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| SECTION I
:
i INTRODUCTION
.(
H

X-ray pinhole cameras are commonly used to provide spatial

E | resolution of soft x-ray sources such as plasma focus and electro-

3 _ magnetic implosion devices having emitting dimensions in the cm to

! j mm range and pulse lengths of 10-1000 nsec. Time resolution may

\ additionally be obtained by imaging the x-ray source with a pinhole

' ' optic onto a scintillator viewed by a high speed IC (image converter)
streak or framing camera. Energy resolution can be added by filtering
techniques discussed later. Thus, methods are available to simul-
taneously obtain spatial, time, and energy resolution of soft x-ray
sources (ref. 1).

The design of pinhole optics to maximize spatial resolution is
| well known (ref. 1) and will be discussed later. This design assumes
that sufficient x-ray intensity is available to expose the camera
film. However, as additional simultaneous information is desired
from the diagnostics, such as time and energy resolution, camera
film exposure is greatly reduced and may be insufficient if the

3 1 "optimum'' pinhole diameter is used.
- This report addresses the problem of system design of the pinhole-
1 scintillator, IC camera to achieve maximum possible spatial resolu-
‘ : tion while satisfying film exposure and energy and time resolution
; | requirements. The effects on spatial resolution of geometric and
' physical optics and IC camera resolution are treated.
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SECTION II
BRIEF DESCRIPTION OF THE PINHOLE-SCINTILLATOR, IC CAMERA !

An x-ray pinhole-scintillator, IC camera may be represented by
the simplified model shown in Figure 1. The functions of the components ;
will be described later in detail. An image of the x-ray source is :
formed in the scintillator by the pinhole. The material in which the
pinhole is formed must be thick enough to block high energy x-rays
from the source. A large pinhole thickness, however, may allow image
degradation by grazing incidence reflection of x-rays. The filter
covering the scintillator serves as a high pass filter to pass x-rays
of energies above a fev hundred electron volts and thus blocks vis-
ible and ultraviolet wavelengths. The scintillator produces a visible
wavelength image which may then be analyzed with the IC camera.

The IC camera objective lens shown in Figure 1 transfers the
visible image in the scintillator to the camera photocathode. An
electron beam image is formed, intensified, and swept along the camera
phosphor plate by deflection electrodes. The phosphor plate produces
a visible light image from the electron beam incident upon it. Relay
optics transfer the visible light image on the phosphor plate to the
film. The film may then be processed to obtain a record of x-ray
intensity variation in the image as a function of time.
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SECTION III
TIME RESOLUTION

Two major influences on time resolution exist. The first of
these is scintillator resolving time which is on the order of a few
nanoseconds for current fast binary plastic scintillators. Special
techniques exist for improving this resolving time if necessary (ref. 2).
The IC camera may control the overall time resolution since exposure time
and thus time uncertainty is usually greater than a few nanoseconds.

The camera can be operated in either of two modes, streak or
framing. In the framing mode, a 2-dimensional image of the object
appears on the film plane for an exposure time At, which is also the
time uncertainty. The image is then moved to an adjacent film posi-
tion for another '"frame'. Each frame corresponds to the plasma at a

particular time.

When the IC camera is used in the streak mode, the scintillator
must be masked to give a slit image. The position of the slit deter-
mines what portion of the visible image in the scintillator will be
analyzed. In effect, the image defined by the slit is swept hori-
zontally across the streak camera recording film. One dimensional
spatial resolution (vertical) is obtained. Increasing time is repre-
sented by increasing horizontal distance along the film. Time resolution
is determined by the slit width according to the following equation:

At = % (sec) (1)

where s = width of slit image on streak camera film (cm). This may be
obtained from a knowledge of the actual slit width and the overall
camera magnification, M, and r = sweep speed of image on film (cm/sec).
The value of At expressed by equation (1) is also the exposure time of
the film.
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SECTION IV

ENERGY RESOLUTION

Several techniques have been developed to give energy resolution
of soft x-rays. Spectrographic techniques give excellent resolution
but are not compatible with simultaneous spatial and time resolution
methods. Several filter techniques are compatible with our diagnostic
requirements. In the present application, these filter techniques are
used with a scintillator detector. The filter techniques are thick
K-edge, differential absorber or Ross filter (ref. 1), and Bernstein
bandpass filter (ref. 3). The thick K-edge absorber technique is
most useful when the power spectrum being measured is known to drop
rapidly with increasing energy. This method is of limited usefulness

where line radiation is known to be present.

The Ross filter technique uses two identical detectors covered by
two x-ray absorbing foils matched in transmission except in the energy
region between their K-edges. The difference in response between the
two detectors is proportional to the source energy in the region
between the K-edges. Ross filters have been constructed for the energy
range between 4.5 and 116 keV. The filters become difficult to
fabricate in the region below 4.5 keV. In addition, photon efficiency

is low with this technique.

The Bernstein bandpass filter technique has advantages for
intensity limited diagnostics where a knowledge of the spectrum is
not assumed. This technique will be used in this report. Matched
K-edge filters and thin layers of plastic scintillators have been
constructed for the energy range of interest, 1-5 keV (ref. 3).
The filter limits the low x-ray energy transmission, and the thin
scintillator response drops off rapidly for high energies. The band-
pass detectors provide more spectral information than is possible with
simple absorber techniques, yet have high sensitivity.
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The unfolding techniques used to obtain spectral composition
information are contained in the source documents cited previously.
These techniques have been fully developed and will not be addressed

further in this paper.
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SECTION V
SPATTAL RESOLUTION

Presently, two x-ray imaging techniques exist which are capable
of spatial resolution of soft x-ray sources. The simplest is the
pinhole optic, a small aperture in a material opaque to the incident
x-ray spectrum. The pinhole is energy independent up to the energy
at which significant transmission occurs through the pinhole material.
It is limited in resolution by two effects: geometric optics, which
increases image uncertainty proportional to a, the pinhole diameter,
and the diffraction effect, which increases image uncertainty inversely
proportional to a. There is thus an optimum pinhole diameter a

—opt
which minimizes image uncertainty (ref 1):

Eopt =2 /0.2 AV (cm) )

where A = wavelength of x-rays (cm),
v = pinhole-to-image distance (cm),
Mp = v/u = pinhole magnification,
and u = object-to-pinhole distance (cm).

The optimum pinhole diameter obtained by equation (2) is often
not realized in practice. As the pinhole diameter decreases to éopt’
the x-ray source intensity decreases, and the x-ray detector may
receive insufficient energy for measurement. The pinhole diameter
may be increased to allow greater camera sensitivity with the conse-

quent loss of resolution.

The x-ray microscope offers better resolution than the pinhole
with the disadvantage of much more complexity (ref. 4). Multiple
grazing incidence optics are used to form images of the source. In
some cases, the x-ray microscope may have insufficient sensitivity
to realize its potentially superior resolution.
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The diagnostic system modeled in this report uses a pinhole
optic since it offers simplicity and sensitivity. 'For many applica-
tions, its resolution is more than adequate.
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SECTION VI

SPATIAL RESOLUTION OF AN
INTENSITY LIMITED, PINHOLE-SCINTILLATOR,
IC CAMERA

The spatial resolution of a pinhole scintillator, IC camera may
be expressed as o, the position uncertainty in centimeters of the
camera film image of a point (or zero width) element in the object
(plasma). The parameter o is given by

Gl S I e 2402 W2Apd |1/
S LR B 22 (cm)

(3)

where p IC camera image uncertainty (cm),

pinhole diameter (cm),

]

% = ﬁEE- = IC camera objective lens magnification,
s

objective lens-to-photocathode distance (cm),

scintillator-to-objective lens distance (cm),

]

dimension of plasma image on IC camera photocathode (cm),

s )
c:$$= < e.5:' |
"

; dimension of plasma image on scintillator (cm),
D
ﬁﬁ_ = IC camera photocathode-to-film magnification,

=
I

~
and Dp = dimension of plasma image on IC camera film (cm).

The image dimensions given in equation (3) and following equations
are the lengths of the smallest image dimensions if the IC camera is
used in the framing mode. If the camera is used in the streak mode,
image dimensions should be those orthogonal to the streak direction.
The IC camera image undertainty o is simply the inverse of the camera
resolution in lines per centimeter. The second and third terms on
the right hand side of equation (3) are the squares of the geometric
image uncertainty and diffraction image uncertainty, respectively.
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Equation (3) may be simplified by neglecting the diffraction
term. This simplification is valid for intensity limited pinhole
cameras where the pinhole diameter is considerably larger than that
predicted by equation (2).

A more useful form of equation (3) results from considering the
fractional uncertainty R in the image size on the film:

ag g
R = = (4)

DE opitLc
where By = characteristic dimension of object (plasma) in centimeters.

From equations (3) and (4) and ignoring diffraction effects, one obtains

o gl e
s e e e 5)
eb vy e, v
The relationship between x and y is given by
o R |
x'y°T ()
where f = focal length of IC camera objective lens (cm).
Equation (6) may be substituted into equation (5) to yield
172
(7N

et <]
i T v

Simplification of equation (7) may be obtained by considering

W
Al
(o)

the film exposure E for the generalized pinhole-scintillator, IC
camera model shown in Figure 1:

a’b%nG

E = ) Z S, ()T (hv)A(hv)d (hv) (ergs/cm®) (8)
256 on2y§ CZ i

where

a = pinhole diameter (cm),
b = IC camera objective lens diameter (cm),
n

energy conversion efficiency of scintillator

( ergs light )
ergs x-rays °’

T T R VTREY Ny g
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and

(1)
(@)
(3)
(4)

Several
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ergs on film )
ergs on objective lens’’

optical energy gain of IC camera (
film exposure time (sec),

source area as viewed from scintillator (cmz),
pinhole-to-scintillator distance (cm),

camera objective lens-to-photocathode distance (cm),
IC camera magnification,

effective source radiation time (sec),

energy dependent x-ray source function (ergs/eV),

€xp ['Uf(h\’)xf ]

fractional transmission of energy resolution filter at
energy hv,

energy dependent x-ray photoelectric absorption coef-
ficient for filter material (cm-l),

filter thickness (cm),

1 - exp [-ug(hv) x ]

fraction of incident x-rays of energy hv absorbed in
scintillator,

energy dependent x-ray photoelectric absorption coef-
ficient for scintillator material (cm'l),

scintillator thickness (cm).

assumptions are implicit in the derivation of equation (8):

Both the x-ray source and the scintillator radiate isotropically.

a << u.
b << x.

G factor accounts for wavelength overlap of scintillator output

spectrum and IC camera photocathode sensitivity.
(5) G factor accounts for wavelength overlap of streak camera phosphor
spectrum and film sensitivity.

(6)

n is not dependent on x-ray energy.

(7) Source x-ray power remains constant over pulse length of t seconds.
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Equations (7) and (8) may now be examined together to determine
parameter values to obtain desired fractional image uncertainty R and
film exposure E. The parameters u, p, and f should be kept as small
as possible to minimize R. These three parameters have no effect
upon E. The parameter a should be as small as possible to minimize
R, but it should be as large as possible to maximize E. The parameters
Vv, M., and y should be as large as possible to minimize R, but they
should be as small as possible to maximize E.

Obviously, methods are required to determine the proper trade-
off between E and R for the parameters a, v, Mc’ and y. Generally,
Mc is fixed for any particular IC camera. R has a 1/(y-f) dependence,
thus y should be made as much larger than f as possible (close
focusing) for small R. This choice of Ymax Will have a minimun detrimen-
tal effect on E since y is usually variable over a very small range
in any given IC camera.

The best choice of parameters a and v can be obtained by the
following procedure. If E in equation (8) is set equal to the mini-
mum exposure Em which will adequately expose the film, one may obtain
a in terms of v:

a= -‘é— (9)
where nG (é_t_) fso(hv)T(hv)A(hv)d(hv) 1/2
o)
§ = 1 b EA i
max ¢ o

The parameter g may be considered a dimensionless film exposure
parameter. Substitution of equation (9) into equation (7) results in

2 1+ <92 aiby
R=U )| o of : 8 : (11)
[0} cgmax 1) B ‘

e

R et e s e
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The optimum choice of v, Vopt’ to minimize R is obtained by setting

7
%%— = 0 and solving for v. This requires solving the equation

v:pt + uvgpt -u¥ =0 (12)
2
£
-where g = EEL - (13)
{NIC yma.x ]

The expression for R simplifies to final form using equation (13):
R=§%{%+(l+%)z}l/2
olv
Equation (12) for vopt may be solved readily with fourth degree
solving routines commonly available on desktop calculators (ref. 5).
Solution curves of v as a function of @4 for three different choices

opt
of u are given in Figure 2. A typical range of 4 is used.

(14)

Figure 2 may be used to obtain vopt for any pinhole-scintillator,
IC camera diagnostic system and x-ray source whose physical parameters
are described by u and 4. The value vopt may then be used with the
system B in both equation (14) to obtain the fractional spatial
uncertainty R and in equation (9) to obtain a, the pinhole diameter.

Using the method just outlined, it is possible to operate the
camera system to obtain maximum resolution compatible with film
exposure requirements. The procedure may be used to determine the
effect on film exposure [equation (8)] and image uncertainty by
changes in the diagnostic system.
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SECTION VII
APPLICATION OF THE GENERAL SOLUTINN METHOD TO A
PARTICULAR DIAGNOSTIC PROBLEM

The general solution method described in the previous sec-
tion for obtaining Vopt’ R, and a can be applied to an example diag-
nostic problem. A soft x-ray source will be assumed where Ao =8 cm
and D™ 4 cm. The desired resolution characteristics assumed are

given in Table 1:

Table 1.
DESIRED RESOLUTION CHARACTERISTICS OF THE X-RAY SOURCE

Desired
Characteristic Resolution
Time (At) & - 0.1
Spatial (R) <0.1
Energy maximum possible

Table 2 contains diagnostic system parameters assumed for the

analysis.
Table 2.
ASSUMED DIAGNNSTIC SYSTEM PARAMETERS

Parameter Value
p 0.01 cm
f 12,7 cm
Mc G 70
) 21.8 cm
b 6.35 cm
Em 0.01 ergs/cm2
n 0.02
G 50.
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These parameters are representative of the TRW image convertor cam-
era, Model 1D, which has both streak and framing modes of operation.
The value of E is appropriate for a high speed panchromatic film
(ref. 6). The scintillator conversion efficiency n is applicable to
NE 111 which has excellent time resolution characteristics - less
than 2 nsec (ref. 7).

Using the data from Table 2 and equation (13),
g = 50. Vg . (15)

The Vopt as a function of 8 may be obtained from Figure 2 and
equation (15) as shown in Figure 3. Three curves are given for
three possible values of u. As described in the preceding section,
optimum pinhole diameter a (Fig. 4) and fractional image uncertainty

R (Fig. 5) are obtained as a function of g for three values of u.

Figures 3 - 5 allow several qualitative interpretations:

(1) Optimum pinhole-to-scintillator distance increases as 8
and u increase.

(2) Optimum pinhole diameter decreases as B increases and u
decreases.

(3) Fractional image uncertainty decreases as B increases and
u decreases.

The exact solution to this example diagnostic problem may be
found when the value of the following integral is known for use in
equation (10):

j?So(hv)T(hv)A(hv)d(hv).
o

The values of the parameters T and A depend on the energy filtering
used. As an upper limit, T and A may be set equal to 1.0. A

representative value for j.So(hv)d(hv) is 108 ergs. Then, using
0 .
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the parameters from Table 1 and Table 2, 8 = 290. From Figures 3 -
5, assuming u = 75 cm, '

‘ (1) Vopt = 13. cm,

{ (2) 2’_ = 450. um,
and (3) R = ,081.
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SECTION VIII

DISCUSSION

The time and spatial resolution requirements of the preceding
example are satisfied for the case of no intentional energy filtering
(A, T = 1). Spatial resolution for this case is slightly better than
that required. One may trade excess spatial resolution (low R values)
for increased energy resolution. For example, a bandpass energy
filter may be constructed using the method referred to earlier in this
report. A and T values are calculated and used with an estimate of
So(hv) in the filter energy window to calculate a new dimensionless
exposure B. The required estimate of So(hv) may be obtained from a
time and spatially integrating x-ray detector analyzing x-rays from
an experiment identical to the one of interest. Energy filtering of
this detector may be used to obtain the desired So(hv).

The sensitivities of Vopt? a, and R to changes in 8 are not large.
This finding minimizes the practical effect of uncertainties in the
values of So(hv) assumed and in other parameters included in 8.

Figure 5 is used to find the new fractional spatial uncertainty.
If this value of R meets the spatial resolution requirements, new

TIPSO N e

values of vOpt and a are obtained from Figures 3 and 4 using the new
8. Thus we have designed a pinhole camera for the energy filter

assumed.

Other bandpass energy filters and scintillators may be designed
and corresponding pinhole camera parameters obtained by the process
just outlined. Several scintillators with different thicknesses and
bandpass energy filters may be viewed simultaneously by the IC camera
to obtain spatial and time resolution data simultaneously in several
energy bands.

Although the Bernstein filter energy resolution technique was
assumed to be most appropriate for this report, the optimization for




spatial resolution is valid for other energy filter techniques. It
is only necessary to use the values of A and T appropriate for the
technique being used.

The techniques described in this report are applicable to other
types of high speed camera than the IC camera, such as those employing
Kerr cell shutters.
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