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~~ser—oriented information related to MOOS (the ~ %TICS OLPARS Opera ting System),
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compu ter system. The curren tly opera tional svstet’~ repre sen ts an implemented
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report contains brief descriptions of the MOOS system and the mathematics
underlvinp the system algorithms. A major portion of this document is reserved
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E v a l u a t i o n

Dur ing  the pas t  sev en teen years , RADC has conducted an
exploratory development program to establish techniques for
digital signal processing and pattern recognition. It has
become evident to us that the solution to the  p a t t e r n  recog-
n i t ion  problem does not lie wholly in l e a rn ing  m a c h i n e s ,
statistical approaches , heuristic programming , formal
linguistic approaches or any other single model or technique.
Hence , we adopted an interactive approach to the solution of
pattern recognition problems, coupling a knowledgeable human
problem-solver with an interactive computer graphics system.
The general purpose computer contains a library of data
analysis , digital signal processing and pattern classification
algorithms . By means of the graphics display console , a
human operator can analyze his data , and based on what he
sees coupled with any a priori knowledge he may possess,
choose an appropriate signal processing/pattern classification
procedure , observe the results and continue to iterate in
this manner. Eventually one of two things will happen: (1)
he achieves an acceptable level of performance , whereby the
output of the computer consists of the design parameters for
a signal processor/classifier which can be implemented by
means of special purpose hardware or software , or (2) he
reaches a point where no further improvement seems possible.
In this case , he has hopefully gained insight into the reasons
why an acceptable level of performance was not achieved.

The physical realization of this interactive approach is
the RADC Pattern Recognition Design Facility which has two
major elements: an interactive system for waveform data
analysis and feature extraction ,, entitled !aveform Processing
System (wPs) and an interactive system for vector data analysis
and pattern classification , entitled the On-Line Pattern
Analysis and Recognition System (OLPARS). In addition , the
f a c i l i t y  has a h y b r i d  computer  f o r  ana log  p r ep roces s ing  as
well as an analog to digital conversion capability.

WPS is being implemented on the PDP-ll/45 computer and
uses a Vector General graphics terminal as the primary inter-

- active device. The system includes its own executive soft-
ware , filing system, display package , mathematical transform
package, and feature extraction language . The input to the

• system is in the form of digitized waveform data. The system
is built as a series of overlays which are callable by the
operator from a menu which is displayed on the CRT . The data,
in the form of data trees, is available to the analyst by
means of the interactive devices on the Vector General console.
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OLPARS is resident on two systems . One version is on the
PDP—ll/ 1

~5 computer under WPS . This i. a single—user system
employing high performance  i n t e r a c t i v e  graphics , and , as a
module un der WP S , provi des for ease of interaction between
the fea ture  hypothes is mode conducted under WPS , and rapid
testing of these hypotheses under OLPARS . However , s i n c e
th is  system is bu i l t  on a min i—compu te r  the re are core

a limitations in terms of the size of the data base which can
be processed.

A second version of OIJPARS is imp lemen ted  on the HIS 6180
computer under the MULTICS operating system. (It is this
version which is documented in this report.) MULTICS is a
time— sharing system that utilizes a virtual memory concept.
In t e r ac t ive graph ics capab il ity is prov id ed by a Te kt ro nix
~eOO2 A s torage  tube w i th alphanumer ic keyboar d, joystick , and
hardcopy unit. MULTICS/OLPARS has a distinct advantage over
the PDP—ll/45 OLPARS in terms of storage capacity, ease of
dat a acces s, mult i—user environment , and data base sharing
among users . Besides providing more advanced pattern
classifier logic design capability, the sys tem is ava ilab le
to other Government agencies and their defense industry
contractors by remote access through the ARPA computer
n e t w o r k .

Both versions of OLPARS include their own executive soft-
ware , f il in g sys t em , di sp lay packa ge , an d sof tware  modules
for  f ea tu r e ev aluat ion , vector  data s t r u c t u r e  analys is ,
me asur ement  t r a n s f o r m a t ion , and classifier logic design. In
general , OLPARS re qu i re s  th at the  in put data cons ist of 100
cr fewer digital measurements (100-dimensional vectors).

The RAD C Pattern Recognition System Design iaci~~ity
prov ides the Air Force with a powerful capabi’ity, unique
w i t h i n  DoD , for solving a wide range ~f target ideiitii’ication
problems in tLe areas of commaat~, control 

, corusunications
and intelligence. Concurrent vita the development of the
Fac ilit y ,  it has been applied to real—world problems
involving the design of classification logic. Feasibility
of the Facility to solve the following problems has been
established: photometric and radar satellite signature
identification , ground sensor target classification , EL INT
e m i t t e r  i d e n t i f i c a t i o n, land  type  c l a s s i f i c a t i o n  fo r
automate d car to gr aphy , speech reco gn it ion an d han dp r in t e d
alphanumeric character recognition .
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SECTION 1

MOOS - MULTICS OLPARS Opera ting System

1.1 INTRODUCTION

The development of interactive graphics computer systems
for use in the detection , identification , and transformation of
patterns contained in high-dimensional data has been a continuing
program at Rome Air Development Center since 1968 (RADC-TR-70-139;
RADC-TR-71-177; RADC-TR- 72-71; RADC-TR-73-241). This long-stand-
ing effort has resulted in the implementation of OLPARS (the On-
Line Pattern Analysis and Recognition Sys tem) , IFE S ( the Image
Feature Extrac tion Sys tem) , and WPS (the Waveform Processing
System). Thi s repor t contains detailed design and user-oriented
information related to MOOS (the MULTICS OLPARS Operating System),
an advance d version of OLPARS currently resident upon the
Honeywell 6180 MULTICS computer system. The currently operational
system represents an implemented version of the operations described
in a previous report (RADC-TR-73-241); appropriate sections of that
report are re tained wi thin this document. This report contains
brief descriptions of the MOOS system and the mathematics under-
lying the system algorithms , A major por tion of this document is
reserved for a user ’s manual (providing detailed information
relating to the operation of all system options) and for MOOS
program documen tation .

The reader is referred to articles by Sammon Kanal
and Sim mons E3J for more detailed explanations of the rationale
and philosophy underlying computer-based interactive pattern
analysis and recognition systems , Briefly , it has been noted that
no particular solution (among a choice of learning machines ,
statistical approaches , spatial filtering, heuristic programming ,
or formal linguistic approaches) has proved relevant to all
pattern recognition problems , MOOS provides a selection of
modular software approaches which are applicable to a given set
of data to be analyzed in an interactive setting. Provisions are
available for feature evaluation , redefinition , and pattern class-
ification schemes which provide swift feedback to the data analyst.
Modification of operational parameters may then be tried on-line
in an attempt to compute the optimal solution to the relevant
problem. Kanal [1] has listed several features which are desirable
in an interactive system for mathematical or graphical representa-
tions , In each case , MOOS represents an expansion and improvement
of the OLPARS design. They are :

o Simple procedures for system control and cornmunica-
tion , i,e , a display of relevant options in the form
of a menu on the side of the graphics display , arid
a selection of options and parame ter specifications
through a simple language using the alphanumeric
keyboard.

1-1 
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o ResponSe in an on-line mode 
allowing for rap id formulation ,

insertion, and testing of alternate h
ypotheses relating to data

set st ructure and logic design.

o The ability to select, label, merge
, and sp lit data sets on-line ;

to perform set operations on data sets and subsets; and to

retrieve selected data and trial test 
algorithms and designed

solutions.

o The ability to select with minimal de lay any option in the

system availab le for execution.

o The ab ility to temporar ily store and compare resulte of various

algorithms on a data set.

o The ability to obtain intermediate 
results while sequencing

through various operations.

o A requirement for swift 
generation and modification of system

algcrithtfls and programs .

o Storage of large quantities of data 
without slowing system

opera tions; prov isions for dynamically accessing multiple data

sets and subsets for application by 
system algorithms or for

system disp lay while maintaining a swift execution of system

subroutines.

This report is devoted primarily to a data analyst ’ s view of the

capabilities within MOOS to produce a feasible solution to a problem.

The remainder of Section 1 contains an overview of the structure of

MOOS and of the general  capabilitie s provided the user , as well as brie f

discussion s of the computational algorithms utilized within the system.

Section Z is a user ’ s manual for MOOS; it assume s a working knowledge

of the basic system capabilities , that is , in formation is provided on the

mechanics of manipula ting data without there being provided specific

guidance to operation s which mig
ht be useful for a specific problem-

Finally ,  Section s 3 and 4 contain complete system file descr iption s and

program documentation.

1-2
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1,2 A Functional Overview of MOOS

MOOS retains the functional outline of OLPARS , yet has
expanded or added features to each of the modules consistent
with experience gained during implementation and practical use of
both systems. This section consists of a description of the
functional organization of MOOS, and of brief descriptions of
the various system operations , Detailed mathematical outlines
of the major system computations are contained in Section 1,3.

The pattern recognition problem is described as the recogni-
tion of the state of an environment based on L measurements or
features extracted from the environment. Thus, the pa ttern
recognition problem is composed of feature extraction , that is,
the definition of the measurements , and of pattern classification.
The objective in selecting features is to provide a set of
measurements which yield information which will aid in discrim-
m a ting between the various environmental states, The pattern
classification problem requires that we design the recognition
logic , which classifies the state of the environment using the
previous ly defined L features.

The concept of a vector space is fundamental to all of the
problems discussed here, The features (measurements) define the
basis of the space ; an object or an event is represented as a
vector in that space, Feature extraction involves de fining the
representation space, and pattern classHication involves defin-
ing the par titionment of thi s sp ace into regions associated with
each of the states (or classes) of the environment. In order
to solve a pa ttern classification problem , statistical sample
vectors from each state (or class) must be collected and analyzed
to yield a satisfactory classification logic.

The pattern analysis problem differs from the pattern
classification problem in that the states (or classes) of the
environment are a priori unknown to the researcher , The data
comprises a set of L-dimensional vectors which must be analyzed
to determine the natural or inherent classes contained in the
vector data. The detection and identification of a substructure
of clusters (sample vectors which cluster together in the vector
space) is the solution to this problem,

The vector data structure is represented within MOOS as a
hierarchical tree where each node corresponds to a list of
vec tors , Partitior.ment of a list of vectors (node) is represented
by branches to lower-order nodes emanating frcm the node corre-
sponding to the original list, with each subnode being associated
with a sub-list, Suppose , foi example, tha t we have collected
statistical sample vectors from K classes and wish to design a
decision logic which adequately discriminates between data from
these classes, Initially , at the time when the vector data from
each of the K classes are loaded in to the sys tem , the data tree

1-3
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would appear as shown in Figure 1-1 where the names C1, C2, ,,.,CK
correspond to the K data dasses , The MOOS user can choose to
process the data associated with any node(s), Throughout the
entire sys tem the concept of a “current data set” is used. This

• refers to the data that the on-line user has most recently
designated for processing. The set could contain the data under
a single node of a preselected tree , or it could contain all of
the data associated with an entire tree. In either case , the
“current data set” is related to only one data tree, If the MOOS
user chooses to invoke a transformation or a clustering option ,
the data tree structure will be modified to reflect the result-
ing change. Suppose that the system user decides to discard a
subset of the L original measurements (features) based upon the
outcome of a measurement evaluation. This action is easily
accomplished using the appropriate linear transformation , which
would alter the data structure by producing a new tree as shown
in Figure 1-2, At this point , the user could choose either the
transformed data or the original data for further processing.
Notice that when the transformation is applied at the topmost
node of a tree , the structure below the node is maintained and
the transformation is applied to all the data vectors. A trans-

• formation may be selectively applied to the data below a specified
node , in which case a new tree is generated, involving only the
data corresponding to the selected node ,

As a result of using any one of the many OLPARS data
analysis techniques , the user may wish to restructure the data
into clustered subsets. Clus tered subclasses are represented by
subnodes under the node corresponding to the parent class,
Suppose that class Cl of the data represented in Figure 1-1 was
subdivided via on-line analysis into the subclasses labeled
Cia and Cib , The resulting data structure would be as shown in
Figure 1-3. Notice that

Cla U Clb = Ci, Cla~~~Clb = 0,

The MOOS facilities for solving problems of pattern analysis
and classification consist of the following types of routines
(individual option names are underlined - refer to Section 2 for
descriptions of those programs ; section number references point
to related sections) :

Data Input, Storage and Output

o Data input from cards (crdinput), tape (tapinput) and
other MIILTICS files (fileinput, restore, restorec),

o Permanent storage facilities in which MOOS data may
be maintained either for the exclusive access of a
given user (exclusive user storage) or for common
access by a number of analysts (common user storage),

1-4
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Da ta trees may be output to either type of storage area
(save, savec), retrieved (restore, restorec), and
deleted (cleartree, remtree). Lists of the data trees

• in each area may be obtained (list_ust, list_cst) by
user command . In addi tion , MOOS logic (iog S_ 

— 
) and

projec tion vectors (vecS _) may be stored , retrieved
and deleted from exclusive user storage , and lists of
those data may be obtained separately.

o Current data storage facilities provide for immediate
access to any of up to 20 data trees by standardized
parameters that can be added to any MOOS function call.
Programs for listing (treelist) and deleting (deletree)
data trees from current storage are available. In
addi tion , data trees wi thin the current storage area
may be modified by adding data classes from other data
trees (append) , by combining classes wi thin the data
tree (conmod) , by del eting any da ta class (deletnod)
or data class substructure (dsubstrc), or by removing
individual data vectors from the data set (dvectors).
A node substructure may be added to the current data
tree via the structure analysis module (lingpart,
restruct). Any data tree or data class name may be
changed (chnpname), and a disp lay of the current data
tree is immeckately available (treedraw). Finally ,
a new tree may be crea ted from da ta classes existing in
numerous available data trees (creatree), or by extract-
ing a percentage of data vectors from an existing data
tree (crrandts). The purpose of this final option is
to provide a facility for the crea tion of randomly
assigned design and test sets for the design and
indeDendent testing of classification logic.

o Data trees from current data storage may be permanently
stored on magnetic tape (tapeoput).

o The standard system limit on data dimensionality for
MOOS routines is 100. However , through use of the
excess measurement mode fea tur e , da ta sets wi th a grea ter
number of measurements may be handled. The allowable
options under the excess measurement mode assist in

-• finding a suitable subsnace with 100 or less dimensions ,
and transform a data set to this suh space so tha t norma l

• Drocessing may begin.

The excess measurement mode is entered any time an
attemp t is made to enter a data set with greater than
100 dimensions , or through use of measxfrm. The chief
difference between da ta trees handled by the excess

I
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measurement mode and normal MOOS data trees is that
mean vectors and covariance matrices for each class
are not stored. Once the dimensionality of an excess
measurement mode tree has been reduced to 100 or less,
the mean vectors and covariance matrices may be
calculated by function moosmode. Normal MOOS operations
may begin only after moosmode has been invoked.

An arbitrary limi t of 250 dimensions has been set on
excess measurement mode operations . This limit may be
exceeded only through modification to certain system
routines (see Section 4.2).

• Programs which are allowed in the excess measurement
environment include:

• crdv$sal & sa2 measxfrm ta~ eoput
creatree moosmode taninout
dataprnt ~robconf treelist
dscrnieas sense trnsform

Any programs which appear in the option lists of the
- above functions (ciprint, trnsform, etc.) may also

be used while in the excess measurement mode.

Data Display - Proj ection Planes and Display Formats

o Four data display formats are provided (Section 2
introduction) for seven sets of data projection axes
(arbv, ardg, asdg, crdv, eigv, fsh,~~ gndv; see Section 1.3).Facilities for user manipulation of these data
projection displays include printouts (hgprint, cinrint),
indexing specified points (index), modifying scale

• factors (scale) , sequencing appronriate data projections(
~~~), storing proj ection vectors for later use
(vec$save ), changing the data class comnosition of a
display (elimclas) or highlighting specified data
classes (intensfy - a bargraph plot for one-space
displays only), and implementing partitions drawn
via cursor on the display terminal (dra$bndy, dboundry,
redraw) 

- I-— 
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Measurement Evaluation

o Three measurement evaluation computations (dscrmeas,
probconf, features; see Section 1.3) are provided the
MOOS user . Rank order displays have been implemented ;
maninulations available for these displays include
printout (hrdcpy), rankings for selected classes , clas s
pairs , or measurements (rnk$_ 

— _), display of the
dis tribu tion of da ta along a selected measurement in
histogram format (histgram ), and selection of a
measurement subset for inclusion within a data set of
reduced dimensionality (sel$_ 

— —, 
un$_ 

— _). Finally ,
a program for da ta se t reduction is operat ional
(trnsform).

Data Tree Transformations

o Three additional options are available for creation
of transformed data sets : normalization (normx frm),

• eigenvector transformation (eigentrn), and linguistic
transformation of individual measürements(measxfrrn) .

Structure Analysis Partitions and Projections

o The creation of subnode structure in a data tree
(the structure analysis function) can be implemented
via partition of a data projection display (restruct
following use of dra~bnd~ on any of the data projectiondisplays) or by linguistic statements (lingpart)
based on a priori knowledge of the ranges and relation-

• 
- . ships of data distributions within and between data

classes . Linguistic partition allows development of
data partitions via logical statements composed of
any existing measurement threshold or legal arithmetic

- - combination of measurements , thresholds , or variables
us ing PL/ 1 conven tions ,

o An additional data projection display is available
- for the structure analysis function in the form of a

- 
- . nonlinear mapp ing algorithm (nlm; see Section 1.3).

This algorithm has been equip~~~ with a data set
clus tering algori thm wh ich allows its use on large
data sets despite the time and space limitations
inherent in the maintenance of arrays related

• exp onentially to data set size , which are required
by this algorithm.
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Classification Logic Design and Evaluation

The MOOS Logic Design (LD) facilities provide extensive
mathematical/graphical techniques for allowing the user to tailor
decision logic design to the structure of the class data. In
general , pattern classification is undertaken following a pattern
analysis conducted on each of the data classes for which logic is
to be designed. The purpose of this analysis is to ensure that
each data class is unimodal ; that is, the vectors from each class
are clustered in one region of the measurement space. Although
not always required , the unimodality property is highly desirable
in order to ensure an effective logic design . In those cases
where the class data is found to be multimodal , our philosophy
dictates that each mode be identified and the sample vectors cor-
responding to each mode be grouped as a named subclass. Upon
completion of the logic design , the decision region in the measure-
ment space corresponding to each subclass can be reidentified
with the original multimodal classes (reasname ).

Figure 1-4 presents a functional overview of the logic
design facilities. Upon selection of an LD option , a logic tree
is initialized by the system wi th a single node consisting of
all the lowest-order data classes in the current data set (there
is no requirement that the current data set be the senior node
in any data tree),

The system will keep a record of the decision logic as it
is being designed. The actual form of the logic constructed in
this manner will be that of a hierarchical tree (draw), where
each node corresponds to a partial decision , For example , suppose
that there are five classes (K=5) , labeled B , C, F, 5, and T , and
the user first  separates B , C and F , from S and T using a between-
group projection described below. At this point, the system would
store the piecewise linear logic and represent the current logic
as the tree shown in Fig. 1-5. Next, the user could choose to
work with the group B, C, and F. Suppose that he selects the
eigenvector projection corresponding to this data. Further , let
us suppose that he constructs another piecewise linear logic to
discriminate B and C from F. The decision logic tree would then
appear as shown in Fig. 1-6. Suppose that the user could not
adequately discriminate between B and C or between S and T using
the eigenvector method , and therefore completed the within-group
discriminations using the Fisher pairwise discriminant technique .

The basic idea behind this interactive design technique is
that between-group logic will be used to design the partial  logic
for nonoverlapping classes , whereas the complete within-group
logic computations will be used for statistically overlapped
classes.

‘~
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Basic logic design operations fall into two categories:

1) Logic capable of completely classifying vectors within
the reference group of data classes (complete within-group logic);
and 2) logic capable of identifying and partitioning completely
disjoint data class groups (between group logic) .

Complete Within-group Logic

o Nearest mean vector (nmv) logic implementation provides
capabilities for c1as~iTication of data utilizing one
of three metrics (Euclidean distance , weighted vector
distance and Mahalanob is weighted distance ; see
Section 1. 3 . 3 . 2. 1 ) .  An unknown vector , then , is
assigned to the reference class for which the decision
metric is minimized.

o Fisher pairwise discriminant logic (fisher) is
constructed by computing optimal linear discriminants
and thresholds to distinguish between every pair of
classes (subclasses) within a designated group . The
linear discriminant is the Fisher linear discriminant
given by

~~~ =~~w 1L~~

/~ jj . Mi  ~~~~~ : = (N~ - 1) C~ + (N~ - 1) Cj

= mean vector of class (subclass) i

C~ = covariance matrix for class (subclass) i

Once the within-group pairwise discrimination is
comple te , the pairwise decisions are combined to
produce a final decision . The group of classes (sub-
classes) might be the original K classes (subclasses)
of the “current data set,” or the group might be

- . composed of a subset of K. In the case where the
user does not subdivide the K classes (subclasses) ,
he would compute KgK - l)/~J pairwise discriminants.
The resultant logic for this example is shown in
Fig. 1 - 7.

The output from the d~j box is either a zero or a
one , depending on the ‘~bllowing criterion :

1—13
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d~~~(X) {‘ <d i j,~~~ -

0 otherwise.

The signed direction (±) of dj1 and the threshold
9i
~ 

are selected so that an output of “one” is
in~ erpreted as a vote for class i and an output of
“zero ’ as a vote for class j .  The I box is an inverter
which pro duces a “one” out given a “zero” in , or a
“zero” out given a “one” in , The votes for each class
are collected and a final decision is made according to
the class with the most votes.

Un der the Fisher discriminant logic option , the user can
select 1, 2 , 3 , or 4 threshold options which result in the
different boundaries shown in Fi gure 1-8.

In Figure 1-8 , /‘-~j. is the estimated mean of class i
projected onto the discriminant direction ~,, i.e.,

—

MOOS will automatically set:

=

92 =

93 =

94 = ,Ml-

95 =

where /�~ = ,Lt 1 - ,L~2 . The regions ~~~~ 9~~ , (-oo, and
[95, co) are for rejects ,

Fisher pairwise logic may be treated as a between-group
• 

- 
logic through use of the pairmod function . In this case ,
each of the classes C, , . . . Cn consists of one or more of the
original K classes . Further logic may then be designed to
complete the classification logic .
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FIGURE 1 - 8: THRESHOLD OPTIONS FOR
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o Closed decision boundary logic (closedcn) creates an
L-dimensional closed hyperregion for each class of the
selected data set.  An unknown vector is assigned to a
class if and only if it lies in the hyperregion associa-
ted with that class and no other . If an unknown vector
should fall into more than one hyperregion , it may be
rejected or placed in a new data tree for further logic
design at the user ’ s discretion . Vectors which do not
lie within any hyperregion are rejected. (In a real
environment , clo sed decision boundary logic would tend
to reject vectors which do not belong to the Set of
classes intended for classification.) The following
diagram (Figure 1-9) illustrates the implementation of
closed decision boundary logic for two dimensions and
three classes: A , B , and C .

‘T
~ 

Hyperregion surrounding class A
Hyperregion surrounding class B

Measure- 
/ment 2 

—

_----—-—-.--..-_~~

/ B N

7’ A A A 
A 

- 

‘
~ 

‘
~ B 

B

I 
A 

A~~~ 
B B

~~~~~~~~~~~~~
C
~~~~~~~~ 2 C

B

C
\ 

B

Hyperregion surrounding class C

Mea surement 1

FIGURE 1-9
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Vectors which fall in the regions A (\(~U~), Bfl(AU~),and C(\(AU~) are assigned to classes A , B , or C
respectively.

Vectors which fall in the region AUBUC are rejected .

Vectors which fall in the region (AflB) U (A(~ C) U (~~ C)
are considered “overlap ” vec tors and m a y  he handled as
described above .

Three tynes of hyperregion are available :

1) Hyperrectangular closed decision boundary logic for a
class consists of an L-dimensional hyperrectangle
enclosing the vectors of the class. The orientation of
a hyperrectangle depends on the analys t ’s choice of
basis vectors. The available basis vector types are :
coordinate vectors (the hyperrectangle is oriented along
the original feature space axes), eigenvec tors of the
class , and eigenvectors of the entire data set. The
size of a hyperrectangle is specified by a high and a
low threshold along each basis vec tor . An unknown
vec tor lies wi thin a hy~errec tang1e if its projec tions
on all the basis vec tors lie be tween the high and low
thre sholds on those basis vec tors .

2) Hvpersnherical closed decision boundary logic for a
class consis ts of an L-dimensional hvpershere enclosin~
the vectors of the class. A hv~ersthere is spec i f ied
by an L-dimensional center vector and a radius . An
unknown vector lies within a hvpers~ here if the Eucl i-

• dean dis tance between the vector and the center vector
of the hvDersDhere is less than or equal to the radius
of the hvi,ersrthere.

3) Hvperellinsoid closed decision boundary logic for a
class consis ts of an L-dimensional hvperelli~ soid
enclos ing the vectors of the class. The position of a
hvnerellipsoid is determined by an L-dimensional center

- vector. The orientation of a hvnerellipsoid is always
along the eigenvectors of the enclosed class , i.e. , the
axes of a hvnerell i~ soid are always Darallel to the

• 
• 

- 
eigenvec tors. The share of a hvt~erelli n soid may be
sDecified by varvin~ the relative axis lengths .
Orientation and shav e information are contained in an

• L by L weighting matrix .

An unknown vec tor lies within a given h’~~erel li oso id ~fthe fol1o’-~in~ condi tion is r~et :
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(X~M) T W (X-M) ~ C where:

X = the L-dimensional unknown vector
W = the weighting matrix
M = the center vector
C = a size parameter analogous to the radius of a

hvoersDhere .

Specification of the center vector , axis leng ths , and
“C” value are all under the analyst ’s con trol .

Between-Groun Logic

o Data Projections. An obvious drawback to computing
K(K-l)/2 nairwise discriminants is the notentially
large number of combinations. In most t roblems of

• interest , some of the classes (subclasses) are statis-
• tically disjoint and quite easily separated from one

another. If these disjoint class groups can be identi-
f ied and logic can be desi gned to discr imina te the
grouos , then the pairwise discrimination need only be
comnuted for the statistically overlapped classes
(subclasses) within the group . The MOOS user will not
ordinar ily know a priori how to group the classes
(subclasses); therefore , options are provided to project
the class (subclass) data onto one- or two-dimensional
subspaces and display the results. If the user detects
nonoverlanping groups of classes (subclasses), he can
draw separating piecewise linear boundaries on the
disnlay (draSbndy). These boundaries may be stored
within the system as piecewise linear hyperplane bound-
aries which partition the original L-dimensional
measurement space (creat log). The user can continue
this procedure by selecting one of the class groups and
pro l ecting the corresponding data onto a new two-dimen-
sional subspace . If between-class separation is again
evident , the user may again nartition the original L-
space with piecewise linear hyperplanes . If, due to
statistical overlap , the classes (subclasses) canno t be
completely separated using this procedure , it is
recommended that the user complete the logic via within-

- • group discrimination nrocedures (nmv , fisher, closedcn).

o Scatter Plot Partitions . The user has the canability to
draw multinle niecewise linear convex boundaries , as
shown in Figures 1-10 and 1-11. The region external to
the drawn boundaries may be designated as a reject
region , or can be used for da ta class designat ion
(Figure 1-11). In addition , it is Dossible that one or
more data classes may be distributed over an entire

- . scatter plot , while others are disjoint (Figure l-l2a) .
In this case , the user may designate those widely-
distributed data classes for both sides of a logic
Partition , resu1tin~ in a logic tree as represented in
Figure l-12b.
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o Boolean (linguistic) Logic Partitions. MOOS provides• for the implementation of linguistically-defined logic
part i t ions (ling logc) through the use of the PL/ l
compiler under MULTICS . The user can wri te  any Boolean
statement (any statement that can be evaluated true/
false)  for use as classification logic provided that it
is a legal PL/ l statement and that it conforms to
conventions for referencing vector measurements.

• Temporary logic evaluation results are displayed following
any logic implementation . Upon completing the logic design , the
user can next evaluate the design (logicevl) against any da ta
set and review the results of that evaluation within a confusion
matrix format (summrycm, displacm, hrdcpym). Logic which
provides adequate discrimination may be output to the system
printer (listlogc) or stored within exclusive user storage
(log$_ 

— _). Inadequate logic may be supplemented (lingrjct),
modified (nrivmod, pairmod, closemod), or deleted (deletlog).

o Independent Rejec t  Strategies. Any final classification
node of the logic tree may be appended with a Boolean
reject strategy (lingrjct). A vector classified at a
node and evaluated as false by the strategy will be
rejected .

o Neares t Mean Vector Logic Modif ’ cation. The nearest
mean vector within-group logic provides ior the use of
three metrics. The user may reselec t the metric
utilized (nmvmod). The user may also choose a reject
boundary for each log ic node .

J
o Pairwise ~~~ic Modification . A Fisher Pairwise Logic

node may be modified by a) changing the number of
thresholds implemented for any pair of classes , h)
moving the threshold(s) for any class pair , c)
eliminating measuremen ts for the computation of the
Fisher discriminant for any class pair , d) inser tion
of an optimal discriminant plane for any class pair ,
e) insertion of a one-snace or a two-space logic for
any class pair , or f )  insertion of a Boolean logic
for any class pair (pairmod).

o Closed Decision Boundary Logic Modification. A closed
• 

- 
decision boundary logic node may be modified with respect
to the tyne of hyperregion used to surround a class , or
the parameters which specify a given hyperregion may be

• changed (closemod).
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o Logic Structure Deletion. Any unsatisfactory logic
struc ture in t1~e logic tree may be deleted (deletlog)
and new logic implemented .

Lattice Logic Structure

A capability has been provided (latclogc) to allow the
analyst to create a lat t ice-type log ic tree structure. This
allows, in effect , for two or more logic nodes in a MOOS logic
tree structure to branch together . Two examples of the ut i l i ty
of this feature are given below :

o Duplicate Logic Tree Substructure. Consider the logic
tree structure in Figure 1-13 a) for the four classes
A ,B,C.D. Each decision represents a between group type
logic . The classes present at logic nodes 2 and 4 are
the same (A , B , and C) .  Rather than duplicate the logic
which was created at logic node 2 , the analyst may cause
logic node 4 to be connected to logic node 2 (indicated
by the dotted line in the figure).

o Lattice Logic Tree Structure. The normal MOOS logic
tree structure has been implemented with the idea that
a relatively small number of decisions will be necessary
to separate one set of classes or subclasses from
another . The following example illustrates a pitfall

- of this type of logic tree structure and the remedy.
Consider the logic tree structure in Figure 1-13 b).
The analyst has made a number of tests (log ic nodes 1,
~2 , 4 , 6 , . . . ,  N) designed to separate class A from

L 

classes B and C . Note tha t many logic nodes with the
classes B and C present (3 ,5,7, ...M) were created . In

• 
order to allow the creation of only one log ic tree
substructure for the classification of B and C , the
logic nodes where B and C are present may be connected .

1-23

_________ - j~~~~~~~~~~~~ : z~~~: ~~~~~~ -~~~~~- ~~~~~~~~



1 ABCD

N
2 ~~BC 3 ABCD

12 

7 B C  

14 

(r:ject) ABC D

(reject)  B C ( re jec t )

Figure l-l3a

2-
1—24

• : -= =~~~~~~~~~~.



__

ABC

1

I ‘I
/

2 ABC / 3

- 

4 ABC / 5 /

6 ABC / 7  /
/ BC

/
/ 4 /

/ I t ’  /
/ /

Figure 1-13b

1—25

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - -



• • . - -——-_—. — • • .— •- _ —  -_ _----- .-

FORTRAN Subroutine Logic

As an al ternative to a simple listing of the discriminants ,
weighting matrices , etc. which make up the classification logic
associated wi th a given logic tree structure , a FORTRA N
subroutine may be created which can execute the logic (fortlogc).
The generated subroutine is in “standard” FORTRAN and may be
punched on cards for use at other fac i l i t i es .  A commented
listing of the subroutine may also be produced and any data set
may be c lassif ied with the compiled subroutine (for teval).

The source program produced by for tlogc has two standard
parameters : (1) the L-dimensional vector to be classified
(input), and (2) the assigned logic node number (output) . The
association of logic node number with the assigned class name is
l e f t  to the user .

FORTRAN subroutine logic adds considerable flexibility to
the design of unusual classification schemes since the generated
source code may be modified by the user .

Absentee Capability

Through use of the MULTICS absentee capability (see the
MEJLTICS Programmers Manual) the MOOS user may perform a sequence
of MOOS functions off-line . This may be desirable in some cases
where large amounts of processing time are needed . For ins tance ,
the evalua tion of a large test da ta set agains t several types of
logic might be accomplished by absentee job . A special MOOS
routine has been provided (features abs) for entering an
absentee reques t to run the fea tures measurement evaluation
computation .

An absentee process is handled by MULTICS the same as a
normal interactive session except that all user input is taken
front a segment “absen tee_request name .absin.” System output
which would normally appear at t~ e user ’s terminal is placed in
a segmen t “absentee_reques t_name .ahsout .” All that is neces-
sary to run an absentee job is to place the desired commands in
the “.ahsin” segment with a text editor and invoke enter
abs request command as follows :

ear absen tee_reques t_name

The following exam~1e illus tra tes an absen tee job which
creates and evaluates fisher pairwise logic on a data set and

- • prints the results on the line printer .
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cwd ) udd) C)OLPARS (change working directory to
- OLPARS) -

restore da tatree (restore the design da ta set)
4 (answer questions related to
300 console type and baud rate)
fisher (invoke fisher pairwise logic)
0 (select op tion 0)
1 (select 1 threshold)
8 (set minimum vote count to 8)
yes (hardcopy confusion matrix and
yes list of errors to line printer)
no (halt fisher calculation)
logout

It is obvious that considerable familiarity with the
interactive -queries of MOOS functions is necessary since all
queries must be correctly answered within the “.absin” segment .
The absentee job in the above exam~1e could be nerf ormed on a
number of data sets by simply changing the tree name “data-
tree” to the names of other data sets.
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1.3 MOOS MATHEMATI CS

This section of the report presents the mathematical
justification or explanation of the algorithms used in MOOS.
Only the general explanation is included here ; the reader is
referred to Section 3 for details concerning algorithm
implementation

1.3.1 Measurement Evaluation

In solving a pattern classification problem , the
researche r will of ten be concerned wi th the discriminatory
qualities of the L measurements , In general , it is desirable to
use the minimum number of measurements that achieves a satis-
factory solution. To this end , the MOOS system provides three
(3) methods for ranking the discriminatory power of a set of L
measurements.

If desired , the rankings may be used as the basis for a
measurement reduction transformation to a subset consisting of
the M most discriminatory measurements . P~n optimal method for
selecting a subset of M measurements must involve a consideration
of the decision logic criterion , such as the Bayes Risk or the
probability of error. This, in turn , requires the estimation 4
of the joint probability functions for all possible n-tuples.
The obvious computational difficulties in obtaining an optimal
ranking preclude this approach in all but the simplest prob lems.
Therefore , the following sub-optimal algorithms are provided as
options to rank-order the L measurements xl, x2 ,  ,., xj~. Each
algorithm provides three distinct types of rankings. The first
uses a significance measure of a particular component, e.g. x0,
for discriminating class i from class j;  this significance will
be designated by MjJ (x~). The second type of ranking uses a
significance measure o! xp for discriminating class i from all
other classes , and is designated Mj(x p) .  The las t type of
ranking uses a measure of the overall significance of Xp for
discriminating all classes , and is designated M(xp).

1,3,1,1 The Discriminant Measure

This algorithm is implemented in the MOOS function
dscrmeas. This significance measure is particularly useful for
ranking the L measurements when the class conditional probability
distributions are approxima tely unimodal. The discriminant
measure for rifferentiating class i from class j using measurement
xp is defined as:

M~j ( x~) = 
~~~i) 

- 
...

il/E 
1) 
[
~~ i~~ 2 

+ (N~-l) [
~~~~i1~~
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where
(j)

= the es tima ted mean of class j along
measurement Xp

A ( ))
= the estimated standard deviation of class

P j along measurement Xp

Ni = the number of vectors in class i

The discriminant measure for differentiating class i
from all other classes using measurement Xp is defined as:

K

M~ (x~) = ___ M~~~(x~ )
j  #i

Finally , the discriminant measure for distinguishing
all classes using measur ement Xp is defined as:

M(x~) = ç�.1~: 
M1 (x~ ) u Mj j (Xp )

1.3.1.2 The Probability of Confusion Measure

This algorithm is implemented in the MOOS function
p~robconf.

This measure is recommended when the assumption of class
umimodality cannot be justified. It is valid for any probability
distribution since it essentially measures the overlap of the
class conditional probabilities. Computationally, it is much
more complex than the previous measure .

Let Xp designate the measurement under evaluation and
P(x /C•), j  = 1, 2, . . . ,  k be the marginal class conditional prob-
abi~it3 distributions . Next , consider the distributions for the
two classes i and j  shown in Figure 1 - 14. The measure for
differentiating cl6ss i from class j using xp is defined as
follows:

Mj~~(Xp) JP(Xp /Cj)dxp + 
j2

p(xp,Ci)d
~~ 
+J

P(Xp /Cj)dxp 

j
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Since the functional forms of the class conditional
probabilities are no t known , we es timate the marg inal class
distributions using the sample data . This method makes use of
histogram approximations like those shown in Figure 1-15. A
detailed discussion of histogram computation will be piesen~~1 later.

The measurement x will be divided into cells of
width . The probabili ty ~hat a sample from class j will occupy
the rth cell along measurement Xp is given by

( j )
P = P(x  / C .) d x

rp P j  P
rth cell

Thus , the pairwise measure for differentiating class i from class
j  can be computed by:

N
.~~~~~~~~~ . . [t i ~ (j ) 1

ij Xp ~~/ ~ ,j  lr ~ 
r~ J

The measure for differentiating class i from all other
classes using X

p 
is def ined by :

• N~ (x~) =>~ M~~ (x~)

Finally , the overall measure of significance of Xp for
differentiating all classes is computed as follows:

M(x~) =~~~~~~~~~ Mj(x~) =~~~~~~~~~ ~~~~~~~ Mj~ (x~)
i=l i=l j#i

The discriminant measure is the simplest measure and
therefore is the fastest to compute. However , it can pr oduce
misleading results when the data classes are not unimodal. Con-

• sider, for example, the two marginal dis tribu tions shown in
Figure 1- 16. The discriminan t measure for X is quite small, since
the separation between the class means relative to the sum of
their var iances is small ; however , measurement X yields excell ent

• between-class discrimination . This weakness is not a problem
with the probability of confusion algorithm , since this latter is
relatively independent of the functional form of the class

- . dis tributions,
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1.3.1.3 Higher~Order Measurement Evalua tion

An algorithm which evaluates higher—order combina-
tions of measurements is implemented in the MOOS function
features. A problem inherent with both the discritninant
measure and the ~robahility of confusion computations is thateach measurement is treated alone . The features algorithm may
evaluate one or more measurements at a time using the divergence
measure as its cri terion .

The divergence measure is useful in subspace
feature evaluation when the underlying distributions are
mul tivariate normal or when the underlying distributions are
unimodal (4 ,5). An advantage of the divergence measure over a
discriminant measure or probability of confusion significance
measure is that it considers the correlation between features.

The divergence J is defined as:
p ( X1 & & . )

J = $ fp (X/w
~

) - p (X/~~~)) log [
~

-
~X T y J dX

where p (XIw.)  is the class conditional probability
dis tribu tio~ for any set of measurements X.
Let n(X/u~~) be Gaussian , i.e.,

‘
~ ~~~~ z~~ ) i = 1,2

where are the means and are the covariance matrices of
the patterns in classes w. , . For Gaussian-distributed pattern
classes , this becomes:

-r ~ ~~~~~~~ 
‘~ T r — l —l~.-j = .L/

~~~
I.J1

i 
— + 

~j -~ ~~ 
—

• + 1/2 trace(~~~~ . + ~~~~ - 21)
1 3  3 1

The divergence measure for differentiating class
i from class j using measurements x , .. . x is obtained by
evaluating the above expression for1’the sub~pace defined bymeasuremen ts x~ , . . .  x0.

- M~~~(x~~1 . . .  X
q
) = J(x~ , . . .  x0)

• The measure for differentiating class i from all
other classes using measurements xp~ ...x q is defined as:

~~~~~~~ . •X g) = ‘ “  ~~~~~~~ . .x~)

-1#1
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The measure for distinguishing all classes using
measurements x , . . .  x is defined as:P a K

xe,) = M
~
(x
~ 

. . .  xc~
) =

i= I
K K

‘
~~

‘

~ M. . (x , . . . x )
i=l i~T~ 

13 p q

Since it is not practical to evaluate all possible
combinations of the L measurements to determine an optimal
fei~ture subspace , a number of subop timal search procedures are
available.

The forward sequential suboptimal search procedure
finds the “best ” subset of N from the original L measurements
using the measure for distinguishthg all classes , M(x~ , . . .x ) .
The f i rs t measurement selec ted is the be st of the L measurem~ntstaken one at a time . The second measurement selected is the
bes t of the L-l rema ining measurements when taken in combina tion
with the first selected measurement. The third measurement
selected is the best of the L-2 remaining measurements when
taken in combina tion with the f ir st and second selec ted measur e-
ment , and so on. The procedure halts when the user-specified
value N is reached .

The union bes t by class approach to measurement
selection utilizes the measure for distinguishing class i from
all other classes , M~ (x~ , . .  . xq). The procedure is quite
similar to the forward sequential technique except that at
each step , more than one measurement may be selected . On the
f ir st round , the best measurement for distinguishing each of
the K classes is selec ted , i.e ., anywhere fr om 1 to K dif fe r en t
measurements may be selected. The second round takes all re-
ma ining measuremen ts in combina tion wi th the pr eviously selected

• measurements , and again may add anywhere from 1 to K new
• measurements. The procedure halts when the user-specified

value N is reached or exceeded .

The union best by class pair approach to measurement
selection utilizes the measure for dis tinguishing class i from
class j ,  M. .(x~,, . . . xq ). The search algorithm is almost
identical ~~ trie union best by class procedure. On the first
round the bes t mea suremen t for dis tinguishing each of the
possible class pairs is selected , i.e. , anywhere from 1 to
K(K—l)/2 measurements may be selected . The second round (and
all subsequent rounds) takes all the remaining measurements in
combination with the nreviously selected measuremen ts , and again
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may add anywhere from I to K(K-l)/2 new measurements. The
procedure hal ts  when the user-specified value N is reached or• exceeded .

The measurement selection procedure has a great deal
of f lexibi l i ty in tha t the previously described techniques may
be interactively mixed in any sequence. Fur thermore , a
preferred subset of the feature space may be selected as a
starting point for the measur ement selection computations.
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1.3.2 Structure Analysis

The basic use of structure analysis in MOOS is in
determining if the structure of the data for a particular class
is unimodal or multimodal. If it is multimodal , it is frequently
better to subdivide the class before attempting to design logic
for distinguishing between classes. This is particularly true
if the logic to be designed is statistically based.

All of the algorithms for structure analysis in MOOS
involve projecting the data onto a one-or two-space and allowing
the analyst to draw a partition(s) of the space if multimodality
is present . All of the projections except one , NLM , are linear .
The linear projections may also be used as the basis for group
logic design.

No justification or explanation is given for coordinate
or arbitrary vector projections .

1.3 .2 .1 The Eigenvector Plane (Least Squares)

The following section is an explanation and proo f of
the contention that planes defined by the two eigenvectors corr2-
sponding to the two largest eigenvalues of the estimated covariance
matrix are optimal by the least squares criterion.

This can be shown as follows:

1. Define a plane by two uni t orthogonal vec tors ~ j
and ,~,2 through a shif ted origin denoted by ~~~~ . (~,will turn out to
be the mean of the data).

2 . Set up an expression for the error (E) tha t ar ises
in fitting the data by the plane described in (1). This will be
obtained by summing the squared residuals from the plane .

3. Next, minimize the error E with respect to d , e~l and
~2, under the constraints that ,~j and ,,~2 be unit vectors and
orthogonal .

4. ~.will be found to be the mean vector . The eigen-
vectors of the estimated covariance matrix will be shown to be
solutions to the minimization problem and, particularly, the two
eigenvectors corresponding to the largest eigenvalues will turn
out to be the desired solution. Note that there exists an infinite
number of solutions, since any orthogonal rotation of .Q.1’ ..e~~ in
the plane defined by ,~i and .~2 will also be a solution ; however ,
all these solutions describe the same least squares plane .



Let

be L-dimensional data vectors

— new origin for the data

define the plane through the new origin.

Define Yj = X j  -
~~~~~

The residual distance squared from the f i t t ing plane for the KtF~
data vector is given by

11k I 2 =~ k 1k ik ( ~Xk ~.i) ~1( ~k~~.2) .
~ 2 I

The f i t t ing error is given by the summation of the squared
residual , i .e .

E = ~~~~~~r~~ rk~~~~~~j  ~~~~~~k~~~c~~~n)
2 (Yt e ) 2

’

}

Using Lagrange multipliers to account for the constraints on e1
and e2, we obtain

E* 
~~~~~~~-~-l 

)2 k e

- 

1 ~l 
- 

2 
.
~~ 2 
3 ~

‘3 ~1 -~2

Taking the partial with respect to ~~ we obtain

O = ~~E* =
~~~~~~~~ [-2xk +2d +2 (X~~~~ -4 ~~~~ +2 (X~~ e2

k=l
N

1
Let ~p~= F T

k-i

-
- 
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Substitute

•
‘
• U=d is a solution. Thus a is the data mean .

continuing

~~E*=~~~2~~~~ 
~~
k
~~k1~~lJ 

-2A 1~~ ~~~3~2 
= 0

A E * =
~~~~

2
~~~~~~ Ek

Y
~] 

~J - 2)\2~~~-X3
ei = 0

Note tha t the estimated covariance matrix is given by

> :=~~ ~~~Lik x~11
Let ~~~~~~~= (N-l)  , and subs titute above

2 
~ l 

-2 
~~~~~ 

-

~~~~~~ ~~~ 
=0 (A)

2 
~~~~~~ 

-2~~2e2 ~~~3~l 
=0 (B)

Mul tiply (A) from the lef t by ,~~~~~~

Multiply (B) from the lef t by 4
Multiply (A) from the left by ~~
to obtain

A

~ lL_~~l ”l (1)

(2)

2 e I ~~~ ~~~
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Substitute back into (A) and (B)

(A) 2>1Q1 -2 [e~~~~e~J~~
i -2 L~~~~1]~ 2 0

(B) 21~~ 2 
-2 

~~~~~~~~~~~ 
-2 
[e~~~~

e
l1~~

1 =0

Now let 
~~ 1 ~ l and

= 

~~2 ~2 
and substitute

into (A) and (B)

(A) => 2 o(l~ l -2 ~ =0

(B) =) 2 °
~ 2-~-2 -2 

~~ ‘< 2~2 
=0

~~~~
• A solution plane is given by the two eigenvectors of the

estimated covariance matrix~~~ .

The least squared error is given by

E= R 
~l -~-2

where R= constant =~~ ~~

or equivalently

E = R - ~~~ 1 -  2

Therefore , the error is minimized by selecting the two
• eigenvectors corresponding to the two largest eigenvalues .

It can similarly be shown tha t the projec tion on the
eigenvector associated with the largest eigenvalue is the best
(by the least squares criterion) one-space projection. 

ii - — - -



1.3. 2 . 2  Discriminant Projections

The MOOS functions ardg~_ — — and asdg~~ — — offer the
analyst ano the r projection direction or plane . The only d i ffe r-
ence between the two functions is in how the two classes upon
which the projection is based are determined. The two classes
may be composed of any two classes of the current data set or
they may be composed of any two groups of classes which are
“lumped together” for the purpose of determinin g the projection
direction(s).

The entire current data set is projected into the
space defined by the Fisher Discriminant ~j. and a secon d vector
.d21 whe re .~2 is that direction which maximizes the projected
between-class scatter relative to the sum of the projected
within-class scatter , under the constraint that 42 be
orthogonal to ~ l. In summary ,

= o(1w-l~~

~~~~ °~2 [w-i - (~~ T Ew~~~
9
/~

T U-r~
3

where O’~~l and ~~~~ are normalizing constants

L 1= the difference between the class mean vectors,~431-A (2

W = sum of the within-class scatter matrices

Notice that both 1 and~~ 2 are computed using W l . If
the data lies in a subspace , then it can be shown that W will be
singular. If the data is approximately contained in any sub-
space , then W will at best be ill-conditioned. In either case ,
the numerical computation of W l  will be extremely tenuous ,
Thus , prior to computing W l , W must firs t be checked to
determine if it is ill-conditioned or singular. In either case ,
we will compute a subspace such that when the data is
orthogonally projected onto this subspace , the Wnew = NoldT

T

will be well-conditioned . Next , 4j and 42 will be computed in
the subspace using Wnew , and finally , we will transform ~~ and
~ 2 

back to the original L-dimensional space ,

If the one-space option is chosen the data is
projected on 

~~~ 
that is , in the Fisher direction only .
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1.3.2.3 Generalized Discriminant Projections

The MOOS function gndv$ — offers the analyst
the capability of projecting data onto a discriminant direction
or plane which has been optimized to produce maximum discrimina-
tion for all classes. This is a generalization of the Fisher . -

discriminant projection described in Section 1.3.2.2.

The Fisher discriminant is obtained by solving for
the unit vector d which maximizes the following ratio :

R = d TBd 
- •

dTWd

where B is the between-class scat ter  matrix , and W is the sum
of the within-class  scatter matr ices.

To solve for the generalized Fisher discriminan t
direc tions , we take the vec tor deriva tive of the above ra tio
R with respect to d and set the resultant equation to zero .
The nrocedure generates the following generalized eigenvector
equation .

- 
~XW~~d = 0

- ‘~~I d = 0
The generalized di scr iminan t vect9r s ar e the

eigenvectors of the non-symmetric matrix W ‘B. The rank
of the between-class scatter matrix for the K—class discrimina-
tion problem is K-l , therefore , no more than K-l nonzero
eigenvector solutions exist. Thus , the generalized discriminant
vector function nroduces K-l discriminant vectors , with the
vectors which correspond to the largest eigenvalues producing
the maximum discrimination . The Gram-Schmidt orthonormaliza—
tion technique is applied to the eigenvectors to insure that
they are orthogonal unit vectors (6).

1—42



r’~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

l.3.2 .i~ Nonlinear Mappin1

The Nonlinear Mapping Algorithm (NLM) is based upon
a poin t mapping of the N L-dimensional vectors from the L-space
to a lower-dimensional space such that the inherent structure of
the data is approximately preserved under the mapp ing . The
approx imate structure preservation is accomplished by f itting N
points in the lower-dimensional space such that their interpoint
distances approximate the corresponding interpoint distances in
the L-space .

Suppose that we have N vectors in an L-space designa ted
X j ,  i = 1, . . . ,  N and, corresponding to these, we define N vector s
in the two-space designa ted Yj ,  i = 1, •.., N. Let the distance
between the vectors Xj and Xj in the L-space be defined by

dij* = dist 
~~

i, x3j F
and the dis tance between the corresponding vectors Yj and Yj in
the two-space be defined by

~~~ = dist 
~~~~~~~~~~~~ 

Y~jJ
Let us now randomly1 choose an initial two-space configuration
for the Y vectors and denote this configuration as follows:

r 1 P 1 T~N l ;
— 1Y~L l 1  

—‘1 — I I “
~2 I. - - ‘

~N 
~ 

I
~l2 j L’22J L

N2 J

1 - For the purpose of this discussion it is convenient to think
of the starting configuration as being selected randomly ;
however , in practice the initial configuration for the vectors

• is found by projecting the L-dimensional data orthogonally
onto a two-space spanned by the two original coordinates with
largest variances.

~-~:
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Next we compute all the two-space interpoint distances
which are then used to define an error E; E is a measure of

how well the present configuration of N points in the two-space
fits the N poin ts in the L-space , i.e.,

N r  12
1 - 

[~ ij *~~~~di jJ
E 

>~ 
[dj~~~~~~~~ <~Cj d~~~~~~~*

i< j

Note that the error is a function of the 2*N variables Ypq~
• p = 1 , . . .  , N and q = 1, 2. The next step in the NLM algorithm
• is to adjust the Ypq variables or, equivalently, change the 2-space

configuration so as to decrease the error . We use a steepest
descent procedure to search for a minimum error.

Let E(m) be defined as the mapping error after the
mth iteration , i.e..

N
12

E (m) = 

~ 7 •. d1j* - djj(m)J / dij*
i<j L

‘here

~ =

a-id ______________________ _______

/ 2

• d~~ (m) “~~ 
~~~~~~ ~~~~ 

- Yj k ( m~j

the new 2-space confi gurat ion at time m + 1 is given by

Ypq (m + 1) = Ypq (m) - ( M F ) . A pq (m)
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where

(m) = ~~E(m) / 
a2 E(m)pq 

3ypq (m)/ ~ypq (m) 2

and MF is the “magic factor” which was determined empirically
to be MF~~ 0,3, The partial derivatives are given by

aYpq c 

~
II L3 P~j �p

and

__ = 

~~ ~~~l 
~~~ 

~(y pq~Yjq)
2 

(1+ ~~~~~~Pi)]

j 3~p

In our program we take precautions to prevent any two points in
the two-space from becoming identical , This prevents the partials
from “blowing up .”

Because the number of computations required in the NLM
algorithm is approximately proportional to N2/2 (where N is the
number of vectors), the MOOS implemen tation of NLM has an upper
‘L imit of 200 vectors, If the number of vectors in the curren t
data set exceeds 200, a reduction i~ required; the algorithm
for performing this reduction is explained below ,

The user specifies the number of vectors (or cluster
centers) to which he wishes the set to be reduced, If the current
data set contains more than one class , the user also spec if ies
whether he wants the number of vectors in each class of the new
set to be the same, or proportional to the number of vectors in
each class of the original data set. The reduction process is
then performed on one class at a time,

I -
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Given that M is the number of vectors in the original
class , and N (N< M) is the number of vectors desired for the re-
duced class , then the number of original vectors lumped together
to produce a reduced vector is M/N=K. Each of the N reduced
vectors is thus the mean vector of K vectors from the original
class , The selection as to which K vectors are to be clustered
together is made as follows : The entire set of vectors is.
searched ; the vector which is farthest away (in the Euclidean
sense) from the mean of the entire class is picked as a starting
vector, Then the K-l closest vectors to that starting vector are
found , and the mean vector of those l+(K-l) K vectors is taken
as the reduced vector or cluster center. The starting vector
for the next cluster center is found from among the remaining
vectors by searching for the one furthest away from the previous
cluster; the clustering process is repeated as often as necessary .
(If K is not an integer, then the first A (A(N where A is the
remainder of M/N) cluster centers will be the mean of fl~

j  + 1
vectors and the remaining N-A cluster centers will be the mean of
[K] vectors , )

1.3,3 Logic Design

In general , the primary goal of a pattern classification
analyst is to design a logic , or series of tests , which will ,
with a suitab le degree of accuracy , assign an unlabeled vector
from the feature space to a particular class (or reject it as
unclassifiable within the required degree of probability),

MOOS provides the analyst with several type s of logic design
algorithms and variations within each type ,

L3.3~l Group Logic Design

In group logic , the analys t makes an intera ctive ,
subjec tive deci sion and actually par tici pates in the logic design
process , The particular node of the logic tree for which logic
is bein g designed is examined; the vectors from the classes
present there are projected on a one- or two-space , If there is
(in the analyst ’s judgment) sufficient separation between classes ,
or between groups of classes , he may draw one or two boundaries
so tha t the feature space is par titioned into two or three
regions . These regions are then labeled as to the class or
classes present in them (a region may be labeled as the null class
or reject region), This is illus tra ted in Figure 1-17.
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m A ,B ,C ,D ,E

___ t o ]

FIGURE 1 - 17: LOGIC TREE NODE - GROUP LOGIC

In this example, group logic which was designed at node m
• separated the five classes present (A,B ,C ,D , and E) into three

groups. Class B was completely separable from the other classes
and was assigned to node p of the logic tree ; the remaining
por tions of the fea ture space , assigned to node s n and o , contain
the groups of classes A ,C and D, and E and D respec tively . Notice
that the samples from class D fell into both regions ; this is
per-miss ible .

For the one-space implementation of these logics, the
ma thema tics is extremely simple. The unlabeled vector to be

• classified is merely projected (dot product) onto the projection
direction (discriminant) ; the value of this scalar is then
compared to the value of the boundary (threshold) drawn by the user,

- Two-space logic mathematics is slightly more complicated;
it is illustrated below .

When the user defines a two-space boundary , he draws, on
the projection plane , from one to five connected line segments
which must define a convex region ; he then draws a reference point
indicating which is the convex side . See Figure 1-18 on the
following page .
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3-Line Segment , 2-Space Boundary.

The transition from the boundary drawn on the two-space
projection to the mathematical logic creates a sequence of dis-
criminant vectors and thresholds , one pair for each line segment.
In the evaluation of the logic , the unlabeled vector is projected
on each discriminant in turn and is then compare d to the threshold ,
If it is less than the threshold for any given line segment , the
vector is on the non-convex side of the partition ; if it is gre ater
than the threshold , it is on the convex side of the partition . The
determination of the discriminant and of the threshold for a line
segment follows .

Given three poin ts on the proj ec ted plan e

poin t S (boundary star t poin t)
poin t E (boundary end point)
poin t C (point on “convex” side of boundary)

if these are considered as vectors (in the projected two—space) ,
i.e.

= <~~
, y

~~
<Xc, YE>

Si = (XC, Y
C>

then a vector ~ normal to the b oundary line in the projected two-
space is given by : ~~1l ,d~~ where dl = + (YE-YS

~ 
and d2 =-(xE-xs).
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Project the convex point and boundary end point onto this vector ,

L t  P - = C D
—

= E ‘D— -•~
Then ~~ ~

‘c .~~~~~ P~ save Pg as the discriminant threshold and
compute and store the discriminant vector.

or if 
~~ 

replace ~~by<-dl , -d2>  , save -~ E as the
discriminant threshold and compute the dis-
criminant vector.

The discriminant vector = d1 X +  d2 L where X and L are the L-
dimensional projection vectors used to

• project a point in L—space onto the projection
plane (on which the boundary was drawn) for
the purpose of evaluating logic (i .e. deciding
if any point V in L-space lies on the “convex”
side of the L-space hyperplane determined
by the boundary ~~~~~~~~~~~ drawn on the projection
plane).

If V A ~~threshold
~~ - —

where 3~.= L-dimensional vector for point V , and

A =  the discriminant vector ,

then the poin t V is on the convex side of the boundary.

1.3,3,2 Complete Within-Group Logic

This type of logic creates a node , or region within
the feature space, for each individual class present at the node
for which logic is being designed, The logic tree representation
of this is illustrated in Figure 1-19.

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A B C D E (op tional)
FIGURE 1-19

Comp lete Within-Group Logic Tree Node (5 classes)
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This type of logic is nx re statistically based and
requires less user interaction than group logic , where the
analys t must de termine the boun dary(s) himself , MOOS does ,
however , allow modifications of these logics wherein the analyst
may make a considerable number of subjective decisions . The three
variations of complete within-group logic are Nearest Mean Vector
(NNV) logic , pairwise logic , and closed decision boundary logic.

1.3.3.2,1 NMV Logic

Generalized NNV logic is a k-class classification
technique ; it classifies an unknown vector from the feature space
according to a me tric , which is computed from the unknown vector
to the mean vectors of the k classes of the design set, The
decision is in favor of the class which produces the minimum
value of the metric, The generalized metric is:

= 
~~~~~~~~~~~~~~~~~~~ (X - M.)T C~~ (X- ~~ )

where X = the -dimensional unknown feature vector

= the I -dimensional mean vector for class i
= an 2 x ,~~matrix

If C~ is the covariance matrix for class i of thedesign se t, then the metric is known as the Mahalanobis distance,

I f  Cj is the identity matrix , the metric is simply the
Euclidean distance from the unknown vector to the mean vector of
ea ch class .

In MOOS , three basic options of NMV Logic are available ;
a reject strategy can be specified under each option . To re duce
unnecessary calculation we use the square of the metric,

• In the first option (simple NMV) C is the identity
matrix , and the metric is computed in the form :

d~ = 
____  (Xj -

‘f,.
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where X = unknown vector = (x1, x 2 ,  . . . ,  x~~)

= mean vector of class i=(,q~~, A4. - . - ,  A~c~ )

• In the second option (weighting vectors~ Cj is a diagonalmatrix whose elements are the variances of the .~~~ 
componen ts of

the design set samples of class i. The computational form of
• the metric used in this option is:

i 2dj L ,  ~~~~~~~~~j = 1
Vi

.3

• where V~ = variance of ~th component of the ~~~ class

In the third option (weighting matrix), C~ is the covar-
iance matrix of the design set samples of class i. The computation
in this case involves the actual vector times matrix times vector
multiplication, as defined by the generalized metric fo rmula .

The optional reject strategy allows the user to specify
a rejec t dis tance , In this case the decision strategy is:
decide on the class .j for which dj is the minimum of all di,
i = 1, .,,, k, if and only if d~ is less than the reject distance ,
otherwise reject. The user can specify a separate reject dis tance

• for each class , or he may use the same rejec t distance for all
classes . This strategy may be used with any of the three metrics.

1,3. 3,2. 2 Pairwise Logic

In MOOS , pairwise logic is created by the routine
fisher, This routine creates a one-space logic based on the
Fisher direction (see section 1.3.2.2) for each possible pair of
classes from among the classes presen t at the node for which the
logic is being designed. Given N classes at the node , this will
produce N(N-l)/2 class pairs. Each of these class—pair logics
classifies (or can be thought of as producing a vote for) a
vector as one or the other of these classes (or rejec t , depending
upon the number of thresholds selected - see section 1, 2 ) ,
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In the evaluation of pairwise logic , the unlabeled
vector is evaluated by each of the N(N-1) /2  class-pair logics
and a “vote count” is kept for each class. After all class
pairs have been evaluated, the vector is classified according to
the vote counts . It is classified as belonging to that class
which received the maximum vote count, provided this maximum is
greater than or equa l to a user-specified vote count threshold.
In case of a tie for the maximum vote count, an attempt is made
to break the tie by re ferring to the a priori class prob abilities;
if these are also equal , the vector is rejected.

• The flow of pair-wise logic evaluation is illustrated
in Figure 1-21.

• MOOS also allows the user, through the routine pair-
mod , the capability of modifying each of the class—pair logics .
TE~ allowable types of logic are :

1) Fisher (1 to 5 thresholds)
2) Any arbitrary one-space projection vector
3) Optimal discriminant plane
4) Any arbitrary two-space plane
5) Boolean

1 . 3 . 3 . 2 . 3  Closed Decision Boundary Logic

A closed decis ion boundary logic strategy is im~le-
mented in the routine closedcn. This program creates an
L-ditnensional hyperregion to enclose each of the classes in
the selected data set.  Three types of hyperregion are available :
hyperrectangular , hynerspherical , and hyperellipsoid.

The evaluation of hyperrectangular logic is oerformed
as follows:

1) Project the unknown sample vector on the basis
• vectors.

Yj = X  -

• 
- 

X = the unknown vector

Yj = the jth comDonent of the projected vector

Vj = the j  th basis vecfor

1— 5 2  
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2) The unknown vector is tested against a high and
a low threshold along each basis vector . The
vector is in the hynerrectano~le if and only if
its projec tion on each of the basis vec tor s is
within the high and low thresholds for each
basis vector . A two-dimensional case is illus-
tra ted Figure l — 2 C .

V2~~ L• H - — .
~~~~~~ — — . ........4 = low threshold

on ba sis vec tor
I ‘

~\ 
V i‘1 

= high threshold
on basis vec tor

1 I V .

e~ ~~~~~~~~~ 
— r —  

1

I I

_ I I

L ~H V1

The point X lies between both paji’s of thresholds
on the basis vec tors and is therefore inside the
h-vperrec tangle .

Figur e 1-20

The evaluation of hyperspherical closed decision
boundary logic is performed by calculating the Euclidean distance
between the unknown vector and the center vector of the hyper-
sphere . If this distanc e is less than or equal to the radius
of the hypersphere , then the unknown vector is inside the
hvpersphere .

2 L 2d =
~~~~~ 

(X
i

_ M . )
i=1 1

M. = ~th component of the center vector of the
~ hypersphere.

= ~th component of the unknown vector.

d = Euclidean distance between X and M (d2 is
used rather than d to reduce comoutation).

* 

- 
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The evaluation of hyper el l ipsoid closed decision
boundary logic is performed by doing the following calculation
for an unkrtown vector.

(x M)T W(X M) < C

X = the unknown vector

M = the center of the hyperellipsoid

W = an L-by-L weighting matrix

C = a size parameter analogous to the radius of
a hypersphere.

If the above condition is met , the unknown vector
lies inside the hyr~ere11iDsoid .

The weighting matrix W is determined as follows :

= [B
” A B~~~~~~

1

B = an L-by-L matrix whose rows are the axis
vectors of the hyperellipsoid (the only axis
vectors currently implemented are the eigen-
vectors of the covar iance matr ix of the
class)

A an L-hy-L diagonal matrix. ~~~ = the length
of the ~th axis of the hyperellipsoid

In the case where A is a diagonal matrix of eigenvalues
and the center vector j’1 is the mean of a class: W is the inverse
covariance matrix and C is the Hahalanobis distance.

Each class of a given data set may have any one of
the three types of hyperregion surrounding it. Three cases
arise depending on how many hyperregions an unknown vector falls
into. If an unknown vector does not lie in any hyperr egion ,
it is rejected. If an unknown vector f all s in one hyperreglon ,
it is assigned to the class associated with that hyperregion .
If an unknown vector lies in more than one hyperregion (r eferred
to as overlap in further discussion) , it is rejected unless
the user has specified otherwise.

• “Overlap ” vectors may be placed in a new data tree ,
and further classification logic developed on the new data
tree to reduce the number of rejections pioduced by closed
decision boundary logic. This is a non-standard approach in
that a data set must be passed against two independent logic
trees to produce the final classification results .
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When an unknown vector is rejected due to an overlap
condi tion , some useful information may be retained . If the
vector fell into only a few of the possible hyperregions , at
least the number of choices as to which class the vector really
belongs has been narrowed. This partial classification informa-
tion may be utilized by Fisher pairwise logic .

The evaluation of Fisher pairwise logic performed
on a data tree consisting of “overlap” vectors differs from
the usual pairwise evaluation . Each unknown vector is tested
only by pairwise decisions involving the possible classes
ind ica ted by closed decision boundary logic. Par tial classi-
f ication information obtained fr om a closed decision boundary
evaluation may be uti lized only by pairwise logic .

1,3 .3,3 Logic Evaluation Outputs

This section describes the various types of confusion
matrix displays produced by MOOS, and gives some general guide-
lines for interpreting these specialized formats ,

1.3.3.3.1 Confusion Matrix for Temporary Between-Group Logic,

The following confusion matrix format is produced by
any one-space group logic , two-space group logic , or Boolean
partition logic,

Referring to Figure 1-22 , the first few lines of output
represen t the user interaction with the logic design routine
(in this case a two-space group logic) . The heart of the disp1-~y
consists of a matrix format in which the column s are associated
with nodes in the logic tree structure , and the rows correspond
to the data classes in the data set being evaluated , Any partic-
ular element of the matrix is the number of vectors from a given

- • class which were assigned to a par ticular logic node. The left-
mos t column of numbers always re fers to the node on which logic
was designed . To the right of and below the matrix are various
totals  and percentages designed to aid the analyst in the
interpretation of these results.
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unlabeled vector

~~~~~~~~~pair log ics vote counters

A/ C

____ - 

B 

classify
according

____ 
to class

A,D 
• 

with max.
• c vote count

iff max .

~~ ~ o ti~-
B/ C 

wise reject

BID 

-~~ D

jre~~~~~~~~

The output of each class-pair logic can be one of the
following :

a vote for no class (reject) •

or
a vote for the fi rs t  class of the pair
or
a vote for the second class of the pair

0~~

FIGURE 1-21

PAIRWISE LOGIC (4 CLASSES)
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If the user decides to nroduce a high-speed Drinter
copy of this confusion matrix , he may choose to get a listing of
all incorrectly classified vectors. Each error is listed by data
clas s, vector identification number , and the logic node to which
it was assigned .

1.3.3.3.2 Confusion Matrix for Temporary Within-Group Logic

The following confusion matrix format is produced by
the within-group logic routines nmv , fisher, and closedcn.
Referring to Figure 1-23 , the first two lines of outnut describe
the type of within-group logic being evaluated , the data set on
which logic was designed , and the number of dimensions. The
heart of the display consists of a matrix format in which the
column labels correspond to the data classes of the data set
being evaluated , and the row labels are associated with the
classes in the data set on which logic was designed . Any
particular element of this matrix is the number of vectors from
a given data class which were assigned to a particular logic
node. (In the case where all classification was correct , all
off-diagonal elements of the matrix would be zero.) Below this
matrix are various totals and percentages designed to aid the
analyst in the interpretation of his results.

If the user decides to produce a high-speed printer
copy of a confusion matrix , he may choose to get a listing of
all incorrectly classified vectors. For both nmv , fisher, and
closedcn, each error is listed by data class , vector identifica-
tion number and the logic node to which it was assigned . The
following additional useful information is listed for each vector :

In the case of nmv , for each misclassified vector , the
distance to the true class and the distance to the assigned class
is listed. If the vector was rejected , the distance to the
closest class is listed rather than the distance to the assigned
class.

In the case of fisher, the first additional line
usually begins with the phrase “lost to: ” followed by a list of
display symbols. Each display symbo l refers to an incorrect
nairwise decision involving the true class. If the vector was
assigned to the wrong class by a pairwise decision box , the dis-
play symbol of the incorrect class is listed. An “r” in paren-
theses immediately following a class symbol indicates that the
vector was rejected , not misclassified , by that decision box .
The second line contains a list of vote counts for the given
vec tor , in ord er of ascend ing logic node number . The last vote
count listed is always the value of the reject vote count . If

• there was a tie situation , the first additional line of output
is oreceded by “tie” or “favorably broken tie” (see Section
1.3.3.2.2) .

Closed decision boundary logic (closedcn) lists the
type o~ hvperregion associated with the true class. If a vector
falls into more than one hyperregion , the names of the classes

• associated with those hyperregions are also listed . 
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1.3.3.3.3 Confusion Matrix for Overall Logic Evaluation

The confusion matrix produced by overall logic
evaluation (logicevi) is identical in format to the matrix
produced b y the temporary within-group logic routines nmv,
fisher, and closedcn . If the user chooses to list this matrix
on the high-speed printer , a lint of al.1 incorrectly classified
vectors may be produced in the format described previously.

1.3.3.3.3.1 Reassociated Names

Additional flexibility is made possible for the
overall logic evaluation of an independent data set by the use
of the reassociated names capability. Utilizing the routine
logicevl, any data set may be tested against logic designed on
any other data set of equal dimensionality . However , the totals
and percentages correct listed below the matrix will be useful
only if the names of the data classes on which logic was designed
are the same as the names of the data classes being evaluated.
This may be accomplished through the use of reasname, which allows
the user to tag logic nodes with any reassociatecF~~mes .

• In a case where two or more logic nodes have been
given the same reassociated name, the totals below the matrix
are formed by adding the confusion matrix entries for these
logic nodes .

If re.~ssociated names have been added to the logictree , logicevi asks the user whether the reassociated names are
to be used in the confusion matrix printout . If the response• is yes , the reassociated names will be used in place of the
original design names ; if more than one logic node has the s ame

• reassociated name , only one entry will appear in the confusion
matrix for that name . In all cases where reassociated names
have been added to a logic tree , they will be used to determine

• whether the vectors in the data set being evaluated have been
assigned correctly.

One further embellishment has been added to the
reassociated name capability. If sense switch 2 is set prior
to overall logic evaluation , the test of correctness is simply
made on the display symbols of the classes involved , rather
than on the entire four-character names .
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1.3.4 Boolean Partitions

MOOS has also implemented a user capability for
Boolean defined partitions of the feature space . This capability
can be used in structure analysis , group logic and pairwise
logic.

This is implemented through utilization of the
PL/ l compiler under MIJLTICS . As a result of the f lexibi l i ty of
MULTICS , the analyst can write any Boolean statement (one that
can be evaluated as true or false) , provi ded that it is a
legal PL/l statement and that it conforms to certain conventions
for referencing feature vector components , and then use that
statemen t as the basis for a transformation or a partition .

1.3.5 Measurement Transformations

In addition to a measurement reduction transforma-
tion (trnsform) performed in conjunction with measurement
evaluation computations, a data set within MOOS may be tran s-
formed by any of the following three independent transformations ;
normxfrm, eigentrn, or measxfrm. Upon execution of any of these
algorithms , every vector in the selected data set is transformed
and a new tree is created from the transformed vectors . The
new tree will have the same structure as the original tree,

1,3.5.1 The Normalization Transformation

The normalization transformation , normxfrm,
determines the standard deviation along each coordinate measure-
ment of the selected data set. Each vector componen t within the
data set is then modified by dividing it by its corresponding
standard deviation , The resulting normalized data set will
have unit variance along each coordinate measurement .

In some cases , normalization may be necessary to
ensure that the various numerical calculations performed by ~ JOS
(e.g. matrix inversions) are sufficiently accurate.

1.3,5.2 The Eigenvector Transformation

The eigenvector transformation , eigentrn, computes
the ei genvectors of the covariance matrix of the selected data
set (see Section 1,3.2). The user is then given the option of
mapping the selected L-dimensional data set onto an M-dimensional
eigenvector subspace (M~~L) by selecting the M eigenvectors

• • 
corresponding to the H largest eigenvalues. The resulting M-
dimensi onal subspace provi des a least squares f i t to the
selected data set , since the sum of the squared residual
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distances from the subspace is minimized , The error in fitting
the data is given by summing the remaining eigenva lues :

Squared Fitting Error =>

L

j =M+l

The transformation essentially involves an orthonormal rotation
of the basis vectors of the data set until they are aligned with
the eigenvectors,

This technique has proven useful both as a research
tool and as an aid to structure analysis and logic design ,
Measurement reduction may also be performed through use of the
eigenvector transformation.

1.3.5.3 The Measurement Compiler Transformation

By using the routine measxfrm, the MOOS user may
define new features which are functions of the original L
measurements . The capability of the MULTICS PL/l compiler is
utilized in that any statements allowed by PL/l may be used for
this transformation .

The measurement compiler option provides the MOOS
user with a practically unlimited capability for defining both
linear and nonlinear transformations, Once the new features
have been defined , the system will execute the transformation ,
thereby generating a new data tree whose vectors have the new
user-defined features as their components .

1.3.5.4 Measurement Reduction Transformations

The MOOS system nrovides three methods for selecting
a projection of the “current data” onto a coordinate subspace
in conjunction with the three methods for evaluating the discrim-
inatory value of each measurement (Section 1.3.1). Each of
these measurement evaluation algorithms (dscrmeas, probconf,
features) produces rank order displays of the L measurements
according to a user-specified criterion . The user may select
specified measurements from the data set via the commands
se lS — — — and unS — — 

—. 
The measurements which are chosen for

retention define the coordinate subsoace and the desired linear
transformation . The user then calls the measurement reduction
transformation routine trnsform to implement the specified trans-
formation, thereby creating a tree identical in structure , b it
containing vectors of fewer measurements than the original data
tree.
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SECTION 2

MOOS USER’S MANUAL

2.1 GENERAL RE MARK S

This manual contains descriptions of all operating MOOS
user fun ctions . It is designed to provide a po ten t ial user of
the system with sufficient information to allow functional utili-
zation of the system capabilities , but does not contain tutorial
informa tion as to the purpo se underly ing the developmen t of each
algorithm , nor does it contain details of the computations per-
formed by any system program. Such information has been documented
elsewhere.

The standard terminal from which MOOS commands are
• executed is the Tektronix 4002 A storage tube display interfaced

to the Honeywell 6180 MULTICS processor , The MULTICS con trol
language has been utilized to the fullest possible extent in the
developmen t of MOOS , and therefore a working knowledge of the
MULTICS environment is essential . For further information , con-
suit the MULTICS Programming Manual. User function calls are
input via the console keyboard and consist of simple program
names (normally up to eight characters in length) followed by any
required or optional parameters . Within system programs , dialogue
concerning additional information required for program operation
is handled by standard terminal input/output operations as
specified within this manual.

The initial section of this manual is concerned with
several aspects of MOOS use which are common to a number of
operations within the sys tem , ia., basic system conven tions for

• entrance into the system , data set input and selection , one- and
• - two-space data representation , and cursor movement.

Initiation of the MOOS Environment

Entrance into the MOOS program environment can be
• accomplished by a MULTICS user via the execution of the command

hello..jnoos, Upon completion , this function provides the user
with an orientation to the standard system display (Figure 2-1).
The hello_moos command is not a MULTICS function and may be
utilized only by users for~~~om linkage to the MOOS direc torie s
has alre ady been provided .

Data Set Input

Data may be brought into active storage and formatted for
MOOS usage in a variety of ways . Currently, procedures have been
implemen ted which will accept data from cards (erdinput),
magnetic tapes (tapinput), and three data file formats (fileinput,

2 — 1
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restore, restorec). Data input programs must be called with a
single parameter (five to eight characters in length) which
represents the tree name of the input data set in the MOOS
system.

The Standard Data Set Selection Parameters

Each of the major user programs under MOOS may be called
by the user with up to two optional parameters , which represent
the tree name and the name of the data class upon which the
operation is to be performed. Rules for these parameters follow :

o All tree names are required to be five to eight
characters in length. Data class names are four characters in
length ( the final character is used as a display symbol) .

o If two parameters are input , the f i rs t  will represent
the tree name . For data input routines , the tree name must be
unique (not currently maintained as a tree name within the system)5
For all other MOOS calls , the tree name input must currently exist
within the system. The second parameter must be a legal data class
name within the selected data tree,

o If one parameter is input , it may represent either a
tree name or a data class name. If is is five to eight characters
in length , it is taken to be a tree name , and the current data
class is set by default to the senior node (symbolized by “****“) ,
A four-character input is assumed to be a data class name within
the current data tree.

o If no parameters are input, the current data tree and
class parameters are not changed and operation s of the called
function are executed upon the same data set as the previous
option ,

Data Represen tation

MOOS provides the user with the capability of p roj ecting
a data set into a one- or two-space representation. Programs which
produce data displays of these types have been given names of the
form pppp$ffn, where

pppp - is a four-letter code designating the type of
• projection plane (“eigv” - eigenvector; “crdv” -

coordina te vector ; “asdg” - assigned discriminant
grouping ; “ardg” - arbitrary discriminan t grouping ;
“gndv” - generalized di scriminant vec tors) .

ff  - is a code specifying the type of fun ction to be
performed (“sa” - struc ture analysis ; “ld” -

- • logic design).

2-3

--  
•
~~~~~~

•
~~~~~

‘-
. •



V.— •- — -

~~ 
_—--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-- ——— - — - . -• - _ _ • - - — -— • -  _—- •.—_,- - •-—- — - - - - —_— • - - -

n - is the number of vectors to be used in creating the
data presentat ion (“1” ; “2”) .

Thus , for example , the conunand eigv$sal allows the user
to select one eigenvector and utilizes the current data set to
produce a histogram under the structure analysis module.

Both one-and two-space data representations are available
in two forms at the option of the user:

o One-Space Macro (Figure 2-2)

An unconfounded view of up to 16 data classes in a
“stack histogram” format ,

o One-Space Micro (Figure 2-3)

A view overlay of selected data class histograms repre-
sented in symbolic format (with a bar graph option).

o Two-Space Cluster (Figure 2-4)

Two- dimensional representation of the data which “forces”
each data point into a location within a 36 x 60 grid . If one or
more vectors from a single data class fall within the same grid
loca tion , the display symbol for that class is presented. If
vectors from two or more data classes fall within a single grid
location , an asterisk is displayed .

The two-space cluster display is generally faster than
the two-space scatter display , especially for a large data set.
However , since each character displayed may represent one or
more vectors , in some cases this display could be misleading ,

o Two-Space Scatter (Figure 2-5)

A two-dimensional representation within which each data
point is located at its “natural” projection point.

Extensive facilities for manipulation and modification
of the data projection displays are available ; these are listed

• under Data Projection Modification Options in the program index
below , and are described in detail in the appropriate user program
listing.

;.: .
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- 2.2 USER PROGRAM INDEX (by function)

• The following index lists the current MOOS options by
• functional group :

Func tion Type Page

System Utility Options 2-10
Data Input/Output Options 2-11
Data Tree Modification Options 2-12
Data Storage Options 2-13

• Data Set Projection Options 2-14
Data Set Projection Modifica tion Options 2-15
Structure Analysis Options 2-17
Logic Design and Development Options 2-18
Measurement Evaluation Options 2-19
Data Tree Transformation Options 2-19
Data Printout Options 2-20
Programmer Aid Options 2-20

2-9 
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SYSTEM UTILITY OPTIONS

Us er Call Option Function Page

anything list current MOOS functions 2-26

crrandts create a test data set from the 2-53
current data tree

dataprnt printout data characteristics and 2-54
statistics

draw$ 
— — 

disp lay a logic tree 2—63

hello moos MOOS system entrance 2-82

rdisplay reconstruc t the latest one-space , 2-121
two-space , or con fusion matr ix
disp lay

sense set system sense switches 2—141

treedraw display the current data tree 2—147

treelist list the data tr~cs in current 2—148
active storage

2- 10
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DATA I N P U T/ O U T P U T  OPTIONS

User Call Option Function Page

crdinput input a data tree from punched cards 2-44

creatree create a data tree from existing 2—49
data classes

crrandts create (extract) a test data tree 2—53
from the current data tree

eigentrn create a data tree via an eigenvector 2—69
transformation

fileinput input a data tree from MULTICS data 2-76
file

measxfrm create a data tree via Boolean 2—103
(linguistic) transformation

mergmeas create a data tree by combining the 2-105
measurements of two existing trees

moosmode convert from the excess measurement mode 2-106
to normal ivIOOS operation

normxfrm create a data tree via the normaliza- 2-111
don transforma tion

restore input a data tree from exclusive user 2—125
storage

restorec input a data tree from common user 2-126
storage

save output a data tree to exclusive user 2-132
storage

savec output a data tree to common user 2 -133
storage

tapeoput output a data tree to magnetic tape 2-145

tapinput input a data tree from magnetic tape 2-146

trnsforrn create a data tree via measurement 2—149
reduction

2—11
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DATA TREE MODIFICATION OPTIONS

User Call Qption Function Page

append add a data class to the current data 2-27
tree from another existing data tree

chngname modif y tree name or data class name 2-37

comnod combine data classes from the current 2 4 3
data tree

creatree create a data tree from existing data 2-49
classes

crrandts create (extract) a test data tree from 2-53
the current data tree

deletnod remove a data class from a data tree 2-58

deletree remove a data tree from current data 259
storage

dsubstrc remove a subnode structure from a data 26 6
tree

dvectors remove data vectors from a data tree 2—68

lingpart create a subnode structure via use of 2 92
Boolean (linguistic) statements

restruct create a subnode structure via parti- 2 127
tion of a data projection di splay

treedraw display the current data tree 2-147

treelist list the data trees in current data 2—148
storage

2-12
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DATA STORAGE OPTIONS (including housekeeping options for current
da ta storage , common user storage , and
exclusive user storage)

User Call Option Function Page

cleartree remove a data tree from exclusive user 2-38
storage

deletree remove a data tree from current data 2-59
storage

list cst list all data trees in common user 2—95
storage

list ust lis t all data trees in exclusive user 2-96
storage

log$ 
— 

input , output , or list MOOS logic in 2— 98
exclusive user storage

remtree remove a data tree from common user 2 124
storage

restore input a data tree from exclusive user 2 125
storage

res torec input a data tree from common user 2-126
storage

save output a data tree to exclusive user 2-132
storage

savec output a data tree to common user 2-133
storage

treelist list the data tree in current data 2 148
storage

vec$del remove vector from exclusive user 2—152
storage

• vec$lall list all vectors stored in exclusive 2—152
user storage

• vec$save output projection vectors to exclusive 2—153
user storage

2-13
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DATA SET PROJECTION OPTIONS (all projection options with the
exception of nim are to be called via entry points
indicating type of function [“sa ” or “ld”J and
represention space L”l” or “2”J ; e.g., “arbv$ld2”:

• arbitrary vectors for logic design , two-space).

User Call Option Function Page

arbv$_ — — 
projection on arbitrary vectors 2-28

ard g$_ — — projection on arbitrary grouped 2 -29
discr iminant plane

asd g$ — — 
projection on assigned grouped 2-31
discriminant p lane

crdv$ — — 
projection on coordinate vectors 2-47

eigv$ 
— 

projection on eigenvectors 2-70

fshp$ 
— — 

projection on Fisher discritninant 2-80
vec tor s

• gndv$ — — projection on generalized discriminant 2-81
vectors

nlm projection in nonlinear mapping space 2—107
(structure analysis only)

2-14
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DATA PROJECTION MODIFICATION OPTIONS

User Call Qption Function Page

binwidth modif y bin size for one -space display 2-33

cdefault change default values for data pro- 2-34
jections (bin size for one-space , data
class size cutoff point for two-space
cluster projection)

cdisplay change two-space display format 2-35
(cluster/scatter)

clprint printout two-space cluster display 2-42

creatlog create logic from one- and two-space 2-48
projection par t i t ion(s)  (log ic design only)

dboundry remove a partition from a data display 2-56

dra$bndy draw a partition on a data projection 2-61

elimclas change data class composition of the 2-71
two-space data display

hgprint printout one-space display 2-83

index identify selected data points on data 2-87
projections

intensf y bargraph selected classes in one -space 2-88
data display

redraw redraw a previously implemented boundary 2-123

restruct create a subnode structure via partition 2-127
of a data projec tion display (structure
analysis only)

scale $ — modif y the scale factor for a data 2-134
projection display

select modify the one—space data presentation 2-138
format (display format ~macro/micro3 dataclass composition , range , number of bins ,
and histogram type [count/probabilitie~~~)

2-15
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• DATA PROJECTION MODIFICATION OPTIONS (Continued)

User Call 2ption Function Page

seq sequence for eigenvectors , coordinate 2-142

vectors , or nonlinear map

vec$save output projection vectors to exclusive 2- 153
user storage

~~ - -
~. 

2-16

-- -- 5-~~~~~~ _ — — - - - -



- -5 - - __

STRUCTURE ANALYSIS OPTIONS (all data projections are appropriate
for structure ana1~rsis ; call desired data projec-
tion followed by ‘ san” where n indicates one(l)-
or two(2)-space proje~ tion) —

User Call Option Function Page

lingpart create a subnode structure via use of 2—92

Boolean (linguistic) statements

restruct create a subnode structure via parti- 2 127 
- •

tion of a data projection disp lay

2-17
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LOGIC DESIGN AND DEVELOPMENT OPTI ONS (all data Dro jec t ion s except
nim are appropriate for logic design; call desired
ff~~a projection followed by “ldn” where ii indicates
one(l)- or two (2)-space projection)

User Call Option Function Page

chngaprb modify a priori probabili ties 2 -36

closedcn create closed decision boundary logic 2-39

closemod modify a closed decision boundary 2-40
logic node

creatlog create logic from one-and two-space 2—48
projection partition(s)

delet log remove node(s) from a logic tree 2-57

displacm confusion matrix display 2-60

dr aw$ — — 
display a logic tree 2-63

fisher create Fisher pairwise logic 2—77

forteval evaluate FORTPAN subroutine logic 2-78

fortlogc create FORTRAN subroutine logic 2-79

hrdcpycm confusion matrix printout 2-86

latclogc create a “lattice type” logic tree 2—89
structure

linglogc create Boolean (linguistic) logic 2—91

lingrjct create Boolean (linguistic) independent 2— 93
reject strategy

listlogc printout logic tree 2— 97

log$ 
— 

input , output , or list MOOS logic in 2—98
exclusive user storage

logicevi evaluate logic for completed logic 2—102
design

• nmv create nearest mean vector logic 2-109

• nmvmod modify a nearest mean vector logic node 2-110

pairmod modif y a ~airwise logic node 2-113
P reasnarne modify reassociated data class names in 2-122
• ‘ MOOS logic file

surnmrycm confusion matrix summary display 2-144

. —l fl
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MEASUREMENT EVALUATION OPTIONS

User Call Option Function Page

dscrmeas discriminan t measure measuremen t 2-65
evaluation computation

f eatures “divergence measure” measur ement 2 7 3
evaluation computation

features_abs enter an absen tee request to execute 2—75
the features algorithm off--line

histgram display measurement evaluation in 284
histogram format

hrdcpy printout measurement evaluation listings 2-85

page page rank order display 2-112

probconf probability of confus ion measurement 2-120
evaluation computation

rnk$ — rank measurements for selected class 2-128

sel$ — 
select measurements for measurement 2-136
reduc tion

trnsform create a data tree via measurement 2-149
reduc tion

un$ 
— 

select measurements for measurement 2-150
reduction (union best class and/or
class pair)

DATA TREE TRANSFORMATION OPTIONS

eigentrn create a data tree via an eigenvector 2-69
transformation

measxfrm create a data tree via Boolean 2-103
(linguistic) transformation

normx f rm create a data tree via the normalization 2-111
transformation

trnsform create a data tree via measurement 2-149
- - reduction

2—19
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DATA PRINTOUT OPTIONS

User Call Option Function Page

ciprint printout two-space cluster display 2-42 - -

dataprnt printout data characteristics and 2-54
statistics - •

hgprint printout one-space display 2-83

hrdcpy printout measurement evaluation 2-85
listings

hrdcpycm printout confusion matrix 2-86

listlogc printout logic tree 2—97

vec$hall printout saved projection vectors 2—152

PROGRAMME R AID OPTIONS

User Call Opt ion Function Page

dump printout standard system information 2-67

fastdump printout selected system file information 2—72

setdata set selected system file information 2—143

2-20
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2 .3  USER PROGRAM INDEX (Alphabetical)

Name Option Function Page

anything list current MOOS functions 2-26

append add a data class to the current data tree 2-27
from another existing data tree

arbv$_ — — proj ection on arbitrary vectors 2-28

ardg$_ — projection on arbitrary grouped diacrim- 2-29
inant plane

asdg$_ — — projection on assigned grouped discritn- 2-31
inant plane

binwidth modify bin size for one-space display 2-33

cdefaul t change default values for one-and two- 2-34
space data projections

cdisplay change two-space display forma t 2-35

chngaprb modif y a priori probabilities 2-36

chngname modif y tree n ame or data class name 2-37

cleartree remove a data tree from exclusive user 2-38
storage

clo seilcn cre ate closed decision boundary logic 2-39

closemod modify a closed decision boundary 2-40
logic nod e

cipr int printout two-space cluster display 2—42

comnod combine data classes for the current 2-43
data tree

crdinput input a data tree from punched cards 2-44

crdv$ — 
projection on coordinate vectors 2—47

• creatlog create log ic from one-and two-space 2—4 8
projection Dartition (s)

crea tree crea te a da ta tree fr om exi sting da ta 2—49
classes

crrand ts crea te (extrac t) a test da ta set from the 2-53
current data tree

2—21
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(Continued)

Name Option Function Page

dataprn t printout data charactertstics and 2—54
statistics

dboundry remove a partition from a data display 2—56

deletlog remove node~s) from a logic tree 2-57

deletnod delete node from a current data tree 2—58

deletree remove data tree from current data 2-59
storage

displacm confusion matrix display 2—60

dra$bndv draw a partition on a data projection 2—61

draw$ 
— — 

disp lay a logic tree 2—63

dscrmeas discriminant measure evaluation 2—65
computation

dsubstrc remove a subnode structure from a data 2—66
• tree

dump printout standard system information 2-67

dvectors remove data vectors from a data tree 2—68

eigentrn create a data tree via an eigenvector 2—69
transformation

eigv$_ 
— — 

projection on eigenvectors 2—70

elimclas change data class composition of the two- 2—/1
soace data disolay

fastdump Printout selected system file information 2— 2

features “divergence measure” measurement evalua tion
comnutation 273

features_abs enter an absentee request to execute 2 - 5
the features algorithm off-line

fileinput input a data tree from a MULTICS data file 276

fisher create Fisher pairwise logic 2-7

— 
forteval evaluate FORTRAN subroutine logic 2-78

fortlogc create FORTRAN subroutine logic 2—9

fs h r $  — — projection on Fisher discriminant vectors 2-80

gn -lvS — — orojection Ofl generalized discriminant 2—61
vectors

hello moos MOOS system entrance 2—62

2 -22

-- - - 5 —  - 
___ •__ __ _~,r-~__ •______ ___ —--- --~~~~-—---~~~~- — 

-5 - - - - -



-

(Continued)

Name Option Function Pare

hgnrint nrintout one-space disnlay 2-83

histgram display measurement evaluation in 2-84
histogram format

hrdcpv orintout measurement evaluation listings 2-85

hrdcpycm orintout confusion matrix 2-86

index identify selected data points in data 2—87
proj ections

intensfy hargraoh selected classes in one—soace 2-88
data display

latclogc create a “lattice type” logic tree 2—89
• structure

linglogc create Boolean (linguistic) logic 2—91

ling~art create a subnode structure via use of 2-92
• Boolean (linguistic) statements

lingr~ct create Boolean (linguistic) independent 2—93
reject strategy

list cst list all data trees in common user storage 2—95

list ust list all data trees in exclusive user 2-96
storage

listlogc nrintout logic tree 2—97

logS 
— 

input , output , or list MOOS logic in 2-98

I 
exclusive user storage

logicevl evaluate logic for completed logic design 2-102

measxfrm create a data tree via Boolean (linguis- 2—103
tic) transformation

mergmeas create a data tree by combining the 2-105
measurements of two existing data trees

moosmode convert from the excess measurement mode 2-106
to normal MOOS oneration

nlm Prolection in nonlinear mapoing sna~e 2-10~
nmv create nearest mean vector logic

• nmvmod modify nearest mean vector logic node - -

normxfrin create a data tree via the normali~ at i
trans formation

2 — 2 3
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J
(Continued)

Name Op tion Function Page

page page rank order display 2-112

pairmod modify pairwise logic node 2-113

probconf probability of confusion measurement 2-120.
evaluation computation

rdisplay redraw latest one- or two-space display 2-121
reasname modify reassociated data class names 2-122

redraw redraw previously implemented boundary 2-123

remtree remove a data tree from common user 2—124
storage

restore input a data tree from exclusive user 2—125
storage

restorec input a data tree from common user 2—126
storage

restruct create a subnode structure via partition 2—127
of a data projec tion display

rnk$ — — 
rank measurements for selected class 2-128

save output a data tree to exclusive user 2—132
storage

savec output a data tree to common user storage 2—133

scale$_ 
— 

modify the scale factor for a data pro- 2—134
jec tion display

sel$_ — — 
select measurements for measurement 2-136
reduc tion

select modify the one-space data presentation 2-138
format

sense set system sense switches 2—141

seq sequence eigenvectors , coordinate vectors , 2-142
• or nonlinear mapping

setdata set selected system file information 2—143
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(Continued)

Name Option Function Page

sununrycm confusion matrix su~ nary display 
2-144

tapeoput output a data tree to magnetic tape 2—145

tap input input a data tree from magnetic tape 2-146

treedraw display the current data tree 2—147

treelist list the data trees in current data 2-148k storage

trnsform create a data tree via measurement 2—149
reduction

un$ 
— — 

select measurements for measurement 2-150
reduction

vec$_ input , retrieve , remove , or list pro- 2-152
jection vectors in exclusive user storage

2-25



Function Call: anything

Additional User i~’iteractjon: None

Function Description: anything gives a list of all
currently implemented MOOS funetio~g and all user~callab1eroutines.
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Function Call: append treel nodel tree2 node2 newnode

Input Parameters:

treel source data tree
nodel source data node
tree2 destination data tree
node2 destination data node
newnode name of node created

Additional User
Interaction: None

Function Description: append has two similar functions: 1) it
combines two nodes; or 2) it transfers a node from a source tree
to a destination tree and calls it newnode. When a user wishes
to combine two nodes , only the first four parameters are required
node2 must be a lowest node. If a user wants to copy a node,
then all five parameters are needed and newnode must be a unique
node name under tree2. The node2 parameter will serve as the
superior node for newnode.. Treel and tree2 can be the same tree.

Example 1: To combine noda of tree000l with nodb of tree0002,
the input sequence is

“append tree000l noda tree0002 nodb”
tree000l tree 002

nodm nodk nod
~~~~~~~~~~dc

Example 2: To attach noda of tree000l under the senior node
of tree0002 and call it nodf,the calling sequence is

“append tree000l noda tree0002 ~~~~~~~~ nodf”

tree000l tree0002

t\ %\nodm nodn /“~odkJ \ nodf

/ \ noda nodb nod~~~~~
no dc I \io ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Function Call: arbv sal (treename) (classname)
arbv sa2 (treename ) (classname )
arbv idi (treename) (classname)
arbv ld2 (treename) (classname)

Additional User Interaction: Do you want to retrieve a saved pro-
jection vector , or type in a new projec tion vec tor?

Type in s or i
S
Enter the name of a projection vector or type “stop”
vector name

Function Description: arbv projects the selected data set
on any vector or vectors chosen by the user . The projection
vec tor(s)  may be manually input , or retr ieved from the user created
saved vectors file (see function vec$save).

Entries sal and sa2 of arbv are for use in structure analysis.
The ldl and ]d~~entri~~~are used in des igning log ic.

The sal and ldl entries of arbv generate one-space or histo-
gram plots of the d~ta. Two-space plots are crea ted by the sa2
and 1d2 entries. t
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Function Call:  ardg$sal (treenanie ) (classname)
ardg~sa2 (treename) (classname)
ardg~ ldfl (treename ) (classname )
ardg$ld2 (treename) (classname)

Additional User Interaction: Choose classes from the followinglist:

class(l)  class(2) . . . class (n)

Type in the number of classes in group 1 followed by eachclass name .

One entry to a line
nuinbe r
cla~ i(il

Type in the number of classes in group 2 followed by eachclass name .

One entry to a line
number
clasI(j)
c1ass~(~) 

-

Enter one or two options from the following list: (on oneline - no delimiters)

0 default options (covariance matrix and all measurements)
1 scatter matrix
2 eliminate some measurements

• number

Type in c to display results

Function Description: ar4g projects the selected data set
• on the Fisher direction (or the optimal discriminant plane)

associated with two user-assigned groupings of data classes . These
groupings need not comprise the entire data set. however , the
entire data set is projected on the resulting F~Lsher vector(s) .

The calculation of the Fisher direction may be based on thesum of the within-group scatter matrices rather than the sum ofthe within-group covariance matrices by selecting option 1. Ifoption 2 is chosen , the Fisher direction may be computed using asubset of the feature space.

2-29
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Entries sal and sa2 of ardg are for use in structure
analysis . Th~~Tdl an~ Td2 entries are used in logic design.

The sal and ldl entries of ardg generate one-space or
histogram plots of the data. Two-space plots are created by
the sa2 and ld2 entries.

2-30
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Function Call : asdg~sal (treename) (classname )
asdg~sa2 (treename) (classname)
asdg~ldL (treename) (classname)
asdg~1d2 (treename) (classname)J

Additional User Interaction:

classes in group 1 are :
class(1) ... class(i)
classes in group 2 are:
class(i+l) ,. . class(n)

do you wish to modify these groupings?
no

Enter one or two options from the follow:ing
list: (on one line - no delimiters)

0 default options (covariance.
matrix and all measurements)

1 scatter matrix
2 eliminate some measurements

number

cype in c to display results
C

Function Description: asdg projects the selected data set
on the Fisher direction (or the optimal discriminant plane) associ-
ated with two algebraically-assigned groupings of data classes.
The assignment of groups is carried out in the following manner :
First , the two data classes whose mean vectors have the largest
Euclidean separation are found. The remaining data classes are
then associated with the class of this pair to which they are
closest. If the user is not satisfied with the assignment of groups,
he may modify the groupings manually or use ar~ g,. which expects
the user to input groups of his own. The final groupings need not
comprise the entire data set; however , the entire data set is pro-
jected on the resulting Fisher vector(s).

The calculation of the Fisher direction may be based on the
sum of the within-group scatter matrices rather than the sum of
the within-group covariance matrices by selecting option 1. If
option 2 is chosen , the Fisher direction may be computed us ing a
subset of the feature space .

Entries sal and sa2 of asdg are for use in structure
analysis . The Tal aniTa2 entries are used in logic design ,

2— 31
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The sal and ldl entries of asdg generate one-space or
histogram ~T3~ts of tEe data . Two-space plots are created by the
sa2 and ld2 entries.
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Function Cal l: b inwidth

Additional User Interaction: There are three questions whose
answers determine how th&~~isplay will be modified.

Function Description: The user may modify the current
one-space display . Us ing binwidth, the changes that can be made
are:

1) changing the xmin or starting point of the display ,
2) changing the number of bins, and
3) changing the interval size

The three questions are :

1) “enter new xmin or ‘same”
2) “enter new number of bins or have it vary as a

function of the interval size by entering ‘vary”
3) “enter new interval size”

For #1, the user replies either with the new starting point
(bin number) or with “same.” For #2, the user replies either
with the new number of bins or with “vary.” For #3, the user
enters the new interval size. The number of bins will be affected
unless the current number of bins is entered in response to #2;
if that occurs, the xmax or end point of the display is adjusted.
If all these questions are answered with new values, the xmax of
the display is again altered.
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Function Call: cdefault

Additional User Interaction: Select changes from the following
list:

1) cluster/scatter cutoff value (default value : 500)
2) one-space bin factor (default value: 5)
3) return to initial default values
4) no changes
number of an option

Function Description: Option 1: If the number of vectors
in a data set to be projected on a two-space plot is greater
than the cutoff value, a cluster plot is displayed; otherwise a
scatter plot is shown. If option I is selected, the program
requests that a new value be input. Example: If the cutoff value
were set to zero , all two-space plots would initially be displayed
in the clus ter mode .

Option 2: The initial number of bins for a histogram plot is
determined by dividing the total number of vectors in the data
set by the number of classes times the one-space bin factor. If
option 2 is selected , the program requests that a new value be
entered. Example: If the number of classes is 1, the bin factor is
set to 2, and the total number of vectors is 100, these vectors will
be placed in 100/(1*2) = 50 bins .

Oytion 3: If option 3 is selected , the cluster/scatter cutoff
value is set to 500 and the one-space bin factor is set to 5.

2-34
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• Function Call: cdisplay

Additional User Interaction : None

Program Description : If the current disp lay is a
two-sPace scatter plot , cdisplay changes the dis~ 1av to a
two-space cluster plot and vice versa.
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Function Call:  chngaprb (treename ) (classname)

Addi tional User Interaction: Upon initiation , the program lists
the a priori probabilities for treename and classname , and the ~ er
must enter one of the following options :

0 - a pr iori probabilities will no t be changed from those
listed

1 - make all a priori probabilities equal
2 - enter proportion for each class

Function Descript ion : chngaprb allows a user to change
the a priori probabilities .

Option 1: the a priori probability for each class is set
equal to l/ncls where ncls is the number of classes.

Option 2: the user is asked to enter a weighting value for
_each class . For class (i), the a ~riori probability equals

[i ÷ ~~C 1S 
wt (j)]wt (i), where wt(j) is the sum of all

the entered propor tions , and wt (i) is the propor tion entered for
class (i)

After the user selects an option , the amended list is
presented , and the user must input another option .

Option 0 will exit him from the routine ; the last
values presen ted are the a priori probabilities.

If more than 16 classes are to be presented , the user will
be asked to “enter any number to proceed .” The number entered
will simply clear the screen , and will not be used to calculate
any probabilities .
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Function Call: chngname (treename) (classname)

Additional User Inter action: Input number of names to be changed

number

Input on separa te lines each name to be changed followed
by a new name

old name 1)
new name

old name (n)
new name (ii)

Function Description: chngnaine permits the user to
change the name oUiny MOOS data tree or the names of any nodes
wi thin a data tree . Any new names mus t be unique within the
specified tree , The las t characters of any new node names mus t
also be unique , since they are used as display characters,

2- 37
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Function Call: cleartree treename/”all”

Input Parameters:

treename specify a par ticular data set

“all” remove all existing trees from
the user ’s “saved_trees” directory

Additional User Interaction : None

Function Description: This routine deletes from the
user ’s “saved_trees” directory trees and their associated nodes
that have been copied via the utility function save.
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Function Call :  closedcn (treename) (classname)

Additional User Interaction:

Is the type of closed decision boundary logic to be the
same for all classes?

Enter 1 for hyperrectangle
2 for hypersphere
3 for hyperellipsoid

2

** A partial  evaluation of the log ic is generated and
disp layed.

Function Description:

closedcn creates closed decision boundary logic at a
user-specified logic node . Closed decision boundary logic
attempts to enclose each of the classes in the selected data
set with a closed n-dimensional hyperregion (n = number of
dimensions) . There are three types of hyperregions available
for this purpose: hyperrectangles , hyperspheres , and hyper-
ellipsoids . The user has the option of specifying one of these
hyperregion types for all the classes in the selected data
set , or he may choose a different  hyperregion for each class.
In the case of a hyperrectangular surface the user may also
select one of the following basic vector types: the coordinate
vectors of the data set , the eigenvectors of the covariance
matrix of the entire data set , or the eigenvectors of the
covariance matrices of the individual data classes.

Any samp le vectors rejected by the evaluation of the
closed decision boundary logic created by closedcn are rejected
due to “overlap . ” This means that the vector lies within more

• than one closed decision boundary*. The user may create a new
data tree from vectors rej ected due to overlap for further logic

• desi gn.

~ Boundaries created by closedcn are always large enough to
include all the vectors in the selected data set.

2—39 



- _ _ _ _ _ _

Function Call: closemod (treename) (classname)

Add tional User Interaction:

Choose a class from the following list:
ab. .

b

Current logic type for class b is hyperrectangular

Select a logic type
1. hyperrectangular
2. hyperspherical
3. hyperellipsoid
1

Select an option :
a . Default  thresholds (based on the range of the data)
b. Thresholds based on 7~ of the range of the data
c. Display and interactive modification of the thresholds
d . New basis vectors

d

Do you wish to modif y logic for another class?

no

** A partial evaluation of the logic is generated and

• 

displayed.

Function Description:

• closemod may perform a number of modifications to a
previously created closed decision boundary logic. It is
possible using this routine to change the type of boundary
associated with a class , or to modif y the parame ters which
specify the current closed decision boundary logic for a class.
It should be noted that the user has more control over the set-
ting of boundary parameters than w i th  the or i n ina l  l or ’ic

• creation program closedcn.
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As with the closedcn program, the user may choose to
create a new data tree from sample vectors which fall into mo’e
than one closed decision boundary . Vectors which do not lie
within any closed decision boundary are rejected and may not
be placed in the new da ta tree.

• The options allowed for each logic type are listed below :

o For hyperrectangular logic the user may choose any one
of the following :

a. Default thresholds (based on the range of the data)
b. Thresholds based on % of the range of the data
c. Display and interactive modification of the

thresholds
— d. New basis vectors

o For hyperspherical logic the user may choose 1 or 2
of the following :

a. Defaul t center vector (mean of the class)
b . Center vector at median of the class
c. User-input arbitrary center vector
d . Default radius (based on the range of the data)
e . Radius based on % of range of the data

• f. User input radius

o For hyperellipsoid logic the user may choose 1, 2, or —

3 of the following :

a. Default center vector (mean of the class)
b . Center vector at median of the class
c. User-input arbitrary center vector
d . Default axis lengths (based on range of the data)
e. Axis lengths based on 7~ of default axis lengthsf. Display and interactive modification of axis lengths
g. Mahalanobis (axis lengths = eigenvalues)
h. Default “C” value (based on the range of the da ta)
i. “C” value based on 7~ of de fault “C” value

(The “C” value refers to a quantity analogous to the radius of
a hypersphere)

Note: A large amount of error checking is performed on the
• above-mentioned option lists to ensure that certain oversights

on the part of the user are avoided (e.g., the user may not
change the radius of a hyperspherical logic by more than one
method at a time , etc .) Also , when a user selects a different

• logic type for a class than what is currently imp lemen ted , any
options not selected which are needed to specify the logic are
set to their default value .
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Function Call: ciprint

Additional User Interaction: None

Function Description : A copy of the latest two-space
cluster plot is produced on the high-speed printer.

If the current display is a scatter plot and a hardcopy
is desired , the user must first change to a cluster plot via
cdisplay.

r
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Function Call: comnod (treename) (classname)

Additional User Interaction: You may combine a maximum of n nodes
from the following list:

node (1) node (2) •.. node (n+l)

Enter list of nodes to be combined :

abc. .

input new 4 character node name

new name

Function Description:

comnod is used for combining data nodes under a coimnon
intermediate node (or the senior node) in a MOOS data tree. comnod
will not allow all the data nodes under a conmion node to combine
into a single node ; dsubstrc should be used for this purpose.

The new four-character node name of the combined node,
as well as its display character, must be unique in the
specified tree.

2—43
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Function Call: crdinput trèename

Additional User Interaction: None

Function Description: The crdii~put function transforms
a data set input on cards into a MOOS data tree . The input
parameter treename must be unique in the current system. All
data parameters must be included on ttie data cards as described •

below . The card data must be stored in the user ’s file “testdata”
and may be input to the system as follows :

o The data deck consists of ncls+2 cards which describe
the data , followed by the data cards.

Card 1: The number, in integer format , of dimensions
(ndirn) of the data set (max’=lOO) in any
column .

Card 2: The number , in integer format , of classes
(n cls) in the data set (max=72) in any column.

Cards 3 thru ncls+2 : A four-character data class name
(cols. 1-4) and the number of vectors within
this dat a class (nvec) in integer format ,
right-adj usted to column 18.

The data vector deck: the data measurement values in
floating point format (no assumed decimal point) with
at least one space between each value, Index values
for each vector are assigned sequentially by crdinput.
No ex traneous information m a y  appear on the cai~d~s.

o The standard system control cards must be added to the
front and the end of the data deck .

- 
- The following examp le illustrates a da ta deck cons isting

of three classes (nodi, nod2 , nod3) . Each clas s con tains 125
ten-dimensional vectors.

~~
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Program Result: The crdinput program inserts a data tree name
(treename ) in the system , creates f i le treenamne and associated
data class files, and sets the current data set name to
treename ~~~~~~~~~~~~~

2— 46
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Function Call: crdi-$sal (treename) (classname)
crdv$sa2 (treename) (classname)
crdv$ldl (treename) (classname)
crdv$1d2 (treename) (classname)

Additional User Interaction: input the 2 coordinates onto which
the data is to be projected.

number]. number2

Function Description: crdv projects the selected data set
onto coordinate axes chosen by the user.

Entries sal and sa2 of crdv are for use in structure analysis .
The ldl and ld2 entries are used in designing logic .

The sal and ldl entries of crdv generate one-space or
histogram ~I~ts of tI~e data. Two-space plots are created by the
sa2 and 1d2 entries.
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Function Call : creatlog

Additional User Interaction: The user must enter the display
symbols of the data classes within each partition of the current
display (one or more boundaries must have been previously drawn
using dra$bndy). Each list of display symbols must be on one
line with no delimiters. If four asterisks are entered , it is
assumed that the given partition is to be a reject region.

The results of evaluating the data set on the newly created
logic are presented in a confusion matrix format. The user is
then given the option of listing the matrix on the high-speed
printer. A listing of all incorrectly classified vectors may
also be produced .

Function Description: creat~~ g creates and evaluates the
logic for a boundary drawn in a one - or two-space plane.
creatlog should be called after  the use of any “ldl” or “1d2”
project ion plane program .
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Function Call: creatree treename

Additional User Interaction: The user selects the mode of
creating a new tree~ (treename) by specifying the number of nodes :

combine trees - enter a number <0
merge trees - enter 0
user-specified composition - enter number

of nodes to be made .

The user then specif ies up to ten trees to be used in creating
treename, expresses whether vector ID ’ s are to be sequenced , and
indicates whether a listing of sequence changes is desired.

Fur ther dialogue is needed in the case of compos ition speci-
f ication, where the user designates which nodes (if any) from each
of the specified data trees will be used to create the treename
nodes.

Function Descri ption:

Combine trees: enter number of nodes <0.
The routine will create treename with copies of the

lowest nodes of the up to ten trees. In the process , if any
display symbols are not unique , new display symbols will be
appended. The total number of nodes must be less than or equal
to 72.

TREE1 TREE2 NEWTREE

NOD~~~~~~~~NO~~ ~~A 

N0D1~~~~~~~~~~~~~~~~~~~~~ CLA6

CLA1 CLA2 NOD3

NOD2 NOD3’

Merge trees: enter number of node s 0
The routine will create treename by merging all of

the vectors from similarly-named nodes to the treename node of
the same name . All of t h e  up to ten trees must have the same
number of lowest nodes , and these lowest nodes must have the same
name s .

4-
.
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TREE 1 TREE2 NEWTREE

NOD~~~~~~ , NO~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~/ NOD2

(3
NOD2 NOD3

User-specified composition: enter number of nodes to be made.

The user will specif y each treename node name and the
number and names of nodes to be merged - from the up to ten trees.
If the new node name does not have a unique display symbol , the
user is asked to input another name for the new node. If a
particular node is no t found , the user has the option to exit or
ente r a new node ,

TREE 1 TREE2 NE~TRE E

/1\ 
/

C\ ~~~~~~~~~~~~~~
N0D~I NOD4 CLA1 CL 2 AAAA ~BBB

/ = nodl =

+ nod4
-1T C + clal

NOD2 NOD3

Examp le of dialogue: (user respon se underlined)

creatree newtree
number of nodes
2
~Tumber of trees used in making new tree
2

• ~ame s of these trees , one per line
• treel

tree2
do you wish to sequence vector ID numbers as the vectors

are input ?
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no

~~nd of dialogue if number of nodes ~ 0)enter a four-character name for new nodel of tree newtree
AAAA
enter li st of display symbols of nodes from tree treel
to be used in forming node AAAA - -enter on one line with
no delimit er s (enter ** if no nodes are to be used)
14
i~ti~nber of nodes from tree tree]. = 2 , using nodes :
nod]. nod4
enter list of display symbols of nodes from tree tree2 to
be used in forming node AAAA - -enter on one line with no
delimiters (enter ** if no nodes are to be used)
1
i~umber of nodes from tree tree2 = 1, using node clal
enter a four-character name for new node2 of tree newtree
BBBA
display character is not unique
reenter new four-character name for node2
BBBB
enter list of display symbols of nodes from tree treel
to be used infrrming node BBBB - enter on one line with
no delim iters (enter ~ A if no nodes are to be used)
**iiiimber of nodes from tree treel = 0

enter list of display symbols of nodes from tree tree2
to be used in forming node BBBB - enter on one lin e
with no delimiters (enter ** if no node s are to be used)
2X
i~iimber of nodes from tree2 = 2, using nodes cla2
no node exists with display symbol X
do you wish to reenter a new li st of display symbols of
nodes from tree2 to be used for node BBBB of tree
newtree?

enter new list from tree tree2 for node BBBB
2

~umber of nodes from tree tree2 = 1, using node cla2
BEGIN PROCESSING

If the user spec ifies one node to be created for newtree ,
the new four-character name is automatically set to “**** “ .

The option to sequence vector ID numbers should be used
in a situation where two or more trees have vectors whose ID
numbers are the same . A l isting of ID number changes may be
produced at this time if the user wishes.

- • 
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Possible error s:

creatree will exit if the dimensions of the up to ten
trees are not equal , if any of the up to ten trees are not known
t o the system , or if the user does not wish to continue after
entering an incorrect list of nodes. In these cases , the
routine will delete the newtree and all the new nodes created
thus far , and will return with the current data se t “notatree ,”
“nono , ”

L 

•

•
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Function Call: crrandts new-treename

Additional User Interaction; enter tree name where vectors are
to be ext racted from .

eight-character tree name
enter percent of data to be extracted
number [for example , if 507~ of the data are to be extracted ,

enter 50 ra ther than ,~J
Function Des cription: crrandts is a means of creating a
random test set. A user-selected percentage of vectors from the
given data tree are removed and placed in a new tree.

P
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Function Call: dataprnt (treename) (classname)

Additional User Interaction: Type in options from the following
l ist:

1. all vectors
2. single vector
3. ranges & overlap
4. means & standard deviations
5 . difference between mean vectors
6. covariance matrices
7 . correlation matrices

— 8. tree structure
e exponential format of output
c change nodes to be processed
13 4e c 8

6 options selected
BEGIN PROCESSING

1 request signalled , 0 already queued

Function Description: dataprnt outputs certain basic
information about a data set to the high-speed printer. A
functional description of each option follows :

o 1. all vectors All the vectors in the selected data
set are printed , The format of this printout simplifies com-
parison of the different values of a specific measurement or
feature,

o 2, single vector If option 2 is selected , the program
asks for a specific vector ID number and prints the corresponding
vector. The program then asks if more single vectors are desired,
This -option is useful for printing a limited number of individual
vectors.

o 3. ranges & overlap This option prints a table for
each data class in the selected data set, containing the minimum ,
maximum , and range of each measurement. A table containing
minimum , maximum , and range values for the entire data set is also
printed . F-3llowing these tables is a list of pairs of classes
which do not overlap along each specific measurement.

o 4. means & standard deviations The mean vectors and
standard deviations for every data class and for every inter-
mediate node in the selected tree are printed.

2—54

- 

I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  L~~~
-
~~ - .4



_________________ 
- -

o 5. difference between mean vectors This option prints
the Euclidean dis tance between each pair of mean vectors in the
selected data set , and also the absolute values of the differ-
ences between each measurement of these mean vectors.

o 6. covariance matrices The covariance matrix for
every data class and for every intermedi a te node in the selec ted
tree structure is printed.

o 7 . correlation matrices The correlation matrix for
every data class and for every intermediate node in the selected
tree structure is printed.

o 8. tree structure The tree structure of the selected
data set is printed in outline form, including the number of
vectors at each node ,

o e exponential format of output Exponential format
may be used any t ime the user pre fers to have values printed in
scientific notation , This may have a distinct advantage in cases
where more than five-digit accuracy is çlesire d or where t~ e values
of the measurements are greater than 10’~- or less than 

10- . The
regular format is usually easier to read, however ,

o c change nodes to be procE.3sed If this option is
selected , questions are asked which allow the user to specify
any subset of the selected data set to be processed by data~rnt.For example , if the user had originally chosen a data set with
ten lowest data class nodes an d seven inte rmediate nodes , he
could chan ge and get prin touts which only involved the ten
lowe st nodes.

Note: If any unusual errors occur while datap rn t is execut ing ,
the user will find himself in his “login” directory.
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Function Call: dboundry

Addi tional User Interaction: None

Function Description: Any thresholds or boundaries
which have been created in current one- or two-space plots are
deleted.
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Function Call: - deletlog (treename) (classname)

Additional User Interaction: Upon initiation, the program
displays the current logic tree.

Select a logic node to be deleted (0 indicates quit)
logic node number

The logic at node (logic node number), and all nodes below
it , has been deleted.

Function Description: deletlog deletes a designated logic
node and all logic nodes below it in a logic tree. If logic
node 1 is selected , all logic is deleted for the selected tree.

If an independent reject strategy is present at the
selected logic node , the user is given the choice of deleting
only the independent reject strategy , or deleting the entire
node and all nodes be low it .
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Function Call: deletnod (treenamne) (classname)

Additional User Interaction: None

Function Description: deletnod causes the entere d
class name (ass uming that it i~~ a lowest node) to be deleted from
the given tree . If the entered class name is not a lowest node ,
an error message will be printed.

Example : If the current data tree consists of three data
classes : nod]., nod2 , nod 3 , and “deletnod nod3” is entered ,
all data associated with nod3 will, be removed from t emporary
storage.

A

nodi nod2 nod3 nodl nod2

Note : Upon completion the current data set is changed to
treename****.

-

. 

- I
~ f
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Function Call : deletree treename/” all”

Input Parameters:

treename specify a particular data set

“all” remove all existing trees in the
process directory.

Additional User Interaction: None

Function Description: This routine deletes any or all
trees and their associated nodes from “sysdata” file. The user
is cautioned against the use of the parameter “all” unless the
data have been saved via the utility functions save or savec,

of 
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Function Call: disp]~acm

Additional User Interaction: None

Function Description: disp].acm outputs all confusion
matrix information to the screen , including the numbers and
percentages of vectors correct, in error and rejected.
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Function Call: dra$bndy

Additional User Interaction: Boundaries in a two-space display
are drawn as follows :

After the routine is initiated , a crosshair will appear
on the screen . The crosshair may now be moved to any point on
the screen , When the crosshair is in the desired location , one
of three characters is entered r’c”, “e”, or “q’~~. The “c”
(continue) mean s that more poinE~ for this boundary are to be
read . The “e” (end) means that this is the end of the first
boundary, but another boundary is to be drawn . The “q” (quit)
means no more points for any boundaries are to be read (i.e.
this is the end of all boundary drawing). The crosshair is then
turned back on and this whole process is repeated. Af ter two
poin ts are read , a line segment will appear between these two
points. For subsequen t poin ts , a line is drawn from the end
(i.e. second point) of the previous line segment to the new
point. After the last line segment for each boundary is drawn,
the crosshair (hereaf ter referred to as x-hair) is turned on
once again , and the user moves it to the convex side of the
boundary just drawn. Any character can now be entered and is
read as a point on the convex side of the boundary .

As an example , let us suppose that two boundaries wi th
boundary 1 having three line segments , and boundary 2 having
two line segments , are to be drawn . The following steps should
be followed:

1. type in dra$bndy.
- x-hair displayed

2, move x-hair to 1st poin t, enter a “c “.
- x-hair redisplayed

3. move x-hair to 2nd poin t , enter a “c “.
- a line segment is drawn from point 1 to point 2,
x-hair redisplayed

4. move to 3rd point , enter a “c “.
- a line is drawn from point 2 to 3, x-hair
redisplayed

5, move to 4th poin t , en ter an “e “ .

- a line is drawn from point 3 to 4, x-hair
redisplayed

6. move to convex side of f irst boundary , enter any
character ,

- x-hair redisplayed
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7. move to 1St poin t of 2nd boundary , enter a “c “
.

- x-hair redisplayed

8. move to 2nd po int of 2nd boundary , enter a “c “.
- a line is drawn from point 1 to 2 of 2nd
boundary , x-hair redisplayed

9. move to 3rd point of 2nd boundary , enter a “q “.
- a line is drawn from point 2 to 3 of 2nd
boun dary , x-hair redisplayed

10. move to convex side of 2nd boundary , enter any
character.

-the routine is terminated

Let us suppose that only one boun dary was to be drawn ,
with three line segments . In this case , the first six steps
of the above procedure would be followed , except that in step
5, a “q” would be en tered ra ther than an “e “.

Boundaries on a one-space display are drawn as follows :

The crosshair is positioned to the desired point on the
screen and ei ther a “q” or an “e” is entered. The “q” as in a
two-space boundary , me ans qui t, i.e. no further boundaries are
intended. The “e” is end and signifies that a second threshold
is to be drawn , No convex poin ts are selected ,

Function Description: dra$bndy allows for drawing up to
two boundaries (maximum of five line segments per boundary) on
the display after a two-space plot is put on the screen , or
up to two thresholds af ter a his togram has been plo tted .

‘I
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Function Call: draw$log (treenamne) (classname)

Additional User Interaction: None

Function Description: drawSIo,g produces a pictorial
display of a user-created logic at any stage in the development -
of the logic. Logic nodes are displayed with interconnecting
lines to illustrate their relationship to each other. To the
right of all incomplete or lowest logic nodes is a list of the
classes present at that node . If there is an independent Boolean
reject strategy associated with a logic node , an arrow appears abov
that node.

If a given logic tree is too large to display on the screen , -

a message is printed and as much as possible of the tree is dis-
p layed , In this case , extra lines are drawn to indicate wha t -

par t of the struc ture is missing from the display. Any portion
of a logic tree may be viewed by using draw$prt.
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Function Call: draw$prt (treename) (classname)

Additional User Interaction:

input a node number
number

Function Description: draw$prt produces a pic~~rial display
of a por tion of a user-created logic at any stage in the develop-
ment of the log ic . The selected logic node and all logic nodes
below it are presented in the same format as draw $j .~~~ Logic
nodes are displayed with interconnecting lines to illustrate their
relationship to each other . To the right of all incomplete or
lowest logic nodes is a list of the classes present at that node .
If there is an independen t Boolean reject stra tegy associated with
a logic node , an arrow appears above that node .

If the selected portion of the logic tree is too large to
display on the screen , a message is printed and as much as
possible of the tree is displayed . In thi s case , extra lines are
drawn to indicate what part of the structure is missing from the
display .
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Functi on Call:  ds crmeas (treenanie) (classname )

Additional User Interaction : None

Fun ction Description: dscrnieas computes the discriminant
measurement evaluation statistics and outputs to the screen an
overall ranking of the measurements for the current data set.The user may then selec t any o f several ranking options to decide
which meas urements are best for separating particular classes(see documentation on rnk). The user may then select specified
measurements from his ~~Ea set via functions sel$meas ar;dsel$thres and may perform a measuremen t reduction on th€ : data
set via functj on trnsforin.

Possible errors:

An exception condition will occur if (due to roundoff)the variance of any measurement is zero for more than ore data
class , This rarely occurs unless several data classes contain
only one vector , in which case the result of any statistical
calculation would be invalid anyway.
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Function Call: dsubstrc (treename) (nodenanie)

Additional User Interaction:if the current data class is ~ ***(the senior node) , the program will ask the user if he wishes tomake this the only node in the tree.

Function Description: dsubstrc permits a user to delete
the substructure of an intermediate node. All the vectors under
nodename are merged into nodename, which then becomes a lowest
node .

Example : dsubstrc nod2

NOD7 OD~~~OD3 -

- 

NOD1 NOD2 NOD3

NOD4 NOD5 NOD6

L
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Function Call: dvectors (treename) (classname)

Additional User Interaction:

The user is asked if he wants t:o delete:

(1) all vectors
(2) a range of vectors
( 3 )  one vector
number

If (2) , an initial and last vector ID are requested to
be entered.

If (3), a vector ID is requested to be entered

If (2) or (3) is entered and the las t vector is being
deleted from the class , the user is info rmed of this , and he
is asked if he still wants to delete it.

Function Descrip tion: dve ctors allows the user to
delete all vectors , a range of vectors , or one vector from a
given data class,

~
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Function Call: dump

Additional User Interaction: None

Function Description : dump formats and outputs the follow-
ing information to the line printer:

1) the first five words of “sys data” (unpacked)
2) all forest entries which are not “notatree” in

“sysdata”, with all values unpacked
3) all school. entries which are found by internal

subroutine m odes in “sysdata”, with all values
unpacked

4) TREENANE file information
a) first word unpacked
b) the list of lowest nodes
c) the last index of the file for fastdump

5) for each DATACLASS file
a) the number of vectors
b) the las t index of the file for fas t dump

I 
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Function Call: eigentrn (treename)

Additional User Interaction:

Do you want a high-speed printout of eigenvalues?
no

**At this point, a list of eigenvalues for the selected data
set is presented in descending order,

input the threshold eigenvalue
value

input a new treename
treename

Function Description: eigentrn generates a new tree of
equal or lower diinensionality by transforming the selected
data set, using the eigenvectors which correspond to the selected
eigenvalues (the selected eigenvaiues consist of the threshold
eigenvalue and all eigenvalues above it in the list).

The transformation is done as follows:
ndim

nm(i) = 
___  

OMj x EV(i)j

where nm(i) = the jth measurement or feature in the new tree

0M~ = a component of a vector in the selected tree

E V ( i) ~ = a component of the ~th eigenvector

ndim = diinensionality of selected data set

2—69

¼

~ 

—,-_
_:

~~~~~~~~~~ 
- - -— - -— -_ -  - ---- 

S 
~~~~~~ 

- -- — --
~~~~

--— - —--- .-  .-. - -•



- 
. r,. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

-
-

Func tion Call : eigy$sal (treename) (classname)
iigv~sa2 (treename) (classnatne)
iigv~sal (treename) (classnatne)
ilgv$sa2 (treename) (classname)

Additional User Interaction :

Do you want a high-speed printout of eigenvalues?
no

**At this point , the eigenvalue s for the selected data set
are listed in descending order .

select an eigenvalue
number

Function Description: eigy projects the selected data
set on an eigenvector or eigen~~ctors of that data set, The
user chooses which eigenvector(s) he wants by choosing the
corresponding eigenvalue(s).

After the one- or two-space plot appears on the screen ,
a different subset of the eigenvectors may be selected from
the list of eigenvalues , which can be made to reappear by means
of the option ~~~ ,

Entries sal and sa2 of eigv are for use in structure
analysis , The l~ Fand l~~~entries are used in designing logic .

The sal and IcR entries of eigv generate one-space or
histogram plots of tE~~

’dat a,  Two-space plots are created by the
sa2 and 1d2 entries ,
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Function Call: elimclas on (classi) (class2).,.
(class N)

elimclas off (classl) (class2),,.
(class N)

Additional User Interaction: None

Function Description: eliniclas is the utility function
which manipulates the classes currently displayed. It does not
affect the t rue structure in any manner. The first of the
parameters, which are separated by blanks, is either the character
string “on” or “off”. The other parameters are one-character
class symbols. “On” indicates that the following parameters are
to be displayed while “off” indicates that the following
parameters are not to be displayed.

For example , assume a tree exists with 26 nodes ,
classes A , B ... Z; initially all the classes are displayed.

The following command would display classes A , F and S:

eliniclas on A F S

The following command would display all classes except
A , F AND S:

elimclas off A F S - -

The following command would display all classes , since
the parameter list of classes to be turned off is null:

elimclas off

‘
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Function Call: fastdump filename

Additional User Interaction: The program requests the location
of the file to be dumped , and asks what portion of the file is
to be listed.

Function description : The program fastdump lists the
value of each word in a given MULTICS file in six formats :
in teger , floa ting poin t, bit string, octal, charac ter string
(with blanks replacing unprintable characters),and exponential.

This dump may be sent either to the high-speed printer
or to the user ’s terminal .

1~
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Function Call: fea tures (treename ) (clas sname)

Additional User Interaction:

Do you wish to do measurement selection interactively ? -~

~~ you wish to select any measurements to start  with ?

Enter type of measurement selection at each iteration .

1. Pure forward sequential
(one feature selected at a time - the highest in
overall rank).

2. un$bbcp approach .
3. un$bbc approach.

(one or more features selected at each iteration for
options 2 and 3)

1
inter maximum number of features to be selected .

Function Description : - .

features utilizes the divergence measurement evaluation
criteria to aid the user in determining which measurements of
the selected data set are most likely to be useful. features
may be executed in an interactive mode or a non-interactive
mode . Due to the lengthy nature of the calculations involved ,
the non-interactive mode may be preferable to the interac tive
mode for larger data sets. A MIJLTICS absentee job may be
entered to perform a non-interactive execution of features
by using function features_abs.

Interactive Mode:

The features program makes a number of passes over the
set of measurements in the selected data set. After each -

pass , a rank order display is produced and one or more mea-
surements may be selected by the user . All normal rank-order
display options are allowed, including trnsform, which means

• that the user may create a number of data trees based on
different subsets of the feature space for further analysis.
At each pass , the user may choose to stop execution . If
“stop” is chosen , a list of all selected measuremen ts is pre-
sented.
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Non-interactive Mode:

In the non-interactive mode , the features program
performs measurement selection automatically and produces a
detailed listing of the results. No results are sent to the
screen.

As with the interac tive mode , a number of passes are
made over the set of measurements in the current data set.
At each pass , one or more measurements are selected and this
information is printed. The divergence values for each class
pair and each measurement tested are also listed at each pass .

The measurement selection techniques available in the
non-interactive mode are listed in the example (see write-ups
on un$bbcp and un$bbc for a detailed description of their
function) . (Refer to Section 1.)
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Function Call: features_abs

Additional User Interaction :

Enter the treename of the da ta set whose features are to
be evaluated :
treename

** All further interaction mimics the user interaction
of features.

Function Description:

features_abs creates and enters a MULTICS absentee job
which executes the features routine in the non-interactive
mode (see write-up on features).

The user interaction of features_abs is designed to mimic
the interaction of features. The resulting output is identical
to that which would be pr5duced by an on-line execution of
features.

In addition to the output generated by features, the
“.absout” segment produced by the MULTICS absen tee job is
printed.
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Function Call: fileinput treename

Additional User Interaction: The user will be requested to
reenter the tree n ame if the name he has entered is greater than
eigh t or less than five characte rs long , or if the tree n ame is
already known to the system.

Function Descript ion: This routine inpu ts a tree
(treename) into the system , transforming the data contained in
the file “filedata ”, which is located in his process directory .

“f iledata” mus t be organ ized as described below :

Word 1: ndim - the number of dimensions
Word 2: ncls - the number of data classes
Word 3 thru 2(ncls)+2 - four- character data class name

and number of dat a vectors within the data
class ; two words for each class .

Word 2(ncls)+3 thru end of the file - data vector v~ tues

It is up to the user to create the proces s directory
file “filedata” from cards , tape , or another fi le.

~~dim ii~ ~~. integer
ncls j
nodename I - 4 ASCII characters
number vectors - integer

nodename n
- number of vecto~ s

4:

• 
. 

I Data vector values ( f loat ing point)

I H
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Function Call: fisher (treename) (classnarie )

Addi tional User In ter action:

Enter one or two options from the fol lowing l ist : (c’
one line - no delimiters)

O default options (dovariance matrix and alL
measuremen ts)

1 scatter matrix
2 eliminate some measurements

number (s)

Enter number of thresholds to be implemented
number (mus t be 1, 2 , 3 , or 4)

En ter minimum vo te count (~ax = n)
[n number of classes - 1]

number

[A confusion matrix display , as described in Section 1,
is then presented~

Function Description: f i sher  constructs and evaluates
the Fisher pairwise discriminant logic as described in Section 1.
It calculates the pairwise discriminan t vector as well ~ts theor thogonal discriminant vector for each pair of classes The
latter is saved for possible future use. The five possible
thresholds for each pair of classes are also calculated at this
time. The Fisher discriminant may be calculated using either
the sum of the Scatter matrices or the sum of the covar~an ce
matrices ; also , any measurements may be eliminated from the
calculation . After the logic has been evaluated , the user may
choose .to change the number of thresholds or the minirnuri vote
coun t and reevaluate the logic. Nore extensive modif ica t ions
may be made by us ing p~~ rmod.
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Function Call: forteval (treename) (classname)

A i d i t i on a l  User In te rac t ion:

Input the name of the evaluation subroutine
name

** confusion matrix disp lay is presented

Function Description:

forteval tests a selected data set against a FORTRAN
subroutine generated by fortlogc. The resultant confusion
matrix lists the number of vectors from each data class that
were assigned to each logic node .

User—generated subroutines may also be evaluated using
for teval .  The subroutine must reside in the user ’ s login
directory , and have a six—character name . The parameter list
of the subrou tine must conf orm to the par ame ter list of a
subroutine generated by fortlo&c, although the language need not
be FORTRAN . The first parameter must be the data vector to be
evaluated , stored in an L-dimensional floating point array .
The second parameter must be the assigned logic node number
(integer)

- 
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Function Call: fortlogc (treename) (classname)

Additiona l User Interaction:

Enter one or more options (on one line - no del imi ters)

a. Generate FORTRAN source program for punching
b.  Generate and print FORTRAN listing
c. Generate FORTRAN object program for evaluation .

a

Enter a six-character subroutine name
nameO2

Source program name (for punching): nameO2 . for tran

Function Description:

fortlogc generates a FORTRAN subroutine which can classif y
data vectors according to the logic strategy c’f a specific
MOOS logic tree. The resul tant FORTRAN source code may be
punched on cards for use at other fac ilities (the genera ted
source code is in “standard” FORT RAN and card format) . The
user may also request that the source code be compiled and
listed , and/or an evaluation of the design data set produced.
The subroutine created by fortlogc has two parameters: 1)
an L-dimensional data vector (L-dimensional real array) ,
2) the assigned log ic n~de number (integer).

A compiled FORTRAN subroutine may be used to evalua te
any MOOS data set with the same dimensionality as the design
data set through use of the MOOS function forteval.

Note: Some minor discrepancies between the results of overall
evaluation (logicevl) and FORTRAN subroutine logic may occur .
This is due to the difference be tween the internal repr esenta-
tion of numbers and the decima l represen tation foun d in a
FORTRAN subroutine generated by fortlogc. The evaluation of
closed decision boundary logic in par ticular may be very
sensitive on a design data set when the size of a boundary is
based on the precise range of the da ta.
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— Function Call fshp$sa2 (treename ) (classname)

fshp$ld2 (treename) (classname)

Additional User Interact ion:

Fisher pairs may be chosen from the following list:
class(l) . . . class(n)

enter f i r s t  pair - one node name to a line
class( i)
c l a s s ( j )

enter second pair
class (k)
class(l)

Enter 1 or 2 options from the following list:
(on one line - no delimiters)

O default options (covariance matrix and all
measurements

1 scatter matrix
2 eliminate some measurements
number(s)

Function Description : fshp projects the selected
data set on two Fisher directions , which correspond to two
pairs of data classes within the selected data set.

The calculation of the Fisher directions may be
based on the sum of the within-class scatter matrices by select-
ing option 1. If option 2 is chosen , the Fisher directions may
be computed using a subset of the feature space .

Entry sa2 of fshp generates a two-space plot for
use in structure aniT~sis ,

Entry 1d2 generates a two-space plot for use in
logic desi gn .

2—80

4..

—— - —
~~~~~~~~~ 



Function Call:  gndv$sal (treenaine) (classname)
gndv~sa2 (treename) (classnaine)
gndv~ldl (treename) (classnanie )
gndv~ld2 (treename) (classname)

Additional User Interaction:

** A list of eigenvalues is presented in descending
order . Each eigenvalue corresponds to a generalized
discriminant vector .

Select an eigenvalue

number

** One- or two-space display is presented.

Function Description:

gndv projec ts the selected data set on one or two of the
generalized discriminant vectors associated with that data set.
If the number of classes in the data set is denoted by n ,
then n-l generalized discriininant vectors are calculated. The
user may choose any of these vectors as projection vectors.

Entries sal and sa2 of gndv are for use in structure
analysis. Th~~Td1 an~~Td2 entries are for logic design .

The sal and ldl entries of gndv generate one-space or
histogram~~Tots oFEhe data. Two-space plots are created by
the sa2 and 1d2 entries.

If there are two classes in the selected data set , only
one discr~.minant vector is calculated; therefore , only the sal
and ldl options may be chosen . gndv may not be executed on
data sets with only one class.

F I
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Fun ction Call : hell o_moos

Additional User Interaction : None

Function Description: hello_moos is the first option
that should be selected upon entering NULTICS. Some introductory
remarks and a description of MOOS will appear on the screen.
After this routine is done , any option may then be selected.

I
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Function Call: hgprint

Additional User Interaction : None

Function Description: ~gprint copies the latest one-
space display to the printer. The last display must have been

- a “micro” view with less than 120 bins. If a copy of a display
with more than 120 bins is desired,the user must call select
and change the number of bins to less than 120.

I 
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Function Call: histgram (classlist)

Input parameters:

classlist This is an optional list of class
symbols of classes to be displayed.

Additional User Interaction: The user must input the number of
the measurement on which the dat a is to be projected.

~~~~ram Descript ion: Af ter execu ting the MOOS fun ction
probconf, the user can display the results on the console using

histgram. If no class list is supplied , then all classes in the

current data set are displayed. The user is asked to input the

measurement number of the data he wishes to see, The results of
projecting this data onto the designated feature are then
displayed in the usual one-space format,
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Function Call: hrdcpy

Additional User Interaction : None

Function Description: hrdcpy produces a copy on the
high-speed printeróf any desired raiEik order display for
dscrmeas , probconf, or features.
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Function Call: hrdcpyçm

Additional User Interaction:  The user is asked if he desires
a l isting of incorrectly classified vectors.

Function Description: hrdcpycm outputs all confusion
matrix information to the line printer, including the numbers
and percent ages of vectors correct , in error and rejected . In
addition , information about incorrectly assigned vectors may be
output .

f
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Function Call: index (“coun t”/”id”)

Additional User Interaction: index utilizes the crosshair
to identify a display symbol, and presents information about the
vector indexed.

When indexing a cluster plot , the user moves the
crosshair to the center of the desired display symbol and
enters a “c”. In the case of a scatter plot , the crosshair is
used twice , first to select a lower left-hand corner , and then
to select an upper right-hand corner of a “box”. The desired
information is printed for all the projected vectors in this
“box” .

For a histogram , the user moves the crosshair to
a specif ic  bin and enters a “c” as before ; information is
ob tained for all vectors in that bin.

Function Description: index can be called with
paramete~ “count ” or “id” . For a cluster plot the default
value is “count “,while for the scatter plot , the only value
accepted is “id “,which is the default value. A parameter is
expected when indexing a histogram; however , the only value
accepted is “count”.

“count” causes the number of vectors in each clas s
for a specified grid to be printed , while “id” produces each
individual vector ID number,

The “box ” , whi ch is constructed for a scatter plot ,
can be as large as desired but must enclose at leas t one
complete class symbol,

The output for a one-space plot is the count or
probability of each class present in the specified bin.
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Function Call: intens~y (classlist)

Input parameter9 :

classlist This is an optional list of class
symbols , separa ted by blank s ,
representing classes to be inten-
sified.

Additional User Interaction: None

Function Description: inten~~y highlights a class or
classes currently displayed by ~~awing a solid outline around
the given class distributions . If there are no parameters input
by the user , then all classes of the current data set will be
intensified, It should be noted that , unless classes are well
separated , if more than two classes are concurrently intensified ,
then the display itself becomes cluttered with lines and it is
hard to observe the distributions , This routine is applicable
to one-space displays only,
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• Function Call: latclqgc (treename) (classname)

Additional User Interaction :

** The logic tree associated with the selected data set
is displayed.

Input the number of logic nodes to be connected .
3

Enter 3 logic node numbers on 3 separate lines .
5
fl

logic nodes 5 and 11 have been linked to log ic node 2.

Function Description:

latclogc allows the user to modify a selected log ic tree
such that more than one path may be taken to arrive at a
given log ic node . Logic trees may be crea ted wi th a “lattice” 

-

type structure through use of this option .

Any nodes linked through la tclogc mus t have the same
clas ses pres ent. Also , no logic node may be connected to a
logic node superior to it in the logic tree .

In the diagram below, the substructures below logic nodes 5 arid 6 are
iden tical and were link e~1 by ]atclogc.
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It should be noted that the order of logic creation can
be impor tant when using latclogc. Consider the following
example : The user has constructed a logic tree with three
logic nodes which he wants to link via latclogc. If no logic
ha s been des igned at any of these logic nodes , la tclogc will
cause all the vectors associated with the three logic nodes to
be associated with the log ic node whose node number is the
smalles t .  Further log ic designed at th is  node will include
all the vectors from the three logic nodes.

If fur ther logic has already been de signed at one of the
logic node s, however , the remaining two will be linked to this
logic node . The vectors associated with the remaining two
logic nodes will not be used in any further design of logic.

4
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Function Call : linglogc (treename ) (classname)

Additional User Interaction:

enter Boolean statement for partition logic
Boolean statemen t
if the above statement is true , what classes should be

assigned?
ab ... f (display characters)

~h~~Thgic node assigned to these classes is nif false , what clas ses should be assigned?
x~ ..,z (display char acters)
thè logic node assigned to these classes is m

**Compilation follows :

( error mes sages from compilation of Boolean statement ,
if any) H

was compilation successful?
yes/no

The standard group logic partial evaluation output is then
displayed on the screen, with an option to hardcopy it on the
printer along with a listing of misclassified vectors ,

Function Description : lingloge creates Boolean or
linguistic logic at a specified Thgic node .

The Boolean statement takes the form of a logical and/or
— ari thmetic expres sion about the measurements in the selected

data set. Measurement i is referred to as m(i), The statement
may not exceed 132 characters and must be on one line . Examples:

a) m(l)  .
~~~ m(2)

b) m( l ) /m ( 1O)  = cos (m(4))

If any error messages appear while the entered Boolean
statement is being compiled , the compilation was unsuccessful .
In this case linglogc should be invoked again and the Boolean

• 
. 

statement correctly reentered.
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Function Call: lingpart (treename ) (classname)

Additional User Interaction:

Enter &olean statement
Boolean statemen t
if the above statement is true , wha t should be new node rune4-character node name
if false , what should be new node name
4-character node name
P1)1 version 2
was compilation successful and/or do you wish to continue?
yes/no

The numbers of vectors assi gned to the true and the false
side of the statemen t are given.

Func tion Description: lingpart divides a lowest data
class in to 2 subclas ses based on cr iteria given in a Boolean or
linguistic statement,

The Boolean statement takes the form of a logical and/or
arithmetic expression about the measurements in the selected
data set. Measurement i is referred to by the notation m (i).The statement may no t exceed 132 charac ters and mus t be on one
line . Examples:

a) m(3)  ) = 2*m( 1) + m(2)
b) (m( l )  + m ( 2 ) )  

< 
(m(3) + m ( 4 ) )

c) m( l )  = sqr t (m(2) )  (“ =“ being logical arLd not
arithmetic)

If any error messages appear while the entered Bool ean
statement is being compiled , compilation was unsuccessful ; in
such a case , when the question relating to compilation is asked ,
“no” should be en tered ,
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Function Call: lingrjct (treename) (classname)

Additional User Interaction:

**jjpon initiation , the program displays the curren t log ic
tree.

Input number of nodes where reject strategy is to be
implemented , followed by logic node numbers - one to a line .

number of nodes
first logic node number

last logic node number

Is the rejec t stra tegy to be the same for all nodes?
yes/no

Enter Boolean statement for reject logic at node n
Boolean statement

**At this point an error message (if any) for the entered
statement will be produced .

Is this correc t?
yes/no

- Function Description: lingr~ct appends an independen t
Boolean reject strategy to any node in a MOOS logic tree . The
independent reject test is made prior to the execution of logic at
a node , i.e. it is done before the “normal” logic is performed at
the node .

The Boolean statemen t takes the fo rm of a logical and /or
arithmetic expression abou t the measurements in the sele cte d
data set. Measurement i is referred to as m(i), The statemen t
may not exceed 132 characters and must be on one line . Examp les :

a) m(2)> m(3) + m(4)

b) sin (m(l2) * m(6)) < = .67

The program permits the addition of the same reject logic
to several nodes simultaneously , or of different independent

.• .. rej ect strategies to each selected logic node ,
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Independent reject strategies which prove to be
unsuccessful may be removed by using deletlog,

NOTE: A vector will be rejected if it fulf i l ls  the conditions
of the Boolean statement.
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Function Call: list_cst

Additional User Interaction: None

Function Description: This program lists all data trees
that are currently in the coninon-access “trandata” directory.

-
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Function Call: list ust

Additional User Interaction : None

Function Description : This program lists all data treesthat are current ly in the user ’s “saved_ trees” directory.
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Function Call : iistlogc (treename) (classname)

Addition al User I n t e r a c t i o n :  None

- Function Description : listlogc produces a printout of
- a user-specified Togic tree on the high-speed printer. It

- outputs all tests and branches contained in the logic defined
by the user for treename-classname in an easy-to-read format ,

- 
listing the values of all logic parameters and the possible
paths that may be followed in logic evaluation,
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Function Call: log$dlet (treename) (classname)

Additional User Interaction: None

Function Description: log$dlet allows the user to
delete any saved logic file from permanent storage. Er ror
messages will be printed if no saved logic file exists in
permanent storage for the input reference pair , or if the file
is not deleted.
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— Function Call: log$list

Additional User Interaction : None

Function Description: log$iist allows the user to
determine the number of saved logic files he has in permanent
storage , along with their reference name pairs.

I
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Function Call: log$rstr (treenarne) (classnaine)

Additional User Interaction: The user will be asked to supply
a new treename-classname pair if a logic file already exists inhis process directory under the input reference ,

Function Description: log$rstr allcws the user to
restore any saved logic file from permanent storage to his
process directory. The saved logic file still exists inpermanent storage at the completion of this procedure. Error
messages will be printed if no logic file exists in permanent
storage for the input reference pair, or if copying is
unsuccessful.
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Function Call: log$save (treename) (classname)

Additional User Interaction: The user will be asked to supply
a new treename-classname pair if a save d logic f i le  already
exists under the input pai r ref erence .

Function Description: log$save allows the user to save
any logic file in his process directory by copying it into
perm anent storage . Error messages will be prin te d if no logic
file exists for the input reference pair or if copying is
unsuccessful.
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Function Call: logicevl (treename) (classname)

Add itional User Interac tion:

Input the name of the data set on which logic was
designed
treename classname

**At this point the confusion matr ix display as described
in Section 1,3 .3 is presen ted

Do you want a hardcopy of this matrix?

Do you want a l isting of incorrectly classif ied vectors ?

Function Description: The routine lpgicevl enables the
user to test completed logic. Any data set may be evaluated
against logic designed on any other data set by using this
fun ction (a~,suming both data sets have the same dimensionality),

Individual vectors may be tested against completed logicby sett ing sense switch 4 prior to running logicevi. Al lvec tors to be evalua ted must then be specified by vectorI.D. number.

In the event that the class names of the test set arenot the same as the class names of the design set , the func tionreasname may be invoked before proceeding with log ic evaluation .For a detailed discussion of the reassocj ated name cap abil itysee Section 1.3.3.
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Function Cal l :  measxfrm (treenarne) (classnaine)

Additional User In teract ion:

en ter a new treename
8-character treename
enter dimensionality of the new tree
nurnb r
enter transformation expressions
i~p to 75 transformation character expressions

~~(to terminate entering expressions )
PL/ 1
was compilation successful and/or do you wish to continue?
yes/no

Function Description: rneasxfrm is a means of transform-
ing one data set with dimensionality m into another data set of
dimensionality n (n may or may not = m). This transformation is
done by means of character arithmetic expressions . Measurement
i in the new tree is symbolized by nm(i). Measurement i in the
old tree is symbolized by om(i).

For exampl e , suppose we have a tree named tree000l with
dimensionality four and wish to create a tree named tree0002
with dimensionality five . Furthermo e , suppose each measuremen t
in tree0002 was to be the same as tree000l with the exception
that measurement five of tree000Z was to equal the sum of
measurements three and four of tree000l. Interaction would go
as follows :

measxfrm tree000l
enter a new treename

• tree0002
enter dimensionality of the new tree

enter transformation expressions
nm (l~ = am I
nm(2) = om
nm(3) = om(3)
nm(4) = om~~)nrLL (5) om(3) + om(4~

was compilation successful and/or do you wish to continue ?

The “.q” signifies the end of entering transformation
expressions -
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This routine makes use of the MULTICS PL/1 compiler.
Therefore , the more the user knows about PL/ 1 , the easier will
be the j ob of constructing trans formations , For example , the
above transformation could have equivalently been written

do i = 1 to 4
nm(i) = om(i)
end
nm(5) = otn(3) + om(4)

The following initial conditions are always established
by this routine and may be of he lp to the user. Suppose the
data set under transformation ha~ dimensional i ty  m and the new
data set has dimensionality n.

let j = min(m ,n)
set nni i) = om(i) for all i ~ 

j
if
set nm(i) = o (m+ 1~~ i~~n)

However, statements entered by the user override any
of the above initial conditions.

$

1-
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Function Call: mergmeas treename

Additional User Interaction:

type in n ames of two trees to be used in making new tree .
one per line
old treel
ol dt ree 2
do you wish to che ck ID’ s to make sure vectors are in
the same order ~n each node of the two data trees?

Further dialogue is needed in the case where vectors
are slightly out of order. For exampl e , a vector may be
missing in one node in one tree and the user may wish to
delete it from the corresponding node in the other tree ,

Function Description: The measurements of the vectors
in the second tree are concatenated to the measurements of the
corresponding vectors in the first tree , producing a new tree
(treename) whose structure is identical to the two ori-~tna1
trees , but whose dimensionality is equal to the sum of the
dimensionalities of the two original trees .

Possible Errors: - mergmeas will exit if t I
~-~e

number and names of the lowest nodes in the two original Crees
are not the same , if the numbers of vectors in the corresponding
nodes of the two original trees are not equal , if the dimen-
sionality of the new tree is greater than 100 , or if either of
the two original trees is not known to the system, In these
cases the routine will return with the current data se~“notatree” , “nono”.
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Function C~it1: moosmode (treename ) (classname)

Additional User Interaction:

There are currently two tree(s) whose dimensionality is
100.

tree000l 120
tree0002 125

These trees must be deleted from the system or their
dimensionality reduced to 100 or less before regular
MOOS operation may begin.

There are currently three tree(s) whose mean and covariance
values may be calculated at this time .

1 tree0003 20
2 tree0004 45
3 tree0005 10

Any or all of these trees may be converted to normal
MOOS trees. Enter number of trees to be converted , or
“all. ”

all

Function Description:

The chief function of moosmode is to calculate the mean
vectors and covariance matrices for any trees for which these
quantities have not been calculated , i.e. , trees created through
use of the excess measurement mode . The majorit~- of MOOS
functions may not be executed until this is done (see Section 1).

The calculation of mean vectors and covariance matrices
is not al lowed on any trees whose dimensionality is greater
than 100. The system will remain in the excess measurement mode
until there are no trees whose dimensionality is greater than
100.

moosmode may ~lso be used simply to list excess measure-ment m~~~~Ef~~s turrentl y existing in the system . The user
wc~ 1d request , in this case , that zero trees be converted to
normal i’-IOOS trees.

2—106

—5 — — -

-- - —~~~~~~~

-5 --5
- - - - --5 - . -—

~~~~~~~~~~
-5 -- - - -  -- -— 5 -----



- 
—5-- 

- -

~~~ 

- -

Function Call: nirn (treeriame ) (classname )

Addi tional User Intera ction:

enter total number of cluster centers
number
do you want an equal number of clus ter cen ters in each -

class(e) or the number of cluster centers based on original
data distribution(o)

- . 

.- 11
**At this point , the clustering routine displays a table H
of information concerning clus ter cen ter rad ii

enter new treename
new treename

Do you want to project onto a two-space or a three-space?
2/ 3
Do you want to project onto the coordinate plane with
max variance?
yes/no
The data will be projec ted on the following dimensions :
dl d2 (d3)
Error For iteration 1 is (value)

Error for iteration 10 is (value)
Type “d’s to see current mapping “m” for more iterations
m

How many more iterations?
2
Error for iteration 11 is (value)
Error for itera tion 12 is (value)
Type “d” to see current mapping “m” for more iterations

*WAt this point , a scatter plot of the current mapping is
displayed

Type “a” to accept , “m” for more iterations
a/rn

Function Description : nlrn (nonlinear mapping) is a
structure analysis routine which maps data vectors from N-space
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to two-or three-space while a t t empt ing  to preserve the N-space -
~~

“structure” of the data, Due to the time and space-consuming
nature of the algorithm , a limit of 200 vectors has been set ,
If the selected data set has more than 200 vectors , a data-
clustering routine is automatically called which forms a new MOOS
data tree whose fewer vectors are , hopefully , represen tative of
the original data set, Th e nirn al gorithm itself begins at this
point on the “clustered” tree , An as sociation between the
clus tered tree and the original data tree is maintained , This
means that any restructuring done on the clustered tree is also
carried out on the orig inal da ta tree ,

Throughou t the execution of nim , the user is given the -

choice of more iterations to make the mapping more accurate , or
of viewing the current mapping . The relative error function
should eventually become small and tend to “level off,” A
point should soon be reached when further iterations would
cause little improvement in the mapping.

If the three-space option is chosen , the projection
shown throughout the execution of nlm will be on the first two
of the three coordinate axes, When the algorithm is complete ,
the other pairs of axes may be viewe d by typing ~~~~

2—108
b

‘a’

--5—

- - - - — — -
—5--—— -1”



---- ‘~~~~~~~

Function Call: nmv (treename ) (classname )

Additional User Interaction:

Enter an option :

1 simple nearest mean vector
2 invers e variance weigh ting (weighting vector)
3 Mahalanobi s (wei ghting matrix)
n
Do you wish to implement any reject boundaries?
no

Function Description: nmv generates nearest mean
vector logic (see Section l .3 .3 l) based on various user-
specified options . After partial logic evaluation , the user
may choose to accept the results of the evaluation , or recreate
the logic with a different set of ontions .

0~tions: - -

Ootion 1. The simple nearest mean vector option
causes a vector to be assigned to the class whose mean the
vector is closest to in Euclidean distance.

Option 2. The weighting vector option operates
in the same manner as simp le nearest mean vector except that
each dimension is weighted by the inverse of the class
variance along that dimension .

Option 3. Mahalanobis weighting is weighting the
distance calculations by the inverse covariance matrices of
the classes.

The user may set a reject distance for all classes ,
or ~ specific reject distance may be entered for each class.
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Function Call: nmvmod (treename) (c].assname)

Additional User Interaction: The user is asked to selectwhich
neares t mean vector log ic node is to be modi fied and then to
enter options for that node . —

Function Descr iption: nmvmod is designed to cycle
through all nearest mean vector logic nodes , retr ieving nodes for
modification , presenting evaluation options , and performing
par tial logic evaluation (if requested) . The program will exit
if no MOOSLOGIC file exists for the treename-classname pair , if
there are no nearest me an vecto r logic node s , or if the user
ente rs a 0 in response to the option for selection of a nearest
mean vector logic node . See program nmv for details on the
op t ions available.

£
V
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$ Function Call: normxf rm (treename )

Additional User Interaction :

Input new treename
treename

Function Description: normx f rm produces a new data tree
which is a normalized version of the selected data tree , The
normaliza tion pro cedure involves divi ding each me asurement of
each vector by the standard deviation of that measuremen t for
the entire data tree. The variance of each measurement in the
new data tree is , therefore , one .

,&
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Function Call: page

Additional Us er Interactiçn: None

Function Description: p~ ge allows the user to page
through a rank-order display . Up to 50 measurements can appear

on the screen at one time , and thus , if there are more me asure-
ments to be seen , the page option permits the user to see them.

A-
I
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Function Call: pairmod (treename ) (classname)

Input Parameters : treename and classname are
optional and designate a data set other than the current one.

Additional User Interaction: If there is an error associated
with the input data , one of the following self -explanatory
messages is printed and the user is returned to the command
level:

1) “no logic f i le  currently exists for this data set ”
2) “dimensionality and/or number of low nodes of data

f i les  and logic f i les  are not equal”
3) “no completed pairwise nodes exist”
4) “current logic node is illegal”

The user is first asked whether there are any logic nodes
to be combined. If the user respond s “yes”, the Fisher
logic is recomputed with some of the data classes combined .
Further logic may then be designed to separate the classes
that were combined .

The classes at the user-snec~ified Fisher node are then
listed and the user is asked to input the t air to be modified .

“Enter class pair to be modified (on one line-no delimiters)”

For example , to adjust  the logic for the pair nodi versus
nod2 , the correct response is “12. ”

If this information is entered incorrectly, the following
is printed :

“a/b is an invalid class pair;
Do you wish to continue?”

If the answer to the question is “yes ,” execution of
pairmod recommences. A “no” response brings the user back to
the command level.

Based upon the existing logic for the selected class pair ,
a list of options is presented; the user should enter the number
of the desired option .

OPTI ONS
A) “Change the number of thresholds”

This option allows a user to change the number of Fisher
thresholds used in evaluation of a specific pair or of all
pairs of a Fisher node .

The user is asked
“Is this adjustment to apply to all pairs?” A “no ”

resoonse wil l  change the number of thresholds for the selected
pair. The user then enters the new number of thresholds.
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“The current number of thresholds used is n”
“Enter the number of thresholds”

If this new n umber is not valid , the following is printed:

“Number of thresholds must be between one and four”
“En ter the number of thre sholds”

The user should then reenter the number of thresholds.

B) “Change the location of thresholds”

This option is valid if the present logic for this pair is
Fisher or arbitrary one-space . The data is projected upon the
appropriate basis vector and the threshold(s), either one or two
for arbitrary one-space , or f ive for Fisher , are represented by
vertical lines . If the logic is Fisher and the threshold is
being used in evaluation , a number represen ting its sequential
position from left to right on the screen is printed above the.
vertical line. For example , if the current logic was Fisher
with three thresholds being imp lemented , the display would be:

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --

These numbers do not appear above existing arbitrary one-
space thresholds ,

A numbered list of display options will appear in the upper
right-hand corner of the screen , The list of options below follows
with a brief description of each , a letter that indicates which
type of logic is appl icable (F for Fisher , 0-S for arbitrary
one-space) , and which user program contains more detailed infor-
mation about the operation of each option.

(F ,O-S) 1, “select er” change the range of the display
see select

(F ,O- S) 2 . “select cb” change the number of bins
see select

• (0-S) 3, ~dra$bndy TV draw a threshold
see dra$bn~y

(O-S) 4, “dboüñdryT’ delete a threshold
see dboundiy

(F ,O-S) 5, “dis~ Iay A’ display class A of pair A/B
see select
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(F ,O-S) 6. “display B” display class B of nair A/B
see select

(F ,0-S) 7. “display A ,B” display both classes.
see selec t

(F ,O-S) 8. “index count” statistical information for a
see index particular bin .

(F ,O-S) 9. “hgprint” copy display to printer.
see hgorint

(F ,0-S)lO. “intensfy” intensify both classes.
see inten!~~ç(F)l l . “move thres move threshold( s) . This option must

be selected to move any threshold s for
Fisher .

(F ,O-S)12. “con tinue” resume execution of pairmod. This
option must be the last selected . If
the user does no t wan t to modif y the
first display , this option number must
be entered to continue with pairmod.

The user enters the desired option number .
To draw thresholds when the logic is arbitrary one-space ,

option number 3 is used . When the user has finished drawing
thresholds , the “continue” option number (i.e. 12) should be
entered .

When the Fisher logic exists and the display has been
examined and modified as des ired , the user should enter the
“move thres ” op tion number (11). The following dialogue then
occurs.

“En ter number of thresholds to be moved” n
“Send chara cter corresoond ing to the numb~r of the t!,reshold
to be moved”

The cursor will be activated n times. Each time , the user
moves it to the new threshold position and enters the aporopri-
ate number , from the numbers 1 thru 5 above the boundaries ,
that corresponds to the threshold to be adjusted.

For arbitrary one-space logic the user is then asked

for 1 boundary:
“En ter class pre sent on righ t of boundary ”
“En ter class presen t on lef t of boundary ”

for 2 boundar ies:

“Enter class present on right of right boundary”
“Enter class present on left of left boundary”
“En ter cla ss in middle region”
The user should send the correc t class symbol , or “***~~~~“

to designate a reject region .
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C) “Change the number of measurements”

This option allows a user to modify the number of features
used to determine the Fisher direction. With this option , there
is the cap ability of also modifying the number of thresholds to
be used in evaluation . The user is asked:

“Enter the number of thresholds to be used in evaluation”

To retain the presen t number used , the user must input this value.

D) “Change the number of and/or location of boundary(ies)”

The two-space plot is generate d and the user is presented
with the following list of display options , The list below con tains
brief descriptions of each option and tells which user program
describes the operation of the option in more detail.

1. “scale$zm” enlarge a subarea of display
see scale$zm

2. “scale~rt” return to “original” data ranges
see scale$rt

3, ‘ara$bndy ” draw boundaries
see dra$bndy

4, “dboundry1T delete boundaries
see dboundr y

5. “display A” display class A of the pair A/B -

see elimelas
6. “display B” display class B of the pair A/B

see elimclas
7. “disp lay A ,B” display both classes

see el imclas
3, “index count” obtain the number of vectors in a cluster p l o t

grid
see index

9. “index id1’ ob tain vec tor ID numbers
see index

10. “cdisplay” change the display from cluster to scatter
and vice versa

see cdisplay
11. “clprin t” copy the “clus ter” plot to the printer

see ciprint
12. “continue” resume execution of p~airmod,
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Before drawing new boundaries , the user must delete the
existing ones by entering option number 4. When the display has
been modified and the new boun dar ies drawn , the following
dialogue occurs:

for one boundary :

“ E n ter the class presen t on the convex side of boundary 1”
“Enter the class in excess region”

for two boundaries:

“Enter the class present on the convex side of boundary 1”
“ E n ter the class presen t on the convex side ~f boundary 2”
“Enter the class in excess region”

The appropriate class symbols should be entered, or
“****“ if a reject region is desired .

E) “ Change to Fisher”

This option is only applicable after the logic has been
changed from Fisher to some other type .

The type of Fisher logic returned is the latest version .
For example , if the logic sequence had been : a) alter the
number of measurements for determining the Fisher direction , and
b) optimal discriminant plane , the Fisher direction used by this
op tion is the dire ction calcula ted when f isher was last called ,
To return to the “original” Fisher di rection , the MOOS function
fisher has to be called again.

The user is requested to:

“ Enter the number of thresholds to be implemented.” This
is the number of thresholds used in evaluation .

F) “ Change to arbitrary one-space”

- - The logic enables the user to employ a previously saved
vector as a projection vector. The user is asked to enter a
vector or supply the name of a vector which has been stored via
the utility function vec$save.
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The data is then projected upon the basis vector and the
histogram appears with the display option list as described
under option B. By entering appropriate option numbers , the
user can manipulate the display and construct one or two thresholds.
When he is finished , the option number for “continue” should be
ent ered. The user is then asked:

for one bounda~y:

“Enter class present on right of boundary”
“En ter cl ass presen t on lef t of boundary”

for two boundaries:

“En ter class pr esent on right of right boundary ”
“Enter class present on left of left boundary”
“Enter class present in middle region ”

The user should reply with the class symbols , or “
~~~~~~~“~~~~~“

to create a reject region .

C) “Change to optimal discriminant plane”

The discriminant plot is generated with the display
option list equal to that under logic option D . Upon completion
of display manipulation and boundary construction , the user
will proceed to answer the dialogue as described under option D.

H) “Change to arbitrary two-space”

The user supplies either the two basis vectors or the
names of vec tor s entered by the MOOS utility function vec$say.~~

The user then proceeds in the manner descrP’ed under
logic option D.

I) “ Change to/modif y Boolean ”

The user can supply or modif y an existing Boolean statement
for use in pairwise logic evaluation . The maximum length for the
statement is 132 characters. The user is asked:

“ Enter Boolean statement for partition logic ”

After the statement is entered the user is asked:

-
.-
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“If above statement is true , what class should be assigned?”

The user ’s response to this is the class symbol of the class
desired.

Upon completion of a specific logic option , a “mini”
confusion matrix , consisting only of the pair involved , is
pr inted , and the user is asked:

“ Is this logic acceptable  for the pa i r ?”

No existing logic is modified until the answer to this
question is “yes ”,

Then the user is asked:

“Is there another pair to be modified?

A “no ” response produces the confusion matrix of the entire
Fisher node, while a “yes” response makes p airmod recommence
execution ,

Function Description: Through pairmod, the logic for
any or all pairs of classes of a pairwise logic node can be
altered. The user can make as many changes as desired (for
ex ample , using the Fisher logic with the four d i f ferent  numbers
of thresholds , moving thresholds , examining the discr iminan t
plane , and any arbitrary two-space) with or without having the
curren t pairwise logi c r~odified .

pairmod saves the current version of Fisher logic and the
curren t modif ied logic , but only those two, In t he above
sequence , the Fisher anu the arbitrary two-space logic would be
saved while the intermediate designs would be destroyed .
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Function Call: probconf (treename) (classname)

Additional User Interaction:

do you want the default interval range of 3 standard
deviations?
no

should the interval range be calculated using a number
of standard deviations (s), or the absolute range of
the data (r)
type in s or r
r
W*At this point, a table is presented which contains the
number of bins , interval size, lower bound , upper boun d ,
and range for each measurement

Do you want to change the interval size?
no

**At this point , a rank order display is presented

Function Description: probconf produces a measurement
evaluation for the selected data set based on a histogram
estimation of the marginal class conditional probabilities. The
values produced are measures of the overlap of these probabilities;
therefore, the sm aller the value, the better the measurement.

Probability histograms used in this calculation may be
viewed directly by selecting the histgram option,

The dialogue is designed to allow the user to select the
interval range and numrber of histogram bins which will best
represent the data distribution,
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Function Call: rdisp].ay

Additional User Interaction: None

Program Description: rdisplay reconstructs the most
recent two-space plot, one-space plot, or confusion matrix
(through a call to displacm).
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Function Call: reasname (treename) (classname)

Additional User Interaction:

**Upon initiation , a table is printed which contains
each lowest logic no~ie number , the class name which
belongs at that node by design, and a “reassociated” name.

Enter number of logic nodes whose reassociated names are
to be changed
n
Enter n logic node numbers and corresponding new
reassociated names.
2 name(l
3 name (2

m name(n)

**At this point , the original table is redisplayed with
the input changes

Are these reassociated names correct?
yes/no

Function Description: reasname allows the user to
change reassociated names to whatever he desires.. This is
useful in cases where a test data set is to be evaluated against
logic designed on a tree which had different class names. A
more complete description of the purpose of reassociated names
can be found in Section 1 3.3.

2—122



-- — -  — ~~~~~~~~~~~~~~~~~~~~ _ _ _  -

Function Call: redraw

Additional User Interaction: None

Function Description: If a boundary has been drawn on
a one—or two-space plot and a new plot of the same data put on
the screen, the boundary does not automatically reappear.
r~dr~w reconstructs the boundary, and in the case of two-space ,
it extends line segments to the edge of the projection.

redraw also reconstructs boundaries drawn on the original
projection onto “zoomed” projections, and vice versa.
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Function Call: remtree (treename/”a].l”)

Input Parameters:

treename specify a particular data set

“all” delete all existing trees from
the “trandata” directory

Function Description: This routine deletes any or all
trees and nodes under these trees that have been saved, via the
utility function savec, in the common-access “trandata”
directory.

The user is cautioned against the use of the “all”
parameter, as all trees, regardless of which user saved them,
will be removed.
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Function Call: restore treename/”all”

Input Parameters:

treename specify a particular data set

“all” copy all existing trees in the
user “saved_trees” directory

Additional User Interaction: If the name of any data set that
is being copied is alreaay in the process directory , an error
message is printed and the user is asked to enter a unique eight-
character treename. The data set will be restored under that
name.

Function Description: This routine returns from the
user “saved trees” directory any or all data sets that have
previously seen saved via the utility function save.

T 
.
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Function Call : restorec treename/”all”

Input Parameters:

treename specify a particular data set

“all” copy all existing trees in the
“trandata” directory

Additional User Interaction: If the name of any data set that
is being copied is already in the process directory , an error
message is printed and the user is asked to enter a unique eight-
character treename. The data set will be restored under that
name.

Function Description: This routine returns any or all
data sets from the common-access directory “trandata” to the
process directory .

These trees must have been stored via the utility function
savec.

p
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Function Call: restruct (treename)

Additional User Interaction:

type in the name of the lowest node to be restructured
from the following list
node(l) node(2) ... node(n)
nodename

input 3 new 4-character node names
newname (l)
newn ame (2)
newname(3)

Function Description: After a boundary has been drawn
on a one-space or two-space plot , the user must invoke restruct
so that data vectors will be relabeled according to the
boundary (ies).

The two-space naming convention is as follows: the first
name input is the name of the class on the convex side of the
first boundary drawn. If there are two boundaries , the second
name input is the name of the class on the convex side of the
second boundary drawn. The last name input is always the name
of whatever region remains.

In one-space , input names will refer to the boundary-
separated regions from left to right.

I.
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Function Call: 
~~~~~ 

classname or uni que
class character

Additional User Interaction: Non e

Function Descri ption: rnk $bcls ranks the measurements
associated with the current data set in order of their effectiveness in
discriminatin g the selected class from all other classes (as determined
by dscrmea s or probconf) . See Section 1. 3. 1.
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Function Call: rnk$byc~ classi class2

Input parameters:

classi and class2 are class names or unique class characters

Additional User Interaction : None

Function Description: rnk$b~rcp ranks the measurementsassociated with the current data set in order of their effective-
ness in discriminating “classi” from “class2”. See Section 1.3.1. -

- 

I
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Function Call: rnk $znb c measurement number

Additional User Interaction: Non e

Function Description: rnk$mbc ranks the classes in the
current data set according to the effectiveness of the selected
measurement in discriminating each class from all others (as
determined by dscrmeas or probconf). See Section 1.3.1.

Function Call: rnk$mbcp measurement number

Additional User Interaction: None

Function Description: rnk$mb çp ranks the possible class
pairs in the current data set according to the effectiveness of
the selected measurement in discriminating between the classes
in each pair (as determined by dscrmeas or probconf). See
Section 1.3.1..
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Function Call: rnk $oall

Additional User Interaction: None —

Function Description: rnk$oal]. gives an overall rankingmeans of running dscrmeas or probconf. An ordered list ofthe measurements is given (a result of the overall rankingcalculations) along with the class and class pair best discrim-inated (or least confused) for each measurement. Refer toSections 1.3.1.1 and 1.3.1.2 of this report for a mathematicaldiscussion.

•1
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Function Call : save treename/”al].”

Input Parameter:

treename specify a particular data set

“all” copy all existing trees in the
process directory

Additional User Interaction: If the name of any tree that is
saved already exists in the user’s “saved_trees” directory , an
error message is printed and the user is asked to enter a unique
eight-character tree name. The data set will be saved under
that name.

Function Description: This program copies any or all
trees in the “sysdata” file into the user’s “saved trees”
directory. This directory is only accessible by t~e particularuser who created it.

For other users to be able to access this data, it must
be stored in the “trandata” directory via the savec utility
function.
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Function Call: savec treename/”all”

Input Parameters:

treename specify a particular data set

“all” copy all existing trees in the process
directory

Additional User Interaction: If the name of any data set that
is being copied ilready exists in the common -access “trandata ”
directory , an error message is printed and the user is asked to
enter a unique eight -character tree name. The data set will be
saved under this name.

Function Description: This program copies any or all
trees in the “sysdata” file into the “trandata” directory, where
other users can access these data sets.

To save these data for the specific user’s exclusive
reference, the utility function save should be used.
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Function Call: scale$zm

Additional User Interaction: Using the crosshair, the user
must select the portion of the current display to be “zoomed”
upon. When the crosshair is on for the first time, the user
positions it at the lower left-hand corner of the new display
area and enters a “c “. The second time, the user positions it
at the upper ri~ht-hand corner of the new display area, and
enters another ‘c “ .

Function Description: scale~ zm allows the user to
select a subarea of the current display and have a closer, more
detailed examination of that area. In the manner described
above, the user first selects the lower left-hand , then the upper
right-hand, corner of the area to be magnifie& The new display
is that subarea.
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Function Call: scale$rt

Additional User Interaction: None

Function Description: scale$rt is the complement of
sca1e~ zm. This routine allows the user, upon completion of one
or several zooming operations , to return to the display with the
original x- an d y-ranges.
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Function Call: sel$meas measi meas~ ... meas1~

Additional User Interaction: None

Function Description: sel$meas enables the user to
select a given set of measuremeñEs. An “b” will appear next to
all selected measurements. However, if an “k” already exists
for a measurement, selecting that measurement again will cause
the “*“ to be turned o f f .  This routine is used in conjunction with
rnk routines and the routine trnsform to transform a data set.

~fl “*“ed measurements are used 
in the transformation.

~ 

~~~~~~ . 
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Function Call : sel$thrs value

Additional User Interaction : None

Function Description: This routine is similar to
ie1~meas, except that a threshold 

value is entered; all measure-
ments whose value is greater (for dscrmeas) or less (for
probconf) than the entered value will appear with an “*“ next
to them.

I
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Function Call: select (macro/micro) (classlist)
(Cr) (cbnnn) (prob/count)

Input Parameters:

macro/micro The display format will be changed
according to the user’s selection.

classlist The class list is a set of data
class symbols separated by commas
or blanks. The classes seen in
subsequent displays will be only
those listed.

cr The cursor will be activated to
allow selection of range points
representing the minimum and
maximum data desired in the dis-
play. The original scale will be
restored when the second range
point selected is to the left of
the first range point. Selected
range points will be indicated by
moving the vertical crosshair to
the desired location and entering
a “ C “.

cbnnn The cb option resets the number

L 

of bins desired in the data pre-
sentation to nnn , e.g. cb5O
results in a 50-bin display .

prob/count The area under each class histogram
is affected by the selection of
prob or count in the parameter
list. Under the count option ,
each histogram column is propor-
tional in area to the number of
vectors in each displayed class
which falls into a given bin ;
therefore , the total area under an
entire class histogram is indica-
tive of the number of vectors in
each class, The prob option
produces histogram columns repre-
senting the percentage of each class
within a given bin ; therefore , the

- ~. total areas under all class histo-
grams are equal to one another
(that is , totals to 100 percent),
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Additional User Interaction: None

Function Description: select is the major one-space
display utility routine. The one-space algorithms will default
to a macro display of all classes , if there are more than three
classes in the data tree , or to a micro display if there are
three or less classes in the data tree, If there are more than
18 classes in the data tree, the first 18 are displayed and the
user is asked if he woul d like to see the remaining classes. A
“yes” response erases the screen and presents the other classes ;
a “no” response terminates the routine. The type of display ,
either macro or micro , will remain the same until the other is
specified. When the alternative is specified, all classes are
displayed unless a class list is also input. In that instance ,
only those classes specified are displayed, The class list
consists of the display characters separated by commas or blanks..
All parameters are also to be separated by blanks ,

Parameter cr indicates “change range “. If this option is
selected , the crosshair is turned on. The user then moves it to
the desired new xmin and sends a “c “, The crosshair then returns
for user selection of a new unax and again accepts a “c “

. If ,
having already zoomed on a display, the user wishes to return
to his original display, cr is again the appropriate parameter.
Wh en the crosshair is turned on , the new xmax is placed to the
left of the new xmin (xmax i(xmin). This will cause regeneration
of the original range.

The cbnnn parameter changes the number of bins, where nnn
is the new integer number of bins. There is no blank between

• “cb” and “nnn ” , The original display will be recreated only
via another cbnnn call , where nnn is the original number of bins,

The prob/count parameter is applicable only to the micro
view, The selection of this option changes the scaling in the
micro view either to probabilities or to counts of each bin, The
macro view uses probabilities where the largest “spike” or value
corresponds to the maximum probability of a bin for all classes
that are currently displayed. Counts are default in the micro
view.

The following is an example of how to manipulate the
display , given that there are five classes A ,B ,C ,D and E:

Initial display: (from crdv$sal, for example) macro view, all
classes displayed, range is the overall range of data along
some coordinate , N bins and probabilities scaling.

select c cr macro view, crosshair turned on ,
class C is the only class displaycd ,
probabilities scaling
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select macro macro view , all classes displayed ,
“current” range , probabilities
scaling

select micro D micro view, class D only dis-
played , “current” range , count
scaling

select micro B C cb75 prob micro view, classes
B and C displayed, “current”
range, 75 bins instead of
original N , y-axis prob abilities
scaling

select macro cr cbN crosshair turned on, return the
number of bins to N , macro view.
This can return to the original
display. In a macro view ,
probabilities scaling is always
used; thus, the display scaling
is probabilities , although it
was not specified with the prob
parameter,
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Function Call: a) sense number on
b) sense number ~Ff

Additional User Interaction: None

Function Description: Function sense provides user
control over the sense switch settings. Sense switches may be
used to control any dynamic options as required by the system
designer. The sense switch numbers range from 1 to 36.

Currently assigned switches:

1 - If this switch is set , overall logic evaluation
(logicevl) will produce a listing of pairwise vote
counts for all vectors which are assigned to pairuise
logic nodes, whether correct or not,

2 - If this switch is set, the test for correctness of a
vector in overall logic evaluation is performed on the
display symbols of the classes involved, rather than
on the full four-character names.

3 - Used as an internal flag to indicate the excess
measurement mode .

4 - If this switch is set prior to running logicevi, all
vectors to be evaluated must be specified by vector
I.D. number .

5 - Used as an internal flag by dg$dcrmsu and dg~dd.

6 - Used as an internal flag by features.

7 - Used as an internal flag by features.
8 - Used as an internal flag by fortlogc.
15 - Used by taoinput as an internal flag .
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Function Call: seq

Additional User Interaction: None

Function Description: seq may be used after the following
1400S functions:

a) ei~v$sal, eigv$sa2

The ordered list of eigenvalues reappears and the data will
subsequently be projected on a newly selected eigenvector(s),

b) nini (three-space)

seq is used to sequence through the three possible pairs of
projection axes,

c) crdv$sal, crdv$sa2

The user will be allowed to select a new coordinate axis (or
axes) for data projection.

d) gndv$sal, gndv$sa2

The ordered list of eigenvalues reappears and the data will
subsequently be projected on a newly selected generalized
discriminant vector(s).
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Function Call: setdata filename

Additional User Interaction:

Enter range values (first & last index) number number
Enter type of entry
‘char ’ - character string of length four
‘flot ’ - floating
‘intg ’ - integer
‘bits ’ - bit stream
four-character option

(enter each word)

Request complete . Do you want to read more? (yes/quit)
quit

Function Description: setdata allows the user to
insert data into any MULTICS file available to him in his
process directory . The data may be inserted in any of four
forms (character, floating point, integer, or bit stream),
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Function Call: suinmrycm

Additional User Interaction: The user is asked if he desires a
hardcopy of the information,

Function Description: summrycm outputs confusion matrix
information to the screen in a iummary format, listing percentages
for the number of vectors correct , in error and rejected by
class and overall,
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Function Call: tapeoput (treename)

Additional User Interaction:

Input tape label
label

• Input file number to be written
1 -

Tape (label) will be mounted on drive 1 with a write ring
Tape ready

Tree (treename) written into file 1

Function Description: tapeoput writes a MOOS data tree
onto a seven-track , 556 EPI magnetic tape. The tree may be
reentered to the MOOS system through a call to the ta~inputfunction. The exact format of the data is described in
writeup on tapinput,
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Function Call: ~~pj~n~put treename

Additional User Interaction:

Input tape label: label
Input tape file number : number
Input data dimensionality for tree treename : number
[tape is mounted and selected file is read]

Do you wan t to inpu t another tree from tape X?
no

Function Description: The ta~input function transformsa data set on a MOOS da ta tape into a system data tree, The
multiple-file MOOS data tape contains one data set per file ,
each set composed of data vectors in the following 36-bit MULTICS
format :

,i Measurement 1 (MULTICS floating poin t)
Measurement 2

vector 1
j Measurement ndim
Vector Index (integer value)

~ Data class name (four ASCII characters)

0

0

vector n

The physical records on the MOOS tape may be up to 1632
36-bit words in length . Each record must contain an integral
number of vectors~~ 1, The tape must be low-density (556 BPI),
wi th no labels , header records , or any other excess words ,
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Function Call: treedraw (treename) (classname)

Additional User Interaction : None

Function Description: treedraw displays a selected MOOS
data tree, showing the structural relationship between various
intermediate and lowest nodes of the tree . If the selected
class name is ****, the entire tree is displayed. Portions of
the tree may be viewed by selecting other class names,

If any level of a tree contains more than 32 nodes , that
level and any structure below it will not be displayed. Instead,
lines indicating where this excess structure is located will be
drawn .

If the first level below the senior node has more than
32 nodes , a message is printed and nothing will be drawn . The
data~rnt “tree structure” option may be used to display a tree in
outline form in cases where a tree is too large for treedraw.

¼

2— 1 4 7  

—~~~~~~~ —— — --—- _ --——
— 

- - - . . , - — — - - - _ - - - - • — .•-- -.- -



Function Call: treelist

Additional User Interaction: None

Function Description: This program lists all data trees
that are currently active in user’s “sysdata” file in a given
process.
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Function Call: trnsform

Additional User Interaction:

enter a new tree name
eight-character tree name

Function Description: trnsform performs a transformation
on the data tree that was most recently used for doing the measure-
ment evaluation, The tree name of the new tree is the entered
tree name (see Additional User Interaction). trnsform saves
those measurements which have an “*“ next to them, the “i”
appearing as the result of using a measurement selection routine
(e.g. sel$meas, sel$thrs, or u~~bbc), The tree structure is
copied from The old tree to the new tree,
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Function Call: un$bbc

Additional User Interaction: None

Function Description: un$bbc works similarly to the
sel routines in that it gives the usir the ability to selectcertain measurements for transformation, un$bbc places an
next to those measurements that best classify or discriminate
each class in the data set.

I

I
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F~jnction Call: un$bbcp

Additional User Interaction: None

Function Description: un$b~~~~works similarly toun~bbc, except that un$bbc~ places an ‘*“ next to those
measurements that best classify or discriminate each class pair
in the data set.

(
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Function Cal).: vec$de]. saved vector name

Additional User Interaction: None

Function Description: vec$~el deletes from the saved-proj ection-vectorl file the saved vector whose name is entered .

Function Call: vec$hall

Additional User Interaction: None

Function Description: vec$hall is a means for hardcopying
to the line printer a complete listing of all saved vectors,
including each vector’s name, length, and components.

Function Call: vec$lall

Additional User Interaction: None

Function Description: vec$lall. is a means for listing,
on the display, the name and length of all saved projection
vectors .

I

Function Call: vec$3.ist saved-vector name

Additional User Interaction: None

Function Description: vec$list is a means for listing,
• on the display , iiif~rmation about one particular saved projection

vector, including the vector’s name, length, and components.

.
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Function Call: vec$save

Additional User Interaction: Do you wish to save the x
projection , the y projection, or both the x & the y projection ?
(x,y,xy)

x
enter a vector name
a five- to eight -character name

Function Description: vec$save saves projection vectors
for the user. For example , suppose that after a scatter plot is
displayed, the user wishes to save the projection vectors ;
vec~save is the correct routine to use. The user can save just
the x-projection, just the y-projection , or both the x- & the
y-projection . Each saved projection vector has a unique name with
up to eight characters (not to be confused with the eight-
character tree name) .
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