every beam stage shares the width

W=A /d 1U, and

V13 L 13  1.0 ; (269)

it can also be demonstrated that

Vl = 4  +d 3 (270)

where the solid portions of the intermediate stage have the total depth

d2 . In addition, if the corresponding uniform beam has rectangular cross

section and width wl, reference to Eq. 266 shows that

nl (d/du) = n..,U (271)

If the beam is 'bridle jointed," as in Fig. 22(c), Eq. 270 simply becomes

U= 4r(dl/d 2 ) . (272)

I2
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The force transmissibility TF12 across an unloaded beam for which

jI =0.5 and g2 - 0.9 is plotted as the upper solid-line curve in

Fig. 23. The intermediate beam stage is slotted horizontally, as in

Fig. 22(b), and the depth d2 = dl/4; consequently, the parameters

v1, = 2/(37) 0.8109, and 12 = 4. The transmissibility TF12 across

the same beam loaded by 5 times its own mass (= M/M = 5) is plotted

as the lower solid-line curve. For comparison, the transmissibility

TF12 across an unloaded uniform beam is shown by the dashed-line

TF12curve, and TFI across the bridle-Jointed beam of Fig. 22(c)--for

which 413, 422 and d2 take their foregoing values, and v12 = 2 and

7 = 0--is shown by the chain-line curve. In all cases, T.I2 is plotted

versus the dimensionless parameter nu2 , which is proportional to V .

The beam damping factors 8E = 0.01.

Of interest are the regions of attenuation (TF < 1.0) that occur

in the chain-line curve at frequencies intermediate to the beam resonances.

Thus, a maximum attenuation of 4.7 dB is noted between the first and

second beam resonances within bounds that differ by a factor of 4.5

in frequency; and maximum attenuations of 15.0 and 12.8 dB are noted

between the second and third, and the third and fourth, resonances

within bounds that differ by factors of 4.1 and 1.9 in frequency,

respectively.

o4
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Table I. Optimum values of the frequency ratio (c/mm)° and the damp-

ing ratio (B)o ' and the corresponding values of transmissibility (T
~R'o ~ 'Fa max

for a dynamic absorber tuned to the fundamental resonance of a circular

palate with a clawped boundary.

0.025 0.908 0.222 6.304

0o.o 0.828 0.3o6 4.496

0.10 0.698 o.4o8 3.202

0.25 o.'65 0.549 2.o86

- I.
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Table II. Optimum values of the frequency ratio (w a/aým)° and the damp-

* ing ratio ( o ' and tbi,- correspondin5 values of transmisstbility (T., )Max

for a dynamic absorber tuned to the fundamental resonance of a circular

plate with a simply supported boundary.

MIPaMo0 (R~o ~ Fa~m=

0.025 0.935 0.177 7.227

0.0587 0.2 5.174

0.10 0.779 0.329 3.701

0.25 0.579 o.4-56 2.407

I'
I

I
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FIGURE LEGENDS

Fig. 1 General four-terminal system.

Fig. 2 (a) Lumped mass obeying Newton's second law, and (b) a massless

spring obeying Hooke' s law.

Fig. 3 Ecries connection of four-terminal systems.

Fig. 4 Parallel connection of four-terminal systems.

Fig. 5 Dashpot obeying Newton's law of viscosity.

Fig. 6 Parallel spring and dashpot.

Fig. 7 Dynamic absorber.

Fig. 8 Mechanical system with a dynamic absorber.

Fig. 9 Uniform thin rod in longitudinal vibration.

Fig. 10 Center-driven Bernoulli-Euler beam in symmetrical transverse

vibration.

Fig. 11 Center-driven thin circular plate in transverse vibration.

Fig. 12 Force transmissibility TFa across the plate of Fig. ii when it

is clamped around its boundary and a dynamic absorber is

attached to its midpoint. Mass ratio 7a = M a/Mp = 0.1 and

0.25; for the dashed-line curve., M /M = 0. Plate dampinga p

factors 8E 5 6G = 0.01.

Fig. 13 (a) Lumped mass, and (b) limnped mass having a fintte momeut

of inertia.

Fig. i4 (a) Spring in cascade, (b) a supported spring, and (c) a dashpot.

Fig. 15 Bernoulli-Euler beam in transverse vibration.
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FIGURE LEGENM (C0NTInUEn)

Fig. 16 (a) Simply supported beam, (b) spring-supported cantilever beam,

and (c) cantilever beam loaded by a mass having a finite moment

of inertia. Beam (a) is driven centrally by a sinusoidally

varying bending moment; beam (b) is driven at its free end by

a sinusoidally varying force; and beam (c) is driven simultaneously

at its free end by a sinusoidally varying force and bending mcment.

Fig. 17 Force transmissibility TF12 across the cantilever beam of Fig. 16(c)

when y = M/Mb = 5, a = I/31O = 0.05, and f(w) = 0.5 (solid-line

curve). If the moment of inertia of the loading mass is zero,

or if the applied bending moment is zero, TF2 is increased or

reduced aj shown by the chain-line or the dashed-line curve,

respectively, Beam damping factor &, = 0.01,

Fig. 18 VeL-tical stanchion or beam that is mass loaded at an arbitrary
distance PA from its free end, where it is driven by a sinu-

soida.ly varying force. The beam comprises two stages of
different croes-sectional areas.

Fig. 19 Force transmissibility T. across the beam of Fig. 18 when its

component stages have the same cross-sectionel aiea, the mass

ratio 7 = 10, and g = 0, 0.1, and 0.9. The transmissibility

across the unloaded beam (y = 0) is shown by the dashed-line

curve. Beam damping factor 8 E = 0.01.

Fig. 20 Frequency ratios q, 1cI and i/% in hich aý, , and % are the

first three resonant frequencies of the mass-loaded beam of

Fig. 18. The component stages of the beam have the same

cross-sectional area; the mass ratio 7 = 0.25.

t
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FIGURE LEGENO (CONTINUED)

Fig. 21 Mass-loaded cantilever beam driven at its free end by a sinu-

soidally varying force; the beam cumprises three uniform

stages of arbitrary cross-sectional are"s and arbitrary

lengths.

Fig. 22 Mass-loaded three-stage cantilever beams driven at their free

ends by a sinusoidally varying force: (a) vertically slotted

beam, (b) horizontally slotted beam, and (c) "bridle-connected"

beam.

Fig. 23 Force transmissibility TF12 across the beam of Fig. 22(b) shown

by the upper and lower solid-line curves for which the mass

ratio y = 0 and 5, respectively; the parameters 41 = 0.5,

2= 0.9, and d2  d/4-. The force transmissibility across

a uniform beam, and across the beam of Fig. 22(c), is shown

by the dashed- and chain-lizLe curves for which y = 0.

4

I
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