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I INTRODUCTION

The continuing search for lighter, stronger, more economical
missile structures has led to the investigation of fiber reinforced
composites as a possible applicable type of construction. The inherent
properties of this material pose many difficult problems for the designer
and analyst, Tests on actual structures have proven :hat this material
is unlike conventional structural materials in many respects. Although
much has been learned about the material behavior in the past few years,
there are still many areas that are unknown and unpredictable.

An initial effort [1] used a straight line element for a shell of
revolution and included shear deformations, This gave very good results
for single-layered shells,

Nickell and Sato [2] used a curved shell element but did not con-
sider transverse shear deformations. A single layered shell, using a
curved shell element and considering transverse shear, has been com-

pleted [3]. Several selected numerical examples were solved and the

solutions are in good agreement with known results.

In this effort, the finite element method is used with a curved
shell element considering a laminated shell of revolution and transverse
shear deformations. The field equations similar to Reissner's theory

of thick plates [4] are used as a guideline for formulating the shear
deformation degree of freedom, The procedure employed is similar to
that of Clough and Felippa [5]. The classical Kirchoff-Love assumption

for normals to the midsurface is relaxed in favor of the assumed shear

deformation mode.

i. ELEMENT GEOMETRY

The shell to be considered is axisymmetric; therefore, it is

sufficient to define only the shape of its meridional curve. The finite
element method will be used for this analysis. The element is shown in
Figure 1.

For this analysis, X - y are the local rectilinear coordinates,

and r - z are the global coordinates. The angles shown in Figure 1
are related by the relation

OGP 2 . (1)
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Figure 1. Curved shell element.

The angle ¢ is the angle between the normal to the reference
surface and the axis of revolution. The angle ¥ is the angle between
the chord of the element and the z-axis. The angle P is defined to
be the angle between the chord line (the x-axis) and the tangent to
the curved surface.

From Equation (1),

gin B=cos (¢ + ¥) = cos ¢ cos ¥ -~ sin ¢ sin ¥

(2)
cos B=1s8in (¢ + §) = sin ¢ cos ¥ + cos ¢ sin V -
To approximate the meridional curve, the following substitute
curve is assumed:
X X x2 x3
y”‘(l"e' (‘1+’2?+‘3_2+°4_3) (3)
y L

where £ = chord length of the element, (0K x< )
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Differentiating Equation (3) with respect to x

,v v ‘,,
et e it

SR e W Tl e s Tl L T
‘ ax 1 ) 2 o 4
k] (%)
: 2 2a- - a,) 6(a., - &) 12(a, - a,) 20a
b dy 11 1 S i b x
2- 7 + 2 X + 3 X - 4 X
dx 2 £ 2

The constants a, a,, ag, and a, can be determined by evaluating

Equations (4) at the end points

a, = tan Bl
o 2 3
B a, = tan 61 - Eﬁ; sec Bl
(5)
NS g ke Giih . 5
aq = 2R2 sec Ez + R1 sec ﬁl 4 tan Bz 5 tan Bl
a;, = i sec36 - e sec3ﬁ + 3(tan 3, + tan B, )
4 2R2 2 R1 1 1 2 "
The following geometrical relations are given with respect to the
7 element:
o = r, - r1
Az = zy - 2z,

: = Jen? + (a2)? )

cos | = %f &

After the substitute curve has been established, all the geometric
quantities can be written as follows:

tan B = %i

r=r + xs8in vV + y cos ¥
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3 = sin ¥ + tan B cos ¥ (7)
d _ 4

-l e~

dp . dBds , L sec B .

dx dSdx R

Since
dy _
ax tan B
2
&3 .4 = seclp 9B
2 pre (tan B) = sec B & 7
dx
therefore
a o . L
ax R sec B .

The quantity dB/dS is negative since B is decreasing as S is increasing,

Therefore
g ¥
;—}=-Esec5 (8)
X

and

cos ¢ = gsin B cos ¥V + cos B sin V¥
sin ¢ = cos B cos ¥ - sin B sin V é 9)

1. TRANSFORMATION OF COORDINATE SYSTEMS

The displacement vector of a material point on the midsurface
in the local principal curvilinear shell coordinate is denoted by

{fc}T = [uco wc) xc’ 701 (10)
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o, the displacement along the meridian,

v, = the transverse (normal) displacement.

Xc = the rotation about a meridional tangent.
7c = shear deformation,

The displacement components which refer to the local rectilinear
coordinates, x-y, are

{ Y ;
\fr} = [ur, W s Vr] (11)

and to the global coordinates, R-Z, are

{837 = [o, w, w91 . (12)

The transformation between these components can be seen as
follows:

i z ‘}
1fc} (q,] {fr,
4 (13)
i |
£ ) = [q ) 18}
where
fcos £ sin £ 0 07
-sin® cos 8 O 0
[qc] - (14)
0 0 10
| 0 0 0o 1}
and
[sin ¥ -cos ¥ 0 OW
cos V¥ sinVv 0 O
[qr] - . (15)
0 0 1 0
| 0 0 g 1]




v. STRAIN-DISPLACEMENT RELATIONS

The strain-displacement relations can be written as

TP e EU A 2 6 e e e

i
i
| } du v,
§ Q" HTR |
H
P 1
:| e2=;(uccos¢+w sin ¢)
é (16) ]
-‘" Do e
i ‘ 1 as \ds B
B
1 Lo
': 2 r ds R
i 3
The strains defined in Equations (16) are now transformed into the
local rectilinear coordinates as follows (recall that dS = codst and
S
z ﬂ > Bl W R).
! dur 2 dwr
; e1 b cos B-l——&;cos g sin B
e =-l(u sin ¥ + w_ cos V)
b 2 r r r
- | d"w dw d"u
k. 3 K, = -cos3B £ .4sces Peln bl —L + sin B coszs LS an
B 1 2 R dx 2
| dx 1 dx
" 2 2, du_ dy
sin - COS o r
, o Ry " a Pk

K -.co8? coszﬂﬂ-sinﬁcos Bf:!l -go8d,
r dx dx r

71y - '7!. .
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V. SHELL DISPLACEMENTS

u, =u, cos B+ v sin B

o sin B + v cos B

dwc (dwc) dx
T “\a&/ & (18)
du dw
g __£ 5 _-1_' .d_é = i Q
s (- s sin B + 3% cos B - u,_ cos B ax ¥, 8in B ax
dur dwr u,
= cos P (- -a;‘-sin 5+F;cos B+T

Ve
+ = tan B) .
The displacement field is assumed to be represented by

u =0 + a.x

r 1 2
BT : 2 3
wr-Ol3+O_4x+C¢5x +C16x
dwc u.
X8 "7 (19)

dur dwt ur L
= cos B -Fx—sin B+a-cos 5+-r—+?tnn B)

-urCOSQ_wrsiné

r ?
du dw
O - t 2,
- sinBcos B + ey cos B

, 2 2
=-02 sin B cos B + (aa+2&5x+3a6x)cos g

‘Yr"Cl7+C18x .




In matrix notation this can be written as:

u Fy w8 B n 0 o ok 4%
r o
2
2 3 (6
wr 0 0 1 X b4 b'4 0 0 02
= (20)
X A ias Bet Bmet EEtat or i o5
6
y s R e 0 i x 2
Jr J og
where
s =sin B, ¢ = cos B .
This can be written symbolically as
e} =19 {c} (21)

where {O} is the generalized coordinates vector for the curved shell
element.

The shell displacements shown in Equation (20) represent 4 degrees
of freedom at a node, two translation, two rotation. The 8 degrees of
freedom connected with the nodes of the element are written as the
displacement vector

e\T <
{Gr} = [url’ Yr1? Xrl’ Tr1? Yr2 Yr2? Xr2’ 7r2] 3 RE29

The generalized displacements {O} are related to the nodal point
displacement vector {Se} by

{a} = (A {a:} ) (23)

{o} is evaluated as follows:

1) At x=0

L TS |

5 "

a7 "7

-Q sin Bl cos Bl + 0 coszﬁ1 = Vrl
10

'

z
£
;‘ ‘5
B3
4 ~
;\»
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Solving

At x = £
+ =
Oﬁl Ur2
2 3
+C¥41+Qsﬂ +Ct6Z w2
+0’8i7=7r2
-G, sin B, cos B, + & coszﬁ + 204 coszﬁ + 3¢ Zz c032B =
2 2 2 4 2 5 2 6 2
this system of equations gives
=url
e it
2
% wr1
u -u
= r2 rl)
3 le + sin P cos 51 ( 7
2
cos 51
i tan EZ + 2 tan Bl o tan ﬁ? + 2 tan Bl
rl ) 52 r2 22
3 3 2 1
Sk e e =%
22 rl 32 r2 rl p 008251 r2 P coszﬁz
Uy (tan 62 + tan EI) u, (tan bz + tan ﬁl)
e 5 T oy
2 2
2 2 1 1
+ Sw. e+ X + X
23 rl 23 r2 rl P coszﬁl r2 ’ coszﬁz
= yrl
gL N |
7 .
11

fo'

o

o
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where

Therefore, from (23)

1 0
1
= 7 0
0 1
-a, 0
2 .3
2 52
[a] = -
3 Z3
0 0
0 0
e
5 tan Bl
G

2 tan Bl + tan 82

z2

tan 61 + tan Ez

12

= -

0 0

0 0

0 0

0 0

3

L -b

7 4
2

-= b
S

0 0

0 0

(24)
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1
b, =
3 £ c032 ﬁz
1
b, = —/————— i
? 2 cos2 62

The transformation of {Sr}e to the global coordinate {G}e is given

by
{» }€ = [R] 15)¢
where
Y
1
=)
v
oL
¥
s
Qa
2
*1
2
¥
2./
and
F
sin V¥ -cos V¥ 0 0 0
cos v sin V 0 0 0
0 0 R SR
[R] =
0 0 0 0 sin ¥
9 Y 0 0 cos V

[, &

-cos V

sin v

(25a)

(25b)
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Substituting (25) into (23) gives

{a = (A1) {at}e = (a1 [R) {s}® = [a] 15}

where

[A] = [a_] [R]

sin v -cos \
-sin v cos
Z 2
cos sin 3
-a, sin . a cos
a, sin ¢ -az cos
[A) = | -3 cos v -3 sin v
;& -2
-ag sin . ay cos
+ 2 cos + 2 sin |,
23 23
0 0
l_o 0

Vi. STRESS-STRAIN RELATIONS

(27)
0 0 c 0
sin y -cos VY 0 0
7 /
0 0 (4] 0
al sin \ -al cos v 0 0
-a, sin vy a, cos v
+ 3 cos ¥ + 3 sin v (28)
2 2 g sl
2 £
ag sin -a3 cos
-2 cos ¢ - 2 sin
3 ] o gl
I3 i
0 0 0 0
0 0 0 1

For an axisymmetric shell of revolution subjected to axisym-
metric loadings, the stress resultants and couples can be expressed as

-

N Ei1 By
N, By Epp

Mo =]|E; Eg
¥, TR

Q 0 0

Ei3

Ey3

i3

s

(0]

B4

Eys

B3y

TP

0

14

-

0

55]

. (29)
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The quantities are related to the principal curvilinear coordinate
system with 1 as meridional direction and 2 as circumferential direction.

Symbolically this can be written as

{s} = [E] {e}

(30)

where [E] is the elasticity matrix, The detail derivation of [E] is given

in Appendix A.

Substituting (19) into (17) gives
{e) = [¢"] {cad

= [¢'] [a] 18)}€ = [B] {&)€
where

[B] = [¢'] [A]

dur
dx 5 o2
dwr 2
—a;(—’ 014-0- 205x+ 3a6x
o
dx Y8
dzwr
dx2 = 20,5 + 60% b4
d2ur
=0
dx2

e = ob coszﬁ + (OZ + 205 x + 3¢ xz) cos P sin B.

6

1

®=: [(a1‘+ a, x) sin v + (05 +Q x+ 0 x2 + O x3) cos V

K
1 1

+ si ss(o)+8_iiuﬂ.z_§() o B
sin Rl O& = Qg cos

15

(31)

|

P _2cos Bsin B 2 8
cos B (203 + 605 x) R (OZ + 205 x + 30% X ) y
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cos ¢ 2 2
KZ - = [cos 8 (QZ + 203 X + 30@ X ) - sin B cos B o%]
cog ¢
- (05 + Oh x)

71y - '(a7 + as x)

— -

0 cuzﬂ L} cos f sin £ 2 x cos £ sin £ I ein - cos P o 0

sin x g:! = Sos v x _cos y :2 cr“ 3 :’ e'Q 3 0 0

3 r r
3 By
-2 cos” £ -6 x cos” (32)
fo') =jo ;gz B - cglz £ 0 =2 _cos B b x ¢ s =6 :2 cos £ sin 0 obn P
it % ® ) 3
0 cos_ ¢ sin P cos £ 0 -ulﬂgzé -nggocnzg‘ -iizcolbcggzg acos ¢ X _cos ¢
r 3 3 r r ]
o 0 o 0 0 0 -1 -
L -

From Equations (13) and (21)

{£} = 101 {od = (0] 1a) {s}®

{g}

[qu-l {fr} = [qr]T {fr}

{£) = 1q,1" 101 4] {6}® (33)
= [N {s}®
wvhere
(M = (q,1" (0] (A . (34)
The element stiffness matrix and equivalent nodal force may be 3
obtained from the following formulas:
(k%) = {f (817 (E] (8] @A (35)
e
{3} = {] T (2} aa (36)
e
16




where {P} is the surface traction vector.

(35) and (36) is given in Appendix B.

1 0
x 0
0 1
0 X
T
[¢]" =
0 x2
0 x3
0 0
0 0
[ sin v -cos V¥
cos V¥ sin ¢
(q_1=
. 0 0
0 0
=9
P
sin V¥
x sin ¥
cos ¥
T X cos V¥
[¢1" fa,)=
x2 cos V¥
x3 cos V¥
0
0
-

0

~8C

R

=-cos V|
=X cos V¥
sin Y

x 8in V¥
x2 sin V¥

x3 sin V¥
0
0

17

The derivation of Equations

0]
0
0
0
(37)
0
0
1
-
(38)
0 0]
-s8C 0
0 0
c2 0
(39)
2 x c2 0
3 xz cz 0
0 1
; !
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where
Py ™ P, co8 P - p, sin £

P, " P, sin f+ p cos P

y
{p, = a1 (p}

{p} = [qr]T {pr}

[ 8in ¥ cos V
-cos V sin ¥
0 0o
L0 0
Py sin V¥ + py cos V
2 Py cosy + py sin V¥
0
0

0]

(40)

(41)

(42)

(43)

(44)

e e it b e i N,




4 e 3

. : 2,
pxsin .+pycoshsin\',+pxcos u-pysianosw

2 2 ‘ 2 : :
P, X sin | + py X cos \ sin y + P, X cos Y - Py X cos ¥V sin v
; s 2 ; v 2
P, €08t sin 1 + py CaRTiy wip . tos 'y sin v + py sin” y

; : 2 v : 2
pxxcos.sin.+pyxcos \.-pxxsln*cosy+pysin v

(17 ta,) ip) =J

) (45)
Py xz sin . cos . + py‘ x2 cosz tAND x2 sin | cos | + py x2 si.n2 ¥
P, X sin © cos . + P, x3 c032 L= P x3 sin v cos y§ + py x3 sin2 v
0
L0 J
(
| B
i -
‘: =
p}’
X
pY
/ =< > : (46)
{ x2 i
j Py
P x3
1 y
0
i
1 SR
’ VII. RESULTS AND CONCLUSIONS
A Various appropriate structures were analyzed by the computer
code for this development. Comparisons were made with known solutions
for single layered structures, The results were extremely close.
Effort is now being made to find some results for laminated structures
so that a comparison can be made.

19




Al E B T e b e ek i i

The accuracy obtained by this method depends directly on the
extent to which the assumed displacement patterns are able to repro-
duce the deformation actually developed within the element. Since the
chosen displacement patterns satisfy the requirements of completeness
and conformity (continuity of displacement at element boundary) as the
size of the element decreases indefinitely, the solution obtained from
the minimization of potential energy converges to the exact solution.

There still remains a need to add geometric and material nonlineari-
ties to this analysis. The material quickly becomes nonlinear as the
matrix material begins to crack or "craze'" while the fibers are still
intact. Also the capability for buckling prediction is one of the
major needs for this type construction. These items are now being
investigated and will be the subject of a later report.

20
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Appendix A.
ELASTICITY MATRIX

Individual curved finite elements can, in general, be composed of
a number of anisotropic layers of varying thickness along the meridional
coordinate. For a single lamina, considering shear deformations, the
constitutive relation is given as

i -Qil i2 0 Y 0 E

r 12 Y o 0 0 & s

Yol =0 0 Qs 0 0 Yo (A-1)
TLt 0 0 0 Q%S 0 7L§
TTc .0 0 0 0 Qé6_ 7TC

where the transverse normal stress o, has been omitted and the laminae

are orthotropic with respect to the principal elastic axes L-T. These
axes need not coincide with the axes of the curvilinear coordinate
system 1-2, (Figure A-1), (1 is the meridional direction) and

11 = B/ v vyg)
12 = vpr B/ (4 - vpp vpg)
= vpy B/ - v, vip) )
; Qp = B/ - vp vpy)
; Us = Cur
| Qs = Spp
i %6 ¢ -
21
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Figure A-1. Material axes.

Equation (A-1) can also be written for the Kth layer in the following
forms:

" , F
. £r i, S €L
{ .
§ i O R fho M. - ERE €r
T. 0 0 ¥
L LY

T )k U] (A-3)

and
TL;} s - ¢ {-“/Lg}
{'rg k . 6|k 71tk
To develop a theory for structural laminates with individual layers
; having their elastic axes oriented at various angles relative to the

coordinate axes, the stress-strain Equations (A-3) must be rotated

through the positive angle 6 so that the transformed stress-strain
equations are

| : .
! % q;  Qp Q| [ :
% -2 Y Y {‘z i i
"12 _614 Q, 644_ k 7127k
22
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0 71C

Uelk (72¢) k

where

- 4 ] 2 2 4
=qQ! '+ ' . 9 + Q! )
Q11 11 cos 9 + 2(Q12 2 Q44) sin 9 cos A Q22 sin

— ' Bt o 2 21 1 ,4 [0
le (Q11 + sz 4 Qi4) sin” 9 cos” 9 + Q12 (sin 9 + cos 9)

EES L0 4 20 2 4
Q22 = il sin” 5 + 2(Q'12 + 2 QLa) sin 9 cos 9 + QiZ cos (A-5)

Y 3 ' ' ' 3
Q14 (Q'l1 + QiZ -2 QA4) sin 9 cos™ 9 + (le - Q22 + 2 Q44) sin” 9 cos 9

([

o ' = ' 3 _ o ) 3
Q24 (Q11 - 12 2 Qaa) sin” 3 cos 9 + (Q'l2 29 + 2 QLA) sin 9 cos™ 9

a = ' 7 e [ ' 2 2 / ' 4 4
Q44 = (Q11 + Q22 2 le 2 Q44) sin 9 cos 9 + Q44 (sin” 3 cos 9)
e

Qs = ;s

R S

%6 = %e s

Substituting the midsurface strain and curvatures into Equations (A-4)

the following expression is obtained:

0'1 lel K].
02 = [Q] klez +* t [Q] k K2 (A-6)
12 2e, K19
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By integrating over the total thickness of the laminate, the
generalized stress resultants in terms of midsurface strain and curva-

ture are given as
f N
By

NZ [c] [D*] 0

N2

L

{Mz >= [D¥] (D] 0

Ql
0 0 (SU
, -
Lzz
where
(ol = &0 Bt =
=1 k k-1
1 f =(k), o2 _ 2
Brj = 3 L Q) (O - by,
k=1
1 3 —(k) 3. o3
(M= %5 L 11
3 o k k-1

m
s1=2 1@ v, -0,
i kT k-l

in which hk and hk-l

to the inner and outer surfaces of the k-th layer.

e

5

2e12

2K12

1¢

)

)

;
o

(A-7)

(A-8)

= the distances, respectively, from the midsurface




For an axisymmetric shell of

loadings, N

Hence,

£
&

iy

or symbolically

{s} = () {¢}

= Q

[D*]

[D]

revolution subjected to axisymmetric
=e =
2 12

Aaaibs e o ol b L e Ll el s s




Appendix B.

ELEMENT STIFFNESS MATRIX

The element stiffness matrix is found by writing the total poten-
tial energy of the axisymmetric shell of revolution and minimizing it
for the imposed constraints and loading conditions.

The potential energy for a linear elastic shell of revolution in
the absence of thermal and body forces can be formulated as follows:

}

1

= frE R gonE
1t J 2 {

m

o} av - | 5" (¢ @ (8-1)

where the vectors {e}, {0}, {f}, and {P} represent the strain, stress,
displacement, and equivalent surface traction vectors, respectively.

i
|
Introducing the stress resultant vector :
1
{s} = ¢ {d} (B-2) |

where t is the thickness of the shell, Equation (B-1) may be written as

no= [T % led* bl r e e (B-3)
v t A1

The first integral is evaluated over the entire volume V of the

shell and the second over the portion A1 of the midsurface of the shell,

where the equivalent surface tractions are prescribed. Since the state 3
of displacement throughout the shell is defined element by element, the
total potential energy may be considered as the sum of the potential
energies of all individual elements, i.e.,

The potential energy contribution of element "e" will now be
considered. The state of displacement defined for the element in
local rectilinear coordinates x-y can be expressed in matrix form !
in Equation (21) as ]

{fr} = (o] {a} = (01(A_] {5:,} : (B-4)
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Transformation of {fr} into the global coordinate system may be
obtained from Equation (13)

{£} = [q 1" {e} = {s }e

(B-5)
where

T
[N] = lq 1" [e] (a ] (B-6)
and the column vector {Sr}e represents the eight discrete parameters

(nodal point displacements

) of the element as given in Equation (25b).
The matrix [N] is a function of spatial coordinates and describes the
defined displacement pattern.

Substituting Equation (27) into Equation (31) the following strain-
displacement relations are obtained:

{e} = 8] {s)°

(B-7)
where

(B] = [ov] (A} .
Equation (B-8) is a matrix relating the nodal
to the strain vector, The elastic stress
expressed as

{s} = [£] {e)

(B-8)

point displacement vector
-strain relations can be

(B-9)

he elastic pProperties of the element.
gned different elastic

Properties. If the
B-9), (B-5) and (B

= [ff
v

7 37 18)T (2] (8] (6% %} - fr (6%7T ¢
A
e

8T {p} da (B-10)

1
e

where Ve is the volume of the element and A

1 is that part of the mid-
e
surface area of the element which coincides

with the midsurface area Al
of the shell over which the equivalent surface tractions are prescribe

d.
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Since the discrete parameters {6} are not a function of spatial
coordinates, the potential energy of the element may be written as

2w e fvff Lm" s | 6% - (627 11 " {p} aa. (8-11)

e A1
e

Since the assumed displacement patterns for each element satisfy
various requirements such as completeness and conformity, the best
1 values that can be obtained for the total nodal point displacements
{ of the finite element representation of shells of revolution are those
that minimize the total potential energy of the shell under the con-
straints imposed; i.e., the best value of 18s are those that satisfy
the system of linear equations

on
=0
s}

where {8} is the total nodal displacement vector of the system.

(B-12)

In forming the system of Equations (B-12), it is convenient to
have an expression for the spatial derivatives of the potential energy
of each element "e" with respect to its own nodal point displacement

vector {6e}, Lde.,

e N U NN R

dn- | 3n On” On On_ On On_ Om ox (B-13)
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By use of Equation (B-10), this expression can be obtained as

ae
‘ o mt e | Y- mt e a| . e
. 3 {s%} |v A
: e 1
A :
| The terms in the first and second brackets are normally defined as

the element stiffness matrix [Ke] and the element generalized nodal

point force {Fe}, respectively., Fence,

' (1 = 17 (81" (e1(m) & (B-15)
\'s
e
{r?} = rr (T (P} aa . (B-16)
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By properly combining the submatrices in Equation (B-14) obtained
for each element, the total matrix equation representing Equation (B-12)
can be constructed as

txy {8} = {} (B-17)
and then solved for the nodal point displacements. Once the nodal point
displacements are obtained, the corresponding stress resultants, stresses,
and strains for the defined displacement patterns can be calculated from
Equations (B-7) and (B-9).

If Equation (B-8) is substituted into Equation (B-15) and the
volume increment for a shell of revolution is taken as

dv = 2nt R(x) dx, (B-18)

then the element stiffness matrix for the axisymmetric shell element
takes the form

(K% = 2x f[n]T (E] (B] R(x) dx
o

= 2x [A]T (6] [A] (B-19)
where
Y/
(1= JronT (21 (o) RGo) 0x . (8-20)
o

The integration is over the chord length of the meridian cross
section of element.

It is assumed that the equivalent surface traction over the mid-
surface area A, where tractions are prescribed varies linearly between
the two nodal circles I and J. That is,

{pc}T =fo( +2 0 0 0 (B-21)

where {Pc} is the surface traction vector expressed in local curvilinear

coordinates. Transforming into global coordinates the following is
obtained:

T T
{p} = CRENCH (pc} ! (B-22)
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Substituting Equations (B-6) and (B-22) into Equation (B-16) the
generalized element nodal force vector becomes

{F%} = 2r f[ArlT (017 (a1 (a1” 117 B RGO ox
or
{e®} = 2xla 1" jj[@}r la,)" (o} Rx) ax
where
(sin B ) ( -x sin B )
-x sin B = sin P
cos B x cos B
B x2 cos B
Ok [qc]T {Pc} = Pn< xzcos 2 Pt'l< : >
x° cos B X cos B
x3 cos B x4 cos B
0 0
2 / L0 p
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