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PREFACE

The purpose of this meeting is to review the current knowledge, methods and techniques
avaiiable to evaluate the flow pattern at design and off-design conditions, in single and multi-
stage turboinachines, inside and outside thc bladings, along the meridional surfaces, concen-
trating on the axisymmetric approach.

Papers will cover the methods of calculation of transonic through flow and their numerical
problems, as well as spanwise aud end loss distribution; there will also be a detailed review
of a few particular methods regarding accuracy, time, cost and comparison with experimental
data.

The meeting will be concluded by a round table discussion concerning the advantages and dis-
advantages of tne various approaches, from both technical and practical aspects.

AVANT PROPOS

Cette réunion a pour but de passer en revue les connaissances, méthodes et techniques
dont on dispose 3 I'heure actuelle pour évaluer le schéma d’écoulement, dans des conditions
nominales ou non, des turbomachines a un seul ou plusieurs étages, tant a l'intérieur qu’a
Pextérieur des aubages et le long des surfaces méridiennes; l'accent sera mis en particulier sur
les méthodes symétrie axiale.

Les conférences présentées traiteront des méthodes de calcul utilisées pour I’analyse globale
des #coulements transsoniques et la résolution de problémes numériques qu’ils posent, ainsi que
de 1a répartitior des pertes dans le sens de I'envergure et aux extrémite.. Il ser également
procédé 3 un examen détaillé de quelques méthodes particuliéres relatives a la précision, 4 la
durée et au prix de revient. Des comparaisons seront établics avec les données expérimentales.

La réunion sera cloturée par une “table ronde” sur les avantages et les inconvénients des
diverses méthodes d’approche utilisées, du point de vue technique aussi bien que pratique.

&
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1. INTRODUCTION

This meeting was certainly timely and stimulating. It was very well attended. The pape s 1iovided a well docu-
mented state of the art, including a rather clear and unanimous evaluation of the main short ¢¢ ving of the methods
at Land, and of the most urgent points for improvement. For some of those, the availabiuty of a useful, but not
fully experted tool, e.g., numerical methods, was pointed out The practice 1n industry and its requiren.ents were
clearlv defined.

The practical exercise of comparison between measured and calculated data, if not perfect, provided useful
information on the practical difficulties in both obtaining sufficiently good experimental data and using rather
sophisticated, but relatively poorly flexible computer programs.

The exercise could have been more profitable if it had provided separate checks on the chaructenstics of the
computer programs and on the validity of the correlations used.

PR—

A part of its post-meeting usefulness, 1 e, that providing -ference to well documented cases for calibrating the
computing method, was diminished as permission for publication at large of the geometric data was refused in 3 cases
out of 5 by the authorities who sponsored the rescarch programs in the orgamisations which provided the test cases.

The meeting was very lively and the discussions were enbghtening.

In what follows, we will try to expiess the. conclusions that can be drawn from the meeting, and to suggest
future course of action.

PR,

SRR JUPRE VU A

I.  DUCT AND THROUGH-FLOW METHODS. SOLUTION OF THE
INVISCID MERIDIONAL FLOW EQUATIONS

t The use of degenerated S-2 surfaces of Wu assuming either an axisymmetric or a pitch-averaged flow, and
negiecting the viscous terms, but introducing enthalpy and entropy variations produced by the bladings, either as
axial discontinuities (duct flow calculation) or at one or several stations inside the blading (through-flow calculation)
has led, in the past two years, to the design of quite successful turbines and compressors. Although this model does
not represent entirely the physics of the flow (e.g., row interaction or inter streamline energy migration, for instance)
when the 1nviscid flow calculations are coupled with sets of coherent correlation for losses and turning, design and
analysis of compressors and turbines can be performed -elatively successfully, at least on a comparative basis.

. —

The test cases presented during this mneeting have shown that, especially for compressors, the performance map
could not be reproduced accwately. nor cenian local flow charactenstics. The differences are imputed. for a part to
the hinutation of the cortelations, and for an other. to the simphfication introduced 1n specifying the model.

However, the model will remain as a very useful tool iu the future, as the calculation t.mes required are of the
right order for systematic industinal and research use. when using contemporary digital computers.
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I.1 Calculations Schemes

The calculations schemes available, i.e., the streamline curvature methods and the matnx inversion schemes using
etther finite difference or finite element= scem to have reached their maatunty and to need only minor improvements.

None of these seems to have an overwhelming advantage over the others. The streamhae curvature approach
might be somewhat easier to incorporate the manufacturer’s practical experience, while the matrix inversion offers
much beiter possibihities of extension to three-dimensional and quasi-three-dimensional calcuiations.

Thus 1s especially true for the finite element approach, whicn allows a good description of complicated geometries,
and gives less convergence problems, at the expense of a larger requirement on memory size, but which is well within
the realm of currant computers.

Most of the computer programs in existence, except the most recent ones, seem specialized (1.e. turbine or
compressor, analysis or design) which is not bad in itself. However, the current need for detailed off-design analysis
seems to require an effort in 1mproving the flexibility of data input. Data preparation is :n many cases the most
tedious and somecumes expensive part in the use of the computer program, as witnessed 1n the present exercise.

1.2 Duct Flow Versus Through-Flow

The test cases have shown no significant advantages of through-flow method versus the duct flow ones, in the
accuracy of prediction.

However, as pointed out by several of the authors, the duct flow approach is absolutely necessary for the cases
where large change of radius of the streamline occurs, 1.e., for machines using big bladings, or when non radial blades

are selected.

This 1s true for design, where a knowledge of the flow path. even approximate, allows for a better blading opti-
muzatton, or at off-design where the effective geometry of the blading, as seen by the flow changes considerably with
the flow rate (from convergent to convergent-divergent in large steam turbines. for instance), affecting the blade
nerformance

1. DUCT AND TRROUGH-FLOW METHODS: BLADE AND END WALL EFFECTS

The blade effects, 1.e., change of entropy, of energy and flow direction are taken into account by correlations
on losses and turning In the design cases, the blades ate also selected mostly on the basis of correlation.

Usually, each company has 1ts own brand of correlation. None of those, excep. in one turbine calculation case.
were described dui.ag the meeting.

For the published computation method, in the compressor field. the basis 1s the NACA-correlation, which is
essentiatlly made for design purposes, complemented by elementary correctiors, for compressibility effects, including
shock losses, axial velocity ratio, and secondary losses. No correction is made for the effect of secondary flows on
deviation A separate correction is usually made for hub and casing boundary layer blockage.

For turbine. classical correlations, like Ainley, Dunham-Came, Soderberg or Traupel are used, usually on a mean
radius basis Mosts of those experimental correlations include implicitly or explicitly secondary flow effects

The results obtained by the calculation methods are heavily conditioned by the quality of the blade correlation
methods, and their coherence with the flow maodel selected for the compusation.

It 15 the general experience that the correlutions existing are valid for a limited number of machine geometries.
For instance, the performance prediction method of one manufacturer is quite satisfactory for it: own machine. but
not so when applied to machines built by another one.

Correlations for blade and end wall are thus still rather unsatisfactory, and the largest improvement to be expec-
ted for the meridional flow model will come from improvement on those correlatiors, whose form should be more or
less maintained, but with a much broader range of validity.

1.1 Improvement of Blade Section Performance Prediction

As expressed by members of the round table panel, it seems that n view of the number of variables, the
difficulty of controlling all the variables i the compressible flow range, the speciahisation of the blading in that range,
and the relatively qualitative nature of the information obtamed, the improvement cannot be obtained only by
systematic rectilinear or annular cascade tests programs.

vii




A combmation of carefully carried out tests and of the systematic use of the numerical techniques of computation
available (compressible siugularity methods, finite difference and fast time marching methed, plus boundary layer
correction possible and achieved even with shock interaction) could provide the type of information requested for
the unseparated or moderately separated flow cases. Notwithstanding their imperfections, the computing methods
allow the control of the conditions, incorporate the two-dimensional axial velocity ratio effects, as v ell as those of
change of radius 1n fixed and rotating bladings, and allow for at least . relative prediction of the ovcrall and local
characteristics, the latter needed for the application of the through-flow scheme.

By this, 1t 1s not suggested that those numernical computation m-thods be incorporated as subroutines in the meri-
dronal flow programs, but that they be used in conjunction with carefully selected cascade and machine tests which
remain indispensable, to provide relatively simple correlations, to be used in the duct and through-flow calculations.

This type of program could be initiated on classical families of blading, to conform the validity of the approach.
This wculd require a cooperative effort that a number of the participants to the meeting are ready to undertake, pre-
ferably under AGARD auspices. Detailed proposals are beipe prepared for submission to the PEP.

Efforts of development of the methods for the separated cases have of course to be undertaken, and the existing
one can only fill in part of the gap.

II.2 End Wall Leakage and Secondary Flew Corrections

The end wall leakage and secondary flow corrections are, for a large number of cases, as important as the blade
section performance (need for blockage and additional loss correction, for instance). The available correlations are not
satisfactory again, and the angle corrections are practically neglected up to now, although they can be important and
affect an important part of the flow, beyond that influenced at the loss point of view.

The physics of the related phenomenon are not entirely understood, for the machine case and even for the
simpler straight o1 annular cascade.

This was realised a few years ago, and an array of experiments aimed at identifying the flow mechanisms are being
carricd cut it the USA., and in Europe, making use of classical mstrumentation (pressure directional probes and hot
wire) laser velocimetry and flow visualisation, and scrutinizing the flow throughout the whele blade passage. The PEP
is organizing a technical meeting on the subject in the Spring of 1977.

This meeting should provide useful guidance for future efforts.

As mentioned during the meeting, there are now broadly two approaches, one of correction of the basic flow
(loss correction, and non-viscid clearance and secondary flow effects on angle) and the pseudo-boundary layer approach
based on the work of Mellor. In our view, both are valid, and should be pursued.

At this point in time, it would seem possible to attempt an angle correction based on the inviscid calculation
existing, as described by Marsh, for instance, but which must be extended to twisted bladings. This is 1n progress in
various research groups, and a concerted effort seems possible, as suggested by .cveral participants to the meeting.

I1I. THREE-DIMENSIONAL FLOW APPROACH

A limited. but very important effort i1s being invested in the investigatior. of the three-dimensional time average
flow occurring 1 turbomachinery, with another, maybe too small one, on some aspects of the unsteady {fows, like
the wake transmision.

On the experimental side, the laser valocimeter provides the first really workab'e tool for a deeper understanding
of what happens, as typified by the results obtained in the US.; and at the DFVLR, the latter having been presented
at this meeting.

On the calculation side, two zpproaches are being followed, one based on the iterative coupling of Wu's 31 and
S2 surface, the other on a direct solution of the three-dimensional equation. Inviscid flows only are considered.
As mentioned during the meeting, work 1s in progress mainly in the US., and Great Britain, and tc ¢ur knowiedge, to
a lesser extent on the continent. The presentation of Thompkins indicates whit can be - *hizved, and the cost of
calculation although very large, 1s still much lower in money and time than th: cost of the equivalent experiment.

It 1s clear however, that both the experiments which should be extended to muitistage machines and the three-
ciumensional calculations, will not become part cf the industrial and analysis system in the foreseeable future

Both the experimental and numerical approaches must be considered as laboratory tools Jeading to a better i
qualitative and order of magnitude understanding of the flow, which should lead to the definition of :10re correct
flow models whose complexity should not exceed much those in present use, if they have to be of piactical value
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MODELES DE CALCUL DE L'ECOULEMENT DANS LES TURBOMACHINES AXIALES
par
Jean-Marie THIAVILLE
SNECMA
Centre de Villaroche
77550 Moissy-Cramayel
FRANCE

RESUME

Le probléme du calcul de 1'écoulement dans les turbomachines axiales est abordé 2 partir du
modéle der surfaces de courant S1 et S 2 de C, H, WU, combiné avec l'introduction des effets visqueux
sous forme de pertes et d'effets de déplacement. L'hypothése d'un écoulement stationnaire de révolu-
tion y est géneralement admise et les phénomeénes visqueux sont limités aux parois de la veine et des
aubages, Dans ce cadre simplifié¢, les problémes suivants sonl successivement analysés du point de
vue de l'utilisateur : - Couplage des calculs sur les surfaces S 1 et S 2,

- Traitement des écoulemente transsoniques,

- Schémas de pertes et d'angles horsadaptation,

- Blocage et écoulements secondaires,
On examine ensuite, dans une deuxiéme partie, des exemples d'application o le modele simplifié peut
etre mis en défaut : nageoires, double-flux, réintroductions sur les parocis ou sur les aubes, distorsion,
veines fortement convergentes ou divergentes sur turbomachines chargées, pompage et décollement
tournant, machines haute pression ol les effets visqueux peuvent s'étendre sur toute la hauteur deveine,

NOMENCLATURE
&* Epaisseur de déplacement
m Direction méridienne
r,0,z Coordonnées cylindriques
Fonctionaérodynamique (équation (1))
S$1,82 Surfaces de courant (figure 2)

\ Vilzsse dans le sysidme absoln
w Vitesse dans le systdme relatif
©(r,z) Surface S 2 particuliére
Fonction égale 2 tg P
Angle de la vitesse relative avec le plan méridien
Obstruction des aubages définie par 1'équation A1(8)
Temps
Vitesse angulaire de rotation
Entropie
Enthalpie totale
Enthalpie statique
Température
H-wrVg Rothalpie
Déplacement curvilingue sur une l’gne de courant
Quantité de chaleur par unité de m: sse
Opérateur de dérivation er suivant une particule
Terme de frottement (équation (8))
Facteur de blocage
Normale 3 la surface ©
Nombre d'aubes
Epaisseu: des aubes dans le sens périphérique
Fonction de courant.

<o Nzoxeu.n X ™= TTWE * XD

Indices

1 Intrados

E Extrados

i Intérieur (moyeu)

e Extérieur (carter)

r,0,z Projections sur les directions r,0,2
m Projection méridienne.
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3 MODELES DE CALCUL DE L'ECOULEMENT DANS LES TURBOMACHINES AXIALES
8 rar J.M. THIAVILLE (SNECMA -FRANCE)

= INTRODUCTION

La conception des aubages de turbomachines axiales reste encore basée, pour de nombreux
projets, sur la théorie des éléments d'aubes, Chaque aubage est constitué d'un empilage sur la hauteur
d'un certain nombre de coupes, soit prises dans des catalogues de grilles, soit définies analytiquement
par des raéthodes de type "inverse-aube a aube' telles que celles portées références (1] et [2] . La
liaison entre les caractéristiques aérodynamiques des différentes coupes est faite par un calcul
"d'équilibre radial', Celui-ci peut &tre simplifié en un nombre limité de plans hors aubages perpen-
diculaires & l'axe de la machine avec introduction ou non des effets de courbure des lignes de courant
(rétérences [3), [4], [5]).

Mais les performances de plus en plus poussées des turbomachines modernes ont incité les
constructeurs a faire appel i des méthodes de calcul pénéirant jusqu'a l'in¢érieur des aubages dont une
premiére approximation de la géomeétrie est alors nécessaire, Ces méthodes sont géné ralement pré-
sentées sous 1'appellation anglaise : "Through-Flow', Elles font 1'objet du présent collog.e,

Dans le cas projet, le calcul complet n'a pour but que la détermination, pour chaque tube de
courant, des triangles de vitesses vn amont et en aval de chaque grille, agrémentés de 1'évolution dans
1'aube de 1a hauteur du tube de courant considéré, Des essais de grilles faisant varier ce parameétre
ont, en effet, mis son importance en évidence ( [6], [7]). Le calcul est en général effectue er un seul
point de fonctionnement ol le débit, le taux de compression (ov le travail réduit), le coefficient de

P

E

f blocage aux parois de la veine sont des données, Un bouclage est quelquefois réalisé sur les pertes

= aprés que les aubes aient été définies,

f 1 Un probléme plus ardu est posé au spécialiste par le calcul ¢'analyse dont le but est la détermi-
nation des performances et du champ de vitesses dans tout le domaine de fonctionnement d'une turbo-

machine dont la géométrie est seule fixée, Dans ce cas il esi naturel que les utiiisateurs se socient
tournés vers des modéles d'écoulement sensiblement basés sur les mémes hypothéses que celles du
calcul projet, Ce sont ces modeles d'écoulement que noug tenterons d'examiner Jans 1'étude qui suit,

Gl
"y

I.MODELE DE BASE

Le probléme d'ensemble de 1'écoulement dans une turbomachine, essentiellement tridimension-
nel, visqueux, instationnaire et limité & un volume de formes complexes présentant des échanges avec
l'extérieur est divisé artificiellement en un certain nombre de problémes plus simples, le couplage
entre ceux-ci étant effectué sous forme directe ou itérative. Ce partage cartésien des difficultés a été
résumé dans le tableau I,

1. Hypotheése

"couches limites'

La richesse de 1'hypothése corunes limites, démontrée sur les profils d'aile ou de grilles, a
conduit naturellement les spécialistes turbomachines
L. L a simplifier les équations de Navier-Stokes en sup-
61 58 >‘—-< posant que les effets de viscosité et de conductivité
. \ thermique sont limités a une couche mince le long
‘ Calcul non visqueux I des parois de la veine et des profils. Ce modele
|
]
1

: p simplifie éncrmément le calcul en dehors desaubages
Vitesse g
» v ol 1'écoulement peut 8tre considéré sans frottement
jusqu'aux parois de la veine, 1'effet de couche limite
Valeur moyenne 7/

pariétale étant pris en compte dans la continuité du
Profil exact /

7z,

débit »ar le classique coefficient de blocage KD.
Cette méthode peut d'ailleurs &tre modifiée facile-
ment en remplagant Kp par un calcul qui s'arréte

a une distance de la paroi égale 3 1'épaisseur de dé-
placement de la couche limite (figure 1).

A vy e e

Cette derniére solution permet une meilleure prise

en compte de l'effet de lissage des accidents de parois
par la couche limite (changements de pente ou de
courbure). Elle peut cependant poser des difficultés
de convergence hors adaptation, lorsqu'il y a décol-

e
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" lement par exemple.
£ . ;
' “f:; ﬁl Rayon - o A lintérieur des aubages, l'introduction dans 1'écou- .
e i oy lement principal de 1'effet de couche limite sur les ;
i PR3 -

1,:\ & Moyeu Carter profiis dépend naturellement de la manie; e dont on .
2 § modélise 1'écoulemen. tridimensionnel non visqueux. :

PO

A APt 2y o s,

Fiq 1 Eﬂets de déplacement é Ia paﬂ]i Dans tous les cas il est nécessaire d'introduire des

pertes dans le calcul non visqueux de mani2re 2
respecter le bilan d'énergie,
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TABLEAU I1_ Modeéle de calculs d écouiements dans les turbomachines.
Ecoulemen? dans les turbomachines: Tridimensionnel _visqueux _ instationnaire

Echanges de chaleur et de masse avec l'extérieur. Equations de NAVIER-STOKES |
! Etudes thermigues Ecoulement tridimensionnel . visqueux . Problemes
i_et aérothermiques adiabatique - permanent en systéeme relatif . instationnaires
Ecoulement tridimensionnel Couches visqueuses
adiabatique -non visqueux parietales

Surfaces S1 | Surfaces S2 Ecoulements .
bidimensionnel | bidimensionnel [secondaires |-ouches limites

Surface Susr{ace Dags les |Hors | Non A gidimens. [Tridimens
vis . .
g, Sl | SlgE  speynerlienm

1 vortex)

A | Sl

variables
# 0
xés metrie
=0
a0
Equilibre
simplifié

léments daubes]s

a hautewr et
[-1:
- ]:)

’fE

courant 'l’

Courbures
) Fanction ¥

|

onction de

l Courbures

‘._

v h 4 4 h 4 v
!Aspi'ations,soufﬂage Angles T.riangles de [Pertes ‘ Pertes de profilsfDistorsion, pompage
Echanges thermiques{Géometrie de lalfvitesses secondaires|igcart flux profil{jDé

Corrections du surface S2 radientsde  [Blocage Kpjj visqueux

schéma adiabatique jmoyenne ression orrections [[Cbstruction
Largeur de la [Epaisseur des } d‘angles
surface S2 ubes de courant

T t 4 4 #* Modeéle Through-flow ™
v du chapitre 1.

Corrections du
ema stationnaire

Ce point particulier est examiné dans le chapitre II (paragraphes 1-3 et 2-2), On peut cependant noter
des A présent que 1'écoulement principal (hors couches limites) est considéré comme laminaire, sans
forces de viscosité ni conduction de chaleur

2. Hypothése « ~,H. WU : [8]

L'écoulement tridimensicnnel sans frottement est lui-mé&me partagé en deux probidmes tridimen-
sionnels .

a - L'un consiste A considérer les surfaces de courant gén#rées par des particules situées sur des
cercles centrés sur l'axe. Ces surfaces Sl dites du premier ordre sont généralement supposées de
révolution, Cette hypothése peut 8tre trés restrictive mais il semble difficile de 1la lever sans compliquer
les calculs, L'intersection de chacune de ces surfaces avec les aubages (figure 2) définit une '"'grille"
autour de laquelle 1'écoulement non visqueux puis les couches limites peuvent 8tre calculés.

Les résultats de ces calculs » angle de sortie, pertes de profil effets,d'obstruction (épaisseur de
déplacement) dans le sens périphérique sont, en fait, souvent g4nérés par un schéma erapirique beaucoup
plus souple d'emploi dans le calcul complet que les méthodes analytiques,

En effet le calcul de grilles fait appel & des méthodes trés variables selon les conditions de 1'écou-
lement et elles ne sont pas toutes compatibles « - Différences finies centrées ( [9] ), courbures des
lignes de courant, méthodes de singularités ( [10] , [11] ) en subsomque.

-_Méthodes pseudo-instationnaires ( {12] , [13] , [14] ) ou différences finies
excentrées ( [15] , [lle ) en transsonique,

- Méthode des caractérisiiques en supersonique,
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De plue, leg calculs de couche limite gii doient lui Btre associés sont quelquefois insuffisants
oou. vne définition correcte des pertes huvs adaptation, surtout en compresseur, au décollement ou en
présence d'effets intenses de compressibilité, M@me en turbine ces calculs, bien que pius efficaces,
néceasitent souvert des alouis empirigues ponr tenir compte, par exemple, des effets de culot (bord
de luite épais) et des interactious choc-couchz himi‘e,

Fig.2_. Exemples de surfaces S; et S, .

b - L'autre probléme bidimensionnel qui est justement a la base des travaux de ce congres consiste

a effectuer les calculs sur des surfaces de courant, dites du deuxiéme genre, générées par des parti-
cules situées sur un rayo. en un plan perpendiculaire i 1'axe en amont ou dans la ~oue, Deux surfaces
particulieres de ce type sont les surfaces extrados et intrados des aubes (déplacées de 1'épaisseur de
déplacement déterminée sur le profil par le calcul dans l'autre sens),

Leur définition apparait clairement figure 2. L'hypothése (a) précédente de surfaces Si de révo-
lution implique que 1'on peut passer d'une surface S2 a une autre par simple rotation autour de l'axe de
la machine et que 1'on peut donc se contenter d'effectuer le calcul sur une seule surface $2 moyenne,
L.es foncticns aérodynamiques sont alors considérées sur cette surface comme moyennées périphéri-
quement en 9. Des exemples de méthodes de ce type peuvent &wre trouvés en [17], [18], [19] et [24] .
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Yaxisymétrique' c'esi-a-dire gre les varia‘ions en @ des memes fonctions sont prises nulles :

1-5

Une simplification es: souvent utilio€e i consiste A cansidérer 1'écoulemeat comme entiér%mené
pour tout F. Cette hyrcthése, lur restrictive cue de prends~ simplement les surfaces Sl de zéﬁtion,
suppose, pour le calcul i Y'intérieur des avhages, l'introduct on de forces volumiques dans les équations
de guantité de mouvement et d'un coefficient d'obstruction des aubages dans 1'énuation de continuité,
Cette simplification n'est possibl¢ que si l'on ne cherche pas, dans un calcu} général de 1l'¢coulement,

A déterminer les caractiéristiquer aérodynamwiques locules sur les aubes mais si 1'on cherche simple-
ment les performances glohales {débit, pression, rendement) et ies triangles de vitesses en amont et

en aval des roues. L'hypothése axisymétrique e<t cohérente avec un schéma de p 'rtes empirique global
mais elle ne l'est pl.s si le echéwa de pertes est complexe au point de tenir compte des répartitions de
vitesse locale sur les aubes ou s'il est remplacd Lar une méthode compléte analytique (calcul aube-a-

aube et couches limites),

Er fait, les fonctiions considérées (Lression, vitesses etc...) ont une allure en "dents de scie"

en O avec discontinuité au passage des aubes, Leg turbomachinistes ont 1'habitude de dire que e fait
de corsidérer Jeur mcyenne en 8 avec =0] suppose un nombre infini d'aubes, les termes
négligés ne devenant importants que pour un falble nomb"e de pales, En fait, dés 1965, L.H., SMITH Jr,
a montré que ces termes (fonctions ""G'' référence L17_| ) dépendent plus précisément de !a charge,

On peut démontrer par exemple qu'a charge donnée la différence de vitesse entre l'extrados et
1'intrados tend vers zéro quand le nombre d'aubes tend vers l'infini alors gue la dérivée '§‘-- sur la

surface 52 tend vers une valeur non nulle. Un cas d'apvlication assez fréquent en aéronautique nécessite
la prise en compte soil des composantes de la force volumique F dans les aubages soit d'ure valeur ron

nulle des dérivées des différent~s fonctics calculées sur la surface S2 :
Il s'agit ducas des aubes penchées schématisées

figere 3 surtout si elles sont trés vrillées (réfé-
rence 21). Une méthode simple de prise en compte
de ces dérivées est suggérée en [22] dans le cas
d'une méthode de ccurbures,

S1 Elle consiste & linéariser les variations en @ entre

/ intrados et extrados sous 1a forme :
“ B (1 F _  Fi_Fe
30 01 - 8¢
taf . .
Par exemple, pour la fonctioa n=tgf , on obtient
R ——  4*-Z—  facilement {(voir Annexe 1);
Section frontaie Section méridienne 1 9n_ 13K

W K
F'g 3 AUbeS pe“chees et auhes en ﬂEChe Ket %—- tant des8 g‘onnées liées A ia géométrie

des am:es (ou au calcul dans l'autre sens, sur les
surfaces S1).

3. Hypoth&se stationnaire

Une autre hypothése simplificatrice consiste a considérer 1'écoulement comme permanent dans

le mouvement relatif. Cette simplification n'est pas aussi Sestrictive que celle d'un écoulement complé-

tement stationnaire, Elle conduit a néghger les termes —— dans les équations du mouvement
écrites dans un systéme de référence lié au rotor. Mais un observateur fixe voit tout de m&éme 1'écoule-
ment sous forme instationnaire, au moins dans la roue mobile, les variations en fonctiocn du temps dans
le systéme absolu 4tant liées aux gradients tangentiels dans le systdme relatif par :
3) [_a_u_] oW [19_] ,
at | spteme =" 39 — |systime
W étant 1a vitesse angulaire de rotation du rotor qui est prise constante.

Physiquement, 1'hypothése suppose que les sillages des grillee fixes sont amortis lorsqu‘on entre
dans la rcue mobile et que les sillages des grilles mobiles sont amortis lorsquion entre 2 l'intérieur de

la roue fixe,
En résumé, le modeéle retenu représente un fluide adiabatique, non visqueux, permanent en espace
mobile, calculé sur une surface de courant 'movenne' du type S2 de CH. WU. L'écoulement peut &tre

rotationnel ; l'enthalpie totale et 1'entrerie peuvent varier d'un point A un autre, Les frottements et les
écculements secondaires y sont introduits sous forme de pertes et d'effets de déplacements déterminés

par un schéma empirique (voir tableau 1).

II. FORMULATION ET RESOLUTION

Le mod:le d'écoulement étant choisi, les deux questions q.i se posent ensuite au spécialiste
désireux de programmer sur ordinateur et d'appliquer la méthcde de calsul A des cas coucrets sont la

formulation et la méthoge de résolution,
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1, Formulation

1,1, Calcul Projet et Calcul d'Analyse

Certains termes des équations peuvent 8tre négligeables au point d'adaptation et ne plus 1'&tre

dans l'ensemble du champ de caractéristiques, On pouvait se demander si des simplifications supplé-

mentaires n'étaient pas souhaitables dans la formulation du calcul projet, De telles simplifications
€taient utilisées avec succes dans les années 50 alors que la puissance des ordinateurs ne perinettait

pas encore un traitement efficace du modéle exposé ci-dessus. La prévision du champ de performances

tait alors plus ou moins confiée a un empirisme d'ailleurs souvent trés efficace,

Mais les recherches récentes sur la prévision analytique des performances nous incitent & sou-

haiter une formulation uniforme de maniére 3 ce que les deux calculs puissent iatervenir 1'un sur

1'auire de fagon cohérente : correction du projet en fonction des résultats hors-adaptation ou améliora-

tion de la prévision hors-adaptation par '"'cadrage' des valeurs projet,

Dans le calcul d'écoulement des turbomachines, sur une surface de type S2, on peut défimr, ala

maniére des calcuis de grilles, deux types de méthodes :

- I'une, dite méthode irverse, part de 1'évolution des vitesses, ou plus précisément du moment cinétique

rVe donné le long de la surtace, considérée pour calculer les angles donc la géométrie de cette

surface,

- 'autre, dite méthode diracte, consiste 2 calculer les vitesses sur la surface de courant en partant

des angles comme donnée, Pour éviter toute confusion entre calcul projet - calcul d'analyse d'une part

et méthode inverse - méthode directe d'autre part nous pensons qu'il est uvtile d'insister ici sur le
point qu'un calcul projet peut &tre effectué indifféremment uvec une méthode inverse ou wie méthode

directe, de m&me qu'un calcul de performances peut tre .nené a bien par une méthode inverse comme

par une méthode directe, Le tableau II (suivant) résume ceite analyse,

———»]

DONNEES
Débit et régime nomin

Obstruction des aubages.KD. Pression et température amont

COMMUNES
aux _ Géometrie de veine

1

v

Données particuliéres: (point nominal)
aux ae compression
(ou travail repdum |par étage

CALCUL PROJET

CALCUL D'ANALYSE
Données particulieres
Geometrie complete des aubages

c Débit des différents points de calcul
-% —= Rendements par grille et régime r
Sy X  """®v©r._-__-__—_—/— ™ _
£ 2 il
2 Surfaces S1 i
2 %, Calcul couches limites |
- %,. Ecoulements secondaires :
w o ou Schema empirique 0
g 1.4 12% y | B
8 |8 N\ \ s
-l |5 Pertes @y
G |a et angles du flux 4 }
£l |8 3
1] . R 9 _—~——" - |
JBE itzise R~ 5!
- ’ - 2.4 r {
3l |2 ' v ¥ P
g § P Entrée: E!Q:__] Entrée: el
5 ; jMethode INVERSE| Méthode DIRECTE @ :
£ Sortie:[Angles| |Sortie:[Vitesses I
@ 121 1.2 e e ————
e
Surfaces S N \
Couches limites 2.2\ 21
Ecoulements secondaires N \
esuitats empiriques ~ \
ou de grilles ~
¥ y v
PERFORMANCES
AUBAGES Taux de compression (ou détente)
Veine définitive Travail . rendement
pour tous les points du champ
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Le chemin naturel pour le calcul projet =st 1'utilisation de la méthcde inverss, trajet {1-1) mais
la méthode directe est possible, trajet (1-2) avec un® boucle itérative sur r V§ . Le chemin naturel
pcur le calecul d'analyse est la méthode directe, trajet (2-i} mais on peut aussi wiiliser la méthode
inverse svec une boucle itérative sur les angles,

1. 2. Problémes transsoniques

Les écoulements transsoniqaes, pris ad sens général, c'est-a-dire ou cohabitent des zones
subsoniques et des zones supersoniquce, posent surtout des problémes au nivean de la résolution des
équations (elliptiques ou hyperboliques selon les zones)., Cependant nous pensons gu'une grande partie
des cas rencontrés par l'industriel, surtout en aéronauvtigue, peut 8tre résclue au niveau de la formu-
lation mé&me, du moins en ce qui concerne 1'écoulement non visqueux, En effet, on peut montrer
([8], [22] . [23) ) que rutilisation d'une tormulation de type "'méthode inverse” od rV@  est pris
comme donnée ne conduit A une wndétermination que s1 1a composante méridienne du nombre de Mach
atteint 'unité. D'od 'intérdt de ce type de méthode pour les turbomachines axiales aéronautiques ol
ce terme est généralemenc subsonique. Ceci ne veut d'ailleurs pas dire que le probléme du passage
d'une zone supersonique & une zcone subsomque (chocs, blocage) se trouve "'escamoté' a l'intérieur des
aubages mais qu'il est plus sumplement reporté sur 1a loi de rVg d'une part, le schéma de pertes et
d'angles d'autre part,

1.3 Introduction des pertes

Dans le caleul & 'intérieur des aubages, J, H. HORLOCK 24 a soulevé le probléeme, dés 1971,
de la cuhérence enire les éyuations de gnantité de mouvement d'une part et l'introduction de pertes
donc de variations d'entropie d'autre part, En eifet si 1'on écrit 1'équation du mouvement sans frotte-
ments (second principe de Newton) et que 1'on suppose le mouvement permanent en systéme relatif,
la projection de cette équation sur la vitesse conduit A 1'équation d'énergie : (4) Q_}_ = T,_D_ts_

(.B_tQ , dérivation par rapport au temps en suivant une particule dans son mouvement,
! = Re.halpie définie par [= h+!2\‘_2-u (rVg)  égale A l'enthalpie iotale si w=0 )

Or I'hypothése du modéle - écoulement adiabatique - permet d'écrire par application du premier
principe de la thermodynamique : (5} DH - DW + Dg =D (wrVg)

DW est le travail par unité de masse échangé par une particule avec 1'extérieur lorsqu'elle se deplace
d'une quantité Dx  sur sa ligne de courant. Dq est 1a quantité de chaleur par unité de masse échangée
dans les m&mes conditions (ici D=0 ). Les équations (4) et (5) indiquent donc que ni la rothalpie I

ni 1'entropie S ne peuvent varier le long d'une ligne de courant,

Comme l'introduction de pertes de profil sur la surface S2 moyenne suppose que l'entropiz varie
sur une ligne de courant, une force de frottement doi: bien &tre introduite au niveau de 1'équation de
quantité de mouvement. Il est prouvé que ce terme demeure faijble en valeur numérique lorsqu'on reste
1ux alentours de 1'adaptation o les pertes sont par définition mimmales. I! semble cependant que cer-
tains déLoires trouvés quelquefois dans 1l'introduction des pertes hors-adaptation et mis généralement
sur le compte d'un mauvais calibrage du schéma de pertes empirique, puissent étre dus & une sous-
estimation de cet effet lorsque 'augmentation d'entropie est élevée, Des cas de ce type sont inévitables
si 1'on désire décrire analytiquement l'ensemble du champ de performances avec une méthode suffisam-
ment géné-ale pour supporter des phénomenes tels que cécollement, ondes de choe, etc. ..

Nous avons vérifié qu'une force de frottement opposée a la vitesse peut remplir ce rdle sans trop
comphiquer les équations, On ¢crit ( [8] , [22] ) 1'équation de quantité de mouvement sous ia forme :

(6) Wa (rotV) = gradl - TgradS + oW

o0 -@®W est la force de frottement assimilée a un terme dissipatif. En projetant {6) sur 1a vitesse
relative W on obtient :

(7 W.gradl -W.Tgrad S = -®W?2
et DL -0 par (5) entraine :
Dt
(8) o=T 0S
w2 Dt
1. 4. Echanges de chaleur

Dans le cas pa' .cv’ier ol les échanges de chaleur avec l'extérieur ne sont plus négligeables
{ -rbines fortemen* refroidies par exemple) il n'y a pas lieu d'ajouter de termes a 1'équation fondemen-
tale de la dynamique mais il faut alors remarquer que la rotalpie I varie sur une ligne de courant car
1'équation (5) n'est plus vérifi¢e ( Aqg 3 0 ) ce qui modifie 1'équation (8) sous la forme :
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ey donc toute la formulation,

Cependant on peut, dans la plupart des cas, considérer les echanges de chaleur dug au refroidis-
sement des aubes et des parois dans une turbine comme réduits aux couches limites et donc conserver
le modele de base non visqueux sans conduction et introduire dans ce modele les .»ffets thermiques s~
l'entropie comme on le faisait pour les p2rtes.

2. RESOLUTION

2,1, Fonction de courant ou courbures :

On sait que les méthodes de résolutior du systéme de 4 équations déduit de (6) et de 1'équation de
continuité consistent en général i réduire le probléme a l'intégration d'une équation différentielle unique,
Elles se partagent en deux familles selon que l'intégration est effectuée

- en somme double sur une surface : méthodes utilisa1t les dérivées de la fonction de courant ou

- en intégrale curviligne sur une ligne quelconquie, la géométrie des lignes de courant étant fixée =
méthodes de courbures, La premiére famille compor e les méthodes d'éléments nnis et les méthodes
ma‘ricielles, dans la seconde l'intégration peut 8tre effectuée sur des rayons (équilibre radial) ou sur
de: quasi-orthogonales ou encore sur l'intersection de la surface S2 par des plans perpendiculaires &
1'axe (aubes penchées : figure 3).

Dans les deux cas, le maillage reste fixe et se sont soit la fonction de courant soit la géométrie
de la ligne de courant qui sont retouchées au cours des itérations jusqu'a convergence du calcul, Il est
naturellement possible de projeter les équations sur les lignes de courant elles-m&mes et leurs nor-
maies, les équations obtenues sont alors plus simples mais on doit utiliser un maillage variable au
cours des itérations et 1a correction est plus compliquée.

Du point de vue de l'utilisateur (précision, rapidité, facilité de mise en oeuvre) des analyses et
des comparaisons entre méthodes de '"courbure’ et méthodes "'fonction de courant' ont déja été
effectuées ( [22), [231, [25] ). Aucun des deux systémes ne semble avoir définitivement pris le pas
sur l'autre et il est souvent difficile de comparer deux types de résgolution au m@me stade de sophisti-
cation, en particulier en ce qui concerne la pondération des corrections itératives et 1'introduction du
schéma de perte et d'angles. Cette concurrence peut &re elle m&me générat~ ce de progrés car les
spécialistes vont encore certainement apporter des améliorations dans 1'une et 'autre famille de réso-
lution. Deux remarques peuvent 8tre faites ici =

- La premiere est que 1'historique des méthodes de projet chez les constructeurs les conduit souvent a
développer de préférence une méthode de type ''courbures' qui leur permet de faire plus facilement la
liaison entre les méthodes modernes analytiques et leur expérience propre des performances d'éléments
d'aubes corrigées par les effets d'interaction entre grilles (référence [26] ).

- La seconce est que les méthodes faisant appel a la fonction de courant sont peut &tre un point de départ
plus riche de possibilités pour une extension vers des modeles plus compliqués {méthodes d'éléments
finis en instationnaire, méthodes tridimensionnelles, etc...),

2.2. Schémas de pertes

11 n'entre pas non plus dans le cadre de ce papier d'étudier dans le détail les schémas de pertes
les mieux adaptés. Chaque spécialiste et chaque constructeur a d'ailleurs le sien propre dérivé de son
expérience et appliqué 1 ses propres exemples, La plupart des auteurs s'accordent d'ailleurs 3 dire
que le schéma de pertes ot d'angles revét une grande importance dans la qualité des résultats et que
méme un bon schéma peut quelquefois éviter une trop grande complication de la formulation de base,

Cependant les progrés réalisés dans les calculs de couches limites et surtout dans la déterinina-
tion analytique des pertes, des angles et des épaisseurs de déplacement dus aux écoulements secondaircs
- [2710 [28] ’ [29] ’ @0] et [311 -
laissent entrevoir la possibilité de remgplacer les schémas empiriques généralement utilisés par un
calcul entie¢rement analytique sur surfaces S1, couches limites et écoulements secondaires,

2.3. Blocage

Le cas du blocage pose un probléme particnlier. En effet il suppose que dans certains plans de
calcul une relation supplémentaire (continuité du débit bloqué) relie pertes et angles et les deux para-
meétres ne peuvent plus &tre introduits séparément. Dans I. cas des turbines supercritiques cet effet
a lieu 3 la sortie des aubages alors que la plupart des pertes ont déja été prises en compte, On peut
donc eouvent simplificr le phénoméne par modification de 1'angle A pertes constantes pour satisfaire
la continuits (Yangle de sortie unique''),
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Dans le cas des compresscurs, le blocage intervient a l'intérieur du canal inter-aubages et
provoque lui-méme des pertes supplémentaires par apparition d'ondes de choc, I est alors nécessaire
de corriger ensemble les angles et ies pertes, Les compresseurs supersoniques, quant a eux, €ont a
rapprocher des turbines supercritiques et leur probléme peut également &tre simplifié par modification
de l'angle a l'entrée ("incidence unique'') a pertes constantes.

111, DIFFICULTES D'APPLICATION
Un certain nombre de cas de turbomachines aéronautiques peuvent éventuellement remettre en

cause le modéle Jde base adopté et faire appel soit & des corrections empiriques soit & un modele plus
compliqué,

1, Soufflante de moteur double-flnix

La présence d'un bec de séparation des flux (A} en
aval de la roue mobile et éventuellement d'une
"nageoire' (B) pour amortir les vibrations provoque
des discontinuités et des conditions aux limites
complexes dans le calcul méridien (figure 4),

Cette configuration ne remel pas en cause l'hypo-
these de surfaces S1 de révolution. Mais le calcul
sur surface S2 peut &ire fondamentalement perturbé,
en particulier hors adaptation., Les contre-pressions

Pk

i3

S B

N
P )

ORGSR

5
T

-

e en P et en S peuvent différer fortement et il faut

| I théoriquement calculer autant de champs de la partie
‘ secondaire qu'il y a de vannages sur la partie pri-
£ maire et vice-versa, Heureusement, les contre-

“ pressions en P et en S ne sont pas indépendantes

~';; sur moteur complet ; elles sont reliées par le cycle
44 thermodynamique et la configuration de moteur

7 choisie,
; Avec une méthode du type courbures des lignes de

=5 courant, une adaptation du programme peut 8tre

)
i

organisée autour de trois calculs : partie secondaire
seule, partie primaiire seule, veine compléte sans
séparation, Le passage d'un calcul & 1'autre peut
s'effecluer par coefficients d'obstruction ou facteurs
Kb judicieusement répartis sur les tubes de
courants considérés, Le schéma de pertes est éga-
Fig.4- Soufflante de moteur double-flux. iement 3 reconsidérer du fait des couches limites
; - ; sur les nageoires et le bec et les nouveaux écoule-
ments secondaires créés par ce type de géométrie,
Mais un calcul {ype "éléments finis'' dans le plan méridien devrait pouvoir répondre élégamment au
probléme posé par cette configuration,

E>
=
Z

=
=
2
“%

M

2. Turbomachines chargées avec veine fortement évolutive

L.'évolution toujours croissant. des charges par étage dans les turbomachines modernes conduit
4 considérer deux cas ol les effets tridimensionnels importants risquent de rendre insuffisant le modele
i des surfaces Sl de révolution ; ils sont présentés figures 5 et € respectivement.

: Le premier (fig, 5) concerne les coupes de pred de comprésscur 2 forte déviation et Mach amont
subsonique élevé, ia convergence étant importante pour éviter le décollement par ralentissement trop
i séveére ; l'exemple présenté figure 5 réalise 55 degrés de déviation A Mach 0, 85 avec un taux de conver-
i gence du tube de courant de 0, 8.

Le second (fig. 6) concerne des coupes de distributeurs de turbine basse pression "compacts' od
la forte divergence est nécessaire pousr éviter des nombres de Mach de sortie trop élevés ; l'exemple
présenté figure 6§ réalise une déviation de 80 degrés avec un nombre de Mach aval de 0, 8 (amont 0, 4)
et un rapport de section du tube de courant Je i, 6.

Calculés sur une surface S2 moyenne (écoulement de révolution) ils donnent lieu & des corrections
"tridimensionnelles’ du type de celles portées figures 5 et 6. On voit alors que les gradients Intrados-
Extrados sont tcls qu'on peut se demander si 1'hypotheése de surfaces S1 de révolution est encore raison-

AL P ot o o

$ 5 nable, Du simple point de vue de la continuité du débit, surtout lorsque la vitesse extrados est trans-
"“’.2;; sonique, il parait clair gue le tube de courant ne peut pas présenter la m@me hauteur cdté extrados et
B cdté intrados.

XA

'::;\;z} 11 parait alors important de considérer avec intérét toutes les tentatives modernes d'un calcul
| 8 vraiment tridimensionne) et si possible transsonique,

{2
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Fig.5. Coupe de pied dun compresseur Fig.6. Coupe de téte d'une turhine
charge _ ( redresseur) basse pression . (distributeur)

3. Réintroductions ou aspirations aux parois ou sur les profils

Ce cas d'application est trés fréquent vans les turbomachines aéronautiques = prélévements d'air
dans les compresseurs, décharges, circulations internes, refroidissement des turbines, circulations
parasites autour de viroles fixes ou de talons tournants, Une mention a dé;a été faite ci-dessus
(chapitre II - 1.4 ) de ce probleéme du point de vue de la formulation des échanges thermiques, II concerne
en fait deux parties du calcul de 1'écoulement « la premiére, au niveau des parois, affecte essentiellement
les écoulements secondaires. Des travaux récents tels que ceux des références [30], [31] montrent qu'il
est possibie de prendre en compte de tels phénoménes dans une méthode intégralz ol les écoulements
sont moyennes périphériquement,

La seconde concerne surtout les émissions sur les profils qui conduisent, a l'intérieur des aubages,
a une cohabitation tridimensionnelle d'écoulements & niveaux d'énergie Jifférents. Seules, A notre connais-
sance, des correclions empiriques sont apportées pour tenir compte de ce phénomeéne.

4, Distorsion, décollement tournant, pompege <

Si 1'on observe 'a figure 7 tir¢e de la référence [32] ol se trouvent portés les phénomenes ren-
conirés dans le cham de caractéristiques d'un compresseur haute pression multi-étages trés charge,
on peut se demander si le modéle choisi peut permet.re de décrire de telles caractéristiques, en
particulier les changements apportés par des modifications de de géométrie (versions 1, 2 et 3),

Le probléme se pose alors de savoir si les calculs d'écoulements instationnaires actuellement a
notre disposition peuvent 8tre introduits dans la méthode pour prévoir le décollement tournant et le
pompage (con.presseurs) ou tenir compte d'effets instationnaires de distorsion, par exemple pertes
de charges d'entrées d'air ou dissymétries thermiques de chambre de combustion,




Rapport de pression

Y

Ligne de pompage

907

1

Version 1 . ] . 1
Version 2\ v Ligne de fonctionnement

Version 3

\A Décollement tournant

Version 1

— Deébit
Fig.7- Compresseur HP a b étages. Doubles caractéristiques.

Dev apnroches sont possible : 1'une consiste a éu.dier la réponse du systéme & des perturbations
instationnaires ( [33 , [4] ), l'autre a refonare compl2tement le mod2le de base ( (35] , B& Jeny
introdulsant naturellement les termes instationnaires. Les progres récents réalisés dans ces techniques

permettent d'espérer la prise en compte A moyen terme de tels phénoménes, Ce sujet déborde d'ailleurs
du cadre du présent collcaue,

5. Effets visqueux généralisés

Dans les moteurs aéronautiques i taux de compression trés élevé (par exemple 30 : 1) il est connu
des turbomachinistes que 1'écoulement, dans les derniers étages de compression ol le rapport de moyeu
dépasce 0,9, supporte des phénomenes secondaires et en particulier des effets visqueux qui finissen’
par envahir toute la veine, au point a'aboutir 2 un écoulement de type "uyau'. Il nous parait alors diffi-
cile, du point de vue théorique, de conserver l'hypothése des couches limites.

L'introduction de forces de viscosité et de la conductivité complique alors beaucoup la formulation
et 1a résolution, Il semble heureusement que dans de nombreux cas pratiques 1'apport d'énergie a2u fluide
par leg rotors, réitéré A chaque étage, conduise 1'écoulement dans le compre.seur a un état asympto-
cdque dont au moins les performances globales se rapprochent des résultats obtenus par un calcul sim-
plifié dv «ype de celui présenté tableazu I. La recherche d'aubages sophistiqués capabies de s'adapter a
des variations radiales importantes sur une faible hauteur pose du reste des problémes de fabrication et
de fiabilité auax constructeurs,

Une fois encore, la solution le plus souvent utilisée réside, pour le calcul des performancus, dans
un calibrage habile du schéma de pertes et d'angles introduit dans le caicul.

CONCLUSION

Aprés la présentation du modele de base généralement utilisé par les turbomachinistes dans le
calcul de 1'écculement, un bilan des difficultés rencentrées dans 1a formulation et la résolution a été
effectué, L'examen d'un certain nombre de cas d'application difficiles monire ensuite que des solutions
simples sont souvent possibles par modification du schéma empirique de pertes et d'angles,

Mais 1'augmentation constante des performances demandées aux turbonuachines modernes et le
besoin d'une méthode de prévicion plus précise capabie d'éviter aux constructeurs de cofiteuses heures
d'essais, incitent le syécialiste a créer des méthodes entierement analytiques programmeées sur ordi-
nateur puissant. Des recherches récentes, en particulier sur les ¢coulements secondairew et les
phénomenes instationnaires permettent d'envisager de telles solutions dans un avenir proche,
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On ne saurait cependant trop recommander aux chercheurs de travailler A des modeles de plus en

plus représentatifs des phénomenes physiques, s'approchant ainsi de la solution générale des équations
de Navier-Stokes, Leur résolution avec des conditions aux limites compliqu tcs et des nombres de
Reynolds élevés reste un probléme extrémement diffile, Mais il n'est pas d'exemple ol une nouveile
méthode analytique, m&me & précision égale avec les méthodes empiriques, n'ait pas fait progresser
la technique des turbomachines,
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ANNEXE 1

Variatiors périphériques de la fonction n

Une des fonctions aparaissant dans 1'équation différentielle du calcul sur surfaces S2 et dont les

variations en 0 peuvent ne pas &tre négligeables a forte charge, méme si le nombre d'aubes est élevé,
est la fonctivn n définie par :

(1) n= tgp = We
Vm
P étant l'angle de la vitesse relative avec le plan méridien. Dans le cas d'un nombre d'aubes suffisant
on peut écrire pour une fonction F dans in canal inter-aubages :

avec [ = Intrados
2) aF ={ F1-Fe ] E = Extrados
36 81— |r,z fixés
en négligeant ies termes du second ordre en (0] -08g) . Cette linéarisation est meme exacte si

1'évolution de F a (r, z) fixés est parabolique en @  ce qui est souvent, Toute surface S2 peut &tre
définie par

(3) 8 =0(r,z)
—
Le vecteur normal a cette surface N a pour coordonné«s dans le systéme cylindrique
(r, 0 ,2):

20
or
=1
NI-+
90
¥ _, _,
La condition de glissement N . W = 0 du vecteur vitesse sur cette surface s'écrit donc :
(4) Vi 80 +Vvz30 _1Wp=0
or oz r
ou encore :
(5) m r

si @f\7,Z) et Og(r,z) sont respectivement 1:8 fonctions (données) définissant les surfaces intrador
et extrados de l'aubage, 1'application de (5) & ces deux surfaces particuli2res conduit a 1'expression :

om dm r \vml VmE
En prerant n comme fonction F dans (2) et en utilisant {6) il vient :
3 (o1 -©¢)

1 dn _-_(1) ni-ng _ _ dm
@ r 30 O1-©¢ O1- Ot

(6) o1 _ dee _ 1 ( Wei _Wes>

r

Par définition le coefficient K d'obstruction des aubages s'écrit «

(8) 29K = 2nr-Ze = 2n (1-.2_9.) =01 -O¢
r 2mr

donc (6) devient :

(9) 1 Or

de la fonction 0 a partir des données K et gK
m

qui détermine les variations en
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COMMENTS

Comment by R.lL.Lewis, Newcastle University, UK

Does the author belizve 1n the validity of superimposing either empirical cascade data obtained between rigid side
walls, or solutions obtained upon S1 surfaces, to complete blade flows? Heze I am questioning the validity of
stacking two-dimensional soiutions to form a quasi-three-dimensional flow when the S1 so'utions vary from subsonic,
through transonic, to supersonic mvolving strong compressibility effects, three-dimensional shocks and radial flows due
to locally chocked flows. It secms to me that research into these real fluid conditions should be next on the agenda.

Sl R S Ly

e

Authors’ response:

1 think the process is essentially iterative between S1 and S2 solutions. If S1 surfaces are computed, 1t 1s
possible to go from S2 solutions to S1 solutions using the streamtube thickness distribution as an iterative parameter.
If S1 solutions are experimental cascades data, we can, at least, use a contouied wall cascade with bleeding systems
and correct the loss scheme as a function of AVR distribution. 1 agree ‘he so culled quasi-ihree-dimensional calcula-
tion can be tnaccurate inside the blade rows in the transonic cases but the accuracy seems to be sufficient regarding
other unknowns Jike three-dimensional secondary flows and three dimensional shock-boundary layers interaction.

I

Comment by J.Chauvin, von Karman Institute, Belgium
Quel est le temps de calcui acceptable pour une méthode a utiliser industriellement?

Authors’ response:

Les programmes utilisés quotidiennement doivent étre relativement rapides (moins de deux minutes sur IBM
370-145, par exemple) pour une question de débit du systéme d’exploitation et de temps de réponse pour I'ingénieur.
D’autres programmes trés puissants (problémes transsoniques, calculs instationnaires) utilisés plus rarement peuvent
étre acceptables méme si le temps de calcul atteint deux ou trois heures. La limite semble &tre le prix de fabrication
de la machine elle-méme (calculs tri-dimensionnels).

Comment by D.Millar, Carleton University, Canada

With reference to the figure on page 6, could you clarify the statement that the use of (vVg) + iteration m the
off-design or analysis case is successful in avoiding the limitation imposed by relative or absolute Mach number > 1.0,
even though the angle is effectively constrained by the blade angles of the machine being analyzed. In setting up our
own alculations, Davis and I concluded that the fact that the angle 1s constrained will cause the calculations to diverge
if the absolute, rather than the meridional Mach number exceeded unity.

Authors’ response:
We could succeed in avoiding the sonic relative Mach number limitation because we tried only to converge on
the flow angles outside the blade row. 1 am not surc the process is converging if the angles are imposed inside.

Comment by R.Parker, University Ccilege of Swansea, UK

Could the author please explain the donble characteristics shown in Figure 7?7 Could these be prediciced by the
calculations, and, if so, how was this achieved? What physical situation exists in the machine when operating on the
lower characteristics?

Authors’ response:

The beginning of totating v*<! phenomena could be predicted regarding the stability of the compressor’s
opelating equations but tl e rot (i1 stall phenomena like hysteresis were not predicted. The double characteristics
were experimentally analy...! The’ appear when rotating stall is stabilized in the first stage and when we increase
the r.p.m, cells are appeari y 1 the second stage too, and then in the third.

Comment by J.Denton, C.E.C.B., UK
For the results shown in Figures S and 6, how many calculating points did you have inside the blade passage
to define the streamtubs thickness?

I Authors’ response:

) Only 3 or 4. The so called three-dimensional correction is significant only at the outlet in compressor. 1t
seems necessary to have differert correction on pressure and suction side, in the supersonic bubble region in parti-
cular. For the turbine case, the correction is not made downstream, but upstream, because the outlet Mach number
is fixed.

e en

o
ek

Comment by H.Cox, G.E.C., UK

Coming back to the problem of computing more complicated through-flow solutions, this will lead you mto
situation where solutions are derived for precise flow conditions, very accurately. However, for industrial machines,
blades have to be designed not for one specific condition but for a range of ccndit ons. For a same blading geometry,
you will have varying streamline geometrics to match. In fact, to go to a highly complicated design system to take
into account precise shapes under one condition may mislead you in terms of other conditions, where the streamline
pattern may be different. The precise value of complicated computing techniques could be in doubt, to some extent,
as far as design is concerned.
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Au:hors’ response:

The operation impiies mixed subsonic supersonic conditions 1n the turbine; one needs time marching method
mixed with another through-flow calculation, or else have to take into account heat and mass transfer for cooled

hlades; it is necessary to use m.thods which need a lot of time on the computer, and should be applied for the
whole range of flow conditioits.

Comment by J.Railly, University cf Birmingham, UK

Concerning the correction for the anulus wall boundary layer development, this leads you to bring your effective
end walls closer to the centre. Is this the best way to do it? You might have spent a considerable amount of time
preparing the input data (blade angles, etc...) at a number of points, and the matrix coefficients have beern set up.
Applying the end wall correction, they have to be changed and the process repeated. Is there no better way of doing

it?
Authors’ response:

We do not use a matrix inversion method, and we do not have to redefine the coefficient, as we are using a
streamline curvature method, which, to my mind, is better adapted in this case.
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THROUGH-FLOW CALCULATIONS IN AXIAL TURBOMACHINERY:
A TECHNICAL POINT OF VIEW

by
H, Marsh
Department of Engineering Science
University of Durham
Durham
England

SUMMARY

The paper outlines the through-flow theory tor turbomachines and includes a detalled discussion on
the methods of streamline curvature and matrix through-flow. These two methods of solution are shown to
be two du.fferent techniques for calculating the flow on a mean stream surface. The Mach number limitations
are outlined and the lack of a rigorous definition for the mean stream surface 1s discussed. The use of
a consistent loss model leads to an improved form of the matrix method. Recent advances in the calculation
of wall bounaary layers and secondary flows are reported. Work on time-marching techniques 18 r..1ewed
and 1t appears likely that a three-dimensional flow calculation for a cascade will soon be possible.

NOTATION

a local velocity of sound,

B surface thickness parameter,

c chord,

Deq equivalent diffusion factor,

F force vector,

h static enthalpy,

H stagnation enthalpy,

I rothalpy (H - ere),

m meridional direction,

Mm meridional Mach number,

Mrel relative Mach number,

; vector normal to the mean stream surface,

N vector normal to n and 5,

p pressure,

q velocity (secondary flow theory),

r radius,

R gas constant,

Rm radius of curvature of meridional streamlines,

s pitch,

s entropy, ;

S mean stream surface, ;

B vector lying in the direction of flow, é

T temperature, g

vn secondary velocity across the blade passage, ;

V veliocity vector, é

w secondary velocity along the span, é

) relative velocity vector, §
H

z axial direction for through-flow analysis, %

z spanwise direction for secondary flow theory, g
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o air angle,
5* displacement thickness,
<] momentum thickness,
P
angles defining the mean stream surface,
B
0 density,
o solidity (chord/pitch),
Ty wall shear stress,
] slope of meridional streamlines,
¥ stream function,
; angular velocity,
® total pressure loss ccefficient.
SUBSCRIPTS
1 inlet
2 outlet
r radial
z axial
2] circumferential
INTROLUCT ION

The cverall objective of through-flow analysis 1s to provide the design engineer with a method for
predicting the performance of a turbomachine. By combining mathematical analysis with experimeutal data
on the behaviour of cascades, it has been possible to develop computer programs which allow the uesigner
to calculate the flow pattern within a turbomachine. The design engineer can now use these programs to
determine the effect of changes in thz blade or casing geometry. With the increasing use of these
technique s, 1t is hoped that a more efficient aeroengine can be designed with fewer stages, less
weight, better specific fuel consumption and with a reduced time for development.

Over the past fifty years, methods of flow analysis have progressed from the mean line analysis to
the method of simple radial equilabrium, now part of many undergraduate courses, then to actuator dasc
theory, which included the effect of blade row interaction, and finally to the numerjical methods of
streamline curvrture, matrix through-flow and time marching. The calculation of the flow .n a turbo-
machine is a very complex mathematical problem and a major step in this field was Wu's (1) gereral
theory in 1952. From 1952 until the early 1960s, the mathematical model for the flow in turbomachines
was more advanced than the methods of computation and numerical solutions to Wu's equations could not
be obtained. By 1963, the speed and storage capacity of digital computers had developed to a level
where 1t became possible to solve the turbomachinery flow proolem, first for the through~flow on a mean
stream surtace and later for the blade-to-blade tlow. The techniques now exist for calculating the
flow in turbomachines on the basis of a flow model which includes the effects of compressibility, losses,
blade row interaction, secondary flows and the development of the wall boundary layers. 'This model is
based on our understanding of the flow through linear cascades, isolated blade rows and single stage
machines. As we learn more about the flow in these simple situations, then the flow model can be revised
and improved to give a more accurate prediction for the performance of a multi-stagse wachine.

WU'S THROUGH-FLOW THEORY

In Wu's general theory for the flow in turbomachines, ref. (1), the equations of fluid flow are
satisfied on two intersecting families of stream surfaces, the complete three-dumensional flow being
obtained by an iterative process between the solutions for the flow on the two sets aof surfaces. The
two sets of stream surfaces are the S1 blade-to-blade surfaces and the S2 surfaces which pass through
the blade row. The general theory assumes that the {low relative to a2 blade row 1s steady, However,
at exit from a blade row, the flow and gas state vary circumferentially and if the following b'.ade row
has a motion relative to the first, then it receives a time varying inlet ilow. It is only for an
isolated blade row that the relative flow is steady and the general theory is therefore restricted to
the annular cascade or isolated rotor row.

Wu's through-flow theory is similar to the general theory, but the equations of flow are only solved
for the mean S2 stream surface. The definition of this surface will be discussed ,ater and for the
present, it will be assumed that the flow and fluid state on the surface may be regarded as average
values for the flow within the blade passage. For a multi-stage turbomachine, the time dependence of
the flow is removed by treating the through-flow solution as an axially symmetric flow for the duct
region between each pair of blade rows.
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In the r, g, z coordinate system, the equations of continuity, motion, energy and state are

CONTINVITY

o

L2 (M) + £ 2(pHs) + 2 (pil,)

MOTION

we.[a(rve) aw] W[az"w' =T33 _2I

Wel 2 Y 13, W] - T3
J{mﬁw)Sb]*wlr;g =] - T

— B_L\’r -— a_\'_\’l }W 1
w’{%z el ) we{_r 6 e] =T2 - 21

ENERGY (ADIABATIC FLOW)

Wo 4 WX . w3 =g
" r 38 z

STATE (PERFECT GAS) . <
e FAs)=ART o R

(1)

(2)

(33

4)

(5)

(6)

These equations, together with their boundary conditions, define the steady flow through any duct or

blade row.

In the through-flow analysis, the flow pattern is only calculated for the mean S2 stream surface

which is defined as
6(r,z)

and it 1s assumed that the surface is single valued 1in g.

If B?'/%r and 3?,/31 are partial derivatives taken along the stream surface, then

23 _ A Qg
Y ner 20
¢ _ ¥ _ nx
=3 5%

nor 39 /

where A., Dy and n, are *he components of the unit vector n normal to the mean stream surface.
spec1a1 derxvatxves must be distinguished from simple partiial derivatives. The special derivataive

1)

(8)

These

aq/ar 1s the rate of change of q with r on the stream surface at a given value of z, whereas M/3r 1s

the rate ol change of g with r at given values of z and e.

The equatidns governing the flow may now be written in ter.s of these special derivatives.

CONTINUITY
d S We MW, W,
Jf: S‘r(rfwl') -+ %z(fwz) = ‘ﬁ' [n-rzg +ﬂ9 5’ * Ry 5 rY:) ]
C (-,
MOTION P (=)

- \:_Ie S_, (rVe)
- dr

:SEQ — EEE!‘- = .iié .B:I F:
w*[),_r > T e

We' (V) + Wz 2(vY%) =F
F'_B_r(e)-*“r?‘él 6) o

(2)

(10)

(11)
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ENERGY
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For an inviscid flow, the force vecator F is normal to the stream surface and is therefore normal to the
velocity vector,

W.E +WeF, +W,F =0 (14)

It is convenient to define the local share of the stream surface by two angles ) and y where

Taad = 2o = &
an = ';:; = ‘E;'
] (15)
TO""“P - '1‘3: —_f&.
ng Fo
The three velocity components are then related by
we :—-w'. Tan_.)\ b szMIJ
whaich 1s the geometrical condition that the flow should follow the stream surface.
Wu introduced an :ntegrating factor B such that the equation of continuity became
2 (Bephe) 4 2 (BrpWa) = o
dr oz 16)

where \'Jr Y ’.S" - _
T3t R 5. CGR)

Equation (16) indicates that the factor B is proportional to the locul angular thickresn of the stream
surface and as a first approxaimation, the thickness of the stream surface 1is taken as being propor<%ional
to the width of the blade passage

B = circumferential width of blade passage
blade piatch

For flow in a region where there are no blades, the factor B 1is taken as unity.

The through-flow analysis has been presented here in detail so as to provide a basis for discussing
wore recent developments ir flow calculation methods.

STREAMLINE CURVATURE

The method of streamline curvature can be regarded as one approach to solving the through-flow
equations, starting from the radial equation of motion,

3 _3L L L We 2.(V . YA
TSR =t 20%) e LW B an

The last term can be expressed in terms of the meridional velocity Wm,

W, W A%Jr W, W, (18)

z 2

and 1ntroducing the steamline slope @ and radius of curvature Rm’ the radial equation of motion becomes

.3t Wo 3 (V) _W.3W.. _W2G I
T—f;. ‘{;‘.*‘E—‘-:“T.e{,_(’. 9)_\»1 Sr ""‘,‘{ig + W, Im (19)

The last term in this equation can be ev.luated from the equations of continuity, energy and state,
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CONTINUITY —_— —— —_ ——
!£= §¥L = - E!} EL (};Tknﬁﬁ) -\la‘lr — El!=~ —_— Y!:: _gé
P Im r or W,R, o~ 8 o (20)
ENERGY
byl 1—\,_,[ W Vz
W 3k = —Wl W _ v E Vr-Vo (21)
Am Ténn »Jb 6 * r
STATE
Lo o L3 173
’/o Sm o2 U m R dm (22)
wherg_g is the local velocity of sound Substitution of equations (20) and (21) into (22) gives
W We He W 3E
m I—M‘].—_ Wo 35 _ Wz 3 (<Ta Ve 3B Wofp _ W W
[ - R am 2 WzR, B8 3m a ot (23)
and the radial equation of motion is then
¥ -3 LF We?(rv) Won W, ti ] W
T‘Ar T r ?r M'B—r.' I—M'.;] R, Cos &

AL

[__\d:,_] W33 _Wed (cTang) - w.n >B (2
{ B ™ T o

This equation 1s often wratten in the form

W 2
"~ S‘: +wm KC") -+ /—(r) (25)

Although the method of streamline curvature was developed independently by Smith (2), Novak (3), and
Silvester and Hetherangton (4), 1t 1s interesting to note that the governing equation can be derived
from Wu's through-flow analysis. It follows that streamline curvature 1is merely one method for solving
the equations for the flow on the mean stream surface.

In the streamiine curvature method, 1t 1s assumed that an estimate of the flow pattern is known, so
that the functions K(r) and L(r) are known functions of the radius. At any axial position, a value for
the meridional veloc.ty W_ 1s chosen at some radial position, such as the mid-annulus, and equation (23)
is integrated radaally to obtain the velocity profile. The mass flow rate at this position 15 calculated
and compared with the specified mass flow rate, If necessary, a new value for Wy at the mid-annulus is
chosen and the caleulation repeated until the required mass flow rate is obtained. When the welocity
profiles are known thtoughout the machine, then a new streamline pattern can be calculated and new values
obtained for K(r) and L(r). The complete cycle of calculations is repeated until a convergence criterion
1s satisfied. This 1s cne approach to the streamline curvature method, but there are several variations
used by other authors.

A major difficulty in applying the streamline curvature method is that 1t is necessary to calculate
the streamiine pattern and then obtain the slope and curvature of the streamlines. The shape of the
streamlines is often approximated by a spline fit through points of equal stream function on neighbouraing
calculation pianes., The spline curve may be differentiated once to obtain the slope and twice to obtain
the curvature, a procedure which can lead to a loss of accuracy.

Shezaian and Daneshyar (5) have suggested that a more accurate estimate of the curvature 1s obtained
by fitting a sscond spline curve to the variation of slope and then differentiating to obtain the curvature,
They refer to tris as a double-spline fit. The most important conclusions reached by Shaalan and
Daneshyar are that a single spline £1t requires abou! 10 points per wavelength in order to obtain a good
estimate for the curvature and that a double spline fit requires only four or five points. In a turbo-
machine, the basic wavelength is the length of a stage and 1t follows that a good estimate for the
curvature of the streamlines can only be obtained by taking calculation planes within the blade rows.
This 1s relatively simple for subsonic flows, but in a transonic fiow with shocks, the mathematical
model mzy not be adequate. Many streamlinc curvature programs analyse the {low in transonic compressors
by placing the calculation planes outside the blade rows and treating the blade rows as davices having
a specified behaviour, even though this may reduce the eccuracy of the overall calculation. The level
of agreement which has been obtained between experiments and the predictions based on calculation planes
placed outside the blade rows svggests that the solution for the flow pattern may not be too sensitive to
errors 1in the calculation of the curvature cf the ctreamlines.
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MATRIX THROUGH-FLOW ANALYSIS

An alternative method for solving the equations governing the flow on the mern stream surface 1s to
define a stream function y§ where

Ww
3#:‘ - Br/)wz
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gt — (26)
J’:‘;E é—w - e
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22‘ The radial equation of motion can then be expressed as ‘_

. Yy, Tu . it W 2 L. (Brp)

§ _B_?**- 5—3" 3r or “(Brf)] dz 37'[ r J @7
Brp [ 3L _ T3 _F _Wa2 [~V

§ *3F [}r— T - -agl b)

14 z (28)

or __jy
rz)
d"" 'az" 7’( =

T:is is often referred to as Wu's principal equation; 1t 1s a non-linear equation, but 1t can be solved
by the repeated solution and correction of the quasi-linear equation (28). For a gaven distributaon
q(r, z), a solution 1s obtained for the stream function ¥, the function q(r, z) is then corrected usang
the new values for y and the process 1s repeated until a convergence criterion 1s satisfied. The basic
method of solution was outlined by Wu (1) ain 1952, but 1t was not until 1965 that the storage capacity
and speed of ccmputers were sufficient to allow numerical solutions of equation (28), ref. (6).
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Matrematically, Wu's analysis 1s extremely simple, the difficulty lies 1in obtaining numerical solutions
for the stream function. Many finite difference approximations use a rectangular grad cf points, since
this leads to simple expressions for the derivatives. However, for calculating the flow throwgh a
turbomachine, a more suitable form of grid i1s a distorted or non-rectangular grid. Figure la shows the
grad used in ref. (6) which has radial lines with equally spaced points between the inner and outer
casings. The machine casings form curved grid lines and there are no additional difficulties for grad
points which lie close to or on the boundaries. There 1is an automatic refining of the grid as the
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B annulus height is reduced. The use of radial lines i1n ref. (6) was dictated by the limited storage

; i capacity of the computer. The leading and trailing edges of a blade row may not be radial and 2f sufficient
g; i computer storage is available, then 1t is more convenient to define a grid ain which the straight lines

= ; may be inclined to the radial direction, Figure 1b.

N

In the grid shown in Figure la, there 1s no diff:iculty in forming finite difference approximations
for the radial derivatives, but there is no simple expression for derivatives with respect to z. The
text books available in 1965 offered very little guidance since they were largely concerned with square
and rectangular meshes, meshes for which the finite difference approxima‘ions could be derived by hand
calculation. It was realised that the derivation of finite difference ap.roximations was a very systematic
procedure and that a computer program could be written to obtain a finite difference in terms of the
- . function values at neighbouring points, points which need nci be regularly spaced. Ref. (6) describes
a general procedure for obtaining the finite difference aprroximations in the distorted mesh of Figure la.

gg; It was found that as the distorted mesh became locally square or rectangular, then more than one finite
Eg{ difference approximation was possible and the procedure broks down., This singularity was . moved by
&,

re~phrasing equation (28) as

W, +E _s!
2dr: 32" vz

i
i

7,(",2)+E%£’ Q(r'-,_) (29)
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With the problem in this form, the procedure for determining the finite difference approximation cannot
become singular. The principal equation (29) and its boundary conditions can be written in the matrax
{ form

[(Mlty]l=(a] (30)

where [47 and [Q7 are column vectors and (M1 is a pand matrix which remains unchanged throughout the
calculation. Only the band of non-zero elements is formed and stored in the computer. Equation (30)
is soived by calculating the band triangular factors [L7] and [U7 where

l (LMl =Lyl

and taen re-phrasing equation (30) as

RN

[vilyl=[L]le] 1)

The matrices [U7 and L7 remain unchanged throughout the calculation. The method of solution for the
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stream function y§ is to solve for a given vector [Q7, to correct [QY using the new flow pattern and then
repeat the cycle of calculation until convergence is obtained. Althcugh meny workers in this field have
followed ref. (6) and used the matrix method, a few have solved equation (30) using a Gauss-Seidel
technique. The main advantage of the matrix method is that it avoids tne possibility of numerical
instability on the inner loop of the calculation.

A UNIFIED APPROACH TO THROUGII-FLOW ANALYSIS

For several years, the matrix through~flow and streamline curvature methods were regarded as two
separate methods for calculating turbomachinery flows. It was not until 1970, ref, (7), that i* w s shown
that these two mnathemat.cal techniques were based on the same model and that they could be regarded as
two different methods for solving the governing equations for flow on the mean stream surface. The
: analysis of ref. (7) has been repeated here to draw attention tuv the common basis for these two mathe-

E z“ matical techniques.

MACH NUMBER LIMTITATIONS

It is a fundamental assumption of the matrix through-flow and streamline curvature methods that there
exists a unique solution for the fiow in a turbomachine. It 1s clear that in the matrix m thod, the
] solution for the flow pattern on each cycle of the iterative process 1s itse'f unique, this being the
solution of a single matrix equation for the stream fuiction. However, at each grid »int there are two
solutions for the density, one corresponding to subsonic fluw and the other to supersonic flow. In
ref. (6), the ambiguity wes avoided by restricting the analysis to flows in which the Mach number
limitations at all 2rid points are:

(a) duct flows, Mp < 1,

(b) flow within or behind a blade row, Mrel <1

o—

Later, Gelder (8) suggested that these Mach number limitations might be relaxed if the velocity components
were calculated using a value for the density which is taken from the previous iteration. The calculation
of density then lags behind that of velocity, but if the process converges, then this is not important.
Smith (9) has used Gelder's modification and has found that it improves the stability of the matrix

method at high Mach numbers. According to Gelder, this technique allows the matrix method to contanue
operating at Mach numbers of up to 1.2, but the solution cannot include any shocks.
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3 ;:i The uniqueness of the streamline curvature solutions is discussed in ref. (10) and it is shown that
24 if the density is calculated on the basis of the current iteration, then a sufficient condition for
= uniqueness ie

(a) for duct flows, M, <1,

(b) for the flow within or behind a blade row, Mrel<= 1 at all radai, or Mrelﬁ’ 1 at all radii
These conditions are the same as those which are applied to the matrix method in ref. (6). Umiqueness
can be assured by evaluating the mass integral for continuity using the values of density from the
previous iteration. It should be noted that the conditions given here are sufficient to ensure uniqueness;
the method may converge to a true solution at higher Mach numbers, but the uniqueness cannot be shown
by the analysis of ref. (10).

More recently Davis and Millar (11) have compared the two methods of solution and they have arrived
at similar conclusions concerning the Mach number limitations. They suggest that to some extent, the
problem might be overcome by choosing a Coarse grid to avoid areas of difficulty. Tnis approach is
similar to that vhich is frequently used with the streamline curvature method, namely to place all of the
calculation planes in the duct regions,

DEFINITION OF THE MEAN STREAM _TPFACE

The use of the matrix through-flow or the streamline curvature method within the blade rows requires
the definition of the mean streum surface., This may be loosely defined as the average for all of the 82
stream surfaces. This is not » rigorcus definition and there 1s a need to arrive at a method for
specifying the mean stream surface for an arbitrary cascade. Horlock and Marsh (29) have considered
several simple flow models for cascades, including flow on a mean stream surface., Their conclusion is
that it is not possibie to define a surface such that the flow and gas state at all points on that surface
are the same as the passage averaged values for the actual flow. It is therefore not possible to give a
definition of the mean stream surface for either incompressible or compressible flow, The analysis of
ref. (29) shows that the mean stream surface flow model can predict the correct overall change of the flow
across the blade row, but the calculated flow variations may not provide a good local rep-esentation of
the averaged actual flow within the blade passage. This is a disappointing conclusion in that it suggests
that placing calculation planes within the blade row and thereby refining the grid, will not necessarily
give a numerical solution for the flow pattern which approaches the actual flow. As the grid is refined,
the solution approaches the exact mathematical solution for the flow model, but it is known that the flow
model cannot fully represent the local passage averaged flow. Horlock and Marsh did not estimate the
difference between the flow calculated for the mean stream surface and the averaged actual flow; it is
possible that the difference is small and that the failure to obtain an exact local representation has
little effect on the overall accuracy of flow calculations for turbomachines. A mean stream surface
which has the correct inlet and exit flow angles will give the correct overall changes of flow across
the blade row and the shape within the blade passage should be chosen to be representative of the $2
stream sarfaces,
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A OOMPARISON OF THE MATRIX AND S7REAMLINE CURVATURE MITHODS

The most comfprehensive comparison of the itwo methods of solution is that of Davis and Millar (11) who
have compared solutions for

(a) a duct flow,
(b) a transonic fan, and
(c) a thrse stage axial flow compressor.

They found little difference in the difficulty, or ease, of programming, but the matrix method requared
about §50% more high speed storage .n the computer. The matrix method converged within a few iterations
whereas the streamline curvature program required 40 to 60 iterations, probably due to difficulty an
calculating the curvature of the streamlines., The net result was that the matrix method required less
computer time. Their conclusion was that there was a marginal advantage for the matrix method on the
grounds of greater stability and accuracy. 1t was surprising that their paper attracted very little
discussion from other users,

A CONSISTENT LOSS MODEL FOR THE MATRIX METHOD

The through-flow analysis has been based on the following six equations, continuity (1), motion (3),
energy (1), and sta*s (1). These are the equations for a reversible adiabatic flow and from the equatiols
of motion and energy. 1t can be shown that entropy remains constant along a streamline, This i1s contx=ry
to the use of a loss model since a loss oi stagnation pressuie onh passing through a cascade requires
an increase 1in entropy.

Bosman and Marsh (12) have examined this problem and have suggesied the use of a loss model in which
a dissipative force ) opposes the velocity vector. For the flow on a prescribed stream surface, they
define an S-n-N coordinate system as shown in Figure 2. The bod; force F acts in the n direction, the
dissipative force D opposes the velocity vector and the equation of motion for the N direction does not
contain a component of either F or D. For flow on tne mean stream surface, there are six governing
equations,

1. continuity,

2. motion ‘in the N direction),

3. entropy (the loss model),

4. geometrical condition for the flow to follow the surface,
5. energy,

6. state.

Bosman and Marsh show that the equation of motion for the N dairection can be written in terms of the r,
9, Zz coordinate system. The analysis leads to a modified form of Wu's principal equation,

.- Wil B L] o 4T

D 2z 2z
B-ﬁf—:_r [ %—f—_ (Vz— WeTnn P) - %-57_ (V,.- WGTGAX) ]

+ Bp [%P(rVe).TanP —S-;-Z(PV@)TM'X] (32)

This equation can be solved by the matrix method described earlier. By formulating the praincipal
equation in the r, g, z coordinate system, the existing matrix through-flow programs can castily be
modified to include this consistent loss model.

TIME MARCHING

For the flow in a duct or nozzle, the governing equations are ellaptic for subsonic flow, Mp<1,
and hyperbolic for supersonic flow, My » 1. This means that both the matrix through-fiow and the
streamline curvature methods can be used for calculating subsonic axially symmetric duct flows, including
swirl.

If the flow 1n a duct or nozzle 1s supersonic, then the governing equations become hyperbolic and
the method of solution differs from thet for elliptic equations. For a convergert~divergent mozzie
operating at a high pressure ratio, the upstream flow may be subsonic, the sonic velocity occurs at the
throat, there 1s a region 2f supersonic flow followed by a shock and a downstream region of subsonic
flow to reach the required exit pressure. The boundaries for the region of supersonic flow are not known
in advance, but form part of the solution. A method of sclution is required which can deal with subsonic
and supersonic flows and locate the correct position and strength of any shock.

Although the equations for steady flow are elliptic for subsonic flow and hyperholic for supersonic
flow, the equations for unsteady flow are always hyperbolic. This suggests that if the time dependent
equations of continuity, motion and energy are used, then the same method of solution may be applicable
to both subscnic and cupersonic flows., The steady state flow, with regions of supersonic and subsonic
flow, is then regarded as the ultimate steady state for the time dependent flow. The basic technique 1s
to start with an approximate solution and then to integrate, or march, the time dependent equations
forward in time until the steady state solution is reached with sufficient accuracy. A major problem 1s
stability and this is often achieved by taking very small time steps, or by introducing artificial
viscosity.
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In 1971, Marsh and Merryweather (13) duscribed a stable time marching technigue which .as based on
finite datferences und did not rely on the u.e of artaficial viscosity to achieve stability. It was
found thac several stable procedures could be developed for flow in convergent—davergent nozzles.
cherecteristic feature of the stable schemes was that the derivatives of all quantities other than
pres sure were arzcoximated by backward differences, while the deravative of pressure contained a forward
element. Figure 3 shows the contours of constant Mach number for flcv' in a two dimensional divergent
nozzle, ref. (13). There 1s seen to be a clearly defined shock.

The

The computer program developed by Marsh and Merryweather (13) was relatively slow, some 27C0 iteratious
being required to obtain the solurion shown in Figure 3 to an accuracy of 0,01 per cent. Further work by
Daneshyar and Glynn (14) has been based on ‘he method of characteristics and this has led to a much faster
method of calculation. This method has been extended by Glynn to deal with cascade flows.

In 1972, McDonald (15) uscd a time marching method to calculate the pressure distribution around

The problem was formulated in terms of a finite area approach which lad to the

The flow was assumed to be 1sentropic on the grounds that

only weak shocks are normally encountéred in cascades, McDonald obtained very good agreement beiween

his calculated pressure distraibution and that measured in lhe experimental cascade. The use of the
isentropic flow assumption 1s interesting in that Marsh and Merryweather had tried this same assumption
for purely subsonic flows and had experienced a severe numerical instability, which was removed by allowing

the program to calculate for itself that the flow was isentropic.

aerofoils in cascade.
conservation equations in an integral form.

In 1974, Dentun (16) proposed a time marcning scheme for cascade flows using a simpler grad than that
of McDonald. Denton's grad consists of quasi-streamlines and straight lines across the blade passage.
The conserva ion equations for mass, momentum and energy are derived for a control volume. Instead of
assuming isentropic flow, Denton assumes constant stagnation enthalpy, an assumption which becomes exact
when the solution converges to the steady state flow. In Dent..'s scheme, the pressure at the central
point of an element 1s assumed to act on the upstream face of the element, whereas the velocity at the
centre controls the flow through the doewnstream face. The maximum time step for this scheme is far
greater than for the method of Marsh and Merryweather (13).

Denton has applied his time marching method to calculating the blade to blade flow in seweral
cascades and has obtained encouraging results. He has also extended the method to three-dimensional
flows, although this does require a large amount of high speed stora in the computer. The predictions
obtained with this program have been compared with experiments performed with a rectangular ducti having
60° of turning. Good agreement was obtained betwuen the calculated and experimental pressure variations
fur the four corners of the duct. This time ma~ching scheme should be capable of extension to deal with

three~dimensional flow 1n cascades.

THE LGSS MODEL

When calculating the flow in a turbomachine, 1t 1s necessary to estimate the loss of relative
stagnation pressure, or thc entropy change, on passing thrc 2h each blade row. This problem 1s perhaps
best phrased in terms of ertropy in that 1t 1s then clear that the effect of loss in a multi-stage
It 1s the radial gradient of entropy which enters directly in the governing
As the flow passes through each blade row, then for adiabatic flow, the
For flow through an 1solated blade row, the change in
However, in a multi-stage

machine 1s cumulative.
equations for the matraix method.
entropy steadily increases along the streamlives.
entropy and the entropy gradient are small and have little effect on the flow.
machine, the flow passes through many blade rows, there is a large change of entropy and the entropy

gradicnt term becomes more important. For the multi~stage machine, the accurate prediction of performance

1s dependent on forming a good loss model for each blade row.

The early through-flow programs used a polytropic efficiency as a simple method for incluling losses
1n the calculation. This was quickly superseded by incorporating Lieblein's (17) loss correlation as a
subroutine which could be replaced as better data became available. Lieblein studied the flow in two
dimensional cascades and found that the ratio of the wake momentum thickness, g, to the blade chord, ¢,
could be correlated with the loss coefficient g,

9 " Co.:oz,_ [Cosaq_]z

< 2o Cos o,

The losses in this model are caused by fluid fraction, flow separation and wake mixing. In the discussion

of Lieblean’'s paper, Klapproth suggested the use of a modified equivalent diffusion factor whach included
the effect of a change of axial velocity across the blade row and a radial movement of the streamlines.

Later Swan (18) showed that a similar correlation to that of Liebleain could be obtained for compressor
data. Swan's correlation 1s in two parts, the first relating g/c to the equivalent diffusion factor

Deq at the minimum loss condition,
c vs e7
The second part was a correlation for operation away from minimum loss,

the asterisx denoting mainimum loss.

*
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whicn gave cwr v+’ which were independent n»f radial position, but very dependent on Mach number.

swan also suggesied that the loss mode:. could be extended to transonic blade rows by adding a shock
loss <o fficient, Wy dirently to the profile loss coefficient, W predic¢ted from Deq,

Sioiiois

Wbl = Ws + “p

!
TR

The Swan-Lieblein loss model haz been found to give satisfac‘ory agreement between the predicted and
observed performance of compressors. However, these correlations are best regarded as a temporary
approximation for the loss model, & starting point which must be revised as more data becomes avallable.

ANNULUS WALL BOUNDARY LAYERS

As the flow passes through a turbomachine, boundary layers develop on the hub and tip casings.
These wall boundary layers cau~e¢ a reduction in flow area and as shear layers, they give rise to secondary
flow when the flow is turned. Separation may also occur causiug an end wall stall, In 1967, Stratford (19)
put forward a simple method for culculating the development of the wall boundary layer, this being based
on the momentum ir.tegral equation for the axial direction. Stratford assumed that the pressure distrabution
around the blade was *ransmiti- . .‘changed through the boundary layer and he did not consider the cross
°low., There was consiurable de 12 about the valadity of Stratford's assumptions, but the method did
lead to reascnable predictions £ the growth of the wall boundaiy layer.

s
e A —— T AN Sk nmh &

Ia 1972, Marsh and Horlock (20) ‘eviewed the work on wall boundary layers, including that of

tratford and the theory of Mel.cr anz Wood (213, After examining the earlier work, it was suggested
that instead of assuming that the criisure was trarsmitted through the boundary layer, the analysis might
be based on the passage averaged meax pressure p being constant through the boundary layer. With thas
new approach, the change in the mean pre<sure across the cascade is the same for the mainstream flow and
for the boundary layer. It is shown in -2f. (20) that this assumption leads to a variation of the blade
force within the boundary layer and wnen this force defect term is included in the analysis, then the
axial and tangential momentum :nteg.al equaf.ons both reduce to

i i e A S T e

4 (v;en)+s’;\/zv':.-n *V;TM“(QR* Sx)éﬁ = Tz (33)
d: [-. % * J_z F -

This equation 1s thv same as .hat which i3 obiained from the analysis of Mellor and Wood with the
assumption that the effective blade for:e s normal to the mainstream flow. Marsh and Horlock compured
their predictions from equation (33) and thosu of Stratford wiih the experimental results obtained by
Gregory~Smith (22) for a row of inlet guids .anes, Figure 4, For these highly loaded blades, a turning

of about 49 at the tip, Stratford’'s method i3 ssen to give better agreement with the eoxperimental results.

Horlock and Ferkins (23) re-examined *he Assumptions ot_-B_, or a;/az, being constant through the
boundary layer an suggested that this mignt Le :.placed by 3p/3x being constant. With this modafacation,
the axial force defici* 1s zero and the axizl momentum integral equation 1s

dz 7;

, a (e, ) STV & o

: I‘ VzeZZ -+ Sz Vl é.l’— W (34)

! which 1s tho equation derivaed hy Stratford (19) in 19:/. The work of Hcrlock and Perkins provides a

z more rigorous basis for Stratford's method of calculsating the blockage due to the wall boundary layers,

: In Part II of ref. (23), the authors discuse the applicat:ca of wall boundary layer calculations in
through-flow m3athods. They suggest that for the matrix method, the values for the stream function on the

! hub and tip casings can be modified to allow for the pressnre of the wall boundary layer. The calculation

of the wall boundary layer cen then become an intsgral part of the through-ilow calculation.

SECONDARY FLOW

When a shear flow, such as a wall boundary layer, is turred in a cascade, then at exit from the
cascade there 1s a streamwise vorticity. This problem was analysed by Hawthorne (24) who identified
three streamwise components of vortici“y at exit from a blade row,

1. the distributed seconiary vorticity 2n the b'ade passage

x §.=8G . _& [(Sklm—ska“‘) v wymc, ] )
f: CdS\"; Q;N,Css’(a 2- J4

HIRAT:

2. the trailung filament vorticity

E - - gu(“l--xl)

L
’ M T Cos ,

i

3. the trailing shed vorticity

_;. Eskedz - g'\Cos «, [Ta“ % - Tan “‘] (30
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§§ At exit from the cascade, a secondary flow stream function can be defined
§% Vo = —-.ng
B¢ 3z
&
B2 we 2
% = 3y4a
yﬁ where v,, 18 the velocity across the blade passage in the yj direction and w is tne velocity along the span
%? of the blades in the z direction. The secondary flow stream function is given by
e 2
z Y Ly o E (38)
é; BU}‘- Bz’“ sSec

and the variatior of exit flow angle is

—_ Y

12

where q is the velocity in the direction of the mainstream flow,
shown good agreement between Hawthorne's theory and the measured variation of exit flow angle.

Experiments with linear cascades have

SR PR ey
e et et e

g
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An alternative approach to secondary flow theory has been given by Came and Marsh (25). By using

Kelvin's circulation theorem, expressions were derived for the distributed secondary and trailing
filament vorticities which agreed with Hawthorne's analysis. However, a new expression was obtained for

the trailing shed vorticity,

IL.

3

= é" [Si.n 2«1-51,\ 20{‘}— E, Cos X, - r.;lCos «, “_‘l‘x (39)

)
d=

;; E;h“f- 2(5$0h

TS R IR

Came and Marsh showed that with this new expression for €shed» the .trength of the trailing vortex sheet
was entirely consistent with the calculated value for the secondary —=locity, @, along the span of the
blades. The new theory also removed certain anomalies from secondary flow theory.

¢

o
k4

Figure 5 shows the va..ation of exit angle for a cascade at N.G.T.E, tested by Dr. S.L, Dixon. The
cascade date is oy = 0°, qy = -62.4% and §/s® = 0,60, Thke inlet boundary layer was 25 mm in thickn:ss
with a 1/7th power law profile. 1In order to avoid a discontinuity in the normal component of vorticity

i

¥

&

g at the edge of the boundary layer, the calculations have been based on a smoothed profile with the same
2 displacement thickness and zero slope at the edge of the boundary layer, The theoretical variation in
FS 3 the exit flow angle is seen to be in good agreement with the measured values.

& 3

N 1 -—

%5_ Using Dixon's data, Dunham (2€) has calculated the pitch averaged streamwise vorticity € for the
= downstream flow and this can be compared with the theoretical values:

(a) Hawthorne

e = Gsay, _ Cosx, (40)
B2y " an o, | — et it

ped - Cos x Cos

&é% (b) Came and Marsh

—g dus (41)

[ L TP

In Figure 6 the experimental results are seen to lie close to the curve predicted by equation (41). The
experiments suggest that the new expression ‘or .he trailing shed vorticity, equation (39), gives better
results for the vorticity which passes downstream to the next blade row.

The theory of secondary flow has been extended to compressible flow in cascades, ref. (27). The
analysis 1is based on applying Kelvin's circulation theorem for compressible flow to the flow through a

It has been shown that for a compressor cascade, a decelerating flow, the effect of a high inlet
For a turbine nozzle, the theory indicates

These results are in

cascade.
Mach number is to increase the distributed secondary vorticity.
that compressibility has little effect of the distributed secondary vorticity.

agreement with the early work of Loos (28) on compressible secondary flow.

s

. CONCLUS IONS
i Although the method of through-flow analysis was published by Wu (1) some 24 years ago, it is only
K within the past eleven years that digital computers have become sufficiently large and tast to allow “he
. §f method to be applied. This paper has reviewed the progress which has been made since 1965 with the
5; streamline curvature and matrix through-flow methods. It has be-n shown that although these two methods
- 5 were developed independently, they can be regarded as two diffcrent methods for solving the same governing
fg . equations for flow on the same mean stream surface., The continued use of both methods over a period of
VEC g eleven yoars indicates that neither has shown sufficient superiority to become the accepted method of
ik E solution for turbomachinery flows.
' &>
Pad R
;3? §§ With the two methods of through~flow analysis, it is now possible to estimate the performance of a
‘s &
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turbomachine operating on-design or off-design. However, the accuracy of the predictions is dependent

on the mathematical model. There 1emains a need for more accurate methods for estimating the losses, for
calculating the development of the wall boundary layer and for predicting the secondary flows. These are
all areas of current research and we may expect further improvements in through-flow analysis during the
next few years.

The develroment of time marching methods has been discussed in this paper. This technique 1s now
being applied to transonic cascade flows and also to flow in three-dimensional ducts. It is likely that
within the next year, solutions will be obtained for three-dimensional flow in linear and annular cascades.
However, this does not imply that a numerical solution can be obtained for three-dimensional flow 1in a
multi-stage turbomachine. For a multi-stage machine, the relative flow in each blade row 1s time
dependent and the numerical solution would require a very large computer and a time marching program
capable of calculating the unsteady flow, This may become technically feasible within the next few years,
but 1t is doubtful whether our understanding of the physical flow will be sufficient to support this
advance 1in computation techniques.
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COMMENTS

Comment by H.J.Cox, C.E.G.B., UK

I have a few comments on Dr Marsh’s paper.  First, the effect of curvature, We would agree that under normal
conditions, the curvature term is fairly small. This is largely due to the fact that the pressure gradient is dominated
by the tangential velocity and slope terms. If you extend the strcamline solution into duct regions, where the swirl
velocities are low and slopes not so high, you can run into convergence problems because curvature cffects provide
the dominant term. Secondly, the question of uniqueness of solution. The streamline curvature program always
solves this uniqueness problem because it has a given position of streamline at inlet and outlet, and from those two
positions it makes an assumption as to where the throat is. If one defines another way of joining the two points (at
inlet and outlet) one finds another solution. If one could leave the position of the throat free relative to the two
end points, then the streamline curvature program would have exactly the same non-uniqueness problem as the matrix
through flow programs.

Another point that I want to mention is the secondary flow preblem. In this context, when talking about large
diameter ratio turbines at high Mach numbers, we believe that concentrated secondary flows do not exist at root and
tip but appear to be merged into the overall losses almost just downstrcam of the blade. We find in a lot of traverses,
and Dr Denton has published similar data, that it is very difficuit to distinguish the existence of concentrated loss
cores, and it is also difficult on downstream traverses to sce the overturning. This effect possibly arises from the fact
that the static pressure gradient in the main flow is very large, while the corresponding static pressure gradient in the
wake is negligible, and there are enormous static pressure differences acting in the system whicii can produce strong
radial flows in the wake. Unless in time marching methods, or in any other method of calculating secondary flows,
onc doces not introduce the effect of this radial motion, one will not calculate correctly the secondary flows in high
Mach number situations. Concerning Gelder’s approach, 1 think that your remark is rather optimistic. We usc a
method based on Gelder’s approach and we always appear to get a breakdown at Mach number one, and conscquently
we restrict our Gelder technique to Mach numbers lower than one.

Finally, I have mentioned in my own paper at off designs one cannot use streamline curvature. The flows in an
off design situation have broken away from the walls. Russian data has demonstrated that immense curvatures and
slopes are produced and that one cannot rely on any method of computing performance.

Authors’ response:

First of all, I am rather pleased by what you said about curvature, because I feel that curvature is important.
In my paper, I was merely trying to argue from implication that the level of agreement which has been obtained by
the manufacturers who have only computing stations between the blade rows is so good that it might not be important
to go further. With regard to uniqueness, | agree entirely with you. For the secondary flows. the NGTE cascade was
turning the flow through 62°, and we still managed to obtain good agrecment with our calculation. What is then the
difference between this experiment and the tests which have been conducted by Dr Denton and have shown a large
transfer in the whole region? )

Finally, my remarks on Gelder’s work were based on calculations made by Gelder himself. One or two other
people have managed to get the calculation through Mach numbers greater than unity, but how much greater, | do
not know. Gelder went to a Mach number of about 1.2.

Comment by J.W.Railly, University of Birmingham, UK

There arc two small points that 1 want to take on. The first one concerns the legitimacy of equation 14 which
states the normality of the blade force with the relative velocity vector. 1 suggest that this is only permissibi. when
tne prior assumption is made of very closely pitched blades. In the general case of a large pitch of a blade, it can
be shown that the arithmetic mean velocity direction is different from the inclination of this blade surface. The
implication of equation 14 is that it is because of the influence of secondary flows which the computation show to
extend far in the free strcam, as in the experiment.

The second point is that, in regard to the anulus wall boundary layer solution, we must recognize that the non
zero axial blade force deficit is necessary to account for the stcady flow in a multistage machine of identical blades
as shown by Leroy Smith.

Authors’ response: .

For the first point, onc has to distinguish very clearly between the blade surface and the mean stream surface.
I pointed out that there is a problem in trying to define that surface. If we just assume for the moment that we can
do it, I will acccpt that this surface may differ significantly from the shape of the blade. What cquation 14 is
expressing is that the force vector must be normal to the stream surface and that it is required to make the flow
follow the surface. The mean surface will certainly differ from the blade surface for wide pitched blades. For
closed spaced blade, it will look just like the blade. Referring to the secondary flows, you have pointed out one of
the anomalies. If you calculate the sccondary velocity component using conventional secondary flow theories, you
will find that the secondary velocities extend out into the main stream. If one looks at the conventional expressions
derived for the trailing filament and trailing shed vorticity, they are both proportional to &, , the normal component
of vorticity and these only exist within the shear layer. There is thus a basic inconsistency in the conventional theory.
It is only when you go to this new theory using Kelvin’s theorcm that you resolve that difficulty. Finally, I agree
that the non zcro axial force deficit should be taken into account, It is just that the simplificd Stratford approach
gives good agreement between experiment and theories. The other methods which consider this deficit have all done

badly.
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Comment by H.H.Frithauf, TH Stuttgart, Germany

Regarding the definition of the mean stream surface, 1t ca1 be shown that when one integrates the three-
dgimensional equation for the compressible flow, with the assumptions that the local flow quantities deviation are
small with respect to the avera_.:d ones, and use infinitely thin three-dimensional blades, the mean blade surface
having the same geometry leads tu the same axisymmetric flow as defined by Lorenz, by integration.

Authors’ response:
This would be true for lightly loaded blades only.

Comment by U.Stark, TH Braunschweig, Germany

You gave three expressions for the distributed, static and filament vorticity, assuming constant AVR. What can
be the improvement on the outlet angle prediction that can be obtained, using the formulae that you have defined
for the AVR?

Authors’ response:
For the NGTE case that we treated, we got about 75% of the underturmng. Using the AVR correction (as
streamtube area) one gets a shght improvement, but not very much.
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THROUGH FLOW CALCULATIONS BASED ON MATRIX INVERSION:

LOSS PREDICTION
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Millar

Faculty of Engineering
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SUMMARY

The inviscid flow field in the meridional

(hub-to~-shroud) plane of an axial

compressor is solved by a finite-difference technique which employs matrix inversion.
The viscous flow effects are accounted for by using empirical data, and the performance
of the compressor is determined by an lnteractive solution.

effects of blade passage and end wall losses,
working fluid.
solution is described.

This paper describes the loss and deflection system which is used to mode’ the

are discussed.
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area

speed of sound

constant in diffusion factor relation
exponent in deviation-angle relation
chord length

specific heat at constant pressure

diffusion factor
equivalent diffusion factor

function
dimensional constant

incidence angle, angle between inlet
air direction and tangent to blade
mean camber line at leading edge,

By =%y

incidence angle of uncambered blade
section

incidence angle relative to the
tangent to the suction surface at

the leading edge

constant in diffusion factor relation

blade profile shape correction
factor

blade profile thickness correction
factor

Mach number

mass flow rate (kg/sec)
factor in deviation angle relation
stagnation pressure

static pressure

percent blade height
leading edge radius
radius (from axis of rotation)

gas constant

suction surface radius of curvature

blade spacing

entropy

temperature

blade maximum thickness

air absolute velocity
maximum suction surface velocity

veloclity relative to rotating
coordinate system
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and of blade passage deflection of the
The manner in which this system interacts with the matrix inviscid
The results of the test cases which were supplied for the meeting

coordinate along axis
angle of attack, angle between
inlet air direction and blade

chord, B1 - ¥

air angle, angle between air
velocity and axial direction

air turning angle, Bl - 82

blade chord angle, angle between
the blade chord and axial direction
ratic of the specific heats

(Cp/Cv)

deviation angle, angle between
outlet air direction and tangent

to blade mean camber line at the

trailing edge, 82 - <,

boundary layer displacement
thickness

deviation angle of uncambered
blade section

wake momentum defect thickness
strength of Prandtl-Meyer expansion
wave

blade angle, angle between tangent
to blade mean camber line and the
axial direction

Prandtl-Meyer angle

dimensionless radius, R/R_ .,
tip
density

solidity (c/s)

blade camber angle, difference
between the blade angles at the
leading and trailing edges, Ki=K,

stream function

total pressure loss coefficient,
Po - P
2 1

P - P
1 1
rotational speed
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1. INTRODUCTION

The techniques for design or analysis of the flow in axial flow turbomachinery have
been highly developed over the past ten years. With large high speed computers it is
rossible to calculate in some detail the flow and performance of a mathematical model of
an axial flow compressor which has speed lines and velocity profiles quite similar to an
actual compressor. This is done by using an inviscid flow calculation technique, together
with an empirical stagnation pressure loss and flow deflection model. In particular, if
the loss and deflection model is made "adjustable", it can be individually tuned for each
compressor so as to reproduce that compressor's performance with considerable fidelity.
Whether or not a general madel can be produced which will deal with a varizty of compressor
types effectively over a wide range of off-design conditions, will perhaps bLe discovered
as a result of the test cases being run for this symposium. The authors of this paper
attempted unsuctessfully for some years to find such a general loss and deviation model,

and reluctantly concluded *that the search was probably a vain one. We hope that we were
wrong to so conclude.

2. INVISCID FLOW FIELD COMPUTATION

The matrix through-flow method, which is
used for the inviscid flow calculation in this
model, 1as been described in detail elsewhere
(1, 2), so only an outline is given here. FIGURE (. MATRIX GRID AND COORDINATE SYSTEM

~he matrix technique involves covering

toe region of interest with a fixed irregular Smw7
grid as shown in Figure (1), and writing a S Bh
finite difference approximation to the A ]
princival equation (equation (1)) at every Usstreem V | Downstreom
interior grid point. BW“";\ ,_-,L—J‘ //’e““"'
S SR spinees
9 ///, B i
3_% + 2_% = q(x,y,%¥,%¥) (1) 1—;(’/:Ehjaj i
3x 3y j’/u/ ZR &
[ otor
This will result in one algebraic i Z i
equation for every interior grid point ain "Zﬂm
terms of the stream function at that and
neighboring points. This syster of :
equations can be expressed in matrix form N x
as: &

[(al [yl

[

5] (2)

where [A] is the coefficient matrix derived from replacing the differential operator
V2(q), [¢] 1s the vector of unknown stream function values, and [Q] is the vector of the
quantities a(x,y) from equation (1) and the boundary values.

Since the right hand side of equation (2) is a function of § and 1ts derivatives, the
system of equations is nonlinear and must be solved iteratively, that 1is, by first
estimating {Yy), computing (QJ, and then repeatedly solving equation (2) for ([y]. The
value for (Q] is improved each i:eration using the previous value of [y].

Since [A) is a function of the grid shape only, 1t need be computed and inverted only
once. This is done by factoring [A], which is a square banded matrix, into triangular
matrices [L] and {U) and saving these matrices on tape or disc. They can then be used
for successive iterations and different boundary conditions. This feature saves computer
time when successive calculations with different flow rates or conditions must be made
with a fixed machine geometry, such as in the calculation of a compressor map.

This method offers fast convergence, second or third order accuracy, and stability at
high flnw rates and machine speeds.

The advantages and disadvantages of thas technique compared to the streamline curvature
me:hod cre discussed in (3), but the authors have felt for some time that 1s is the
cascade model, which is described in the next section, which deserves the most attention.

In fact, as will be pointed out later, the same cascade model 1s used in conjunction with
both inviscid-flow computation technigues.

3. THE CASCADE MODEL

The cascade model must meet two requirements. When the main program is operating in
the "design"mode, the model must determine the cascade blade inlet and outlet angles
which wi1ll produce the minimum los:, and will provide the desired outlet angle, and it*
must determine this mininum l.oz:z. LThat is, it must find the minimum-loss incidence, i ,
and the corresponding deviation, 6 , for the velocity diagrams, type cf blading, and
spanwise location of the blade section concerned. When the main program is operating in
the "analysis" or "off~design" mode, the cascade model must determine the i1ncidence onto
the blading, as already specified, and the corresponding loss and deviation. Cascade
terminology is shown in Figure 2.

v
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Various loss-and-deviation correlations were

previously examined and tested, and the most Figure 2
complete and well-proven at that time {(1972) were c T !
chosen to build into the cascade model. 1In ascade Terminology

selecting these correlations, we felt that it
was important that the model have the following
capabilities and characteristios. q

(a) It must be able to give data for the
standard blade sections, 65-series,
C-series, and D.C.A. (double circular
arc), for which reasonably extensive
low-speed data existed.

(b) It should be compatible with the
inviscid-flow model, using as input the o &
velocities, etc., which that model S
generated, and providing as output the
appropriate pressure loss and flow
deflection or outlet angle.

(c) It should, if possible, compensate for
Reynolds number and Mach number
variation, including shock losses at y
supersonic inlet speeds. %\

(d) It should allow for non-uniform axial velocaty through the cascade (AVR - axial
velocity ratio).

(e) It should include secondary losses, and effects of tip clearance or tip leakage
on losses, at least.

In searching for correlations which would meet these criteria, it soon became apparent
that the bulk ~f available information was based on low Mach number, two-dimensional
cascade tests, and that limited data was available on the effects of Mach and Reynolds
number, and practically none on the effect of axial velocity ratio, except in its
implacit effect on measurements made in full scale compressors. Consegquently, the cascade
model described here is still relatively crude, and reflects the need for more experimental
data, especially at high Mach numbers. ‘

The cascade model 1s described briefly an the followinag section. Further details can
be found 1in reference (4).

3.1 The Desjign Point Correlations

The input required for the design point correlations are the cascade solidity,
blade section and thiickness, and the flow angles determined by the inviscid-flow analysis.

3.1.1 Minimum Loss Incidence

The correlation given in NASA SP36(5) is used to find the minimum-loss
incidence, 1+ , for subsonic entry flows. This gives the incidence for low speed 2-D
cascades as:

* *
L = KsthLo - né (3) where: i, = i °1’°)’
*
n = n(ello)l

Ksh,xtare shape and thickness factors
*
8 and ¢ are flw inlet angle & solidity

For sonic or supersonic entry, the minimum-loss incidence is assumed to
correspond to the inlet velocity being tangent to the suction surface at the blade inlet
(assuming a sharp leading edge blade).

t t

YL -1 4. msin ¢, | lom
leg T tan (¢ S 2) tan (2 c).

For inlet Mach numbers between 0.5 and 1, a sine function is used to

interpolate between i  and iss.

3.1.2 Deviation at Minimum-Loss Incidence

Similar to design incidence, NASA SP36(5), presents correlations for low
speed, two-dimensional deviation angle:

* . mé ; = *
§ = xshxtso + ob P (4) where: 60 = 60(81,0)

]
and m and b are £(8,)
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Sy A correction, suggestad by Moffatt (6), is applied for inlet Mach numbers
o higher than the critical Mach number.
Fe
‘E 6* dt L]
M B 8(Ml - Ml )

TR

ralcve of the exit Mach number from

i

i

When the inlet flow %s supersonic, the

the leading edge shock is used for Ml

3.1.3 Total Pressure Loss Coefficient at Design

The profile loss is determined from Monsarrat's curves (7) of wake
momentum thickness as a function of diffusion factor. He gives different functions for

R

E§' rotors and stators as shown in Figure (3)
i
;%:‘ ‘ Figure 3a Figure 3b
’1< ' Monsarrat Des in Loss for Rotors Monsarrat Design Loss for Staters

3 . 95
;'.; 1 *% span 008 % span 3, /
-y 007 007
56;(_

5 v

X 006 ol 006 10, 60
At (od

. Q05 ® 005

: gl o

X i 3 i(‘t} 004 37 004

0 v

3 Qﬂ‘ 003 003

= 002

.§ 002

£

4 oot 20,70 ool

3 30-60% Length o

= 02 03 04 05 06 o7 02 03 04 o5 06 [oX 4
=
§§ D FACTOR D FACTOR

I

This correlation is used for two reasons; first, he shows a variation in

loss with blade height where the minimum loss occurs at mid-span and increases towards

the root and tip of the blade, which seems more realistic than that of Reference (5).

second, he gives a different set of curves for the stators which yield larger values of
Experience has shown that using the same loss curves for rotors and stators gives

9, .
(c) stator losses whaich are too small.

s i—

BRAEES

i)

The loss 1s given by curves of the type,

—h *
t *
i w cosB, _ £,(D, R) for rotors, (5)
- 20
H
] *
a4 = fz(D . R) for stators,
i
H —t 1 ] ] )
where: w = (P ~P ) i (P - P ’
| ol 02 01 1
H 8* *
' V_ cos v
1 *
and: b = 1- Mg 4 Rc0sb (tang® - 2 M2 cang™]
V_ cosB. o(R,+R,) 1 R, V 1"
. m 2 1 72 1 m
] 1 1
! . . :
The design loss is corrected for Mach number effects using the relation
given in Reference (6),
—_ —_— 2 '
w, = W { (M) - M, ) +1.0) (6)
c
where M1 is the critical Mach number for the blade section and may be calculated from the
value of vn % as described in Reference (6).
i "
vl

3.2 Off-Design Correlations

For the off-design calculation the input quantities are the cascade geometry and
the flow conditions at inlet to the cascade. The cascade model provides the outlet flow

angle and the outlet stagnation prescure.

g i i+

Lo e R okt 1 ¢« -
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3.2.1 oOff-Design Deviation

A correlation given by Swan (8) was chosen for the variation of deviation
angle with off-desion aincidence angle. This relates che change in deviation to the change
in the equavalent diffusion factor. The equivalent diffusion factor, D , develcped by
Lieblien (9), is similar to the D* given 1n 3.1.3. €q

v *
g T o cosB,y (.12 4 K, (i-i y2-43 L 061 k1,
! v cosf .,
m T
2
2 \Y
where: k = °°5 By [tanB, - E% i) tang,l ,
o Ry Vn
1

and K, is a constant which depends on the blade type.

b
Swan's equation for off-design deviation, shown in Figure (4) is given by:
§ =6 + {6.4 - 9.45(M, - 0.6)} * 7
= ¢ + .4 - 9. - 0. D - D .
1 ( eq eq) (7)
Figure 4 Figure 5
6-6 Swa Off-Oesign Loss Variation
(deg) Swan Off-Design Deviation Voriation A(g)' HADeg® M)
6 Me065 ©
n*20
4 oes 10
Me108
2 / 108 R:]
&
[ oS 6
&L
A
oo
q
-2 # 85
-4 2
065
-6 [
-10 -a8 [ 05 0 10 65 o oS 10
Deq-Deq’ A Deg = Deq-Deq’

3.2.2 o0ff-Design Loss

The off-design loss is the sum of profile and shock loss. The profile
loss 1s assumed to vary with equivalent diffusion factor in a manner suggested by Swan (8),
but moaified to reduce the sensitivity of the loss to variations in D . The correlation
shown in Figure (5), 1s given by: eqd
*

i 8 _ _ * 0n '
(;) - c) = f{(Deq Deq ), Ml} ’ (8)
where: (%) is related to w by. w = 20 cosBl)z (g)
c0582 c0582 ¢’

We have found n>2 to be a
represent'all compressors
(5) for M, = 1.08.

The exponent n was originally 2 in Swan's work.
better value for most compressors, but even this value does not

well. The effect of changing the exponent n is shown in Figure

The shock 1oss is calculated as the loss +throut a normal shock standing
across the throat of the blade, similar to the technique of Ref rerce (10). The inlet
Mach number to the shock as taken as the average of the upstream Mach number, ard the Mach
numbey following a Prandtl-Mevex expansion over the suction surface. This expans’on is
based on the turning over that surface, and for *he frequently used J~blade sectioss of
superscnic compressors, the radius of curvature of that surface must be specified. For a
double 'c.ircular-arc blade, the radius can be calculated from the blaue geometry.

The Prandtl-Meyer expansion is calculated from the in'et Prandtl-Meyer
angle y, based on M!, and the turning angle 6, calculated as shown ir the sketch on the

1
next page.
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3.3 Reynolds Number Effects

It is essential to account for the increased
loss which occurs with small Reynolds numbers. Reference
(5), Figures (151) and (152) were used to guide thig

fcrmulation. It is apparent from these curves that it is
currently impossible to establish any one value of
limiting Reynolds number which will hold for all blade
shapes. (The term limiting Reynolds number refers to the
value at which a large rise in loss is obtained.)

However, the results of tests of blade element performance L——S—'—’I

and overall performance indicate that there is no *
significant variation in loss for Reynolds numbers

greater than 2.5 x 105. Since the loss correlations are

S Sin B, -
razed on data at Reynold numbers greater thar this value, "Wﬂ{ﬁjégfﬁ]diw)
no Reynolds number effects are believed to exist for the ¢ .
data.

The correction to the total pressure loss coefficient assumes the following
variation,

e sk s A I i i = e S W s S

JO——e— L

ey [Redatum]x , (9)
Re
where Redatum is the Reynolds number at which the loss begins to be affected (ie. 2.5 x 105)
and x 1s

the exponent which describes the variation in loss (typically 0.2)

The blade chord Reynolds namber, Re, is given by:

Re = 1 , (10)
where the viscosity is given by Sutherlands re<'ation,

~8
\ w o o= (2.22 x 10 )goYT (11)
180 )
1.0 + —
¢ T

Both the datum and exponent are input guantities.

[T —,

3.4 Blade Passage Choking

After encountering problems in the off-design prediction of choked flow in
E transonic compressors, using the model described above, we decided to attempt to model
% the choking of the flow within the blade passage. Specifically, the amount of flow
which can be passed through any section of a blade row depends primarily on the throat
area of that row, and the upstream conditions. Since, in a quasi-three-~dimensional
analysis, both stagnation flow conditions and throat area are known, 1t is possible to
calculate the maximum flow rate for each section.

As the actual flow approaches and ultimately reaches the chnked flow value for
any stream tube, there will be two effects; first, there will be a total-pressure-loss
associated with the choking phenomena, and second, the mass flow must be redistributed.

By accounting for these effects, it should be possible to better predict the near vertical
portion of the compressor chavacteristic.

JRPUUURPUIE JPN SRS

3.4.1 Choked Flow Calculation

The computation of the required throat area and of the maximum permissible
mass flow can be made for each section by assuming one-~dimensional isentropic flow

e S & s &

. Thus,
we have,
A . s ccse1 )
*
A d
cosB
or: (g) = . 1 , (12)
! isen e
A
2 Y+l
, where: A* = 1 (1+1 M )]Y -1 (13)
'y+1 2
A Ml

1L
!

o
i

and 4 is the throat width, s the biade spacing and B, the inlet flow angle. Equations
{12) and (13) give the throat area required for the givea inlet conditions.

RPN
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The maximum mass flow is given by:

* 2 L P!
= 2 (_2,v-1 el
(pV) T e (14)
—°
gO

3.4.2 Geometric Throat Width

The throat width may be calculated from the cascade geometry, required
for the cascade model, if the shape of the mean camber line is assumed to be a circular
arc, and the throat is assumed to occur at the leading edge as shown in the sketch below.

The radius ot curvature of the mean
camber line, Rc, is given by:

= =S
R, = 2sing * s

2

The distance, y, from the chord line to the mean
camber line is a function of the distance x,

1
_ 2 _c 2.2 ~ =
y = [Rc (x 2) ] Rccos% £(x). (16)

The distance between the chord lines, dc, is given
by:

dc = S5 COS Y (17)
and the position of the throat:

X, = s sin y + ¢

t (18)

l.e.
If the thickness distribution for the particular blade is given by:

(—E—ﬁ = £{a},

then the throat width can be computed from,

- - h - = .
dt - dc h 2¢c fl.e. '
or 1
dt = dc - f(xt) -3 fl(xt) S e. (19)
where f(x) is given by Equation (16),

and the thickness function, fl, must be given for double-circular-arc, 65-Series, and
C-Series blades.

3.4.3 Implementation

Equations (12) to (19) permit thej?alculation of the maximum permissible
flow rate, the throat area required to pass that /low, and the geometric (actual) throat
area. As mentioned earlier, these parameters must be monito~ec, and if a choked flow
condition is approached, action must be taken. The details o :this action depend on the
computation method, and at this point in time, the blade pasrijc choking model has been
implemented on our streamline curvature program only. The shifting of mass flow by
-imiting the flow through choked streamtubes is handled verv nicely by the streamline
approach, and it is anticipated that the matrix approach

could model the same behavior.

The increase in loss due to choking is
relatively arbitrary as we know of no available data in
this area. However, it seems reasonable that the loss
would gradually increase in some fashion as shown in the
sketch to the right.

Typical values for n and x are 4 and 0.05
respectively. It has been our experience that this
approach is more successful in predicting the steep portion
of the characteristic than by increasing the negative
incidence profile loss. (d/sdisen  (d/sdiex)

(d/s) georn.
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2.5 Distribution of Loss and Deflection Through the Blade Row

The cascade model was originally developed for the Streamline Curvature Program
(11), and was used essentially unchanged for the Matrix Program. However, the former did
not have axial stations within the blade row, whereas the latter does, and it {8 necessary
to apportion the loss and turning tc¢ each internal station. Thse firct calculations
assumed a linear distribution between inlet and outlet of the blade row. However, this
distribution has only the advantage of simplicity, and it would be worth investigating
the effect of other distributions. The turning should be dicstributed on the assumption
that the flow follows the camber line of the blade. The loss, on the other hand, probably
should be distributed downstream of the olade row which causes it, since it will be caused
by the mixing of the wake with the mainstream flow, taking place between the blade row, or
even in the subsequent blade row.

Unfortunately, time has not permitted us to study the effect of more rational
distributions of turning and loss.

3.6 Cascade Model Tuning

Various features of this casczde model lend themselves to adjustment or tuning
from compressor to compressor. The exponent, n, on the off-design loss correlation,
section 3.2.2, is the most effective in adjusting the slope of the speed liges. Currently,
ve input a value of n for i>i* which is usually different from that for i<i , so that an
asymmetric loss-incidence curve can be simulated.

The effect of Mach number on deviation can be adjusted by changing the critical
Mach number, or the factor 8. We have not tried this as yet, but this would have a
significant effect on the hi h speed lines, while not affecting the low ones of a
compressor map.

4. END-WALL BOUNDARY-LAYER INTERACTION

The calculation of the end~wall boundary-layers is essential to an accurate prediction
of axial compressor performance. For internal flow situations which may be represented
by a two-layer model, (that is, the inviscid core and the end-wall boundary-layers) both
the individual parts and their interaction must be considered since chenges in either
layer will, in most cases, significantly alter the othexr layer.

The blockage due to the end-wall boundary-layers, i.e., the meridional mass dzfect,
(p UR6*) must be allowed to influence the inviscid-flow computation. One manner in which
this 1s commonly accomplished is to reaefine the end-walls using the calculated
displacement thickness, that is, new fictitious physical boundaries are employed fonr
another inviscid-flow computation. Continued iteration of the two sclutlons will .hen
yield the complete solution.

The inviscid-flow computation technique solves a stream-function eguation, in wnl..u
the values of the stream-function are specified on the boundaries, It has been shown (12)
that great benefit with respect to computation time is derived by adopting an ~Alternative
method, to that described above, to account for the boundary-layer blockage. This
technique essentially places a series of equivalent sources along the end-walls whose
strength is dependent on the boundary-layer mass defect, that is,

- 4 5"
s = a;[pé(JR m] .

The new fluid emitted from the sourxces would fill a region adjacent to the body of
thickness 6* . Since the stream function, Y, is a mass flow function, we wish tc alter
the boundar? values by an amount equal to the local koundary-layer mass defect, pGURG; '
to correctly influence the inviscid flow.

0f course, the new boundary values, due to the end-wall blockages, will yield a new
estimate of the inviscid flow field. "he stagnation streamlines will no longer follow
the physical boundaries, but will be displaced by the amount ¢* . Since the entire
inviscid flow field is known, the flow properties along the stagnation streamline can be
found by interpolation. These edge conditions may be used to counpute a new estimate of
the end-wall boundary layers, and the iterative procedurec continued until an acceptably
small change occurs between iterations.

In many 2nstances, this iterative procedure converges rapidly and is essentially
self-damping; that is, increased blockage accelerates the inviscid core flow, which in
turn decreases the blockage on the next pasc. However, if cne (or both) of the end-wall
boundary-layexrs separates, the predicted blockage may grow extremely large and cause such
a large acceleration as to cause the sepaxation to disappear, only to reappear next
iteration.

The boundary-layer calculation technigue which i. currently used in our model is that
suggested by Stratford (13), although more recent work by one of the authors has indicated
that the three-dimensional boundary-layer effects may be significant.
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S. EXTENSIONS TO THE TECHNIQUE

It has been stated repeatedly that the approach described here may be most readily
improved by substituting superinr cascade correlations. The extensions discussed in this
section should ke considered in that context.

since the leading and tralling edges of the blades when viewed in the meridicnel plane
will not generally be radial lines, it becomes desirable for the grid lines of the
inviscid-flow technique to be aligned with these edges. This would save the necessity of
interpolation at the leading and trailing edges, although at the expense of some additional
complexity in the finite-difference method. Of course, i1f one i3 also concerned with
centrifugal machinery, this extension is necessary since the leading and trailing edges
are generally perpendicular to each other.

The end-wall boundary-layer computation currently used is quite simple. Although a
sophisticated three-dimensional boundary-layer calculation is probably unrealistic at this
time, at least for performance prediction of multi-stage compressors, it is possibly
worthwhile to implement an improved end-wall boundary-layer computation technique which
tries to account for known three-dimensional phenomena. Even a crude approach, such as
using an axisymmetric model of the type developed by one of the authors (14) could prove
of value.

6. DISCUSSION OF RESULTS

The cascade model described in this paper was used in conjunctionr with both the matrix
and streamline curvature techniques to predict the performance of both the single stage,
and the three stage, transonic compresscrs supplied for the 47th PEP Meeting. These
compressors were denoted as test case numbers thres and four respectively.

The streamline .urvature program was run, as a check on the matrix program, and also
since the blade passage choking model is not operational in the latter. As mentioned
earlier, since the cascade model has a dominating influence, we did not expect, and did
not see, any significant difference in the overall performance prediction of the two

. prcgrams. The results for the two compressors are shown in Pigures (6) and (7).
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Figure (6) presents the predicted pressure ratio and efficiency, for the single stage
compressor, for three constant speed lines. Neither program will predict surge as such,
but by examining the output for high diffusion factors (ie. D,,>2.2), one may judge
(approximately) the probable area of potential surge. The prediction of choked flow, as
shown by the dashed line in Figure (6), was achiaved using the blade passace choking model.
The matrix program was used up to the maximum mass flow rate for which convergence could
be obtained, at which time the streamline curvature program was used. These choked flow
points are shown as flagged.

The matrix program permits the use of calculation stations within the blade row passage,
and thus the effect of blade blockage may be taken into consideration, This was done
initially, but the high relative inlet velocities were increased within the passage to
Mach numbers greater than unity. When this occurs, the matrix program becomes unstable,
and one cannot obtain convergence. It was necessary to ignore the effect of blade blockage
on the internal stations to obtain the results which have been presented. This is a serious
assumption if one is interested in the velocities within the blade passage. It was possible
to obtain a solution, including blade blockage for a few points, and these results are
presented in the detailed test results available at this conference.

Another effect, which has been axamined, is the variation of the exponent ured in the
calculation of the off-design total pressure loss coefficlent. . Yhis has beer described
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earlier, and is referred to in the Figures as the Swan exponent. Since dacreasing the
exponent produces more severe losses, the effect on ths characteristics is predictable,.
For example by decreasing the exponent from 3 to 2, the efficiency of the single =tage
compressor at 14.3 kg/s and B5% speed dropped from 89% to 84%. 1In addition the range
(predicted) is decreased. The effect is more noticeable in a multi-stage compressor, as
shown in Figure (7).

Figure (7) shows one 7peed line which wase predicted for the three stage compressor
(test case #4). Similar to test case three, both programs were used to predict the
compressor performance, and as before, it was necessary to neglect the effect of blade
blockage. The effect of the loss exponent is clearly seen here, with the value of 2
providing the more rcalistic appearing characteristic.

This compressor was extremely difficult to model, and the authors were simply not
able to obtain convergence at the design speed, in spite of repeated efforts. This lack
of success was true for both the streamline curvature, and matrix programs. The reason
for this, is not readily apparent, and may be due to a data error which was not picked
up in the short time available. When the output from converged cases is examined, the
problem is seen to be in the hub region, originating with the first blade row.

The large velocity gradient at the exit of the first rotor, produces a very low
velocity at the hub relative to the inlet velocity, and thus a high diffusion factor
(Dgg>2.2). This phenomena occurred regardless of the inlet velocity, that is, it was
a function of the design (it seems} and not of an off-design problem. The hub contour
at the inlet was altered to produce a higher inlet velocity at the hub, but the effect
was not significant. This type of inviscid flow model, unfortunately makes the original
problem worst, in that the low inleat velocity into the next vow produces a large off-design
loss which produces a low exit velocity and so on.

Blockage factors were used throughout these analyses, in place of boundary-layer
calculation. The extremely large diffusion across the first rotor would certainly have
caused problems for most boundary-layer calculation techniques, since it would probably
cause separation of the end-wall boundary-layer.

Another phenomena was examined briefly on both compressors using the matrix program.
Ordinarily, the total pressure loss for a blade row is distributed linearly through the
blade row. It was hypothesized earlier that a more realistic approach wouldu be to dump
the loss at the exit of the blade row. The appropriate change was made - : the results
are inconclusive at this time. The velocity distributions within the blade row are
affected slightly, but there is no effect on the overall performance.

7. CONCLUSIOMS

The authors have presented a model for predicting the off-design performance of axial
compressors, and the results for a single stage, and three stage transonic axial
compressor. The model is composed of an inviscid-flow computation technique (matrix
through-flow), and a cascade loss and deviation model. At this time, the cascade model
appears to be the area still requiring the most attention, although transonic turbomachines
point up weaknesses in the inviscid-flow model as well.

We feel that the following areas are worthy of further study:

- the effects of Mach number, axial velocity ratio, and incidence at off-design
conditions

- the development of a practical three-dimensional end-wall boundary-layer technique

- a model %o incorporate inter-streamline shear and energy transfer effects, by
means of effective turbulent mixing parameters

- a means of coping with transonic relative velocities within a blade passage, and
integration of this technique with a shock loss model and a blade passage choking
model

- further work to more accurately identify the quantitative increase in loss as
blade passage choking occurs.
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COMMENTS

Comment by K.Papailiou, E.C.L., France

We have used Millar’s and Davis’ program for several compressors. We have found out th«t convergence is much
easier when applying a weight factor on the losses and not only on the stream function. We alsc found that going
up in Mach number inside the blading ani accounting for profile blockage, we get into trouble and the program
diverges. For secondary flows, when their effects are taken into account, there 1s an inconsistency in the radial
equilibrium, when going inside the boundary layer region, as pointed by Horlock.

Comment by T.McKain, Detroit Diesel Allison, USA

We have based our correlation on the NASA SP36 as most industries do. What we have found is that in the
early stages of a multistage machine, the deviation rules a.e close to t-uth, but, in the last stage," due to the combined
effects of secondary flows and boundary layers, the prediction starts to deviate quite a lot.
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THROUGHF-I'LOW CALCULATIONS: THEORY
AND PRACTICE IN TURBOMACHINERY DESIGN
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and
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SUMMAKY:

The through-flow calculation is an integral and vital element of any effective
turbomachinery design and development process. This paper reviews the through-flow
calculation from hoth a theoretical and an applications viewpoint. The assumptions
involved with typical formulation of the basic equations and the solution techniques
employed in such areas as boundary condition specificatior, numerical evaluation of
derivatives and numerical stability are presented. Experimental verification of the
theory, using turbomachinery applications, is presented to demonstrate the accuracy
of the calculation. Fainally, the normal compressor design and development cycle is
reviewed to stress the importance of the through-flow calculation in this process.
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LIST OF SYMBOLS
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£§ : Em Meridional acceleration vector (Eg. 9)
%ﬁ % B Streamsheet thickness ratio
ii % Df Diffusion factor
fd Damping factor
H Total enthalpy
I Rothalpy (H-wrVy)
: L Distance along streamline
f M, Mach number
‘:i N Distance along calculating station
% P Pressure
: R.F. Thermocouple recovery factor

Streamline radius of curvature

: r,z,8 Cylindrical coordinates
g S Entropy
T Temperature
v Velocity (inertial frame)
N W Velocity (blade relative frame)
t - a Angle of attack
] %
i n Adiabatic efficiency
1 ry =
> B : P Density
f ,é 2 4 Streamline angle
i 1§ Z v Stream function

w Blade rotational speed
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Subscripts

c calculating station
m meridional

r radial

t stagnation

&4 tangential

THEORY

It is necessary in the analysis of flow through a turbomachine to introuduce certain
simplifying assumptions concerning the unsteady three-dimensional viscous flow character-
istic of such machines in order to reduce the original problem to a tractable mathematical
model. Once accomplished, it is often desirable to further reduce the level of sophisti-
cation of the model to obtain one which is practical and which may be solved relatively
efficiently with available computing techniques. The latter consideration is of particular
importance when such calculations are intended to form the basis of a highly iterative
design system.

An assumption pertaining to both the former and latter considerations is the assumption
of weak three-dimensional flcw which allows analysis of the flow field by consideration
of separate 2-D flows in. intersecting surfaces which are only partially coupled. The
theory of flow through a tu.bomachine under the above approximation with varying degrees
of coupling between the surfaces constitutes what has come to be known as through flow
theory, although the term is usually meant to apply more specifically to flow in the hub-~
to-shroud surface. The theory of the through flow calculation is reviewed in the follow=

ing development.
Neglecting viscosity, the vector momentum equation can be written in the inertial

reference system as

—D-E = - ZR
Dt p (1)

The flow field will be assumed steady relative to the blade row in question (i.e.,
there is no unsteady interaction between moving and stationary blade rows) so that the
momentum equation can be written in the blade fixed system as

(@ W+ 20 x W - wf = - Z% (2)
Using the relationship

v,

TYS = V(H ~ ) - v
3 p P (3)

equation (2) may be written in the form

- x(V x W) + 2uxW = «VI + TVg

(4)
where I is a quantity (sometimes called rothalpy) defined by
I = H - erB
(5)
and w = 0 for a fixed blade row.
Taking the component of Eq. (4) along a direction N tangent to an arbitrary curved
line “C" (Figure 1) gives for the equilibrium equation in this direction
2 2
L awy _ drI _ o 88 _ 19w
23N |C an |c dN |c 7 7an |e
2
dwr | ¥s ) dr
v dL IW T + 2uWe anl ¢ (6)
awz dz d(rWg) as
*delw &l ¥ w*z“’r"r)ﬁc-

Equation (6) will be referred to as the stream derivative form of the equilibrium
equation. The equation is in a form suitable for numerical computation without further
reduction. It is notable that slope and curvature expressions do not appear explicitly
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in this form, but are contained implicitly in the stream derivative terms. These terms
are readily expanded to show the equivalence of the stream derivative form to the more
familiar streamline curvature forms. For example

dWr = d(Wm siné)
WS v wmﬂ'H v (7)
' 2
= cos¢ gg— + sin¢ wWm ggg "
m
and 2 4
daw Wm Wm
w EEE v =.—sin ﬁ;_ + cosd¢ Wm aﬁ_, ¥ (8)

which represent the radial and axial components, respectively, of the meridional accel-
eration vector

2
- Wm -~ dWm »
= =— N + Wm —— Lm
am Ry o am | v (9)
so that the sum
awr dr r W dawz dz
dL Yy dN| C daL Y dN | C (10)

appearing in Eg. (6) represents the component of the meridional acceleration, a along
curve "C".

Since all derivatives appearing in the stream derivative form of the equilibrium
equation lie along "C" or along streamlines passing through "C", this leads naturally
to the consideration of flow within the stream surface so defined. To complete the
momentum specification within this surface, an additional equilibrium equation is
required. A particularly simple and useful form of the needed eguation is obtained by
considering equilibrium along the stream direction. The desired equation can be obtained
by taking the component of Egq. (4) along the stream direction giving

ﬂ = T-d—§-
daL | ¢ aL | ¢ (11)

For effectively adiabatic flow (heat transfer + viscous dissipation = 0)

E = 0

dL | ¢ (12)
so that from Eq. (11)

ds -
ar v (13)

In the practical application of the through~-flow calculations, Eq. (13) is usually
considered to be accurate in the blade-free regions. It is usally desirable and necessary
in the bladed regions to introduce dissipative or "loss" mechanisms so that

ds

£, = fw (14)

which may be integrated to give

AS |y = F(L) (1%)

where F(L) is specified by the designer from a knowledge of the blade element loss
characteristics and is taken as zero in the blade-free space. Eg. (15) is then used
instead of Eq. (13) to express the equilibrium condition along the streamline direction.
The fact that this substitution is inconsistent with the inviscid assumption used in the
development of the momentum equation has been pointed out by Horlock!, who suggested that
a noncongervative body force acting opposite to the stream direction be added to the
momentum equation to produce the specified entropy variation, 1If curve "C" is not normal
to the stream direction, then this force has a component which must be included in the
equilibrium equation along "C". It is obvious that if this term is neglected in the "C"
momentum equation, then the curve should be chosen as nearly normal to the stream direc-
tion as possible to reduce the resulting error. In this development the dissipative
force component is neglected in the equilibrium equation along "C" but its major effect
is retained by inclusion in the streamwise component equation (Eg. (15)).



A final assumption is needed in order to evaluate the tangential velocity terms in
the stream derivative equation. The three models most commonly used for this purpose
are reviewed by Horlock and Marsh?. The models consist of replacing the actual cascade
with a cascade containing an infinite number of blades, simulating the blade action by
an axisymmetric flow with distributed body forces, and by considering the flow on a
suitably defined "mean stream surface". Each of the models is shown to lead to only a
first order approximation to the circumnferentially averaged flow within the actual cas-
cade, accurate only for low blade loading. 'The overall changes across the blade row,
however, were found to be properly represented.” With the proper choice of the mean
stream surface the three models yield identical results for the equilibrium equation,
with the last term of Eq. (6) interpreted as the equivalent blade or body force.

If a particular stream surface is known a priori, the tangential velocity is unique-
ly determined by the axial and radial velocitIes so that equations (6), (15), (12), and
the continuity equation {(which may allow for stream tube convergence) may be used (along
with the boundary conditions and state equation) to solve exactly for all pertinent flow
and thermodynamic variables within the stream surface. Wu’ has proposed a fully 3~D
scheme whereby a number of such surfaces are solved from hub to tip and from blade to
blade with the solutions iteratively coupled through the stream surface shapes. Such
solutions have been achieved for duct flows® but are time consuming and presently con-
sidered impractical to serve as the basic through-flow calculation without further
approximation. Some reasonable reductions of Wu's more general method have recently been
advanceds’®,

Normally, a single stream sheet is chosen to be as representative as possible of the
mean flow properties. Within the blade row the shape of the mean stream surface is often
taken as the mean camber surface of blade passage. A more laborious approach consists
of defining the mean stream surface from the middle streamlines of a sequence of blade to
blade solutions along the blade span. In view of the approximation already made in
choosing a single hub-to-shroud stream surface, the additional calculations required for
this approach hardly seem justified.

For the unbladed portion of the flow path, the flow is considered periodic but
generally cannot be considered axisymmetric. The total angular momentum f£lux, however,
must remain constant through the annulus even though changes in angular momentum along
the streamlines may occur locally. The "mean ziream surface" should thus be selected
ahead and behind the blade row so that the argular momentum is conserved along the stream-
lines in that surface. This choice of the stream surface is tantamount to assuming
axisymmetric flow from the outset so that the axisymmetric assumption and a choice of
the mean stream surface compatible with the conservation of total angular momentum lead
to identicul results.

The assumption of axisymmetric flow in the blade-free regions thus allows calculation
of the tangential velocity terms from :

d(rVe) .
aL v - 0 (16)

In the bladed regions the tangential velocity is obtained either from the stream
surface specification

W Ngg =0 (17)

where Ngg is the unit vector normal to the assumed stream surface, or the tangential
velocity may be specified directly by the designer in a number of equivalent forms.

Solution Method

The iterative solution procedure used to solve the governing eguations presented above
is straight forward in principle and is described step by step in the procedure which
follows:

1. The geometry of the flow path is specified and the calculating stations are

defined within it along which the equilibrium equation (Eg. (6)) is to be satisfied.

2. The inlet and exit boundary conditions are specified (e.g. flow angle, mass flow
distribution, or stream curvature). Inlet values of P , T , and V, are also required
input. e e 8

3. A number of streamlines which bound a specified amount of mass flow are chosen
and initially distributed through the flow path.

4. An initial estimate is made of all velocities, the total temperature and the total
pressure.

5. The right hand side of Eq. (6) is evaluated at each streamline and calculating
gtation intersection.

6. Slarting at the first calculation station inside the inlet station, the equilib-
rium equation is integrated numerically from hub to tip assuming an initial value at
the hub. A weighted average is taken between the old and new velocities with the old
velocities heavily weighted.

7. The resulting mass flow distribution is then integrated to obtain the total mass
flow which is compared to the desired mass flow. The velocity distribution is then
scaled by desired flow/calculated flow and the streamline positions are adjusted to
satisfy continuity locally. The effect cf blade or strut blockage is easily included
in this step.



45

8. iteps (5) thruuyhi {7} are repeated for each calculating station up to the e..it
station.

9. The inlet and exit stations are solved using the input boundary conditions.

10. Steps (5} -~ (9) are repeated until the maximum percent velocity change is less
than some specified amount,

In the above procedure the continuity equation is satisfied by explicit treatment.
This step may be avoided and the continuity equation satisfied identically by introduction
of the stream function defined within the stream surface by

2!

Kl
= prsz; 5% = -prBw, (18)

where the bars indicate derivatives taken within the relative stream surface. The equilib-
rium equation then takes the form of

=N

ek

) v = £(r,2) (19)

2
L2

where f(r,z) is actually a nonlinear function ofy ,r, and 2z , but is considered as a
known function of ¥ and 2z for each iteration in a solution scheme defined by

2 32 : :
[%? * %E’) VR (20)

This is basically the method used by Marsh’. In this method Eq. (20) is expressed
in finite difference form for a fixed grid network within the flow path. The fixed grid
network and the automatic satisfaction of the continuity equation are the primary differ-
ences betwean this solution method and the one described previously. Each iteration
results in a linear algebraic system of equations which may be solved by a number of
direct or iterative methods. In fact, the solution of Eq. (20) may be made closely analog-
ous to the stream derivative and stream curvature solution methods by choosing a success-
ive line relaxation algorithm for solution of the matrix equation. A comparison between
the stfeam function method and the stream curvature method has been presented by Davis and
Millar®.

The method used to evaluate the streamwise derivative terms appearing in the equilib-
rium equation (Eq. (6)) has a significant influence on both the accuracy and stability
of the method. Wilkinson® has given a study of the various methods available for calcu-
lating these derivatives in terms of their influence on the efficiency, accuracy, and
stability of the computation. He concludes generally that the finite difference methods
are the best and that the spline methods are the worst. Numerical experiments performed
at Detroit Diesel Allison support this conclusion. Consequently, the streamline deriva-
tives which appear in the equilibrium equation are evaluated using a second order central
difference approximation. This method has given quite satisfactory results over a wide
range of turbomachinery application.

As mentioned in Step(6)of the solution procedure, it is necessary to damp the velocity
change from iteration to iteration during the solution process in order to assure the
stability of the calculation. Generally, the calculation may be stabilized by using
sufficiently strong damping although a premium is paid in terms of computing efficiency.
For a typical turbomachinre calculation, the optimum choice of the damping factor, f_,
usually occurs very near the convergence limit (a typical case is shown in Figure 27)

The optimal damping factor as well as the maximum value for convergence are functions of
the particular flow path geometry, Mach number, number of computing stations, and the
method used to calculate the stream derivative (or curvature) terms. Wilkinson® has
developed an expression for the optimal damping factor as well as the convergence limit
using a simple parallel flow model. He found the optimal damping factor to be given by

fg = (1 - 37 Xnin (1-Mp?)an)~t (21)

where A is the grid aspect ratio and Kgj, is a factor dependent on the method of
evaluating the stream curvature.

. It should also be pointed out that the total number of iterations required to obtain

a solution is influenced significantly by the particular iteration method used. For
example, the equilibrium equation may be solved simultaneously along each of the calcu~
lating stations rather than consecutively, as suggested in the previous outline of the
solution procedure. The interaction of the blade element models and the end wall boundary
layer calculations with the main through-flow calculation also affects the optimal damping
factor as well as its stability limit. Some improvement in computational efficiency can
also be achieved by reducing the damping during the iterative process as the solution

is approached, An accurate initial guess can also considerably improve the efficiency

of the calculation.

A source of common error in the practical application of through-flow calculations
concems the inlet and exit boundary conditions. The proper posing of the elliptic
boundary value probl’em requires that some boundary condition be specified along the
closed boundary of the solution domain. For the through-flow problem, the boundary
condition along the hub and shroud contours are automatically satisfied by reguiring
that these be streamlines of the flow. 1In addition to the total mass flow rate and
the inlet input quantities of stagnation temperature, pressure and tangential velocities,
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inlet and exit boundary specifications are required. It is sufficient (and necessary)
that only one quantity be specified along these boundaries. Typically, this might be
the flow angle (streamline slope), the mass flow distribution (streamline position),
streamline curvature, or either of the meridional velocity components., Even though any
of the above physical specifications translate into proper mathematical constraints

for the problem, the arbitrary application of these conditions too near the region of
interest can lead to an improper physical result. It is important that the boundary
conditions be specified at a location where they can be stated accurately from physical
considerations. This often requires that the inlet and exit boundaries be removed
somewhat from the actual domain of interest where the physical conditions of the desired
flow may be made more consistent with the imposed boundary conditions and where any
remaining inaccuracy has little influence at the far removed stations.

EXPERIMENTAL VERIFICATION OF THEORY

For any theoretical analysis to be useful, it must be calibrated against data in
problem situations typical of intended usage. It is important, for any useful comparison,
that the data be such as to clearly test the theory with underlying assumptions held to
a minimum. The through~flow calculation used in turbomachinery applications is composed
of two basic elements:

1. Inviscid equations of motion with attendant solution techniques

2. Secondary calculations for real fluid effects.

The comparisonswhich follow have been chosen to test the validity of the basic
equations of motion and the numerical solution techniques. Two examples have been
selected for relevance to turbomachinery application, complexity of the problem, and
adequacy of defining instrumentation.

The first example, Figures 3 through 7, investigates the flow field in the vicinity
of the flow splitter of a low bypass ratio turbofan compressor as the mass flow split
is varied. This problem is a very difficult one in that it is a case of swirling flow
from the upstream rotor with total pressure and temperature gradients, extremely high
flow-field-induced streamline curvature and high local Mach numbers. The comparison is
made at three different levels of tip back pressure from near choke to near surge. The
comparison between theory and test is exceptionally good, especially at Points B and C
where the local Mach numbers arz relatively low. The calculation was made with fixed
wall boundaries with no provisions to account for boundary layer phenomena,

The second example shown in Figures 8 through 9 is a case of high flow path induced
curvature with total pressure and temperature gradients. The stator discharge flow is
designed for zero exit swirl and is assumed to be so. Again, excellent agreement between
theory and data is seen to exist.

Many comparisons similar to those just described have been reported in the literature
and, in general, verify the technical adequacy of the basic equation formulation and
solution techniques.

The real fluid effects such as endwall boundary layers, tip clearance leakage, wake
mixing, blade element losses and others are neither well documented nor truly understood.
Nevertheless, they are just as important to the success of the final product as the
basic through-flow calculation. These effects deserve a great amount of future effort.

APPLICATION

In this discussion, the general compressor design and development process is reviewed
with emphasis upon the role of the through-flow calculation. '

Detroit Diesel Allison's approach to compressor design and development is enumerated
below:

1. Design with the best analytical techniques and empirical data availahle,

2. Instrument the compressor adequately to evaluate the validity of the design

theory and assumptions,

3. Obtain sufficient test data to completely define the compressor character-

istics, both aerodynamically and structurally,

4. Reduce and interpret the data in a consistent manner, and

5. Perform a comprehensive analysis of the data to determine areas of possible

performance improvement.

One complete cycle of this process for a multistage axial flow compressor generally
takes about a year to complete with a majority of this time consumed in fabrication.
Congidering the length of time involved, a high premium is placed upon a technically
sound approach in each of the five areas listed above.

Normally, the development process takes more than one cycle to complete due to
inadequacies in the design theory and assumptions. A consistent and technically sound
approach which builds upon previous experience has proven to be the best method of reduc-
ing the number of development cycles. The validity of this approach is exemplified by
the development history of one of Detroit Diesel Allison's modern multistage compressors
shown below:

First Second Third

build build build
Pregssure Ratio* 14.55 15.00 15.00
Adiabatic Efficiency* 80.15% 80.50% 82.00%
Surge Pressure Ratio 14.55 17.3+ 17.3+

*On engine operating line.



With just two blading modifications, the operating line efficiency was increased
nearly 2% and the surge pressure ratio increased by 3 atmospheres.

The through-flow calculation is an integral and vital element in this overall
design and development process. In addition to the obvious use of the calculation
in the design phase, the calculation provides information for locating instrumentation,
aids in determining the true pressure or temperature from measured data, and supplements
the measurements to obtain a meaningful flow field definition

Design

In the desiga phase, the best analytical techniques and empirical data available
are vsed to accomplish the two basic parts of the final design specification, namely:

1. Establish the desired aerodynamic flow field definition,

2. Design blading to produce the conditions established in Part 1.

The flow path shape, number of required stages, Mach number levels, work distribution,
and blade element loading and efficiency requirements are determined in the first phase
of the design. These variables are chosen to provide maximum assurance of meeting design
goals. In this phase, the through-flow calculation is the designer's primary tool. 1In
this calculation the inviscid equations are coupled directly with secondary computations
which account for real fluid effects such as aerodynamic blockage, blade element losses
and tip clearance leakage. These viscous =ffects are based on theoretical analyces,
but are tempered by past experience with similar configurations.

The purpose of the second phase is to define the detailed blade geometry which will
generate the flow field conditions established in Phase 1. To satisfactorily accomplish
Phase 2, the following design variables must be correctly defined:

o Incidence angle

o Blade element flow capacity

o Deviation angle

o Blade shape consistent with Phase 1 loss characteristics.

In both phases,the designer is gquided by experience gained from previous compressor
development programs. His detailed experience in terms of such items as acceptable
loading limits, blade element losses, and incidence and deviation rules is tied directly
to the design and analysis system and the consistency in which data was acquired and
processed.

Instrumentation

The general requirements for an adequate yet economically tractable instrumentation
plan are:

o Provide adequate instrumentation to minimize assumptions required for flow

field definition,

o Minimize flow field disturbance, and

o Minimize the additional test time required for data acquisition.

The item of overriding importance is the acquisition of data which is truly represen-
tative of the compressor characteristics and not influenced by the measuring instrument.
To reduce the blockage and resulting flow field disturbance associated with a conventional
cantilevered probe, Detroit Diesel Allison practice is to mount the sensing element
directly on the vane surface for all interstage data. A sketch of a typical installation
s shown in Figure 10 along with a photograph of an actual vane with leading edge total
pressure elements attached. The sensing element is suspended from the pressure surface
of the airfoil to minimize the disturbances to the suction surface which is more sensitive
due to higher Mach numbers and velocity gradients. To minimize the leading edge incidence
effects, the sensing element is surrounded by a ventilated shroud and positicned as far
forward of the leading edge as possible. Interference with the precediny rotating blade
row determines the maximum stand off distance. 1In some instances, leading edge effects
cannot be eliminated.

In order to ensure accurate interpretation of the data, the instrumentation is cali-
brated prior to the test to quantify the effects of Mach number and angle of attack on
the recovery characteristics of the probe. This calibration is usually accomplished
with an isolated airfoil and a two dimensional air jet. An example of the calibration
results is shown in Figure 10, where the recovery characteristics of a leading edge
mounted thermocouple display assymetry due to the airfoil leading edge effect. This
result is the rule rather than the exception in multistage axial flow compressors where
the typically small axial gaps between rotating and stationary blade rows would preclude
the forward extension of the probe. In order to interpret the data accurately, the true
flow Mach number and air angle must be ascertained. This is an extremely vital part of
the data reduction effort and requires iterative use of the through-flow calculation
for completior. A more detailed discussion of this process is given in a following
section of this paper concerned with data reduction.

A typical instrumentation plan which has been used and fulfills the above stated
requirements is shown in Figure 11. The instrumentation includes stator leading edge
mounted total pressure and temperature sensing elements for interstage data, conven-
tional shrouded total pressure and temperature probes at compressor inlet and exit and
a multi-element wake rake behind the exit guide vane in the outer duct. A large
contingent of wall static pressure taps is included to define the Mach number distri-
bution over the flow splitter.

The radial locations and angular alignments of the individual elements are determined
from the flow field solution defined by the through-flow calculation in the design phase.
Increased instrumentation is included in areas of expected high gradients such as around
the flow splitter in the above example to evaluate the validity of the through-flow
calculation in these areas.
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Data Reduction

The instrumentation plar described in Figure 11 is typical of the type and extent
of instrumentation incorporated in a development build o' a compressor. The limitations
of this instrumentation coverage relative to defining th@2 entire flow field are also
typical.

The purpose of the data reduction process is to takc measured data, apply calibra-
tion factors in a consistent and correct manner and then reconstruct the entire flow
field definition for comprehensive analysis relative to design intent.

Typically, for interstage data, the stage work input and loss characteristics are
well defiued from stator leading to rotor trailing edges, Figure 12. Measurements of
total pressure and absolute air angle are usually not made at stator exits ana, there-
fore, some assumptions must be made concerning these variab‘es before a complete flow
field definition can be constructed. Even with the assumpt ons on stator loss and
detailed neasurements of rotor exit total pressure and temperature, the flow field
definition is not complete and not in a usable form for detailed analysis. The velocity
distribution is not known and, therefore, the key aerodynamic parameters such as inci-
dence, deviation, Mach number and blade element loading cannot be determined. The
through-flow calculation with data input in terms of total pressure and temperature
at rovor exits and with consistent assumptions on stator loss and deviation is used
to provrde this required information. The flow field defined for the test point 1is
completely consistent, in terms of stator assumptions and solution methods, with the
design flow field and can be comparea directly. Once the velocity distribution is
known, then the Mach number and angle of attack of the air onto the measuring element
(Pt or T,) can be determined and the appropriate calibration factors applied. The
adjusted "data changes the velocity distribution and further iterations are required.
This process, Figure 13, is obviously iterative and continues until the flow field
variables (P,_, T,, M , and air angle) are consistent with the measured interstage data
and calibratfen fnfoPmation. A final important consideration in the data reduction
process is the method by which remotely obtained data, Figure 13, is streamlined back
(or forward) toc the blade trailing (or leading) edges for detailed blade element
analysis. The streamlines along which the data is repositioned are determined iter-
atively for each data point instead of using the streamline definition from the design
solution.

The final result of the data reduction process is a complete definition of the entire
flow field including blade element conditions. This definition 1s then compared directly
to the design flow field description and areas of performance improvemant identified.
Once hardware modifications are identified, the cycle starts over again.

Conclusions

The importance of an accurate and flexible through-flow calculation is evident. It
is one of the key elements in an effective compressor des.gn and development process
and is the primary tool with which the detailed design is accomplished, the data inter-
preted and analysis performed.

The techniques expounded upon in this paper have lead to significant advancec in
the state-~of-the~art in compressor design. If these advances are to continue, better
understanding of the basic fluid mechanics of compressor operation must be i1ncorporated
into a usable design and analysis system. Some areas where further improvements are
needed are:

Intrablade analyses

Tip clearance efifects

Secondary flow and streamline communication

Endwall boundary layer development.

Much effort has already been expended in these areas, and some techniques have been
incorporated into the design and analysis systems. Data correlations and indivadual
experience remain, however, the prime methods of accounting for these effects.

The primary emphasis of future research efforts should be focused on elements of
flow behavior such as those above. Recognizing this need, Detroit Diesel Allison has
designed and fabricated a large low speed test rig incorporating a single stage axial
compressor designed for loading 1- vels typical of advanced state-of-the-art compressors.
Current effort is being directed . ward the better understanding of endwall boundary
layer de'relopment as the flow proceeds through alternating statione - and rotating
blade rows. As each of these elements of flow behavior are better u.derstood, improved
models will be developed and incorporated into the basic design and analysis syster
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COMMENTS

Comment by D.Millar, Carleton University, Canada

Do you use outer wall (casing) wall tappings for comparison with calculation, especially to separate rotor from
stator performance within the stage? I would think this would be quite useful for a compressor which has essentially
axial flow between rotor and stator, where there is little radial pressure gradient.

Authors’ response:

Outer wall static pressures are used for comparison, but it is hard to break out the combined effects of loss,
blockage and whirl.
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FINITE ELEMENT METHOL FOR THROUGH-FLOW CALCULATIONS
by
Ch. Hirsch
Professor, Dept, of Fluid Mechanics
Vrije Universiteit Brussel
1050  Brussels

Belgium

SUMMARY

A description is nresented of the application of the Finite Element method to the radial equilibrium
equation in the form obtained after introduction of the streamfunction. A short presentation of the
basic features of the F.E.M. is given and the particular aspects of its application to the through-flow

problem in turbomachines are described,

A comparison with an analytic solution for an axisymmetric transitional annulus with swirl allows an
esti.aation of the numerical accuracy of the method. Other examples of results include a transonie axial
compressor and an axial turbine. The coupling with an end-wall boundary layer calculation for axial

compressors is also briefly described and some results are presented.

INTRODUCTION

The calculation methods for the through-flow in turbomachines developed in recent years have mainly been
concentrated on two numerical techniques, the screamline curvature method and the so-called matrix method,
which is essentially a finite difference scheme. Although these methods have achieved satisfactory
results, they still suffer from certain difficulties. Estimations of the curvature of a streamlire which
is defined by a discrete number of points can create large errors [ 1], [2] while the correct simulation

of curved end-wall in the matrix method requires complicated "“computational stencils" [3].

A Finite Element method is presented in this paper for the calculation of the meridional through-flow in
a turbomachine which doesn't suffer from these difficulties. Quadrilateral curved (isoparametric)
elements are used which can simulate accurately the curvature of boundaries while estimations of stxcam~

line curvature do not appear in the calculation.

USRI ¥ N RV

After deriving the equation for the stream function which is solved in its quasi-harmonic form, the

finite element technique is described. The calculation method can handle any geometry, axial or radial,

and examples of results are presented. Comparison with am analytical solution for the downstream part
of an annular transition with swirling flow gives indications on the accuracy of the computation method.
Examples are also shown of a transonic axial compressor and an axial turbine calculation. Besides, the
3 coupling of the main flow with an end-wall boundary layer calculation method for axial compressors is

briefly described and some results are presented.

e 1. BASIC EQUATIONS
g}f-
gi Starting from the three-dimensional flow equations in the relative system, with the introduction of the
! %? energy equation in the form of the first principle of thermodynamics and the definition of the rothalpy 1
[ <o
o -
e %‘ti—ﬁA(‘v'Aii)=T"v’s—3’1+Ff/o m
LS
}:ggg %% +7 o fi=0 (2)
B
{ B
sy T=h+W/2-wt/2=0-UV 3
S 6
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where W and V are the relative and absolute velocities, h the static enthalpy, s the entropy, U = wr,

and ﬁf the sum of viscous and turbulent shear stresses, one can derive the meridional through~flow
equations in different ways.

Following C.H. Wu's SI, S2 surfaces approach [4], equ. (1) is projected on a meridional type of stream
surface S2 with derivatives along this surface and the introduction of body forces replacing the blades.
This requires the knowledge of this surface or a more or less arbitrary assumption of its shape.
Another approach consists in integrating equ. (1) and the continuity equation (2) over a pitch, from
pressure side of a blade to the suction side of the following blade [ S}, [6}. In this way equations
are obtained for the pitch-averaged equations, whose projections in cylindrical coordinates (r, 6, z)
contain the orojections of the terms of equ. (1) (for the pitch-averaged quantities) plus a blade force
term and a certain number of terms describing the deviations from axisymmetry. These terms, which are
neglected in the axisymmetric approximation, could be estimated within the blades from the knowledge

of the blade-to-blade flow. However, as shown in ref [ 3], the.e terms are generally small and propor-
tional to the loading inside a blade row., Outside a ‘.lade row, the main contribution comes from the
wakes and an estimation based on a simplified wake model [ 7], shows that the contributions from the
non~axisymmetry to the meridional through-flow are proportional to the total pressure loss coefticients
and are generally small, except maybe in the end-wall regions.

Therefore, neglecting the non-axisymmetric contributions, one obtains in cylindrical coordinates

T Grou) +-(ou)=0 O
y .2 3s a1 . "6 3

wz [52 wr T3¢ wz] =T T 3 * T 3t (e Ve) * (Fb,r * Ff,r)/p %)
, , W

P

Tas V) = (Fy gt Fy g0 M

whers all variables are pitch-averaged quantities, b is the tangential blockage factor
b=1-¢t/s 8)

with t the blade thickness and s the pitch; m is the coordinate along a meridional streamline and

Fb is the blade force.

Introducirg a stream function in order to satisfy the continuity equation (4),  hrough

3y . a
3 prb Wz (9a)
81:-

2 prbV (9b)

and introducing equ. (93) and (9b) in the radial component of the momentum equation [5], one obtains

3 1 ] 1 3y 1 31 3s 8 3
e (e E2Y 3 e (e ) m (- p B 2O - -
r (prb 3r* * 3z (orb az) wz [ T T r Y 5T r VG Fb,rlp Ff,rlol (10)

This well known form for the radial equili®rium aquation is however not applicable to radial geometries
where the axial velocity W_ will 20 to zero. One could then use the axial component of the momentum
equation (6). but a more u;ified approach is obrained, following Bosman & Marsh [8], if the equatioms
are projecred along the direction of (§E [ taking advantage from the relations

?b LH=0 ana ?f AWeo an

Wb g

s
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%% In this way, the r.h.s. of equ. (10) becomes for a rotor
= a1 _ T 38 T 38 o - 13 13
% prbdw 7 r(wz+we th)+wZaz (wr W tg B) -;-a—r-(rve) . tg B ?E(rve).tgs
Bi.
& with (12)
2
5 | tg B = W /W (13)
%{ and
(14)
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It is interesting to note that the forces do not appear anymore although they are not neglected.

An analogous expression is obtained for a fixed blade row and outside a blade row in a duct region, the

r.h.s. becomes

v
di _ . ds _ ‘e d
Pl Ty Tt (19

Al A

where H is the stagnation enthalpy.

! 2. THE FINITE ELEMENT ETHOD

The basic principles of the Finite Element method can be summarized through the three following steps

simple geousetrical forms (triangles, quadrilateral-,

2

a) Division of the physical domain into subdomains of

3

= eas sqs N ) . . s .
& rectilinear or curvilinear). Each subdomain J)(e’ is called a finite element and contains nodes on
S% ; ts boundaries or inside the subdomain (fig. 1). Moreover the elements may not overlap and have to
-3 | :over the whole physical domain

% ! ud® .9 16)

< D) A gle) 0 a7

The fact that the form of the elements need not be of regular shape allows easily to take into

ARy PR

! account the presence of irregular or curved boundaries.

e

FAM

b) Definition of interpolation functions whereby the field variables are locally approximated in each

finite element by a combination of continuous interpolation functions and by the nodal values of the

unknown functions (which, by the way, may also be values of the derivatives of the field variables).

(e)

benoting by ¢(e) the approximation of the unknown field variables in element e and by ¢j the values

at the node j, one assumes the form

(e)

s

o =1 @ (18)
~ ja] 3 ~ -

? where Nfe) are the shape functions in element (e) depending on the coordinates x (x denotes a set of

]
coordinates) and s(e) is the number of nodes in element (e).

;

g; In a two-dimensional domain (r, z), N;e) (x) = N§e) (r, z)

<& N

%ﬁ From the definitions (18), for each node i within the element e
Ve

.
e

k¢

(e) . (e o i (e)
Nj (’_‘i) sij and Nj (:_c) 0 lfafe.;n 09)

%ﬁ%’w '

i

where xi are the coordinates of node i.

3,
£
o

T

The explicit form of the interpolation functions Nj depends on the form of the elements, the number of

nodes and on the order of the differential equations to be solved.
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The most effective form for the shape functions are polynomials. The FE method tnen amou:ts to a

piecewise continuous polynomial approximation for the field functions.

The definition of a basic integral functional equation equivalent to the field equations to be solved.
This is probably the most essential and particular step of the formulation of a finice elzmczat
approximation since it allows, aftar replacement of the field variables by the approximation (18) for
each element to obtain an algebraic system of equations for the unknown nodal valuses ¢(e) + Indeed,

if the functional equation is written as

I

h (¢, 3¢, ...) dx + g (¢, 3, ...) dx =0 (20)

Py 3D

insertion of equation (18) and consideration of equation (17), allows to write

I=1 [ =0 2
e

leading, in each element, to an algebraic system for the 0; of the form

(e) . (e) (e)
4>j =F; (22)

ij
or with usual notations
() 680y = @) (23)
( ) Ffe)
i

whereby k 5 and are integrals of combinations of products of shape functions and their

der1vat1ves and can therefore be calculated at least numerically.

The assembly rule

I=2¢ Ie (24)
e

leads to the final algebraic system

(K (¢} = {F} (25)

The matrix K is calles the "stiffness matrix" (with analogy to elasticity problems).

The assembly rule implies certain continuity conditions along the inter-element boundaries in order

that the sum of the integrals on the inter-element boundaries cancels in the sum (21).

Expressed from an engineering point of view, see ref. [ 9], this leads to certain continuit— conditions
for the shape functions. If one denotes by r the order of the highest derivative accuring in the
integral equation (20), then the criterion states that the field functions must satisfy to the
continuity of all derivatives up to order (r - 1) accross the element boundaries. For r = 1, this
implies continuity of the function while for r = 2, continuity of the function and the first derivative
are imposed accross the element boundaries. This appears to be a sufficient but not always necessary

condition.

We may add a this stage, that a sufficient (but not always necessary) condition for convergence of the
F.E.M. when the size of elements tends to zero, is that the set of shape functions must be able to
represent any constant value of the field variables and derivatives up to order r within an element.
This implies

(e)
3 Nj(e) ) =1 x € 2 (26)
; :

More rigorous formulations can be found in [ 10].

An integral formulation for equ. (10) can be obtained by the Galerkin method of weighted residuals.

Writing this equation under the general form
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wiere k = 1/ob r and f is minus the r.h.s. equ. (13) - (15).

The boundary conditions are y = O at the hub wall, ¢ = m/2n where ¢ is the mass flow rate at the tip wall,

3 . . .
5%-= 0 or ¢y imposed at the entrance section and %% = Q at the outlet section.

If ¥ is an approximation to ¢, satisfying the boundary conditions along the parts of the boundary where

¢ is fixed, then the residual
R, W #0 (28)

and a "best approximation" will be defined as the one which cancels a weighted average of R, plus a
weighted contribution on the boundary when Neumann conditions are present. Therefore, the following
integral formulation is obtained which is equivalent (in the weak sense) to the original differential
equation

- W.R da+ w..,—‘ka dCc = 0 (29)
v an
C
where C is the contour enclosing the domain .

Replacing Rv by its definition, equ. (27) and integrating by parts the following form is obtained

oW, 3Y oW, _ - -
lk(g;-5;+3%§) £(,z,¥) .Wda =0 (30)
Pl

whare the weight functions W can be .rbitrarily chosen.
3. CALCULATION PROCEDURE WITH FINITE ELEMENTS

The meridional section of the machine is divided into finite elements which are chosen to be 8-node
quadrilateral isoparametric (curved) elements (fig. 2). The reason for the choice of these elements
is twofold : it enables to handle accurately curved boundaries and complicated geometries like in radial
machines with simple meshes and at the same time provides a high order of accuracy (probably third order

based on linear theory [ 10]). The corresponding shape functioms Nj are biquadratic in the iocal

coordinates £, n (fig. 2).

Calculation stations are chosen and disposed in the duct part of the nmachine and at the edges and center

line of the b ades (fig. 3). The number of grid points on each sta on is fixed while the element

distribution is generated in the program.

With the FE approximation in each element

8
V=1 oy N 3n
i=1
where wi are the unknown values at t%e nodes, and the Galerkin procedure where the weight functions W

are chosen equal to the shape fun'tions Nj’ equ. (30) takes the matrix form, in each element E ,

(K (0= (£)° (32)

where (w)e is the vector of the unknown nodal values and
= — — 33
¥ Ek(ar iw T3z 320 4% )

f
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Acsembling equations (32) for all elements, the complete system of equations

(Xl {y} = (£} (35)

is obtained.

Equation (35) is a non-linear system of algebraic equations, which has to be solved iteratively. The
whole calculation proc-dure amounts therefore to the estimation of the matrix elements (33) and (34) ;
this requires the computation of the flow variables at all nodes in order to estimate k and f, the
integration being performed numerically through Gauss-point quadrature formula's. After this step, the
algebraic system (35) is solved with an elimination method adapted to the banded, symmetric nature of the
matrix [ K] and an iterative procedure is established to handle the non-linear character of the system
(35). More details about these parts of the calculation can be found in [11] and {6]. It is however

worthwhile to mention that an underrelaxation coefficient has to be introduced in order to obtain

convergence, through

(e = Y +ullvd ) - Ged) (36)

where {w}n+l is the solution of (35) obtained at iteration (n+1) while {w}n+l is used to start the next

iteration.

4. APPLICATIONS

The computer code based on the finite element method has been applied to various situations. Separate

codes have been developed for axial compressors and axial turbines and the codes can handle also any
ducting configuration axial, radial or mixed with a representation of the end-wall curvature oy second-

order polynomials within each element as a consequence of the use of isoparametric elements.

4.1 Comparison with an exact solution
An axisymmetric transition ducting with swirling flow super-imposed on an uniform axial velocity

distribution has been calculated for an incompressible flow.

The geometry of this configuration consists of two cylindrical annuli at different radii connected
by a transition ~ fig. 4. The inlet flow is composed of a uniform axial velocity U (flow from left
to right) superposed on a solid body rotations Ve = Q r. The hub radius is 0.25 m at inlet and

0.10 m at outlet while the tip radious changes from .35 m to .2 m. The mass flow is 10 kg/sec and

Q= 100 sec !,

As shown by Batchelor [12] an anclytic solution exists in the downstream region which can be expressed

as a combintation of Bessel function's for an incompressible flow
\ 2 2
Vo=5 UG -a ) +rlad (ko) +BY (k)] 31

where R = 22
Y

Tue coefficients A and B are obtained in a straigh forward way by expressirg that the walls of the

downstream part are streamfunctions at the same value as the corresvonding upstream part. This leads

to

2 .2 - 2 _ .2 ,
L b (a, = b)) ¥, (kb)) = b (a = b) ¥ (kb
h)

U h
thbh J‘ (k bt' Yl (k bh) - Jl (kb Yl (k bt)

and B is obtained by interchanging JI with Y], while a, and bh denote resp. the upstream and down—
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stream hub radii and a, and bt the corresponding tip radii.
The downstream velocity profiles are obtained by

=U
Vz + Ak Jo (kr) +Bk YO (k r) (39)

Ve =Qr+kaA Ji (kr) +BKk Y* (k r) (40)

Figure 4 ghows the element distribution (dashed lines) and the calculated streamlines while fig. 5 shows
the calculated velocity profiles in the dowstream region compared with the theoretical values. Excellent
agreement is achieved as shown on fig. © where the relative error in percent of the actual value is

plotted in function of radius for ¢, vz and V As can be seen from fig. 6 the maximum error on the

0
streamfunction is less than .006 Z while the error on the axial velocity, is everywhere below . C5 Z.
As for V0 the error remains below .002 7.

It is to be noted that no underrelaxation is needed for incompressible flows. This case converged in
two iterations obtaining root mean square convergence level of .05 % and required 30 sec CP time on a

CDC 6500 for 406 nodes.

4.2 Axial Turbine

The three stage turbine of test case 2 has been calculated with the finite element method, fig 7.

The losses and deviations are calculated with the Ainly-Mathieson correlations. Although, as seen
on fig. 8, the pressure ratios are generally too high, except at the higher mass flow of 7.58 kg/sec
(at design speed), the radial distributions at c. et of the plotted variables, flow angle, total
temperature ratio, axial and relative Mach numbers agree quite well with the data, as can be seen
on fig 9 to 12. The calculated total pressure ratio profiles at outlet, although shifted, are of
the correct shape, fig. 13. On all figures the dashed lines are the experimental results and the

line with the dots are the calculated values.

4.3 Axial compressors
Various axial compressors have been calculated [ 6], [ 11] with the FE method. The loss model inclu-

ded in the code is based on the correlations used by Davis { 13].

i T

Ph i

ﬁ'&g

.

Runs performed on a two highly loaded axial flow fan [ 14] and on other cases show that the corre-

f ? 23

lation is generally acceptable although the stator losses have a tendency to be overestimated,

: -ﬁ especially at lower speeds. The deviations are in general fairly well predicted.

Figs 14 shows the calculated losses and cascate angles for this 2-stage fan at 70 % of design speed
for the second stator while fig. 15 shows the corresponding results for the first rotor at design

speed compared to experimental data. txamples of calculated radial distributions of relative flow
angles and Mach numbers are shown on fig. 16 and 17 for the design point at inlet and outlet of rhe

two rotors together with experimental results.

4.4 End-wall boundary layers in axial compressors

The blockage introduced by the end-wall boundary layers has a non-negligible influence on the whole
flow and performance of an axial compressor, and blockage factors are always introduced in a way or
in another 1n through—-flow calculations. Either they are introduced more or less arbitrarily in the
calculations or boundary layer theories can be used for this purpose. An interesting model has been
proposed recently by Mellor & Wood [ 15] which enables the prediction of blockage and end-wall losses.
An extension of this model has been developed in ref. [ 16}, [ 17] in order tc nredict complete
velocity profiles. Although much progress is still necessary, the explicit introductior of boundary

layer velocity laws (like the Mager law for the cross-flow e.g.) allows the calculation, besides

N B 8 e

blockage, of wall skewing angles, shape factors and skin-friction coefficients of the three-dimen- .

Joit

sional end-wali layer . An example of calculated boundary layer parameters is shown here for Ttne

e
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four stage compressor of test case 5. Fig. 18 shows the geometry of the compressor while fig. 19 and 20

show the axial variation at hub and tip of axial displacement thickness and wall skewing angle for a

reduced mass flow of 13.5 kg/s at 60 % design speed. The resulting complete velocity profiles

behind rotors is also shown in fig. 21 for the same point. Also shown on fig. 19, is the axial dis-
placement thickness as calculated with the original Mellor & Wood theory which assumes constant shape

factor and provides no means of estimating the wall skewing angle. Inherent in the theory is also the

{alculated efficiencies for this mass flow are 87.! %
without these losses and 82.3 7 when the end-wall losses are taken into account.

influence of efficiency due to end-wall losses.

CONCLUSIONS

The application of the Finite Element Method to through flow calculations appears to have the advantage
of being able tn handle arbitrary geometries in a straightforward way without the uncertainties connected

to estimations of curvatures. Besides high accuracy can be obtained with simple computational meshes.

Examples of a swirling flow in a ducting configuration as well as axial turbine and compressor
calculations illustrate the accuracy and versatility of the method, which appears therefore to present

a valid alternative to the other existing numerical techniques for through-flow calculations in axial
turbomachinery.
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Fig. 9 Outlet flow angle profile at ﬁred = 7.58kg/s Fig. 10 Outlet total temperature profile at

for test case 2. ﬁ%ed = 7.58 kg/s for test case 2.
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Fig. 19 Axial displacement thickness of end~wall boundary layers at
e 13.5 kg/s and 60 7 design speed for test case 5.
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Fig. 20 Wall skewing angle of end-wall boundary layers at

ﬁred = 13.5 kg/s and 6C 7 design speed for test case 5.
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COMMENTS

Comment by H.Marsh, University of Durham, UK
(a) The matrix through-flow method has Mach number limitations. Is the finite element method subject to the
same restrictions on Mach number?

would appear that the main advantage of the finite element approach is that it can be extended to three

{
{
1
i (b) Since the time of computation is of the same order as for the streamline curvature and matrix methods, it
} dimensions. Is this correct?

Authors’ response:

(a) The Mach number limitation is defined by subsonic meridional velocity wiel the tangential velocity is imposed
instead of the flow angle. So even when the blade angles are given and flow angles defined through correla-
tion for the deviation, one can work in the iterative process as if the tangential ' elocity were given. Figure
16 of the paper shows a case where the inlet Mach number at tip of the first rotor 1s 1.5 and which was
run without any problem.

e (b) One or the advantages of finite element method is indeed the ease with which 1t can be extended to three
5‘;’ dimensions. However, we feel that even in two dimensions there should be some advantages with respect
i to streamline curvature and matrix method. In particular, the approach with isoparametric elements allows
B a simulation of curved boundaries, even in strongly curved (e.g. mixed or radial) geometries without loss in
! accuracy and without any modification in the computer coding. Besides, the crder of accuracy of the

= 8-nodec elements (with biquadratic shape functions) i1s third order for the corresponding linear problem

» (see Reference 10 of the paper), while an equivalent accuracy can only be achieved in a matrix method for
a centnfugal type of geometry, e.g. by a computational “stencil” of 11 to 15 points as shown by

'; W.R.Davis®. This implies that an equivalent accuracy could be obtained in a FE approximation with a

=3 coarcer mesh. Another point would also lie in the generality with which the elements can be distributed
& in the calculatton domam by only defining calculation stations (which can be curved in order to 12atch a
b curved leading edge e.g.) without the necessity of having to define a complete caiculation mesh by some

_

particular dist‘orted mesh for a given geometry.
Comment by A.Neal, National Engineering Laboratory, UK
(@) How do you evaluate the ¥ derivatives in the RHS of the *“Poisson” equation?
(b) What level of ¥ continuity do you use?

(c) Wil you use a stram function formulation or primitives for three-dimensional work?

Authors’ response:
(a) The V¥ derivatives are evaluated through the FE approximation since.

v Z ¥ Ni(r, 2)
v oN v oN
—_— = Jr, —14 , — = ¥ oL
or zl: ' ar or ; ' oz
(b) The continusty, sufficient to insure convergence, 1s continuity of the function values only at the inter-

element boundaries. 1t is therefore not necessary to insare continuity of the derivatives of the shape
functions at mterelement boundaries, which gives a broader possibility of choice for the shape functions.

RN

(¢c) In a fully three-dimensional calculation, you cannot use a stream function which 1s only defined in two-
dimensional. One can therefore usc either a potential function or the primitive variables. Actually, the
most straightforward way would be a potential function formulation since this requires only one unknown

i at cach node and the extension from the actual two-dimensional code to a three-dimensional variable formu-

} lation is feasible and probably more appropriate for calculation of transonic flows with shock capturing.

Comment by J.Fabri, ONERA, France
Could you give some ideas how the computation time compared with other methods?

Autliors’ response:

For the axisymmetric transition with swirl, which 1 an incompressible calculation, we have a 406 nodes and
the case convergence in two iterations with a computation time of about 30 sec on a CDC 6400. For the highly
loaded two-stage fan of NASA, we showed, the calculation time depends on the Mach number level due to the
under-relaxation factor with decreasing Mach number. At 70% design speed, the calculation requires about 45 sec
while at design need with ini~t relative Mach numbers at tip of '.5. the computation time 1s around 85 sec.

We fecl that these compuation tunes are comparable to the times required by the other methods.

Comment by T.McKain, Detroit Diesel Allison, 1JSA
(a) When you go nside the blade row, how do you speaify the strcam surface that you are calculating on, or
the work mput on that surface?
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(v)

In the inner blade station, do you do 2 blade to blade analysis?

(¢) Do you find much different outlet diagrams if you use different assumptior:s?

Authors’ response:

(@)

(b)

(©

As I said, we do not define a ctream surface as we are working on pitch average values. We use an axi-
symmetric approximation.

No, it is why we use the axisymmetric assumption. 1f we did, we could estimate the inner blade variation.
At the moment, we use a linear assumption of turning and losses.

It has an inflvence on the total pressure ratio and some influence on the radial distribution. This is
certainly one weak point of all the through-flow to have to estimate the loss and turning evolution inside
the blacing.
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THREE-DIMENSIONAL FLOW CALCULATION FOR A TRANSONIC COMPRESSOR ROTOR
by
William T. Thompkins, Jr.
Research Assistant
and
David A. Oliver
Research Associate
Department of Acronautics and Astronautics
Magsachusetts Institute of Technology
Cambridge, Massachusetts 02139
USA

SUMMARY

A numerical calculation of the steady, inviscid, three dimensional flow in a isolated transonic com~
pressor rotor has been completed using Macfiormack's second order accurate time-marching scheme. This
rotor has a tip Mach number of 1.2, an overall diameter of 2 feet, and inlet hub/tip ratio of 0.5. The
computed rotor total pressure ratio is 1.82, Comparisons between the nunerical solution, measurements
of the intra-blade static density field obtained by gas fluoreccence, and time resolved exit flow measure-
ments showed that the inviscid computation accurately models transo.ic rotor aerodynamics and rotor blade
pressure distributions in the upstream portions of the blade passages, the viscous effects influencing
mainly the downstream flow.

INTRODUCTION

Analysis of flow in high speed compressor stages has usually been limited to inviscid solutions for
either the axisymmetric or the "gap-wise" averaged through~flow. These solutions typically depended on
experimental cascade correlations to provide required blade forces or flow turning. Quasi-three dinmension-~
al inviscid solutions for realistic geometries are now being developed for use In highly loaded stages
where the axisymmetric solutions are inadequate, for examples see references {1,2). These procedures
typically consist of an iteration betweer diffexent two dimensional flow solutions: an axisymmetric
solution along a mean meridional streamsurface and solutions along several blade to blade surfaces at
diiferent radii. Blade forces needed for the axieymmetric solurion are determined from the blade to blade
snlutions; while, the blade to blade solutions attempt to include three dimensio.al flow affents like
meridiona’ streamline curvature and convergence as determined from the axisymmetcic solutioms.

For compressor rotors with transonic inlet Mach numbers, neither pure axisymmetric or quasi-three
dimensional solutions are expected to yield accurate zesults due to the stronmg coupling between different
sections of the flow field. It is the purpose <f this raper to report on a fully three dimensional
solution procedure which has been used to study the flow in a highly lcaded transonic axial compressor
rotor. This procedure utilizes MacCormack's time-marching finite-difference method tc compute a steady
state solution to the inviscid flow equations or Fuler equatlons. A computed flow solution will be com~
pared to intra-blade static density measurements obtained by gas fluoresence, reference 3, ard to time
resolved exit plane flow measur ments obtained for the roftor's design point.

NUMERICAL PROCEDURES

Full details of the nucerical procedures used ar2 contained in references (4,5) and maly a summary
of these methods will be preserted in this paper. Th2 governing partfal differential eqna.ions solved in
this study were the three dimenzional Euler equations which are the inviscid mumentum equations plus the
continuity equation. Since only weak shock waves \ere expelted to appear in the solution, the energy
equatior vas replaced by tice Isentropic flow assumption. Implementation of the blade surface boundary
condi*iun, that the flow be tangent to the blade, is simplest in a reference frame rotating with the rotor.
The Euler equations for this frame and in cvlindrical coordinates become:

U, 2F, 3G, %

etwrtwt oz "X
where
Y- .p F = rpu K=y
rou r(pu2 + P) ”Vibs + P
rovabs rpvabs rp“vabs
row g 0 1)
0= rpw - p(Vén:s-m.)
rpuw o(vabs—nr)u
%Y abe p(vabd-ﬂr)vzbs + P
r(ow? + P) IR
v - v + 2
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The physical flow domain is illustrated by figure 1 which shows the test rotor as seen looking
radially inward. Especlally important geometric features are the 35° hub surface slope and the 25° blade
twist from hub to tip. The domain is bounded at the blade tips by a cylindrical casing. By symmetry the
domain is reduced to one blade passage bounded by the hub and tip casing and the suction and pressure
surfaces of two adjacent blades.

This complexly shaped domain is transformed to one which is geometrically simple by a coordinate
stretching. The stretching maps the blade surfaces onto untwisted planes and mape the hub surface onto
the Z axis. The stretched or computational domain is shown in figure 2.

Solutions to these esquations were obtained in the computational domain using MacCormack's method,
see reference (6). It is a two-step, explicit, second order accurate, conditionally stable method. This
method is used because it is relatively simple, easily adapt:d to various coordinate transSorms, and
easily handles mixed subsonic and supersonic flows. The shock capturing nature of this method is also
essential since the location and strength of shock waves appearing in the flow are unknown. The addition
of artificial viscosity terms was necessary to stabilize the solution procedure along sonic surfa.es and
near blade leading and trailing edges. _ _

The blade surface boundary condition for inviscid flow, V_ .+ n = 0, is applied with second order
accuracy through the use of a body centered coordinate system.re}n this orthogonal coordinate system,
defining sketch showi.. velow, derivatives of fluid quantities in a direction normal to the blade surface
are found and used to predict the fluid state at an auxiliary point. ManCormack's method is used at the
boundary point as if they were interior points.

interior
point
.
S Y,
guxiliory
point
Uj-y
In these coordinates the normal momentum equatiou becomes:
du ¢ du u_ Ju u_ du uu_ 3h
~Ry 5.1 4L _n,mn_1n,. ns_u
ot hs oF hT n hn 4 hnhS &
3h 2 on. o wh
u_u u u -]
pto_T__s _8_ T _ T _=1 9P (2)

2 5 .oy DT
+ Q r(;t n) 2Q(izx Vrel)

FTor simplisity the centrifugal and coriolis accelerations sre expressed in terms of the base (r,6,Z)
coordinate system. Since v = 1 this equation reduces to

2 2
|9 u ~ ~
0.2 L% 50 T ) =00 ) 3)
n 2k R, . 2z ve® T
a” s T a
. 3hs 1 , ¢h
where —— = —i— —x-2 agd z=- = ==— 3~ are the surface iacii v{ curature aloug tne £ and n coordinate
KR kn_ 3z R hoh or
e s T o
3u du

lines. Expressions for 535 aad

3n

u u
3¢ 4
=T TR
9
du u,
et o
T

—= can be determined iror the components of the vorticity vector.

4

(5)
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3un
shown in reference (4) that a second order accurate approximation for e is provided by reflection in the
blade normal direction, i.e. (un)j -1 " —(un)j +1° These conditions were fulfilled for the test rotor.

The upstream and downstream boundary conditions which guarantee a unique stable solution are not
known in general for this problem, and we must be guided by experience and intuition in formulating these
conditiong. For the highly loaded rotor calculation, conditions similar to those imposed during a
compressor test were found to be adequate. That is, the inlet stagnation state of the fluid and the mean
outlet static pressure were specified. The rotor mass flow rate was determined as part of the solution.
Fluid state variables were calculated at these boundaries using an unsteady analysis for the axisymmetric
flow., For the test rotor geometry, this analysis reduces to one dimensional unsteady flow along the
meridional streem surfaces.

This simplification does imply some inconsistencies at the boundaries. In particular, at the upstream
boundary the transmission of acoustic disturbances is falsified; at the downstream boundary vorticity
convection is distorted. The acoustic disturbances carry very little energy and their falsification can
have little influence on the flow over the rotor. At the downstream boundary the specified axisymmetric
flow is potentially inconsistent with the blade flow solution if that solution requires a significant
amount of radial vorticity to be present at the computational boundary. For the present calculations,
this inconsistency does not appear to be important even though some radial vorticity is shed by the r-~tor.
This vorticity is considerably modified by the cumulative action of the artificial viscosity terms and by
the inherent dissipation and dispersion of the numerical scheme.

Limitations of computer time and storage prevent detailed flow resolution near leading and trailing
edges. These points are dealt with by the expedient of placing them between grid points or by considering
the edges to be infinitely thin. The Kutta condition is imposed at the trailing edge by requiring that
the suction and pressure surface flow angles, in a plane normal to the blade axis, and the pressure be
equal at the last grid point on the blade. This procedure allows a slip surface to form in a plane
tangent to the trailing edge. The movement of this surface 1s not explicitly followed in the calculation.

RESULTS

The techniques outlined in the previous section have been used to compute the flow in a transonic
compressor rotor whose design and performance are representative of modern stages. This rotor has a tip
Mach number of 1.2, a total pressure ratio of 1.65, an inlet hub to tip ratio of 0.5, and an inlet axial
Mach number of 0.5. The computed solution has a rotor total pressure ratio of 1.82 with an inlet Mach
number of 0.46. Because of the large expenditure of computer time necessary for a three dimensional
solution, this calculation was terminated when the solution was further from steady state than would
normally be desired. A residual unsteadiness of 5 percent is present at some points in the domain, but
the major features of the solution, such as rotor totul pressure ratio and shock wave strength, have
been stable for over 80 time steps.

The mixed subsonic and supersonic flow inherent in a transouaic compressor rotor is clearly shown by
figures 3 through 6, which show contour plots of the relative coordinate system Mach number. These
contour plots are projected into viewing planes from blade to blade surfaces of revolution which are
equally spaced in the radial direction. Figure 3 indicates that a strong passage shock exists at the tip
radius and that it is nearly normal to the flow. a weak oblique shock stands in {ront of the rotor. The
approximate location of the computed shocks is shown as dashed lines in figure 3. For the passage shock,
this dashed line follows the Mach number equal 1.0 contour vhich is at about the wmidpoint of this shock.
The importance of the entrance region geometry is shown by the expansion of the flow up to a Mach number
of 1.7 on the suction surface. 1In figures 4 and 5 the passage shock can be seer to weaken and move forward
relative to the blades as the radius decreases. The oblique shock in front of the rotor wezkens and then
disappears. Figure 6 shows the Mach number contours along the hub surface. A patch of supersonic flow
appears on the suction surface in an otherwise subsonic flow, The angle of attack at this radius is about
15° larger than the design intent. A sharp recompression terminates the supersonic patch and extends
across the blade passage.

The flow field illustrated by these figures at first sight appears qualitatively as might be expected
if the flow were quasi-two dimensional. One illustraticn, however, that this flow is in fact strongly
three dimensional is shown in figure 7. This figure shows the position of three computed tlade to blade
streamsurfaces, which are normally called S1 surfaces. The coordinates of these surfaces were determincd
by integration along fluid particle paths originally through a constant inlet radius line. The projecrad
view of these surfaces is the one which is seen by an observer facing directly downstream. Near the tip
radius these surfaces approximate a surface of revolution; however, at smaller radii they ~annct be
approximated as surfaces of revolution. The middle streamsurface has an inlet radius rat. 0.772.

At the rotor exit, the streamline on the blade suction surface has a radius ratio of 0.80; wriie, the
streamline on the blade pressure surface has an exit radius ratio of 0.85. This radial displacement is
16 percent of the Llade height. At a slightly lower radius the streamline radial displacement reaches

a maximum value of 20 percent. This warpage or streamline radial displacement is one manifestation of
the ctreamwise vorticity being shed by the rotor. The intricate nature of the flow kinematics is 1llus-
trated by the Sl surface nearest the hub. Along the suction surface the flow is converging in the radial
direction while the ctreamlines are diverging in the azimuthal direction. The reverse situation is
occuring on the pressure surface.

Streamsurfaces with a different orientation, called S2 surfaces, are showa ir figure 8, [hece
surfaces are determined by fluid particles which initially lay on three radial lines near the blade
pressure surface, at mid-gap, and near the blade suction surface. The anguiar distance between these
surfaces has been exaggerated to allow each surface to be seen but otherwise they are to the same scale
and viewed as figure 7. This figure shows, perhaps more clearly than figure 7, te blade to blade and
hub to tip vcriation in sireamline shape, Of particular importance is the fact that while the radial
slope of the streamlines i{s near zero at the succion surface it generally is several degrees positive
along the pressure surface and near mid-gap. This difference is crucial in transonic flows.
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Comparison to Fluoregcent Den:sity Measuremrts

A comprehensive series of measuremencs of . . flow in the test rotor have been carried out in
the M.I.T. Blowdown Compressor Facility. Thi. facility, which is described in reference 7, allows time
resolved aerodynamic testing of full scale ccnpressor stages at low cost. In a blowdown experimeat, the
rotor is brought up to speed in a vacuum, a ciaphragm is opened, and the test gas allowed to flow for a
time of the order of one tenth second, during which time the rotor is driven by its own inertia. A
"steady-state" test time of approximately 40 nill.seconds is provided during each test run.

A unique flow visualization study of the flow in through the test rotor has been reported by
Epstein (3). He was able to visualize the instantaneous static density field using a flourescent gas,

2, 3 butanedione, as a tracer. In this technique, the flow is illuminated along a plane using a dye laser.
When illuminated at the proper wavelength, 425nm, the tracer gas fluoresces within 107° seconds. The
intensity of the fluorescent emission, whe photographically recorded, indicates the density variatica in
the illuminated plane. Quantitive density maps are obtained by correcting the images for distortion axd
non~linearities in the illumination and imaging systems.

The visualized density in a plane with a radius ratio of 0.88 is shown in figure 9a; the fully
corrected density map is shown in figure 9b. The computed density contour map along the same plane is
shown in figure 10. The gas fluorescence technique determines only the relative density between points
in the flow and not the absclute density. For comparison with tl ' computed density field, the upstream
dersity in the fully corrected maps has been set to the computed value at that radius. The measured
density gradients are, of course, independent of the upstream density value. Comparison of figures 9b
and 10 shows that the flow expansion on the suction surface is accurately predicted both in magnitude and
shape. The flow expands to about 90 percent of the upstream density at a point midway between the lead-
ing edge and the passage shock. The spatial resolution of the passage shock is of course much finer in
the optical density measurements, but the sho:k strength is about the same in both cases, density ratio
of 1.35, and the shock falls at nearly the zaximum blade thickness. The flow visualization also shows
the passage shock to terminate in a lambda shock formation typical of a laminar shock-boundary layer as
would be expected for a snocck of this strength. A density ratio of about 1.1 is predicted for the
oblique shock standing in front of the rotor while the measured value is about 1.2. In addition the flow
visualization shows the bow shock to be detached. The computed shock strength is correct for an attached
oblique shock; however, a small decrease in rhe upstream Mach number would require that the computed shock
be detached as it is in figure 9a.

Experimental and computed densities in the r/r_ = 0.3D plane are shown in figures 11 and 12.
This plane is at a slightly larger radius than the design sonic radius. The passage shock remains strong
in both cases, density ratio of 1.3, and the flow expands on the suction surface to a density nearly equal
to the upstream density. The measured strength of the oblicue shock is large, density ratio of 1.25;
while, the computed shock strength is again gmaller, about 1.05. No evidence of boundary layer separation
is found at this radius. The important three dimensional n.tmre of this flow is illustrated by the fact
that the suction surface expansion does not continue from the blade leading edge up to the passage shock
as it would if the flow were two dimensional. The predicted minimum density point also occurs in this
same area although this fact is not clear from figure 11.

At a radius ratio of 0.70, figures 13 and 14, the character of the flow has markedly changed.
In the visualized flow, the bow shock has been replaced by a diffuse compression region. The computed
inlet Mach number is 1.08., The computed flow expands to a density ratio of 0.80, relative to the upstream
flow, at about the 35 percent chord point, as does the visualized flow. In both cases, the density rise
across the blade passage is 1.3.

These comparisons demonstrate that the inviscid computation accurately predicts the intra-blade
density rield upstream from obvious viscous phenomena like the passage shock - boundary layer interaction.
The only important difference is the consistent under prediction of the oblique shock strength. To
determine if this difference is due to insufficient grid resclution at the leading edge, the difference
in rotor total pressure ratio, or some other factor such as an unstarted blade passage will require
further work.

Comparison to Measured Rotor-Outlet Flow

Time resolved measurements of total pressure, static pressure, radial flow angle and pitchrise
flow angle behind the compressor rotor were determined using probes based on the miniature silicon-bonded
transducer diaphragms produced by the Kulite Corporation. Probes which can be used to resolve highly un-
steady three dimensional flow fields can be produced by cembining several of these diaphragms into one
probe body. The particular design used in these measurements 1s showm in schematic form in figuce 15,
This probe functions much like a five-hole wedye probe. While the Kulite diaphragms have a high natural
frequency, up to 150 KHZ, mechanical and aerodynamic phenomena limit the useful frequency responses to no
more than 10 times blade passing frequency or about 30 KHZ. The use of this probe is fully described in
reference (4).

The average performance of the test rotor was well predicted within the limitations of an in-
viscid flow analysis. Radial profiles of the computed and experimental total and static pressure catio,
theta averaged, are shown in figure 16. This figure shows that the average profiles are accurately
predicted even thaough the computed total pressure ratio is higher than the expermental value. A contour
plot of the computed total pressure ratio ip an r - 6 plane immediately downstre:m of the rotor is shown
in figure 17. Small deviations from periodicity with blade passing period in this map are artifacts from
the contour plostting routine. Figure 18 shows an experimentally determined total pressure map for the
same axial location. The basic radial zradient in this map is predicted accurately, but local details
particularly near the blade wakes are not predicted well. One unusual feature uf the flow, the paired
spikes in total pressure ratio near an r/r, of 0.89, does appear to have an invigcid origin since they
appear in both experimental and computed mdps.

The computed average flow angles in the relative reference frame are compared to the experisental
angles in figure 19, For r/r_ < 0.90, the predicted angles are generally one to two degrees lower han
tae measured values. For r/r_ > 0.90, the predicted angles are generally six to seven degrees lower than
tht measured values. Both thé time resolved pressure measurements and the gas density measurements
inafcated tha: an unsteady boundary layer separation is occurring at these radii.

Figure 20 shows the pitchwise variation of the computed velocity componente at a radius ratio
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cf G.75. TFigures 21 and 22 show time resolved Mach number components at a cowparable location. 1In
figure 21, the areas of low axial Mach number are the »igcous blade wakes. These wakes also have a large
excess of pitchwise velocity. Between these wakes the structure of the velocity field is reasonably well
predicted by the invisuid computation. In particular, the computed radizl velocity has a large cutward
component at the pressure surface. The measured radial velocity, figwxe 22, also has a large outward
component at the edge of the pressure side of the wake. Across the wake, its radial Mach number Jecreases
by 0.20 to 0.25 which means that a large cross flow velocity exists ingide the wake. Pitchwise and axial
Mach numbers between the wakes are generally consistent with figure 20. As the radius ratio increases,
the actual flow becomes nore and more domirmted by the blacde wakes and the separations produced by the
shock-boundary layer interaction. As this rransition occurs, the agreement hetween the ~omputed and the
experimental exit velocities becomes progressively poorer.

DISCUSSION

The comparisons in the previous sectizx indicate that the inviscid three dimensional computation
accurately models the flow through the test rotor upstream of obvious viscous phenomena like the shock-
boundary layer interaction. Where an inviscid core Flow exists downstream of the rotor, its details are
generally consistent with tne computed solution, but significant interact.on between the core flow and
the wakes occurs. Where bowadary layer separation and flow unsteadiness are importar+ flow features,
the inviscid computation does ot axxsrately piredant flow details as would be expected. A detailed
prediction of the rotor exit flow will vregeire accurate calculation of the three dimensional sevaration
region behind the passage shock as well o= the movement of the shed viscous wakes. However, mu.- of the
rocor aerodrnamics and blade pressure dmstzubution upstream of important viscous phenomena can be under-
stood with a purely inviscid analmsis.

The cost ¢f a three dimensional rotor calculag:on while large is not prohibitive. It is estiwma ed
that a fully converged solution for the test rotor would require approximately 25 hour: _. CPU time om an
IBM 370/168. Such an expenditure, whzlie inappropriate for preliminary design studies, is a small fraction
of the resources expended by the major engine companies 2u mew fan or compressor stage designs. It is
entirely possible that the increasas understanding of the flow will enable performance improvements which
will fully justify the expense of tne computatzon. This is yet to be demonstrated.

Time-marching methods such as MacCo.mack's method have s=ceived consideracle criticism because of
large solution times compared te relaxation metheds or impaicit methods, fur tyrical relaxation solutions
see references 8 and 9. In gener=l the time marching methods appear to be as much as 2 or 3 orders of
magnitude slower than relaxation methods for the same proplems. However, general -elaxation methods fr-—
the Eulerian equations are not awailable; where as, the full Bulerian o Navier-Stzokes equations can be
solved by time marching, hyperbolic, methods. If accurate solutions to problems such as the -ignly loaded
trausonic compressor rotor are required, the time—marching methods are perhaps the only availabls methods.
Tneir total solution costs can be reauced by providing an initial -ondition guess as close to the <rue
solution as possible, perhaps providea by relaxation or implicit solutions for linearized or irrstarional
flow fields.
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