(TR RS ) ge"fzg m}?ﬁ,&ﬂ@ﬁ?ﬁ TR TR At Wk e RS 5 T T ITR LR A

-

—~

.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD-AQ34 442

MECHANICAL FOUR-POLE PARAMETERS:
TRANSMISSION MATRICES

PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PENNSYLVANIA

19 ApriL 1976




s

s

A e A o o e i e A S e e 2

019056

ADA034442

MECHANICAL YOUR-POLE PARAMETERS: TRANSMISSICN MATRICES

J. C. Snowdon

Technical Memorandum

File No. T™M 76-i22

April 19, 197¢

Contract No. N00Q17-73-C~1418

Copy No. 557

The Pennsylvania State University
Institute for Science and Engineering
APPLIED RESEARCH LABORATORY

P. 0. Box 30

State College, PA 16801

APPROVED Fuit PUSLIC #ELERSE

NA7Y DEPARTMENT

NAVAL SEA SYSTEMS CCMMAND

REPRODUCED B

NATIONAL TECHNICAL
INFORMATION SERVICE

ARTMENT O COMIMERCE
u.s. ‘s’&gmgmm. VA, 22161

i s D I AR I Lo D IR Era R B e RN, KIS

LA

e A B80 a




FENGT T E I AT NG T A WIS T v T T T 2 MO e Mamgd U8 08 R m, e 0 T T Te st e e et s -

This investigation was sponsored by the Naval Sea Systems
Coummand, Ship Silencing Division and the 0ffice of Naval
Research.




AT i I T rul’;ﬂrue?i:"‘

UNCLASSIFIED :
SECURITY CLASSIFICATION OF TVI(S PAGE (When Date Entered) ‘

READ INSTRUCTIONS
i REPOR? NUMBER 2. GOVY ACCSSSION NOQ.| 3. RECIPIENT'S CATALOG NUMBER
™ 76-122
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
MECHANICAL FOUR-POLE PARAMETERS: TRANSMISSION
MATRICES (U) 8. PERFORMING ORG, REPORT NUMBER
g
7. AUTHOR(s) - 3. CONTRACT OR GRANT NUMBER(s;
J. C. Snovdon N00017-73-C-1418
3. PERVYORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS 4
The Pennsylvania State University SF 43-452-702 (Nav Sea) ;
Applied Research Laboratory N00014-76-RQ-00002 (ONR) :
‘ tate Cnllege, PA 16801 . ¢
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORMT QATE i
Naval Sea Systems Command Office of Naval Research April 19. 1976 H
Department of the Navy Department of the llavy [T3 RUMBER OF PAGES :
Washingtor, DC 20362 Arlington, VA 22217 923 i
14, MONITORING AGENCY NAME & ADDRESS(If dh "srent from Controsling Olfice) 15. SECURITY CL ASS. (of this report) ,
CLASSIFIED
1Sa. DECLASSIFIZATION/ DOWNGRADING
SCREDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution ualimited. Per NAVSEA
Nov. 22, 1976

7. DISTRIBUTION STATEMENT (of the abatrect eniered In Block 20, i different from Reéport)

18. SUPPLEMENTARY NOTES

15. KEY WORDS (Continie or reverse side if necessary and identify by block rumber)

Four-pole parameters. Masg~lcaded beams.
Trangmission matrices. Circular plates.
Nonuniform beans. Dynamic vibration absorbers.

20. AB3TRACT (Continus on reversy 3ide If necessary and identify by block number)

This report revises and extends an eariier report entitled "Mechanical
Four-Pole Paramate 3 @ad their Application" [Journal of Sound and Vibration,
15, 307-323 (1971)]. Newly considered are so-called transmission matrices,

' which enable the transverse vibration response of beams with disconti-
ruities to be analyzed readily. Further, the transmission matrices used
in the report result in more concise beam analyses than the matrices
generally employed in the literature. Additional examples that are

ATy

WIS

L8
DL , o0, 1473  eoition oF 1 nov 6315 oBsOLETE

b

UNCLASSIFIED

SECURITY CLASSIFICAT'ON OF THIS PAGE (When Data Enterer
]

‘ i/




2
3

N
T

Y g e Al
SATII A S A

i

m

AN

=3
&
7.

T A e

et s o o A —— WY

A A ———— -

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS FAGE(When Daca Znteced)

considered here include end-driven cantilever beams or stanchions that
are propped by a damped spring; or that carry an end mass having a

finite moment of inertia; o>r that carry a mass that divides the stanchion
into two stages of arbitrary lengths and croszs-sectional areas; or that
carry an end mass and subsequently comprise three ztages having

arbitrary lengths and cross-sectional areas.

___ UNCLASSIFIED

i SELURITY CLASSIFICATION OF THIS PAGE(When Deato Entered)

B R R e R e e e

e A a0 AN AR




o

3
2
o
3

S B LI
MBI

A

»

T m———
AN T T

s s
s RatEitL

oot s
T e

e
T

29 ,%,,.‘_ 7

oy
ey

ey

T
RS L A 7

i b
Rihiid ity

T
o 4T

e

e

T

s T ; SR AT R e B R L N
B e TR TS A T T T ARG Y TS T

PUNS—T ¥

DL AN A 00

ABSTRACT

This report revises and extends an earlier report entitled 'Mechanical
Four-Pole Parameters and their Application" (Journal of Sound and Vibration,
1s, 307-323, 1970). Newly considered are so-called transmission matrices,
which enable the transverse vibration response of beams with discontinuities
to be analyzel readily. Further, the transmission matrices used in the
report result in more concise beam analvscs than the matrices gsnerally
employed in the literature. Additional examples that are considersd here
include end-driven cantilever beams or stanchicns that are propped by 2
damped spring; or that carry an end mass having a finite moment of in-
ertia; or that carry a mass that divides the stanchicn into two stages of
arbitrary lengths and cross-sectional areas; ¢1 that carry an end mass and

subsequently comprise three stages having arbitrary lengths and cross-

sectional aress.
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1, INTRODUCTION

Four-pole parsmeters have been utilized for meny years in electrical
circuit theory as an effective means of analy=ing four-terminsl networksl”é;
more recently, with mechanical notetion, they have been uszed to solve vibra-
tion problems involving rotationsl! and trausiationsl® ™ motion, e four-
pcle parameters of a veriety of mechanical ~lements that can be wigwed as
four-terminal devices are described here; for example, four-pcle parameters
sre derived or stated for simple lumped systems such as a spring, a mess,
and a dynami~ vibretion absorber, and for dietribuled systams such as a
uniform rod in longitudinal vibration. Alge stated are the parameters that
describe the bending vibretions of a Bernoulli-Eulear beam and a thin circular
plate, both of which may be envisioned as four-te:wrinal systems if they are
driven ard terminated zo that only symmetrica’l vibiations about their mid-
pcinta are excited.

Four-pole parameter theory is actually a simple theory of transmission
matiices, When more compliceted situastions are encountered than those
mentioned hitherto, four-pole thecry becomes inadequete and a transmission-

matrix theory of wider applicability smst be utilized,lD 2

For example,
if a beam is not terminsted symmetrically (as & cantilever), or is .-:
driven symmetrically (as & simply supported besm driven off-center), it must
be viewed as an eighit-terminal system, and reliance must be placed on b x 4
transmission matrizes rather than on the 2 x 2 matrices that typify the
simpler four-pole theory.

Following a discussion of relevant four-pole parameters, and examples
of their application, the more general transmissicn-matrix theory is developed
aud used, for exsmpie, to destermine the transmissibility across a mass-loaded
cantilever beaw thet comprises three sections of arbitrary lengths and cross-

sectionsl aress, and scross a cantilever beam that is mass loaded at an
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arbitrary point msrked algo by a change in beem cross section, Although
_‘ ? such problems are cumbersome to analyze conventionally, they are resdily
tractable using transmission-matrix theory.

2. BASIC FOUR-FOLE THEORY

A linear mechenical system is shown schemntically in Fig. 1. The

system may be camprised of one or more lumped or distributed elements, or

be constructed frem any cambination of such elements. The input side of
the system vibrates simisoidally with a velocity Gl in response t¢ an . !
applied force 51. Ir turn, the output side of the system exerts a force ;
f‘a on the input side of scme further system, sharing with it a common

velocity 52. 5hus, the system shown is said to have input and output

terminal pairs, a force F, and velocity {/‘l at the input terminel pair

1l

glving rise to a force F, and velocity \72 at the output terminal pair,

2
the reaction of any subsequent mechanical system being accounted for.
Forces are considered positive when directed to the right.

Consider now the simisoidal vibration of a mass M and a spring K in

the éontext of tue foregoing discussion. From Newton's second law or

Hooke's law, and {rxa reference to Fig. 2(a) or 2(b), it is possible to write

1. Mass M
. av av,
Fi - Fp=Mg=M5p
oY
F| = 3‘2 + Juv, . (1)
and
i’zl = ?72 , (2)

where t is %time awd o %4 angular frequency.

2. Spring K
- Vz) dt
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Inspection of Egs. 1l-4 suggests that the vibration response of the four-
terminal system of Fig. 1 can be represented by the following equations:

where au, 012, a21’ end o, are known as four-pole parameters. It is

directly appsrent that

and

V=F, @)+, .

Fp=oy B+, Y

Vy =0y Pyt oy Vs,

N”JRIH H

it t<li|~‘ )

&

m< ‘il-—‘ !

(5)

(6)

(7

(8)

(9)

(10)
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where the subscript 52 = 0 indicates that the ocutput terminal pair is'
blocked and the subscript i"z = 0 indicaves that the output terminal pair
is free (unrestrained). The parameters @, and Q,, are dimeasionless;
4, has the dimznsions of impedance and Opy the dimensions of mobility.

In general, the four-pole parameters are frequency-dependent com-
plex quantities, Of considerable advantage is the fact that the para-
meters cheracterize only the system for which they are determined; their
value 1s 1ot influenced by the preceeding or subsequent mechanical systems.

Equations 5 ard 6 enable expressions for the driving-point and trans-
fer impedances and for the force and displacement transmissibilities across

the system to be written down concisely. Thus,

driving-point impedance,

R F, v o, ¥ 4y + Oy
= = B | mseemem—— (u)
2 v, Qiiz“'“zz"z) <?2jo+a2

transfer impsdance,

S . .
p =z = (o Byt ogp) s (32)
2
force transmissiovility,
T = |22 | = |t (1)
F, %p * &0y
and displacement transmissibility,
v
2 1
Dz iy (@5 + ay Zn)

o i e

[y
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In these equations, Z; = F,/V, 1s the driving-point impedence of the
mechanical system subsequent to the one under consideration.
3. RECIPROCCITY AND TRANSMISSIBILITY THEOREMS
It is now instructive to return to the four-pole Eqs. 5 and 6, which
are easily inverted to yield the equations
s %~ Hp-
=2 fi-% N (15)
and
=~ "% s
2= BtTwm V1 (16)
where
A= (o Gy = oy 0) (L.
If the original output terminals are now visuvalized as the input terminal
pair, the relevant four-pole equations follow immediately from Egs. 15 and
16 in which the direction and, therefore, the sign of the forces §l and §2
are reversed; thus,
~ %o~ Fp-
i w Ty ult (28)
and
~ % Fy- :
V2=--5-Fl+—-A-Vl. (19)

Te Reciproeity Theorem states that the transfer impedance or mobility
between any two terminal pairs in a network is independent of which ter-

minal pair is taken as the input or output station; consequently,

bt trand

A it W %
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F. ¥
=t | = £ I (20)
v o \' -

2 F2=0 1 nl=0

QY

2 ] = 2 | . (21)
F -y - F ~

2 Vé—O 1 Vi=0

%
*

From either equation, reference tc Eqs. 5 and 18, or Egqs. 6 and 19, shows that

AL AICIANS 4
PR R R T

b= (o @y - oy ap) =1 . (22)

25
P
s
=2
g
‘R‘
3
o

Consequently, Eqs. 16 and 19 may finally be written as

Po= F v ’
e I2 oo Fl + %o vl (23)
and
~ = -~ ~ ,
V.a Gy Fl +a, vl . 24 )

| It follows from Eq. 22 that knowledge of only three of the four-pcle

parameters is sufficient to specify the performance of the system com-

pletely. Further, in the special case of a symmeiri:al system (when it

dves not matter which terminal pair is input or output), Eqs. 23 and 2L

mugt be identical to Eqs. 5 and 6. That is to suy, for a symeetrical

= system,

%) = %o (25)
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and knowledge of only two independent four-pole parameters is sufficient
to deteraine th2 system performance ccmpletely.
2inally, an impordact result, vhich is sometimes referred to as the

Trwisrissibility Theorem, follows immedistely fram Eqs. 5 and 24; thus,

F v
2 - ?'i - (26)
L v, s
1 V=0 2 K=o
or transmissibility T ie such that
brod = Tm . (27)
Again, from Eqs. 6 and 23,
£ et = 2 (28)
Wi 2 Rl
2 1
or
Tz ® Tepr - (29)

Fquations 27 and 29 show, as has frequently been noted and utilized in the
past, that the force and displacement (and, therefore, velocity and acceler-
ation) transmissibilities in oppcsite directions betiween the two terminal

pairs of a mechanical sistem are 1dentical, 2427

L, CONNECTION OF MECHANICAL FOUR-POLE SYSTEMS

If the cutput terminal pair of one mechanical system is rigidly connected

to the input terminsl pair -f another swystem (Fig. 3), so that the output from
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it the first is exactly tue input to the second, the two systems are connected
in series. Thus, in matrix notation, if
. @ ' t 7] —f 7]
1 91 %2 2 .
45 ? = ' . § b} (30)
1] % %2 |z
e !
; E U t f!
- 2| 4 9 =1 (313
T ] (]
V2] 1% %] | V5]
and — _ -
: ‘f' n n "E',
E nij_ a]l 012 (n+l) (32)
: Tl lat ot |§
N L21 "2z | (nt)
' then
b 1 ' t ' n n F
f Bl=)1% alz—l 91 %z|....|%1 %2 Flann)| . (33)
e:: pod t ] 11 A4 n r v
73 1 %1 “zz_l %1 %2 %1 oz Vint)
For a two-stage system,
4 1l _ [Pu Pr2| % (34)
- -~ = -~ :
1 V1 By Paa| | Vs
4 where
‘ - t ] 1 ' v 1 t 1
Pru Prz| _ %1 TA2% % T %% (35)
] ' t At ' 1 ' '
Ba1 Pz Gpy1 * %y Oy %%
If the input terminal pairs of two or more mechanical systems are
B connected rigidly so that they move with the same velocity (Fig. &), and

A ———— o
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if the net input and output forces are equal to the sum of the input and
output forces of the component systems, then these systems are comnected

3 in parallel, Thus,
F B,, B F
’ ~l ~ ll 12 ~2 R (36)
V1 Bar Paz| | V2
2 vhere
Byy = 4/B , (37)
B, = (ac - B%)/B , (38)
Bay = 1/B (35)
& and

322 =C/B . (%0)

In these equations, ;

n
=) (3 )
= %
3 n
; l
: 2-) (;;) ’ he
e ="' 1

and

Y] .

e .

R v A
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1
For only two systems in parallel,
? 4] + ? "
-Gt “
%Gy + %y > 9
B= )T (15)
and
1] 1 + dl q!
o= (22l 722 A (46) ,
%1% € f
so that |
ﬁu = q)/’3 ) (l"'?)
By = Byy (¥/€) - (8/€), (48)
Byy = /9 (k9)
and
Bop = M3 . (50) :
5. VALUES OF FOUR-POLE PARAMETERS (LUMPED SYSTEMS)
1. Mass M [{Fig. 2(a)]
Equations 1 and 2 show that, for this symmetrical system,
O == 1 (51)
912 = JuM , (52)
Gny = 0 (53)
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and

| ] . ~l - 2 . _ (54)

- 2. Spring of Stiffness K [Fig. 2(b)]

MY

e

Equations 3 and 4 show that

yK At T

L4

allaaaz”l’ (55)

-
=
&
k-

Gl2=0, (56)

3 &y = Jo/K, (57)
and
7 F 1 Of|F

(58)

~ 19)- hd
! x 1%

<3?

ok

Equally well, for a rubberlike material having a complex modulus G;, K

4,
iz

o B WS

would simply be replaced by the complex stiffness kG:, vwhere k is an

appropriate constant having the dimensions of length.27

3 3. Dashpot of Viscosity 1 (Fig. 5)
é -~ o
e . Fl = F2 (59)

and

ﬁagh+%. (60)

OGS AR e PO AUFIONEET LT = T NG ATR VTR Tk TSR T S BTty
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Consequently, P
Oy =% =1, (62)
(712 =0, (62)

%lzl/'}: (63)

) 1/q 1 \72 ) (64)
L. Parallel Spring and Dashpot (Fig. 6)
F, = F, (65)
and
V=, 4T, (66)
. vwhere
K* = (3% + n).l . (67)
Consequently,
G =1 (©)
@, =0, (69)
@, = «* (70)
and




1%

4
¢

3 1 0 2 31 of IE, -
. \
Vi 1Y, R[TF(GonTk AL

Thie equation suows that the parallel spring and dashpot combiration may be

regarded 2s a single spring of complex atiffmess K = K1 + {Jon/K)].

%, Dynamic Absorber (Fig. 7)
It follows directly thet

i"l_] 1 o‘! l-l 0¥ ”'és-‘
..J e . ._

1

sam
-~

[- . (12)
* * o
K T+ v3

4 dynamic absorber is normally unterrinated (2, = F./V. equals zero), in
33

which case its driving-point impedance Zﬁ may be written simply as

1 )
7 = e =
“a 2} 1 4+ joMkK* ° (T5)

[

6, Mechenicsl System with Dynamic Absorber (Fig. 8)

-

2J Lm “22

Ae before, let

H

":I

(%)
&)
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If the driving-point impedance of the dynamic absorber is a,ga.in Za. , then

~

2 ¥4 Vp (75)

i)

Fl =

and, since V, = ¥V, it is possible to write

1l
Fl 1 Z a Fz )
vy K v,y °
It simply follows that
” rl . ~
1 - all C’:1.2 3 )
~ | = b (i
V1 0 L1 1% %l Y%
or
1 c’:L.‘l.dl'za.atal °’12*Za°22 I—FS
v I= v ’ (78)
! %1 %z ||V

where Za is given by Eq. (73).
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6. VALUES OF FOUR-POLE PARAMETERS (DISTRIBUZED SYSTEMS WITH INTERNAL DAMPING)

6.1 Uniform Thin Rod

For the longitudinal vibration ¢f this symmetrical system,27 which is

shown in Fig. 9,

Ry *, _
&, = §- |~ =cos n'f = Q, , (19)
2 Vv
2=0
i.‘Jl. *
alz=%-l =uR*sinnz, (80)
2 F=0
2
aad
- (a:L'LC‘ZZ-l) _ (-Sinzn*z) _ «8in n*ﬂ (8’ \
% o T TTF * * ’ -
2 MR sinn 2 ke
vhere
by = (Jao/n’e) (82)

and £ and MR are the length and mass of the rod; n* is the complex wave-
27

muwber.

Knowledge of the four-pole parameters enables expressions for the
impedance and force and displacement transmissibilities of the rod to be
written down directly from reference to Egs. 11-14. The termination impedance
in these equations can have any value. When ZT = 0 or =, results for the
limiting case of a free-free rod or a free-clamped rod can be obtained. If
the rod is connected to other lumped or distributed systems, equations equiva-

lent to Fgs. 11-1% will describe the vibration response of the resultant system.

[V
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§
For exzmple, the force transmissibility TFJ.Z across a rod loaded by a mess |
M at its driven end, and terminated rigidly at its opposite end, follcws
ddrectly from inspection of Eq. 13; that is to say,
-1
where ;
E
By Brp 1 JaM cos n*g p;; gin n*s
- v | eo@ 5
L Boy Baz_l LO 1 (-J._/uR/Bin nf cosn s
Conseguently, ‘
I * -
i T, = I[cos n't - (M) (0 2)sin n' 21| . (85)

This equation has been used, as in Ref, 27, to provide a guide to the

PR

character of so-called "wave-effects” in a.ntivibration.mmmtings, where ;
the force-driven mass M and the rod are V'Lsualized: as a vibrating machine
and a resilient mount, which has self resonances by virtue of its elasti-
city and finite mass M‘R.

6.2 Eernoulli-Fuler Beam

WA AL ek . DAL s AR 7 G

In general, trensversely vibrating beams must be viewed as eight-
terminal systems, since the application of rotational as well as tremsla-

tionsl forces and velecities must be eccounted for. However, in the restricted

W WY e A

but important case where the beams are excited 1n symmetrical vibration
by simusoidal forces, they may be visualized as four-pole networks if
their cutput forces can be shared between dual output terminals. Then,
for & center-driven beam (Fig. 10), two sets of four-pcle parameters re-
late to the two pairs of boundary conditions that are most frequently

censidered in practice. ‘fhus, if it is assumed that the bending moment is
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alwvays zery at the ends of the beam, the adcption of blocked or Zree ter-
minsl paivs will provide the limiting cases of a simply suvported or a free-

free besm. Alternatively, if it ic assumed that the erds of the beam are con-

strained to have zero slope, the adoption of blocked or free terminal paires will

provide the limiting cases of a ciamped-clemped beam or a beam with ends
free to slide without restraint (zero shearing force). In either
case, it must be assumed thet half the driving-point impedance Z,, of

the subsequent mechsaical system can be pilaced st each end of the beanm:

Eqs. 11-14 then remein directly appliczble.

(1) Zero Bending Mcoment at Endg of Beem

Reference to the expressions for beam impedance and transmissibility in

Chaps. 7 and 9 of Ref. 27 shows thai the relevant four-pale paremeters are

(2 ch.c.> , (86)
all ch.+c. (n*&)
% [(sh.c.+ch.s. ) (87)

al2 = “b ch.te. /(n*a)

o = e (Bpe) @
and

= (BEL) . @)
* vhere

¥ = (Jat /n"a) (90)

M‘o and & are the mass and the half-length of the beam, and n* is its complex

w&vember.27 Abbreviations such as (ch.c. )(n*a) , for example, are used

s e

[T T R NI TR A Py
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to represent the term cosh n*a cos n*a.. Although the beam responds as &
symmetrical system in the following discussion, it has not done so hexe
because a, , # Ay (Eq. 25).

2) Zarc Slope at Ends of Beam
The four-pole parameters now become
sh.c.4ch.s. >
= ay, = (———-—-——-— ; (1)
%.1 a22 gk.+8. (n*a)
— * (2 8h930> (
= P ’ 92)
alZ l’.l-b sh.+s. (n')“a)
and
1 (ch.c.-l)
= == (== : (95)
(3) Examples

Knowledge of the foregoing four-pole parameters and of the results of
Egs, 11-14 enables expressions for beam impeasnce and transmissibility to be
written down directly, For example, reference to Eqs. 11 and 91-93 shows that
the driring-pcint Iimpedince Zm of & beam centrally loaded by a mass M, and

rigidly clamped at each end, can be written as

B
=
Zy = Bay ’ (94)
where
Bi1 Pap 1 JaM (sh.c.+ch.s.) Eub*(sh.s.)
=X vl 5 (95)
Boy  Bas (sh.+s. s(n*a o 1 (ui)) (ch.c.-1) (sh.c.+ch.s.)

(n*a)
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consequently,
Zy (sh.c.+ch.s.) + (M/Mb)(n*a.)(ch.c.-l) (%)
Jaiy n*a(ch.c.-l) .

(n*a)

Likewise, from Egs. 11 and 86-89, the driving-point impedance Zeg °F
& free-frece beam, the ends of which are loaded equally by lumped masses M

having negligible rotary inertia. is given by the equation

B
2 = g;l-:— : (97)
where
B8 2(ch.c.) * 1 2jaM
12 ) 1 . Hy (sh.c.+ch.s.) (o)
Boy (ch.-!-c.)(n*a) (ub*)‘ (sh.c.-ch.s.) (ch.c.+l) ) 1
(n*a.)
consequently

Z 1 (sh.c.+ch.s.) + 4 (M/Mb)(n*a)(ch.c.)

Tt = (o) ¥ . ' (99)
o2, (ch.e.#l) + 2 (M/M, )(n"a)(sh.c.-ch.s.)

(n*a)

Note that, because the beam is loaded by a total mass 2M, a corresponding

impedance of 2juM appears in the final matrix of Eq. 98.

Finelly, the force transmissibility TFlz = Tm acrnss a simply supported
beam that is centrally loaded by a mass M can be written from Eqs. 13 and
86-89 as follows:

_ -1

H

where now

A =

ey ket
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1 jaM] [2(ch.c.) u;f(sh.c.-»ch.s.)
- T el ; (l00)
*Tt/(n*a)| 0 1 (w,) " (sh.c.-ch.s.) (ch.c.+l)
(n's)
consequently,
T = (ch.+e,) l . (102)

2(ch.c.) + (M/M )(n"a)(sh.c.~ch.s.) | (n*a)

6.3 Thin Circular Plate

The transverse vibration of & thin circular plate excited symmetrically
by a simusoidally varying force (Ref. 28) can also be predicted by the use of
four-pole parameters., Such e plate of mass MP and radius r = & is shown in
Fig. 11. The plate is driven by a central point force il that gives rise
to a force fa per unit arc length at the plate boundary. Associated with
these forces are the velocities V’l and V’z .

In common with the beams considered 'in the foregoing, two sets of
four-pole parameters relate to the two pairs of limiting plate boundary

condlitions most frequently encountered in practice:

(1) Zero Bending Moment at Plate Boundary

In this case, the extreme values of Z = (2xa Fzﬁz) =Qore
in Egs. 11-14 provide results for a plate with a free or a simply

supported boundary. The four-~pole parameters of the plate are

o, = /¥, {103)
o, = Wyt 0F/0%, (104)
Gy = (o¥a) Y /ubuio® (105)
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:
Gy = (n¥a) 0% /2n0* | (106)
3
vhere ‘
A=2/t, (107) ;
, i
Hp = ,juM.P/(n*B.) s ) {108) :
C [ z;roxo + ¢& (JoIl + JlIo)](n*a.) , (1_3?)‘
* "y “
0 = [-(3, + 1) + e T + 1)) (awa) > (13.0)
* *
8" = [-(J L, + I ) +20 L0 sy (211)

0% = ([(I_+T )(Y,-A K )=(3,-1; WY -A K )] - 2 ¢a*< 1F-A "'1’(1)}(n*a) ,  (12)

and

* *'r - % Yo g% !
¥ o= {2(Y°I°+ A JOKO) + o, _(Jo I'_;)(Yl-f-A :{1) (Jl.Il) Y +A Ko)]] (113

(n*e) °

26

In these equations, n* is the complex wavenumber of the plate,” 2bbreviations

such as (JoIl) (n*a) refer to the product Jo(n*a)Il(n*a) of the ordinary and modified

Bessel Functions of orxders zerc end sne having the ccmplex argument (n¥*a), and

oa* = (1 - v*)/(n%a) , (124)

where v* 1s the complex Poiscon's ratio of the plate materiai. 28

(2) Zero Slope at Flate Soundary

In this case, the extreme ~ralues of Zp = C or = in Igs. 1.1k

provide results for a ulsie with a sliding or & rigidly clamped bound-

ary, and
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JI, +J.I
ol 170
"n‘( AT 4 )(n*a) ) (1}5)
Jih
= h * —l-—-— 9
Gz = Hp <J1+Il (%) (116)

®a = (h ¥* '('r+"7(*a) (117)

and
(n*a.\ Ak -hh
%2 =\ %/ T3 F L, (nva) (118)
where
[(J -I )(Y + A 1:1) -(J +Il)(Y° + A Ko)](n*a) . (119)
(3) Exsmples

As ar exsmple, if in Case (1) the terminating impedance Zy, at the
plate boundary is not specified, reference to Egs. 13, 103, and 10% shows

that the force transmissibility TF12 = TFO across the plate is simply

2na. ial i i [(n¥a) Z/3M)] @F |
Fl ! (2 8 + [(n%a) Zp/ St ] =91

. (120)

This equation states that,if the boundary of the plate is completely free,

TFO = 0; alternatively, if it is simply (rigidly) supported,

= |a¥* /==
Too = [9°/2¢] . (121)

Likewise, in Case (2), if the boundary of the plate is built-in (clamped),

end if a dynamic absorber is attached to the plate where it is driven by
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the central force 'f'j . then the transmissibility TFa across the plate follows
directly from reference to Eqs. 78, 115, and 117:

3
]

-~ ~ _ ' -l
-~ |2xa F?/Fll = I(au + 4, a21)|

(n*a) ’

8(7, +1;) ) 122
|| s (z2)

where the driving-point impedance Za. of the dynamic asbsorber Is given by Eq. T3.

The use of a dynamic absorber to reduce the vibration of platelike
structures is discussed in Refs. 14 and 29.33. Because of the practical impor-
tance of the dynamic absorber in such applications, transmissibility curves
that have been computed from Eq. 122 are plotted and described in the

following section.

T. DYNAMIC ABSORBER ATTACHED TO A CIRCULAR PLATE

CLAMPED AT ITS BOUNDARY

Calculations of the transmissibility TFe. can be mede from Eq. 122 more
conveniently if the impedance of the dynamic absorber is written from Eq. T3

ag

. o, [1 + J(on,/K,)]

&1~ (ofe)? + 3 (eny/K,)]

. (123)

Here, the subscript a relates K, M, and 1 specifically to the ebszorber, which

has the natural frequency

@, = (K /M) . (124)
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The dimensionless quantity (wna/Ka) can bhe expressed ia terms of a frequency
ratio (ma./wm) and a damping ratio

g n
a &

% = WMo =7 ; (125}
8 8 ac

this is explained in detail in Ref, 27, whichk considers the attachment of
dynamic absorbers to cantilever beams. In the present applications, R is
the frequency of the fundamental plate resonunce t~ which the absorber is
tuned; Nae is the value of the coefficient cof viscosity required to damp

the absorber critically; and the frequency o is related to the plate wave
28

mumber®” by the equation

- (na)z

Tl

where N = 3.1962 is the vaiuze tcken by na at the fundemental resonant fre-
quency o when the internsl dsmping ¢f the plate is negligible.

Optinum design of the dynamic sbsorber is achieved, for arny given
value cof Ma’ by suitable cholce of values for the frequeacy or tuning
ratio a)a/com and the demping ratio S'B For these so-called optimun values,

k) A { 3 cmd - - -
which will be writ'?-n aRr (m&/.J.am)o and (8;) . the transmiosibility Ty at

®
the fundamental plate resonance is suppressed in s unifomm and gymmetricsd
manner. The optimum values are chosen here in exactly the same wey as is
described in Ref, 27. Results obtained for seversl valves of the mass
ratio Ma/M.P appear in Table I together with the rzsultsnt values of the

meximmm transmissibility (7 across the plate ev its fundsmental re-

Fa.)max
sonance, In each case, the plate demping factors are equal to 0.01,
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and the tabulated values of (‘3‘.‘&) Lax 28 be coupared with the large
naximm value of transmissibility TF = 170 observed when no absorber
is attached to the plate,

Representative calculations of TFa. for the two heaviest absorber masses
considered here are plotted in Fig. 12 as a function of the dimensionless
quantity na, which is proportional to the square root of frequency. The
dashed-line curve shows the transmissibility across the plate in the ab-
sence of the dynamic absorber. As observed for the cantilever beam in
Ref. 27, not only is the absorber effective in suppressing the resonance to

wiaich it is tuned, but its relatively large damping is also effective in

suppressing the plate resonances at higher frequencies. Thus, the dis-
placement, of the absorber mass decreases rapidly at frequencies above
®y5 SO that the mass becomes a "fixed" point from which the absorber dash-
pot is able to restrain the motion of the plate at resonance.

Shzrald the plate be simply supported rather than clamped around its
houndary, N = 2.2325 and the optimue values of (wa/wm) and 8}{ became those

listed in Table Ii. Although these values differ fram those of Table I, the

resultant levels of maximum transmissibility change only by approzimately 15%,

e
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8. VALUES OF TRANSMISSION MATRICES (LUMPED SYSTEMS)

As explained in the Introduction, transversely vibrating besms are
properly regarded as eighteterminal systems because, in general, it is
necsasery to account not only for their translational valocity response
7 but &lso for their rotational velocity response 3 toan inprezsed
force F snd/or bending mwoment B. The simple transmission matricee of the
lumped elements of mass and stiffness considered hitherto can readily be
extended to an eight-terminal format, Because this extension is primarily
to facilitate analyses of combined beam-iumped element systems, the new
matrices are developed according to the sign convention utilized previously
in bean analyses.z'r Thus, at the left~hand end of a team positioned along
the x axis, force is positive downward and bending mcment is anticlock-
wiss positive; at the right-hand end of the beam, force is positive upward
and bending moment is clockwise positive; translationsl displacement v is
always positive upward; and rotationsl displacement B;r/ax i3 always positive

anticlockwise,

1, Mmss M [Fig. 13(a)]

If the masgs has s negligible moment of inertia, it is pcssible to

gtate thet
F, = F, « ja, 3 (127)
i’rl = "2 s (128)
B =3 , (129)
6 = 52 , (130)
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and
51 [ o ol 7
1 -J 2
v 0 1 0 ollw .
e a1, (131)
B 0 9 1 0 A
_91" o o 0 1 _92_

where V = Jof and & = Jody/3x.
2. M.ss M Having & Fiunite Moment of Inertia I [Fig. 13(b)]

Fgaations I /T, 128, and 130 remain relevant, but Eq. 129 now tecomes

B =B, + jmréa , (132)
so that
Y 1 ~jaM O O F,
2 0 i1 0 © v,
~ = ~ * (1-33)
B, o} 0 1 jJar||B,
_91_ _o o o0 1 - _92_

3, Spring of Stiffness K in Cascade [Fig. 1ll(a)]

If the spring also possesses a rotational stiffness KR’

F,=F (134)
x”rl = «(Jw/K) i~2 +¥, (135)
51 = 52 , (136)

and

9, = 8, + (Jo/K)3, 5 (137)

P
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however, if the rotational stiffness Kh is very large,
8, =8, , . (138)
in which case . ;
[~ ] ~ T =
F. 1 0 0 O©° F
i 2
~ - & ~
Vi . X i 0 O 2 (139)
Bl 0 0 1 O o
__91_ | 0 0 0 1.-J Laz_
4, Supported Spring of Stiffness K [Fig. 14(b)]
I? the spring now has negligible rotational stiffness, Egs. 136 and
138 remsin relevant and Eqs. 134 and 135 beccme
F, = F, - (K/jolV, (140)
and ;
Vl = ~2 3 (lli-l) g
consequently,
~ K -
1 1 - Jo 0 O Eé
?rl o 1 o0 o [F
= . (142)
B1 0 (o] } 0 Ez
_?1; _P 0 0 ;_ -e?_

5. Dashpot of Viscosity n [Fig. 1h(c)]

Equations 134 and 136 remain applicable, Eq. 130 is also applicable
if the dashpot has very large rotational viscosity, and (1/1) replaces
(jJo/K) in Eq. 135; thus,
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- —y r‘) -—y —~ -
Fy 1 0 0o 0of|F
~ l ~
-= 1 0 o}V
1 =f ™ 2 . (143)
B © 0 1 of|B,
_31 1 L 0 0 O° 1. _92-

6. Parallel Spring and Dashpot
The eppropriaste transmission matrix is readily seen to be that of
Eq. 139 in witich the element - (Jw/K) has bcen repleced by - k¥, where

k* is defined by Eq. 67.

T. Dynamic Absorber
If the translational driving-point impedance of the (unterminated)
dynamic absorber is Za’ as in Eq. 123, the appropriate trarsmission matrix

is that of Eq, 131 in which the element - JuM has heen replaced oy - Za.

9. VALUES OF TRANSMISSION MATRICES (BERNOULLI-EULER BEAMS

WITH INTERNAL DAMPING)

The expressions given in Ref, 27 for transverse beam displacement and

its successive time derivatives make 1t possible to state that

F= :Jan*e* (P*sinh n*x + Q*sin n*x + R cosh n'x - S cos n*x) eJut s (1kk)
~ ¥ % ¥* * * % * * jd}t

V=30 (Pcoshn®™x+Qcos n.:+Rsinhn'x+ S sinnx) e s (145)
-~ 4 *

B= :que* (P*cosh n*x - Q*cos n*x + R sinh n*x - S'sin n x) eIt , (146)

and

A o AT R o e s 8
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Ba jsm* (P*sinh ax - Q*zin n*x + R cosh n'x + S*cos n*x) eJut H (s7)

* ¢t
in these egquations, F*, Q,R, and S* are arbitrary complex constants and

-

N Enem?

=, (148)
i #*
é vhere n is the complex heem wavemmber, I is the second moment of area of
1 3% )
: the beam cross gection, and £ 4is the complex Young's modulus of the beam ,
5 material, Equations 1k - iX7 can readily be expressed in matrix form as :
P-.- - * & d e
F n*e*sinh ax aesinn'x n*e*cosh n*x -n ¢ cos n*x P*
-~ *
v cosh n x cos n'x ginh n'x sia n*x Q* Jat
= 1o e
~ ¢ * * % * .
B e coshnx -¢ CI8 n*x € sinh n*x -e*sin n*x R*
- * * 3 * * *
| 6| n sinh n x -n siu ax n cosh n x n’cos n*x_ __S*_ ;
(1k9)
Suppose, now, that x = 0 at the beem input terminals (location 1 in
Fig. 15); then
o ] ¥ * #* * %] [C¥
Fl 0O O ne -n ¢ F
W 11 0 o |fa*] ..
= Jo e™ . {150)
B & - 0 0 R”
! b l-l b n n - o -

The square transmission matrix of this equation can be inverted in a straight-

forward way if the aquation is considered to have the two components
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~ * * *
Fl € -¢ )
*
= jun o (351)
31 L 1 s
and
~ *
Vl 1 1 P
* X
~ = Jo | & * * &3 ’ (152) 3
Bl ¢ -¢ 1] 3
for which it can be stated that :
% €1 T 4
*#f = ¥ *) 18 (153)
S 23jun € -1 € _' 1 !
é
and ;
*.-‘ * = ~ %
P emdat | e 1 i 1 |
A==, |l ; (154)
Ol I P B LY
eongequently, ;
! P o 1 % of|F
i €
* L 4
Q gt | O * - L o v
g S € . (155)
2jw ~
R —= 0 o0 = B,
(3 % *
n e* n
* 1 1 ~
S - 0 0 % el

A s 2
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Aguin, suppose that x = £ at the beam cautput terminals (location 2 in
Pig. 1%); then, from Eq. 149,

[ ™ ™ % % * * * ¥ * % [~ %]

Eé n ¢ sh, nes, n ¢ ch. -n € C. P

~ ¥*

Vé ch. c. sh. s. Q

:Jm e;]wt
P * * %* %* %* s
B e ch, -€ C. ¢ sh, -€ 8. R
2
~ % * * * * (156)
OZJ n sh. -n 8. n ch, nec. 8

“(n*2)

where the ubbreviations ch.; c., sh,, and s., are used to denote the quantities

* * ¥* *
cosh n £, cos n £. sinh n £, and sin n 4.

From reference to Eqs. 155 and 156 it is poscible to state that

(r,) = ¥ [Im)(ry) = (L) (157)

where the column vectors

(r) = |. (1=1,2) (158)

and the matrices

P ot
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% W % %
n ¢ sh, R e 8o
¢h. c.
(1] = % *
nl € chke. ~€ C,
* *
_n sh, -1 8,
-0 1 1
x
€
o 1 -
e
ml=|
% 0 0
ne
-1
% O 0
ne
(chote.)

1
~5 (shc-s.)
n'e

(m) = ¥

1
< (shets.)
s}

-]-;-; (ch.~c.)

Le

Further,

3k

n*e*ch. -n*e*c .
sh. B
€ Sh. -¢ B,
n*ch n'e
“(a”¢)
07
0
s (160)
1
K3
n
L
*
n
n*c*(ﬁh.+8.) n*(Sh.-B.) e*(Ch.-C.)
(cho'*ca) "}; (cha’ea) ’_3_.*' (Shn+st)
4 n
* g*
€ (Cht"CQ) (Ch.'*'c.) ‘-.'*. (Bho-so) *
n .
x (161)
* n
n (Sh.-s.) ": (sh.'i'so) (ch.ho)
€
T(a"s)
(162)

(0} s (1™ () = W)L,

[EET v
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% whers it can bte verificd that
(ch.tc.) ~n*e*(sh.+s.) - n*(sh.-s.) e*(ch,oc.)
2L (sh.-3.) (ch.+e.) L (choc.) =% (sh.is.)
ne € n
*
(m =% - -37'(; (sh.+8.) e*(ch.-c.) (ch.+c.) - -g:,-,: (sh.=8.) *
n n (153)
1 * *
_* (Ch.-c.) - n (Sh.-s.) - E'_'x: (sho"‘so) (Ch.‘*‘(!.)
(a*2)

An advantage exists to relating the state vectors at the inmput and
output heam terminals 1 and 2 by the mstrix Eq. 162 rather than by Eq. 157.
Thus, apart from maintaining similarity with the metrix equations encountered
in previous Sections, two of the elements of the colwm veetor {I,} will
always be zero for the simply supported, frre, or clamped beam terminations
that are usually discussed in the literature; cotriversely, in forced-vibration

problems, only one or none of the elements of the cclimn vector {1"1} will be

zero, Consequently, when & beam with several discontinuities haz to be
sualyzed, and the overall transmission matrix incorporates the product of
several component transmission matrices having the form of Eg. 163, there

is no need to calculate three or sll four columns of the overall matrix;
rather, throughout, only two columne need to be calculated and algebraic
complexity is minimized. Even the analysis of a vniform besm is facilitated
to some extent, Thus, as 8 simple example, the bending-moment iwmpedance

B2, 8t the cenmter of a beem (Fig. 16(a)] without discontinuities, and with

~

sirply supported terminations for which B, = V, = 0, can be determined as

2
Jollows: One half of the applied bending mcment ﬁl is considered to asct

1
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on one half of the beam o lecgth a = 4/2, producing at the driving point
an intornel shearing furce ﬁl and s votational velccity 51. Equation 162
can then be written as

p— oy g

~ * t e - -
I"]_ (cho.+e.) . . ¢ (cho=c.) F,
-l . 'l
0 W (s'd'-s’) L] v 'f'*’ (Sh.‘f‘ﬁ.) O
e QK. 4 ol
*
i1/'2 1= 0 ‘]‘fi-' {ah.+8.) . . = (sh.-s.) 0 , (16%)
n n
-~ l ] - :
8, = (ck,~c.) . . (ch.+c.) 6.,
| ¢ i
- “(nfa) 7

where the hyperbolic and cirenier functions witain the tcansmlssion metrix

have been assigned the argument n*a.. It follows that

0= - * < (sh.-s. )(n a) 2 (311 18, )(n*e.\ s 9 {165)
ne ]

- 1 - e

BT F (shots.)(nyy Fp - ot 7 (Flmsdpngy 8 (168)

= ‘"'J:'“ (\-no"c \

3 ) (n*a) F + 5 1 (ch.+c. )(,:1 a) 9, (167

ot
’..n

therefore, if Eq. 165 is used to eliminate F_, from Egs. }¢% and 167, and the

2
ratio is telnn of the reguitant edpressiors fer El and 51. the reguired

moment impedance is

e

“wet Rt

v aAl L
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4

%
L. sh.8, € ;
B, = 3 b \sh.c.uch s/’ * (168)
n
1 (n'a)

This quantity is conveniently nomalized by division by a moment impedance
jmtbn-»the impedsnee st the midpoint of an ideally rigld free beam of the

game dimensions and mass Mb a8 the simply supported besm under consideration

here; thus,
BZ
S 6 ( gh.s. \
e T ) 5 (169)
ol (n*a)s sh.c.-ch.s.,zn*a)

where the mouent of inertia I =M, a2/3.

To conclude this Section, it is instructive to note that, if a beanm
ternination hes the translstional and rotaticnsl impedances Zy = ?2/.\}2
and Zp = - ﬁz/‘éz, the matrix Eq. 162 may be rephrased as follows:

Bl ol @ ws o[ &
Wl m % % o | R
=% i s (170)
B Ty Gy Gy Oy, B,
_:él_ (G e %3 Tl C B,/ Zg |

¥ =) vy oy = . u\ = -~
where the complex parameters o4 (ch.+c J(a*8)? Crn = € (ch c. )( %53
%? = - n*(sh.os.) {n*z" ete.; the negative sign in the definition of
?‘R arises because, &t the tesm termination, the positive directions of

§2 and 52 are opposed (Fig. 15). It is readily seesn that
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¢ +a,)F, ( - o, )8
5 = ﬁ.&.z‘_g_z.Tﬁé_é . .i.'ﬁéfg.z.;i'iu , (am)
o (T + 0 )F,  (egZy - o)
¥, - "‘21%_2:r %2’z %sngR S (1)
and
5 = (aslz'g?;’ %)% | (%szgi; W% a7

Trese cumbersane equations beccme tractable if either f‘l or ﬁl is zero. For
exsmple, if 51 = 0, as would be true if therz were no applied bending moment
at the free (input-terminal) end of a beam such as a cantilever or free-free
beam, then it is possible to eliminate the rarameter
Z. +
iz = o _ZB_ %1? - %2) Fz (171‘)
Zp \%z%g = O,

frem Eqs. 171 and 172 to yleld expressioms for impedance and transmissibility
that are analogous to those given initially (Egs, 11-14) for a four-terminal

gystem. Thus,

driving~-point impedance,

¥ *
zl ::u-:-J;= - % 3 (175)
'Vl v
transfer impedeance,
e S W %
N kI (176)
-V, U

2
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force transmissibility,

~ ¥*
2| _ %Y
.= |22 = |9 arm
Fl ¢
and displacement transmissibiliiy,
Tho = I"é' = l'"*?] 3 (278)
Vl L)

again, the negative signs are Iintrcduced in the definitiuns of zl and 'Ile
because the positive direction of F. is opposed tc that of the velocities

Trl and ?2. In the foregoing equstions,

" = a2y + op)(ogsly = o) = (og%y + agp)(oggZy - o)1 5 (2m)

V= LlogyZy + 05,) {057y = o) = (Ol + Gpp)(aggZy = ag )], (380)
and

o w2 (ot - o) (182)

For a claxaped beam termination, ZT = Z1 = = and, for example, the

equations for driving.point impedince and force tranamissibility simplifly

as follows:
L (P%s - %193 1821
“ GGy = Oy O/ (182}
ang
S S - S (185)
F12 © (00 = G &a)i
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Tote that elements froa only the first and third colimng of the transmission
npatrix (Eq. 170) appear here. For a simply svpported termination, ?.T ® o
ard ZR = 0; consequantly,

_ o (Ma%e - %%y 8
1= g, - %1%1) 8y
and
2(%1} I
"l g )

In this case, elements fruw only the first and fourth columns of the trans-
mission meirix are present. Finally, for a free termination, Z, = ZR = 0,
Tm = O, and the relevant equation for driving-point impedance contaias

eloments from only the second and fourth columns of the matrix.

10. CANTILEVER BEAMS HAVING VARIOUS CONFIGURATIONS

Several important cantilever-beam vibration problems that can be
anslyzed readily and concisely by transmission matrices are considered in
this final Section. Three of the pro'bl-em3 concern fcrce-driven beams with
clanped terminations for which Eqs. 182 and 183 remain directly applicable.
Considered in a fourth problem is 2 beam driven by a force and & bending

noment simultaneocusiy.

10.1 Spriug-Supported Cantilever Beam

Determined fivst, as a simple example, are the driving-point impedance
and trunsmissibility of a force~driven beam that i3 supported by a spring of

»
eozziex atiffness £ = K() + 35,) at its free end, as in Fig. 16(b). Reference

)
to Eqs. 142 and 1863 shows that
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L1
- - - -K* - * -
l l % O O (Cho"‘co) . - (Bh.'SQ) . Fa
kA 0 1 0 0f|-==x(she-a.) . E(chc.) . |]oO
ne [ 4
=%
0 o o 1 ol -& (snts) . (chote.) . | |3,
n
-~ 1 n* |
_91_ _o 0o o0 :l._J | = (ch.=c.) . = (sh.48.) . i _o-
(186) !
; and, consequently, that the overall transmission matrix possesses the ‘
elements ;
@, =% [(chtc.) + k*(sh.-s.)](n*g) , (187)
o = 5 [(sho=s.) + K (chu-c)l(nyy (288)
= - —3 (sh.-s.) (189)
T T FF T Ny i
= - (ch.-c.) x (190)
%3 T o T ) i
= « -2 (sh.+8.), x (L91)
% ot (n*2) ?
and
a53 =k (Ch.'l'c.)(n*z) " (192)

It readily follows that

i,

(a.\.las:’: - 031013) = % [(ch.c.+1) + k*(sh.c.-ch.s.)](n*z) s (193)
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k2
(@31 %3 = %1%3 -ches.)(ntg) s (194)
end, from inspection of Eqs. 182 and 183, that
z, ['(gh c.+1) + X (sh.c.-ch.s.) (195)
J : -
“"b L n #(sh.c.-ch.s.) (a*s)
: and ;
. |
3 H
|
;; I WL . )
3 * :
In these equations,
" () (e
k ’ (197)
Jan Pl (n l) 1+ :]'6
; where 8, is the beam damping factor and K, = SEI/M-s is the static stiffness
of an unsupported cantilever beam loaded transversely at its free end.
10.2 Cantilever Beam with a Tip Mass M Having a Finite Moment of Inextia I
In this example, the cantilever beam is driven simultaneously by &
E vibratory force il and a bending mament ﬁl et its free end, as in Fig. 16(c).
Reference to Eqs. 133 and 163 shows that the resultant vibration response of
E the beam is governed by the equation
|
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1 <jaM O 0 (ch.+c.) . -n*(sh.-s.) . i -52-
6 1 0 0| --ds(sh-s) . X (chu-c.) . 0
ne [ 4
0 0 1 g - (en4s.) (chote.) . 5,
n
1 *
o o o 1 = (ch.-c.) . o (sh.ts.) 0
<L e € < %y L
(n't)
[(chote.) + 42 (sho-s)] . -n'[(sho-s.) + 2 (enioc)] .
ne ne
“‘-;_é'*'_ (Bh.-s.) L] "%; (ch.-c. L]
n e ¢
1 Q}IL‘* *
2L [{et.4s.) - :1::-;-- {choec.)] . [fehote.) = 222 (an.4a.)] .
n : e
1 *
== {el.-e.) . - %= (sh.+s.) .
- e € -, %
(n %)
(198)
vhera
J—f—"’: = ﬁ% (n'2) = 7(a*2) (195)
ne
and
*
deln | 3%; (a'2)° = o(a"2)® . (200)
€

(Recall here thet I, = szz/s ig the moment of inertia about the end of &

rigsd frae beam having the same length, cross-sectional area A, and density

bt

P
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3 H
- and
-

%2 = -;_3; (ch.+e.)- o(n z) (sh.+s.)] + (2" z)f (w)[(sh.=8.) + 7(n z)(ch.-c )]f
- £ F (n z) ‘
: (203) :

Qr

By _ 1
= 31 (chote. )+ 7(n £)(sh.-8.)] + [(n" 2)f (@)1 [(sh.+s.)- o(n'e)® (ch,-c. )]} +*0) *
i
(204)

|
;|

P as the cantilever beam under discussion; a.nd that (n*) = @ p/r E =
o pA/E I, where r is the radius of gyration of the beam cross section,)
It is rea.dily seen from Eq. 198 that

2F, = F [(chure.) + 7(n*z)(sh.-s.)](n*” - ﬁzn*[(sh.-s.) + (0 2)(ch.-c.)] (wty)  (200)

-~

231 = —1-1;2; [(sh.+s.) - a(n*g)s(ch.-c.)](n*z) + 52[(ch.+c.) - c(n*z)s(sh..‘l's.)](n*z) ( (;2)
2

Therefore, if 52 or §2 is eliminated from this peir of simultaneous equations N
it i3 possivle to write

-1

5* = [{ch.c.+1)+ 7(n*£)(sh.c.-ch.s.)- a(n*z)s(sh.c.-!-ch.s.)- 7o(n*z)h(ch.c.-l)}(n*£) (205)

and

4= E e . (206)

7
L i
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The function of frequency r*(m) will be specified for each problem of con-
‘ cern, and it will be a ;'eal rather than a complex mumber if the applied

force and bending moment are of like phase, Although a cantilever beam

with a mass having finite moment of inertia has beecn considered in

Refs, 34-37, attention was confined to the natural frequencies of the

beam in free vibration; beam response to forced vibration was not cone-

gldered, as it has been here,

Representative calculations of force transmissibility are plotted in
Fig. 17 as a function of ng, a dimensionless quantity that is proportional
to the square root of frequenmev, It has been assumed that f(a) = 0.5,
7y=MM =5, 0= I/Z’:]:b = 0.05, and that the beam damping factor
SE = 0,01, The solid-line curve of Fig. 17 shows the force transmissibility
TF12 Predicted by Eq. 203; the chain. and dashed-line curves show how TFJ.Z i
changes if either the moment of Iinertia I of the loading mass or the
applied bending moment becomes zero [¢ = O or £(w) = 0, respectively]. :
Clearly apparent from the two lower curves are the beneficial reductions
in T, that result from the introduction of I. :

10.3 Cantilever Beam with an Arbitrarily Located Mass ILoad

Figure 18 shows a stanchion or vertical cantilever beam that comprises
an upper stage of cross-sectional ares Al and length pg, and a lower stage
of cross-sectional area A, = ti;' A, aad length (1 - n)2. The densities )
and complex Young's moduli of the two stages are assumed to be identical.

If required, the choice of different values for Al and A2 can provide a

first approximation to the performance of a tapered stanchion of total

heignt 2. Located at the point of Juncture of the two stages is a mass

s =t merimmna o

load M = mb, where
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M, = pht [+ (1= (i)™ (207)

is the beam mass., The moment of inertia of M is assumed to be negligible,
*

TL» wavemmbers and the parameters ¢ (Eq. 148) of the two stages are con-

vaniently related as follows:

*, *
nfny = (rg/rg)® = vip (208)
and
* 2, 2
& Azr z(na) 1 (209)
o ATa(n)” v,
vhere r gl and r 22 are the radil of gyration of the beam cross sectioms of
areas A1 and AZ'

If the free end of the stanchion is driven horizontally by a vibratory

force §1, it is possible to write

{rl} = I T, {rz) =1 {rzl , (210)
where
—5‘1-
. "} .
1
(n} = (211)
0
l—al_
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and
*2
(r,) =| ° . (212)
BZ
-0-
In addition, the matrices I end I, are given by Eq. 163 in which the
% 3 * *
relevent arguments are now un, £ = N, 2 and (1 - u)nel = (1 - u)vlznl,e =
NZ!, s respectively; thet is,
= ’L‘* ® ¥ % *®, B *T* =
11 "M Tt ‘1721
1 * 1 % -1 ¥
¥ T 3! T Fh
it 1 Y
nl=g -l * #* % * 'e;* 3# (212)
= T %21 T —=Ta
. ol
*
1 ¥ * % s *
1 A TFm T
1 1
hoe el

and

A6 B in >
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48
% *T* -1
T2 RS WA
. 1 %
Raia 2
a ¥
1% i T*ﬂ L T* . ’
* “32 12
Bo
*
1 . -
2 2
vhere
= (ch
g =\ '“‘)N’i‘z )
*
\
Tai = (Cho-CO ;Ni‘e 3
“*
131 = (Sh.ﬁ.)ﬂ;fz ’
aud
¥ = (sh (1 =1,2)
Tlci = (8 '-B')N;Z . = oy

Consequently, ovecau.e H2 is the transmisgion matrix of the lumped mass M

(Eq. 131), it £ possible %o state that

(214)

(215)
(216)

(217)

(218)
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[~ * *A* ™
812 AT .
1 L% 1.
- "'*_;*' Tx}z 3 :'.-*" g .
2 2
I, =% 1 ¥ * (219)
2n3 w ""*f 2 ® Tla N
2y
*
1 ¥ "Dy«
> 22 o* %2
2 2
and
» -1
o o %3
a’c..x. ¢ %3 °
2 ?
s Gy ¢ Gz o
% 0 bz v
where
* * ¥
b1 = ('1:]3 + “mThz) » (221)
* ¥ * % .
85 = (Tha + “mTzz) s (222)
= % ¥ W ¥ R . 2 ® * <
@y =% (Tydyp * ViatinT o + V12N Taz + ViotoTo1Ter) (223)

1 x  * *  * al ¥ % 2 J ¥ o
a?l - ;n?:*‘_ (Tll-lAl?. + leleTllTha + V12T21T32 + V12£12T31T22) ) (422“)
11
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= _&_, * * -l ¥ ¥ 2 * %
% - (% 58 12 Vizt12%1 %2 * VizTnTse * Viztie T Tee) o (225)
l £ * * * * l 2 it
% = o7 arbie * Viztreliathe Vet * izt i) (226)
1
*
= nl (T* N + 3 T* T* + a7
oy = = 5 (BT, *+ V10T Ty * VTl + Vi %,) (227)
l 3 2 * ¥
%3 = L F TaTe * V12T ¥ Viohitiz * Vigue M Tes) - (228)
1
1l (T* ) % " 3 T* ‘* . 2 2
G = 5 (LT, *+ ViptiT %y * VigTaylhp * Viglia T T 5 (229)
and
'*
_ 3 + % 2 * . 2
Oy = (131, 12 * Y1zttt * Vi Taby t VT Te) (220)
$n Egs. 221 asd 222,
* j¢ * .
Hy & %&-‘aé-ﬁ 7(m2) vqp Litly, + (1 =-u)] . (231)

By€2

Pecause there 13 po bending momep® applied to the beam, Eqs, 175-178 for
impedance snd tranumigsidilisy are applicable here and, in fact, they may be
simpiified baravge the besw iz rigldly terminsted (zr = ZP = w); for example,
Eqs. 175 aand 177 for driving-point inmpedance 21 and force transmissibility

Tgyp Teducy to Egs. 182 aud 183, which are phrased concisely in terms of

TR AR S e emibdta e MR £ i A

[




the foregoing parsazeters g, The Eqs. 223-230 for these parameters also
simplify for a unifoms stanchion having stages of identical cross-sectional

areas snd identical radii of gyrsiion, becauze then n; % n.: = n* s
»* * * a -
€=y = ,and v, =i,

case by & dynamic absorber of impedance zZ, (Eq. 123), ruther than by &

= 1.0. Should the bheam %W louded in this

*
lumped wass M = 7Mb, then the expression for s vhich reduces to

* *
by = 7(n2) (232)
can be replaced by
z
*
b= T (B 2) (233)

no other modification is necessary.

Representative cslculations of the force trensmissibiliiy across &
uniform stanchion have been made frem Eq. 183 in whick the foregoing
parameters @ were substituted after simplification. The stanchion is
loaded by a mass M = 10 Mb(:-' = 10) that is consecutiveiy positioned
where 4 = 0., 0.1, and 0.9 (Fig. 18). The resultant transmissibility
curves are plotied iIn Flg. 19 on a scale that s proportional tc N 3
the dnshed-line curve shows the transmissibility in the absence of M.

In all cases, the beam damping factor 5. = 0,01.

E
Wnen u = 0, transmmissibility TFJ.Z Palls off rapidiy as fregquency

increases, in the msnner that has come to be agsocliated with mass-loaded

structures, the effuectiveness of added mz2ss in reducing transmissibility

being fully apparent. However, the unexpected result is noted that when

B = 0,3 (chain.iine cweve), the reduction in T

Fl2 is much less thar whzn
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u = Q, Whereas at low frequencies TF12 remains < 1,0 followling the initial
heam resonance, at higher frequencies Tm ¢leogely approaches the lesvel
of 'l‘m noted wher v = 0 (dashed-line curve), Moreover, when it = 0.9
(upper selid-line curve for which M 1ies near the botton of the
stenchion), force iz amplified ('fm > 1.0) at all frequencies, and thke
use of additionsl mess must be considered detrimental, Clesarly implied
here 1s the importance of iatroducing mass for vibratlion control oniy
when it car be located directly in opposition to the impressed force,
Another possible dizadvantaege to mass loading the stanchion or other
canvilever beam near its root is demonstrated by the curves of Fig. 20,
where frequency ratios a.:z/cnl ang, a.xs/ml are plotted verdus u, the para-
meter that controls the distance cf the loading mass fran the free end
of th;ﬁ beam. Here, Oy Bys end @, are the first three rsonant frequencies
of s uniform beam, which is loaded, for exsuple, by a mass M = 0.25 Mb'
Both @, and Wy beccomte harmonics of @y when p 1is slightly greater than
0.8, a fact that can be detrimental te effective vibration contrel,
although 1t hes proven fortuitous in musical applicationa.ss The fre-
quenzy Ty for exsuple, also becomes s harmonir of @ when & = 0,30 and
0.41., |

10.k Mass~Loaded Three-Stage Cantilever Beam

Consider, finaliy, a cantilever besm that is mass loaded and driven
by o vibratory force at its free end; the beam camprises three stages of
arbivrasy lengths and arbitrsrv tut uniform crosse-sectional areas Al ’

Ags snd A. . as in Mg. 21, A similar three-stage beam without & mass
2usd hes been considered in Refs. 39 and 40, It is assumed here that

¥*
the densities p &nd complex Young's modulli E of each beaw stage are

L Crde | AT SRR
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where

WJ’»WM?’W&% Y

The wavemmbers of the besa stages,

* * 2 . *2
= «F Airgi(ni) /3w

are conveniently relatad as in Sec. 10.3; *hus,

n/ay = (r g /) = vy,

";/n; = (rgl/rgs)}i = V13

* 2, %2 2
& ATes(mg)” LoV

iz = AfA

P TPRLET YIS Wﬂr"w

and the parameters

(1 =1,2,3)

53

identical--and that there exists continuity of force and bending moment,
and contimiity of tranaslational and rotational velocity, where the beam
3tages are connected at dis* ..cos of ulz and uzz from the driving puint.
The far end of the beam is rigidly terminated so that Eqs. 182 and 183

for driving-point impedancs Zl and force transmissibility Tmz remain

(234)

(235)

(236)

(237)

(238)

(239)

(2k0)
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and r o are the radii of gyration of the beam cioss sections of areas
A (1 =1,2,3). As before, it is convenient to define a mass ratio

y= M/Mb, vhere the beam mass

M, = oAyt [iy + (u, - ul)(ula)"l + (1 - uz)(uls)’l] =pA MU . (241)
It can now be stated that
()} =M ALA (r,)=m(T} , (242)

where I} and {I‘a} are given by Egs. 211 and 212; T, is given by Eq. 213;

I[z is also given by Eq. 213 in which the second subseript to the parameters

*
L 45 alvays 2 rather than 1, and in which oy —»n, , € - e
™ 3% ¥ * 7
T].s . -nsThs .
-1 % 1 %
-3 TLI»:S . "y T23 .
Iz€3 €3
L= ; (243)
1 2
¥ 733 . 13 .
I3
¥*
1 T* R
“F 23 © T* 330 0t

and
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(o - oAz -]
Gy o %y
T=% . (24)
O3 - %3 )
A -

*
The parameters T of the transmission matrices Ill, l'[z, and IT3 s are defined
b 215-218 in which 1 = 1, 2, 3, N.4 = un. £, Nof = *
y Eqs. 215- ¢ = Lly G ’Nl“'l-mls 23-(112'“1)1123"

* * * *
vlz(u2 - ul)nlz, and N 2 = 1 - uz)n:sz = vﬁ(l - ua)nlz. When the product
of the matrices IT:LIIZIT3 is multiplied by the square transmission matrix

1'[0 of the loading mass M (Eq. 131), ‘he following expressions for the

complex parameters « are cbtained:

oy = (5 +u05)) (245)

-1 * * * * Sl * 2 * *
%y = (TP + Vizt12Tafer * Vi2Ter®sn * Vit Trfy) o (246)

nye

21, % * % a1 * % 2 * %
j a5 = q (Tyhy * VigtioTorbey + Vighabs * VighioTauy) s (247)

1 ¥ * * ¥ -] % ¥ 2 * ¥
 — Q- 3 A A A
9y = =% (TyA)y *+ V1ot Tt * Y1255 * VitieTaty) o (248)

¥*
-n % *
Az = ‘Ii1 (Y5 + W &%s) 5 (249)

1 * * * ¥ 2 * % 3 ¥
%s = o (Tass * Vi2Tiatis * Vizte™les * V12t Tahs) o (250)
1

* % ¥ 2 * * 3 * *
(Tqhsz + V9oTaafys * ViptipTorfoz + ViptipTafes) o (251)

=

; Oz3 =
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and
oy
- * * * 2 * % 3 * *
W (T3 As:s + V1275 izt Ties + Vizti2 T Mus)
1
where
¥ * * -1 % * 2 * *
= ( + V1ot st * VigTiafey * Vipti T ) o
3
(ThlA.'SS + ”12T11 + "12 12"‘31“23 + Viptiz 21"&3) ’
and

u; = 7(n;z)U .

In the foregoing equations,

* ot L -1 % *
Ay = (TpTys + 0 TgpTyg + v DT +uv 2223) ’
*—T*T*+ *T*+

Bpy = (TpTys + 0 T T4 "TaT:ss*“"Tszas) )
* o w * * o Sl % % * *

Agy = (TgpTys + 0 Tpo Ty g + v T Ty + uv T oTog)
Y T 4+ +uv T
%.3(2213*“ b2zt Tszss u"1223) )
*-T** T*T*+ *T*+

Az = (pTyz + v Ty 5 +uv 5T, “"Tz'lss s
AL = VT dur DT, 4w BT
23'(2213 VD aTys U TpTor tuv ToTo)
* T . 2 % *)
Dyz = (T)pTyz + V T Tz + UV TppTog +uv” T T55)

’
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(252)

(253)

(254)

(255)

(256)

(257)

(258)

(259)

(260)

(261)

(262)
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* * ¥ % % * % 2 * %
bz = (TipTys *+ ¥ Tpplys + W TpTos + 0V TpT55) (263)

where

u= (‘1;5"13/‘32"12) (264 )

and

Ve - (265)

From knowledge of the complex parsmeters ¢ (Eqs. 245-252), the
driving-point impedance Zl and transmissibility TFlz of & mass-loaded
three-stage beam can be calculated from Eqs. 182 and 183 in terms of
the wavenunber n; of the first stage. However, to compare the effects
of changing the cross-sectional gecmetry of the beam, and the relative
length of its stages, it is helpful to calculate impedance and trans-
missibility in terms of the wavenumber n: of a @ifom reference
beam having the same length £, density p, and mass M’b as the beam

under consideration., The cross-sectional ares of this uniform beam

is readily shown to be

A = A1U N (266)

where U is given by Eq. 2hi.

Attention is first directed here to three-stage beams having
rectangular and uniform ocuter cross-sectional dimensions. The inter-
mediate stages of the besus are slotted centrally in either the
vertical or horizontal direction. In the first case [Fig. !2(a)],
every beam stage has the common depth d, = Au/wlU , vwhere w, is the

outer width of the beam, and
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. Vip = Vg3 = 4z = 1.0 . (267)
If the corresponding uniform reference beam also has rectangular cross
section and depth du = dl’ it can simply be stated that
* o * 1Al _ ¥ .
nt=mns \:‘.l/du) =L . (268)
In the second case [Fig. 22(b)], every beam stage shares the width
W, = Au/dlU , and
Viz = 4z = 1.0 (269)
it can also be demonstrated that
_ 2 2.%
vy, = J—[dl/(dz - 34,4 +347)°] (270)

where the solid portions of the intermediate stage have the total depth
dz. In addition, if the corresponding uniform beem has rectangular cross

section and width w.

,» refererce to Eq. 266 shows that

ng = ne(a/a) =nt/NT | (271)

.

If the beam is "bridle jointed," as in Fig. 22(c), Eq. 270 simply becomes

Vi, = J(al/aa) . (272)
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The force transmissibility TF12 across an unloaded beam for which
My = 0.5 and ", = 0.9 is plotted as the upper solid-line curve in

Fig. 25, The intermediate beam stage is slotted horizontally, as in
Fig. 22(b), and the depth d, = dl/h; consequently, the parameters

= 2/(37)% = 0.8109, and t., = k4, The transmissibility T across

V12 12 F12
the same beam loaded by 5 times its own mass (y = M/Mb = 5) is plotted

&8 the lower solid-line curve. For comparison, the transmissibility

Tre

curve, and Tm across the bridle~jointed beam of Fig. 22(c)--for

which Hys By and d2 take their foregoing values, and Vip = 2 and

across an unloaded uniform beam is shown by the dashed-line

7 = O=<is shown by the chain-line curve, In all cases, Tm is plotted
*
versus the digxensionless parameter nuz , which is proportional to 'f W

The beam damping factors &, = 0.01l.

E
Of interest are the regions of attenuation (TF:LZ < 1.0) that occur

in the chain~line curve at frequencies intermediate to the beam resonances,

Thus, a maximum attenuation of 4,7 dB is noted between the first and

second beam resonances within box'mds that differ by a factor of 4.5

in frequency; and maximum e.ttenuafcions of 15.0 and 12.8 dB are noted

between the second and third, and the third and fourth, resonances

within bounds that differ by factors of 4.1 and 1.9 in frequency,

respectively.
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Table I. Optimm values of the frequency retio (ma/wm)o and the damp-
ing ratio (Bﬂ)o , and the corresponding values of transmissibility (TFa)max ,
for a dynamic absorber tuned tu the fundamental resonance of a circular

plate with a clamped boundary.

Ma/MP (wa. mm)o (6R)o (TFa.)max

0.025 0.908 0.222 6.304
0.0% 0.828 0.306 L. 4ob

0.10 0.698 0.408 3.202
0.25 0.%465 0.549 2.086
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Table IT. Optimum values of the frequency ratio (u)a/wm)o and the damp-

- ing ratio (53)0 , and the corresponding values of transmissibility (TFa)max s

for & dynamic absorber tuned to the fundamental resonance of a circular

plate with & simply supported boundary.

M, Mp

(me. mm)o

(8p),

!
‘TFa.)m

0.025
0.05
0.10

0.25

0.935
0.877
0.719
0.579

0.177
0.24k
0.329
0.ks6

T.227
5.174
3.701
2.407
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FIGURE LEGENIS
General fcour-terminal system,

(a) Lumped mass obeying Newton's second law, and (b) a messless

spring obeying Hooke's law,

Ceries connection of four-terminal systems.
Parallel connection of four-terminal systems,
Deshpot obeying Newton's law of viscosity.
Parallel spring and dashpot,

Dynamic absorber.

Mechanical system with a dynsmic absorber.
Uniform thin rod in longitudinsl vibration.

Center-driven Berrnoulli.Euwler beam in symmetrical transverse

vibration.,
Center-driven thin circular plate in transverse vibration.

Force transmissibility TFa across the plate of Fig. 11 when it
is clamped around its boundsry and a dymamic absorber is
attached to its midpoint. Mess ratio 7, = M&/Mp = 0.1 and
0.25; for the dashed-lipe curve, Ma/Mp = 0. Plate damping

factors BE =9 = 0.01.

(a) Lumped mass, and (b) limozd mess having a finiie momeut

of irertis,
(2) Spring in cascude, (b) a supported spring, end (c¢) a dashpot.

Bernoulli-Euler beam in transverge vibration.

.
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FIGURE LEGENDS (CONTINUED)

(a) Simply supported beam, (b) spring-supported camtilever beem,
and (c) cantilever beam loaded by a mass having a finite moment

of inertia. Beam (a) is driven centrally by a sinusoidally
varying bending moment; beam (b) is driven at its frese end by

a sinusoidally varying force; and beam (c) is driven simultanecusly
at its free end by & sinusoidally varying force and bending mcment.

Force transmissibility T across the cantilever beam of Fig. 16(c)

F12
when 7 = M/Mb =5, 0= 1/31b = 0.05, and £(w) = 0.5 (solid-line
curve), If the moment of inertia of the loading mass is zero,

or if the applied bending woment is zero, TFlZ is increased or

reduced aJs shown by the chain-line or the dashed-line curve,

respectively. Beam damping factor C\’E = 0,01,

Vertical stanchion or beam that is mass loaded at an arbitrary
distance pf from its free end, where it is driven by & sinu-
soldally varying force. The beam comprises two astages of

different croes-sentional areas,

Force transmissibility T across the beam of Fig. 18 when its

Fl2
component stages have the same cross-sectionul aies, the mass
ratio 7y = 10, and 4 = 0, 0.1, and 0,9. The transmissibility
across the unloaded besm (7 = O) is shown by the dashed-line

curve, Beam dsmping factor SE = 0,01,

Frequency ratics uxzfml and a\:.)/ml in vhich oy, @), and , are the
first three resonant frequencies of the mass-loaded beam of

Fig, 18. The component stages of the beam have the same

cross-sectional area; the mass ratio 7 = 0.25.
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Fig. 21

Fig. 22

rig. 23

T0

FIGURE LEGENDS (CONTINUED)

Magg-loaded cantilever beam driven at its free end by a sinu-
soidally varylng force; the beam comprises three uniform

stages of arbitrary cross-sectional areds and arbitrary
lengths.

Mags-loaded three-stage cantilever beams driven at their free
ends by a sinusoidally varying force: (a) vertically slotted
beam, (b) horizontally slotted beam, and (c¢) 'bridle-connected"

beam.

Force transmissibility T. across the beam of Fig. 22(b) shown

Fl2
by the upper and iower solid-line curves for which the mass
ratio ¥y = 0 and 5, respectively; the parameters ”1 = 0.5,

u, = 6.9, end 4, = dl/h The force transmissibility across
a uniform beam; and across the beem of Fig. 22{(c), is shown

by the dashed- and chain-line curves for which y = Q.
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