AD-AO	34 425 SSIFIED	RENSS INTER	ELAER P FACE ST 5 J M SCIENT	OLYTECH ATES IN BORREGO IFIC-1	NIC IN SCHOT	ST TRO TKY BAR Gutmann	RIER D	DEPT OF LODES.()	ELECTR U) F196	IETC 28-74-0	F/G 9 -0102 NL	/1	
	10F2		distance.						1000 1000	Annual Maria Managaran Annual	A second		
			P.n.		03		Annin Enno Anno Anno Anno Anno						
		AL MARIE House All House All House All House Al Francisco								1			- Alerandia
	12							1.4.					
								677					
		Sec.	. And the	and the									

ADA 034425

RADC-TR-76-266 Interim Report August 1976

Fb.

INTERFACE STATES IN SCHOTTKY BARRIER DIODES

Rensselaer Polytechnic Institute

Approved for public release; distribution unlimited

This research was supported by the Defense Nuclear Agency under Subtask Z99QAXTB056, Work Unit 52, entitled "Radiation Effects on Solid State Microwave Device Structures"

ROME AIR DEVELOPMENT CENTER AIR FORCE SYSTEMS COMMAND GRIFFISS AIR FORCE BASE, NEW YORK 13441

This report has been reviewed by the RADC Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

de la

This technical report has been reviewed and is approved.

Donald Ce. Neunen

DONALD A. NEAMEN Contract Monitor

and the state of the second state of the secon

(19) REPORT DOC	IMENTATION PAGE	READ INSTRUCTIONS
L REPORT NUMBER	2. GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER
RADC TR-76-266	-	\bigcirc
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
INTERPACE STATES IN	COLOTION DADDIED DIODEC	7 adaption Trate in
A INTERFACE STATES IN	SCHOTTKY BARRIER DIODES	Scientific Interim rep
6		A PERFORMING ORG. REPORT NUMBER
7. AUTHOR(.)	(8. CONTRACT OR GRANT NUMBER(.)
Pose M./Borrego	Ronald J./Gutmann	15 F 19628-74-C-0102 / FW
L	energia and a second a second a s	The por
PERFORMING ORGANIZATION NA	AME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Rensselaer Polytech	ems Engineering Dept. / nic Inst itute	62704H, CDWA0025
11 CONTROLLING OFFICE NAME A		12. REPORT DATE
Deputy for Electron	Technology (PADG)	Aug 76
Hanscom AFB Massee	α	13. NUMBER OF PAGES
Monitor/Walter Shedd	ADDRESS(I different from Controlling Office	e) 15. SECURITY CLASS. (of this report)
	(2)101,). Unclassified
		15. DECLASSIFICATION DOWNGRADING
16. DISTRIBUTION STATEMENT (of) Approved for public 17. DISTRIBUTION STATEMENT (of)	thie Report) release; distribution unl	imited
 DISTRIBUTION STATEMENT (of) Approved for public DISTRIBUTION STATEMENT (of) DISTRIBUTION STATEMENT (of) SUPPLEMENTARY NOTES 	thie Report) release; distribution unl the abstract entered in Block 20, 11 different	imited
 Approved for public Approved for public DISTRIBUTION STATEMENT (of a DISTRIBUTION STATEMENT (of a SUPPLEMENTARY NOTES This research was su Z99QAXTB056, Work Un Microwave Device Str 	this Report) release; distribution unl the ebstrect entered in Block 20, 11 different upported by the Defense Nu hit 52 entitled "Radiation ructures."	imited (from Report) (clear Agency under Subtask Effects on Solid State
 Approved for public Approved for public DISTRIBUTION STATEMENT (of) DISTRIBUTION STATEMENT (of) SUPPLEMENTARY NOTES This research was su Z99QAXTB056, Work UP Microwave Device Str KEY WORDS (Continue on reverse 	this Report) release; distribution unl the abstract entered in Block 20, 11 different apported by the Defense Nu hit 52 entitled "Radiation ructures."	imited (from Report) (clear Agency under Subtask Effects on Solid State
 Approved for public Approved for public DISTRIBUTION STATEMENT (of) DISTRIBUTION STATEMENT (of) SUPPLEMENTARY NOTES This research was su Z99QAXTB056, Work Ur Microwave Device Str KEY WORDS (Continue on reverse Schottky Barrier, Ge 	this Report) release; distribution unl the ebstrect entered in Block 20, if different upported by the Defense Nu hit 52 entitled "Radiation ructures." elde II necessary and identify by block num	imited (from Report) (clear Agency under Subtask Effects on Solid State (ber) States, Neuton Radiation
 Approved for public Approved for public DISTRIBUTION STATEMENT (of) DISTRIBUTION STATEMENT (of) SUPPLEMENTARY NOTES This research was su Z99QAXTB056, Work Ur Microwave Device Str KEY WORDS (Continue on reverse Schottky Barrier, Ga Effects, Transient 1 	this Report) release; distribution unl the obstract entered in Block 20, 11 different upported by the Defense Nu hit 52 entitled "Radiation ructures." elde 11 necessary and identify by block num allium Arsenide, Interface Ionizing Radiation	imited imited from Report) clear Agency under Subtask Effects on Solid State ber) States, Neuton Radiation
 Approved for public Approved for public DISTRIBUTION STATEMENT (of a DISTRIBUTION STATEMENT (of a SUPPLEMENTARY NOTES This research was su Z99QAXTB056, Work Ur Microwave Device Str KEY WORDS (Continue on reverse Schottky Barrier, Ga Effects, Transient I 	this Report) release; distribution unl the abstract entered in Block 20, 11 different apported by the Defense Nu hit 52 entitled "Radiation ructures." elde II necessary and identify by block num allium Arsenide, Interface Ionizing Radiation	imited imited from Report) cclear Agency under Subtask Effects on Solid State ber) States, Neuton Radiation
 Approved for public Approved for public DISTRIBUTION STATEMENT (of 0 DISTRIBUTION STATEMENT (of 0 SUPPLEMENTARY NOTES This research was su Z99QAXTB056, Work Ur Microwave Device Str KEY WORDS (Continue on reverse Schottky Barrier, Ga Effects, Transient D 	this Report) release; distribution unl the obstract entered in Block 20, 11 different upported by the Defense Nu hit 52 entitled "Radiation ructures." elde II necessary and identify by block num allium Arsenide, Interface Ionizing Radiation	imited inited from Report) cclear Agency under Subtask Effects on Solid State ber) States, Neuton Radiation to the minur State power (
 Approved for public Approved for public DISTRIBUTION STATEMENT (of a DISTRIBUTION STATEMENT (of a SUPPLEMENTARY NOTES This research was su Z99QAXTB056, Work Ur Microwave Device Str KEY WORDS (Continue on reverse Schottky Barrier, Ga Effects, Transient I ABSTRICT (Continue on reverse) 	this Report) release; distribution unl the obstract entered in Block 20, 11 different upported by the Defense Nu hit 52 entitled "Radiation ructures." elde II necessary and identify by block num allium Arsenide, Interface Ionizing Radiation	imited imited from Report) clear Agency under Subtask Effects on Solid State ber) States, Neuton Radiation) to the minur Sthemen of) to the minur Sthemen of) to the minur Sthemen of) to the minur Sthemen of
 Approved for public Approved for public DISTRIBUTION STATEMENT (of a DISTRIBUTION STATEMENT (of a SUPPLEMENTARY NOTES This research was su Z99QAXTB056, Work Un Microwave Device State KEY WORDS (Continue on reverse Schottky Barrier, Ga Effects, Transient I ABSTRICT (Continue on reverse The electrical after neutron irradi 	this Report) release; distribution unl the abstract entered in Block 20, 11 different apported by the Defense Nu hit 52 entitled "Radiation ructures." elde II necessary and identify by block num allium Arsenide, Interface Ionizing Radiation	imited imited from Report) cclear Agency under Subtask Effects on Solid State ber) States, Neuton Radiation to the minur State former of ier junctions before and Guarded Au/nGaAs diodes
 Approved for public Approved for public DISTRIBUTION STATEMENT (of a) DISTRIBUTION STATEMENT (of a) SUPPLEMENTARY NOTES This research was su Z99QAXTB056, Work Ur Microwave Device Str KEY WORDS (Continue on reverse Schottky Barrier, Ga Effects, Transient I The electrical after neutron irradi were fabricated from 	this Report) release; distribution unl the ebstract entered in Block 20, 11 different upported by the Defense Nu hit 52 entitled "Radiation ructures." elde 11 necessary and identify by block num allium Arsenide, Interface Ionizing Radiation (// behavior of Schottky barr lation have been explored. a bulk and epitaxial mater	imited imited from Report) clear Agency under Subtask Effects on Solid State ber) States, Neuton Radiation to the minur State former () to the minur State former () inclines before and Guarded Au/nGaAs diodes ial with g preirradiation
 Approved for public Approved for public DISTRIBUTION STATEMENT (of a DISTRIBUTION STATEMENT (of a SUPPLEMENTARY NOTES This research was su Z99QAXTB056, Work Ur Microwave Device Str KEY WORDS (Continue on reverse Schottky Barrier, Ga Effects, Transient I The electrical after neutron irradi were fabricated from n factor of 1.03 and 	this Report) release; distribution unl the obstract entered in Block 20, 11 different upported by the Defense Nu hit 52 entitled "Radiation ructures." elde II necessary and identify by block num allium Arsenide, Interface Ionizing Radiation which is a construction of Schottky barr ation have been explored. In bulk and epitaxial mater I saturation current densi	imited imited from Report) clear Agency under Subtask Effects on Solid State ber) States, Neuton Radiation) to the minur State former () to the state former (
 Approved for public Approved for public DISTRIBUTION STATEMENT (of a DISTRIBUTION STATEMENT (of a SUPPLEMENTARY NOTES This research was su Z99QAXTB056, Work Un Microwave Device Str KEY WORDS (Continue on reverse Schottky Barrier, Ga Effects, Transient I ABSTRACT (Continue on reverse The electrical after neutron irradi were fabricated from n factor of 1.03 and irradiation with low 10%) the severe content 	this Report) release; distribution unl the abstract entered in Block 20, 11 different apported by the Defense Nu hit 52 entitled "Radiation ructures." elde II necessary and identify by block num allium Arsenide, Interface Ionizing Radiation (// behavior of Schottky barr lation have been explored. a bulk and epitaxial mater I saturation current densi y neutron fluences (i.e., went increased	imited imited inited (from Report) cclear Agency under Subtask Effects on Solid State ber) States, Neuton Radiation () to the minut of former of the junctions before and Guarded Au/nGaAs diodes ial with a preirradiation ty of 10° amps/cm. After carrier removal less than two orders of me mitude with
 Approved for public Approved for public DISTRIBUTION STATEMENT (of a DISTRIBUTION STATEMENT (of a SUPPLEMENTARY NOTES This research was su Z99QAXTB056, Work Un Microwave Device Sta KEY WORDS (Continue on reverse Schottky Barrier, Ga Effects, Transient I ABSTACT (Continue on reverse The electrical after neutron irradi were fabricated from n factor of 1.03 and irradiation with low 10%) the reverse cur only a slight increas 	this Report) release; distribution unl the abstract entered in Block 20, 11 different apported by the Defense Nu hit 52 entitled "Radiation ructures." elde II necessary and identify by block num allium Arsenide, Interface Ionizing Radiation (// behavior of Schottky barr lation have been explored. In bulk and epitaxial mater I saturation current densi y neutron fluences (i.e., prent increased by one to ase in n factor. I-V and	imited imited inited (from Report) cclear Agency under Subtask Effects on Solid State ber) States, Neuton Radiation (both minur of former of to the minur of former of to the minur of former of ial with a preirradiation ty of 10° amps/cm. After carrier removal less than two orders of magnitude with C-V measurements from 77 K

いいいます、うちまくて

CURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Abstract (Continued)

D

1.1.1.

to 360°K and photoelectric measurements at room temperature were taken in developing an understanding of the effect of neutron irradiation on the electrical characteristics of these Schottky barrier diodes (including with transient ionizing radiation).

The experimental results have been interpreted from an interface state density model as suggested by Levine. The results of this model have been compared to those reported by Levine and Crowell and Roberts with unirradiated diodes. The limitations of interpreting the results using the interface state density model have been delineated experimentally. Calculations indicate that current from field-enhanced emission is present in addition to thermionic emission current from the interface state model. Implications of these results on the use of Schottky junction devices in neutron radiation environments are presented.

FOREWORD

Under Air Force Cambridge Research Laboratories Contract No. F19628-74-C-0102, sponsored by the Defense Nuclear Agency, the Electrical and Systems Engineering Department of Rensselaer Polytechnic Institute has been carrying out research devoted toward studying the effect of neutron irradiation on the metal-semiconductor interface and the resultant performance of Schottky barrier diodes (including with transient ionizing radiation). This report presents the results obtained during the first twelve months of research.

A number of students at Rensselaer contributed to the successful completion of various stages of the program. In particular, J. Narain assisted in device fabrication, M. Kusiak designed and constructed the automated measurement equipment and S. Ashok assisted in the latter stages of measurement and data reduction.

The authors wish to acknowledge the help given by J. Floyd in the neutron irradiations at Brookhaven National Laboratory and by D. E. Lapierre and J. R. Capelli during the transient ionizing irradiations at AFCRL. The suggestions of our contract monitor, Dr. D. A. Neamen, during this program have been deeply appreciated.

TIS	White Section
OC	Butt Section
NAKNOUNCED	
HUSTIFICATION.	
DISTRIBUTION Bist.	AVAIL ABILITY GUDES
promotion and the second se	
ΛΙ	

TABLE OF CONTENTS

	<u>ra</u>	ge
1.0	Introduction	1
	1.1 Technical Background	l
	1.2 The Program	3
2.0	Device Fabrication and Test Instrumentation	5
	2.1 Au-GaAs Schottky Barrier Junction Fabrication	5
	2.2 Test Instrumentation	9
3.0	Radiation Test Considerations 1	4
	3.1 Neutron (Brookhaven BMRR) 1	4
	3.2 Transient Ionizing (AFCRL LINAC) 1	5
4.0	Neutron Radiation Results and Discussion 18	8
	4.1 I-V Characteristics 20	0
	4.2 C-V Characteristics 20	8
	4.3 Interface State Density 34	8
	4.4 Excess Reverse Current	0
5.0	Transient Ionizing Radiation Results and Discussion 70	0
	5.1 Au-GaAs Schottky Barrier Junction 70	0
	5.2 Evaluation of IMPATT Diode Aftereffects 75	5
6.0	Implications of Results on Radiation Hardening Design 82	2
	6.1 Neutron Implications in IMPATT's, MESFET's, and other Microwave Devices	2
	6.2 Transient Ionizing Implications in IMPATT's 89	5
7.0	Summary and Conclusions 8	7
	DISTRIBUTION LIST	

and the second states and

iv

LIST OF TABLES

Tabl	e 2.1	Room Temperature Characteristics of Au/nGaAs Schottky Diodes with Different Starting Material 10
Tabl	e 4.1	Summary of Devices Tested Under Neutron Irradiation 19
Tabl	e 4.2	Summary of Carrier and Trap Concentrations obtained from C-V Measurements 40
Tabl	e 5.1	Transient Ionizing Radiation Results for 316 at 8 x 10 ⁹ rads/sec
Tabl	e 5.2	Photoresponse of Schottky IMPATT 1B10 (D1)

Page

and the second states and the second

LIST OF FIGURES (Continued)

a the second of the

1.3.3

Fig.	4.13	Schematic Relationship between Barrier Height and Change in Interface State Charge for (a) zero bias (b) reverse bias and (c) forward bias (after Levine ⁽¹⁾)
Fig.	4.14	Surface Electric Field vs. Barrier Height Change for 2E16
Fig.	4.15	Log Reverse Current vs. Log Square Root of Reverse Voltage for 2E16
Fig.	4.16	Surface Electric Field vs. Barrier Height Change for 2E16 with Image Force Corrections (near zero barrier height change)
Fig.	4.17	Surface Electric Field vs. Barrier Height Change for 2E16 with Image Force Corrections (for large reverse bias)
Fig.	4.18	Density of States from Equations (4.40) and (4.41) for 2E16 (data points at far right are obtained independently from linear region of Fig. 4.17) 55
Fig.	4.19	Arrhenius Plot of I_R/T^2 for 2E16 Before and After Irradiation
Fig.	4.20	Density of States from Equations (4.40) and (4.41) for 316
Fig.	4.21	Comparison of I-V Characteristics of Series 316 After Irradiation at Device and Wafer Levels
Fig.	4.22	Reverse Current-Voltage Characteristics for 2E16 with Temperature After Irradiation
Fig.	4.23	Reverse Current vs. (Total Voltage) ^{-1/2} for 2E16 with Temperature After Irradiation
Fig.	4.24	Effective Barrier vs. Temperature for 2E16 and 316 67
Fig.	4.25	Reverse Current-Voltage Characteristics for 2E16 with Temperature (Without Irradiation)
Fig.	5.1	Photographs of Typical Results of Schottky Diode Photocurrent under Transient Lonizing Radiation 73

Page

LIST OF FIGURES (Continued)

and the second sec

Fig.	5.2	Equivalent Circuit for Avalanche Diode with Transient Ionizing Radiation (from Shedd et.al. (35))	74
Fig.	5.3	Photographs of GaAs Schottky IMPATT Photocurrent under Transient Ionizing Radiation	76
Fig.	5.4	IMPATT Diode Bias Circuit Model with Impedance Loci (following Brackett ⁽³⁷⁾)	79

Page

INTERFACE STATES IN SCHOTTKY BARRIER DIODES

1.0 INTRODUCTION

1.1 Technical Background

Schottky barrier diodes are used as rectifying junctions in a wide variety of devices, such as field effect transistors, impact avalanche transit time diodes (IMPATT diodes), RF detectors, and clamping diodes. Although the advantages of using Schottky barriers in these applications are well documented, the Schottky junction has always been less understood than the pn junction. However, recent work by Levine indicated that an interface state model could quantitatively describe the forward and reverse characteristics measured on a variety of different Schottky barriers, such as Cr/Si, Au/GaAs, Ag/ZnS, Au/SrTiO₃, and ZrSi₂/n-Si.^(1,2) This interface state model was used to explain many of the Schottky barrier characteristics previously considered anomalous.

Various transient radiation effects and displacement radiation effects have been measured in Schottky barrier diodes. Yu and Snow⁽³⁾ investigated the behavior of silicon Schottky barriers under low energy (15 to 20 KeV) electron irradiation and fast neutron (greater than 0.1 MeV) irradiation. Planar configurations with a diffused p-n guard ring and a gate controlled structure were used. The principal effects of the neutron radiation were an increase in series resistance due to carrier removal and an increase in both reverse saturation current and forward current due to the decrease in bulk lifetime (for large barrier heights). The principal effect of the ionizing radiation was a decrease in breakdown voltage due to positive space charge in the oxide. Aukerman⁽⁴⁾ studied the effect of low energy (0.2 to 0.4 MeV) protons on silicon surface barrier detectors. In particular the damage created in the high field depletion region of the Schottky barrier was compared to that created in comparable bulk material. The main emphasis was on the determination of trap levels, and not on the electrical behavior of the device.

Neamen and Grannemann⁽⁵⁾ investigated the effect of fast neutrons on GaAsP Schottky barrier diodes. In particular, primary effects such as decrease in carrier concentration, decrease in carrier mobility, and decrease in minority lifetime were evaluated. Epi-layers of GaAsP with concentrations from 5.7×10^{14} to 3.5×10^{17} cm⁻³ were grown on GaAs substrates, with chromium metallization used exclusively. Annealing experiments were performed at temperatures up to 580° C.

Chaffin⁽⁶⁾ has reported that commercial silicon Schottky barrier diodes did not exhibit an increased leakage current at fluences to 10^{16} n/cm². However, there is difficulty in reconciling these results with previously reported information (see pages 164 and 165 in reference 6). Considerations such as semiconductor material and metallization type were not explored.

Besides this uncertainty in Schottky junction behavior, devices using Schottky junctions have exhibited anomalous behavior under irradiation. Schottky barrier IMPATT (impact avalanche transit time) diodes exhibit unexpected aftereffects under transient electron exposure, (7)while diffused junction devices exhibit characteristics in agreement with theory. (8,9) Furthermore, Schottky gate field effect transistors exhibit deterioration under neutron irradiation at fluences an order of

-2-

magnitude below that of comparable junction gate devices. (10,11) In addition, the saturation current of Ag surface barrier GaAs varactors actually decreased by an order of magnitude after exposure to 10^{15} fast neutrons/cm², while similar diffused GaAs varactors showed an expected increase (attributed to usual bulk effects). (12) These anomalous radiations effects in devices with Schottky junctions cannot be explained from the Schottky junction radiation results previously reported. (3-6)

1.2 The Program

The purpose of this program was to explore the effect of fast neutron irradiation on the metal-semiconductor interface and the resultant performance of Schottky barrier diodes (including the effect of transient ionizing radiation). Gallium arsenide was selected since it is the semiconductor of greatest interest in a variety of high performance microwave devices (IMPATT's, FET's and mixer diodes). Gold was selected as a metallization since there was a variety of results reported in the literature for comparison purposes (although in the next phase of this program aluminum will be used). The device structure (described in Section 2.1) was selected to eliminate surface leakage and permit electrical measurements giving a clear indication of changes introduced at the metal-semiconductor interface during neutron irradiation. The experimental results are interpreted using the interface state model and, where necessary, an enhanced field emission model. Well-known radiation effects, such as compensation, are included when interpreting

-3-

the data with these models. The implications of our findings on the use of Schottky junction devices in radiation hardened systems are also considered.

In Chapter 2 the device structure and fabrication are described (Section 2.1) as well as the instrumentation used in the electrical measurements (2.2). In Chapter 3, the facilities and test apparatus used in neutron and transient ionizing irradiations are described. In Chapter 4, the neutron radiation and discussion are presented, while the transient ionizing results and discussion are presented in Chapter 5. In Chapter 6, the implications of these findings on the design of Schottky junction devices for radiation hardened systems are presented. In Chapter 7, we summarize the conclusions from this work.

-4-

2.0 DEVICE FABRICATION AND TEST INSTRUMENTATION

2.1 Device Fabrication

The device structure designed for this program consists of four Schottky barrier diodes on a 0.100" x 0.100" chip. Three of the diodes have a guard ring and consist of a gold center dot 15 mil in diameter and a gold outer guard ring three mils in width and one mil away from the gold center dot. A sketch of the guarded device is shown in Fig. 2.1. The fourth diode consists of a gold center dot without the outer guard ring. The purpose of the guard ring is to eliminate surface leakage currents flowing out of the center dot during the I-V measurements. On the back surface, 8 mil diameter dots centered with respect to the 15 mil gold center dots on the top surface, are opened on the evaporated metal layer. The purpose of the back-surface openings is to insure reproducible photoelectric measurements.

A fabrication process was developed for obtaining Au-n-GaAs Schottky barrier diodes which conform to the device test structure designed. The starting material is either n type bulk GaAs wafers or nn⁺ epitaxial GaAs wafers, with carrier concentrations from $1.2 \times 10^{15}/\text{cm}^3$ to $1.0 \times 10^{17}/\text{cm}^3$. The ohmic back contact to the diodes is made by evaporaon ting 6000 Å of indium on the back surface of the wafer and subsequent alloying in a forming gas atmosphere at 300° C for two minutes. The nature of this contact was evaluated using bulk material with a doping concentration of $5 \times 10^{15}/\text{cm}^3$ and it was found to be ohmic in both directions (therefore, the same process is used for both bulk and epitaxial wafers).

-5-

Fig. 2.1 Expanded View of Guarded Diode (Scale: approximately 70:1)

-6-

Prior to the alloying operation, 8 mil diameter dots are opened on the evaporated indium layer using photolithographic techniques. These 8 mil holes serve as an optical window for the photoelectric measurements and result in more reproducible photoelectric repsonse measurement since the illumination is always on the same area and edge illumination is prevented.

The Schottky barrier is formed by evaporating 1000 A of Au over the front (epitaxial) side of the wafer. Just before evaporation the wafer is cleaned with concentrated HCl for a few minutes, rinsed thoroughly with methanol and blown dry with filtered air. The evaporation is carried out in a vacuum system with the wafer heated at 100°C. The device test structure is defined on the gold film with a thin layer of photoresist. The gold thickness of the device test structure is next increased to approximately one or two microns by electroplating gold, using the photoresist as a mask. An IR microscope is used to align the front surface Schottky junction with the back surface optical window described in the previous paragraph. The photoresist is removed by either chemically cleaning or in a plasma oxidation unit. Next, the device test structure is obtained by removing the evaporated gold film from the unwanted areas with an etch consisting of KI and I2 dissolved in water, using the electroplated gold as a mask. With this etch a mesa etch is not needed to avoid edge breakdown (as is required if aqua regia is used as the gold etch). The front surface of a chip after dicing is shown in Fig. 2.2, in which the bonding wires are apparent.

After wafer testing and dicing, the chips obtained are mounted in an eight-lead TO-5 header using a silver epoxy, with the curing

-7-

temperature kept below 100° C. Gold wire is used for connecting the device terminals to the header posts with a bonding machine. The TO-5 header has a 0.085" diameter hole drilled in the bottom which allows illumination of the 4 junctions of the chip structure during photo-electric measurements. With these procedures, Au-nGaAs Schottky diodes were fabricated with forward and reverse current-voltage characteristics comparable to those reported in the literature. That is, the n factor was typically 1.03 (slightly dependent upon forward bias) and the reverse current was approximately 10^{-9} amps. Such good devices were obtained on bulk GaAs with carrier concentrations between 5 x 10^{15} and 1×10^{17} cm⁻³ and epitaxial material having carrier concentrations between 3×10^{15} and 9×10^{16} cm⁻³, as shown in Table 2.1.

2.2 Test Instrumentation

Test facilities were developed for the measurement of DC currentvoltage (I-V) and 1 MHz capacitance-voltage (C-V) characteristics from 77° K to 400° K and for photoelectric measurements at room temperature. Both the I-V and C-V measurements were automated, using special purpose ramp generators to obtain a linearly increasing voltage and an XY recorder for a permanent record. A block diagram is shown in Fig. 2.3. Two ramp generators were designed - a low voltage, medium current unit for forward bias measurements and a high voltage, low current unit for reverse bias tests. Besides the voltage range, the slope of the ramp (i.e., dv/dt) could also be controlled with the ramp generators developed. The I-V and C-V measurements were recorded on 38 cm x 25 cm graph paper

-9-

Voltage

Reverse Current (Amps) at Medium

Saturation Current (Amps)(extrapolated from I-V data)

n Factor $10^{-9}-10^{-7}A$)

Carrier Con-centration (cm⁻³)

Starting Material

Device Series

1.2 x 10¹⁵

Epitaxial

228

and the second se

5 x 10⁻¹¹ 4 x 10⁻¹¹

10-15	6 x 10 ⁻¹²	8 x 10 ⁻¹²	3 x 10 ⁻¹¹
1.007	1.01	1.02	1.05

3.0 x 10¹⁶

Epitaxial

2E16

 6.0×10^{15}

Bulk

410

8.5 x 10¹⁶

Bulk

316

Room Temperature Characteristics of Au/nGaAs Schottky Diodes with Different Starting Material Table 2.1:

-10-

2 x 10-9

6 x 10⁻⁹

10-9

2 x 10⁻¹¹

1.07

1.0 x 10¹⁷

Bulk

300

which allowed good resolution in reducing the data.

With the use of a logarithmic picoammeter (Keithley Model 26000) a plot of ln I vs. V is obtained with a current range of 10^{-11} to 10^{-3} amps (or a current density range of 10^{-8} to 1 amp/cm² with the diodes described in Section 2.1). The sweep speed was slow enough that the displacement current was less than 10 picoamps. By using supplementary point-by-point measurements, stable measurements were made at 10^{-13} to 10^{-12} amps when necessary.

Standard point-by-point photoelectric measurements were taken using a monochrometer (Jarrel Ash Model 82-415), a tungsten light source and lock-in amplification. A block diagram is depicted in Fig. 2.4. Although barrier height changes with bias voltage and neutron irradiation were obtained, the I-V and C-V measurements were a more sensitive indicator of changes in the metal-semiconductor interface.

-12-

Fig. 2.4 Diagram of Photoelectric Measurement Facility

-13-

3.0 RADIATION TEST CONSIDERATIONS

Both fast neutron irradiations and transient ionizing irradiations were performed during this program. In this chapter various test considerations involved in this testing are briefly described.

3.1 <u>Neutron Irradiations (Biomedical Research Reactor (BMRR)</u> at Brookhaven

Neutron irradiations were performed on the water-moderated Biomedical Research Reactor (BMRR) at the Brookhaven National Laboratory (BNL). The mounted chips were irradiated in an aluminum fixture designed to support up to 12 TO-5 cans in the allowable space. At full power of 3 megawatts, the fast neutron flux is 1.7×10^{13} neutrons/cm²/sec at the core edge with a spectrum similar to a fission spectrum. The thermal neutron flux is somewhat high, namely 4.5×10^{13} neutrons/cm²/sec, at full power. However, the low energy of these neutrons (less that 0.5 eV or more than an order of magnitude below the displacement threshold in GaAs⁽¹²⁾) results in minimal permanent effects and the radioisotropes produced in the devices were at a tolerable concentration.^{*}

At the 100 kilowatts operating power used in these irradiations, the fast neutron flux is $0.6 \ge 10^{12}$ neutrons/cm²/sec. For a 10 minute irradiation, the neutron fluence is $3.6 \ge 10^{14}$ neutrons/cm², while for

-14-

Preliminary neutron irradiations were performed using the linear accelerator at Rensselaer Polytechnic Institute. Although these irradiations were discontinued because the absolute neutron fluence was not as well calibrated as the BMRR at Brookhaven, cadmium shields to eliminate the thermal neutron flux were more easily incorporated in the test fixture. By comparing the results of irradiations at the two facilities, it is concluded that the thermal neutron fluence had no effect on the results reported, i.e., subthreshold⁽¹³⁾ radiation effects did not appear significant.

a 60 minute irradiation the fluence is 2.2×10^{15} neutrons/cm². This core edge position at the BMRR was most suitable for these two fast neutron fluences desired.

In order to minimize heating during the neutron irradiations, the support aluminum fixture was designed for minimum weight (25 grams including 12 TO-5 packages). A thermocouple was used during the initial irradiation to verify that the temperature rise was less than 5° C. During all the neutron irradiation the temperature of the devices was maintained below 30° C, so that no annealing occurred. Although not required on this program, fast neutron fluences as high as 10^{17} n/cm² could be obtained using these facilities with the device temperature kept below 125° C.

The effect of neutron irradiation on the pin-to-pin package leakage of the TO-5 cans was checked to insure that this parallel current was sufficiently small. In general, the leakage was less than 1 picoamp before and after the neutron irradiations. In some cases, the TO-5 cans with holes drilled for photoelectric measurements (see Section 2.1) showed excess leakage currents as high as 10^{-10} amps (at high voltage) between same pins before neutron irradiation. This leakage was attributed to stresses introduced in the glass during the drilling. However, by careful drilling and TO-5 can pretesting, packages with preirradiation leakage greater than a few picoamps were eliminated.

3.2 Transient Ionizing Testing (Linear Accelerator at AFCRL)

The transient ionizing radiation testing was performed at the linear accelerator (LINAC) facility at AFCRL. The accelerator was

-15-

used to generate a 10 MeV electron beam of 100 nanosecond duration. Dose rates between 10^8 and 8×10^9 rads/sec were achieved with only a small change in beam energy by varying the injector current. The chips were mounted in an evacuation test fixture with the dose rate monitored using TLD dosimetry. The evacuated fixture insured that air ionization effects did not affect the device evaluation during irradiation.

During the irradiation, the photocurrent and photovoltage of the diode under test were measured as a function of bias voltage (below breakdown) or bias current (above breakdown) using the bias circuits shown in Fig. 3.1. Since the Au-n GaAs Schottky diodes in the TO-5 packages are not well heat sunk, pulse biasing was used to obtain the higher bias currents. Typical bias conditions were one-third of the breakdown voltage, breakdown voltage (defined at 0.1 mA and denoted by $V_{\rm B}$), 40 mA, 100 mA, and 400 mA. Devices were tested using both the 470 ohm and 47 ohm impedance bias circuits.

-16-

Fig. 3.1 Bias Circuits Used in Transient Ionizing Radiation Testing

4.0 NEUTRON RADIATION RESULTS AND DISCUSSION

The electrical characteristics of five series of Au-n GaAs diodes were measured before and after neutron irradiation. A summary of the material carrier concentration and of the radiation dose level used is given in Table 4.1. Device series 228 and 2E16 were fabricated from n-n VPE(100) epitaxial wafers with typical carrier concentrations of 1.2×10^{15} and 3×10^{16} cm⁻³ respectively. Device series 410, 316 and 300 were fabricated from (100) wafers cut from boat grown crystals with typical carrier concentrations of 6 x 10^{15} , 8.5 x 10^{16} and 1 x 10^{17} cm⁻³ respectively. The neutron fluences used were 3.6×10^{14} and $2.2 \times 10^{15} \text{ n/cm}^2$. The lower fluence was used for determining the sensitivity of the I-V characteristics to neutron damage as the carrier removal at this dose was small, particularly for the more heavily doped material. Devices fabricated from material with carrier concentration in the 10¹⁶ to 10¹⁷ cm⁻³ range had a carrier removal rate between 12 to 19 cm⁻¹. This is comparable to the carrier removal rate reported in the literature (14) for GaAs with similar carrier concentration. Devices fabricated from material with carrier concentration in the 1015 to 10¹⁶ cm⁻³ range were partially compensated after irradiations to the lower neutron dose and totally compensated after the higher fluence. Nevertheless, evaluation of the I-V and C-V characteristics of these devices helped to interpret the results obtained in devices with higher doping. In what follows we present and discuss in detail the results obtained with devices of the 2E16 series since the epitaxial material used in their fabrication is similar to the one used in GaAs solid state

-18-

Carrier Removal Rate (cm ⁻¹)			ZI			19	16	
Zero Bias Capacitance Change	Compensated	-75%	-10%	Compensated	-2%	-15%	-20%	-20%
Neutron Fluence (n/cm)	2.2 x 10 ¹⁵	3.6 x 10 ¹⁴	3.6 x 10 ¹⁴	2.2 x lo ¹⁵	3.6 x 10 ¹⁴	2.2 x 10 ¹⁵	2 x 10 ¹⁵	2.2 x 10 ¹⁵
Carrier Concen- tration (cm ⁻³)	1.2 x 10 ¹⁵		3 x 10 ¹⁶	6 x 10 ¹⁵	8.5 x 10 ¹⁶		1.x 10 ¹⁷	
Starting Material	Epitaxial		Epitaxial	ALUA	Bulk		Bulk	
Device Series	228		2816	OTH	316		300	

TABLE $\boldsymbol{\mu}.\mathbf{1}$ Summary of Devices Tested Under Neutron Irradiation

-19-

microwave devices. Although similar results were obtained in the other series of devices, complete results are not included for the sake of brevity.

4.1 I-V Characteristics

Figure 4.1 shows photographs of the forward and reverse I-V characteristics before and after irradiation taken with a curve tracer. The forward characteristics show an increase in the series resistance after irradiation. The reverse characteristics show a breakdown voltage of 30 volts at 0.5 mA in agreement with values reported in the literature for GaAs pn junctions.⁽¹⁵⁾ After irradiation the breakdown characteristics are softer than before irradiation. Detailed I-V characteristics before irradiation are shown in Fig. 4.2. The ideality factor "n" of the forward characteristics changes from 1.01 at low forward voltages to 1.03 at 300 mV. These values are also in agreement with values previously reported.⁽¹⁶⁾

The saturation or leakage current I_s was obtained by extrapolating the I-V forward characteristics (for voltages higher than 4 kT/q) to the zero voltage axis. A plot of $\ln(I_s/T^2)$ vs. 1/T is shown in Fig. 4.3. Since the leakage current in the case of thermionic emission is given by:

$$I_{s}/A = A^{*} T^{2} \exp \left[- \phi_{B}(0)/kT \right]$$
(4.1)

where A is the cross sectional area of the device, A^* the Richardson constant, T the absolute temperature and $\phi_B(0)$ the metal-semiconductor barrier height at zero volt bias, the data of Fig. 4.3 gives a barrier height of 0.9 eV. It should be pointed out that the barrier height

-20-

A WITHOUT IRRADIATION

Fig. 4.1 Overview of I-V Characteristics of 2E16 with and without Irradiation

at Room Temperature

VR + + + VF (IO V/DIV) (0.5 V/DIV)

B. WITH 0.36 X 10¹⁵ n/cm²

-21-

determined from an activation energy analysis is expected to be accurate within 10% due to the finite number of data points used. Barrier heights reported for Au-n GaAs range from 0.9 to 0.95 eV.⁽¹⁷⁾

The value of the Richardson constant A^* was obtained from the data shown in Fig. 4.3 and was found to have a value of 70 A/cm²-^oK² which is almost an order of magnitude larger than the theoretical value of $8 \text{ A/cm}^2 - {}^{\circ}\text{K}^2(18)$ assuming a reduced effective mass of 0.067. The discrepancy can be due to the fact that the metal-semiconductor barrier height at zero bias may change with temperature. If that is the case, then the intercept of the line of Fig. 4.3 with the T = ∞ axis gives not the Richardson constant A^* , but the quantity:⁽¹⁹⁾

$$A^* \exp - \{1/k(d\phi_B/dT)\}$$
 (4.2)

where $d\phi_B/dT$ represents the change in barrier height with temperature. Using Eq. (4.2) and the theoretical value of A^* we obtain

$$d\phi_{\rm B}/dT = -0.17 \text{ meV}/^{\circ}K$$

which is of the same order of magnitude as the change of the energy gap with temperature (-0.5 meV/ $^{\circ}$ K) determined in GaAs.⁽²⁰⁾

The low value of the ideality factor "n" of the forward I-V characteristics, 1.01 to 1.03 at room temperature, as well as the low value of the saturation current density, 7×10^{-9} A/cm² at room temperature determined from the I-V characteristics, indicate that our fabrication procedure yielded diodes with characteristics similar to the best recently reported.⁽¹⁶⁾

-24-

The I-V characteristics for the same device after neutron irradiation are shown in Fig. 4.4. A slight change was found in the forward characteristics. The ideality factor increased to 1.07 at low forward bias voltage and to 1.1 at 300 meV. An activation energy plot of I_{s}/T^{2} vs. 1/T for the irradiated device is shown in Fig. 4.5. The values of the barrier heights determined from the data of Figs. 4.3 and 4.5, 0.9 and 0.91 eV respectively, are each within the limits of experimental error and it can be concluded that the barrier height did not change with neutron irradiation.

In contrast with the forward I-V characteristics, Figs. 4.2 and 4.4 show that, at room temperature and 6 volt reverse bias, the leakage current changed by more than an order of magnitude after irradiation. At higher temperatures the increase is less but appreciable. In silicon devices, it has been found that the increase in reverse current of a neutron irradiated pn junction is due to an increase in the generation rate in the depletion layer caused by neutron displacement damage. ⁽²¹⁾ In order to determine if that is the case in the devices tested, we carried out the following analysis.

The reverse current due to generation in the depletion layer is given by $^{(22\,)}$

$$I_{R} = q AWn_{i}/\Upsilon$$
(4.3)

where W is the width of the depletion layer, n_i the intrinsic carrier concentration and $1/\Upsilon$ the generation rate due to a deep level. Since the reverse bias depletion layer capacitance C_p is given by:

$$C_{R} = \epsilon A / W \tag{4.4}$$

-25-

where ϵ is the electric permittivity of the semiconductor material, it follows that

$$I_{R}C_{R} = q A^{2} \epsilon n_{i} / \Upsilon$$
 (4.5)

that is, the product of the reverse current (due to generation in the depletion layer) times the reverse capacitance is independent of the reverse bias voltage. The independence of the $I_R C_R$ product upon the reverse voltage can be used to determine if the reverse current is due to generation in the depletion layer. Figure 4.6 shows the measured $I_R C_R$ product for an unirradiated commercial silicon diode and for one of the irradiated GaAs Schottky diodes. The data for the silicon diode confirms the well-known experimental fact that at room temperature, the reverse current silicon pn junctions is due to generation in the depletion layer. In contrast, the $I_R C_R$ product for the irradiated devices changes by two orders of mangitude from 1 to 6 volt reverse bias. The only possibility left for explaining the observed characteristics using Eq. (4.5) is to assume an electric field dependent generation rate $1/\Upsilon$. This possibility is explored in Section 4.4.

4.2 C-V Characteristics

The 1 MHz capacitance as a function of voltage for forward and reverse bias is shown in Figs. 4.7 and 4.8 before and after irradiation respectively. Because of the low neutron fluence used, the change in capacitance is small and of the order of 10%. Using the above data, the quantity $1/c^2$ was plotted as a function of reverse bias voltage and the results are shown in Fig. 4.9. In order to analyze the data of Fig. 4.9,

-31-

Fig. 4.9 1/C² vs. Voltage for 2E16 Near Zero Bias

-32-

it is necessary to consider the charge distribution in the depletion layer. Figure 4.10 shows the energy band diagram in a reverse biased Schottky diode.⁽²³⁾ $E_{\rm Fn}$ represents the quasi-Fermi level for electrons, $E_{\rm D}$ the energy level of shallow donor assumed to be completely ionized, $E_{\rm t}$ a trap level, W the width of the depletion layer and y_t the distance at which the trap level crosses the electron quasi-Fermi level.

If the capacitance is measured at high enough frequency such that only the free charge at W follows the small signal voltage variations, then the small signal capacitance is given by:(24)

$$C = \epsilon A/W \tag{4.6}$$

Assuming that the trap level is an acceptor then the relationship between W and the applied voltage -V is given by: (24)

TA

$$W = N_{t}/N_{D}\sqrt{\frac{2 \in V_{t}}{q(N_{D}-N_{t})}} + \sqrt{\frac{2 \epsilon}{qN_{D}}} (V_{D} - V - V_{t}N_{t}/N_{D})$$
(4.7)

where N_D is the donor density, N_t the trap density, V_D the contact potential and qV_t is the energy difference between the trap level and the Fermi level in the bulk, that is:

$$v_{t} = \frac{E_{F} - E_{t}}{q}$$
(4.8)

If the trap level is a donor instead of an acceptor, it is easily shown that:

$$W = \frac{N_{t}}{N_{D} + N_{t}} \sqrt{\frac{2\epsilon V_{t}}{qN_{D}}} + \sqrt{\frac{2\epsilon}{q(N_{D} + N_{t})}} (V_{D} - V - V_{t}N_{t}/\overline{N_{t} + N_{D}})$$
(4.9)

-33-

Fig. 4.10 Energy Band Diagram for a Reverse Bias Schottky Junction with a Shallow Donor and a Deep Trap

Equations (4.7) and (4.9) show that, as long as N_t is of the same order of magnitude as N_D , W^2 , i.e., $1/C^2$, is a non-linear function of the bias voltage. The data of Fig. 4.9 shows that $1/C^2$ is linear with voltage in the range of 0.2 to -1.0 volts for both the unirradiated and the irradiated device. This means that either $N_t << N_D$ or that in the above voltage range the charge state of the trap level does not change within the depletion region. This last condition implies that $y_t = 0$ in Fig. 4.10 and that V_t has to be larger than the diffusion or contact potential V_D but less than the band gap. From Fig. 4.9 the contact potential for the unirradiated device is 0.8 V.

The above analysis has shown that between +0.2 and -1.0 volts, Eqs. (4.7) and (4.9) simplify to:

$$W^{2} = \frac{2\epsilon}{qN_{D}} (V_{D} - V)$$
(4.10)

that is:

$$1/C^{2} = \frac{2(V_{\rm D} - V)}{q\epsilon A^{2} N_{\rm D}}$$
(4.11)

Using the above equation, the data of Fig. 4.9 gives $N_D = 2.2 \times 10^{16} \text{ cm}^{-3}$ before irradiation and $N_D = 1.9 \times 10^{16} \text{ cm}^{-3}$ after a neutron fluence of $3.6 \times 10^{14} \text{ n/cm}^2$. That is, after irradiation, the net positive charge concentration in the depletion layer has decreased. This implies that neutron irradiation has transformed some of the original shallow donors into non-ionized deep donors or that very shallow acceptors have been introduced. This is the only way in which the difference in slopes of

-35-

 $1/c^2$ vs. V shown in Fig. 4.9 before and after irradiation can be explained.⁽²⁵⁾ Results similar to the ones shown in Fig. 4.9 were consistently observed in all the devices tested. Although it is not possible to decide which of the two alternatives is the real one, deep donors or shallow acceptors, there is no doubt that neutron damage in the depletion layer of Schottky diodes consists of levels occupied by electrons and which because of their energy level being in close proximity to the valence band must be in equilibrium with it.

The data in Fig. 4.9 shows that $1/c^2$ starts to deviate from a straight line for reverse voltages larger than 1 volt. Figure 4.11 shows $1/c^2$ vs. V for a larger voltage range. For voltages larger than 2.5 volts the data falls on a straight line. The carrier concentrations determined from the slope of the above curves are 2.9×10^{16} cm⁻³ and 2.5×10^{16} cm⁻³ for the unirradiated and irradiated devices respectively. The bending of the data of Fig. 4.11 that takes place between 1 and 2.5 volts can be due to either a non-uniform doping concentration or to the uncovering of a trapping level. This last condition seems to be more reasonable since the slope of the $1/c^2$ plot remains constant for voltages larger than 2.5 volts. If the doping were nonuniform one should expect a changing slope at higher voltages as well.

If the trap density in the depletion layer is completely ionized at large reverse bias, then its density is the difference between the concentration at large reverse bias and the concentration at low reverse bias. This difference is between 6×10^{15} and 7×10^{15} cm⁻³ for both the irradiated and unirradiated devices.

-36-

Fig. 4.11 1/C² vs. Voltage for 2E16 Over Wide Range of Reverse Voltage

-37-

Figure 4.12 shows the reverse bias capacitance of an irradiated device at room temperature and close to liquid nitrogen temperatures. The difference in capacitance at zero bias can be explained by the change of diffusion potential with temperature. At room temperature, the diffusion potential is 0.85 volts and at liquid nitrogen it is 0.95 volts. That voltage difference is enough to explain the difference in capacitance. At large reverse bias the two capacitances become equal since the contact potential has less of an effect on the capacitance. The data also indicates that the traps do not respond to the 1 MHz measuring frequency either at room temperature or at liquid nitrogen temperature.

A summary of room temperature C-V data reduced for three series of devices (2E16, 316 and 228) is shown in Table 4.2. For 2E16 and 316 the trap concentrations are similar before and after irradiation. For 228, with a lower concentration of traps before irradiation, the trap concentration introduced by 0.36×10^{15} n/cm² is somewhat above 10^{15} /cm³.

4.3 Interface State Density

In this section we extract information about the energy distribution of the interface states at the metal-semiconductor boundary by analyzing the I-V and C-V characteristics of Sections 4.1 and 4.2 in the manner suggested recently by Levine.^(1,2) The analysis is based upon the assumption of a finite density of interface states whose distribution in energy is fixed within the band gap with respect to the conduction band. It is also assumed that the positive charge in the depletion layer is equal to the negative charge stored in the interface states in order to

-38-

Fig. 4.12 Detailed C-V for Irradiated 2E16 at Room Temperature and Near Liquid Nitrogen Temperature

1 - - ·

-39-

228	Before After Irradiation $.36 \times 10^{15} n/cm^2$	2.4 x 10 ¹⁵ ≈0.5 x 10 ¹⁵	4.8 x 10 ¹⁵ 5.4 x 10 ¹⁵	2.4 x 10 ¹⁵ = 4.9 x 10 ¹⁵
316	After .36 \times 10 ¹⁵ n/cm^2	6.9 x 10 ¹⁶	7.8 × 10 ¹⁶	9 x 10 ¹⁵
	Before Irradiation	7.8 × 10 ¹⁶	8.7 x 10 ¹⁶	9 x 10 ¹⁵
2E16	After .36 x 10^{15} n/cm^2	1.9 × 10 ¹⁶	2.5 x 10 ¹⁶	6 x 10 ¹⁵
	Before Irradiation	2.2 x 10 ¹⁶	2.9 x 10 ¹⁶	7 x 10 ¹⁵
		Actual Carrier Concen- tration (from C-V near zero bias)	Apparent Carrier Con- centration (from C-V at high reverse voltage)	Trap Concentration (difference in above)

Table 4.2: Summary of Carrier and Trap Concentrations

Obtained from C-V Measurements

40

guarantee charge neutrality. It follows from the above two assumptions that the metal-semiconductor barrier height is controlled by the energy distribution of the interface states and by the external applied bias.

The energy band diagrams for an n-type Schottky barrier using the above model are shown in Fig. 4.13 for three cases: (a) zero bias, (b) reverse bias and (c) forward bias. The barrier height is $\phi_{\rm B}$, the applied voltage is V and the difference between the conduction band edge and the Fermi level is \mathbf{J} . The quantity ϕ^* represents the barrier height under flat band conditions, i.e., zero charge in the interface states. The quantity of negative charge for each bias is shown as the black areas and depends upon the difference $\phi^* - \phi_{\rm B}$. It follows from the assumptions of the model that the barrier height increases for forward bias and decreases for reverse bias. The way in which interface state density information can be obtained from the I-V and C-V characteristics is shown by the following analysis.

The relationship between the negative charge density Q_{ss} stored in the interface states and the density of interface states N_{ss} is given by:

$$Q_{ss} = q \int_{ss}^{+\infty} N_{ss}(\phi) f(\phi) d\phi$$
 (4.12)

where $f(\phi)$ is the probability that a surface state of energy ϕ is occupied. It is assumed that the electrons in the interface states are in equilibrium with the metal and the function $f(\phi)$ is the Fermi-Dirac distribution given by:

$$f(\phi) = [1 + \exp(\phi - \phi_f)/kT]^{-1}$$
 (4.13)

-41-

where $\phi_{\mathbf{f}}$ is the metal Fermi level. In the zero temperature approximation $f(\phi)$ is unity for $\phi < \phi_{\mathbf{f}}$ and zero for $\phi > \phi_{\mathbf{f}}$. Then

$$aq_{ss}/d\phi_{f} = qN_{ss}(\phi_{f})$$
(4.14)

For a temperature T > 0, it is shown that (25)

$$\frac{dQ_{ss}}{d\phi_{f}} = qN_{ss} + \frac{q\pi^{2}}{12} (kT)^{2} \frac{d^{2}N_{ss}}{d\phi^{2}} \phi_{f} + \dots \quad (4.15)$$

As long as the curvature of the N_{ss} vs. \emptyset relationship, evaluated at $\emptyset = \emptyset_{f}$, is small compared to N_{ss}/(kT)² the zero temperature approximation is valid. We will assume the zero temperature approximation which, as will be shown later, turns out to be valid in our case. Since $\emptyset_{B} + \emptyset_{f}$ is a constant, it follows that the left-hand side of Eqs. (4.14) and (4.15) can be written as:

$$dQ_{ss}/d\phi_{f} = - (dQ_{ss}/d\phi_{B})$$
(4.16)

Equations (4.14) or (4.15) and (4.16) indicate that in order to determine N_{ss} it is necessary to know Q_{ss} as a function of ϕ_B . The charge density in the interface states Q_{ss} can be determined from the C-V characteristics and the barrier height ϕ_B , or barrier height change, from either the I-V characteristics or from measurement of the barrier height by photoelectric measurements. We used the I-V characteristics for determening the barrier height change because of the greater accuracy and rapidity with which we can carry out those measurements in our laboratory.

-43-

The charge density $\mathbf{Q}_{_{\rm SS}}$ is related to the electric field by the equation:

$$Q_{SS} = \epsilon E_{S}$$
(4.17)

where ϵ is the static electric permittivity and E_s is the electric field at the metal-semiconductor interface. The relationship between this electric field and the high frequency capacitance is considered next, taking into account the presence of deep donor traps. In reference to Fig. 4.10 an increase ΔV_r in reverse bias uncovers a charge $qN_t \Delta y_t$ at y_t and charge $qN_D \Delta W$ at W. The increase in electric field ΔE_s and the increase in voltage ΔV_r are given by:

$$\Delta \mathbb{E}_{s} = \frac{q\mathbb{N}_{t}}{\epsilon} \Delta \mathcal{Y}_{t} + q \frac{\mathbb{N}_{D}}{\epsilon} \Delta \mathbb{W}$$
(4.18)

$$\Delta V_{r} = \frac{q}{\epsilon} \frac{N_{t}}{\epsilon} y_{t} \Delta y_{t} + q \frac{N_{D}W}{\epsilon} \Delta W$$
(4.19)

Since

$$W - y_{t} = \sqrt{\frac{2\epsilon V_{t}}{qN_{D}}}$$
(4.20)

and the high frequency capacitance C is given by

$$C = \frac{\epsilon A}{W}$$
(4.21)

it follows from Eqs. (4.18), (4.19), (4.20) and (4.21) that:

$$E_{s}(V_{r}) - E_{s}(0) = 1/\epsilon A \int_{0}^{V_{r}} CdV + \frac{qN_{t}}{\epsilon} \sqrt{\frac{2\epsilon V_{t}}{qN_{D}}} \ln \frac{C(0)}{C(V_{r})} \quad (4.22)$$

-44-

where $E_s(V_r)$ is the electric field at a reverse bias voltage V_r . The electric field at zero bias is calculated from the contact potential V_D and the doping density from the equation:

$$\mathbb{E}_{s}(0) = \sqrt{\frac{2qN_{D}}{\epsilon}} V_{D}$$
(4.23)

The second term on the right-hand side of Eq. (4.22) represents the contribution to the electric field by charge which is uncovered within the depletion layer. According to the data presented in Section. 4.2, the traps start to be uncovered at reverse voltages larger than 1 volt and up to that voltage the increase in electric field is given by the integral term in Eq. (4.22). For reverse voltages larger than 1 volt, the last term has to be taken into account except that $C(V_r = 1)$ should be used instead of C(0) in the logarithm term because the traps start to be uncovered at that woltage. Using the values of $N_t = 7 \times 10^{15} \text{ cm}^{-3}$, $N_D = 2.2 \times 10^{16} \text{ cm}^{-3}$ and $V_t \approx 1 \text{ V}$ obtained from the data presented in Section 4.2, the value of the constant in front of the logarithm term is $2.5 \times 10^4 \text{ V/cm}$. In carrying out the calculations for $E_s(V_r)$ it was found that the contribution to the electric field due to traps was lower than 10% of the total electric field in device series 2E16 and 316.

The barrier height $\phi_{\rm B}$ is determined from the I-V characteristics. Assuming that the current in the Schottky barrier is due to thermionic emission, the relationship between the current I and the voltage V is given by: ⁽²⁷⁾

$$I/A = A^{*}T^{2} \exp - \frac{\phi_{B}}{kT} (\exp \frac{qV}{kT} - 1)$$
(4.24)

-45-

If image force lowering of the barrier is taken into account, the above equation changes to:

$$I/A = A^{*}T^{2} \exp - \frac{\phi_{B} - q\beta \sqrt{E_{s}}}{kT} (\exp \frac{q V}{kT} - 1) \qquad (4.25)$$

where β is the image force lowering constant given by: (27)

$$3 = (q/4\pi\epsilon_d)^{1/2}$$
 (4.26)

and where ϵ_d is the high frequency electric permittivity.

For forward bias voltages $V_f > 4kT/q$, Eq. (4.25) can be approximated by:

$$I_{f}/A = A^{*}T^{2} \exp - \frac{\phi_{B}(V_{f}) - \beta \sqrt{E_{s}(V_{f})}}{kT} \exp \frac{qV_{f}}{kT}$$
(4.27)

where it has been shown explicitly that ϕ_B and E_s are functions of the voltage V_f . The above equation shows that the leakage current I_s obtained by extrapolation of the curve of ln I_f vs. V_f to $V_f = 0$ is given by:

$$I_{s}/A = A^{*}T^{2} \exp{-\frac{\phi_{B}(0) - \beta \sqrt{E_{s}(0)}}{kT}}$$
 (4.28)

Therefore, the leakage current I_s at a temperature T can be obtained from the extrapolation of the forward characteristics measured at that temperature. The change in barrier height at a voltage V can be obtained from Eqs. (4.25) and (4.28) and it is given by:

$$\Delta \phi_{\rm B} = q \beta \Delta \sqrt{E_{\rm s}} - kT \ln \frac{I}{I_{\rm s}(\exp \frac{qV}{kT} - 1)}$$
(4.29)

where

-46-

$$\Delta \phi_{\rm B} = \phi_{\rm B}(v) - \phi_{\rm B}(o) \tag{4.30}$$

$$\Delta \sqrt{E_s} = \sqrt{E_s(V)} - \sqrt{E_s(O)}$$
(4.31)

With the help of Eqs. (4.17), (4.22) and (4.29), it is possible to determine Q_{ss} as a function of $\Delta \phi_B$ from the I-V and C-V characteristics of the Schottky diode. Once that Q_{ss} is known as a function of $\Delta \phi_B$, N_{ss} is determined from Eqs. (4.14) or (4.15).

Another way to obtain $dQ_{ss}/d\phi_B$ without the necessity of finding I_s is as follows. Since Q_{ss} and ϕ_B are functions of the bias voltage V at a given temperature, it follows that:

$$dQ_{ss}/d\phi_{B} = (\partial Q_{ss}/\partial V)/(\partial \phi_{B}/\partial V) \qquad (4.32)$$

Neglecting the term due to traps in Eq. (4.22) it follows that:

$$(\partial Q_{ss}/\partial V_{f}) = -(C/A) ; (\partial Q_{ss}/\partial V_{r}) = C/A$$
 (4.33)

The change in barrier height with voltage can be obtained by taking the derivative of the left-hand side of Eq. (4.29) with respect to voltage:

$$\frac{1}{q} \frac{\partial \phi_{\rm B}}{\partial v_{\rm f}} = -\frac{kT}{q} \frac{\partial \ln I_{\rm f}}{\partial v_{\rm f}} + \beta \frac{\partial \sqrt{E_{\rm s}}}{\partial v_{\rm f}} + \frac{1}{1 - \exp(-qv_{\rm f}/kT)} \quad (4.35)$$

$$\frac{1}{q} \frac{\partial \phi_{\rm B}}{\partial v_{\rm r}} = -\frac{kT}{q} \frac{\partial \ln I_{\rm r}}{\partial v_{\rm r}} + \beta \frac{\partial \sqrt{E_{\rm s}}}{\partial v_{\rm r}} + \frac{1}{\exp(q v_{\rm r}/kT) - 1} \quad (4.36)$$

Introducing the ideality factor n defined by the equation:

$$l/n = (kT/q) \frac{\partial \ln I_{f,r}}{\partial V_{f,r}}$$
(4.37)

-47-

Eqs. (4.35) and (4.36) reduce to:

$$\frac{\partial \phi_{\rm B}}{\partial V_{\rm f}} = -(1/n) + \beta \frac{\partial \sqrt{E_{\rm s}}}{\partial V_{\rm f}} + \frac{1}{1 - \exp{-\frac{qV_{\rm f}}{kT}}} \qquad (4.38)$$

$$\frac{\partial \phi_{\rm B}}{\partial V_{\rm r}} = -(1/n) + \beta \frac{\partial \sqrt{E_{\rm s}}}{\partial V_{\rm r}} + \frac{1}{\exp \frac{qV_{\rm r}}{kT} - 1}$$
(4.39)

Substitution of Eqs. (4.33), (4.38) and (4.39) in (4.32) gives $dQ_{ss}/d\phi_B$. In the zero temperature approximation, the expression for the density of states N_{ss} (Eq. 4.14) reduces to a very simple expression in terms of the capacitance C and ideality factor <u>n</u>. For bias voltages \bigstar larger than 4 kT/q, N_{ss} is given by:

$$V_{ss} = \frac{C}{qA(1 - \frac{1}{n} + \beta \frac{\partial V_{s}^{E_{s}}}{\partial V_{r}})}$$
(4.40)

for forward bias voltages and by:

$$N_{SS} = \frac{C}{qA(\frac{1}{n} - \beta \frac{\sqrt{E_s}}{\delta V_r})}$$
(4.41)

for reverse bias voltages.

"For a more detailed derivation of the surface-state model see "Interface State Density in Au-nGaAs Schottky Diodes", by J. M. Borrego, R. J. Gutmann and S. Ashok in Solid State Electronics (1976).

-48-

Using the equations developed in the preceeding analysis we have extracted interface state information from the I-V and C-V characteristics presented in Sections 4.1 and 4.2. Figure 4.14 shows a semilog plot of the surface electric field E_s as a function of barrier height change - $\Delta \phi_B$ in the reverse direction, without taking into account image force barrier height lowering. The data is for a device of series 2E16 at two different temperatures, 24°C and 85°C, before and after neutron irradiation. For low barrier height changes, the data shows that ln E_s is linear with - $\Delta \phi_B$. This indicates that Q_{ss} is an exponential function of the barrier height ϕ_p , that is:

$$Q_{ss} = Q_c \exp - \phi_B / \phi_o \qquad (4.42)$$

where Q_{c} and ϕ_{c} are constants of the distribution.

From the data of Fig. 4.14, the value of ϕ_{0} at 85° C is 0.045 eV before irradiation and 0.074 eV after irradiation. The value of 0.045 eV agrees with the value of 0.040 eV obtained by Levine⁽¹⁾ for the Au-n GaAs diode reported by Padovani.⁽²⁸⁾ For lower temperatures and for higher reverse voltages (larger - $\Delta \phi_{\rm B}$) the data of Fig. 4.14 shows that Eq. (4.42) does not hold. This is better shown in Fig. 4.15 which is a log-log plot of the reverse current as a function of $\sqrt{V_{\rm R} + V_{\rm D}}$. Levine⁽²⁾ has shown that the reverse current has a dependence upon the total junction voltage given by:

$$I_{r} \propto \left(\sqrt{V_{R} + V_{D}}\right)^{0} o^{/kT} \qquad (4.43)$$

-49-

Fig. 4.14 Surface Electric Field vs. Barrier Height Change for 2E16

if Eq. (4.42) is satisfied. The data of Fig. 4.15 shows that Eq. (4.43), and also Eq. (4.42), are not valid for low temperatures and for high reverse voltages. We conclude then, that exponential distribution of Q_{ss} with $\phi_{\rm B}$ found by Levine⁽²⁾ is either valid only in a limited temperature and voltage range or that an additional excess current is present at low temperatures and high voltages. Furthermore, the distribution of Q_{ss} with $\phi_{\rm B}$ found by Levine does not take into account the effect of image force upon barrier height lowering.

Using Eqs. (4.22) and (4.29), we have obtained the electric field at the interface E_s , i.e., Q_{ss} , as a function of barrier height change - $\Delta \phi_B$ taking into account image force effects. The results are shown in Figs. 4.16 and 4.17. In the low temperature approximation, the slope of the curves of Figs. 4.16 and 4.17 is proportional to N_{ss} . The data of Fig. 4.16 shows then, that before irradiation N_{ss} peaks at a value close to $\Delta \phi_B \approx 0$ (i.e., at the Fermi-level at zero bias) and that after irradiation N_{ss} is approximately constant and of lower value.

As mentioned in the analysis, another way to determine N_{ss} is by means of Eqs. (4.40)and (4.41). Figure 4.18 shows N_{ss} for the same device using the above two equations. The value of N_{ss} determined from the slope of the curves of Fig. 4.17 for large values of $-\Delta \phi_{\rm B}$ are shown on the right of Fig. 4.18 and agree very well with the values determined from Eq. (4.41). The data of Fig. 4.18 shows that N_{ss} peaks at the Fermilevel at zero bias and that N_{ss} is less peaked and its value reduced by a factor of approximately 4 after irradiation. Before irradiation and at 85° C, the N_{ss} has approximately an exponential dependence upon barrier

-51-

Fig. 4.15 Log Reverse Current vs. Log Square Root of Reverse Voltage for 2E16

Fig. 4.16 Surface Electric Field vs. Barrier Height Change for 2E16 with Image Force Corrections (near zero barrier height change)

Fig. 4.17 Surface Electric Field vs. Barrier Height Change for 2E16 with Image Force Corrections (for large reverse bias)

-54-

the way we have been a

Density of States from Equations (4.40) and (4.41) for 2E16 (data points at farright are obtained independently from linear region of Fig. 4.17) Fig. 4.18

height, Eq. (4.42), for $-\Delta \phi_{\rm B} > 0$ with a value of $\phi_{\rm o} \approx 0.040$ eV similar to the one found by Levine.⁽¹⁾ For $\Delta \phi_{\rm B} < 0$, N_{ss} decreases very fast with $\phi_{\rm B}$ and shows a behavior similar to the one found by Crowell and Roberts in Au-Si Schottky barrier diodes.⁽²⁶⁾

A question that arises in determining N_{ss} from either Eqs. (4.22) and (4.29) or from Eqs. (4.40) and (4.41) is how valid is the assumption, especially at reverse bias, that the current in the Schottky diode is due to thermionic emission, i.e., given by Eq. (4.25). Figure 4.19 shows I_R/T^2 vs. 1/T for several reverse bias voltages before and after irradiation. It shows that the current flow has the characteristics of thermionic emission current up to 1 volt reverse bias at room temperature and up to 5 volts reverse bias at 85°C for the unirradiated devices. The corresponding limits for the irradiated devices are 1 and 2 volts. This means that the N_{ss} plots of Fig. 4.18 are valid up to $-\Delta \phi_B \approx 0.020 \text{ eV}$ at room temperature and up to $-\Delta \phi_B \approx 0.040 \text{ eV}$ at 85°C. For higher reverse bias voltages, i.e., higher $-\Delta \phi_B$, there is an additional reverse current which does not conform to thermionic emission characteristics. This will be further discussed in Section 4.4.

Using Eq. (4.41) we determined N_{ss} for devices of series 316 and its plot is shown in Fig. 4.20. We estimate the curves to be valid up to $-\Delta \phi_{\rm B} \approx 0.120$ eV for the reasons discussed previously. The N_{ss} distribution shows similar changes after irradiation as the ones shown in Fig. 4.18.

In order to determine if the changes in N_{ss} with irradiation were due to possible neutron damage in the metal close to the metal-semiconductor interface, a wafer of device series 316 was irradiated before the

-56-

Fig. 4.20 Density of States from Equations (4.40) and (4.41) for 316

Schottky diodes were fabricated. The ohmic contacts on that wafer had been fabricated before irradiation in order to avoid high temperatures during the fabrication of the Schottky diodes after irradiation. The I-V characteristics of those devices and of devices irradiated after fabrication on similar material are shown in Fig. 4.21. There was almost no difference in the I-V characteristics of the two types of devices. This indicates that any change in the characteristics before and after irradiation is due to neutron damage in the GaAs. That is, the change in N_{ss} with neutron irradiation or the excess current at large reverse bias is caused by damage in the semiconductor material.

4.4 Excess Reverse Current

The results presented in the preceeding section show that for forward bias and for small reverse bias voltages the current in Au-n GaAs diodes is caused by thermionic emission and that changes in the I-V characteristics can be accounted for by a change in the density of interface states. At moderate and high reverse bias voltages, the reverse current is in excess of the one which can be accounted for by thermionic emission processes. In this section, we determine the possible nature of that excess current.

Figure 4.22 shows the reverse current of a series 2E16 irradiated diode as a function of reverse bias at several different temperatures in the range between 300° K and 100° K. The data shows that the reverse current is strongly dependent upon the voltage (the current changes by 3 orders of magnitude when the voltage changes by a factor of 6) and it is relatively temperature independent (a change of two orders of

-60-

Fig. 4.22 Reverse Current-Voltage Characteristics for 2E16 with Temperature After Irradiation

magnitude in current for a change in temperature by a factor of 3). These characteristics strongly suggest that the reverse current must be caused by a high field effect process. For the purpose of this discussion we will classify the possible rate-limiting mechanism as barrier limited or bulk limited. By barrier limited we mean mechanisms such as temperature assisted direct tunneling of electrons from the metal into the semiconductor conduction band in a single step or in two steps with a trap as an intermediate state. We consider bulk processes as those processes which involve the liberation of charge trapped by impurity levels in the depletion layer by the Poole-Frenkel effect or by enhanced field emission. In these cases, the traps are refilled by electrons from the metal contact or from the valence band.

The I-V characteristics of a Schottky barrier diode in the thermionic field emission regime is given by:⁽²⁹⁾

$$I_{r} = I_{s} \exp V_{r} / V_{o} \qquad (4.42)$$

where I_s is a saturation current slowly varying with applied bias and V_o a constant which depends upon the donor concentration and temperature. In the case of two step tunneling with a trap as an intermediate step, it can be shown, following a similar argument as the one given by Parker and Mead,⁽³⁰⁾ that the I-V characteristics are similar to the one expressed by Eq. (4.42) except for a factor of 2 in the exponent:

$$I_{r} \alpha = \exp V_{r}/2V_{o} \qquad (4.43)$$

Equations (4.42) and (4.43) indicate that $\ln I_r$ is proportional to the reverse bias voltage V_r. The data of Fig. 4.22 does not follow either

-62-
of the above two equations and it is concluded that the excess reverse current is not due to direct one-step or two-step tunneling.

In a depletion region in which the emission process dominates over the capture process, the current due to the liberation of charge from a level is given by:

$$I = q N_t f_t e_n \tag{4.44}$$

where N_t is the total number of levels in the depletion layer, f_t the probability of those levels being occupied by electrons and e_n the electron emission rate. The fraction f_t can be expressed in terms of the emission rates e_p and e_n of holes and electrons:

$$f_t = e_p / (e_p + e_n)$$
 (4.45)

Therefore, the expression for the current becomes:

$$I = q N_t (e_p e_n) / (e_p + e_n)$$
 (4.46)

If one of the emission processes dominates over the other, the current is determined by the slowest emission rate. In that case, we will write Eq. (4.46) as:

$$I = q N_{+} / \tau_{\tau}$$
(4.47)

where 1/ ${\bf \tau}$ is the smallest of ${\bf e}_{\rm n}$ and ${\bf e}_{\rm p}.$

In the case of the Poole-Frenkel effect, i.e., lowering of the energy barrier by an electric field, the expression for 1/c is:⁽³¹⁾

-63-

$$1/\tau$$
 α exp $-(\phi_t - \frac{q\beta}{2}\sqrt{E})/kT$ (4.48)

where β is the constant used in the Schottky effect and ϕ_t is the energy required for emission of a free carrier from the trap. Equations (4.47) and (4.48) indicate that in the case of the Poole-Frenkel effect, the ln I is given by:

$$\ln I = (\phi_t - \frac{q\beta}{2} \sqrt{E})/kT + constant \qquad (4.49)$$

We attempted to fit the data of Fig. 4.22 to Eq. (4.49) without success.

The last mechanism considered is field emission from a trap. $Franz^{(32)}$ has derived an expression for the emission by tunneling of carriers trapped in a spherical well and gives:

$$1/\tau = \frac{qE}{2(m^*\phi_t)^{1/2}} \exp - \frac{\sqrt{2m^*}\phi_t^{3/2}}{q \hbar E}$$
 (4.50)

Substitution of Eq. (4.50) into Eq. (4.47) gives:

$$\ln I = -4/3 \frac{\sqrt{2m^*} \phi_t^{3/2}}{q \, \hbar E} + \text{constant} \quad (4.51)$$

where we have neglected the ln E term. Using the data of Fig. 4.22, we have plotted ln I vs. the inverse of the peak electric field at the barrier and the results are shown in Fig. 4.23. At high electric fields and low temperatures, the current follows Eq. (4.51). At low electric fields and high temperature the current is in excess of the one expected from Eq. (4.51) and is due to thermionic emission through the metal-semi-conductor barrier. From the slope of the straight lines of Fig. 4.23,

Fig. 4.23 Reverse Current vs. (Total Voltage)^{-1/2} for 2E16 with Temperature After Irradiation

we have determined ϕ_t at each temperature and the results are shown in Fig. 4.24. The barrier height ϕ_t is close to 0.4 eV at low temperatures and decreases to 0.3 eV at room temperature.

Although Eq. (4.51) explains the linear relationship shown in Fig. 4.23, it fails to explain the displacement of those lines along the current axis and the variation of ϕ_t with temperature. The displacement of the straight lines of Fig. 4.23 along the vertical axis could be due to the variation of the occupancy of the traps f_t with temperature. That is, Eq. (4.46) should be used instead of Eq. (4.47). The variation of ϕ_t with temperature might be explained by either a thermal assisted tunneling or by a variation of ϕ_t with the occupancy probability f_t .

In order to make an exact fit of Eq. (4.46) to the data of Fig. 4.23, it is necessary to have a model for the generation center so as to be able to express the emission rates e_p and e_n in terms of appropriate parameters of the generation center. We are carrying out further work along these lines taking into account the nature of the damage produced by fast neutrons in gallium arsenide and it will be reported later.

Figure 4.25 shows the reverse current of an unirradiated diode. It was found that the reverse current at low temperatures and high electric fields also obeys Eq. (4.51) but with a ϕ_t close to 0.5 eV at low temperatures. The variation of ϕ_t with temperature is shown in Fig. 4.24. The data of Fig. 4.24 indicates that the starting epitaxial material has a generation center which is different than the generation center introduced by neutron damage. The presence of those centers in VPE material have been found recently from capacitance variation with frequency.⁽³³⁾ The trap energy reported for one of the centers agrees with the one of 0.5 eV that we found by a completely different technique.

-6-

Fig. 4.24 Effective Barrier vs. Temperature for 2E16 and 316

-68-

It should be pointed out that Eq. (4.46) implies emission of both electrons and holes. The emission of electrons is from the trap center to the conduction band. The emission of holes is from the trap center into either the semiconductor valence band or into the metal. These two possibilities are very important since it implies that the reverse characteristics of neutron irradiated diffused GaAs and Schottky GaAs junctions can be similar or completely different depending upon the hole emission process. If hole emission is from the valence band then both types of devices should show similar behavior, but if the hole emission is from the metal because the trap is physically close to the metal semiconductor interface, then the two devices will have different reverse I-V characteristics. We are carrying out further analysis of the data in order to determine which of the two hole emission processes is taking place.

-69-

5.0 TRANSIENT IONIZING RADIATION RESULTS AND DISCUSSION

Besides the direct effect of neutron irradiation on the characteristics of Schottky barrier junctions, the electrical characteristics during the transient ionizing radiation were also explored using the facilities described in Section 3.2. These results are described in Section 5.1. Data was also taken with commercial X-band Schottky IMPATT diodes in an attempt to uncover the cause of the anomalous aftereffects in these devices. (34) This data and discussion are presented in Section 5.2.

The purpose of this testing was to monitor any changes in characteristics of Schottky junctions under transient ionizing radiation with neutron exposure and to explain the IMPATT aftereffects.⁽³⁴⁾ The electrical characteristics of Zener diodes under transient ionizing radiation biased near or in avalanche has been reported previously,⁽³⁵⁾ and the model described will be similarly useful for Schottky diodes.

5.1 Au-GaAs Schottky Barrier Junctions

Of the diodes that had been neutron irradiated, series 316 and 300 were measured under transient ionizing radiation at dose rates between 3×10^8 and 8×10^9 rads/sec. All chips were evaluated under vacuum with either 47 ohm or 470 ohm bias circuit impedances as described in Section 3.2. Measured results at 8×10^9 rads/sec are shown for Series 316 in Table 5.1.

At bias conditions below and at breakdown, the increase in junction voltage (photovoltage) is given. At bias currents well into avalanche, the increase in current (photocurrent) flowing through the external

-70-

	Prior Neutr	on Irradiation
Bias Conditions	None	2.2 x 10 ¹⁵ n/cm ²
470 ohm impedance		
V _B 3	1.6 V	1.5 V
VB	2.4 V	2.3 V
40 mA	2 mA	4 mA
loo mA	5 mA	5 mA
47 ohm impedance		
Vp		

3	• 2 •	• 5 •
V _B	.4 V	.45 V
100 mA	lo mA	20 mA
400 mA	20 mA	20 mA

TABLE 5.1 Transient Ionizing Radiation Results for Series 316 at a Dose Rate of 8 x 10^9 rads/sec.

 ${\rm V}_{\rm B}^{}$ - diode breakdown voltage (0.1 mA reverse current)

terminals of the diode is given. In all test conditions the voltage and current decreased to the preirradiation condition within 20 nanoseconds after removal of the radiation pulse. Typical photographs indicating the current increase during the radiation pulse are depicted in Fig. 5.1, where the diode is pulse-biased into avalanche with approximately 40 mA, and the increase in current during the 8×10^9 rads/sec radiation pulse is less than 5 mA.

The data is in substantial agreement with the diode model for avalanche diodes under transient ionizing radiation developed by Shedd et al, (35) and shown in Fig. 5.2. The Series 316 junctions were fabricated on bulk material and have a series resistance (R_s) of approximately 50 ohms. From the photovoltage measurements at one-third of the breakdown voltage, a photocurrent (I_p) of 3 milliamps is obtained, in substantial agreement with that calculated using the depletion layer dimensions. As the bias is increased, the multiplication factor (M) increases and the incremental junction resistance (R_o) decreases. As shown by Shedd et al, (35) the external photovoltage peaks when $R_o - R_s$ is approximately equal to the load resistance. Although numerous data points were not taken on each device, this model is in qualitative agreement with our data.

It is concluded that the neutron irradiations had little effect on the transient ionizing radiation characteristics. Although the junctions irradiated at 2.2 x 10^{15} neutrons/cm² had twice the photocurrent response at medium bias currents (see Table 5.1 and Fig. 5.1) slight changes in multiplication factor and dynamic space charge resistance could account

-72-

Ro-INCREMENTAL JUNCTION RESISTANCE

Ip - PHOTOCURRENT

M - MULTIPLICATION FACTOR

Fig. 5.2 Equivalent Circuit for Avalanche Diode with Transient Ionizing Radiation (from Shedd et.al. (35)) for the difference. More data would be needed to verify whether the difference indicated is real, but the effort was not warranted for this program.

5.2 Evaluation of IMPATT Diode Aftereffects

GaAs Schottky IMPATT diodes, including lBlO (D1) that had previously exhibited aftereffects during RF testing, (3^4) were tested under similar conditions to the Au-GaAs Schottky junctions. The results are given in Table 5.2. There were no indications of aftereffects (3^4) or charge storage (3^6) in these IMPATT diodes in any of the test conditions. That is, the diode voltage and current (which was increased during the radiation pulse) decreased to preirradiation conditions immediately (within 20 nanoseconds) after the radiation pulse at all test conditions. Typical photographs are depicted in Fig. 5.3, where the increase in current during the radiation pulse is shown to be dependent upon the bias impedance.

The most significant information in Table 5.2 is the large step in current during the radiation pulse when the diode is biased well into breakdown, and the dependence of the magnitude on the bias circuit impedance. In particular, at a dose rate of 7.5 x 10^9 rads/sec and a bias current of 100 mA, the magnitude of the current step was 40 mA and 150 mA with a bias circuit impedance of 470 ohms and 47 ohms respectively. In the RF test setup used previously, the test conditions where aftereffects commenced were: dose rate of 2 x 10^9 rads/sec, bias current of 80 mA and bias circuit impedance of 325 ohms. Interpolating these experimental results to the actual RF test conditions, an increase in current

-75 -

Dose Rate (rads/sec)		Bias Circuit Impedance	
	Bias Conditions	47 ohms	470 ohms
1.2 x 10 ⁹	.8 V _B	.2 V	1.4 V
	V _B	.6 v	3.0 V
	40 mA		5 mA
	loo mA	5 mA	5 mA
	200 mA	lO mA	
3.7 x 10 ⁹	.8 V _B	1.5 V	7 V
	V _B	4.0 V	13 V
	40 mA		20 mA
	loo mA	40 mA	20 mA
	200 mA	40 mA	
7.5 x 10 ⁹	.8 V _B	7.5 V	16 V
	V _B	9.0 V	23 V
	4C mA		40 mA
	100 mA	150 mA	40 mA
	200 mA	150 mA	

TABLE 5.2 Photoresponse of Schottky IMPATT lBl0(Dl) (with RF aftereffects (34))

-77 -

during the radiation pulse of 15 mA is obtained. Although this current change is significant, the magnitude is not large enough to cause the observed RF aftereffects directly.

Besides the RF circuit considerations previously described, (3^4) we now believe that the bias circuit impedance to be a key factor in controlling the aftereffects. Since the RF aftereffects were originally observed with the GaAs Schottky IMPATT's, Brackett (37) treated the tuning-induced failure and bias circuit oscillation problem in IMPATT diodes in some depth. In particular, Brackett showed that GaAs devices are more sensitive to these problems than Si diodes, since the net low frequency negative resistance is larger in GaAs due to inherent material parameters.

It should be emphasized that the bias impedance with frequency from DC to 50 MHz is important in evaluating the bias circuit instability. The 325 ohm bias circuit given previously (3^4) must be modified as shown in Fig. 5.4A to include the length of 93 ohm cable between the bias circuit and diode and the 60 Pf bypass capacitance located at the diode. In order to conveniently shield the bias circuit with the evacuated cavity, four feet of cable was used during the radiation testing. This cable length is over 0.1 wavelengths in length at 20 MHz, and its impedance-transforming properties may be a cause of bias circuit instability.

Referring to the Smith Chart in Fig. 5.4B, the bias circuit impedance (normalized to 50 ohms) is plotted with frequency for two cable lengths -- the four foot length actually used in the RF transient

-78-

B. ZB WITH FREQUENCY AND CABLE LENGTH AS A PARAMETER (Brackett GaAs IMPATT superimposed)

Fig. 5.4 IMPATT Diode Bias Circuit Model with Impedance Loci (following Brackett (37))

ionizing radiation testing and a more modest 1 foot length. Superimposed is the negative of the low frequency impedance of a typical 5 GHz GaAs IMPATT diode, as given by Brackett. (37) The frequency on the diode impedance locus compared to the frequency on the circuit impedance locus at the point of intersection is important. As shown by Brackett, the bias circuit is stable if at the point of intersection, the frequency on the diode impedance locus is lower than the frequency on the bias impedance locus; otherwise an instability exists. For the Brackett GaAs IMPATT and the assumed bias circuit model, the bias circuit is stable with a 1 foot cable length, but becomes unstable with a cable greater than 4 feet.

It should be noted that Brackett has not considered leakage current as a parameter in his IMPATT model, so that a direct comparison of diode impedance loci as a function of leakage current does not exist. However, Misawa⁽³⁸⁾ has shown that the magnitude of the DC induced negative resistance of a Read IMPATT does increase as the leakage current is increased. The DC voltage drops as the leakage current increases because less multiplication is required. Misawa's calculations further confirm our hypothesis of the bias circuit instability as a cause of the aftereffects since the diode impedance locus shown in Fig. 5.4 is shifted to the right as the DC induced negative resistance is increased, and a bias instability is more likely.

FOR THE EQUIVALENT CIRCUIT ASSUMED AND THE LOW FREQUENCY GAAS IMPATT IMPEDANCE FROM BRACKETT, THE BIAS CIRCUIT IS NEARLY UNSTABLE WITH THE LONG CABLE NEEDED WHEN SHIELDING THE BIAS CIRCUIT DURING THE

-80-

RADIATION TESTING. THIS HAS NOT BEEN DEMONSTRATED EXPERIMENTALLY AND IT WOULD BE PREMATURE TO ASSUME THAT THE AFTEREFFECTS (34) HAVE BEEN FULLY EXPLAINED.

In particular, RF testing with controlled bias circuit impedances are necessary. Furthermore, with Brackett's models, there is no difference between diffused and Schottky contacts. From the RF measurements made previously, (3^4) there is a correlation between type of avalanching junction and occurrence of aftereffects. The transverse instability of Van Iperen⁽³⁹⁾ and other two dimensional effects are different for diffused and Schottky contacts and could be a contributing source of the aftereffects. However, from the considerations described in this Section, the bias circuit instability appears to be a possible principal contributor.

6.0 IMPLICATIONS OF RESULTS ON RADIATION HARDENING DESIGN

The emphasis of this program was to experimentally evaluate the effect of neutron and transient ionizing irradiation on the electrical characteristics of GaAs Schottky junctions and to understand the basic mechanisms responsible for these electrical characteristics. Although more work is continuing to verify and extend the concepts described in Sections 4 and 5, we have projected the implications of our results on the use of GaAs microwave devices with Schottky junctions in radiation hardened systems.

IT MUST BE EMPHASIZED THAT THESE IMPLICATIONS HAVE <u>NOT</u> BEEN VERIFIED BY CONTROLLED TESTING ON ACTUAL DEVICES. THEY ARE OBTAINED BY USING OUR EXPERIMENTAL DATA AND OUR INTERPRETATION OF THIS DATA TO PREDICT WHAT COULD OCCUR IN HIGH PERFORMANCE GAAS SCHOTTKY JUNCTION DEVICES IN MICROWAVE SYSTEMS EXPOSED TO RADIATION ENVIRONMENTS. ALTHOUGH THESE IMPLICATIONS HAVE NOT BEEN PROVEN, THEY SUGGEST THAT MORE WORK IS NECESSARY BEFORE GAAS SCHOTTKY JUNCTION DEVICES ARE UTILIZED IN RADIA-TION HARDENED APPLICATIONS.

6.1 <u>Neutron Implications in IMPATT's, MESFET's</u>, and Other Microwave Devices

Neutron radiation effects in IMPATT diodes have been studied by many authors, with these results recently reviewed.^(40,41) However, all devices tested were silicon, flat-profile, diffused junction IMPATT's. In high performance microwave systems, the Read or clump profile, GaAs Schottky-junction IMPATT diodes will be utilized, as these recently developed devices have higher output power with higher efficiencies.^(42,43)

-82-

These improved IMPATT's have a more confined avalanche region with a resultant increase in peak electric field at the junction. Chive et al.⁽⁴⁴⁾ have described the harmful effect of tunneling on these devices, which is especially critical in Read profile diodes. With neutron irradiation we have shown that tunneling currents (field assisted thermionic emission similar to that described by Chive et al.) increase in neutron irradiated Schottky junctions at fluences where carrier removal effects are small and trapping effects on the drifting charge pulse is also expected to be small.^(45,46) These two effects have been shown to dominate the RF power reduction in silicon flat-profile, diffused junction IMPATT diodes. The field-assisted thermionic emission is expected to be even more prevalent in neutron-irradiated high efficiency diodes due to the enhanced electric field near the junction.

In addition to this effect on the charge carriers injected into the drift region, the enhanced leakage current of the Schottky junction can reduce the output power directly.⁽⁴⁷⁾ Although the magnitude of the static leakage current would not be expected to significantly degrade the device operation, increases in dynamic leakage current from the modified surface state density and/or from enhanced field emission could be significant. It should be noted that the transient ionizing results indicate the traps'response times are indeed short, although not necessarily as short as would be necessary to effect the dynamic leakage current. This dynamic leakage current enhancement would have to be considered in detail further.

-83-

At this time the direct effect of enhanced field emission on the injected carrier pulse is considered to be the principal new effect for IMPATT diodes in applications with neutron exposure specifications. In fact, enhanced field emission will probably dictate the feasibility of using these high power high efficiency diodes in microwave systems with neutron hardening requirements. Experimental work and further analysis are needed to determine quantitative limits.

In MESFET's (metal-semiconductor field effect transistors), or Schottky-gate FET's, an anomolous reduction in transconductance has been reported.⁽¹¹⁾ The reduction in transconductance in Schottky-gate FET's occurred at an order of magnitude lower neutron fluence than "comparable" junction gate devices (with $10^{17}/\text{cm}^3$ channel doping, a 10% reduction was measured at 5 x 10^{14} n/cm² and 5 x 10^{15} n/cm² in MESFET's and JFET's, respectively). In addition, the junction gate devices degraded at a fluence in agreement with calculations using carrier removal and mobility information on GaAs.⁽⁴⁸⁾

The transconductance degradation in MESFET's could be a result of enhanced field emission from the Schottky gate with the gate metal being the source of electrons and electron emission from the defect being the rate limiting process (as described in Section 4.4). Due to the complicated carrier flow (hot electrons, two dimensional effects, etc.) in MESFET's, the correlation between the basic Schottky junction effects with neutron irradiation reported in Section 4 and MESFET irradiation effects is not readily apparent. A thorough program is needed so that this anomolous degradation is resolved before GaAs MESFET's are utilized in microwave systems with neutron exposure specifications.

-84-

In addition, the enhanced reverse leakage of the Schottky gate will tend to reduce the input impedance of the MESFET and the modified surface state density and/or enhanced field emission could effect the device noise performance. The input impedance reduction is expected to be tolerable as long as the barrier height reduction is comparable with other barrier metalization as reported herein with gold. (The continuing program with Al/n GaAs Schottky junctions will provide useful data as aluminum gates are often used in MESFET technology.) The possible effect on device noise is conjecture at this time, but should be evaluated in any program exploring MESFET radiation tolerance.

The noise degradation should also be explored in other GaAs devices using Schottky junctions such as mixers and parametric devices. Although microwave mixers have been evaluated under neutron exposure, ⁽⁴⁹⁾ silicon Schottky barriers were used. The effects observed in this program with Au/n GaAs are expected to be different in silicon. This early data on silicon, while useful as a guide, should not be used as an indication of GaAs Schottky junction devices.

6.2 Transient Ionizing Radiation Implications in IMPATT's

From the data and discussion presented in Section 5.2, it is apparent that the anomolous aftereffects in Schottky junction GaAs IMPATT diodes⁽³⁴⁾ is not entirely caused by the Schottky junction. Bias circuit considerations appear to have been a principal cause of the aftereffect instabilities, although the reason that the diffused junction GaAs IMPATT's did not exhibit these instabilities is unresolved. Transient

-85 -

ionizing radiation testing with controlled bias circuit impedance is necessary to verify the hypothesis described in Section 5.2. Naturally, the GaAs Schottky IMPATT s must be oscillating in a microwave circuit during the radiation testing.

It is possible that the GaAs Schottky IMPATT's may be suitable for transient ionizing radiation environments, although bias circuit constraints will be more stringent than in a non-radiation environment. Further work is needed to verify the hypothesis and quantize the bias circuit constraints.

-86-

7.0 SUMMARY AND CONCLUSIONS

The following summarizes the accomplishments of this program on Au/nGaAs Schottky barrier diodes:

- High quality guarded diodes were fabricated from bulk and epitaxial material having n factors of 1.03 and saturation current densities of 10⁻⁸ amps/cm², comparable to the best reported in the literature.
- Automated I-V and 1 MHz C-V facilities were developed to accurately evaluate junction characteristics from 77°K to 360°K.
- 3. The reverse current was found to be a sensitive parameter to neutron irradiation, increasing by one to two orders of magnitude at neutron fluences where carrier compensation was 10% and n factor increase was small (~0.05). This current increase has been shown not to be thermal generation current with a constant minority carrier lifetime.
- 4. The experimental results before and after neutron irradiation indicated that the interface density model of Levine^(1,2) has a small range of validity when carrier concentration, temperature, electric field and neutron fluence are varied.
- 5. The surface state density is reasonably approximated by a sharp peak of between 3 x 10¹³ and 10¹⁴ cm⁻² eV⁻¹ near the zero bias Fermi level and a lower constant level (about 10¹³ cm⁻² eV⁻¹) elsewhere in agreement with Crowell and Roberts. ⁽²⁶⁾
- 6. Below room temperature and/or at higher electric field intensity, enhanced field emission currents rather than thermionic current

-87-

dominate I-V characteristics.

and the second of the second o

- 7. Neutron irradiation at the fluences employed does not affect transient ionizing radiation characteristics of the Schottky barrier diodes. The response is similar to that reported previously for pn junction diodes.
- 8. Comparable transient ionizing radiation data on Schottky barrier GaAs IMPATT diodes indicate that aftereffects⁽³⁴⁾ observed in these devices are not exclusively a junction effect. Analytical work indicates that device-circuit interactions are a likely cause.

-88-

REFERENCES

- J. D. Levine, "Schottky Barrier Anomalies and Interface States", Journal of Applied Physics, <u>42</u>, 3991-3999 (1971).
- 2. J. D. Levine, "Power Law Reverse Current-Voltage Characteristics in Schottky Barriers", Solid State Electronics, 17, 1083-1086 (1974).
- 3. A. Y. Yu and E. H. Snow, "Radiation Effects on Silicon Schottky Barriers", IEEE Trans. on Nuclear Science, 16, 220-226 (1969).
- L. W. Aukerman, "Low Energy Proton Irradiation on Silicon Surface Barrier Detectors", IEEE Trans. on Nuclear Science, <u>17</u>, 245-249 (1970).
- 5. D. A. Neamen and W. W. Grannemann, "Fast Neutron Effects on GaAsP Schottky Barrier Diodes and Hall Effect Devices", IEEE Trans. on Nuclear Science, 19, 215-219 (1972).
- 6. R. J. Chaffin, <u>Microwave Semiconductor Devices</u>: Fundamentals and Radiation Effects, Wiley, Ch. 6 (1973).
- 7. J. M. Borrego, R. J. Gutmann, P. E. Cottrell, and S. K. Ghandhi, "Aftereffects in IMPATT Oscillators with Transient Ionizing Radiation", Proc. of the IEEE, 61, 675-676 (1973).
- 8. J. M. Borrego, R. J. Gutmann, P. E. Cottrell, and S. K. Ghandhi, "Transient Ionizing Radiation Effects on IMPATT Oscillators", IEEE Trans. on Nuclear Science, NS-19 328-334 (1972).
- P. E. Cottrell, J. M. Borrego, and R. J. Gutmann, "IMPATT Diodes with Enhanced Leakage Current", Solid State Electronics, <u>18</u>, 1-12 (1975).
- 10. Conversation with R. Dolan and W. Shedd, AFCRL.
- C. A. Liechti and R. L. Tillman, "Design and Performance of Microwave Amplifiers with GaAs Schottky Gate Field-Effect Transistors", IEEE Trans. on Microwave Theory and Techniques, <u>MTT-22</u>, 510-517 (1974). See pg. 516.
- J. P. Mitchell and D. K. Wilson, "Surface Effects of Radiation on Semiconductor Devices", Bell System Technical Journal, <u>46</u>, 1-80 (1967). See pp. 39-40.
- 13. L. Cheng and J. W. Corbett, "Defect Creation in Electronic Materials", Proc. of the IEEE, 62, 1208-1214 (1974).

REFERENCES (Continued)

- 14. G. H. Marcus and H. P. Bruemmer, "Radiation Damage in GaAs Gunn Diodes", IEEE Trans. on Nuclear Science, NS-17, 230-232 (1970).
- 15. R. Hall and J. H. Leck, "Avalanche Breakdown of Gallium Arsenid p-n Junctions", Int. J. of Electronics, 25, 529-537 (1968).
- B. L. Smith, "GaAs Schottky Diodes with Linear Log I/V Behavior Over Eight Decades of Current", Electronic Letters, <u>4</u>, No. 16, 332-333 (1968).
- C. A. Mead and W. G. Spitzer, "Fermi Level Position at Metal-Semiconductor Interfaces", Phys. Rev., <u>134</u>, 713-716 (1964).
- 18. C. R. Crowell, "The Richardson Constant for Thermionic Emission in Schottky Barrier Diodes", S. S. Elec., 8, 395-399 (1965).
- C. Herring and M. H. Nichols, "Evaluation of Thermionic Data", Rev. Mod. Phys., <u>21</u>, 185-270 (1949).
- 20. O. Madelung, <u>Physics of III-V Compounds</u>, J. Wiley and Sons, New York (1964).
- 21. F. Larin, <u>Radiation Effects in Semiconductor Devices</u>, J. Wiley and Sons, New York, (1968).
- C. T. Sah, R. N. Noyce and W. Shockley, "Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics", Proc. IRE, 45, 1228-1242 (1957).
- 23. E. H. Rhoderick, "Comments on the Conduction Mechanism in Schottky Diodes", J. Phys. D. Appl. Phys., <u>5</u>, 1920-1929 (1972).
- 24. C. T. Sah and V. G. K. Reddi, "Frequency Dependence of the Reverse-Biased Capacitance of Gold-Doped Silicon P'N Step Junctions", IEEE Trans. on Elec. Devices, ED-11, 345-349 (1964).
- 25. J. A. Grimshaw, "Defect Studies on Electron Irradiated GaAs by Electrical Measurements", Proc. of the 1972 Conf. on Radiation Damage and Defects in Semiconductors, pp. 355-363, The Institute of Physics, London (1973).
- C. R. Crowell and G. I. Roberts, "Surface State and Interface Effects on the Capacitance-Voltage Relationship in Schottky Barriers", J. of Appl. Phys., 40, 3726-3730 (1969).
- 27. H. K. Henisch, <u>Rectifying Semiconductor Contacts</u>, Clarendon Press, Oxford (1957).

REFERENCES (Continued)

- 28. F. A. Padovani, "Thermionic Emission in Au-n GaAs Schottky Barriers", Solid State Elec., 11, 193-200 (1968).
- 29. F. A. Padovani in <u>Semiconductor and Semimetals</u>, Vol. 7A, Academic Press, New York (1971).
- G. H. Parker and C. A. Mead, "The Effect of Trapping States on Tunneling in Metal-Semiconductor Junctions", Appl. Phys. Lett., <u>14</u>, 21-23 (1969).
- R. M. Hill, "Poole-Frenhel Conduction in Amorphous Solids", Phil. Mag., 23, 59-86 (1971).
- 32. W. Franz in Handbook of Physics, Vol. 17, Springer-Verlag (1956).
- 33. F. Hasegawa and A. Majerfeld, "Electron and Hole Traps in Epitaxial n- and p-GaAs", Conf. on Preparation and Properties of Electronic Materials, Princeton University, New Jersey, August 25-27, 1975.
- 34. S. K. Ghandhi, J. M. Borrego, R. J. Gutmann and P. E. Cottrell, "Effects of Transient Ionizing Radiation on X-Band IMPATT's", Scientific Report No. 1, AFCRL-TR-73-Olll, Ch. 6.
- 35. W. Shedd, B. Buchanan and R. Dolan, "Transient Radiation Effects in Silicon Diodes Near and In Avalanche Breakdown", IEEE Trans. on Nuclear Science, NS-18, 304-309 (1971).
- 36. J. M. Borrego, R. J. Gutmann and J. Narain, "Transient Ionizing Radiation Effects on BARITT Diode Oscillators", IEEE Conference on Nuclear and Space Radiation Effects, Arcata, California, July 1975.
- C. A. Brackett, "The Elimination of Tuning-Induced Burnout and Bias-Circuit Oscillations in IMPATT Oscillators", Bell System Technical Journal, 52, 271-306 (1973).
- T. Misawa, "Saturation Current and Large-Signal Operation of a Read Diode", Solid State Electronics, <u>13</u>, 1363-1368 (1970).
- 39. B. B. Van Iperen, "Efficiency Limitation by Transverse Instability in Silicon IMPATT Diodes", Proc. of the IEEE, 62, 284-285 (1974).
- 40. R. J. Chaffin, Microwave Semiconductor Devices: Fundamentals and Radiation Effects, Wiley, Ch. 8 (1973).
- R. J. Gutmann, J. B. Borrego, and S. K. Ghandhi, "Radiation Effects in Transit-Time Microwave Diodes", Proc. of the IEEE, <u>62</u>, 1256-1264 (1974).

REFERENCES (Continued)

- 42. G. Salmer, J. Prebetich, A. Farragre, and B. Kramer, "Theoretical and Experimental Study of GaAs IMPATT Oscillator Efficiency", J. Appl. Phys., 44, 314-324 (1973).
- C. Kinn, R. Steels and R. Bierig, "High-Power High-Efficiency Operation of Read Type IMPATT Diode Oscillators", Electronic Letters, 9, 173-174 (1973).
- 44. M. Chive, E. Constant, M. Lefebvre, and J. Pribetich, "Effects of Tunneling on High-Efficiency IMPATT Avalanche Diodes", Proc. of the IEEE, 63, 824-826 (1975).
- E. P. ErNisse and R. J. Chaffin, "Carrier Trapping and Recombination in Avalanche Diodes", IEEE Trans. on Electron Devices, <u>ED-17</u>, 520-526 (1970).
- 46. R. J. Chaffin, "The Effect of Neutron Radiation on an IMPATT Diode", IEEE Trans. on Microwave Theory and Techniques, <u>MTT-17</u>, 119-120 (1969).
- 47. P. E. Cottrell, J. M. Borrego, R. J. Gutmann, "IMPATT Diodes with Enhanced Leakage Current", Solid State Electronics, 18, 1-12 (1975).
- 48. A. F. Behle and R. Zuleeg, "Fast Neutron Tolerance of GaAs JFET's Operating in Hot Electron Range", IEEE Trans. on Electron Devices, ED-19, 993-995 (1972).
- 49. R. J. Chaffin, Microwave Semiconductor Devices: Fundamentals and Radiation Effects, Wiley, Ch. 6 (1973).

TRW	SYSTEMS	5 (GROUP		
ATTN	AARON	Η	NAREVSKY	R1-2144	

ONE SPACE PARK REDONDO BEACH, CA 90278

LABEL 000000000AJ03LB 0007623701762

IRT CORPORATION ATTN RALPH H STAHL

P.O. BOX 81087 SAN DIEGO, CA 92138

IRT CORPORATION ATTN JAMES A NABER P.O. BOX 81087 SAN DIEGO, CA 92138

LABEL 000000000AJ03LB 0007623701762

JOHNS HOPKINS UNIVERSITY ATTN PETER E PARTRIDGE APPLIED PHYSICS LABORATORY JOHNS HOPKINS ROAD LAUREL MD 20810

DIRECTOR DEFENSE ADVANCED RSCH PROD AGENCY ATTN STU LTC ROBERT P SULLIVAN ARCHITECT BUILDING ARLINGTON, VA. 22209

DEFENSE COMMUNICATION ENGINEER CENTER ATTN CODE R320 C W BERGMAN 1860 WIEHLE AVENUE RESTON, VA 22090

WESTINGHGOUSE ELECTRIC CORPORATION ATTN HENRY P KALAPACA M S 3525 DEFENSE AND ELECTRONIC SYSTEMS CTR P.O. BOX 1693 FRIENDSHIP INTERNATIONAL AIRPORT BALTIMORE, MD 21203

WESTINGHOUSE ELECTRIC CORPORATION ATTN WILLIAM E NEWELL RESEARCH AND DEVELOPMENT CENTER 1310 BEULAH ROAD, CHURCHILL BOROUGH PITTSBURGH, PA 15235

IRT CORPORATION ATTN R L HERTZ P.O. BOX 81087 SAN DIEGO, CA 92138

IRT CORPORATION ATTN LEO D COTTER P.O. BOX 81087 SAN DIEGO, CA 92138 KAMAN SCIENCE CORPORATION ATTN DONALD H BRYCE P.O. BOX 7463 COLORAGO SPRINGS, CO 80933

UNITED TECHOLOGIES CORPORATION ATTN RAYMOND G GIGUERE HAMILTON STANDARD DIVISION BRADLEY INTERNATIONAL AIRPORT WINDOSR LUCAS, CT 06069

CHARLES STARK DRAPER LABORATORY INC ATTN RICHARD G HALTMAIER 68 ALBANY STREET CAMBRIDGE, MA 02139

CHARLES STARK DRAPER LABORATORY INC ATTN KENNETH FERTIG 68 ALBANY STREET CAMBRIDGE, MA 02139

CHARLES STARK DRAPER LABORATORY INC ATTN PAUL R KELLY 68 ALBANY STREET CAMBRIDGE, MA 02139

CINCINNATI ELECTRONCIS COPPORATION ATTN C R STUMP 2630 GLENDALE - MILFORD ROAD CINCINNATI, OH 45241

CINCINNATI ELECTRONICS CORPORATION ATTN LOIS HAMMOND 2630 GLENDALE - MILFORD ROAD CINCINNATI, OH 45241

COMPUTER SCIENCES CORPORATION AT TN RICHARD H DICKHAUT 201 LA VETA DRIVE N.E. ALBUQUERQUE, NM 87108

CUTLER-HAMMER, INC. ATTN CENTRAL TECH FILES ANNE ANTHONY AIL DIVISION COMAC ROAD DEER PARK, NY 11729

DIKEOOD CORPORATION, THF ATTN L WAYNE DAVIS 1009 BRADBURY DRIVE, S.E. UNIVERSITY RESEARCH PARK ALBUQUERQUE, NM 87106

E-SYSTEMS INC. ATTN LIBRARY 8-50100 GREENVILLE DIVISION P.O. BOX 1056 GREENVILLE, TX 75401

EFFECTS TECHNOLOGY, INC. ATTN EDWARD JOHN STEELE 5383 HOLLISTER AVENUE SANTA BARBARA, CA 93105

ELECTRONICS TECHNOLOGY LABORATORY ATTN R CURRY (UNCL ONLY) ENGINEERING EXPERIMENT STATION GEORGIA INSITUTE OF TECHNOLOGY ATLANTA, GA 30332

EXP AND MATH PHYSICS CONSULTANTS ATTN THOMAS M JORDAN -P.O. BOX 66331 LOS ANGELES, CA 90066

FAIRCHILD CAMERA AND INSTRUMENT CORP ATTN SEC DEPT FOR 2-233 DAVID K MYERS 464 ELLIS STREET MOUNTAIN VIEW, CA 94040

FAIRCHILD INDUSTRIES, INC. ATTN MGR COUFIG DATA AND STANDARDS SHERMAN FAIRCHILD TECHNOLOGY CENTER 20301 CENTURY BOULEVARD GERMANTOWN, MO 20767 SANDIA LABORATORIES ATTN DOC CON FOR ORG 2110 A HOOD P.O. BOX 5800 ALBUQUERQUE, NM 87115

SANDIA LABORATORIES ATTN DOC CON FOR ORG 1933 FN COPPAGE P.O. BOX 5300 ALBUQUERQUE, NM 87115

SANDIA LABORATORIES ATTN DOC CON FOR JACK V WALKER 5220 P.O. BOX 5800 ALBUQUERQUE, NM 87115

SANDIA LABORATORIES ATTN DIV 5231 JAMES H RENKEN P.O. BOX 5800 ALBUQUERQUE, NM 87115

SANDIA LABORATORIES ATTN DOC CON FOR 3141 SANDIA RPT COL P.O. BOX 5800 ALBUQUERQUE, NM 87115

U S ENERGY RSCH AND DEV ADMIN ATTN DOCUMENT CONTROL FOR WSSR ALBUQUERQUE OPERATIONS OFFICE P.O. BOX 5400 ALBUQUERQUE, NM 67115

CENTRAL INTELLIGENCE AGENCY ATIN ALICE A PADGETT ATIN: RD/S1 RM 5G48 HQ BLDG WASHINGTON, DC 20505

UNIVERSITY OF CALIFORNIA LAWRENCE LIVERMORE LABORATORY ATTN DONALD J MEEKER L-545 (CLASS L -153) P.O. BOX 808 LIVERMORE CA 94550

UNIVERSITY OF CALIFORNIA LAWRENCE LIVERMORE LABORATORY ATTN HANSKRUGER L-96 (CLASS L-94) P.O. BOX 808 LIVERMORE CA 94550

UNIVERSITY OF CALIFORNIA LAWRENCE LIVERMORE LABORATORY ATTN FREDERICK R KOVAR L-31 (CLASS L -91) P.O. BOX 808 LIVERMORE CA 94550

LOS ALAMOS SCIENTIFIC LABORATORY ATTN DOC CON FOR MARVIN M HOFFMAN P.O. BOX 1663 LOS ALAMOS, NM 87545

LOS ALAMOS SCIENTIFIC LABORATORY ATTN DOC CON FOR J ARTHUR FREED P.O. BOX 1663 LOS ALAMOS, NM 87545

LOS ALAMOS SCIENTIFIC LABORATORY ATTN DOC CON FOR BRUCE W NOEL P.O. BOX 1663 LOS ALAMOS, NM 87545

SANDIA LABORATORIES ATTN DOC CON FOT THEOBORE A DELLIN LIVERMORE LABORATORY P.O. BOX 969 LIVERMORE, CA 94550

SAMSO/DY ATTN DYS MAJ LARRY A DARDA POST OFFICE BOX 92960 WORLDWAY POSTAL CENTER LOS ANGELES, CA 90009 (TECHNOLOGY)

SAMSO/DY ATTN DYS CAPT WAYNE SCHOBER POST OFFICE BOX 92960 WORLDWAY POSTAL CENTER LOS ANGELES, CA 90009 (TECHNOLOGY)

SAMSO/IN ATTN IND I J JUDY POST OFFICE BOX 92960 WORLDWAY POSTAL CENTER LOS ANGELES, CA 90009 (INTELLIGENCE)

SAMSO/MN ATTN MNNG CAOT DAVID J STROBEL NORTON AFB, CA 92409 (MINUTEMAN) 95

SAMSO/RS ATTN RSSE LTC KENNETH L GILBERT POST OFFICE BOX 92960 WORLDWAY POSTAL CENTER LOS ANGELES, CA 90009 (REENTRY SYSTEMS)

SAMSO/RS ATTN RSE POST OFFICE BOX 92960 WORLDWAY POSTAL CENTER LOS ANGELES, CA 90009 (REENTRY SYSTEMS)

SAMSO/SZ ATTN SZJ CAPT JOHN H SALCH POST OFFICE BOX 92960 WORLDWAY POSTAL CENTER LOS ANGELES, CA 90009 (SPACE DEFENSE SYSTEMS)

SAMSO/YD ATTN YDD MAJ MARION F SCHNEIDER POST OFFICE BOX 92960 WORLDWAY POSTAL CENTER LOS ANGELES, CA 90009 (DEF METEOPOLOGICAL SAT SYS)

COMMANDER IN CHEIF STRATEGIC AIR COMMAND ATTN NPI-STINFO LIBRARY OFFUTT AFB, NB 68113

COMMANDER IN CHIEF STRATEGIC AIR COMMAND ATTN PFS MAJ BRIAN G STEPHAN OFFUTT AFB, NB 68113

UNIVERSITY OF CALIFORNIA LAWRENCE LIVERMORE LABORATORY ATTN JOSEPH F KELLER JR L-125 P.O. BOX 808 LIVERMORE CA 94550

UNIVERSITY OF CALIFORNIA LAWRENCE LIVERMORE LABORATORY ATTN LAWRENCE CLFLAND L-156 P.O. BOX 808 LIVERMORE CA 94550

UNIVERSITY OF CALIFORNIA LAWRENCE LIVERMORE LABORATORY ATTN RONALD L OTT L-531 F.O. BOX 808 LIVERMORE CA 94550 UNIVERSITY OF CALIFORNIA LAWRENCE LIVERMORE LABORATORY ATTN TECH INFO DEPT L-3 P.O. BOX 808 LIVERMORE CA 94550

DIRECTOR

STRATEGIC SYSTEMS PROJECT OFFICE ATTN NSP-27331 PHIL SPECTOR NAVY DEPARTMENT WASHINGTON, DC 20376

DIRECTOR

STRATEGIC SYSTEMS PROJECT OFFICE ATTN NSP-2342 RICHARLD L COLEMAN NAVY DEPARTMENT WASHINGTON, DC 20376

AF GEOPHYSICS LABORATORY, AFSC ATTN LGO-STOP 30 FREEMAN SHEPERD HANSOM AFB, MA 01731

AF GEOPHYSICS LABORATORY, AFSC ATTN EMERY CORMIER HANSCOM AFB, MA 01731

AF GEOPHYICS LABORATORY, AFSC ATTN LQR EDWARD A BURKE HANSCOM AFB, MA 01731

AF INSTITUTE OF TECHNOLOGY, AU ATTN ENP CHARLES J BRIDGMAN WRIGHT-PATTERSON AFB, OH 45433

AF MATERIALS LABORATORY, AFSC ATTN LTE WRIGHT-PATTERSON AFB. OH 45433

AF WEAPONS LABORATORY, AFSC ATTN ELA KIRTLAND AFB, NM 87117

AF WEAPONS LABORATORY AFSC ATTN SAT KIRTLAND AFB, NM 87117

AF WEAPONS LABORATORY, AFSC ATTN SAB KIRTLAND AFB, NM 87117 AFTAC ATTN TAE PATRICK AFB, FL 32925

HEADQUARTERS ELECTRONIC SYSTEMS DIVISION, (AFSC) ATTN YSEV LTC DAVIS C SPARKS L. G. HANSCOM FIELD REDFORD, MA 01730

COMMANDER FOREIGN TECHNOLOGY DIVISION, AFSC ATTN ETET APT RICHARD C HUSEMANN WRIGHT-PATTERSON AFB, OH 45433

COMMANDER ROME AIR DEVELOPMENT CENTER, AFSC ATTN RBRAC I L KRULAC GRIFFISS AFB, NY 13440 ·

AERONUTRONIC FORD CORPORATION ATTN EDWARD R HAHN MS-x22 WESTERN DEVELOPMENT LABORATORIES DIV. 3939 FABIAN WAY PALO ALTO, CA 94303

AERONUTRONIC FORD CORPORATION ATTN DONALD R MCMORRO, MS G3) WESTERN DEVELOPMENT LABORATORIES DIV 3939 FABIAN WAY PALO ALTO, CA 94303

AEROSPACE CORPORATION ATTN WILLIAM W WILLIS P.O. BOX 92957 LOS ANGELES, CA 90009

AEROSPACE CORPORATION ATTN MELVIN BERNSTEIN P.O. BOX 92957 LOS ANGELES, CA 90009

AEROSPACE CORPORATION ATTN IRVING M GARFUNEKL P.O. BOX 92957 LOS ANGELES, CA 90009

AEROSPACE CO RPORATION ATTN JULIAN REINHEIMER P.O. BOX 92957 LOS ANGELES, CA 90009

AEROSPACE CORPORATION ATTN L W AUKERMAN P.O. BOX 92957 LOS ANGELES, CA 90009

COMMANDER NAVAL SURFACE WEAPONS CENTER ATTN WILLIAM H HOLT DAHLGREN LABORATORY DAHLGREN, VA 22448

COMMANDER NAVAL WEAPONS CENTER ATTN CODE 533 TECH LIB CHINA LAKE, CA 93555

COMMANDING OFFICER NAVAL WEAPONS EVALUATION FACILITY ATTN CODE ATG MR STANLEY KIRTLAND AIR FORCE BASF ALBUQUERQUE, NM 87117

COMMANDING OFFICER NAVAL WEAPONS SUPPORT CENTER ATTN CODE 70242 JOSEPH A MUNARIN CRANE, IN 47522

COMMANDING OFFICER NAVAL WEAPONS SUPPORT CENTER ATTN CODE 7024 JAMES RAMSEY CRANE, IN 47522

COMMANDING OFFICER NUCLEAR WEAPONS TNG CENTER PACIFIC ATTN CODE 50 NAVAL AIR STATION, NORTH ISLAND SAN DIEGO, CA 92135

DIRECTOR STRATEGIC SYSTEMS PROJECT OFFICE ATTN SP 2701 JOHN W PITSENBERGER NAVY DEPARTMENT WASHINGTON, DC 20376

DEPARTMENT OF COMMERCE ATTN APPL RAD DIV ROBERT C PLACIOUS NATIONAL BUREAU OF STANDARDS WASHINGTON, DC 20234

97

DEPARTMENT OF COMMERCE ATTN JUDSON C FRENCH NATIONAL BUREAU OF STANDARDS WASHINGTON, DC 20234

AEROJET ELECTRO-SYSTEMS CO DIV ATTN THOMAS D HANSCOME AEROJET GENERAL CORPORATION P.O. BOX 296 AZUSA, CA 91702

AERONUTRONIC FORD CORPORATION ATTN E R PONCELET JR AEROSPACE AND COMMUNICATIONS OPS AERONUTRONIC DIVISION FORD AND JAMBOREE ROADS NEWPORT BEACH, CA 92663

AERONUTRONIC FORD CORPORATION ATTN KEN C ATTINGER AEROSPACE AND COMMUNUCATIONS OPS AERONUTRONIC DIVISION FORD AND JAMBOREE ROADS NEWPORT BEACH, CA 92663

AERONUTRONIC FORD CORPORATION ATTN TECH INFO SECTION AEROSPACE AND COMMUNICATIONS OPS AERONUTRONIC DIVISION FORD AND JAMBOREE ROADS NEWPORT BEACH, CA 92663

AERONUTRONIC FORD CORPORATION ATTN SAMUEL R CRAWFORD MS 531 WESTERN DEVELOPMENT LABORATORIES DIV 3939 FABIAN WAY PALO ALTO, CA 94303

CHIEF OF NAVAL RESEARCH ATTN CODE 421 DORAN W PADGETT NAVY DEPARTMENT ARLINGTON, VA 22217

COMMANDER NAVAL ELECTRONIC SYSTEMS COMMAND ATTN ELEX 05323 CLEVELAND F WATKINS NAVAL ELECTRONIC SYSTEMS CMD HQS WASHINGTON, DC 20360
COMMANDER ATTN CODE 5032 CHARLES W NEILL NAVAL ELECTRONIC SYSTEMS CMD HQS WASHINGTON, DC 20360

COMMANDER NAVAL ELECTRONIC SYSTEMS COMMAND ATTN CODE 504510 NAVAL ELECTRONIC SYSTEMS CMD HQS WASHINGTON, DC 20360

COMMANDER NAVAL ELECTRONIC SYSTEMS COMMAND ATTN PME 117-21 NAVAL ELECTRONIC SYSTEMS CMD HQS WASHINGTON, DC 20360

COMMANDING OFFICER NAVAL INTELLIGENCE SUPPORT CTR ATTN P ALEXANDER 4301 SUITIAND ROAD BLDG. 5 WASHINGTON, DC 20390

COMMANDING OFFICER NAVAL INTELLIGENCE SUPPORT CTR ATTN NISC-45 4301 SUITIAND ROAD BLDG. 5 WASHINGTON, DC 20390

COMMANDER US ARMY MOBILITY EQUIP R AND D CTR ATTN STSFE-MW JOHN W BOND JR FORT BEIVOIR, VA 22060

CHIEF

U S ARMY NUC AND CHEMICAL SURETY GP ATTN MOSG-ND MAJ SIDNEY W WINSLOW BLDG. 2073, NORTH AREA FT. BELVOIR, VA 22060

COMMANDER US ARMY NUCLEAR AGENCY ATTN ATCN- LTC LEONARD A SLUGA FORT BLISS, TX 79916

COMMANDER

U S ARMY TEST AND EVALUATION COMD ATTN DRSTE-EL RICHARD I KOLCHIN ABERDEEN PROVING GROUND, MD 21005 COMMANDER U S ARMY TESTA AND EVALUATION COMD ATTN DRSTE-NB RUSSELL R GALASSO ABERDEEN PROVING GROUND, MD 21005

COMMANDER WHITE SANDS MISSILE RANGE ATTN STENS-TE-NT MARVIN P SQUIRES WHITE SANDS MISSILE RANGE, NM 88002

CHIEF OF NAVAL FTSEARCH ATTN CODE 427 NAVY DEPARTMENT ARLINGTON, VA 22217

COMMANDER ATTN DPCDE-O LAWRENCE FLYNN 5001 EISENHOWER AVENUE ALEXANDRIA, VA 22333

COMMANDER U S ARMY MISSILE COMMAND ATTN DRSMI-RGO VIC RUNE(UNCL ONLY) REDSTONE ARSENAL, AL 35809

COMMANDER U S ARMY MISSILE COMMAND ATTN DRCPM-MDTI CPT JOE A SIMS REDSTONE ARSENAL. AL 35809

COMMANDER U S ARMY MISSILE COMMAND ATTN DRCPM-LCEX HOWARD H HENRIKSEN REDSTONE ARSENAL, AL 35809

COMMANDER U S ARMY MISSILE COMMAND ATTN DRSMI-RGP HUGH GREEN REDSTONE ARSENAL, AL 35809

COMMANDER U S ARMY MISSILE COMMAND ATTN DRSMI-RRR FAISON P GIBSON REDSTONE ARSENAL, AL 35809

COMMANDER U S ARMY MISSILE COMMAND ATTN DRCPM PE-EA WALLACE D WAGNER REDSTONE ARSENAL, AL 35809

COMMANDER U S ARMY ELECTRONICS COMMAND U S ARMY ELECTRONICS COMMAND ATTN DRSEL-CT-HD. ABRAHAM F COHEN FORT MONMOUTH, NJ 07703

COMMANDERU S ARMY ELECTRONICS COMMANDU S ARMY COMMUNICATIONS SU S ARMY ELECTRONICS COMMANDU S ARMY COMMUNICATIONS SATTN DRSEL-GG-TED W R WERK (NO CNDWI)ATTN SCCM-AU-SV LIBRARYFORT MONMOUTH, NJ 07703FORT MONMOUTH, NJ 07703

COMMANDER U S ARMY ELECTRONICS COMMAND ATTN DRSEL-TL-EN ROBERT LUX FORT MONMOUTH, NJ 07703

COMMANDER U S ARMY ELECTRONICS COMMAND ATTN DRSEL-TL-ND GERHART GAULE FORT MONMOUTH, NJ 07703

COMMANDER

U S ARMY ELECTRONICS COMMAND ATTN DRSEL-TL-ND S KRONENBEY FORT MONMOUTH, NJ 07703

COMMANDER

ATTN DRSEL-PL-ENV HANS A BOMKE FORT MONMOUTH, NJ 07703

COMMANDER-IN-CHIEF U S ARMY EUROPE AND SEVENTH ARMY ATTN ODCSE-E AEAGE-PI APO NEW YORK 09403

DIRECTOR

US ARMY BALLISTIC RESEARCH LABS ATTN DRXBR-VL ROBERT L HARRISON ABERDEEN PROVING GROUND, MD 21005

DIRECTOR

99

DIRECTOR U S ARMY BALLISTIC RESEARCH LABS U S ARMY BALLISTIC RESEARCH LAN ATTN DRARD-RVL DAVID L RIGOTTI ABERDEEN PROVING GROUND, MD 21005

U S ARMY COMMUNICATIONS SYS AGENCY

COMMANDER U S ARMY ELECTRONICS COMMAND U S ARMY ELECTRONICS COMMANI ATTN DRSEL-TL-EN E ROTH FORT MONMOUTH, NJ 07703

COMMANDER

U S ARMY ELECTRONICS COMMAND ATTN DRSEL-TL-IR EDWIN T HUNTER FORT MONMOUTH, NJ 07703

> COMMANDER PICATINNY ARSENAL

ATTN SMUPA-TN BURTON V FRANKS DOVER, NJ 07801

COMMANDER PICATINNY ARSENAL ATTN SARPA-ND-C-E AMINA NORDIO DOVER, NJ 07801

COMMANDER PICATINNY ARSENAL ATTN SARPA-ND-N DOVER, NJ 07801

U S ARMY BALLISTIC RESEARCH LABS ATTN DRXBR-X JUL US J HESZAROS ADERDETED DOCUMENTS ABERDEEN PROVING GROUND, MD 21005 U.S. ARMY MISSILE COMMAND REDSTONE ARSENAL, AL 35809

> SECRETARY OF THE ARMY ATTN DOUSA OR DANIEL WILLARD WASHINGTON, DC 20310

COMMANDER U S ARMY BALLISTIC RESEARCH LABS ATTN DRXBR-AM W R VANANTWERP ABERDEEN PROVING GROUND, MD 21005 WHITE SANDS MISSILE RANGE, NM 88002 DIRECTOR U S ARMY BALLISTIC RESEARCH LABS ATTN DRXBR-VL JOHN W KINCH ABERDEEN PROVING GROUND, MD 21005

COMMANDER HARRY DIAMOND LABORATORIES ATTN DRXDO-TT TECH LTR 2800 POWDER MILL ROAD ADELPHI, MD 20783

COMMANDING OFFICER NIGHT DIVISION LABORATORY ATTN CAPT ALLAN S PARKER U S ARMY ELECTRONICS COMMAND FORT BELVOIR, VA 22060

COMMANDER PICATINNY ARSENAL ATTN SMUPA-FR-S-P DOVER, NJ 07801

COMMANDER PICATINNY ARSENAL ATTN SARPA-FO-E LCUIS AVRAMI DOVER, NJ 07801

COMMANDER PICATINNY ARSENAL ATTN SMUPA-ND-W DOVER, NJ 07801

COMMANDER PICATINNY ARSENAL ATTN SMUPA-ND-N-E DOVER, NJ 07801

COMMANDER PICATINNY ARSENAL ATTN SMUPA-ND-D-R EDWARD J ARBER DOVER, NJ 07801

COMMANDER HARRY DIAMOND LABORATORIES ATTN DRXDU-RCC JOHN A ROSADO 2800 POWDER MILL ROAD ADELPHI, MD 20783

COMMANDER HARRY DIAMOND LABORATORIES ATTN DRXDO-NP FRANCIS N WIMENITZ 2300 POWDER MILL ROAD ADELPHI, MD 20783 COMMANDER HARRY DIAMOND LABORATORIES ATTN DRXDO-RB JOSEPH R HULETTA 2800 POWDER MILL ROAD ADELPHI, MD 20783

COMMANDER HARRY DIAMOND LABORATORIES ATTN DRXDU-RCC JOHN E THOMPKINS 2800POWDER MILL ROAD ADELPHI MD 20783

COMMANDER HARRY DIAMOND LABORATORIES ATTN DRXDO-EM R BOSTAK 2800 POWDER MILL ROAD ADELPHI MD 20783

COMMANDER HARRY DIAMOND LABORATORIES ATTN DRXDO-RBH PAUL A CALDWELL 2800 POWDER MILL ROAD ADELPHI MD 20783

COMMANDER HARRY DIAMOND LABORATORIES ATTN DRXDO-RB ROBERT E MCCOSKEY 2800 POWDER MILL ROAD ADELPHI MD 20783

DIRECTOR NATIONAL SECURITY AGENCY ATTN TDL FT. GEORGE G. MEADE, MD 20755

PROJECT MANAGER ARMY TACTICAL DATA SYSTEMS ATTN DRCPN-TDS-SD U S ARMY ELECTRONICS COMMAND FORT MONMOUTH, NJ 07703

PROJECT MANAGER ARMY TACTICAL DATA SYSTEMS ATTN DWAINE H HUEE U S ARMY ELECTRONICS COMMAND FORT MONMOUTH, NJ 07703

COMMANDER RMD SYSTEM COMMAND ATTN BDMSC-TEN NOAH J HURST P.O BOX 1500 HUNTSVILLE, AL 35807

100

COMMANDER FRANKFORD ARSENAL ATTM SARFA-FCD MARVIN ELNICK BRIDGE AND TACONY STREETS PHILADELPHIA, PA 19137

COMMANDER HARRY DIAMOND LABORATORIES ATTN DRXDO-RC ROBERT B OSWALD JR 2800 POWDER MILL ROAD ADELPHI MD 20783

COMMANDER

HARRY DIAMOND LABORATORIES ATTN CRXDO-TR EDWARD E CONRAD 2800 POWDER MILL ROAD ADELPHI MD 20783

DIRECTOR

DEFENSE COMMUNICATIONS AGENCY ATTN CODE 930 MONTE I RUBGETT JR WASHINGTON, DC 20305

DEFENSE DOCUMENTATION CENTER ATTN TC CAMERON STATION ALEXANDRIA, VA 22314

DIRECTOR DEFENSE INTELLIGENCE AGENCY ATTN DS-4A2 WASHINGTON, DC 20301

DIRECTOR DEFENSE NUCLEAR AGENCY ATTN RATN WASHINGTON, DC 20305

DIRECTOR DEFENSE NUCLEAR AGENCY ATTN STTL TECH LIBRARY WASHINGTON, DC 20305

DIRECTOR DEFENSE NUCLEAR AGENCY ATTN DDST WASHINGTON, DC 20305

101

DIRECTOR DEFENSE NUCLEAR AGENCY ATTN RAEV WASHINTON, DC 20305

DIRECTOR DEFENSE NUCLEAR AGENCY ATTN STVL WASHINGTON, DC 20305

COMMANDER FIELD COMMAND ATTN FCPR DEFENSE NUCLEAR AGENCY KIRTLAND AFB, NM 87115

DIRECTOR

INTERSERVICE NUCLEAR WEAPONS SCHOOL ATTN DOCUMENT CONTROL KIRTLAND AFB, NM 87115

DIRECTOR JOINT STRAT TGT PLANNING STAFF JCS ATTN ULTW-2 OFFUTT AFB OMAHA, NB 68113

CHIEF

LIVERMORE DIVISION FLD COMMAND DNA ATTN DOCUMENT CONTROL FOR L-395 LAWRENCE LIVERMORE LABORATORY P.O. BOX 808 LIVERMORE, CA 94550

CHIEF LIVERMORE DIVISION FLD COMMAND DNA ATTN FCPRL LAWRENCE LIVERMORE LABORATORY P.O. BOX 808 LIVERMORE, CA 94550

DIRECTOR NATIONAL SECURITY AGENCY ATTN ORLAND O VAN GUNTEN R-425 FT. GEORGE G. MEADE, MD 20755

TRW SYSTEMS GROUP ATTN PAUL MOLMUD R1-1196 ONE SPACE PARK REDONDO BEACH, CA 90278 TRW SYSTEMS GROUP ATTN LILLIAN D SINGLETAR R1-1070 ONE SPACE PARK REDONDO BEACH, CA 90278

TRW SYSTEMS GROUP ATTN R D LOVELAND R1-1028 ONE SPACE PARK REDONDO BEACH, CA 90278

TRW SYSTEMS GROUP ATTN RICHARD H KINGSLAND R1-2154 ONE SPACE PARK REDONDO BEACH, CA 90278

TRW SYSTEMS GROUP ATTN H S JENSEN SAN BERNARDINO OPERATIONS P.O. BOX 1310 SAN BERNARDINO, CA 92402

TRW SYSTEMS GROUP ATTN JOHN E DAHNKE SAN BERNARDINO OPERATIONS P.O. BOX 1310 SAN BERNARDINO, CA 92402

TRW SYSTEMS GROUP ATTN EARL W ALLEN SAN BERNARDINO OPERATIONS P.O. BOX 1310 SAN BERNARDINO,CA 92402

TEXAS TECH UNIVERSITY ATTN TRAVIS L SIMPSON P.O. BOX 5404 NORTH COLLEGE STATION LUBBOCK, TX 79417

TRW SYSTEMS GROUP ATTN ALLAN ANDERMAN R1-1132 ONE SPACE PARK REDONDO BEACH, CA 90278

TRW SYSTEMS GROUP ATTN A A WITTELES MS R1-1120 ONE SPACE PARK REDONDO BEACH, CA 90278

102

TRW SYSTEMS GROUP ATTN A M LIEBSCHUTZ R1-1162 ONE SPACE PARK REDONDO BEACH, CA 90278

TRW SYSTEMS GROUP ATTN TECH INFO CENTER R/S-1930 ONE SPACE PARK REDONDO BEACH, CA 90278

TRW SYSTEMS GROUP ATTN WILLIAM H ROBINETTE JR ONE SPACE PARK REDONDO BEACH, CA 90278

TRW SYSTEMS GROUP ATTN JERRY T LUBELL ONE SPACE PARK REDONDO BEACH, CA 90278

DIRECTOR NAVAL RESEARCH LABORATORY ATTN CODE 6631 JAMES C RITTER WASHINGTON, DC 20375

DIRECTOR NAVAL RESEARCH LABORATORY ATTN CODE 4004 EMANUAL L BRANCATO WASHINGTON, DC 20375

DIRECTOR NAVAL RESEARCH LABORATORY ATIN CODE 7701 JACK D BROWN WASHINGTON, DC 20375

DIRECTOR NAVAL RESEARCH LABORATORY ATTN CODE 5216 HAROLD L HUGHES WASHINGTON, DC 20375

DIRECTOR NAVAL RESEARCH LABORATORY ATTN CODE 6601 E WOLICKI WASHINGTON, DC 20375

DIRECTOR NAVAL RESEARCH LABORATORY ATTN CODE 5210 JOHN E DAVEY WASHINGTON, DC 20375

DIRECTOR

NAVAL RESEARCH LABORATORY ATTN CODE 2627 DORIS R FOLEN WASHINGTON, DC 20375

COMMANDER NAVAL SEA SYSTEMS COMMAND ATTN SEA-9931 SAMUEL A BARHAM NAVY DEPARTMENT WASHINGTON DC 20362

COMMANDER NAVAL SEA SYSTEMS COMMAND ATTN SEA-9931 RILEY B LANE NAVY DEPARTMENT WASHINGTON DC 20362

COMMANDER NAVAL SHIP ENGINEERING CENTER ATTN CODE 6174D2 EDWARD F DUFFY CENTER BUILDING HYATTSVILLE, MD 20782

COMMANDER NAVAL SURFACE WEAPONS CENTER ATTN CODE WA501 NAVY NUC PRGMS OFF WHITE OAK, SILVER SPRING, MD 20910

COMMANDER NAVAL SURFACE WEAPONS CENTER ATTN CODE 431 EDWIN B DEAN WHITE OAK, SILVER SPRING, MD 20910

COMMANDER NAVAL SURFACE WEAPONS CENTER ATTN CODE WA50 JOHN H MALLOY WHITE OAK, SILVER SPRING, MD 20910

COMMANDER NAVAL SURFACE WEAPONS CENTER ATTN CGDE WX21 TECH LIB WHITE OAK, SILVER SPRING, MD 20910

BOEING COMPANY, THE ATTN AEROSPACE LIBRARY P.O. BOX 3707 SEATTLE, WA 98124

103

BOEING COMPANY, THE ATTN DAVID L DYE M S 87-75 P.O. BOX 3707 SEATTLE, WA 98124

BOEING COMPANY, THE ATTN HOWARD W WICKLEIN MS 17-11 P.O. BOX 3707 SEATTLE, WA 98124

BEOING COMPANY, THE ATTN ROBERT S CALDWELL 2R-00 P.O. BOX 3707 SEATTLE, WA 98124

BOOZ-ALLEN AND HAMILTON, INC. ATTN RAYMOND J. CHRISNER 106 APPLE STREET NEW SHREWSBURY NJ 07724

CALIFORNIA INSTITUTE OF TECHNOLOGY ATTN A G STANLEY JET PROPULSION LABORATORY 4800 OAK PARK GROVE PASADENA, CA 91103

CALIFORNIA INSTITUTE OF TECHNOLOGY ATTN J BRYDEN JET PROPULSION LABORATORY 4800 OAK PARK GROVE PASADENA, CA 91103

AEROSPACE CORPORATION ATTN LIBRARY P.O. BOX 92957 LOS ANGELES, CA 90009

ANALOG TECHNOLOGY CORPORATION ATTN JOHN JOSEPH BAUM 3410 EAST FCOTHILL BOULEVARD PASADENA, CA 91107

AVCO RESEARCH AND SYSTEMS GROUP ATTN RESEARCH LIB A830 RM 7201 201 LOWELL STREET WILMINGTON, MA 01887

BDM CORPORATION, THE ATTN T H NEIGHBORS P O BOX 9274 ALBUQUERQUE, NM 87119 BENDIX CORPORATION, THE ATTN DOCUMENT CONTROL COMMUNICATION DIVISION EAST JOPPA ROAD - TOWSON BALTIMORE, MD 21204

BENDIX CORPORATION, THE ATTN MAX FRANK RESEARCH LABORATORIES DIVISION BENDIX CENTER SOUTHFIELD, MI 48076

BENDIX CORPORATION, THE ATTN MGR PRGM DEV DONALD J NIEHAUS RESERCH LABORATORIES DIVISION BENDIX CENTER SOUTHFIELD, MI 48076

FLORIDA, UNIVERSITY OF ATTN D P KENNEDY 231 AEROSPACE BLDG GAINESVILLE, FL 32611

FRANKLIN INSTITUTE, THE ATTN RAMIE H THOMPSON 20TH STREET AND PARKWAY PHILADELPHIA, PA 19103

GARRETT CORPORATION ATTN ROBERT E WEIR DEPT 93-9 P.O BOX 92248 LOS ANGELES, CA 90009

GENERAL DYNAMICS CORP. ATTN D N COLEMAN ELECTRONICS DIV ORLANDO OPERATIONS P.O. BOX 2566 ORLANDO, FL 32302

GENERAL ELECTRIC COMPANY ATTN JOHN L ANDREWS SPACE DIVISION VALLEY FORGE SPACE CENTER GODDARD BLVD KING OF PRUSSIA P.O. BOX 8555 PHILADELPHIA PA 19101

GENERAL ELECTRIC COMPANY ATTN JOSEPH C PEDEN CCF8301 SP CE DIVISION VALLEY FORGE SPACE CENTER GODDARD BLVD KING OF PRUSSIA P.O. BOX 8555, PHILADELPHIA PA 19101 GENERAL ELECTRIC COMPANY ATTN LARRY I CHASEN SPACE DIVISION VALLEY FORGE SPACE CENTER GODDARD BLVD KING OF PRUSSIA P.O. BOX 8555 PHILADELPHIA PA 19101

GENRAL ELECTRIC COMPANY ATTN JAMES P SPRATT SPACE DIVISION VALLEY FORGE SPACE CENTER GODDARD BLVD KING OF PRUSSIA P.O. BOX 8555 PHILADELPHIA PA 19101

GENERAL ELECTRIC COMPANY ATTN JOHN N PALCHEFSKY RE-ENTRY AND ENVIRONMENTAL SYSTEMS DIV P.O. BOX 7722 3198 CHESTNUT STREET PHILADELPHIA, PA 19101

GENERAL ELECTRIC COMPANY ATTN ROBERT V BENEDICT RE-ENTRY AND ENVIRONMENTAL SYSTEMS DIV P.O. BOX 7722 3198 CHESTNUT STREET PHILADELPHIA, PA 19101

GENERAL ELECTRIC COMPANY ATTN JOSEPH REIDL ORDNANCE SYSTEMS 100 PLASTICS AVENUE PITTSFIELD, MA 01201

GENERAL ELECTRIC COMPANY ATTN DASIAC TEMP-CENTER FOR ADVANCED STUDIES 816 STATE STREET (P.O. DRAWER QQ) SANTA BARBARA, CA 93102

GENERAL ELECTRIC COMPANY ATTN ROYDEN R RUTHERFORD TEMPO=CENTER FOR ADVANCED STUDIES 816 STATE STREET (P.O. DRAWER QQ) SANTA BARBARA, CA 93102

GENERAL ELECTRIC COMPANY ATTN M ESPIG TEMPO-CENTER FOR ADVANCED STUDIES 816 STATE STREET (P.O. DRAWER QQ) SANTA BARBARA, CA 93102 GENERAL ELECTRIC COMPANY TTN CSP 0-7 L H DEF P.O. BOX 1122 SYRACUSE, NY 13201

GENERAL ELECTRIC COMPANY ATTN JOHN A ELLERHORST E 2 AIRCRAFT ENGINE GROUP EVENDALE PLANT CINCINNATI OH 45215

GENERAL ELECTRIC COMPANY ATTN W J PATTERSON DROP 233 AEROSPACE ELECTRONICS SYSTEMS FRENCH ROAD UTICA, NY 13503

GENERAL ELECTRIC COMPANY ATTN CHARLES U HEWISON DROP 624 AEROSPACE ELECTRONICS SYSTEMS FRENCH ROAD UTICA, NY 13503

GENERAL ELECTRIC COMPANY ATTN DAVID W PEPIN DROP 160 P.O. BOX 5000 BINGHAMTON, NY 13902

GENERAL ELECTRIC COMPANY-TFMPO ATTN WILLIAM ALFONTE ATTN: DASTAC C/O DEFENSE NUCLEAR AGENCY WASHINGTON, DC 20305

GENERAL RESEARCH CORPORATION ATTN ROBERT D HILL P.O. BOX 3587 SANTA BARBARA, CA 93105

a substant of the state of the

GTE SYLVANIA, INC. ATTN HERBERT A ULLMAN 189 B STREET NEEDHAM HEIGHTS, MA 02194

105

GENERAL RESEARCH CORPORATION ATTN DAVID K OSIAS WASHINGTON OPERATIONS WESTGATE RESEARCH PARK 7655 OLD SPRINGHOUSE ROAD, SUITE 700 MCCLEAN, VA 22101

GRUMMAN AEROSPACE CORPORATION ATTN JERRY ROGERS DEPT 533 SOUTH OYSTER BAY ROAD BETHPAGE, NY 11714

GTE SYLVANIA INC. ATTN LEONARD L BLAISDELL ELECTRONICS SYSTEMS GRP-EASTERN DIV 77 A STREET NEEDHAM, MA 02194

GTE SYLVANIA, INC. ATTN CHARLES A THORNHILL LIBRARIAN ELECTRONICS SYSTEMS GRP-EASTERN DIV 77 A STREET NEEDHAM, MA 02194

GTE SYLVANIA, INC. ATTN JAMES A WALDON ELECTRONICS SYSTEMS GRP-EASTERN DIV 77 A STREET NEEDHAM, MA 02194

GTE SYLVANIA, INC. ATTN PAUL B FREDRICKSON 189 B STREET NEEDHAM HEIGHTS, MA 02194

GTE SYLVANIA, INC. ATIN H AND V GROUP MARIO A NURPFORA 189 B STREET NEEDHAM HEIGHTS, MA 02194

HONEYWELL INCORPORATED ATTN RONALD R JOHNSON A 1622 GOVERNMENT AND AERONAUTICAL PRODUCTS DIVISION 2600 RIDGEWAY PARKWAY MINNEAPOLIS, MN 55413

GTE SYLVANIA, INC. ATTN CHARLES H RAMS OTTOM 189 B STREET NEEDHAM HEIGHTS, MA 02194

GULTON INDUSTRIES, INC. ATTN ENGNMAGNETICS DIV 13041 CERISE AVENUE HAWTHORNE, CA 90250

HARRIS CORPORATION ATTN T L CLARK M S 4040 HARRIS SEMICONDUCTOR DIVISION P.O. BOX 883 MELBOURNE, FL 32901

HARRIS CORPORATION ATTN CARF F DAVOS ,S ;7-220 HARRIS SEMICONDUCTOR DIVISION P.O. BOX 883 MELBOURNE, FL 32901

HARRIS CORPORATION ATTN WAUME E ABARE MS 16-111 HARRIS SEMICONDUCTOR DIVISION P.O. BOX 883 MELBOURNE, FL 32901

HAZELTIME CORPORATION ATTN TECH INFO CTR M WAITE PULASKI ROAD GREEN LAWN, NY 11740

HUGHES AIRCRAFT COMPANY HUGHES AIRCRAFT COMPANY KAMAN SCIENCES CORPOR ATTN KENNETH R WALKER M S 0157 ATT ALBERT P BRIDGES CENTINELLA AND TEALE P. O. BOX 7463 CENTINELLA AND TEALE CULVER CITY, CA 90230

HUGHES ARICRAFT COMPANY ATTN-EDWARD C SMITH MS A620 SPACE SYSTEMS DIVISION P.O. BOX 92919 LOS ANGELES, CA 90009

106

HONEYWELL INCORPORATED ATTN R J KELL MS S2572 GOVERNMENT AND AERONAUTICAL PRODUCTS DIVISION 2600 RIDGEWAY PARKWAY MINNEAPOLIS, MN 55413

HONEYWELL INCORPORATED ATTN HARRISON H NOBLE M S 725-5A AEROSPACE DIVISION 13350 U.S. HIGHWAY 19 ST. PETERSBURG, FL 33733

HONEYWELL INCORPORATED ATTN M S 725- STACEY H GRAFF AEROSPACE DIVISION 13350 U. S. HIGHWAY 19 ST. PETERSBURG, FL 33733

HONEYWELL INCORPORATED ATTN TECHNICAL LIBRARY RADIATION CENTER 2 FORRES ROAD LEXINGTON, MA 02173

HUGHES AIRCRAFT COMPANY ATTN BILLY CAMPBELL M S 6-E-110 CENTINELA AND TEALE CULVER CITY, CA 90230

HUGHES AIRCRAFT COMPANY ATTN DAN BINDER MC ATTN DAN BINDER MS 6-0147 CENTINELA AND TEALE CULVER CITY, CA 90230

> KAMAN SCIENCES CORPORATION P. O. BOX 7463 COLORADO SPRINGS, CO 80933

KAMAN SCIENCES CORPORATION ATTN WALTER E WARE P.O. BOX 7463 COLORADO SPRINGS, CO 80933 HUGHES AIRCRAFT COMPANY ATTN WILLIAM W SCOTT MS 1080 SPACE SYSTEMS DIVISION P.O. BOX 92919 LOS ANGLES, CA 90009

IBM CORPORATION ATTN FRANK FRANKOWSKY ROUTE 170 OWEGO, NY 13827

IBM CORPORATION ATTN HARRY MATHERS DEPT M41 O WEGO, NY 13827

ION PHYSICS CORPORATION ATTN ROBERT D EVANS SOUTH BEDFORD STREET BURLINGTON, MA 01803

IRT CORPORATION ATTN MDC P.O. BOX 81087 SAN DIEGO, CA 92138

MARTIN MARIETTA AEROSPACE ATTN MONA C GRIFFITH LIB MP-30 ORLANDO DIVISION P.O. BOX 5837 ORLANDO, FL 32805

MARTIN MARIETTA AEROSPACE ATTN WILLIAM W MRAS MP-413 ORLANDO DIVISION P.O BOX 5837 ORLANDO, FL 32805

and the state of the second

MARTIN MARIETTA AEROSPACE ATTN JACK M ASHFORD MP-537 ORLANDO DIVISION ORLANDO, FL 32805

MARTIN MARIETTA CORPORATION ATTN PAUL G WASE MAIL 8203 DENVER DIVISION P.O BOX 179 DENVER, CO 8021

LITTON SYSTEMS, INC. ATTN JOHN P RETZLER GUIDANCE AND CONTROL SYSTEMS DIVISION 5500 CANOGA AVENUE WOODLAND HILLS, CA 91364

LITTON SYSTEMS, INC. ATTN VAL J ASHBY MS 67 5500 CANOGA AVENUE WOODLAND HILLS, CA 91364

LOCKHEED MISSILES AND SPACE CO INC. P.O. BOX 504 SUNNYVALE, CA 94088

LOCKHEED MISSILES AND SPACE CO INC ATTN GEORGE F HEATH D/81-14 P.O. BOX 504 SUNNYVALE, CA 94088

LOCKHEED MISSILES AND SPACE CO INC ATTN EDWIN A SMITH DEPT R5-A5 P.O. BOX 504 SUNNYVALE, CA 94088

LOCKHEED MISSILES AND SPACE CO INC. ATTN L ROSSI DEPT 81-64 P.O. BOX 504 SUNNYVALE, CA 94088

LOCKHEED MISSILES AND SPACE CO INC ATTN PHILIP J HART DEPT 81-14 P.O. BOX 504 SUNNYVALE, CA 94088

LOCKHEED MISSILES AND SPACE CO INC. ATTN BEN AMIN T KIMURA DEPT 81-14 P.O. BOX 504 SUNNYVALE, CA 94088

LOCKHEED MISSILES AND SPACE COMPANY ATTN TECH INFO CTR D/COLL 3251 HANDOVER STREET PALO ALTO, CA 94304

107

MARTIN MARITITA CORPORATION ATTN RESEARCH IB 6617 JAY R MCKEE ATTN TECHNICAL DATA CENTER DENVER DIVISION P.O.BOX 179 DENVER, CO 80201

MARTIN MARIETTA CORPORATION ATTN BEN T GRAHAM MS PO-454 3 DENVER DIVISION P.O. BOX 179 DENVER, CO 80201

MARTIN MARIETTA CORPORATION ATTN J E GOODWIN MAIL 0452 (UNCL ONLY) ATTN LEONA LOUGHLIN LIBRARIAN A-082 DENVER DIVISION P.O. BOX 179 DENVER, CO 80201

MITRE CORPORATION, THE ATTN LIBRARY P.O. BOX 208 BEDFORD, MA 01730

NATIONAL ACADEMY OF SCIENCES ATTN R S SHANE NAT MATERIALS ADVSY ATTN TO ENDER ATTN: NATIONAL MATERIALS ADVISORY BOA POST OFFICE BOX 516 2101 CONSTITUTION AVENUE WASHINGTON, DC 20418

NEW MEXICO, UNIVERSITY OF ATTN W W GRANNEMANN (UNCLASS ONLY) DEPT. OF CAMPUS SECURITY AND POLICE 5301 BOLSA AVENUE 1821 ROMA N.E. ALBUQUERQUE, NM 87106

NORTHROP CORPORATION ATTN BOYCE T AHLPORT ELECTRONIC DIVISION 1 RESEARCH PARK PALOS VERDES PENINSULA, CA 90274

NORTHROP CORPORATION ATTN JOHN M REYNOLDS ELECTRONIC DIVISION 1 RESEARCH PARK PALOS VERDES PENINSULA, CA 90274 LTV AEROSPACE CORPORATION VOUGHT SYSTEMS DIVISION P.O. BOX 6267 DALLAS, TX 75222

LTV AEROSPACE CORPORATION ATTN TECHNICAL DATA CTR P.O. BOX 5907 DALLAS, TX 75222

M.I.T. LINCOLN LABORATORY P.O. BOX 73 LEXINGTON, MA 02173

MCDONNELL DOUGLAS CORPORATION ATTN TECHNICAL LIBRARY POST OFFICE BOX 516 ST. LOUIS, MISSOURI 63166

MCDONNELL DOUGLAS CORPORATION ST. LOUIS, MISSOURI 63166

MCDONNELL DOUGLAS CORPORATION HUNTINGTON BEACH, CA 92647

MCDONNELL DOUGLAS CORPORATION ATTN TECHNICAL LIBRARY, C1-290/36-84 3855 LAKEWOOD BOULEVARD LONG BEACH, CA 90846

MISSION RESEARCH CORPORATION ATTN WILLIAM C HART 735 STATE STREET SANTA BARBARA, CA 93101

NORTHROP CORPORATION ATTN VINCENT R DEMARTINO ELECTRONIC DIVISION 1 RESEARCH PARK PALOS VERDES PENINSULA, CA 90274

NORTHROP CORPORATION ATTN GEORGE H TOWNER ELECTRONIC DIVISION 1 RESEARCH PARK PALOS VERDES PENINSULA, CA 90274

NORTHROP CORPORATIONR AND D ASSOCIATESATTN ORLIE L CURTISRATTN S CLAY ROGERSNORTHROP RESEARCH AND TECHNOLOGY CTR3401 WEST BROADWAYHAWTHORNECA 90250 HAWTHORNE, CA 90250

NORTHROP RESERCH AND TECHNOLOGY CTR 3401 WEST BROADWAY HANTHORNE HAWTHORNE, CA 90250

NORTHROP CORPORATION ATTN JOSEPH D RUSSO ELECTRONIC DIVISION 2301 WEST 120TH STREET HAWTHORNE, CA 90250

PALISADES INST FOR RSCH SERVICES INC RCA CORPORATION ATTN RECORDS SUFE RVISOR 201 VARICK STREET NEW YORK, NY 10014

MISSION RESEARCH CORPORATION-SAN DIEGO ATTN V A J VAN LINT 7650 CONVOY COURT SAN DIEGO, CA 92111

MITRE CORPORATION, THE ATTN MEFITZGERALD P.O. BOX 208 BEDORD, MA 01730

RAYTHEON COMPANY ATTN HAROLD L FLESCHER 528 BOSTON POST ROAD SUDBURY, MA 01776

> ATTN GEORGE J BRUCKER GOVERNMENT AND COMMERCIAL SYSTEMS ASTRO ELECTRONICS DIVISION P.O. BOX 800, LOCUST CORNER PRINCETON, NJ 08540

PHYSICS INTERNATIONAL COMPANY RCA CORPORATION ATTN DOC CON FOR CHARLES H STALLINGS ATTN K H ZAININGER 2700 MERCED STREET SAN LEANDRO, CA 94577

PHYSICS INTERNATIONAL COMPANY PHYSICS INTERNATIONAL COMPANY ATTN DOC CON FOR JOHN H HUNTINGTON 2700 MERCED STREET SAN LEANDRO, CA 94577

DAVID SARNOFF RESEARCH CENTER W. WINDSOR TWP 201 WASHINGTON ROAD, P.O. BOX 432 PRINCETON, NJ 08540

RCA CORPORATION ATTN E VAN KEUREN 13-5-2 CAMDEN COMPLEX FRONT AND COOPER STREETS CAMDEN, NJ 08012

109

POWER PHYSICS CORPORATION ATTN MITCHELL BAKER 542 INDUSTRIAL WAY WEST P.O. BOX 626 EATONTOWN, NJ 07724

ROCKWELL INTERNATIONAL CORPORATION ATTN DENNIS SUTHERLAND ELECTRONICS OPERATIONS COLLINS RADIO GROUP 5225 C AVENUE NE CEDAR RAPIDS. IA 52406

ATTN MILDRED A BLAIR ELECTRONICS OPERATIONS COLLINS RADIO GROUP 5225 C AVENUE NE CEDAR RAPIDS, IA 52406

SANDERS ASSOCIATES, INC. ATTN ME L ATTEL NCA 1-3236 95 CANAL STREET NASHUA, NH 03060

SCIENCE APPLICATIONS, INC. ATTN LARRY SCOTT P.O. BOX 2351 LA JOLLA, CA 92038

SCIENCE APPLICATIONS, INC. ATTN J ROBERT BEYSTER P.O. BOX 2351 LA JOLLA, CA 92038

SCIENCE APPLICATIONS, INC. ATTN NOEL R BYRN HUNTSVILLE DIVISION 2109 W. CLINTON AVENUE SUITE 700 HUNTSVILLE, AL 35805

SCIENCE APPLICATIONS, INC. ATTN CHARLES STEVENS 2680 HANOVER STREET PALO ALTO, CA 94303

RENSSELAER POLYTECHNIC INSTITUTE ATTN RONALD J GUTMANN P.O. BOX 965 TROY, NY 12181

RESEARCH TRIANGLE INSTITUTE ATTN ENG DIV MAYRANT SIMONS P.O. BOX 12194 RESEARCH TRIANGLE PARK, NC 27709

ROCKWELL INTERNATIONAL CORPORATION ROCKWELL INTERNATIONAL CORPORATION ATTN GEORGE C MESSENGER F 861 3370 MIRALOMA AVENUE ANAHEIM, CA 92803

> ROCKWELL INTERNATIONAL CORPORATION ATTN JAMES E BELL HA10 3370 MIRALOMA AVENUE ANAHEIM, CA 92803

ROCKWELL INTERNATIONAL CORPORATION ATTN K F HULL 3370 MIRALOMA AVENUE ANAHEIM, CA 92803

ROCKWELL INTERNATIONAL CORPORATION ATTN DONAL J STEVENS FA70 3370 MIRALOMA AVENUE ANAHEIM, CA 92803

ROCKWELL INTERNATIONAL CORPORATION ATTN T B YATES 5701 WEST IMPERIAL HIGHWAY LOS ANGELES, CA 90009

ROCKWELL INTERNATIONAL CORPORATION ATTN ALAN A LANGENFELD ELECTRONICS OPERATIONS COLLINS RADIO GROUP 5225 C AVENUE NE CEDAR RAPIDS. IA 52406

SIMULATION PHYSICS, INC. ATTN ROGER G LITTLE 41 "8" STREET BURLINGTON, MA 01803

SINGER COMPANY (DATA SYSTEMS), THE ATTN TECH INFO CENTER 150 TOTU A ROAD WAYNE, NJ 07470

SINGER COMPANY, THE ATTN IRWIN GOLDMAN ENG MANAGEMENT 1150 MC BRIDE AVENUE LITTLE FALLS NJ 07424 HUNTSVILLE AL 35805 LITTLE FALLS, NJ 07424

SPERRY FLIGHT SYSTEMS DIVISION SUNDSTRAND CORPORATION ATTN D ANDREW SCHON SPERRY RAND CORPORATION ATTN D ANDREW SCHON P.O. BOX 21111 PHOENIX, AZ 85036

SPERRY RAND CORPORATION ATTN JAMES A INDA MS 41T25 UNIVA DIVISION DEFENSE SYSTEMS DIVISION P.O. BOX 3525 MAIL STATION 1931 ST. PAUL, MN 55101

SPERRY RAND CORPORATION ATTN CHARLES L CRAIGEN SPERRY DIVISION SPERRY GYROSCOPE DIVISION SPERRY SYSTEMS MANAGEMENT DIVISION TEXAS INSTRUMENTS, INC. MARCUS AVENUE GREAT NEACK, NY 11020

SPERRY RAND CORPORATION ATTN PAUL MARAFFIND SPERRY DIVISION SPERRY GYROSCOPE DIVISION SPERRY SYSTEMS MANAGEMENT DIVISION MARCUS AVENUE GREAT NECK, NY 11020

STANFORD RESEARCH INSTITUTE ATTN ROBERT A ARMISTEIN 333 RAVENSWOOD AVENUE MENLO PARK, CA 94025

STANFORD RESERACH INSTITUTE ATTN PHILIP I DOLAN

STANFORD RESEARCH INSTITUTE HUNTSVILLE, AL 35805

ATTN CURTIS B WHITE (NO CLASS) 4751 HARRISON AVENUE ROCKFORD, IL 61101

SYSTRON-DONNER CORPORATION ATTN HAROLD D MORRIS 1090 SAN MIGUEL ROAD CONCORD, CA 94518

SYSTRON-DONNER CORPORATION ATTN GORDON R DEAN 1090 SAN MIGUEL ROAD CONCORD, CA 94518

ATTN DONALD J HANUS M S 72 P.O. BOX 5474 DALLAS, TX 75222