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I. INTRODUCTION

The continuing search for lighter, stronger, more economical
missile structures has led to the investigation of fiber reinforced
composites as a possible applicable type of construction. The inherent
properties of this material pose many difficult problems for the designer
and analyst. Tests on actual structures have prover :~ at this material
is unlike conventional structural materials in many respects. Although
much has been learned about the material behavior in the past few years,
there are still many areas that are unknown and unpredictable.

An initial effort [11 used a straight line element for a shell of
revolution and included shear deformations. This gave very good results
for single-layered shells.

Nickell and Sato [21 used a curved shell element but did not con-
sider transverse shear deformations. A single layered shell, using a
curved shell element and considering transverse shear, has been com-
pleted [31. Several selected numerical examples were solved and the
solutions are in good agreement with known results.

In this effort, the finite element method is used with a curved
shell element considering a laminated shell of revolution and transverse
shear deformations. The field eouations similar to Reissner’s theory
of thick plates [41 are used as a guideline for formulating the shear
deformation degree of freedom. The procedure employed is similar to
that of Clough and Felippa 15]. The classical Kirchof f-Love assumption
for normals to the midsurface is relaxed in favor of the assumed shear
deformation mode.

II. ELEMENT GEOMETRY

The shell to be considered is axisyimuetric ; therefore, it is
sufficient to define only the shape of its meridional curve. The finite
element method will be used for this analysis. The element is shown in
Figure 1.

~1~

For this analysts , x - y are the local rectilinear coordinates,
and r - z are the global coordinates. The angles shown in Figure 1

• are related by the relation

S . / . (1)

S 
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Figure 1. Curved shell element.

The angle 4 is the angle between the normal to the reference
surface and the axis of revolution. The angle 4 is the angle between
the chord of the element and the z-axis. The angle ~ is defined to
be the angle between the chord line (the x-axis) and the tangent to
the curved surface.

From Equation (1),

sin ~ — coo (~ + *) = coo • cos ~Ji 
- sin • sin *

(2)
coo ~ = sin (~ + ~,) 

= sin $ coo ~, + coo • sin ~jt
To approximate the meridional curve, the following substitute

curve is assumed:

• 2 3
Y = x ( l _

~~) (ai+ a 2~~~+ a 3~~~~+ a 4~~~ ) 
(3)

where £ — chord length of the element. (0 < x < £)

4
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Differentiating Equation (3) with respect to x

d 2(a
2 

- a1) 3(a3 
- a2) 2 

4(a
4 

- a3) ~ 
5a
4 ~a + x +—  x + .~ x - --r x

dx 1 £ 
£~
‘

(4)

~2 2(a 2 - a 1) 6(a 3 - a 2 ) l2(a 4
;a

3) 2 20a4 3

dx
2 ~2 2 £

• The constants a1, a2, a3, and a4 can be determined by evaluating

Equations (4) at the end points

a 1 tan~~ 1

£ 3a2 = tan - sec

(5)

a3 
= 

~~~~~

— sec
3
~2 

+ j~
— sec3~~ - 4 tan 

~2 
- 5 tan

a4 
~~2 2 

- 

~~ 
sec3~1 + 3(tan + tan

The following geometrical relations are given with respect to the
element:

• ~z = r  - r

j L~Z Z
1

Z
2

• J~~~2 + (z~z)
2 (6)

.

After the substitute curve lies been established, all the geometric
quantities can be written as follows:

tan 13 ’.
~~~ I . ’

r — r 1 + x s in~~~+ y c os~~

5 1
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H ~~~° sin*+tan~~~cos * (7)

• ~~~~~~~~~~~~~~~ r .. i sec ~dx dS dx R

• Since

2
= (tan ~

) = sec2
~ ~~

dx

therefore

dx
_
R 00

~~~

The quantity d~/dS is negative since ~ is decreasing as S is increasing.

Therefore

2
• ~j= -~~~sec3~ (8)

dx

and 

coo • = sin ~ cog ~ + cos ~ sin *
sin$ cos~~~cos *~~~sin~~~sin * . (9)

III. TRANSFORMATION OF COORDINAT E SYSTEMS

The displacement vector of a material point on the midsurface
in the local principal curvilinear shell coordinate is denoted by

~~

. ; 
{f )T - Lu , v , X , (10)

F
6



r~— ~~~~~~~ ~~~~~~

where

u = the displacement along the meridian.

w = the transver se (normal) disp lacement.

= the rotation about a meridional tangent.

= shear deformation.

The displacement components which refer to the local rectilinear
coordinates, x-y , are

{f }T _ [u , w , ;, .v l (11)r r r r r

and to the global coordinates , R-Z , are

~f}T = [u , w , ., ~
] . (12)

The transformation between these components can be seen as
follows:

E c 1 1 
~~~~

(13)
• 

~~~ 
= E~~1 {f)

where

~: cos f, sizz~~ 0 0

-sin~~~cos~~ 0 0
— (14)

0 0 1 0

0 0 0 1

and

in ~ -cos ~ 0 0

cos t stn~ I’ 0 0
— . (l5)

0 0 1 0

0 0 0 1

7
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IV. STRAIN-DISPLACEMENT RELATIONS

The strain-displacement relations can be written as

du w• C C
e — + —1 dS R

l
e2 = j (u

~~
cos J

~
+ w

~~
sin4)

(16)

K - 
CO O 4 c 

- 
c

2 r \dS R/

71.y 7

The strains defined in Equations (16) are now transformed into the
local rectilinear coordinates as follows (recall that dS = cc?~~ ~ 

and

2 
dw

e1 -i—— coo ~~ + -i—— coo ~ sin ~
1e2

=— (u sin~ p + w c o s iV)

2 2

K
1 

— _cos3~~~4 
2 cos~~ 5th ~ L + sin ~ cos

2
~~~.4 

(17)

+ sin
2
~~ - coa

2
~ ~ - 

dx

K
2 

- ~~~ 
(
cos~~ 

_ .t - sin ~ coo ~ ....i ) -

7ly 7r

8
R4:



V. SHELL DISPLACEMENTS

U = U C O 8
~~~

+ W
r

8ifl
~~

-U sin ~ + Wr 
COO ~

~~
c (

~~
c)dx 

dw 

(18)

= 

~~ 
( -~-~~~tn 

dw 

- U
r 

coo - w

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

w
r

The displacement f ield is assumed to be represented by

• u = a + a x
r 1 2

= G
3 

+ + 05x2 
+ cz

6
x
3

dw u
= - —

~~ 19
dS r

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ur cos ~ 
W
r stfl~~

- 
r 

- 
r

du dv
= - ~_L sin ~ cos ~ + -~~

-
~~ cos2~

— - sin ~ cos ~ + (a4 + 2 a5x + 3 %x
2
) cos~~

:~

i ;



In matr ix notation this can be written as:

u I x 0 0 0 0 0 0 
a
1

r a
2

o o i. x x
2 

x
3 

0 ~r a
4

2 2 2 2  a 
(20)

X 0 -Sc 0 ~ 2xc 3x c 0 0 a5
6

y 0 0 0 0  0 0 l x  
a7

• a8

where

• 5 = sin ~~~, C = cos ~

This can be written symbolically as

= [G 1 {a} (21)

where {a.} is the generalized coordinates vector for the cu:ved shell
element.

The shell displacements shown in Equation (20) represent 4 degrees
of freedom at a node, two translation, two rotation. The 8 degrees of
freedom connected with the nodes of the element are written as the
displacement vector

w 1, X 1, ~~~ 
u 2, w 2 , X 2, 

~~~ 
(22)

The generalized displacements {o~ are related to the nodal point
displacement vector (

~
) by

{c~ — [ A l  b~~ . (23)

{a.} is evaluated as follows:

1) At x O

• 
tX

~~~~~~~
U
tI

a — v3 rl

~~~ ~~~ + a4 cos
2
~ 1 ri

10
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2) A t x — ~~

cr1 +cy
= u 2

a3 + 042 + 052
2 + a6.e3 =

+ 
~~ 

= 7r2

- 

~ 
sin 

~2 
cos 

~2 
+ U

4 
cos

2
J32 + 2a~2 cos

2
~32 + 306

22 ~~~~ = X 2.

Solving this system of equations gives

a = t i
• • I

U 2 - u
1

• a = w
3 ri

• 0
4 

= 
ri + sin cos~~1 ~~~ 

U
i)

cos

ftan 
~2 

+ 2 tan (tan 
~2 

+ 2 tan
a = u  I — I - u I5 r l \  • ~2 / r2

\ 
g2

- W
ri + 4 W 2 

- 

~r1 

~~ 
~~~~ 

- 

~r2 

~~

:~ 
u

1
( tan 

~2 
+ tan 

~~~ 
U
r2 

(tan 
~2 

+ tan
- 3 + 3

0
7 ~~~ 

V
1 

- Wr2 + ~r1 (2
2 
cos2~1) 

+ X
2 
(
~~~~

1
2~~
) •

7r2~~~
’rl• a = —

8 £

Il
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Therefore , from (23)

1 0 0 0 0 0 0 0

- :
~ 

0 0 0 0 0 0

0 1 0 0 0 0 0 C)

-a1 0 1 i 
0 a1 

0 0 0

a2 
- —~~ -2b2 0 -a2 

—
~~~ -b4 0

• [ A J =  (24)
r 

-a3 
.2 b

3 
0 a

3 
- -

~~~~ b
5 

0

0 0 0 1 0 0 0 0

• 0 0 -~~~~ 0 0 0

where

tan~~1
a1 = 

£

a2 
= 

2 tan tan

:: ~ tan tan

coo

I -
•

b2
= 2£ cos

b
3
= 

£
2 ~2 

~l

‘! 12

L
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b4 =
£ cos f~

1
b5 — 22 cos

• The transformation of ~br
}e to the global coordinate is given

by

= ER ) ~~ (25a)

where

— —U
1

vi
V
1

• e{
~
) = (25b)

~
.12

• V
2

2

.
~~ —

and

stn~~ -cos~ jr 0 0 0 0 0 0

cos sin 4 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0
ER) —

0 0 0 0 sin 
~ 

-coo 4c 0 0

• 0 0 0 0 cos * sin~~r 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
-

(26)

• ~~ 
13

c
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Substituting (25) into (23) gives

{a) — (Al 
~~~~ 

(Al (RI {~)~ = [A] ~~~ (27)

where

• [A] — (A l ER]

sin~ . -CoS \~ 0 0 0 0 C 0

Sifl ), £~!_~i 
0 0 Li1~_~L -COS ~[ 0 0

/
cos . sin . 0 0 0 0 0 0

-a 1 sin a 1 cos , b1 0 a1 sin ~. -a 1 cos ~ 0 0

sin -a2 cos , sin ~ a2 cos ~

IA I — -3 cos ~ -~~ ~~° -2b ~ 
+ ~ cos ~ + ~ -b 0 (28)

.2 2 ,2 ,2 4

-a
3 

sin - a3 cos . a3 sin ~ ~5
3 

COS ‘+

+ 2 c o g ~~ + 2 s L n , 
b 0 - 2 c o s ~~ - 2 s L n , b 0

o 0 0 1 0 0 0 0

o o 0 -~~~~ 0 0 0

VI. STRESS-STRAIN RELATIONS

For an axisynin.etric shell of revolution subjected to axisym-
metric loadings , the stress resultants and couples can be expressed as

N1 E11 E12 E13 E14 0 e1

~ ~~~1 
N2 E21 E22 E23 E24 0 e2

N1 
= E31 E32 E33 E34 0 . (29)

E E E E 0 /<41 42 43 44 2

~h 0 0 0 E55

14
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The quantities are related to the principal curvilinear coordinate
system with 1 as meridional direction and 2 as circumferential direction.
Symbolically this can be written as

~s) — (El {€ ) (30)

where [EJ is the elasticity matrix. The detail derivation of [E] is given
in Appendix A.

Substituting (19) into (17) gives

(€ ) — [• ‘l {o)

= [
~~

‘ ] [Al ~~ = [B] ~5)e (31)

where

= [~~‘] [A]

dur— S

dx

dv 2

dy
— 0dx 8

2
d v

dx2 5 6

2d u
r

—.1= 0
dx

e1 
— 0

2 
cos2~ + (cx4 + 2cr5 x + 3c~ x2 ) cos ~ sin

e2 =~~~[(a1 +~~~~
x s in~ r + a

3 + a4 x + a 5 x
2 + c r~~x

3
cos *]

K 1 — -cos3~ (205 
+ 606 

x) 2 cos~~~sin ~ (04 + 2% x+ 3a6 x2 )

+ si~~J~~c~~~~~~ (0) + ~~~~ (0
2) 

- a8 coo ~ 

•
.
~ 

-



________________________ 
_ _ _  

~~~~~~~~~~ -~~~~
-

K
2 

— - ~~~ [cos~ ~ (a4 + 2cr5 x + 3C~ x
2) - sin ~ coo 

~ 02]
- 

COB $ (a7 + a 8 x)

y 1 = -(a7 +a 8 x)

o ~~2 5 5 ~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~ 0 0

~~~~ L L?. 
~~~

• -a ,.~~ (32)
~~~~~~~~~~ .te~~b-.o.

2 S -2 ..*~~ St.~~ 4 .c . . -Ss tn I ~~~~~~~~~~~~~ - -
It St St St

• 0 • ~~~ 0 •~~. ~ -~ .e.. 2 - 2 ~ ~~~~~~~

- 0 0 0 0 0 0 .1 -.

From Equations (13) and (21)

= [ 1  {
~ = ($3 [A] (~}~

= kr]
’ 
~~r
} — ~q 1

T 

~~~

{
~
) — [qJ

T [•l [A] {6)e (33)

where

(NI a [c l1 [$] (Al . (34)

The element stiffness matrix and equivalent nodal force may be
obtained from the following formulas :

[k] — Ij [BIT [El (El di~ (35)

- 
{F;) - [NI

T P dA (36)

~t

• • 16
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where {p) is the surface traction vector. The derivation of Equations
• (35) and (36) is given in Appendix B.

1 0 0 0

x 0 -Sc 0

0 1 0 0

2
T 0 X C 0

• 
[$]  = (37)

0 x2 2 x c 2 0

3 2 2• 0 x 3x c 0

0 0 0 1

2 0

sin~ ji -cOs~~i 0 0

cos~ jr sin* 0 0
[q 1= (38)r 0 0 1 0

o o 0 1

sin ~If -cos ~ 0 0

x sin ~ -x coo ~Ir -Sc 0

cos ~ sin ~ 0 0
2

T ~ coo ~ x sin ii C 0
[4’) [q 3 =  (39)

x2 coo * ic2 
sin ~y 2 x c2 0

x3 cos 4’ x
3
sin 4r 3x 2 c2 0

17
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• p
x

~~~ 
Py (40)

0

where

Pt C05 ~~~ -. p sin

= Pt sin ~ + p coo ~

= (41)

{
~) = [q~ J

T 

~~~ 
(42)

sin * Cos * 0 0

-Cos~~, sin~~i 0 0 p
= (43)

0 0 1 0 0

0 0 0 1 0

sin ~ + p~ coo *

~x ~~~ * + Py 0th * :1
= (44 )

0

0

18
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~~ 
~ 2 

+ ~ cos ~ sin t~ + p cos2 
~ ‘ - p sin t4 cos ii,

- 
I 

x sin2 
. + p~ X COB ~ sin ~ + K COB

2 
\~ - Py K COB 1~ sin t

cos i. sin ~. + p cos2 

~ 

p cos l~ sin V + p sin2 ~ 

2
x cos sin ~. + p X Cos ~ - p

~ 
x sin i COB ~ + p sin[q I ~~ — c (45)

r 2 2 2 2 2 2x sin cos ~. + p x cos ~. - p x sin ~. cos t + p x sin ~

~~ 
sin ~. cos . + p x

3 cos2 
- p sin , cos ~ + p x3 sin 2

-

p x

) . (46)
2

p x

3
py

x

• 0

• 0
- • . •— S

-
. 

VII. RESULTS AND CONCLUSIONS

Various appropriate structures were analyzed by the computer
code for this development. Comparisons were made with known solutions
for single layered structures. The results were extremely close.
Effort is now being made to find some results for laminated structures
80 that a comparison can be made.

1;; 19 
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The accuracy obtained by this method depends directly on the
- extent to which the assumed displacement patterns are able to repro-

duce the deformation actually developed within the element. Since the
chosen displacement patterns satisfy the requirements of completeness
and conformity (continuity of displacement at element boundary) as the
size of the element decreases indefinitely , the solution obtained from
the minimization of potential energy converges to the exact solution.

f • 
There still remains a need to add geometric and material nonlineari-

ties to this analysis. The material quickly becomes nonlinear as the
matrix material begins to crack or “craze” while the fibers are still

I intact. Also the capability for buckling prediction is one of the
major needs for this type construction. These items are now being
investigated and will be the subject of a later report.

_ .
~ 1
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Appendix A.

ELASTICITY MATRIX

Individual curved finite elements can , in general , be composed of
a number of anisotropic layers of varying tiickness along the meridional
coordinate. For a single lamina , consider ing shear deforma t ions , the
constitutive relation is given as

0 0 0

~12 Q~2 0 0 0 
~T

TLT = 0 0 Qg~4 0 0 7LT (A-i)

T
L~ 

0 0 0 Q~ 0

0 0 0 Q~6 ~~~

where the transverse norma l stress o~ has been omitted and the laminae

are orthotrop ic with respect to the principal elastic axes L-T . These
axes need not coincide with the axes of the curvilinear coordinate
system 1-2 , (Figure A-l), (1 is the meridional direction) and

= E
L/(l 

- 11LT ‘
~TL~

~
i2 = VLT ET/ 

- VLT VTL )

: ;TL EL/ (I “TL VLT) (A-2)

22 T ~ VLT ‘TL

Q
~~~

= G LT

Q
~5

= G
~~

%6 G1~

- .4.

21
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Figure A-I. Material axes.

Ec~uation (A-I) can also be written for the Kth layer in the following
forms:

~11 ~i2 0

5 0 1T

~LT k 0 0 
k 
7LT (A-3)

and

Q~5 0

T
T~ k 

= 

0 k 7T~ k

To develop a theory for structural laminates with individual layers
having their elastic axes oriented at various angles relative to the
coordinate axes, the stress-strain Equations (A-3) must be rotated
through the positive angle 9 so that the transformed stress-strain
equations are

°1 ~ll ~l2 ~l4 ~1 -

0
2 

— 
~l2 ~22 £2 

(A-4)

r l2Jk ~lL, ~24 
Q44 k ~l2 k

22

k



-——...-—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ‘~~~~~~~~~
‘ _  

.-. ~... ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~

and

~ 1 ~
k 0 ‘

~66j k ~~ k

where

~~ 
=Q ;1 

cos4 ~ + 2(Q12 + 2 Q~~) sin
2 -9 coo2 9 + Q~ sin4

= + 
~~2 

- ~ Q~~) sin
2 

-
~ cos2 ) + Q~ (sink 

9 + cos
4 
9)

= 

~~~ 
sink + 2(Q12 + 2 Q~~) sin2 9 coo

2 
9 + Q~ cos4 3 (A-5)

= 

~~1l 
+ - 2 Q~~ ) sin cog3 ~ + (Q~2 - Q~2 + 2 Q~~) sin

3 9 cos 9

= - Q~2 
- 2 Q~~) sin

3 3 coo ~ + (Q~2 - Q~ + 2 Q~4) sin 9 coo
3 
9

= + - 2 Q~2 - 2 Q~~) sin
2 9 cos2 -9 + Q~~ (sin4 9 coo4 9)

Q55 
= Q55

4 Substituting the midsurface strain and curvatures into Equations (A-4)
- 

• the following expression is obtained :

0
1 e1 K 1

• 
0
2 

— 
~~ k e2 + 

~~~ k K
2 (A-6)

2e
12 2K12

and 
. 

-

-

t14• 
= 

Q55 0 
~~~ 

•

0

I
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• By integrating over the total thickness of the laminate , the
generalized stress resultants in terms of midsurface strain and curva-
ture are given as

N1 
— — 

e
1

N2 
[C] [D*1 0 e2

N12 
2e 12

N1 K 1
-• 

( A — 7 )

~ N2 [D*1 [D) 0 K 2

2K12

1 0 0 [SI

where

(C] = 

~~l 
N (k)

1 (hk - hk l )

[D*3 ~ [~
(k) ] (h~ -

k:l 
(A-8)

[DI = 

m~ 

~‘ [Q (k) ] (h~ -

• [SI = ~ [~
(k) ] (hk - hk l )k 1

in which hk and Ilk_I = the distances, respectively, from the rnidsurface

to the inner and outer surfaces of the k-th layer.

24
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For an axisy~~etrjc shell of revolution subjected to axisyssnetricloadings , N12 M
12 Q2 = e12 

= K 12 = 0.

Hence ,

• 

~ 
rCI [D*} 0

= 

(A-9)
[D*] E n)  0

Q 1 0 0 S55 ~~~

or symbolically

{s} = [ E] {
~} . 

(A- b )

25
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Appendix B.

ELEMENT STIFFNESS MATRIX

The element stiffness matrix is found by writing the total poten-
tial energy of the axisymmetric shell of revolution and minimizing it
for the imposed constraints and loading conditions .

The potential energy for a linear elastic shell of revolution in
• the absence of thermal and body forces can be formulated as follows :

= j y r  ~. {~)
T 

~~ 
- {f}” {P) dA (B-I)

where the vectors {€} , {
~

} , {f), and {p} represent the strain , stress ,
disp lacement , and equivalent surface traction vectors , respectively.

Introducing the stress resultant vector

{s} = t {a) (B-2 )

where t is the thickness of the shell , Equation (B-i) may be written as

= r~~ 
I ~~)T {s) ~ - f ;  {~}T {p) dA . (B-3)

A 1

The first integral is evaluated over the entire volume V of the
shell and the second over the portion A 1 

of the midsurface of the shell ,
where the equivalent surface tractions are prescribed . Since the state

• of disp lacement throughout the shell is defined element by element, the
total potential energy may be considered as the sum of the potential
energies of all individua l elements , i.e.,

~
- e

• ~1 =  1
e

The potentia l energy contribution of element “e” will now be
considered . The state of disp lacement defined for the element in

• local rectilinear coordinates x-y can be expressed in matrix form
in Equation (21) as

~~~~~ 
= E~~ {a) = [4’](A J 

~7 . (B-4) 
• 

•
~~ -

4. 
_ _

- -~~
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Transformation of into the global coordinate system may be
obtained from Equation (13)

{
~) = [ q ] T 

~~~~ 
= [NJ {8 )e 

(B-5)

where

[N] = [qr]
T (~ 1 [ A ]  

(B-6)

and the column vector {~~}e represents the eight discrete parameters
• (nodal point displacements) of the element as given in Equation (25b).The matrix [NJ is a function of spatial coordinates and describes thedefined displacement pattern.

Substituting Equation (27) into Equation (31) the followin8 strain-displacement relations are obtained :

= [B] {~)e 
( B- 7 )

where
• [B] = (~‘I (A] 

(B-8)
Equation (B-8) is a matrix relating the nodal point displacement vectorto the strain vector. The elastic stress-strain relations can beexpressed as

{s) = (E J {€) 
(B—9)

where [EJ is a function of the elastic properties ~f the element .• Each element can be assigned different elastic properties. If therelations in Equations (B-9), (B-5) and (B-7) are substituted into(B-3), the potential energy contribution for the element becomes
• 5e = ~ {~eJT [BI T [E) [B ) ~~ej dv 

- f p ~~~~ ENJ
T {p} dA (B-b )- 

• 

V A
1e

where V
e is the volume of the element and A 1 is that part of the mid-

esurface area of the element which coincides with the midsurface area A1of the shell over which the equivalent surface tract ions are prescribed.

28



• Since the discrete parameters {b~) are not a function of spatial
coordinates, the potential energy of the element may be written as

e 
= {5e}T 

~ff f I [BI T (El FBI dv] {~~) - {5e}T j ~ [N]~ {
~
) dA. (B-li)

2 t j Ale

Since the assumed displacement patterns for each element satisfy
various requirements such as completeness and conformity, the best

• values that can be obtained for the total nodal point displacements
of the finite element representation of shells of revolution are those
that minimize the total potential energy o~ çhe shell under the con-
straints imposed ; i.e., the best value of 1.51 are those that satisfy
the system of linear equations

= 0 (B-12)

~
{ 5)

where {s) is the total nodal displacement vector of the system.

In forming the system of Equations (B-l2), it is convenient to
have an expression for the spatial derivatives of the potential energy
of each element “e” with respect to its own nodal point displacement

Ivector iS I , i. e . ,

- e - . e - e ~~~~e e e e e
(B-l3)

By use of Equation (B-b ), this expression can be obtained as

[BI
T 

[E)[B1 {
~~) [NI

T {p) 
dA] 

. (B-l4)

The terms in the first and second brackets are normally defined as

the element stiffness matrix IK
e] and the element generalized nodal

point force F ), respectively. Hence,

IK
e] = f i f  [BI

T [E][B] (B—l5)
Ve

{Fe) = i t  [NI
T {P) dA . (B-l6) 

•

A 1• e

‘
~ 29
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By properly combining the submatrices in Equation (B-14) obtained
• • for each element, the total matrix equation representing Equation (B-l2)

can be constructed as

[K] {
~} = {F) (B-17)

and then solved for the nodal point displacements. Once the nodal point
displacements are obtained , the corresponding stress resultants , stresses,
and strains for the defined displacement patterns can be calculated from
Equations (B-7) and (B-9).

• If Equation (8-8) is substituted into Equation (B-15) and the
volume increment for a shell of revolution is taken as

dV = 2itt R(x) dx, (B-18)

then the element stiffness matrix for the axisynunetric shell element
takes the form

EK
e
] 2x f[BI

T 
[El (B] R(x) dx

= 2~ [Al
T 

[GJ [A] (B-19)

• where
£

[CI = J~,I1 T [El [$ ‘l R(x) dx . (B-20)

The integration is over the chord length of the meridian cross
section of element.

J It is assumed that the equivalent surface traction over the mid-
surface area A1 where tractions are prescribed varies linearly betweenthe two nodal circles I and J. That is,

{~~)T = [0 (P + P’ x) 0 01 (8-21)

where 
~~~~~~ 

is the surface traction vector expressed in local curvilinear

coordinates. Transforming into global coordinates the following ia I -
~• obtained:

= k~~
’r 1 q j

T 

~
‘c~ 

(8-22)
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Substituting Equations (B-6) and (B-22) into Equation (B-l6) the
generalized element nodal force vector becomes

or 

~~~ = 2rr ~~ [A I
T 

1~ 1
T 

~~~ 
~q 1

T ~q J
T {

~‘) R(x) dx (B-23)

(Fe) = 27t(A
rI
T 
t~~~

T 
[cd

T {P} R(x) dx

where

-sin ~ -x sin ~

-x sin ~ -x sin ~

cos ~ x cos

2
T T x cos~~ X cos~~[fl Eq 1 {p ) = P 

~ ~+ P ’ ,
c c n 2 n

x cos~~~ x coS~~

3 4x CoS~~ x cos~~

0 0

• 0 0

~1
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