! AD=AO34 393 PATTERN ANALYSIS AND RECOGNITION CORP ROME N Y F/6 9/2
MULTICS OLPARS OPERATING SYSTEM, VOLUME I.(U) :
SEP 76 D B CONNELLr K N KLINGBAIL F30602-75-C-0226
UNCLASSIFIED PAR=T4=25=A RADC=TR=76=271=VOL~-1

| or 3

(o

- RADC-TR-76-271, Vol I (of two)
T Final Technical Report

a September 1976

<<

18 MULTICS OLPARS OPERATING SYSTEM

Pattern Analysis and Recognition Corporation

Approved for public release;
distribution unlimited.

R s —— N—
MR AMRTR Yy ditfinis pen " Lo

This report has heen reviewed by the RANC Information Nffice (NI) and
{s releasable to the vational Technical Information Service (NTIS). At NTIS
it will he releasahble to the peneral public including foreign nations.

This report has been reviewed and is approved for publication.

woren: (thicia). Baokingo

PATRTCIA J, BRASKINGFR
Proiect Fngineer

APPROVEN: m % .

ROBERT D. KRUTZ, Col, USAF
Chief, Information Sciences Division

FOR THE COMMANDER:

b 62 K coa

JOHN P, PUSS
Acting Chief, Plans Office

neaders of this report are advised that some of the illustrations included
herein are relatively poor auality reproductions of computer nrintouts.
They are, however, the hest availahble,

Do not return this copy. Retain or destroy.

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and cosmunications
(c3) activities, and in the ¢ areas of information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information sustem technology,
donospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

MISSION
of
Rome Air Development Center

"gnm "«
%Nilﬂ’&

777g.191®

o ST O R ¢ sernd St R T RN N0 1 01 0 7 e w2 Y

v T SEETET " : g
e e i uau m . e

s o

e

S 4
-_

e
T-WM—“_"' T A L T —— ‘{ / OF REPCURT & PERIO},&OV!RED
- |/ MULTICS OLPARS OPERATING SYSTEM , \ Pinnl echnical /K/eptt ‘

G
e = it

URCLASSIFIED
SECURITY CLASS'FICATION OF THIS ®AGE (When Data Entered)
REPORT DOCUMENTATION PAGE Bz,,'gig%‘g:gﬁgg{;g";o“
REPORT NUMDER 2. GOVT ACCES.ION NO 3. PECIS'ENT'S CATALOG NUMBER

'RADC-TR=76-271, Vol I (of two)

Jund 73— June W76

"% -

1:_7 AUTHOR(s) - - e S A OR GRANT NUMBER(s)

David B. Lonnell Richard ASackson| -at.al 2 /- ; R
: 730602-75-C-0226 4
22~ 73~

Kenit N.AKlingbail. |

’

s

’ P!RrOIMING ORGANIZATION NAME AND ADDRESS

k.2

Pattern Analysis and Recognition Corporation AREA A WORK UNIT NUMBERS '
228 West Dominick St e 627027
Rome NY 13440 55971309

11. CONTROLLING OFFICE NAME AND ADDRESS g REPORTOw———

Rome Air Development Center (ISCP) ; -Z“‘ i Sepwmbit? 1976 ___4
WL,

Griffiss AFB NY 13441 218

T4, MONITORING AGENCY NAME & ADDR!SS(M dlllﬂml from G mlro"lnlOlﬂco’ 18. SECURITY CLASS. (of thie report)

W j UNCLASSIFIED
5597 (7245

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE
N/A

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

6. DISTRIBUTION STATEMENT (of this Ropou)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Patricia J. Baskinger (ISCP)

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)

Pattern Recognition Clustering

Pattern Analysis Measurement Evaluation
Decision Theory

Classification

AB3STRACT (Continue on reverse side If necessary and identify by block number)

he development of interactive graphics computer systems for use in detection,
identification, and transformation of patterns contained in high-dimensional
data has been a continuing program at the Rome Air Development Center since
1968 (RADC-TR-70-139; RAPC~-TR=71=177; RADC-TR=73=241), This long standing ef-
fort has resulted in the implementation of OLPARS (the On-Line Pattern Analysis
and Recognition System), IFES (the Imape Feature LCxtraction Svstem), and “PS

(the ""aveform Processing System). This report contains detailed design and

1Y

DD | 5n'7s 1473 eoimion oF 1 NoOV 68 1S OBSOLETE UMCLASSTFTEN

SECURITY CLASSIFICATION OF THIS PAGE (When Data En
M
(/ \7

i

————UNCLASSIELED.
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

!tser-oriented information related to MNOS (the MILTICS OLPARS Operating System),
an advanced version of OLPARS currently resident upon the Honeywell 6180 MULTICS
computer system, The currently operational svstem represents an implemented
version of the operations described in a previous report (RADC=-TR=73-241); ap-
propriate selections of that report are retained within this document., This
report contains brief descriptions of the M0N0S svstem and the mathematics
underlving the system algorithms, A major portion of this document is reserved
for a user's manual (providing detailed information relatine to the operation
of all system options) and for MONS program documentation.

T™MCLATCTIFTTD
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

PREFACE

This is Volume I of a two-volume Final Report by Pattern
Analysis and Recognition Corporation, 228 W, Dominick Street,
Rome New York and represents work performed under Contracts
F306002-75-C-0226, F30602-73-C~0352, and F30602-73-C-0351, Job
Order Numbers 55971309, 55971306, and 55971305 for the Rome
Air Development Center, Griffiss Air Force Base, New York,.
Mr. John C. Faust and Mrs. Patricia J. Baskinger were the
RADC Project Engineers.

.
¥

¥

- ™

¥

-

Evaluation

During the past seventeen years, RADC has conducted an
exploratory development program to establish technigues for
digital signal processing and pattern recognition. It has
become evident to us that the solution to the pattern recog-
nition problem does not lie wholly in learning machines,
statistical approaches, heuristic programming, formal
linguistic approaches or any other single model or technique.
Hence, we adopted an interactive approach to the solution of
pattern recognition problems, coupling a knowledgeable human
problem-solver with an interactive computer graphics system.
The general purpose computer contains a library of data
analysis, digital signal processing and pattern classification
algorithms. By means of the graphics display console, a
human operator can analyze his data, and based on what he
sees coupled with any a priori knowledge he may possess,
choose an appropriate signal processing/pattern classification
procedure, observe the results and continue to iterate in
this manner. Eventually one of two things will happen: (1)
he achieves an acceptable level of performance, whereby the
output of the computer consists of the design parameters for
a signal processor/classifier which can be implemented by
means of special purpose hardware or software, or (2) he
reaches a point where no further improvement seems possible.
In this case, he has hopefully gained insight into the reasons
why an acceptable level of performance was not achieved.

The physical realization of this interactive approach is
the RADC Pattern Recognition Design Facility which has two
major elements: an interactive system for waveform data
analysis and feature extraction, entitled Waveform Processing

System (WPS) and an interactive system for vector data analysis

and pattern classification, entitled the On-Line Pattern
Analysis and Recognition System (OLPARS). 1In addition, the
facility has a hybrid computer for analog preprocessing as
well as an analog to digital conversion capability.

WPS is being implemented on the PDP-11/45 computer and
uses a Vector General graphics terminal as the primary inter-
active device. The system includes its own executive soft-
ware, filing system, display package, mathematical transform
package, and feature extraction language. The input to the
system is in the form of digitized waveform data. The system
is built as a series of overlays which are callable by the
operator from a menu which is displayed on the CRT. The data,
in the form of data trees, is available to the analyst by

means of the interactive devices on the Vector General console.

ii

i it

OLPARS is resident on two systems., One version is on the

PDP-11/45 computer under WPS, This is a single-user system
employing high performance interactive graphics, and, as a
module under WPS, provides for ease of interaction between
the feature hypothesis mode conducted under WPS, and rapid
testing of these hypotheses under OLPARS., However, since
this system is built on a mini-computer there are core

. limitations in terms of the size of the data base which can
be processed.

A second version of OLPARS is implemented on the HIS 6180
computer under the MULTICS operating system., (It is this
version which is documented in this report.,) MULTICS is a
time-sharing system that utilizes a virtual memory concept.
Interactive graphics capability is provided by a Tektronix
LOO2A storage tube with alphanumeric keyboard, Joystick, and
hardcopy unit. MULTICS/OLPARS has a distinct advantage over
the PDP-11/45 OLPARS in terms of storage capacity, ease of
data access, multi-user environment, and data base sharing
amonyg users. Besides providing more advanced pattern
classifier logic design capability, the system is available
to other Government agencies and their defense industry
contractors by remote access through the ARPA computer
network.

Both versions of OLPARS include their own executive soft-
ware, filing system, display package, and software modules
for feature evaluation, vector data structure analysis,
measurement transformation, and classifier logic design. 1In
general, OLPARS requires that the input data consist of 100
cr fewer digital measurements (100-dimensional vectors).

The RADC Pgttern Recognition System Design Facility
provides the Air Force with a powerful capabi’ity, unique
within DoD, for solving a wide range o target identification
problems in tle areas of commanu, contrcl, communications
and intelligence. Cancurrent witn the development of the
Facility, it has been applied to real-world problems
involving the design of classification logic. Feasibility
of the Facility to solve the following problems has been
established: photometric and radar satellite signature
identification, ground sensor target classification, ELINT
emitter identification, land type classification for
automated cartography, speech recognition and handprinted
alphanumeric character recognition,

< P
=8 4

-
\/ /cl lece 4.—"‘) [")w// Crtge L
7 J

¥ PATRICIA J. BASKINGER
Project Engineer

. -~

k‘ 3 114

Section

1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5

TABLE OF CONTENTS

VOLUME I

MOOS - MULTICS OLPARS Operating System

INTRODUCTION

A Functional Overview of MOOS
MOOS MATHEMATICS

Measurement Evaluation
Structure Analysis

Logic Design

Boolean Partitions
Measurement Transformations

References

MOOS USER'S MANUAL

GENERAL REMARKS

USER PROGRAM INDEX (by Function)

USER PROGRAM INDEX (Alphabetical)

Page No.,

1-1

1-3

1-28
1-28
1-37
1-46
1-61
1-61

1-63

2-1
2=-9
2-21

SECTION 1
MOOS - MULTICS OLPARS Operating System

1.1 INTRODUCTION

The development of interactive graphics computer systems
for use in the detection, identification, and transformation of
patterns contained in high-dimensional data has been a continuing
program at Rome Air Development Center since 1968 (RADC-TR-70-139;
RADC-TR-71-177; RADC-TR-72-71; RADC-TR-73-241). This long-stand-
ing effort has resulted in the implementation of OLPARS (the On-
Line Pattern Analysis and Recognition System), IFES (the Image
Feature Extraction System), and WPS (the Waveform Processing
System). This report contains detailed design and user-oriented
information related to MOOS (the MULTICS OLPARS Operating System),
an advanced version of OLPARS currently resident upon the
Honeywell 6180 MULTICS computer system. The currently operational
system represents an implemented version of the operations described
in a previous report (RADC-TR-73-241); appropriate sections of that
report are retained within this document. This report contains
brief descriptions of the MOOS system and the mathematics under-
lying the system algorithms, A major portion of this document is
reserved for a user's manual (providing detailed information
relating to the operation of all system options) and for MOOS
program documentation.

The reader is referred to articles by Sammon [2], Kanal.[fl

and Simmons [i] for more detailed explanations of the rationale

and philosophy underlying computer-based interactive pattern
analysis and recognition systems. Briefly, it has been noted that
no particular solution (among a choice of learning machines,
statistical approaches, spatial filtering, heuristic programming,
or formal linguistic approaches) has proved relevant to all

pattern recognition problems. MOOS provides a selection of
modular software approaches which are applicable to a given set

of data to be analyzed in an interactive setting. Provisions are
available for feature evaluation, redefinition, and pattern class-
ification schemes which provide swift feedback to the data analyst.
Modification of operational parameters may then be tried on-line

in an attempt to compute the optimal solution to the relevant
problem., Kanal [I] has listed several features which are desirable
in an interactive system for mathematical or graphical representa- 3
tions. In each case, MOOS represents an expansion and improvement
of the OLPARS design. They are:

o Simple procedures for system control and communica-
13 tion, i.e., a display of relevant options in the form
of a menu on the side of the graphics display, and
a selection of options and parameter specifications
through a simple language using the alphanumeric
keyboard.

1-1

I

® g

-v’ -
ey

o 2

1

e ————————
. .
v

o Response in an on-line mode allowing for rapid formulation,
insertion, and testing of alternate hypotheses relating to data

set structure and logic design.

o The ability to select, label, merge, and split data gets on-line;
to perform set operations on data sets and subsets; and to
retrieve selected data and trial test algorithms and designed

solutions.

o The ability to select with minimal delay any option in the
system available for execution.

o The ability to temporarily store and compare results of variocus
algorithms on a data set.

o The ability to obtain intermediate results while sequencing
through various operations.

o A requirement for swift generation and modification of system
algcrithms and programs.

o Storage of large quantities of data without slowing system
operations; provisions for dynamically accessing multiple data
sets and subsets for application by system algorithms or for
system display while maintaining a swift execution of system

subroutines.

This report is devoted primarily to a data analyst's view of the
capabilities within MOOS to produce a feasible solution to a problem.
The remainder of Section 1 contains an overview of the structure of
MOOS and of the general capabilities provided the user, as well as brief
discussions of the computational algorithms utilized within the system.
Section 2 is a user's manual for MOOS; it assumes 2 working knowledge
of the basic system capabilities, that is, information is provided on the
mechanics of manipulating data without there being provided specific
guidance to operations which might be useful for 2 specific problem.
Finally, Sections 3 and 4 contain complete system file descriptions and

program documentation.

1-2

1.2 A Functional Overview of MOOS

MOOS retains the functional outline of OLPARS, yet has
expanded or added features to each of the modules consistent
with experience gained during implementation and practical use of
both systems. This section consists of a description of the
functional organization of MOOS, and of brief descriptions of
the various system operations., Detailed mathematical outlines
of the major system computations are contained in Section 1.3,

The pattern recognition problem is described as the recogni-
tion of the state of an environment based on L measurements or
features extracted from the environment, Thus, the pattern
recognition problem is composed of feature extraction, that is,
the definition of the measurements, and of pattern classification.
The objective in selecting features is to provide a set of
measurements which yield information which will aid in discrim-
inating between the various environmental states. The pattern
classification problem requires that we design the recognition
logic, which classifies the state of the environment using the
previously defined L features.

The concept of a vector space is fundamental to all of the
problems discussed here. The features (measurements) define the
basis of the space; an object or an event is represented as a
vector in that space. Feature extraction involves defining the
representation space, and pattern classification involves defin-
ing the partitionment of this space into regions associated with
each of the states (or classes) of the environment. In order
to solve a pattern classification problem, statistical sample
vectors from each state (or class) must be collected and analyzed
to yield a satisfactory classification logic.

The pattern analysis problem differs from the pattern
classification problem in that the states (or classes) of the
environment are a priori unknown to the researcher. The data
comprises a set of L-dimensional vectors which must be analyzed
to determine the natural or inherent classes contained in the
vector data. The detection and identification of a substructure
of clusters (sample vectors which cluster together in the vector
space) is the solution to this problem.,

The vector data structure is represented within MOOS as a
hierarchical tree where each node corresponds to a list of
vectors, Partitiorment of a list of vectors (node) is represented
by branches to lower-order nodes emanating frem the node corre-
sponding to the original list, with each subnode being associated
with a sub-list. Suppose, for example, that we have collected
statistical sample vectors from K classes and wish to design a
decision logic which adequately discriminates between data from
these classes. Initially, at the time when the vector data from
each of the K classes are loaded into the system, the data tree

1-3

BERR e s .

would appear as shown in Figure 1-1 where the names C;, Cp, ..., Cg
correspond to the K data classes. The MOOS user can choose to
process the data associated with any node(s). Throughout the
entire system the concept of a '"current data set" is used., This
refers to the data that the on-line user has most recently
designated for processing. The set could contain the data under
a single node of a preselected tree, or it could contain all of
the data associated with an entire tree. In either case, the
"current data set'" is related to only one data tree. If the MOOS
user chooses to invoke a transformation or a clustering option,
the data tree structure will be modified to reflect the result-
ing change. Suppose that the system user decides to discard a
subset of the L original measurements (features) based upon the
outcome of a measurement evaluation. This action is easily
accomplished using the appropriate linear transformation, which
would alter the data structure by producing a new tree as shown
in Figure 1-2, At this point, the user could choose either the
transformed data or the original data for further processing.
Notice that when the transformation is applied at the topmost
node of a tree, the structure below the node is maintained and
the transformation is applied to all the data vectors., A trans-
formation may be selectively applied to the data below a specified
node, in which case a new tree is generated, involving only the
data corresponding to the selected node.

As a result of using any one of the many OLPARS data
analysis techniques, the user may wish to restructure the data
into clustered subsets, Clustered subclasses are represented by
subnodes under the node corresponding to the parent class,
Suppose that class C] of the data represented in Figure 1-1 was
subdivided via on-line analysis into the subclasses labeled
C1a and C1p. The resulting data structure would be as shown in
Figure 1-3. Notice that

C1a U.C1p = C1, Cla N Cip = 0.

The MOOS facilities for solving problems of pattern analysis
and classification consist of the following types of routines
(individual option names are underlined - refer to Section 2 for
descriptions of those programs; section number references point
to related sections) :

Data Input, Storage and Output

o Data input from cards (crdinput), tape (tapinput) and
other MULTICS files (fiTeinput, restore, restorec).

o Permanent storage facilities in which MOOS data may
be maintained either for the exclusive access of a
given user (exclusive user storage) or for common
access by a number of analysts (common user storage).

1-4

DATA

l

ey Cz Ck
Figure 1-1. Initial Data Tree

DATA PRIME

DATA

C C, Ck o

Figure 1-2. Transformed Data Tree

DATA

Figure 1-3:

Modified Data Tree
with Subnode Structure

1-6

Data trees may be output to either type of storage area
(save, savec), retrieved (restore, restorec), and
deleted (cleartree, remtree). Lists of the data trees
in each area may be obtained (list ust, list_cst) by

user command. In addition, MOOS logic (Tog3) and
projection vectors (vecS__) may be stored, retrieved

and deleted from exclusive user storage, and lists of
those data may be obtained separately.

Current data storage facilities provide for immediate

access to any of up to 20 data trees by standardized
parameters that can be added to any MOOS function call.
Programs for listing (treelist) and deleting (deletree)

data trees from current storage are available. 1In

addition, data trees within the current storage area

may be modified by adding data classes from other data |
trees (append), by combining classes within the data ;
tree (comnod), by deleting any data class (deletnod)

or data class substructure (dsubstrc), or by removing
individual data vectors from the data set (dvectors).

A node substructure may be added to the current data
tree via the structure analysis module (lingpart,
restruct). Anv data tree or data class name may be
changed (chngname), and a display of the current data
tree is immeglately available (treedraw). Finally,

a new tree may be created from data classes existing in
numerous available data trees (creatree), or by extract-
ing a percentage of data vectors from an existing data
tree (crrandts). The purpose of this final option is

to provide a facility for the creation of randomly
assigned design and test sets for the design and
independent testing of classification logic.

Data trees from current data storage may be permanentlv
stored on magnetic tape (tapeoput).

The standard system limit on data dimensionality for

MOOS routines is 100. However, through use of the

excess measurement mode feature, data sets with a greater
number of measurements may be handled. The allowable
options under the excess measurement mode assist in
finding a suitable subspace with 100 or less dimensions,
and transform a data set to this subspace so that normal
processing may begin.

The excess measurement mode is entered any time an
attempt is made to enter a data set with greater than
100 dimensions, or through use of measxfrm. The chief
difference between data trees handled by the excess

e ——— S e e ey

measurement mode and normal MOOS data trees is that
mean vectors and covariance matrices for each class

are not stored. Once the dimensionality of an excess
measurement mode tree has been reduced to 100 or less,
the mean vectors and covariance matrices may be
calculated by function moosmode. Normal MOOS operations
may begin only after moosmode has bheen invoked.

An arbitrary limit of 250 dimensions has been set on
excess measurement mode operations. This limit may be
exceeded only through modification to certain system
routines (see Section 4.2).

Programs which are allowed in the excess measurement
environment include:

crdvS$sal & sa2? measxfrm taneoput
creatree moosmode taninout
dataprnt probconf treelist
dscrmeas sense trnsform

Any programs which appear in the option lists of the
above functions (clprint, trnsform, etc.) may also
be used while in the excess measurement mode.

Data Display - Projection Planes and Display Formats

o Four data display formats are provided (Section 2
introduction) for seven sets of data projection axes
(arbv, ardg, asdg, crdv, eigv, fshp, gndv; see Section 1.3).
Facilities for user manipulation of these data
projection displays include printouts (hgprint, clprint),
indexing specified points (index), modifying scale
factors (scale), sequencing appronriate data projections
(seq), storing projection vectors for later use
(vecSsave), changing the data class composition of a
display (elimclas) or highlighting specified data
classes (intensfy - a bargraph plot for one-space
displays only), and implementing partitions drawn
vig cugsor on the display terminal (dra$bndy, dboundry,
redraw) .

1-8

Measurement Evaluation

(o}

Three measurement evaluation computations (dscrmeas,
probconf, features; see Section 1.3) are provided the
MOOS user. Rank order displays have been implemented;
manioulations available for these displays include
printout (hrdcpy), rankings for selected classes, class
pairs, or measurements (rnk$_), display of the

distribution of data along a selected measurement in
histogram format (histgram), and selection of a
measurement subset for inclusion within a data set of
reduced dimensionality (sel$_ _ , un$__). Finally,

a program for data set reduction is operational
(trnsform) .

Data Tree Transformations

(o]

Three additional options are available for creation
of transformed data sets: mnormalization (normxfrm),
eigenvector transformation (eigentrn), and Tinguistic
transformation of individual measurements (measxfrm) .

Structure Analysis Partitions and Projections

3 o

The creation of subnode structure in a data tree

(the structure analysis function) can be implemented
via partition of a data projection display (restruct
following use of draS$bndy on any of the data projection
displays§ or by linguistic statements (lingpart)

based on a priori knowledge of the ranges ang relation-
ships of data distributions within and between data
classes. Linguistic partition allows development of
data partitions via logical statements composed of

any existing measurement threshold or legal arithmetic
combination of measurements, thresholds, or wvariables
using PL/1 conventions,

An additional data projection display is available
for the structure analysis function in the form of a
nonlinear mapping algorithm (nlm; see Section 1.3).
This algoritgm has been equipped with a data set

clustering algorithm which allows its use on large
data sets despite the time and space limitations
inherent in the maintenance of arrays related
exponentially to data set size, which are required
by this algorithm.

P ——— ——

Classification Logic Design and Evaluation

The MOOS Logic Design (LD) facilities provide extensive
mathematical/graphical techniques for allowing the user to tailor
decision logic design to the structure of the class data. In
general, pattern classification is undertaken following a pattern
analysis conducted on each of the data classes for which logic is
to be designed. The purpose of this analysis is to ensure that
each data class is unimodal; that is, the vectors from each class
are clustered in one region of the measurement space. Although
not always required, the unimodality property is highly desirable
in order to ensure an effective logic design. In those cases
where the class data is found to be multimodal, our philosophy
dictates that each mode be identified and the sample vectors cor-
responding to each mode be grouped as a named subclass. Upon
completion of the logic design, the decision region in the measure-
ment space corresponding to each subclass can be reidentified
with the original multimodal classes (reasname).

Figure 1-4 presents a functional overview of the logic
design facilities. Upon selection of an LD option, a logic tree
is initialized by the system with a single node consisting of

| all the lowest-order data classes in the current data set (there
1 is no requirement that the current data set be the senior node
in any data tree).

The system will keep a record of the decision logic as it
is being designed. The actual form of the logic constructed in
this manner will be that of a hierarchical tree (draw), where
each node corresponds to a partial decision. For example, suppose
that there are five classes (K=5), labeled B, C, F, S, and T, and
the user first separates B, C and F, from S and T using a between-
group projection described below. At this point, the system would
store the piecewise linear logic and represent the current logic
as the tree shown in Fig. 1-5. Next, the user could choose to
work with the group B, C, and F, Suppose that he selects the
eigenvector projection corresponding to this data. Further, let
us suppose that he constructs another piecewise linear logic to
discriminate B and C from F. The decision logic tree would then
appear as shown in Fig. 1-6. Suppose that the user could not
adequately discriminate between B and C or between S and T using
the eigenvector method, and therefore completed the within-group
discriminations using the Fisher pairwise discriminant technique.

The basic idea behind this interactive design technique is
that between-group logic will be used to design the partial logic
for nonoverlapping classes, whereas the complete within-grou
logic computations will be used for statistically overlappe
classes,

1-10

LOGIC
DESIGN
FACILITIES
I ; I
CREATE/DIS- MODIFY
PL%EEEOGIC CLOSED LOGIC
DECISION DESIGN
BOUNDARY
| LOGIC
IMPLEMENT e
BASIC FI
| LOGIC FISHER B s 100
DESIGN PAIRWISE STRATECY MODIF
DISCRIMINANT GENERALIZED |
‘ LOGIC ~PDISCRIMINAN |
COMPLETE | | L B e 8
WITHIN
GROUP FISHER DIS- MODIFICATION
LOGIC — CRIMINANT
NEAREST MEAN PLANE (S | s
VECTOR LATTICE
GROUP_DIS- i b
LOGIC e s LOGIC 4
— $RAR STRUCTURE
(S)
DATA
PROJECTION EIGENVECTOR LOSED
EAE R PLANE (S) |_DECISIQN
BOUNDARY
BETWEEN :
e = MODIFICGATION
LOGIC ARBITRARY
PLANE (S)
BOOLEAN %ﬁ%i@R
(LINGUISTLC) ODIFICATION
PARTITION COORDINATE
LOGIC PLANE (S)
D ELETE
L1 LoGIC
STRUCTURE
Figure 1-4: Logic Design

Facilities

1-11

A O Y ¥ o N PR R - e a2 j

DISPLAY
 LOGIC TREE
peim OUTPUT CON-
TINUMBER OF | [EVALUATE il Sl
THRESHOLDS | |LOGIC 1 loR PRINTER
DESIGN
i LTSTORE OR
¥ RETRIEVE
FISHER THRESHOLD (S) E¥s
LOGIC - E0G8%vE §SE§
MODIFICATION
5 ELIMINATE
| 2 OUTPUT
EASUREMENTS
s —{ LOGIC TO
PRINTER
INSERT DIS-
CRIMINANT CREATE
PLANE PAR- FORTRAN
TITION L SUBROUTINE
5 FROM LOGIC
INSZRT
FIS4ER
DISCRIMINANT
INSERT
|BOOLEAN
‘|(Linguistic)
PARTITION |
INSERT PAR-
_|TITION FROM
ARBITRARY
1 or 2 SPACE

|

|

|

|

1

%

s B 4

T C

F _

FIGURE 1 - 5: PARTIAL DECISION LOGIC TREE. ?

J

1

1

S
T
B F
C
FIGURE 1 - 6: PARTIAL DECISION LOGIC TREE.

b
i
]
'
'

Basic logic design operations fall into two categories:

1) Logic capable of completely classifying vectors within
the reference group of data classes (complete within-group logic);
and 2) logic capable of identifying and partitioning completely
disjoint data class groups (between group logic).

Complete Within-Group Logic

o Nearest mean vector (nmv) logic implementation provides
capabilities for classification of data utilizing one
of three metrics (Euclidean distance, weighted vector
distance and Mahalanobis weighted distance; see
Section 1.3.3.2.1). An unknown vector, then, is
assigned to the reference class for which the decision
metric is minimized.

o Fisher pairwise discriminant logic (fisher) is
constructed by computing optimal linear discriminants
and thresholds to distinguish between every pair of
classes (subclasses) within a designated group. The
linear discriminant is the Fisher linear discriminant
given by

- =l .
dij = Wy AlJ

My
C

mean vector of class (subclass) i

i covariance matrix for class (subclass) i

Once the within-group pairwise discrimination is
complete, the pairwise decisions are combined to
produce a final decision. The group of classes (sub-
classes) might be the original K classes (subclasses)
of the '"current data set,' or the group might be
composed of a subset of K. In the case where the
user does not subdivide the_K classes (subclasses),
he would compute K[IK - 1)/Z]pairwise discriminants.
The resultant logic for this example is shown in

Fig. 1 - 7.

P

The output from the di% box is either a zero or a
y one, depending on the

ollowing criterion:

dy2
C1 / C

VOTE COUNTERS

CLASS C

CLASS C,

MAXTIMUM
VOTE

SELECTOR

I = Inverter

FIGURE 1 - 7: PAIRWISE LOGIC

A D g it g <

dij(X)={ i 20

otherwise.

The signed direction (+) of dij and the threshold
0ij are selected so that an ougput of "one" is
in erPreted as a vote for class i and an output of
"zero" as a vote for class j. The I box is an inverter
which produces a "one' out given a ''zero" in, or a
"zero" out given a '"one'" in., The votes for each class
are collected and a final decision is made according to
the class with the most votes.

Under the Fisher discriminant logic option, the user can
select 1, 2, 3, or 4 threshold options which result in the
different boundaries shown in Figure 1-8,

In Figure 1-8, 4 is the estimated mean of class i
projected onto the discriminant direction d, i.e.,

ui =% 1-1,2

MOOS will automatically set:

8y = 4y - [y2

82 = Mg+ AVE

03 = My + [1/2

oy = - Q3

05 = _uy+ N2
whereA =M1 - M2. The reglons [2, 9—]] , and
[@5, oo) are for rejects.

Fisher pairwise logic may be treated as a between-~group

logic through use of the pairmod function. 1In this case,
each of the classes C,, ...Cn consists of one or more of the

original K classes. Further logic may then be designed to
complete the classification logic.

» ety T

(a)

(b)

(c)

(d)

One Threshold

Two Thresholds

Oi/ AN
Four Thresholds : \‘_\ - :\
1 \
\
: ["=
| \
! : \\
it el . :
b ‘] 1Y
._/ ’L)< | J| \
FIGURE 1 -~ 8: THRESHOLD OPTIONS FOR

FISHER DISCRIMINANTS

1-16

g g e e e

Measur
ment 2

Closed decision boundary logic (closedcn) creates an
L-dimensional closed hyperregion for each class of the
selected data set. An unknown vector is assigned to a
class if and only if it lies in the hyperregion associa-
ted with that class and no other. If an unknown vector
should fall into more than one hyperregion, it may be
rejected or placed in a new data tree for further logic
design at the user's discretion. Vectors which do not
lie within any hyperregion are rejected. (In a real
environment, closed decision boundary logic would tend
to reject vectors which do not belong to the set of
classes intended for classification.) The following
diagram (Figure 1-9) illustrates the implementation of
closed decision boundary logic for two dimensions and
three classes: A, B, and C.

iy Hyperregion surrounding class A
Hyperregion surrounding class B
e—

N
/ A A A / \ B B \\
A \{? \
A J B B ,
\ | B
: A A . SEITECER J
A S B
; i e L B

P e

Hyperregion surrouﬁaing class C o

Measurement 1

FIGURE 1-9

Vectors which fall in the regions AN(BUC), BN(ATC),
and C \\(AUB) are assigned to classes A, B, or C
respectively.

Vectors which fall in the region AUBUC are rejected.
Vectors which fall in the region (AMB) U (ANC) U (BNC)

are considered '"overlap' vectors and may be handled as
described above.

Three tynes of hyperregion are available:

9]

2)

3)

Hyperrectangular closed decision boundary logic for a
class consists of an L-dimensional hyperrectangle
enclosing the vectors of the class. The orientaticn of
a hyperrectangle depends on the analyst's choice of
basis vectors. The available basis vector types are:
coordinate vectors (the hyperrectangle is oriented along
the original feature space axes), eigenvectors of the
class, and eigenvectors of the entire data set. The
size of a hyperrectangle is specified by a high and a
low threshold along each basis vector. An unknown
vector lies within a hyperrectangle if its projections
on all the basis vectors lie between the high and low
thresholds on those basis vectors.

Hvpersnherical closed decision boundary logic for a
class consists of an L-dimensional hypershere enclosing
the vectors of the class. A hvoersnhere is spmecified
bv an L-dimensional center vector and a radius. An
unknown vector lies within a hvpersnhere if the Eucli-
dean distance between the vector and the center vector
of the hvoersnhere is less than or equal to the radius
of the hvnersnhere.

Hvperellinsoid closed decision boundarv logic for a
class consists of an L-dimensional hvperellimsoid
enclosing the vectors of the class. The position of a
hvnerellipsoid is determined bv an L-dimensional center
vector. The orientation of a hvmerellinpsoid is alwavs
along the eigenvectors of the enclosed class, i.e., the
axes of a hvrmerelliosoid are alwavs parallel to the
eigenvectors. The shane of a hvrerellinsoid mav be
specified bv varving the relative axis lengths.
Orientation and shave information are contained in an

L bv L weighting matrix.

An unknown vector lies within a given hvoerellivsoid if
the following condition is met:

1-18

x-mTw @M <c where:
X = the L-dimensional unknown vector
W = the weighting matrix
M = the center vector
C = a size parameter analogous to the radius of a

hypersnhere.

Specification of the center vector, axis lengths, and
'"C'" value are all under the analyst's control.

Between-Groun Logic

(o}

(o}

Data Projections. An obvious drawback to computing
K(RK-1)/2 pairwise discriminants is the notentially
large number of combinations. In most problems of
interest, some of the classes (subclasses) are statis-
tically disjoint and quite easily separated from one
another. 1If these disjoint class groups can be identi-
fied and logic can be designed to discriminate the
grouns, then the pairwise discrimination need onlv be
computed for the statistically overlapped classes
(subclasses) within the groun. The MOOS user will not
ordinarily know a priori how to group the classes
(subclasses); therefore, options are provided to project
the class (subclass) data onto one- or two-dimensional
subspaces and displav the results. If the user detects
nonoverlapping groups of classes (subclasses), he can
draw separating piecewise linear boundaries on the
display (draSbndy). These boundaries may be stored
within the system as piecewise linear hyperplane bound-
aries which partition the original L-dimensional
measurement space (creatlog). The user can continue
this procedure by selecting one of the class groups and
projecting the corresponding data onto a new two-dimen-
sional subspace. If between-class separation is again
evident, the user may again partition the original L-
space with piecewise linear hypernlanes. If, due to
statistical overlap, the classes (subclasses) cannot be
completely separated using this procedure, it is
recommended that the user complete the logic via within-
group discrimination procedures (nmv, fisher, closedcn).

Scatter Plot Partitions. The user has the capability to
draw multipnle niecewise linear convex boundaries, as
shown in Figures 1-10 and 1-11. The region external to
the drawn boundaries may be designated as a reject
region, or can be used for data class designation
(Figure 1-11). In addition, it is possible that one or
more data classes may be distributed over an entire
scatter plot, while others are disjoint (Figure 1-12a).
In this case, the user may designate those widelv-
distributed data classes for both sides of a logic
partition, resulting in a logic tree as represented in
Figure 1-12b.

1-19

- e - . - — -

FIGURE 1 -10: PIECEWISE BOUNDARIES WITH
REJECT REGION

AAAAAA

/;\.
o

FIGURE 1 - 11 PIECEWISE BOUNDARIES WITH
EXTERNAL DATA

1-20

(:) D
(a) BOUNDARIES

ABCD

N\

AD CD B D
(b) LOGIC TREE

FIGURE 1 - 12: PIECEWISE LINEAR BOUNDARIES FOR GROUP
PARTITIONS

1-21

o Boolean (linguistic) Logic Partitions. MOOS provides
for the implementation of linguistically-defined logic

; partitions (linglogc) through the use of the PL/1
. compiler under CS. The user can write any Boolean
statement (any statement that can be evaluated true/

false) for use as classification logic provided that it
is a legal PL/1 statement and that it conforms to
conventions for referencing vector measurements.

Temporary logic evaluation results are disvlayed following
any logic implementation. Upon completing the logic design, the
user can next evaluate the design (logicevl) against any data
set and review the results of that evaluation within a confusion
matrix format (summrycm, displacm, hrdcpym). Logic which
provides adequate discrimination may be output to the system
printer (listlogc) or stored within exclusive user storage

(log$_ _). TInadequate logic may be supplemented (lingrjct),
modified (nmvmod, pairmod, closemod), or deleted (deletlog).

o Independent Reject Strategies. Any final classification
node of the logic tree may be appended with a Boolean
reject strategy (lingrjct). A vector classified at a
node and evaluated as %aISe by the strategy will be
rejected.

o Nearest Mean Vector Logic Modif’cation. The nearest
mean vector within-group logic nrovides ifor the use of
three metrics. The user may reselect the metric
utilized (nmvmod). The user may also choose a reject
boundary for each logic node.

¢ Pairwise %ggig Modification. A Fisher Pairwise Logic
node may be modified by a) changing the number of
thresholds implemented for any pair of classes, b)
moving the threshold(s) for any class pair, c)
eliminating measurements for the computation of the
Fisher discriminant for any class pair, d) insertion
of an optimal discriminant plane for any class pair,
e) 1insertion of a one-space or a two-space logic for
any class pair, or f) insertion of a Boolean logic
for any class pair (pairmod).

o Closed Decision Boundary Logic Modification. A closed
decision boundary logic node may be modified with respect
to the typne of hyperregion used to surround a class, or
the parameters which specify a given hyperregion may be
changed (closemod).

Logic Structure Deletion. Any unsatisfactory logic
structure in the logic tree may be deleted (deletlog)
and new logic implemented.

Lattice Logic Structure

A capability has been provided (latclogc) to allow the
analyst to create a lattice-type 10%10 tree structure. This

allows, in effect, for two or more

ogic nodes in a MOOS logic

tree structure to branch together. Two examples of the utility
of this feature are given below:

(o}

Duplicate Logic Tree Substructure. Consider the logic
tree structure in Figure 1-13 a) for the four classes
A,B,C.D. Each decision represents a between~group typne
logic. The classes present at logic nodes 2 and 4 are
the same (A,B, and C). Rather than duplicate the logic
which was created at logic node 2, the analvst may cause
logic node 4 to be connected to logic node 2 (indicated
by the dotted line in the figure).

Lattice Logic Tree Structure. The normal MOOS logic
tree structure has been implemented with the idea that

a relatively small number of decisions will be necessary
to separate one set of classes or subclasses from
another. The following example illustrates a pitfall

, of this type of logic tree structure and the remedy.

Consider the logic tree structure in Figure 1-13 b).
The analyst has made a number of tests (logic nodes 1,

2, 4, 6, ..., N) designed to separate class A from

classes B and C. Note that many logic nodes with the
classes B and C present (3,5,7,...M) were created. In
order to allow the creation of only one logic tree
substructure for the classification of B and C, the
logic nodes where B and C are present may be connected.

1«23

P——
1 dr kK

ABCD

(reject) ABC D

@) W (@ @
(reject) B C (reject)

Figure 1-13a

1-24

NW—

Figure 1-13b

- ‘_

w 1-25

FORTRAN Subroutine Logic

As an alternative to a simple listing of the discriminants,
weighting matrices, etc. which make up the classification logic
associated with a given logic tree structure, a FORTRAN
subroutine may be created which can execute the logic (fortlogc).
The generated subroutine is in "standard' FORTRAN and may be
punched on cards for use at other facilities. A commented
listing of the subroutine may also be produced and any data set
may be classified with the compiled subroutine (forteval).

The source program produced by fortlogec has two standard
parameters: (1) the L-dimensional vector to be classified
(input), and (2) the assigned logic node number (output). The
association of logic node number with the assigned class name is
left to the user.

FORTRAN subroutine logic adds considerable flexibility to
the design of unusual classification schemes since the generated
source code may be modified by the user.

Absentee Capability

Through use of the MULTICS absentee capability (see the
MULTICS Programmers Manual) the MOOS user may perform a sequence
of MOOS functions off-line. This may be desirable in some cases
where large amounts of processing time are needed. For instance,
the evaluation of a large test data set against several types of
logic might be accomplished by absentee job. A special MOOS
routine has been provided (features_abs) for entering an

absentee request to run the features measurement evaluation
computation.

An absentee process ics handled by MULTICS the same as a
normal interactive session excent that all user input is taken
from a segment "absentee request name.absin.'" System output
which would normally appear at the user's terminal is placed in
a segment ''absentee request name.absout." All that is neces-
sary to run an absentee job is to place the desired commands in
the '".absin'" segment with a text editor and invoke enter
abs_ request command as follows: 3

ear absentee_request_name

The following example illustrates an absentee job which
creates and evaluates fisher nairwise logic on a data set and
prints the results on the line printer.

P

cwd) udd > C >OLPARS

Zestore datatree
300

fisher

N

1

8

yes

yes

no

logout

(change working directory to
OLPARS) ;

(restore the design data set)

(answer questions related to
console type and baud rate)

(invoke fisher pairwise logic)

(select option 0)

(select 1 threshold)

(set minimum vote count to 8)

(hardcopy confusion matrix and
list of errors to line printer)

(halt fisher calculation)

It is obvious that considerable familiarity with the
interactive queries of MOOS functions is necessary since all

queries must be correctly answered within the
The absentee job in the above example could be nerformed on a
number of data sets by simnly changing the tree name ''data-
tree'" to the names of other data sets.

.absin'"' segment.

1-27

T —

1.3 MOOS MATHEMATICS

This section of the report presents the mathematical
justification or explanation of the algorithms used in MOOS.
Only the general explanation is included here; the reader is
referred to Section 3 for details concerning algorithm
implementation.

1.3.1 Measurement Evaluation

In solving a pattern classification problem, the
researcher will often be concerned with the discriminatory
qualities of the L measurements. In general, it is desirable to
use the minimum number of measurements that achieves a satis-
factory solution. To this end, the MOOS system provides three
(3) methods for ranking the discriminatory power of a set of L
measurements,

If desired, the rankings may be used as the basis for a
measurement reduction transformation to a subset consisting of
the M most discriminatory measurements. An optimal method for
selecting a subset of M measurements must involve a consideration
of the decision logic criterion, such as the Bayes Risk or the
probability of error., This, in turn, requires the estimation
of the joint probability functions for all possible n-tuples.
The obvious computational difficulties in obtaining an optimal
ranking preclude this approach in all but the simplest problems.
Therefore, the following sub-optimal algorithms are provided as
options to rank-order the L measurements X1}, X2, .., XL. Each
algorithm provides three distinct types of rankings. The first
uses a significance measure of a particular component, e.g. Xp,
for discriminating class i from class j; this significance wiEl
be designated by Mjj(xp). The second type of ranking uses a
significance measure o% xp for discriminating class i from all
other classes, and is designated Mi(xp). The last type of
ranking uses a measure of the overall significance of xp for
discriminating all classes, and is designated M(xP)°

1.3.1.1 The Discriminant Measure

This algorithm is implemented in the MOOS function
dscrmeas. This significance measure is particularly useful for
ranking the L measurements when the class conditional probability
distributions are approximately unimodal. The discriminant
measure for differentiating class i from class j using measurement
xp is defined as:

1) NP A (D] 2 . (1] 2
Mij(xp) = |[Xp - Xp (Ni-1) | 6p + (N5-1) | 6p

1-28

e e g T

r T —

where
D i .
Xp = the estimated mean of class j along
measurement Xp
L3
9.0) = the estimated standard deviation of class
P j along measurement Xp
Ni = the number of vectors in class i

The discriminant measure for differentiating class i
from all other classes using measurement xp is defined as:

K

Mj (xp) = :E:: Mj j (xp)

j#i

Finally, the discriminant measure for distinguishing
all classes using measurement Xp is defined as:

K
M(Xp) = gi . M; (xp) = 5%2: Eg;: Mij(xp)

1.3.1.2 The Probability of Confusion Measure 7

This algorithm is implemented in the MOOS function

probeont,

This measure is recommended when the assumption of class
unimodality cannot be justified. It is valid for any probability
distribution since it essentially measures the overlap of the
class conditional probabilities. Computationally, it is much
more complex than the previous measure.

Let xp designate the measurement under evaluation and

. P(xp/C3), j =1, 2, ..., k be the marginal class conditional prob-
abiait distributions. Next, consider the distributions for the
two classes i and j shown in Figure 1 - 14 . The measure for
differentiating class i from class j using xp is defined as

i follows:

g 9 92 +o0

s Mij(xp) =‘/’7P(x,p/0j)dxp " P(xp/Ci)dxp - P(x.p/Cj)dxp
% . Gl 62

1-70

A - - FON——

(s@sse1) 7) suoTanqraisiqg

£31119BqOId TBUOTITPUO) SSBI) TBUT3IBy

7T - 1 TANO1A

-

-

’
Yy o
h

Since the functional forms of the class conditional
probabilities are not known, we estimate the marginal class
distributions using the sample data. This method makes use of
histogram approximations like those shown in Figure 1-15. A
detailed discussion of histogram computation will be presented later.,

The measurement xg will be divided into cells of

width £&. The probability that a sample from class j will occupy
the rth cell along measurement xp is given by

@
Prp = P(xp/Cj)dxp

rth cell

Thus, the pairwise measure for differentiating class i from class
j can be computed by:

N

: 1y €1
Mij (Xp) si [{l::-? %rp: Prp

The measure for differentiating class i from all other
classes using x; is defined by:

K
Mi(xp) =Z. - Mij(xp) ;

S

Finally, the overall measure of significance of xp for
differentiating all classes is computed as follows:

M(xp) =il Mi(Xp) =: . #Mij(xp)

i= i=1 j#i

The discriminant measure is the simplest measure and
therefore is the fastest to compute. However, it can produce
misleading results when the data classes are not unimodal. Con-
sider, for example, the two marginal distributions shown in
Figure 1- 16. The discriminant measure for X is quite small, since
the separation between the class means relative to the sum of
their variances is small; however, measurement X yields excellent
between-class discrimination. This weakness is not a problem
with the probability of confusion algorithm, since this latter is
relatively independent of the functional form of the class
distributions,

1-31

SuoIINGIIISIQ
SSBT) [eUTdiBy JO suoljrwIXoaddy wWeldonSTH

ST - T TANDIA

1-32

e aZ— (D

d
€9) va

dg
49

e ———

S3INS9y IUIPBITSTW S20NPOId WYITIOITY IUSWSINSEIR
JUBUTWTIIOSTIQ 9yl YOTyMm I0J SUOTINQIIISIQ

A3T711qBqO14 SSBTD [BUT3iE JO oJdwexy :9[-1 2and1g
X X
ANVW \Vv
//\
/ 7
X s
/
/ /
: /
\ 1
\ !
\ :
\ .N
! /
/ !
X
// .\
1 1 /
(to/X)4d P

— (1

1=33

allic

!ﬂn-m—I-MI-'n-!-H'IHH--!-ﬂ---l-m-.'-—-“--

1.3.%.3 Higher~-Order Measurement Evaluation

An algorithm which evaluates higher-order combina-
tions of measurements is implemented in the MOOS function
features. A problem inherent with both the discriminant
measure and the probability of confusion computations is that
each measurement is treated alone. The features algorithm may
evaluate one or more measurements at a time using the divergence

measure as its criterion.

The divergence measure is useful in subspace
feature evaluation when the underlying distributions are
multivariate normal or when the underlying distributions are
unimodal (4,5). An advantage of the divergence measure over a
discriminant measure or probability of confusion significance
measure is that it considers the correlation between features.

The divergence J is defined as:
3= [p®up) - pR/wp)] Log (srgray) ax

w@ere.p[x(wf] is the class conditional probability
distributiod’ for any set of measurements X.

Let n(X/wi) be Gaussian, i.e.,
D(X/mi) " N(ui, zi) io= 1.2

where ”i are the means and Xi are the covariance matrices of
the patterns in classes wy - For Gaussian-distributed pattern
classes, this becomes:

1 1 T _1 _1
I = Lf2tuy = wgd [3,°+ 07) oy - ugd

1 J
+ 1/2 trace(z:l .+ 37! -
(zl zJ zj s 21)
: The divergence measure for differentiating class
i from glass j using measurements x_, ... X, is obtained by
: evaluating the above expression for the subspace defined by
i measurements X_, ... X..
I P q9
il oo =
ij <XD’ xq) J(Xp, SRS XQ)
; The'measure for differentiatine class i from all
. other classes using measurements xD,...xq is defined as:
2 oy
M. = & "
; i (Xgs oo XQ) = MlJ(xD,...xq)
P J#
‘
. 1-34

The measure for distinguishing all classes using

measurements X,, ... Xg is defined as:
K
= =
M(xD, e xa) = r;i Mi(xp' M e xq) =
£ 5
i M..(x_, ... x.)
i-1 i/ P q

Since it is not practical to evaluate all possible
combinations of the L measurements to determine an optimal
feature subspace, a number of suboptimal search procedures are
available.

The forward sequential suboptimal search procedure
finds the ''best'" subset of N from the original L measurements
using the measure for distinguishing all classes, M(xn, co X).
The first measurement selected is the best of the L measurements
taken one at a time. The second measurement selected is the
best of the L-1 remaining measurements when taken in combination
with the first selected measurement. The third measurement
selected is the best of the L-2 remaining measurements when
taken in combination with the first and second selected measure-
ment, and so on. The procedure halts when the user-specified
value N is reached.

The union best by class approach to measurement
selection utilizes the measure for distinguishing class i from
all other classes, Mi(xp, :++« Xg): The procedure is quite
similar to the forward sequential technique except that at
each step, more than one measurement may be selected. On the
first round, the best measurement for distinguishing each of
the K classes is selected, i.e., anywhere from 1 to K different
measurements may be selected. The second round takes all re-
maining measurements in combination with the previously selected
measurements, and again may add anywhere from 1 to K new
measurements. The procedure halts when the user-specified
value N is reached or exceeded.

The union best by class pair approach to measurement
selection utilizes the measure for distinguishing class i from
class j, M..(x,, x_). The search algorithm is almost
identical td the union’best by class procedure. On the first
round the best measurement for distinguishing each of the
possible class pairs is selected, i.e., anywhere from 1 to
K(K-1)/2 measurements may be selected. The second round (and
all subsequent rounds) takes all the remaining measurements in

combination with the previously selected measurements, and again

may add anywhere from 1 to K(K-1)/2 new measurements. The
procedure halts when the user-specified value N is reached or

exceeded.

The measurement selection procedure has a great deal
of flexibility in that the previously described techniques may
be interactively mixed in any sequence. Furthermore, a
preferred subset of the feature space may be selected as a
starting point for the measurement selection computations.

1-36

1.3.2 Structure Analysis

The basic use of structure analysis in MOOS is in
determining if the structure of the data for a particular class
is unimodal or multimodal., If it is multimodal, it is frequently
better to subdivide the class before attempting to design logic
for distinguishing between classes. This is particularly true
if the log%c to be designed is statistically based.

All of the algorithms for structure analysis in MOOS
involve projecting the data onto a one-or two-space and allowing
the analyst to draw a partition(s) of the space if multimodality
is present. All of the projections except one, NLM, are linear.
The linear projections may also be used as the basis for group
logic design.

No justification or explanation is given for coordinate
or arbitrary vector projections.

1.3.2.1 The Eigenvector Plane (Least Squares)

The following section is an explanation and proof of
the contention that planes defined by the two eigenvectors corre-
sponding to the two largest eigenvalues of the estimated covariance
matrix are optimal by the least squares criterion,

This can be shown as follows:

1. Define a plane by two unit orthogonal vectors el

and e2 through a shifted origin denoted by ¢ (d will turn out to
be the mean of the data).

2. Set up an expression for the error (E) that arises
in fitting the data by the plane described in (1). This will be
obtained by summing the squared residuals from the plane.

3. Next, minimize the error E with respect to d, g1 and
e2,under the constraints that e] and g2 be unit vectors and
orthogonal.

4. d will be found to be the mean vector. The eigen-
vectors of the estimated covariance matrix will be shown to be
solutions to the minimization problem and, particularly, the two
eigenvectors corresponding to the largest eigenvalues will turn
out to be the desired solution. MNote that there exists an infinite
number of solutions, since any orthogonal rotation of gj, €2 in
the plane defined by gl and g2 will also be a solution; however,
all these solutions describe the same least squares plane,

1-37

Let X1)

} be L-dimensional data vectors

&J
4 = new origin for the data

£l, e2 define the plane through the new origin.

Define Yj = Xi -d

The residual distance squared from the fitting plane for the Kth
data vector is given by 5

t t t
e | 2 2 =] e G 20 m- i o) €2

The fitting error is given by the summation of the squared
residual, i.e.

N
t t 2 t 2
Eaé; rﬁ rk=£ {gkgk-(j{km) - (Y 9.2)}

Using Lagrange multipliers to account for the constraints on ej
and ez, we obtain

t t
{zl(l(-k 2X —d~'(& = 8 '(xk - e ez)}

El 21] [2 £2 'El ')\3%1 £

Taking the partial with respect to d we obtain

t t
0 = QE* = S -2X;, +2d +2(e; -7 dey +2(e, -e, d)e

o~

N

b

Substitute }

2 Ex = 0 = 2N |:(g-g) * {(l-é)tzl} at {‘U—”Dtﬁz } 912—_|

,',‘gfg_is a solution. Thus d is the data mean.

continuing !

§§= zg;Ek’ggl ’%2} '2>\29~1 -N3g =0

Note that the estimated covariance matrix.z :is given by
=1 Y
AT ; He A
Let‘ggj
A 1
4 Z'g-l ‘2>‘1¢~1 ‘>\3—§~2 e &)

A
2 Zgz -2 Npe, .->\3.e~1 =0 (B)

I
o

(N-1) E , » and substitute above

|
o

Multiply (A) from the left by ef

Multiply (B) from the left by g%)

Multiply (A) from the left by gg

to obtain
¥ /\
. t |
{ ‘21‘25:91 =)\1 (1) i

|
| Sgiﬁz “A2 S
b A
t

| 265) & =4 (3)

“
L2 1-30

Substitute back into (A) and (B)

A\ A
— A —
;{: 2 33 3 ek e, =0
(A) 2 51 "~ LM 8 T 2/ 5|2
N\ — -
jz: Ee e & T
(B) 2 gy =2 g—zzg ey -2 .9.229.1 g1 =0
— ~
A

Now let:E:gl = <1 e; and
A

E{:Ez = K, e, and substitute
into (A) and (B)
() < 2yg; -2 ol1gy

|
(]

(B) =) 2 oL,ey -2 Lpey =0

e « A solution plane is given by the two eigenvectors of the
estimated covariance matrix %7,.

The least squared error is given by
A

A
e S s, -

n
= =5 * ¥t
where R= constant aJ Y. gk

or equivalently
E= R -~><1 =g

Therefore, the error is minimized by selecting the two
eigenvectors corresponding to the two largest eigenvalues.

It can similarly be shown that the projection on the
eigenvector associated with the largest eigenvalue is the best
(by the least squares criterion) one-space projection,

F—.—W TSV Vo™ =~ wmper~uess ———

1.3.2,2 Discriminant Projections

The MOOS functions ardg§ and asdg%_ _ _ offer the
analyst another projection direction or plane. e only differ-

ence between the two functions is in how the two classes upon
which the projection is based are determined. The two classes
may be composed of any two classes of the current data set or
they may be composed of any two groups of classes which are
"lumped together'" for the purpose of determining the projection
direction(s).

The entire current data set is projected into the
space defined by the Fisher Discriminant d] and a second vector
d2, where dy is that direction which maximizes the projected
between-class scatter relative to the sum of the projected
within-class scatter, under the constraint that d) be
orthogonal to dl. In summary,

4 = Aulp
2 T 3 2
L Ng/z,s, G- M@]g

where &1 and A , are normalizing constants

A

P

W

the difference between the class mean vectors,/4;- M2

sum of the within-class scatter matrices

Notice that both d1 and dy are computed using W-1, 1If
the data lies in a subspace, then it can be shown that W will be
singular. If the data is approximately contained in any sub-
space, then W will at best be ill-conditioned. In either case,
the numerical computation of W-1 will be extremely tenuous.
Thus, prior to computing W-1, W must first be checked to
determine if it is ill-conditioned or singular. In either case,
we will compute a subspace such that when the data is
orthogonally projected onto this subspace, the Wpey = TwoldTT
will be well-conditioned. Next, d; and g will be computed in
the subspace using Wpew, and finaliy, we will transform ¢] and
do back to the original L-dimensional space.

If the one-space option is chosen the data is
projected on dj, that is, in the Fisher direction only.

1-41

ki

1.3.2.3 Generalized Discriminant Projections

The MOOS function gndv$ _ offers the analyst
the capabilitv of projecting data onto a discriminant direction
or plane which has been optimized to produce maximum discrimina-
tion for all classes. This is a generalization of the Fisher
discriminant projection described in Section 1.3.2.2.

The Fisher discriminant is obtained by solving for
the unit vector d which maximizes the following ratio:

R = d'Bd

dIWd

where B is the between-class scatter matrix, and W is the sum
of the within-class scatter matrices.

To solve for the generalized Fisher discriminant
directions, we take the vector derivative of the above ratio
R with respect to d and set the resultant equation to zero.
The procedure generates the following generalized eigenvector
equation.

'B - ‘\W\‘\,d=0
\wlB -1 d =0

The generalized discriminant vecgfrs are the
eigenvectors of the non-symmetric matrix W +B The rank

of the between-class scatter matrix for the K-class discrimina-
tion problem is K-1, therefore, no more than K-1 nonzero
eigenvector solutions exist. Thus, the generalized discriminant
vector function nroduces K-1 discriminant vectors, with the
vectors which correspond to the largest eigenvalues producing
the maximum discrimination. The Gram-Schmidt orthonormaliza-
tion technique is applied to the eigenvectors to insure that
thev are orthogonal unit vectors (6).

rams wew o e — g e Ty

1.3.2.4 Nonlinear Mapping

The Nonlinear Mapping Algorithm (NLM) is based upon
a point mapping of the N L-dimensional vectors from the L-space
to a lower-dimensional space such that the inherent structure of
the data is approximately preserved under the mapping. The
approximate structure preservation is accomplished by fitting N
points in the lower-dimensional space such that their interpoint
distances approximate the corresponding interpoint distances in
the L-space.

Suppose that we have N vectors in an L-space designated
Xij, i =1, ..., N and, corresponding to these we define N vectors
in the two-space designated Yi, i = 1, ..., N. Let the distance
between the vectors Xji and Xj in the L-space be defined by

dij* = dist E 5)g

and the distance between the corresponding vectors Yj and %3] In
the two-space be defined by

djj = dist Ei’ 5]

Let us now randomly1 choose an initial two-space configuration
for the Y vectors and denote this configuration as follows:

-
i y '
Y = Yy, = Yy =
1 2 | N N2
A2 L>’22 L

1 - For the purpose of this discussion it is convenient to think
of the starting configuration as being selected randomly;
however, in practice the initial configuration for the vectors
is found by projecting the L-dimensional data orthogonally
onto a two-space spanned by the two original eoordinates with
largest variances.

Next we compute all the two-space interpoint distances
dji, which are then used to define an error E; E is a measure of
how well the present configuration of N points in the two-space
fits the N points in the L-space, i.e.,

2
N
1 dij“‘ = dij
E = — I—- E
E di;’i i<j da ok
: ij
L

i<j

Note that the error is a function of the 2%N variables Ypq »
p=1, ..., Nand q = 1, 2. The next step in the NLM algorithm
is to adjust the ypq variables or, equivalently change the 2-space
configuration so as to decrease the error. We use a steepest
descent procedure to search for a minimum error.

Let E(m) be defined as the mapping error after the
mth iteration, i.e..

N
; S S 2
E(m) = ¢ Z_., Eij* - dij (m):l / dij""

<]

where

=
Ch = di'*:]
1<) L

dij(m) =\/ ,,i 3 E’ik(m) = ij(m)

2
k=1 e i

and

o
()

The new 2-space configuration at time m + 1 is given by

Ypq(m + 1) @ - o). [\ m

where

qu(m) amo /I&ZE(m)

3 ¥pq(m aypq (m) 2

and MF is the '"magic factor'" which was determined empirically
to be MF=< 0.3. The partial derivatives are given by

3 N g *q ()
B m md ? p_.]__z.g" j Ypq~Yiq
j#p

and
N

In our program we take precautions to prevent any two points in
the two-space fron becoming identical. This prevents the partials
from "blowing up.

Because the number of computations requlred in the NLM
algorithm is approximately proportional to N2/2 (where N is the
number of vectors), the MOOS implementation of NLM has an upper
limit of 200 vectors. If the number of vectors in the current
data set exceeds 200, a reduction is required; the algorithm
for performing this reductlon is explained below.

The user specifies the number of vectors (or cluster
centers) to which he wishes the set to be reduced. If the current
data set contains more than one class, the user also specifies
whether he wants the number of vectors in each class of the new
set to be the same, or proportional to the number of vectors in
each class of the original data set. The reduction process is
then performed on one class at a time,

Given that M is the number of vectors in the original
class, and N (N<M) is the number of vectors desired for the re-
duced class, then the number of original vectors lumped together
to produce a reduced vector is M/N=K. Each of the N reduced
vectors is thus the mean vector of K vectors from the original
class. The selection as to which K vectors are to be clustered
together is made as follows: The entire set of vectors is.
searched; the vector which is farthest away (in the Euclidean
sense) from the mean of the entire class is picked as a starting
vector. Then the K-1 closest vectors to that starting vector are
found, and the mean vector of those 1+(K-1)=K vectors is taken
as the reduced vector or cluster center. The starting vector
for the next cluster center is found from among the remaining
vectors by searching for the one furthest away from the previous
cluster; the clustering process is repeated as often as necessary,
(If K is not an integer, then the first A (AN where A is the
remainder of M/N) cluster centers will be the mean of [K] + 1
vectors and the remaining N-A cluster centers will be the mean of
(K]vectors.)

1.3.3 Logic Design

In general, the primary goal of a pattern classification
analyst is to design a logic, or series of tests, which will,
with a suitable degree of accuracy, assign an unlabeled vector
from the feature space to a particular class (or reject it as
unclassifiable within the required degree of probability).

MOOS provides the analyst with several types of logic design
algorithms and variations within each type.

1.33.1 Group Logic Design

In group logic, the analyst makes an interactive,
subjective decision and actually participates in the logic design
process, The particular node of the logic tree for which logic
is being designed is examined; the vectors from the classes
present there are projected on a one- or two-space. If there is
(in the analyst's judgment) sufficient separation between classes,
or between groups of classes, he may draw one or two boundaries
so that the feature space is partitioned into two or three
regions. These regions are then labeled as to the class or
classes present in them (a region may be labeled as the null class
or reject region). This is illustrated in Figure 1-17.

A,B,C,D,E

m
n o P
A E B
C D
D

FIGURE 1 - 17: LOGIC TREE NODE - GROUP LOGIC

In this example, group logic whichwas designed at node m
separated the five classes present (A,B,C,D, and E) into three
groups. Class B was completely separable from the other classes
and was assigned to node p of the logic tree; the remaining
portions of the feature space, assigned to nodes n and o, contain
the groups of classes A,C and D, and E and [} respectively. Notice
that the samples from class D fell into both regions; this is
permissible.

For the one-space implementation of these logics, the
mathematics is extremely simple. The unlabeled vector to be
classified is merely projected (dot product) onto the projection
direction (discriminant); the value of this scalar is then
compared to the value of the boundary (threshold) drawn by the user.

Two-space logic mathematics is slightly more complicated;
it is illustrated below.

When the user defines a two-space boundary, he draws, on
the projection plane, from one to five connected line segments
which must define a convex region; he then draws a reference point
indicating which is the convex side. See Figure 1-18 on the
following page.

\
\

AN
AY

FIGURE 1 - 18

3-Line Segment, 2-Space Boundary.

The transition from the boundary drawn on the two-space
projection to the mathematical logic creates a sequence of dis-
criminant vectors and thresholds, one pair for each line segment.
In the evaluation of the logic, the unlabeled vector is projected
on each discriminant in turn and is then compared to the threshold.
If it is less than the threshold for any given line segment, the
vector is on the non-convex side of the partition; if it is greater
than the threshold, it is on the convex side of the partition. The
determination of the discriminant and of the threshold for a line
segment follows.

Given three points on the projected plane
point S (boundary start point)
point E (boundary end point)
point C (point on "convex'" side of boundary)

if these are considered as vectors (in the projected two-space),
i.e.

<xs, YD
<XE, YE>
<) D>

then a vector D normal to the boundary line in the projected two-
space is given by: <d1,d2> where d1 = + (yg-yg) and d2 = <xg-xg).

10 {E {n
]

Project the convex point and boundary end point onto this vector.

Let Pc=C°D
PE =E-D
Then if Py 2 Pg save Pgp as the discriminant threshold and

compute and store the discriminant vector.

or if Pg <Pg replace D by<-d1, -dp > , save -Pg as the
discriminant threshold and compute the dis-
criminant veector.

The discriminant vector = dj] X + d2 Y, where X and Y are the L-
dimensional projection vectors used to
project a point in L-space onto the projection
plane (on which the boundary was drawn) for
the purpose of evaluating logic (i.e. deciding
if any point V in L-space lies on the "convex"
side of the L-space hyperplane determined
by the boundary E-S) drawn on the projection
plane). yidllics

If l°£ithreshold
where Y = L-dimensional vector for point V, and
e the discriminant vector,

then the point V is on the convex side of the boundary.

Le3:s3.2 Complete Within~Group Logic

This type of logic creates a node, or region within
the feature space, for each individual class present at the node
for which logic is being designed. The logic tree representation
of this is illustrated in Figure 1-19.

[ml a,B,c,D,E

\

ks ¢ P d o 5 reject
A B C D E (optional)
FIGURE 1-19

Complete Within-Group Logic Tree Node (5 classes)

1-49

This type of logic is more statistically based and
requires less user interaction than group logic, where the
analyst must determine the boundary(s) himself. MOOS does,
however, allow modifications of these logics wherein the analyst
may make a considerable number of subjective decisions. The three
variations of complete within-group logic are Nearest Mean Vector
(NMV) logic, pairwise logic, and closed decision boundary logic.

1.3.3.2,1 NMV Logic

Generalized NMV logic is a k-class classification
technique; it classifies an unknown vector from the feature space
according to a metric, which is computed from the unknown vector
to the mean vectors of the k classes of the design set. The
decision is in favor of the class which produces the minimum
value of the metric. The generalized metric is:

g ="~ @-mpTei! @ - up

where X
(o

the R.-dimensional unknown feature vector

the X -dimensional mean vector for classi

My

i an Q X Q matrix

If Ci is the covariance matrix for class i of the
design set, then the metric is known as the Mahalanobis distance.

If Ci is the identity matrix, the metric is simply the
Euclidean distance from the unknown vector to the mean vector of
each class.

In MOOS, three basic options of NMV Logic are available;
a reject strategy can be specified under each option. To reduce
unnecessary calculation we use the square of the metric.

In the first option (simple NMV) C is the identity
matrix, and the metric is computed in the form:

TSI S —, ' i J

where X unknown vector==(x1, o, e xi)

"y i
My mean vector of classiréql, Mos +ons My)

In the second option (weighting vectors) Cj is a diagonal
matrix whose elements are the variances of the X components of
the design set samples of class i. The computational form of
the metric used in this option is:

1.2
i (XJ_MJ)

di =
j=1 -
vi
J
where V; = variance of jth component of the 1th class

In the third option (weighting matrix),Ci is the covar-

iance matrix of the design set samples of class i. The computation
in this case involves the actual vector times matrix times vector
multiplication, as defined by the generalized metric formula.

The optional reject strategy allows the user to specify
a reject distance, In this case the decision strategy is:
decide on the class j for which dj is the minimum of all di,
i=1, ..., k, if and only if dy 1s less than the reject distance,
otherwise reject. The user can speclfy a separate reject dlstance
for each class, or he may use the same reject distance for all
classes. This strategy may be used with any of the three metrics.

1.3.3.2. 2 Pairwise Logic

In MOOS, pairwise logic is created by the routine
fisher. This routine creates a one-space logic based on the
Fisher direction (see section 1.3.2.2) for each possible pair of
classes from among the classes present at the node for which the
logic is being designed. Given N classes at the node, this will
produce N(N-1)/2 class pairs. Each of these class-pair logics
classifies (or can be thought of as producing a vote for) a
vector as one or the other of these classes (or reject, depending
upon the number of thresholds selected - see section 1.2).

In the evaluation of pairwise logic, the unlabeled
vector is evaluated by each of the N(N-1)/2 class-pair logics
and a "vote count'" is kept for each class. After all class
pairs have been evaluated, the vector is classified according to
the vote counts. It is classified as belonging to that class
which received the maximum vote count, provided this maximum is
greater than or equal to a user-specified vote count threshold.
In case of a tie for the maximum vote count, an attempt is made
to break the tie by referring to the a priori class probabilities;
if these are also equal, the vector is rejected.

The flow of pairwise logic evaluation is illustrated
in Figure 1-21.

MOOS also allows the user, through the routine pair-
mod, the capability of modifying each of the class-pair logics.
The allowable types of logic are:

1) Fisher (1 to 5 thresholds)

2) Any arbitrary one-space projection vector
3) Optimal discriminant plane

4) Any arbitrary two-space plane

5) Boolean

1.3.3.2.3 Closed Decision Boundary Logic

A closed decision boundary logic strategy is imple-
mented in the routine closedcn. This program creates an
L-dimensional hyperregion to enclose each of the classes in
the selected data set. Three tvpes of hyperregion are available:
hyperrectangular, hynerspherical, and hyperellipsoid.

The evaluation of hyperrectangular logic is performed
as follows:

1) Project the unknown sample vector on the basis

vectors.
L B . s
X = the unknown vector
Yj = the jth component Qf the projected vector
Vi = the jth basis vector

1-52

2) The unknown vector is tested against a high and
a low threshold along each basis vector. The
vector is in the hynerrectangle if and only if
its projection on each of the basis vectors is
within the high and low thresholds for each
basis vector. A two-dimensional case is illus-
trated in Figure 1-2C.

Vzl\) | L
HE — S U il i e’ = Lo threehold :
e2 o= 5 on basis vector |
T ‘ v,
I y—' l o = high threshold
| on basis vector !
| vy
e;j | g i e
| |
|
L 1 \
L H ’V
91 91 1L

The point X lies between both pairs of thresholds
on the basis vectors and is therefore inside the
hyperrectangle.

Figure 1-20

The evaluation of hyperspherical closed decision
boundarv logic is performed by calculating the Euclidean distance
between the unknown vector and the center vector of the hyper-
sphere. If this distance is less than or equal to the radius
of the hypersphere, then the unknown vector is inside the

hyvpersphere.
-3 (x -m)l
IR

i M = ith component of the center vector of the
p 1 hypersphere.
’.

Xi = ith component of the unknown vector.

d = Euclidean distance between X and M (d2 is

used rather than d to reduce computation).

g 4

The evaluation of hyperellipsoid closed decision
boundary logic is performed by doing the following calculation
for an unknown vector.

X-W'Wx-mcC

X = the unknown vector

M = the center of the hyperellipsoid

W = an L-by-L weighting matrix

C = a size parameter analogous to the radius of

a hyperspnhere.

If the above condition is met, the unknown vector
lies inside the hyperellipsoid.

The weighting matrix W is determined as follows:

w= (8T as)!

B = an L-by-L matrix whose rows are the axis
vectors of the hyperellipsoid (the only axis
vectors currently implemented are the eigen-
vectors of the covariance matrix of the
class)

A = an L-by-L diagonal matrix. Ajj = the length
of the i®™ axis of the hyperellipsoid

In the case where A is a diagonal matrix of eigenvalues
and the center vector M is the mean of a class: W is the inverse
covariance matrix and C is the Mahalanobis distance.

Each class of a given data set may have any one of

the three types of hyperregion surrounding it. Three cases
arise depending on how many hyperregions an unknown vector falls
into. If an unknown vector does not lie in any hyperregion,

it is rejected. If an unknown vector falls in one hyperregion,
it is assigned to the class associated with that hyperregion.

If an unknown vector lies in more than one hyperregion (referred
to as overlap in further discussion), it is rejected unless

the user has specified otherwise.

"Overlap" vectors may be placed in a new data tree,
and further classification logic developed on the new data
tree to reduce the number of rejections produced by closed
decision boundary logic. This is a non-standard approach in
‘ that a data set must be passed against two independent logic
. trees to produce the final classification results.

1-54

g g 7~ —

B b ool M S T A ni

R s g5 47

-

When an unknown vector is rejected due to an overlap
condition, some useful information may be retained. If the
vector fell into only a few of the possible hyperregions, at
least the number of choices as to which class the vector really
belongs has been narrowed. This partial classification informa-
tion may be utilized by Fisher pairwise logic.

The evaluation of Fisher pairwise logic performed
on a data tree consisting of "overlap" vectors differs from
the usual pairwise evaluation. Each unknown vector is tested
only by pairwise decisions involving the possible classes
indicated by closed decision boundary logic. Partial classi-
fication information obtained from a closed decision boundary
evaluation may be utilized only by pairwise logic.

1:3.3:3 Logic Evaluation Outputs

) This section describes the various types of confusion
matrix displays produced by MOOS, and gives some general guide-
lines for interpreting these specialized formats.

1.3.3.3.1 Confusion Matrix for Temporary Between-Group Logic.

The following confusion matrix format is produced by
any one-space group logic, two-space group logic, or Boolean
partition logic.

Referring to Figure 1-22, the first few lines of output
represent the user interaction with the logic design routine
(in Fhls case a two-space group logic). The heart of the display
consists of a matrix format in which the columns are associated
with nodes in the logic tree structure, and the rows correspond
to the data classes in the data set being evaluated. Any partic-
ular element of the matrix is the number of vectors from a given
class which were assigned to a particular logic node. The left-
most co%umn of numbers always refers to the node on which logic
was designed. To the right of and below the matrix are various
Fotals and percentages designed to aid the analyst in the
interpretation of these results.

e L

unlabeled vector

class pair logics vote counters
LR A/B
A
A/C et ‘
B
o ”/// classify
i according
: e to class
. with max.
vote count
iff max.
= T other
B/C l wise reject
\\ e \
. D
B/D
‘rekmt
C/D S

The output of each class-pair logic can be one of the
following:

a vote for no class (reject)

or

a vote for the first class of the pair
or

a vote for the second class of the pair

FIGURE 1-21
PAIRWISE LOGIC (4 CLASSES)

1-56

3 gy e e e ——————— - -

S
®n
L.9009090®® ©

X X X X X X X T

840300~ petTjTesu)oeTe jo Burysr)

0001

0 00!
0 00t
0 001
0 001
0 001
o001
o o0t
402%

51807 Fnoin-usamiag Aieaodwey I0F XTAJEN UOTSNIUO) *¢C-T

. 43N

aey

09
vS
e9
09
§9
(2
19

402

2an3 14

Adoopawy ® juem noft og

@
¥S
e9
0
et
LE
0
€

6 o9
0

o0t o oot

L %1

LIS 1

09
0

0

9
€S
ce
19

e
epou 3180}

00 dd0%
e 140
@ 001 403%
cer 409
eey 0%
09 2084
S LERR
NO >0~0
@9 meym
s9 oqeo
29 2409
19 shos
3

€ ¢ sesse)d eseyy o3 peulisse epou 27180y eyy

oohn®

(s)Baspunog ey} jo epie ee8dxe By3 uo sessw)d oyy jo woquiis Reyderp osw a0%u3
2 1 sesenionjup eseyy o3 psubtese epou o7bo

1 943
AMEO D

(SAGLTWT1OP OU -~ SUTT @uUO U0)

1 Aaepunoq jo 9pIS X9AUOD 913 UO SISSETD a3yl o sToquhs AeTdsTp 2Yy3 a23uj

57

If the user decides to nroduce a high-speed orinter
copy of this confusion matrix, he may choose to get a listing of
all incorrectly classified vectors. Each error is listed by data
class, vector identification number, and the logic node to which
it was assigned.

1.3.3.3.2 Confusion Matrix for Temporary Within-Group Logic

The following confusion matrix format is produced by
the within-group logic routines nmv, fisher, and closedcn.
Referring to Figure 1-23, the first two lines of output describe
the type of within-group logic being evaluated, the data set on
which logic was designed, and the number of dimensions. The
heart of the display consists of a matrix format in which the
column labels correspond to the data classes of the data set
being evaluated, and the row labels are associated with the
classes in the data set on which logic was designed. Any
particular element of this matrix is the number of vectors from
a given data class which were assigned to a particular logic
node. (In the case where all classification was correct, all
off-diagonal elements of the matrix would be zero.) Below this
matrix are various totals and percentages designed to aid the
analyst in the interpretation of his results.

If the user decides to produce a high-speed printer
copy of a confusion matrix, he may choose to get a listing of
all incorrectly classified vectors. For both nmv, fisher, and
closedcn, each error is listed by data class, vector identifica-
tion number and the logic node to which it was assigned. The

following additional useful information is listed for each vector:

In the case of nmv, for each misclassified vector, the
distance to the true class and the distance to the assigned class
is listed. If the vector was rejected, the distance to the
closest class is listed rather than the distance to the assigned
class.

In the case of fisher, the first additional line
usually begins with the phrase '"lost to:" followed by a list of
display symbols. Each display symbol refers to an incorrect
pairwise decision involving the true class. If the vector was
assigned to the wrong class by a pairwise decision box, the dis-
play symbol of the incorrect class is listed. An 'r'" in paren-
theses immediately following a class symbol indicates that the
vector was rejected, not misclassified, by that decision box.
The second line contains a list of vote counts for the given
vector, in order of ascending logic node number. The last vote
count listed is always the value of the reject vote count. If
there was a tie situation, the first additional line of output
is orecedid by '"'tie" or ''favorably broken tie" (see Section
1.3.3.8.2),

Closed decision boundary logic (closedcn) lists the
type of hyperregion associated with the true class. If a vector
falls into more than one hyperregion, the names of the classes
associated with those hyperregions are also listed.

1-58

bt et il ca

[———

XXX
1sejeseu

aeseq e

104®7)
«uotado
auelan)

wofidapay
wiwidesp

waRiwune

powstud

°18CT dnoxn-uryaTm

Aaeaodway 103 xTajel uorsnyuo) ‘€C-1 @an3tg

1 epou 27180

L 74N
%8S’
%81 °

L't E'6

¢ §

L't 9§

T €

L 96 2 98

8s 9%

s 14-]

| S

8s]

¢ C 14

) €

0 @

4]

[)]

0 ()

J0fla aj®

XXxx jsejefRu

» 405 871 120l ea))eaeno
€ 40} st 40148 |]810A0
88 40§ GBE 1281402 }]|Ri8AO
22p « £40320A jO JegEny |®30%

§9 00 TE €€ 99 (leux
2 F 2 2 y qfea
2EC 00 29 'S EE da0x
e ¢ g € 2 d018
E 06 00018 06 L 16 2 @6 409%x
96 @9 B85 S5 S§§ 4402
289 99 SS9 09 19 13°%
» (] 2 2 ¥ 1lea
° @ 1 2 € aoha
-]] 2)) LFAY]
9s ¢ "} e e A01d
] 09 2 @ e neym
® ° 8§ © 0 oqwo
] ® §s 2 2403
0) 1 5 sg shos
AO12 MBYM 0780 2402 shos

T TEIN LFL

§ s SUOTBUBNTP jO J@Juny
(UOTREN|BAZ @STMITERy BTG4y

1-59

£.3.3,3,3 Confusion Matrix for Overall Logic Evaluation

The confusion matrix produced by overall logic
evaluation (logicevl) is identical in format to the matrix
produced by the temporary within-group logic routines nmv,
fisher, and closeden. If the user chooses to list this matrix
on the high-speed printer, a list of all incorrectly classified
vectors mav be produced in the format described previously.

1.3.3.3.3.1 Reassociated Names

Additional flexibility is made possible for the
overall logic evaluation of an independent data set by the use
of the reassociated names capability. Utilizing the routine
logicevl, any data set may be tested against logic designed on
any other data set of equal dimensionality. However, the totals
and percentages correct listed below the matrix will be useful
only if the names of the data classes on which logic was designed
are the same as the names of the data classes being evaluated.
This may be accomplished through the use of reasname, which allows
the user to tag logic nodes with any reassociated names,

In a case where two or more logic nodes have been
given the same reassociated name, the totals below the matrix
are formed by adding the confusion matrix entries for these
logic nodes.

If reassociated names have been added to the logic
tree, logicevl asks the user whether the reassociated names are
to be used in the confusion matrix printout. If the response
is yes, the reassociated names will be used in place of the
original design names; if more than one logic node has the same
reassociated name, only one entry will appear in the confusion
matrix for that name. 1In all cases where reassociated names
have been added to a logic tree, they will be used to determine
whether the vectors in the data set being evaluated have been
assigned correctly.

One further embellishment has been added to the
reassociated name capability. If sense switch 2 is set prior
to overall logic evaluation, the test of correctness is sinmply
made on the display symbols of the classes involved, rather
than on the entire four-character names.

I AMSAGGP e

WL W

1L ST Boolean Partitions

MOOS has also implemented a user capability for
Boolean defined partitions of the feature space. This capability
can be used in structure analysis, group logic and pairwise
logic.

This is implemented through utilization of the
PL/1 compiler under MULTICS. As a result of the flexibility of
MULTICS, the analyst can write any Boolean statement (one that
can be evaluated as true or false), provided that it is a
legal PL/1 statement and that it conforms to certain conventions
for referencing feature vector components, and then use that
statement as the basis for a transformation or a partition.

1.3.5 Measurement Transformations

In addition to a measurement reduction transforma-
tion (trnsform) performed in conjunction with measurement
evaluation computations, a data set within MOOS may be trans-
formed by any of the following three independent transformations;
normxfrm, eigentrn, or measxfrm, Upon execution of any of these
algorithms, every vector in the selected data set is transformed
and a new tree is created from the transformed vectors. The
new tree will have the same structure as the original tree.

1391 The Normalization Transformation

The normalization transformation, normxfrm,
determines the standard deviation along each coordinate measure-
ment of the selected data set. Each vector component within the
data set is then modified by dividing it by its corresponding
standard deviation, The resulting normalized data set will
have unit variance along each coordinate measurement,

In some cases, normalization may be necessary to
ensure that the various numerical calculations performed by MOOS
(e.g. matrix inversions) are sufficiently accurate.

1igels Ll The Eigenvector Transformation

The eigenvector transformation, eigentrn, computes
the eigenvectors of the covariance matrix of the selected data
set (see Section 1.3.2). The user is then given the option of
mapping the selected L-dimensional data set onto an M-dimensional
eigenvector subspace (M<L) by selecting the M eigenvectors
corresponding to the M largest eigenvalues. The resulting M-
dimensional subspace provides a least squares fit to the

selected data set, since the sum of the squared residual

1=61

R

distances.frow the subspace is minimized. The error in fitting
the data is given by summing the remaining eigenvalues:

Squared Fitting Error = z)\j
J——_

The transfgrmation essentially involves an orthonormal rotation
of the basis vectors of the data set until they are aligned with
the eigenvectors.

This technique has proven useful both as a research
tool and as an aid to structure analysis and logic design.
Measurement reduction may also be performed through use of the
eigenvector transformation,

b 3503 The Measurement Compiler Transformation

By using the routine measxfrm, the MOOS user may
define new features which are functions of the original L
measurements. The capability of the MULTICS PL/1 compiler is
utilized in that any statements allowed by PL/1 may be used for
this transformation.

] The measurement compiler option provides the MOOS
user with a practically unlimited capability for defining both
linear and nonlinear transformations. Once the new features
have been defined, the system will execute the transformation,
thereby generating a new data tree whose vectors have the new
user-defined features as their components.

1.3.5.4 Measurement Reduction Transformations

The MOOS system provides three methods for selecting
a projection of the "current data" onto a coordinate subspace
in conjunction with the three methods for evaluating the discrim-
inatorv value of each measurement (Section 1.3.1). Each of
these measurement evaluation algorithms (dscrmeas, probconf,
features) produces rank order displays of the L measurements
according to a user-specified criterion. The user may select
specified measurements from the data set via the commands
sel§ __ _ and un$ _ . The measurements which are chosen for

retention define the coordinate subspace and the desired linear
transformation. The user then calls the measurement reduction
transformation routine trnsform to implement the specified trans-
formation, thereby creating a tree identical in structure, byt
containing vectors of fewer measurements than the original data
tree.

1-62

REFERENCES

Kanal, Laveen N., 'Interactive Pattern Analysis and Classification
Systems: A Survey and Commentary'', IEEE Proceedings, Vol 60,
No. 10, pp. 1200-1215, October 1972.

Sammon, J.W. Jr., 'Interactive Pattern Analysis and Classification',
IEEE Transactions on Computers, Vol C-19, pp. 594-616, July
1970.

Simmons, E.J. Jr., "Interactive Pattern Recognition - A Designers
Tool'', AFIPS Conference Proceedings, Vol 42, pp. 479-483,
June 1973,

Marill, T. and Green, D.M. "On the Effectiveness of
Receptors in Recognition Systems,' IEEE Transactions
on Information Theory, Vol. IT-9, pp. 11-17, January 1963.

Kadota, T.T. and Sheop, L.A. "On the Best Finite Set of
Linear Observables for Discriminating Two Gaussian
Signals,'" IEEE Transactions on Information Theory,

Vol. IT-13, pp. 278-284, April 1967.

Sammon, J.W. Jr., "An Optimal Discriminant Plane'",
IEEE Transactions on Computers, Vol. C-19, pp. 826-829,
September 1970.

r ” —) bad
e e
SECTION 2
MOOS USER'S MANUAL
2.2 GENERAL REMARKS

This manual contains descriptions of all operating MOOS
user functions. It is designed to provide a potential user of
the system with sufficient information to allow functional utili-
zation of the system capabilities, but does not contain tutorial
information as to the purpose underlying the development of each
algorithm, nor does it contain details of the computations per-
formed by any system program. Such information has been documented
elsewhere.

The standard terminal from which MOOS commands are
I executed is the Tektronix 4002A storage tube display interfaced
to the Honeywell 6180 MULTICS processor, The MULTICS control
language has been utilized to the fullest possible extent in the
development of MOOS, and therefore a working knowledge of the
MULTICS environment is essential. For further information, con-
sult the MULTICS Programming Manual. User function calls are
input via the console keyboard and consist of simple program
names (normally up to eight characters in length) followed by any
required or optional parameters, Within system programs, dialogue
concerning additional information required for program operation
is handled by standard terminal input/output operations as
specified within this manual.

The initial section of this manual is concerned with
several aspects of MOOS use which are common to a number of
operations within the system, ie., basic system conventions for
entrance into the system, data set input and selection, one- and
two-space data representation, and cursor movement.

Initiation of the MOOS Environment

Entrance into the MOOS program environment can be
accomplished by a MULTICS user via the execution of the command
hello_moos, Upon completion, this function provides the user
with an orientation to the standard system display (Figure 2-1).
The hello moos command is not a MULTICS function and may be
utilized only by users for whom linkage to the MOOS directories
has already been provided.

Data Set Input

Data may be brought into active storage and formatted for
MOOS usage in a variety of ways. Currently, procedures have been
implemented which will accept data from cards (crdinput),
magnetic tapes (tapinput), and three data file formats (fileinput,

2-1

[ssas
asejeseu
L q08eq9Q

nnununun
+uotqdQ
veadn)

Qwexg

WSOOW™OTI9Y,, :I-7 =2anl81g

0403U0 048 SPUBMNOD SOOW 11® -

sivedde qeseyep puw uorydo jueauns ey -

3utyzfue

savedde vorqado jueJd4nd eyq jOo nuew eyG -
qema0} Butmoyyo) eyy jo eaw shuyjderp soou 11®

198uTyseg 2%d 0% pejsodes eq pinoys swejgoad 1w

.s.ounoﬂgq:.co“»ugsb moo‘ --oa-q~»=-uuzu
‘puBNEO3 ® ®u pejdeies ¢1 ,Buryzfue, ;1 ‘Jenemoy
‘axeu peqdei10e oq AyyeatBo) Aww uorqauny Azriran
40 UOTAIUN} omo: Aue qeyy ser deT nuew 47Oy} SN

Butyafive, eamy yatTym suoryowny SOOW 11v

‘(wejofg Burqusedy SuYd10/S0ILINKW) _SOOW 3o
prdaom Burqraxe eyy o3 ewodism pue ‘sBurqeeay

2-2

, restorec). Data input programs must be called with a

single parameter (five to eight characters in length) which
represents the tree name of the input data set in the MOOS
system,

The Standard Data Set Selection Parameters

Each of the major user programs under MOOS may be called
by the user with up to two optional parameters, which represent
the tree name and the name of the data class upon which the
operation is to be performed. Rules for these parameters follow:

o All tree names are required to be five to eight
characters in length. Data class names are four characters in
length (the final character is used as a display symbol),

o If two parameters are input, the first will represent
the tree name. For data input routines, the tree name must be
unique (not currently maintained as a tree name within the system).
For all other MOOS calls, the tree name input must currently exist
within the system, The second parameter must be a legal data class :
name within the selected data tree. |

’ o If one parameter is input, it may represent either a
tree name or a data class name, If is is five to eight characters
in length, it is taken to be a tree name, and the current data
class is set by default to the senior node (symbolized by ''¥¥¥%*'")
A four-character input is assumed to be a data class name within
the current data tree.

o If no parameters are input, the current data tree and
class parameters are not changed and operations of the called
function are executed upon the same data set as the previous
option,

Data Representation

MOOS provides the user with the capability of projecting
a data set into a one- or two-space representation. Programs which
produce data displays of these types have been given names of the

form pppp$ffn, where

T

' pppp - is a four-letter code designating the type of

; ? projection plane (''eigv'" - eigenvector; "crdv" -

ﬁ coordinate vector; '"asdg' - assigned discriminant
grouping; 'ardg' - arbitrary discriminant grouping;

; "gndv'' - generalized discriminant vectors).

- ff - is a code specifying the type of function to be

performed (''sa'" - structure analysis; '"1d" -
logic design).

% 2-3

e e et et M e

n - is the number of vectors to be used in creating the
data presentation ("1"; "2").

Thus, for example, the command eigv$sal allows the user
to select one eigenvector and utilizes the current data set to
produce a histogram under the structure analysis module.

Both one-and two-space data representations are available
in two forms at the option of the user:

o One-Space Macro (Figure 2-2)

An unconfounded view of up to 16 data classes in a
"stack histogram' format,

o One-Space Micro (Figure 2-3)

A view overlay of selected data class histograms repre-
sented in symbolic format (with a bar graph option).

o Two-Space Cluster (Figure 2-4)

Two- dimensional representation of the data which "forces"
each data point into a location within a 36 x 60 grid. If one or
more vectors from a single data class fall within the same grid
location, the display symbol for that class is presented, If
vectors from two or more data classes fall within a single grid
location, an asterisk is displayed.

The two-space cluster display is generally faster than
the two-space scatter display, especially for a large data set.
However, since each character displayed may represent one or
more vectors, in some cases this display could be misleading.

o Two-Space Scatter (Figure 2-5)

A two-dimensional representation within which each data
point is located at its ''matural' projection point.

Extensive facilities for manipulation and modification
of the data projection displays are available; these are listed
under Data Projection Modification Options in the program index
below, and are described in detail in the appropriate user program
listing.

2-4

fon e ———— - — e S—— T

—— e et 4 o

L o Vel

13834
jsejesey
qeseqeq
n.:.).k.

+¥ot440
vedan)y

ensSgI0n
autadBy
Rapunoqp
neLped
bee
xepuy
Ajevesus
12n4q804
Apuqgeap
\IPpIRuUTQ
19008

dwelj OIOBl aded§-duUQ :7-z 2in3t1g

‘sesm uo peqdeload
SE¥ yB-

L2619°L
»S8 62

18AZ03 T ¢
sutq SY

i e

~ ® > 3 0 Vv =9
-
% ® > 3 0 U 9

SURITERSERSHIES S N F VIR SR

2-5

i
|
i

XXz
aseqesey

qeseqeg
«.no>umo

18079
FU0I4NY

sAsEgIeA
autadBy
Aapunogp
nelped
bes
xeput
Ajsusqur
19n43804
Apuqgeap
YIpTMUTq
190|088

welj OXJT| <Idedg-3UQ

L2619°L 18AJequl
ps8' g2,

sutq mu 3

ig-7 @2and1j

Ajevequr .uorqdg 328 8¢

‘sess uo peyoefoad
. .. SE¥ ¥8-

{”3-1

?

o1

St

2-6

swexg 1931snI) ooedg-omI, :H-7 2an3T1yg
q01d zeqen)2 it
338 -
LY LIT I :
‘qosegeq
moou:uuo
+wotqdo
ve2an) m
enRegIen ° o .
00 . sevEe xx ® “
utadyo & 000 © ° 1) T weeeen |
g0 © o0] e vgnx ARe
Aerderps € o 0 g0 00 0 EARRVVAAALA]
1 0355000000 © 2 AAAAAZNAEA B A
14801838 | Loe SXEXE300 O xgx 2 20 AA AN m
ssesee 23292 o AN
Aapunoqp 26858€5222223239 3 AA
8888 €2 329922 299 A AA A
bes - 2 AAA
3
xepuy
(LR 3Y) |
1
12490804 .
\ A
neJsped _ "
3 : o]
puqgeap ;)
1 4] s
|
o
—. ’ R o
. T —_— S —

R 5 BT AT O PR

JWexlj i19313e0g ooedg-OML (G- 2In3Tyg

201d 1033898

b 832
I IT Il
qeseqeq

m..o:umo
'uotqdo
824Ny

eAREgIeA

avtady1o

- — —

fedetpo

148083

-

ugge|ecs
Rapunoqp
bes

xeput

LATETIAY

19043004

nelped

ARpuqgex
puqs Ju

o °
3 oooooo N LN >->- %
2P 0 T
*ooafaity’ pMAngdR. !
-ﬁ- Y] £) R T W _
e * . 2 A |
-ouw uu £
)
.mgwm%wf%,,u?
a5 Afn N
3
_ e
| o
- . " FE- SUTWX w

»

d 2.2 USER PROGRAM INDEX (by function)

The following index lists the current MOOS options by
functional group:

Function Type Page
System Utility Options 2-10
Data Input/Output Options 2-11
Data Tree Modification Options 2-12
Data Storage Options 2-13
Data Set Projection Options 2-14
Data Set Projection Modification Options 2-15
Structure Analysis Options 2-17
Logic Design and Development Options 2~-18
Measurement Evaluation Options 2-19
Data Tree Transformation Options 2-19
Data Printout Options 2-20
Programmer Aid Options 2-20

2-9

User Call
anything

crrandts

dataprnt

draw$

hello moos

rdisplay

sense
treedraw

treelist

SYSTEM UTILITY OPTIONS

Option Function

list current MOOS functions

create a test data set from the
current data tree

printout data characteristics and
statistics

display a logic tree

MOOS system entrance

reconstruct the latest one-space,
two-space, or confusion matrix
display

set system sense switches

display the current data tree

list the data trees in current
active storage

2-10

2-141

2-147

2-148

R ——

DATA INPUT/OUTPUT OPTIONS

User Call Option Function Page
crdinput input a data tree from punched cards 2-44
creatree create a data tree from existing 2-49 1
data classes ‘
crrandts create (extract) a test data tree 2-53
from the current data tree |
eigentrn create a data tree via an eigenvector 2~69
transformation
fileinput input a data tree from MULTICS data 2-76
file
measxfrm create a data tree via Boolean 2-103
(linguistic) transformation
mergmeas create a data tree by combining the 2=-105
measurements of two existing trees
moosmode convert from the excess measurement mode 2-106
to normal MOOS operation
normxfrm create a data tree via the normaliza- 2-111

tion transformation

restore input a data tree from exclusive user 2=125
storage

restorec input a data tree from common user 2=-126 |
storage |

save output a data tree to exclusive user 2=132
storage

savec output a data tree to common user 2=133
storage

tapeoput output a data tree to magnetic tape 2-145

tapinput input a data tree from magnetic tape 2-146

trnsform create a data tree via measurement 2-149
reduction

2-11

E
k
r
r
?l
|

User Call

DATA TREE MODIFICATION OPTIONS

Option Function

append

chngname

comnod

creatree

crrandts

deletnod

deletree

dsubstrec

dvectors

lingpart

restruct

treedraw

treelist

add a data class to the current data
tree from another existing data tree

modify tree name or data class name

combine data classes from the current
data tree

create a data tree from existing data
classes

create (extract) a test data tree from
the current data tree

remove a data class from a data tree

remove a data tree from current data
storage

remove a subnode structure from a data
tree

remove data vectors from a data tree

create a subnode structure via use of
Boolean (linguistic) statements

create a subnode structure via parti-
tion of a data projection display

display the current data tree

list the data trees in current data
storage

2-12

2-58

2~59

2-66

2l

2-147

2-148

DATA STORAGE OPTIONS (including housekeeping options for current

data storage, common user storage, and
exclusive user storage)

User Call Option Function Page

cleartree remove a data tree from exclusive user 2-38
storage

deletree remove a data tree from current data 2=59
storage

list_cst list all data trees in common user 2-95
storage

list ust list all data trees in exclusive user 2-96
storage

log$_ _ input, output, or list MOOS logic in 2-98
exclusive user storage

remtree remove a data tree from common user 2-124
storage

restore input a data tree from exclusive user 2-125
storage

restorec input a data tree from common user 2-126
storage

save output a data tree to exclusive user 2-132
storage

savec output a data tree to common user 2-133
storage

treelist list the data tree in current data 2-148
storage

vecSdel remove vector from exclusive user 2-152
storage

vec$lall list all vectors stored in exclusive 2-152
user storage

vec$save output projection vectors to exclusive 2-153

user storage

DATA SET PROJECTION OPTIONS (all projection options with the
exception of nlm are to be called via entry points
indicating type of function ["sa" or "1d"J and
represention space [''1l" or '"2"7]); e.g., "arbv§ld2'":
arbitrary vectors for logic design, two-space).

User Call Option Function Page

arbv§_ projection on arbitrary vectors 2-28

ardg$S projection on arbitrary grouped 2-29
discriminant plane

asdg$ projection on assigned grouped 2-31
discriminant plane

crdv$_ projection on coordinate vectors 2=47

eigv$ projection on eigenvectors 2-70

fshp$ projection on Fisher discriminant 2-80
vectors

gndv$ projection on generalized discriminant 2-81
vectors

nlm projection in nonlinear mapping space 2-107

(structure analysis only)

2-14

— ,-;.-\A_wm

User Call

DATA PROJECTION MODIFICATION OPTIONS

Option Function

binwidth

cdefault

cdisplay

clprint

creatlog

dboundry
dra$bndy

elimclas

hgprint

index
intensfy
redraw
restruct
scale$_ _

select

modify bin size for one -space display
change default values for data pro-
jections (bin size for one-space, data
class size cutoff point for two-space
cluster projection)

change two-space display format
(cluster/scatter)

princout two-space cluster display

create logic from one- and two-space

projection partition(s) (logic design only)

remove a partition from a data display
draw a partition on a data projection

change data class composition of the
two-space data display

printout one-space display

identify selected data points on data
projections

bargraph selected classes in one -space
data display

redraw a previously implemented boundary
create a subnode structure via partition
of a data projection display (structure
analysis only)

modify the scale factor for a data
projection display

modify the one-space data presentation

format (display format [fmacro/micro], data

class composition, range, number of bins,

and histogram type [[count/probabilities])

2-15

2-123

2-127

2-134

2-138

DATA PROJECTION MODIFICATION OPTIONS (Continued)

User Call Option Function Page
seq sequence for eigenvectors, coordinate 2=142

vectors, or nonlinear map

vec$save output projection vectors to exclusive 2-153
user storage

2-16

STRUCTURE

ANALYSIS OPTIONS (all data projections are appropriate

User Call

lingpart

restruct

for structure analysis; call desired data projec-
tion followed by ''san'" where n indicates one(l)-
or two(2)-space projection)

Option Function Page
create a subnode structure via use of 2-92
Boolean (linguistic) statements

2-127

create a subnode structure via parti-
tion of a data projection display

2-17

£

LOGIC DESIGN AND DEVELOPMENT OPTIONS (all data orojections except

User Call

chngaprb
closeden

closemod
creatlog

deletlog
displacm
draw$
fisher

forteval
fortlogc
hrdepycm

latclogc

linglogc

lingrjct

listlogc

log$

logicevl

nmv
nmvmod
pairmod

reasname

summrycm

nlm are appropriate for logic design; call desired
data projection followed by ''ldn'" where n indicates

one(l)- or two(2)-space projection)

Option Function Page
modify a priori probabilities 2-36

create closed decision boundary logic 2-39

modify a closed decision boundary 2-40

logic node

create logic from one-and two-space 2-48
projection partition(s)

remove node(s) from a logic tree 2-57
confusion matrix display 2-60
display a logic tree 2-63
create Fisher pairwise logic 2=717
evaluate FORTRAN subroutine logic 2-78
create FORTRAN subroutine logic 2-79
confusion matrix printout 2-86
create a ''lattice type' logic tree 2-89
structure

create Boolean (linguistic) logic 2=-91

create Boolean (linguistic) independent 2-93

reject strateg

printout logic tree 2-97
input, output, or list MOOS logic in 2-98
exclusive user storage

evaluate logic for completed logic 2-102
design

create nearest mean vector logic 2-109

modify a nearest mean vector logic node 2-110

modify a pairwise logic node 2-113

modify reassociated data class names in 2-122

MOOS logic file

confusion matrix summary display 2-144

7-18

User Call

MEASUREMENT EVALUATION OPTIONS

Option Function

dscrmeas

features

features_abs

histgram

hrdcpy

page

probconf

rnk$
sel§_

trnsform

un$

eigentrn
measxfrm
normxfrm

trnsform

display measurement evaluation in

discriminant measure measurement
evaluation computation

""divergence measure'' measurement
evaluation computation

enter an absentee request to execute
the features algorithm off~line

histogram format

printout measurement evaluation listings
page rank order display

probability of confusion measurement
evaluation computation

rank measurements for selected class

select measurements for measurement

reduction

create a data tree via measurement

reduction

select measurements for measurement
reduction (union best class and/or
class pair)

DATA TREE TRANSFORMATION OPTIONS

create a data tree via an eigenvector
transformation

create a data tree via Boolean
(linguistic) transformation

create a data tree via the normalization
transformation

create a data tree via measurement

reduction

2-19

2-128

2-136

2-149

2=150

2-103

2=111

2-149

DATA PRINTOUT OPTIONS

| User Call Option Function Page
é clprint printout two-space cluster display 2-42 :
| dataprnt printout data characteristics and 2-54
statistics
hgprint printout one-space display 2-83
hrdcpy printout measurement evaluation 2-85
listings
hrdcpycm printout confusion matrix 2-86
listlogc printout logic tree 2-97
vec$hall printout saved projection vectors 2-152

PROGRAMMER AID OPTIONS

i
|
User Call Option Function Page %
dump printout standard system information 2-67 |
fastdump printout selected system file information 2=72 i
setdata set selected system file information 2-143 »
|
!
3
2-20

|
e ——— P S st TP e S T : . '

TR

2.3 USER PROGRAM INDEX (Alphabetical)

Name

anything
append

arbv§_ _ _

ardg$_ _ _

asdg$_ _ _

binwidth

cdefault

cdisplay
chngaprb
chngname

cleartree

closeden

closemod

clprint

comnod

crdinput

crdv$_ _ _

creatlog

creatree

crrandts

Option Function

list current MOOS functions

add a data class to the current data tree
from another existing data tree

projection on arbitrary vectors

projection on arbitrary grouped discrim-
inant plane

projection on assigned grouped discrim-
inant plane

modify bin size for one-space display

change default values for one-and two-
space data projections

change two-space display format
modify a priori probabilities

modify tree name or data class name

remove a data tree from exclusive user
storage

create closed decision boundary logic

modify a closed decision boundary
logic node

printout two-space cluster disolay

combine data classes for the current
data tree

input a data tree from punched cards

projection on coordinate vectors

create logic from one-and two-space
projection partition(s)

create a data tree from existing data
classes

create (extract) a test data set from the
current data tree

2=21

2-28
2-29

2-31

2-33
2-34

2-35
2-36
2-37
2-38

2-29

2-40

2-42

2-43

2-44

2-47
2-48

2-49

2=53

(Continued)

Name

dataprnt

dboundry
deletlog
deletnod
deletree

displacm
dra$bndyv
draw$

dscrmeas
dsubstrec

dump
dvectors
eigentrn

eigv$
elimclas

fastdump

features
features_abs

fileinput
fisher
forteval
fortlogc
fehoS
gndvS_

hello_moos

Option Function Page
printout data characteristics and 2-54
statistics

remove a partition from a data display 2-56
remove node(s) from a logic tree 2-57
delete node from a current data tree 2-58
remove data tree from current data 2-59
storage

confusion matrix display 2-60
draw a partition on a data projection 2-61
display a logic tree 2-63
discriminant measure evaluation 2-65
computation

remove a subnode structure from a data 2-66
tree

printout standard system information 2-67
remove data vectors from a data tree 2-68
create a data tree via an eigenvector 2-69
transformation

projection on eigenvectors 2-70

change data class composition of the two- 2-71
space data display

orintout selected system file information 2-72

"divergence measure'' measurement evaluation
comnutation 2=73

enter an absentee request to execute 2=75
the features algorithm off-line

input a data tree from a MULTICS data file 2-76

create Fisher pairwise logic 2-77
evaluate FORTRAN subroutine logic 2-78
create FORTRAN subroutine logic 279
projection on Fisher discriminant vectors 2-80
projection on generalized discriminant 2-81
vectors

MOOS system entrance 2=E2

2=22

(Continued)

Name

hgnprint

histgram

hrdcov
hrdcepycm
index

intensfy
latclogc

linglogc

lingnart
Lingrijct

list_cst
list_ust

listloge

log$_

logicevl
measxfrm

mergmeas

moosmode

nlm
nmv
nmvmod

normxfrm

Option Function

printout one-space disnlay

display measurement evaluation in
histogram format

printout measurement evaluation listings
nrintout confusion matrix

identify selected data points in data
projections

bargranph selected classes in one-space
data display

create a ''lattice type' logic tree

structure
create Boolean (linguistic) logic

create a subnode structure via use of
Boolean (linguistic) statements

create Boolean (linguistic) independent
reject strategy

list all data trees in common user storage

list all data trees in exclusive user
storage

nrintout logic tree

input, output, or list MOOS logic in
exclusive user storage

evaluate logic for completed logic design

create a data tree via Boolean (linguis-
tic) transformation

create a data tree by combining the
measurements of two existing data trees

convert from the excess measurement mode
to normal MOOS oneration

projection in nonlinear mapping space
create nearest mean vector logic

modify nearest mean vector logic node

create a data tree via the normalizat
transformation

&=2Z3

2-85
2-386
2=81/

2-88

2-89

2=91
2-92

2-93

2=95
2=96

2=97
2~-98

2=102
2=193

2-105

2-106

,"/AD-AOS‘ 393

UNCLASSIFIED

PATTERN ANALYSIS AND RECOGNITION CORP ROME N Y
MULTICS OLPARS OPERATING SYSTEM, VOLUME I.(U)
SEP 76 D B CONNELL, K N KLINGBAIL

F/6 9/2
F30602=75=C~0226
NL

PAR=T§=25=A RADC=TR=76~-271=VOL~-1

rTR—

(Continued)

Name

page
pairmod

probconf

rdisplay
reasname

redraw

remtree
restore
restorec
restruct

kS

save

savec

scale$_ _
sel$_ _ _
select

sense

seq

setdata

Option Function

page rank order display
modify pairwise logic node

probability of confusion measurement
evaluation computation

redraw latest one- or two-space display
modify reassociated data class names

redraw previously implemented boundary

remove a data tree from common user
storage

input a data tree from exclusive user
storage

input a data tree from common user
storage

create a subnode structure via partition
of a data projection display

rank measurements for selected class

output a data tree to exclusive user
storage

output a data tree to common user storage

modify the scale factor for a data pro-
jection display

select measurements for measurement
reduction

modify the one-space data presentation
format

set system sense switches

sequence eigenvectors, coordinate vectors,
or nonlinear mapping

set selected system file information

2-24

Page
2-112

2-113
2-120.

2-121
2-122

2=123

2-124

2-125

2-126

2-127

2-128

2-132

2-133

2-134

2-136

2-138

2-141

2-142

2-143

E
3
:
(Continued) 4
Name Option Function Page
summrycm confusion matrix summary display 2-144 ?
tapeoput output a data tree to magnetic tape 2-145
tapinput input a data tree from magnetic tape 2-146
treedraw display the current data tree 2-147
treelist list the data trees in current data 2-148
storage
trnsform create a data tree via measurement 2-149 ‘
reduction
un$ _ select measurements for measurement 2-150 4
P reduction '
vec$_ input, retrieve, remove, or list pro- 2-152

é : jection vectors in exclusive user storage

Function Call: anything

Additional User lateraction: None

Function Description: anything gives a list of all

currently implemented MOOS functions and all user-callable
routines,

2-26

Function Call: append treel nodel tree2 node2 newnode

Input Parameters:

treel source data tree
nodel source data node 3
tree2 destination data tree #
node2 destination data node
newnode name of node created

Additional User

Interaction: None

Function Description: append has two similar functions: 1) it
combines two nodes; or 2) it transfers a node from a source tree
to a destination tree and calls it newnode. When a user wishes
to combine two nodes, only the first four parameters are required;
node2 must be a lowest node. If a user wants to copy a node,

then all five parameters are needed and newnode must be a unique
node name under tree2, The node2 parameter will serve as the
superior node for newnode.. Treel and tree2 can be the same tree.

Example 1: To combine noda of tree0001 with nodb of tree0002,
the input sequence is

"append tree000l noda tree0002 nodb"
tree0001 tree0002

nodm / dk /]

nodc noda

Example 2: To attach noda of tree000l1 under the senior node
of tree000Z and call it nodf, the calling sequence is

"append tree0001 noda tree0002 **** nodf"

tree0001 tree0002

nodm nodn odk ///
nodf

noda nodb nodc
/)
nodc/ oda DT e g

|
1
4
ulj

PSR
i

-

Function Call: arbv$sal (treename) (classname)

arbvSsa (treename) (classname)
arbv (treename) (classname)
arbv (treename) (classname)

Additional User Interaction: Do you want to retrieve a saved pro-
jection vector, or type in a new projection vector ?

Type in s or i
s

Enter the name of a projection vector or type '"stop"
vector name

Function Description: arbv projects the selected data set

on any vector or vectors chosen by the user. The projection
vector(s) may be manually input, or retrieved from the user created
saved vectors file (see function vec$save).

Entries sal and sa2 of arbv are for use in structure analysis.
The 1dl and 1d2 entries are used in designing logic.

The sal and 1dl entries of arbv generate one-space or histo-

gram plots of the data. Two-space plots are created by the sa2
and 1d2 entries.

2-28

T R g 16 ST PP BN (ST

Function Call: ardg$sal (treename) (classname)
ar sa (treename) (classname)
ar (treename) (classname)

ardg$ld2 (treename) (classname)

Additional User Interaction: Choose classes from the following
list:

class(l) class(2) ... class(n)

Type in the number of classes in group 1 followed by each
class name.

One entry to a line
number

cIassgiz

Type in the number of classes in group 2 followed by each
class name.

One entry to a line
number

class(j)

class (k)

3 Enter one or two options from the following list: (on one
line - no delimiters)

0 default options (covariance matrix and all measurements)
1 scatter matrix

2 eliminate some measurements

number

Type in c¢ to display results

-

Function Description: ardg projects the selected data set

on the Fisher direction (or the optimal discriminant plane)
associated with two user-assigned groupings of data classes. These
groupings need not comprise the entire data set, however, the
entire data set is projected on the resulting Fisher vector(s).

The calculation of the Fisher direction may be based on the
sum of the within-group scatter matrices rather than the sum of
the within-group covariance matrices by selecting option 1. 1If

option 2 is chosen, the Fisher direction may be computed using a
subset of the feature space.

2-29

Entries sal and sa2 of ardg are for use in structure
analysis. The 1dl and 1d2 entries are used in logic design.

The sal and 1dl entries of ardg generate one-space or

histogram plots of the data. Two-space plots are created by
the sa2 and 1d2 entries.

TRE

- r -
L

- et .

2-30

-

Function Call: asdgSsal (treename) (classname)
as sa (treename) (classname)
as (treename) (classname)
§§§§§I§2 (treename) (classname)/

Additional User Interaction:

classes in group 1 are:
class(l) ... class(i)

classes in group 2 are:
class(i+l) ... class(n)

do you wish to modify these groupings?
no

Enter one or two optons from the following
list: (on one line - no delimiters)

0 default options (covariance
matrix and all measurements)

1 scatter matrix

2 eliminate some measurements

number
type in c¢ to display results
c
Function Description: asdg projects the selected data set ;

on the Fisher direction (or the optimal discriminant plane) associ-
ated with two algebraically-assigned groupings of data classes.

The assignment of groups is carried out in the following manner:
First, the two data classes whose mean vectors have the largest
Euclidean separation are found. The remaining data classes are
then associated with the class of this pair to which they are
closest. If the user is not satisfied with the assignment of groups,
he may modify the groupings manually or use ardg which expects

the user to input groups of his own. The final groupings need not
comprise the entire data set; however, the entire data set is pro-
jected on the resulting Fisher vector(s).

;. The calculation of the Fisher direction may be based on the
; sum of the within-group scatter matrices rather than the sum of
the within-group covariance matrices by selecting option 1. If
option 2 is chosen, the Fisher direction may be computed using a
subset of the feature space.

o L
¥

Entries sal and sa2 of asdg are for use in structure
analysis. The Ldl and 1d2 entries are used in logic design.

L |
. 2-31 |

o2

The sal and 1dl entries of asdg generate one-space or

histogram plots of the data. Two-space plots are created by the
sa2 and 1d2 entries.

B, iy ¢

,.,
¥ ol
P, e

> Y

-
-

2-32

Function Call: binwidth

Additional User Interaction: There are three questions whose
answers determine how the display will be modified.

Function Description: The user may modify the current
one-space display. Using binwidth, the changes that can be made
are:

1) changing the xmin or starting point of the display,
2) changing the number of bins, and
3) changing the interval size

The three questions are:

1) "enter new xmin or 'same'"

2) "enter new number of bins or have it vary as a
function of the interval size by entering 'vary'"

3) "enter new interval size"

For #1, the user replies either with the new starting point
(bin number) or with '"same." For #2, the user replies either
with the new number of bins or with "vary." For #3, the user
enters the new interval size. The number of bins will be affected
unless the current numher of bins is entered in response to #2;
if that occurs, the xmax or end point of the display is adjusted.
If all these questions are answered with new values, the xmax of
the display is again altered.

2-33

e

Function Call: cdefault

Additional User Interaction: Select changes from the following
list:

1) cluster/scatter cutoff value (default value: 500)
2) one-space bin factor (default value: 5)

3) return to initial default values

4) no changes

number of an option

Function Description: Option 1: If the number of vectors
in a data set to be projected on a two-space plot is greater

than the cutoff value, a cluster plot is displayed; otherwise a
scatter plot is shown. If option 1 is selected, the program
requests that a new value be input. Example: If the cutoff value

were set to zero, all two-space plots would initially be displayed
in the cluster mode.

Option 2: The initial number of bins for a histogram plot is
determinea by dividing the total number of vectors in the data
set by the number of classes times the one-space bin factor. If
option 2 is selected, the program requests that a new value be
entered. Example: If the number of classes is 1, the bin factor is
set to 2, and the total number of vectors is 100, these vectors will
be placed in 100/(1*2) = 50 bins.

Option 3: 1If option 3 is selected, the cluster/scatter cutoff
value 1is set to 500 and the one-space bin factor is set to 5.

2-34

- sy gy e
P e e r = - m

Function Call: cdisplay

Additional User Interaction: None

Program Description: If the current display is a
two-svace scatter plot, cdisplay changes the displav to a
two-space cluster plot and vEce versa.

Function Call: chngaprb (treename) (classname)

Additional User Interaction: Upon initiation, the program lists
the a priori probabilities for treename and classname, and the user
must enter one of the following options:

0 - a priori probabilities will not be changed from those
listed
1 - make all a priori probabilities equal

2 - enter proportion for each class
f Function DPescription: chngaprb allows a user to change

the a priori probabilities.

Option 1: the a priori probability for each class is set
equal to 1/ncls where ncls is the number of classes.

Option 2: the user is asked to enter a weighting value for
each class. For class (i), the a Eriori probability equals

i ncls cls } d
Ll T 2 . wt (j)]wt (i), where % wt (3) is the sum of all
= ps
the entered proportions, and wt (i) is the proportion entered for
class (i).

_ After the user selects an option, the amended list is
] presented, and the user must input another option.

Option 0 will exit him from the routine; the last
values presented are the a priori probabilities,

If more than 16 classes are to be presented, the user will
be asked to ''enter any number to proceed," The number entered
will simply clear the screen, and will not be used to calculate

any probabilities.

Function Call: chngname (treename) (classname)

Additional User Interaction: Input number of names to be changed

number

Input on separate lines each name to be changed followed
by a new name

0ld name (1)
new name (1)

old ﬁame (n)
new name (n)

Function Description: chngname permits the user to
change the name of any MOOS data tree or the names of any nodes
within a data tree, Any new names must be unique within the
specified tree. The last characters of any new node names must
also be unique, since they are used as display characters,

Function Call: cleartree treename/'"all"

Input Parameters:

treename specify a particular data set

"all" remove all existing trees from
the user's ''saved _trees" directory

Additional User Interaction: None

Function Description: This routine deletes from the
| ISR) P

user's "saved trees" directory trees and their associated nodes
that have been copied via the utility function save.

2-38

Function Call: closeden (treename) (classname)

Additional User Interaction:

Is the type of closed decision boundary logic to be the
same for all classes?

yes
Enter 1 for hyperrectangle
2 for hypersphere
3 for hyperellipsoid
2
*% A partial evaluation of the logic is generated and
displayed.

Function Description:

closedcn creates closed decision boundary logic at a
user-specified logic node. Closed decision boundary logic
attempts to enclose each of the classes in the selected data
set with a closed n-dimensional hyperregion (n = number of
dimensions). There are three types of hyperregions available
for this purpose: hyperrectangles, hyperspheres, and hyper-
ellipsoids. The user has the option of specifying one of these
hyperregion types for all the classes in the selected data
set, or he may choose a different hyperregion for each class.
In the case of a hyperrectangular surface the user may also
select one of the following basic vector types: the coordinate
vectors of the data set, the eigenvectors of the covariance
matrix of the entire data set, or the eigenvectors of the
covariance matrices of the individual data classes.

Any sample vectors rejected by the evaluation of the
closed decision boundary logic created by closedcn are rejected
due to "overlap.'" This means that the vector lies within more
than one closed decision boundary*. The user may create a new
data tree from vectors rejected due to overlap for further logic
design.

* Boundaries creatcd by closedcn are always large enough to
include all the vectors in the selected data set.

2-39

—

i
|

e ——————
t

Function Call: closemod (treename) (classname)

Additional User Interaction:

Choose a class from the following list:
ab...f
b

Current logic type for class b is hyperrectangular

Select a logic type
hyperrectangular
hyperspherical
hyperellipsoid

=W -

Select an option:

a. Default thresholds (based on the range of the data)

b. Thresholds based on % of the range of the data

c. Display and interactive modification of the thresholds
d New basis vectors

d

Do you wish to modify logic for another class?
LU
%% A partial evaluation of the logic is generated and

displayed.

Function Description:

closemod may perform a number of modifications to a
previously created closed decision boundary logic. It is
possible using this routine to change the type of boundary
associated with a class, or to modify the parameters which
specify the current closed decision boundary logic for a class.
It should be noted that the user has more control over the set-
ting of boundary parameters than with the oriainal lonric
creation program closedcn.

2-40

b P e Dt

As with the closedcn program, the user may choose to
create a new data tree from sample vectors which fall into more
than one closed decision boundary. Vectors which do not lie
within any closed decision boundary are rejected and may not
be placed in the new data tree.

The options allowed for each logic type are listed below:

o For hyperrectangular logic the user may choose any one
of the following:

Default thresholds (based on the range of the data)
Thresholds based on % of the range of the data
Display and interactive modification of the
thresholds

d. New basis vectors

0o

o For hyperspherical logic the user may choose 1 or 2
of the following:

Default center vector (mean of the class)
Center vector at median of the class

User-input arbitrary center vector

Default radius (based on the range of the data)
Radius based on 7% of range of the data

User input radius

O QO TD

o For hyperellipsoid logic the user may choose 1, 2, or i
3 of the following: ‘

Default center vector (mean of the class)

Center vector at median of the class

User~input arbitrary center vector

Default axis lengths (based on range of the data)
Axis lengths based on % of default axis lengths
Display and interactive modification of axis lengths
Mahalanobis (axis lengths = eigenvalues)

Default '"C'" value (based on the range of the data)
"“C'" value based on % of default "C" value

H-J'0Q FhO A0 TR

E

(The "C" value refers to a quantity analogous to the radius of
a hypersphere)

Note: A large amount of error checking is performed on the
§ above-mentioned option lists to ensure that certain oversights
1 on the part of the user are avoided (e.g., the user may not
change the radius of a hyperspherical logic by more than one
method at a time, etc.) Also, when a user selects a different
i logic type for a class than what is currently implemented, any
o options not selected which are needed to specify the logic are
v set to their default value.

T T

& .
W 2-01

R i
:

*\ -
-

Function Call: clprint

Additional User Interaction: None

Function Description: A copy of the latest two-space
cluster plot is produced on the high-speed printer.

If the current display is a scatter plot and a hardcopy
is desired, the user must first change to a cluster plot via

cdisplay.

R e e e e oty g) ; = o e

Function Call: comnod (treename) (classname)

Additional User Interaction: You may combine a maximum of n nodes
from the following list:

node (1) node (2) ... node (nt+l)
Enter list of nodes to be combined:
abc,..m

input new 4 character node name

new name

Function Description:

SRR 1

comnod is used for combining data nodes under a common
intermediate node (or the senior node) in a MOOS data tree. comnod
will not allow all the data nodes under a common node to combine
into a single node; dsubstrc should be used for this purpose.

The new four-character node name of the combined node,
as well as its display character, must be unique in the
specified tree.

me- e e i

Function Call: crdinput treename
Additional User Interaction: None
Function Description: The crdinput function transforms

a data set input on cards into a MOOS data tree. The input
parameter treename must be unique in the current system. All

data parameters must be included on the data cards as described
below. The card data must be stored in the user's file '"testdata"
and may be input to the system as follows:

o The data deck consists of ncls+2 cards which describe
the data, followed by the data cards.

Card 1: The number, in integer format, of dimensions
(ndim) of the data set (max=100) in any
colum,.

Card 2: The number, in integer format, of classes

(ncls) in the data set (max=72) in any column,

Cards 3 thru nclst+2: A four-character data class name
(cols. 1-4) and the number of vectors within
this data class (nvec) in integer format,
right-adjusted to column 18,

The data vector deck: the data measurement values in
floating point format (no assumed decimal point) with
at least one space between each value. Index values
for each vector are assigned sequentially by crdinput,.
No extraneous information may appear on the cards.

o The standard system control cards must be added to the
front and the end of the data deck.

? A The following example illustrates a data deck consisting

of three classes (nodl, nod2, nod3). Each class contains 125
| ten-dimensional vectors.

Fr-r—wmmm~,“ " i i " i T st
trailing control
cards
data vector deck
A 5
rNOD3 125
data class names
0D2 125
nvec
oD1 * 125{
ncls [, g > e
ndim 10 d
initial
syste
%gp[?ol cards !
)
‘kg,‘ ' 2-45
Y
b

e

Program Result: The crdinput program inserts a data tree name
(treename) in the system, creates file treename and associated
data class files, and sets the current data set name to |

treename *¥%*%

=T

2-46

Function Call: crdv$sal (treename) (classname)
crdv$sa? (treename) (classname)
crdv$ldl (treename) (classname) .
crdv$1ld2 (treename) (classname) |

Additional User Interaction: input the 2 coordinates onto which
the data is to be projected.

numberl number?2

Function Description: crdv projects the selected data set
onto coordinate axes chosen by the user.

Entries sal and sa2 of crdv are for use in structure analysis,
The 1dl and 1d2 entries are used in designing logic.

The sal and 1dl entries of crdv generate one-space or
histogram plots of the data. Two-space plots are created by the
sa2 and 1d2 entries.

2-47

Function Call: creatlog

Additional User Interaction: The user must enter the display
symbols of the data classes within each partition of the current
display (one or more boundaries must have been previously drawn
using dra§bnd§). Each list of display symbols must be on one
line with no delimiters. If four asterisks are entered, it is
assumed that the given partition is to be a reject region.

The results of evaluating the data set on the newly created
logic are presented in a confusion matrix format, The user is
then given the option of listing the matrix on the high-speed
printer. A listing of all incorrectly classified vectors may
also be produced.

Function Description: creatlog creates and evaluates the

logic for a boundary drawn in a one- or two-space plane.
creatlog should be called after the use of any "1dl1" or "1d2"
projection plane program.

Function Call: creatree treename

Additional User Interaction: The user selects the mode of
creating anew tree (treename) by specifying the number of nodes:

combine trees - enter a number £ 0
merge trees - enter 0

user-specified composition - enter number
of nodes to be made.

The user then specifies up toten trees to be used in creating
treename, expresses wWhether vector ID's are to be sequenced, and
indicates whether a listing of sequence changes is desired.

Further dialogue is needed in the case of composition speci-
fication, where the user designates which nodes (if any) from each
of the specified data trees will be used to create the treename
nodes.

Function Description:

Combine trees: enter number of nodes <O0.

The routine will create treename with copies of the
lowest nodes of the up to ten trees. In the process, if any
display symbols are not unique, new display symbols will be
appended. The total number of nodes must be less than or equal
to 72.

TREEL TREE?2 NEWTREE
/ — '2\
kX
/ ; NOD1 (7, CLA6
NODI NOD% & & Nop2d [&N\I‘QCLAs
\ CLA1 CLA2 NoD3 O
C >
NOD2 NOD3

Merge trees: enter number of nodes = 0
The routine will create treename by merging all of
the vectors from similarly-named nodes to the treename node of
the same name. All of the up to ten trees must have the same
number of lowest nodes, and these lowest nodes must have the same

names.

TREE1 TREE2 NEW?REE

Noﬁf///yjk\\\$?ﬂ \&N
NODA& s b ODA4 O : ¢ NOD4
Nop2 NOD NOD1 . “NOD3

@))
NOD2 NOD3

User-specified composition: enter number of nodes to be made.

The user will specify each treename node name and the
number and names of nodes to be merged from the up to ten trees.
If the new node name does not have a unique display symbol, the
user is asked to input another name for the new node. If a
particular node is not found, the user has the option to exit or
enter a new node,

T&EE 1 TREEZ NEWTREE
/h' Q Q
/ / 5 \
A/ ‘
{0 . \
NODT | NOD4 CLA1 CLA2 AAAA %ﬁBB
// = nodl = cla?
y] + nodé4

O + clal
NOD2 NOD3

Example of dialogue: (user response underlined)

creatree newtree

number of nodes

2

number of trees used in making new tree

2

names of these trees, one per line

treel

tree2

do you wish to sequence vector ID numbers as the vectors
are input?

no
(end of dialogue if number of nodes <0)

enter a four-character name for new nodel of tree newtree
AAAA

enter list of display symbols of nodes from tree treel

to be used in forming node AAAA--enter on one line with
no delimiters (enter ** if no nodes are to be used)

14

number of nodes from tree treel = 2, using nodes:

nodl nodé4

enter list of display symbols of nodes from tree tree2 to
be used in forming node AAAA--enter on one line with no
delimiters (enter ** if no nodes are to be used)

number of nodes from tree tree2 = 1, using node clal
enter a four-character name for new node2 of tree newtree
BBBA

display character is not unique

reenter new four-character name for node2

BBBB

enter list of display symbols of nodes from tree treel
to be used in orming node BBBB - enter on one line with
no delimiters (enter ** if no nodes are to be used)

*%k

number of nodes from tree treel = 0

enter list of display symbols of nodes from tree tree2
to be used in forming node BBBB - enter on one line
with no delimiters (enter ** if no nodes are to be used)
2X

number of nodes from tree2 = 2, using nodes cla2

no node exists with display symbol X

do you wish to reenter a new list of display symbols of
nodes from tree2 to be used for node BBBB of tree
newtree?

yes

enter new list from tree tree2 for node BBBB

2

number of nodes from tree tree2 = 1, using node cla2
BEGIN PROCESSING

If the user specifies one node to be created for newtree,
the new four-character name is automatically set to ''#¥¥*',

The option to sequence vector ID numbers should be used
in a situation where two or more trees have vectors whose ID
numbers are the same, A listing of ID number changes may be
produced at this time if the user wishes.,

Possible errors:

creatree will exit if the dimensions of the up to ten
trees are not equal, if any of the up to ten trees are not known
to the system, or if the user does not wish to continue after
entering an incorrect list of nodes. In these cases, the
routine will delete the newtree and all the new nodes created
ghus far, and will return with the current data set ''motatree,"
"nono,"

Function Call: crrandts new-treename

Additional User Interaction:; enter tree name where vectors are
to be extracted from.

eight-character tree name

enter percent of data to be extracted

number [for example, if 50% of_the data are to be extracted,
enter 50 rather than ,EJ

Function Description: crrandts is a means of creating a
random test set. A user-selected percentage of vectors from the
given data tree are removed and placed in a new tree.

Function Call: dataprnt (treename) (classname)

Additional User Interaction: Type in options from the following
list:

all vectors

single vector

ranges & overlap

means & standard deviations
difference between mean vectors
covariance matrices

correlation matrices

tree structure

exponential format of output
change nodes to be processed

134ec8

OO ooo~NOTULPLWNDHE

6 options selected
BEGIN PROCESSING

1 request signalled, 0 already queued

Function Description: dataFrnt outputs certain basic
information about a data set to the igh-speed printer. A
functional description of each option follows:

o 1. all vectors All the vectors in the selected data
set are printed. The format of this printout simplifies com-
parison of the different values of a specific measurement or
feature.

o 2. single vector If option 2 is selected, the program
asks for a specific vector ID number and prints the corresponding
vector. The program then asks if more single vectors are desired,
This option is useful for printing a limited number of individual
vectors. :

o 3. ranges & overlap This option prints a table for
each data class in the selected data set, containing the minimum,
maximum, and range of each measurement. A table containing
minimum, maximum, and range values for the entire data set is also
printed. Following these tables is a list of pairs of classes
which do not overlap along each specific measurement.

o 4, means & standard deviations The mean vectors and
standard deviations for every data class and for every inter-
mediate node in the selected tree are printed.

2-54

o 5 difference between mean vectors This option prints

the Euclidean distance between each pair of mean vectors in the
selected data set, and also the absolute values of the differ-
ences between each measurement of these mean vectors.

o 6. covariance matrices The covariance matrix for
every data class and for every intermediate node in the selected
tree structure is printed.

o 7. correlation matrices The correlation matrix for
every data class and for every intermediate node in the selected
tree structure is printed.

o 8. tree structure The tree structure of the selected
data set is printed in outline form, including the number of
vectors at each node,

o e exponential format of output Exponential format
may be used any time the user prefers to have values printed in
scientific notation. This may have a distinct advantage in cases
where more than five-digit accuracy is 2esired or where the values
of the measurements are greater than 104 or less than 107%, The
regular format is usually easier to read, however,

o c change nodes to be processed If this option is
selected, questions are asked which allow the user to specify
any subset of the selected data set to be processed by dataprnt.
For example, if the user had originally chosen a data set witﬁ
ten lowest data class nodes and seven intermediate nodes, he
could change and get printouts which only involved the ten
lowest nodes.

Note: If any unusual errors occur while dataprnt is executing,
the user will find himself in his "login" directory.

o T

Function Call:

Additional User Interaction:

Function Description:

which have been created in current one-

deleted.

dboundry

None

Any thresholds or boundaries
or two-space plots are

T P P T SR

PR L

Function Call: deletlog (treename) (classname)

Additional User Interaction: Upon initiation, the program
displays the current logic tree.

Select a logic node to be deleted (0 indicates quit)
logic node number

The logic at node (logic node number), and all nodes below
it, has been deleted.

Function Description: deletlog deletes a designated logic

node and all logic nodes below it in a logic tree. If logic
node 1 is selected, all logic is deleted for the selected tree.

If an independent reject strategy is present at the
selected logic node, the user is given the choice of deleting
only the independent reject strategy, or deleting the entire
node and all nodes below it,

t

Function Call: deletnod (treename) (classname)

Additional User Interaction: None

Function Description: deletnod causes the entered

class name (assuming that it is a lowest node) to be deleted from
the given tree. If the entered class name is not a lowest node,
an error message will be printed.

Example: If the current data tree consists of three data
classes: nodl, nod2, nod3, and "deletnod nod3" is entered,
all data associated with nod3 will be removed from temporary
storage.

-

nodl nod2 nod3 nodl nod2

Note: Upon completion the current data set is changed to
treename**%¥

Function Call: deletree treename/"all"

Input Parameters:

treename specify a particular data set

“all" remove all existing trees in the
process directory.

Additional User Interaction: None

Function Description: This routine deletes any or all
trees and their associated nodes from '"sysdata'" file. The user
is cautioned against the use of the parameter '"all" unless the
data have been saved via the utility functions save or savec,

, 2-59

r T —— “m——-—“——u————.—-——"

Function Call: displacm

Additional User Interaction: None

Function Description: displacm outputs all confusion
matrix information to the screen, including the numbers and
percentages of vectors correct, in error and rejected.

Function Call: dra$bndy

Additional User Interaction: Boundaries in a two-space display
are drawn as follows:

After the routine is initiated, a crosshair will appear
on the screen. The crosshair may now be moved to any point on
the screen. When the crosshair is in the desired location, one
of three characters is entered ["c", "e", or "q"|. The "c"
(continue) means that more points for this boun ary are to be
read. The "e" (end) means that this is the end of the first
boundary, but another boundary is to be drawn. The '"q" (quit)
means no more points for any boundaries are to be read (i.e.
this is the end of all boundary drawing) The crosshair is then
turned back on and this whole process is repeated, After two
points are read, a line segment will appear between these two
points. For subsequent points, a line is drawn from the end
(i.e. second point) of the previous line segment to the new
point. After the last line segment for each boundary is drawn,
the crosshair (hereafter referred to as x-hair) is turned on
once again, and the user moves it to the convex side of the
boundary just drawn. Any character can now be entered and is
read as a point on the convex side of the boundary.

As an example, let us suppose that two boundaries with
boundary 1 having three line segments, and boundary 2 having
two line segments, are to be drawn. The following steps should
be followed:

1. type in dra$bndy.
- x-hair aispgayed

2, move x-hair to 15t point, enter a "c
- x-hair redisplayed

3. move x-hair to 2nd point, enter a "c ",
- a line segment is drawn from p01nt 1 to point 2,
x~hair redisplayed

4, move to 3¥d point, enter a "c ".
- a line is drawn from point 2 to 3, x-hair
redisplayed

5. move to 4th point, enter an '"e ".
- a line is drawn from point 3 to 4, x-hair
redisplayed

b 6. move to convex side of first boundary, enter any
‘ character,
- x-hair redisplayed

Sy 2-61

7. move to 15t point of 27d boundary, enter a '"c ".
- x-hair redisplayed

8. move to 2nd point of 2nd boundary, enter a "c ".
- a line is drawn from point 1 to 2 of 2nd
boundary, x-hair redisplayed

9, move to 3¥d point of 27d boundary, enter a "q "
- a line is drawn from point 2 to 3 of 2nd
boundary, x-hair redisplayed

10. move to convex side of 2nd boundary, enter any
character.
-the routine is terminated

Let us suppose that only one boundary was to be drawn,
with three line segments. In this case, the first six steps
of the above procedure would be followed, except that in step
5, a "q" would be entered rather than an '"e ".

Boundaries on a one-space display are drawn as follows:

The crosshair is positioned to the desired point on the
screen and either a ''q" or an "e'" is entered. The '"q" as in a
two-space boundary, means quit, i.e. no further boundaries are
intended. The "e'" is end and signifies that a second threshold

is to be drawn. No convex points are selected.

Function Description: dra$bndy allows for drawing up to

two boundaries (maximum of five line segments per boundary) on
the display after a two-space plot is put on the screen, or
up to two thresholds after a histogram has been plotted.

Function Call: draw$log (treename) (classname)

Additional User Interaction: None

Function Description: drawSlog produces a pictorial
display of a user-created logic at any stage in the development
of the logic. Logic nodes are displayed with interconnecting
lines to illustrate their relationship to each other. To the
right of all incomplete or lowest logic nodes is a list of the
classes present at that node. If there is an independent Boolean
reject strategy associated with a logic node, an arrow appears abo
that node.

If a given logic tree is too large to display on the screen,
a message is printed and as much as possible of the tree is dis-
played. In this case, extra lines are drawn to indicate what
part of the structure is missing from the display. Any portion
of a logic tree may be viewed by using draw$prt.

|
|
|

Function Call: draw$prt (treename) (classname)

Additional User Interaction:

input a node number
number

Function Description: draw$prt produces a pictorial display
of a portion of a user-created logic at any stage in the develop-
ment of the logic. The selected logic node and all logic nodes
below it are presented in the same format as draw$10F. Logic
nodes are displayed with interconnecting lines to illustrate their
relationship to each other. To the right of all incomplete or
lowest logic nodes is a list of the classes present at that node.
If there is an independent Boolean reject strategy associated with
a logic node, an arrow appears above that node.

If the selected portion of the logic tree is too large to
display on the screen, a message is printed and as much as
possible of the tree is displayed. 1In this case, extra lines are
drawn to indicate what part of the structure is missing from the
display.

Function Call: dscrmeas (treename) (classname)

Additional User Interaction: None

Function Description: dscrmeas computes the discriminant
measurement evaluation statistIcs and outputs to the screen an
overall ranking of the measurements for the current data set,

The user may then select any of several ranking options to decide
which measurements are best for separating particular classes
(see documentation on rnk). The user may then select specified
measurements from his data set via functions sel$meas ard
sel$thres and may perform a measurement reduction on the data

set via function trnsform.

Possible errors:

An exception condition will occur if (due to roundoff)
the variance of any measurement is zero for more than ore data
class. This rarely occurs unless several data classes contain
only one vector, in which case the result of any statistical
calculation would be invalid anyway.

e — T o s o e - ——
Function Call: dsubstrc (treename) (nodename)

Additional User Interaction:if the current data class is *%%%x

(the senior node), the program will ask the user if he wishes to
make this the only node in the tree.

Function Description: dsubstrc permits a user to delete
the substructure of an intermediate node. All the vectors under
nodename are merged into nodename, which then becomes a lowest
node.

Example: dsubstrc nod2

T

%

\ = \
NOD op2%op3 .

NOD1 NOD2 NOD3

NOD4 yops NOD6

Function Call: dvectors (treename) (classname)

Additional User Interaction:

The user is asked if he wants t:o delete:

(1) all vectors

(2) a range of vectors
(3) one vector

number

If (2), an initial and last vector ID are requested to
be entered.

If (3), a vector ID is requested to be entered
If (2) or (3) is entered and the last vector is being

deleted from the class, the user is informed of this, and he
is asked if he still wants to delete it.

Function Description: dvectors allows the user to {

delete all vectors, a range of vectors, or one vector from a
given data class,

oy - R RDORE. |

B

Function Call: dump

Additional User Interaction: None

Function Description: d formats and outputs the follow-

ing information to the line printer:

1)
2)
3)

4)

5)

the first five words of '"sysdata" (unpacked)
all forest entries which are not ''motatree'" in
"sysdata', with all values unpacked

all school entries which are found by internal
subroutine lnodes in ''sysdata'", with all values
unpacked

TREENAME file information

a) first word unpacked

bg tge %ist gfdlowe;t nodis .

c) the last index of the file for fastdump

for each DATACLASS file

a) the number of vectors

b) the last index of the file for fastdump

S,

Function Call: eigentrn (treename)

Additional User Interaction:

Do you want a high-speed printout of eigenvalues?
no

**At this point, a list of eigenvalues for the selected data
set is presented in descending order.

input the threshold eigenvalue
value

input a new treename
treename

Function Description: eigentrn generates a new tree of
equal or lower dimensionality by transforming the selected

data set, using the eigenvectors which correspond to the selected
eigenvalues (the selected eigenvalues consist of the threshold
eigenvalue and all eigenvalues above it in the list).

The transformation is done as follows:
ndim

nm(i) OMj X EV(i)j
J=

the ith measurement or feature in the new tree

where nm(i)

OMj = a component of a vector in the selected tree

EV(i% a component of the ith eigenvector

ndim dimensionality of selected data set

Function Call: eigv$sal (treename) (classname)
eigvdsal (treename) (classname)
eigvSsa (treename) (classname)
eigv$sa (treename) (classname)

Additional User Interaction:

Do you want a high-speed printout of eigenvalues?
no

**At this point, the eigenvalues for the selected data set
are listed in descending order.

select an eigenvalue
number

Function Description: eigv projects the selected data
set on an elgenvector or eigenvectors of that data set, The
user chooses which eigenvector(s) he wants by choosing the
corresponding eigenvalue(s).

After the one- or two-space plot appears on the screen,
a different subset of the eigenvectors may be selected from
the list of eigenvalues, which can be made to reappear by means
of the option seq.

Entries sal and sa2 of eigv are for use in structure
analysis, The 1dl and 1d2 entries are used in designing logic

The sal and 1dl entries of eigv generate one-space or
histogram plots of the data. Two-space plots are created by the
sa2 and 1d2 entries,

Function Call: elimclas on (classl) (class2)...
class N)

elimclas off (classl) (class2)...
(class N)

Additional User Interaction: None

Function Description: elimclas is the utility function
which manipulates the classes currently displayed. It does not
affect the true structure in any manner. The first of the
parameters, which are separated by blanks, is either the character
string "on" or "off'". The other parameters are one-character
class symbols. '"On'" indicates that the following parameters are
to be displayed while "off" indicates that the following
parameters are not to be displayed.

For example, assume a tree exists with 26 nodes,
classes A, B ... Z; initially all the classes are displayed.

The following command would display classes A, F and S:
elimclas on A F S

The following command would display all classes except
A, F AND S:

elimclas off AF S

The following command would display all classes, since
the parameter list of classes to be turned off is null:

elimclas off

Function Call: fastdump filename

Additional User Interaction: The program requests the location
of the file to be dumped, and asks what portion of the file is
to be listed.

Function description: The program fastd lists the
value of each word in a given MULTICS file in six formats:
integer, floating point, bit string, octal, character string
(with blanks replacing unprintable characters), and exponential,

This dump may be sent either to the high-speed printer
or to the user's terminal.

i e — g T e

Function Call: - features (treename) (classname)

Additional User Interaction:

Do you wish to do measurement selection interactively?
no

Do you wish to select any measurements to start with?
no

Enter type of measurement selection at each iteration.

1. Pure forward sequential
(one feature selected at a time - the highest in
overall rank).

2. un$bbcp approach.

3. un$bbc approach.
(one or more features selected at each iteration for
options 2 and 3)

1

Enter maximum number of features to be selected.

10

Function Description:

features utilizes the divergence measurement evaluation
criteria to aid the user in determining which measurements of
the selected data set are most likely to be useful. features
may be executed in an interactive mode or a non-interactive
mode. Due to the lengthy nature of the calculations involved,
the non-interactive mode may be preferable to the interactive
mode for larger data sets. A MULTICS absentee job may be
entered to perform a non-interactive execution of features
by using function features_abs.

Interactive Mode:

The features program makes a number of passes over the
set of measurements in the selected data set. After each
pass, a rank order display is produced and one or more mea-
surements may be selected by the user. All normal rank-order
display options are allowed, including trnsform, which means
that the user may create a number of data trees based on
different subsets of the feature space for further analysis.
At each pass, the user may choose to stop execution. If
"stop" is chosen, a list of all selected measurements is pre-
sented.

Non-interactive Mode:

In the non-interactive mode, the features program
performs measurement selection automatically and produces a
detailed listing of the results. No results are sent to the
screen.

As with the interactive mode, a number of passes are
made over the set of measurements in the current data set.
At each pass, one or more measurements are selected and this
information is printed. The divergence values for each class
pair and each measurement tested are also listed at each pass.

The measurement selection techniques available in the
non-interactive mode are listed in the example (see write-ups
on un$bbcp and un$bbc for a detailed description of their
function). (Refer to Section 1.)

PESEPIRP T e

‘
|
|

Function Call: features_abs

Additional User Interaction:

Enter the treename of the data set whose features are to
be evaluated:
treename

** All further interaction mimics the user interaction
of features.

Function Description:

features_abs creates and enters a MULTICS absentee job
which executes the features routine in the non-interactive
mode (see write-up on features).

The user interaction of features_abs is designed to mimic
the interaction of features. The resulting output is identical
to that which would be produced by an on-line execution of
features.

In addition to the output generated by features, the
" absout'” segment produced by the MULTICS absentee job is
printed.

Function Call: fileinput treename

Additional User Interaction: The user will be requested to
reenter the tree name if the name he has entered is greater than
eight or less than five characters long, or if the tree name is
already known to the system.

Function Description: This routine inputs a tree

(treename) into the system, transforming the data contained in
the file '"filedata', which is located in his process directory.

"filedata'" must be organized as described below:

Word 1: ndim - the number of dimensions

Word 2: ncls - the number of data classes

Word 3 thru 2(ncls)+2 - four-character data class name
and number of data vectors within the data
class; two words for each class.

Word 2(ncls)+3 thru end of the file - data vector vglues

It is up to the user to create the process directory
file "filedata" from cards, tape, or another file.

ndim } integer

ncls

nodename 1 - 4 ASCII characters
number vectors | - integer

|

°

i nodename n
number of vectorns

=<

1
i
1

L

—

0 |
° |
|

r Data vector values (floating point)

)

'
N
|

76

Function Call: fisher (treename) (classname)

Additional User Interaction: i

Enter one or two options from the following list: (on
one line - no delimiters)

0 default options (dovariance matrix and all
measurements)

1 scatter matrix ,

2 eliminate some measurements

number(s)

Enter number of thresholds to be implemented
number (must be 1, 2, 3, or 4)

Enter minimum vote count (max = n)
[n = number of classes - 1

number

EA confusion matrix display, as described in Section 1,
is then presente@]

Function Description: fisher constructs and evaluates
the Fisher pairwise discriminant logic as described in Section 1.
It calculates the pairwise discriminant vector as well as the
orthogonal discriminant vector for each pair of classes The
latter is saved for possible future use. The five possible
thresholds for each pair of classes are also calculated at this
time. The Fisher discriminant may be calculated using either
the sum of the Scatter matrices or the sum of the covariancze
matrices; also, any measurements may be eliminated from the
calculation. After the logic has been evaluated, the user may
choose .to change the number of thresholds or the minimun vote
count and reevaluate the logic. More extensive modifications
may be made by using pairmod.

Function Call: forteval (treename) (classname)

Additional User Interaction:

Input the name of the evaluation subroutine
name

confusion matrix display is presented

Function Description:

forteval tests a selected data set against a FORTRAN
subroutine generated by fortlogc. The resultant confusion
matrix lists the number of vectors from each data class that
were assigned to each logic node.

User-generated subroutines may also be evaluated using
forteval. The subroutine must reside in the user's login
directory, and have a six-character name. The parameter list
of the subroutine must conform to the parameter list of a
subroutine generated by fortlogc, although the language need not
be FORTRAN. The first parameter must be the data vector to be
evaluated, stored in an L-dimensional floating point array.

The second parameter must be the assigned logic node number
(integer) .

Function Call: fortlogc (treename) (classname)

Additional User Interaction:

Enter one or more options (on one line - no delimiters)
a. Generate FORTRAN source program for punching
b. Generate and print FORTRAN listing
c. Generate FORTRAN object program for evaluation.

a

Enter a six-character subroutine name
name(2

Source program name (for punching): name0O2.fortran

Function Description:

fortlogc generates a FORTRAN subroutine which can classify
data vectors according to the logic strategy of a specific
MOOS logic tree. The resultant FORTRAN source code may be
punched on cards for use at other facilities (the generated
source code is in '"'standard'" FORTRAN and card format). The
user may also request that the source code be compiled and
listed, and/or an evaluation of the design data set produced.
The subroutine created by fortlogc has two parameters: 1)
an L-dimensional data vector ZL-glmensional real array),
2) the assigned logic ncde number (integer).

A compiled FORTRAN subroutine may be used to evaluate
any MOOS data set with the same dimensionality as the design
data set through use of the MOOS function forteval.

Note: Some minor discrepancies between the results of overall
evaluation (logicevl) and FORTRAN subroutine logic may occur.
This is due to the difference between the internal representa-
tion of numbers and the decimal representation found in a
FORTRAN subroutine generated by fortlogc. The evaluation of
closed decision boundary logic in particular may be very
sensitive on a design data set when the size of a boundary is
based on the precise range of the data.

Function Call fshp$sa2 (treename) (classname)

fshpS$1d2 (treename) (classname)

Additional User Interaction:

Fisher pairs may be chosen from the following list:
class(l) ...class(n)

enter first pair - one node name to a line
class(i)

class (]

enter second pair

class (k)
21252112

Enter 1 or 2 options from the following list:
(on one line - no delimiters)

0 default options (covariance matrix and all
measurements

1 scatter matrix

2 eliminate some measurements

number (s)

Function Description: fshp projects the selected
data set on two Fisher directions, which correspond to two
pairs of data classes within the selected data set.

The calculation of the Fisher directions may be
based on the sum of the within-class scatter matrices by select-
ing option 1. 1If option 2 is chosen, the Fisher directions may
be computed using a subset of the feature space.

Entry saZ2 of fshp generates a two-space plot for
use in structure analysis.

Entry 1d2 generates a two-space plot for use in
logic design.

Function Call: ndv$sal (treename) (classname)
ndvdsa? (treename) (classname)
ndvS1dl (treename) (classname)

gndv (treename) (classname)

Additional User Interaction:

*% A list of eigenvalues is presented in descending
order. Each eigenvalue corresponds to a generalized
discriminant vector.

Select an eigenvalue

number

** One- or two-space display is presented.

Function Description:

ndv projects the selected data set on one or two of the
generalized discriminant vectors associated with that data set.
If the number of classes in the data set is denoted by n,
then n-1 generalized discriminant vectors are calculated. The
user may choose any of these vectors as projection vectors.

Entries sal and sa2 of gndv are for use in structure
analysis. The 1dl and 1d2 entries are for logic design.

The sal and 1dl entries of gndv generate one-space or
histogram plots of the data. Two-space plots are created by
the sa2 and 1d2 entries.

If there are two classes in the selected data set, only
one discriminant vector is calculated; therefore, only the sal
and 1dl options may be chosen. gndv may not be executed on
data sets with only one class.

2-81

o . T m— i - " b

Function Call: hello_moos

Additional User Interaction: None

Function Description: hello_moos is the first option

that should be selected upon entering MULTICS. Some introductory
remarks and a description of MOOS will appear on the screen.
After this routine is done, any option may then be selected.

Function Call: hgprint
Additional User Interaction: None

Function Description: hgprint copies the latest one-
space display to the printer. Tﬁe Tast display must have been
a "micro" view with less than 120 bins. If a copy of a display

with more than 120 bins is desired,the user must call select
and change the number of bins to less than 120.

N 2-83

B iU Ev——

Function Call: histgram (classlist)

Input parameters:

classlist This is an optional list of class
symbols of classes to be displayed.

Additional User Interaction: The user must input the number of
the measurement on which the data is to be projected.

Program Description: After executing the MOOS function

Tobconf, the user can display the results on the console using
Eistgram. If no class list is supplied, then all classes in the
current data set are displayed. The user is asked to input the
measurement number of the data he wishes to see. The results of
projecting this data onto the designated feature are then
displayed in the usual one-space format.

Function Call: hrdcpy

Additional User Interaction: None

Function Description: hrdcpy produces a copy on the
high-speed printerof any desired ran& order display for

dscrmeas , probconf, or features.

Function Call: hrdcpycm
Additional User Interaction: The user is asked if he desires

a listing of incorrectly classified vectors,

Function Description: hrdcpycm outputs all confusion

matrix information to the line printer, including the numbers
and percentages of vectors correct, in error and rejected. In
addition, information about incorrectly assigned vectors may be
output.

Function Call: index ("count'/"id")

Additional User Interaction: index utilizes the crosshair
to 1identify a display symbol, and presents information about the
vector indexed.

When indexing a cluster plot, the user moves the
crosshair to the center of the desired display symbol and
enters a '"¢'". In the case of a scatter plot, the crosshair is

used twice, first to select a lower left-hand corner, and then

to select an upper right-hand corner of a "box'. The desired
information is printed for all the projected vectors in this
"box".

For a histogram, the user moves the crosshair to
a specific bin and enters a '"c¢" as before; information is

obtained for all vectors in that bin.

Function Description: index can be called with
parameter "couat" or "id". For a cluster plot the default
value is "count ",while for the scatter plot, the only value
accepted is "id ",which is the default value. A parameter is
expected when indexing a histogram; however, the only value
accepted is '"count'.

"count" causes the number of vectors in each class
for a specified grid to be printed, while '"id" produces each
individual vector ID number.

The '"box", which is constructed for a scatter plot,
can be as large as desired but must enclose at least one
complete class symbol,

The output for a one-space plot is the count or
probability of each class present in the specified bin,

Function Call: intensfy (classlist)

Input parameters:

classlist This is an optional list of class
symbols, separated by blanks,
representing classes to be inten-

sified.
Additional User Interaction: None
Function Description: intensfy highlights a class or
classes currently displayed by drawing a solid outline around

the given class distributions. If there are no parameters input
by the user, then all classes of the current data set will be
intensified. It should be noted that, unless classes are well
separated, if more than two classes are concurrently intensified,
then the display itself becomes cluttered with lines and it is
hard to observe the distributions. This routine is applicable
to one-space displays only.

P —— e , —_—
_ ™

! Function Call: latclogc (treename) (classname)

Additional User Interaction:

** The logic tree associated with the selected data set
is displayed.

Input the number of logic nodes to be connected.
3

Enter 3 logic node numbers on 3 separate lines.
5

T1

7=

logic nodes 5 and 11 have been linked to logic node 2.

Function Description:

latcloge allows the user to modify a selected logic tree
such that more than one path may be taken to arrive at a
given logic node. Logic trees may be created with a "lattice"
type structure through use of this option.

Any nodes linked through latclogc must have the same
classes present. Also, no logic node may be connected to a
logic node superior to it in the logic tree.

) In the diagram below, the substructures below logic nodes 5 and 6 are
identical and were linked by latclogc.

Unmodified Mods €3
Loaic ,/"\\\ ///}k\\\ fgg}:’ed
Tree o X Tree

‘{///)D go to 6
\LUQ‘;\L node ol

o

b 2 280

m e i — -

e

L 3
| e
»

%

It should be noted that the order of logic creation can
be important when using latclogc. Consider the following
example: The user has constructed a logic tree with three
logic nodes which he wants to link via latcloge. If no logic

has been designed at any of these logic nodes, latclogec will
cause all the vectors associated with the three logic nodes to

be associated with the logic node whose node number is the
smallest. Further logic designed at this node will include
all the vectors from the three logic nodes.

If further logic has already been designed at one of the
logic nodes, however, the remaining two will be linked to this
logic node. The vectors associated with the remaining two
logic nodes will not be used in any further design of logic.

Function Call: lingloge (treename) (classname)

Additional User Interaction:

enter Boolean statement for partition logic

Boolean statement

if the above statement is true, what classes should be
assigned?

ab...f (display characters)

the logic node assigned to these classes is n

if false, what classes should be assigned?

Xy...z (display characters)

the logic node assigned to these classes is m

**Compilation follows:

if any)
was compilation successful?
yes/no

The standard group logic partial evaluation output is then
displayed on the screen, with an option to hardcopy it on the

1
1
|
|
!l
(error messages from compilation of Boolean statement, ;
|
|
I
1
|
1
{
printer along with a listing of misclassified vectors, }

Function Description: linglogc creates Boolean or
Tinguistic logic at a specified logic node.

The Boolean statement takes the form of a logical and/or
arithmetic expression about the measurements in the selected
data set. Measurement i is referred to as m(i). The statement
may not exceed 132 characters and must be on one line. Examples:

a) m(l) < m(2)
b) m(1l)/m(10) = cos (m(4))

If any error messages appear while the entered Boolean
statement is being compiled, the compilation was unsuccessful,

In this case linglogc should be invoked again and the Boolean
statement correctly reentered.

Function Call: lingpart (treename) (classname)

Additional User Interaction:

Enter Boolean statement
Boolean statement

if the above statement is true, what should be new node name
4 ~character node name

if false, what should be new node name
4-character node name

PL/1 version 2
was compilation successful and/or do you wish to continue?

yes/no

The numbers of vectors assigned to the true and the false
side of the statement are given.,

Function Description: lingpart divides a lowest data
class into Z subclasses based on criteria given in a Boolean or
linguistic statement, f

e BT

The Boolean statement takes the form of a logical and/or
arithmetic expression about the measurements in the selected
data set. Measurement i is referred to by the notation m(i).
The statement may not exceed 132 characters and must be on one
line. Examples:

a) m(3) > = 2*m(1l) + m(2)

b) (m(1) + m(2)) < (m(3) + m(4)) _

c) m(l) = sqrt(m(2)) ("=" being logical and not j
arithmetic) 5

If any error messages appear while the entered Boolean
statement is being compiled, compilation was unsuccessful; in
such a case, when the question relating to compilation is asked,
"no" should be entered.

LT

, Function Description:

Function Call:

lingrjct (treename) (classname)

Additional User Interaction:

tree.

Input number of nodes where reject strategy is to be
implemented, followed by logic node numbers - one to a line.

number of nodes
first logic node number

last logic node number

Is the reject strategy to be the same for all nodes?
yes/no

Enter Boolean statement for reject logic at node n
Boolean statement

**At this point an error message (if any) for the entered
statement will be produced.

Is this correct?
yes/no

lingrjct appends an independent
Boolean reject strategy to any node in a MOOS logic tree. The

independent reject test is made prior to the execution of logic at

a node, i.e, it is done before the '"normal" logic is performed at
the node.

The Boolean statement takes the form of a logical and/or
arithmetic expression about the measurements in the selected
data set. Measurement i is referred to as m(i). The statement
may not exceed 132 characters and must be on one line. Examples:

a) m(2) > m(3) + m(4)
b) sin (m(12) * m(6))< = .67
The program permits the addition of the same reject logic

to several nodes simultaneously, or of different independent
reject strategies to each selected logic node.

2=93

**Upon initiation, the program displays the current logic

Independent reject strategies which prove to be
unsuccessful may be removed by using deletlog.

NOTE: A vector will be rejected if it fulfills the conditions
of the Boolean statement.

Function Call: list_cst

Additional User Interaction: None

Function Description: This program lists all data trees
that are currently in the common-access 'trandata" directory.

Function Call: list_ust
Additional User Interaction: None
Function Description: This program lists all data trees

that are currently in the user's "saved_trees' directory.

T

Function Call: listlogc (treename) (classname)
Additional User Interaction: None

Function Description: listlogc produces a printout of
a user-specified logic tree on the high-speed printer. It

outputs all tests and branches contained in the logic defined
by the user for treename-classname in an easy-to-read format,
listing the values of all logic parameters and the possible
paths that may be followed in logic evaluation.

Function Call: log$dlet (treename) (classname)

Additional User Interaction: None
Function Description: log$dlet allows the user to

delete any saved logic file from permanent storage. Error
messages will be printed if no saved logic file exists in
permanent storage for the input reference pair, or if the file
is not deleted.

Function Call:

Additional User Interaction:

log$list

None

Function Description:

determine the number of saved logic files he has in permanent

log$list allows the user to

storage, along with their reference name pairs.

2-99

Function Call: logSrstr (treename) (classname)
Additional User Interaction: The user will be asked to supply

a new treename-classname pair if a logic file already exists in
his process directory under the input reference.

Function Description: logSrstr allcws the user to
restore any saved logic file from permanent storage to his
process directory. The saved logic file still exists in
permanent storage at the completion of this procedure. Error
messages will be printed if no logic file exists in permanent
storage for the input reference pair, or if copying 1is
unsuccessful.

2-100

.
: Function Call: log$save (treename) (classname)
Additional User Interaction: The user will be asked to supply

a new treename-classname pair if a saved logic file already
exists under the input pair reference.

Function Description: logSsave allows the user to save
any logic file in his process directory by copying it into
permanent storage. Error messages will be printed if no logic
file exists for the input reference pair or if copying is
unsuccessful.

v 2-101

C r———— T

Function Call: logicevl (treename) (classname)

Additional User Interaction:

Input the name of the data set on which logic was
designed
treename classname

*%At this point the confusion matrix display as described
in Section 1.3.3 is presented

Do you want a hardcopy of this matrix?

yes
Do you want a listing of incorrectly classified vectors?
yes

Function Description: The routine logicevl enables the

user to test completed logic. Any data set may Ee_evalugted
against logic designed on any other data set by using Fhls .
function (assuming both data sets have the same dimensionality),

Individual vectors mav be tested against completed logic
by setting sense switch 4 prior to running logicevl. All

vectors to be evaluated must then be specified by vector
I.D. number.

In the event that the class names of the test set are
not the same as the class names of the design set, the function
reasname may be invoked before proceeding with logic evaluation.

For a detailed discussion of the reassociated name capability,
see Section 1.3.3.

2-102

Function Call: measxfrm (treename) (classname) !

Additional User Interaction: !

enter a new treename
8-character treename

enter dimensionality of the new tree
number

enter transformation expressions .
up to 75 transformation character expressions

.q(to terminate entering expressions)
PL/1
was compilation successful and/or do you wish to continue?

yes/no

f Function Description: measxfrm is a means of transform-
ing one data set with dimensionality m into another data set of
dimensionality n (n may or may not = m). This transformation is

1 done by means of character arithmetic expressions. Measurement
i in the new tree is symbolized by nm(i). Measurement i in the
old tree is symbolized by om(i).

For example, suppose we have a tree named tree0001 with
dimensionality four and wish to create a tree named tree0002
with dimensionality five, Furthermo.e, suppose each measurement
in tree0002 was to be the same as tree0001 with the exception
that measurement five of treeQ002 was to equal the sum of
measurements three and four of tree000l. Interaction would go
as follows:

measxfrm tree0001
enter a new treename

tree0002

enter dimensionality of the new tree

2

enter transformation expressions

nm(l) = om(1)

nm(?) = om(2)

nm(3) = om(3)

nm(4) = om(4) |
nn(5) = om(3) + om(4) f

P%/ 1 |
was compilation successful and/or do you wish to continue?
yes

The ".q" signifies the end of entering transformation
expressions.

Z=103

This routine makes use of the MULTICS PL/1 compiler,
Therefore, the more the user knows about PL/1l, the easier will
be the job of constructing transformations, For example, the
above transformation could have equivalently been written

do 1i=1to 4

nm(i) = om(i)

end

nm(5) = om(3) + om(4)

The following initial conditions are always established
& by this routine and may be of help to the user. Suppose the

data set under transformation has dimensionality m and the new :
data set has dimensionality n.

let j = min(m,n)
set nm(i) = om(i) for all i = j

ifn>nmn
set nm(i) = o (Mrl1=<i=n)

However, statements entered by the user override any
of the above initial conditioms.

Ldidie - i
.

2-104

Function Call: mergmeas treename

Additional User Interaction:

type in names of two trees to be used in making new tree.
one per line

oldtreel

oldtree?

do you wish to check ID's to make sure vectors are in
the same order in each node of the two data trees?

yes

Further dialogue is needed in the case where vectors
are slightly out of order. For example, a vector may be
missing in one node in one tree ané the user may wish to
delete it from the corresponding node in the other tree.

Function Description: The measurements of the vectors
‘in the second tree are concatenated to the measurements of the
corresponding vectors in the first tree, producing a new tree
(treename) whose structure is identical to the two original
trees, but whose dimensionality is equal to the sum of the
dimensionalities of the two original trees.

Possible Errors: " mergmeas will exit if the

number and names of the lowest nodes in the two original trees
are not the same, if the numbers of vectors in the corresponding
nodes of the two original trees are not equal, if the dimen-
sionality of the new tree is greater than 100, or if either of
the two original trees is not known to the system. In these
cases the routine will return with the current data se:
"notatree', ''mono',

Function Call: moosmode (treename) (classname)

Additional User Interaction:

There are currently two tree(s) whose dimensionality is
100.

tree0001 120
tree0002 125

These trees must be deleted from the system or their
dimensionality reduced to 100 or less before regular
MOOS operation may begin.

There are currently three tree(s) whose mean and covariance

values may be calculated at this time.
il tree0003 20

2 tree0004 45
3 treeQ005 10

Any or all of these trees may be converted to normal
MOOS trees. Enter number of trees to be converted, or
" "

all.

alil

Function Description:

The chief function of moosmode is to calculate the mean
vectors and covariance matrices for any trees for which these
quantities have not been calculated, i.e., trees created through
use of the excess measurement mode. The majority of MOOS

functions may not be executed until this is done (see Section 1).

The calculation of mean vectors and covariance matrices
is not allowed on any trees whose dimensionality is greater
than 100. The system will remain in the excess measurement mode

until there are no trees whose dimensionality is greater than
100.

moosmode may ~1so be used simply to list excess measure-
ment mode trees currently existing in the system. The user
would request, in this case, that zero trees be converted to
normal MOOS trees.

2=10%6

Function Call: nlm (treename) (classname)

Additional User Interaction:

enter total number of cluster centers

number

do you want an equal number of cluster centers in each
class(e) or the number of cluster centers based on original
data distribution(o)

-e—/_g‘ P

**At this point, the clustering routine displays a table
of information concerning cluster center radii

enter new treename
new treename

Do you want to project onto a two-space or a three-space?
2/3

Do you want to project onto the coordinate plane with
max variance?

yes/no

The data will be projected on the following dimensions:
dl d2 (d43)

Error for iteration 1 is (wvalue)

Error for iteration 10 is (value)

Type "d'" to see current mapping ''m" for more iterations
* m
| -

How many more iterations?
2

} Error for iteration 11 is (value)

- Error for iteration 12 is (value)))
Type "d" to see current mapping '"m'" for more 1lterations
d

*xAt this point, a scatter plot of the current mapping is

displayed
t y ,
. Type "a'" to accept, '"m" for more iterations ;
a/m
. Function Description: nlm (nonlinear mapping) is a
i structure analysis routine which maps data vectors from N-space

o 2=107
.

to two-or three-space while attempting to preserve the N-space
"structure" of the data. Due to the time and space-consuming
nature of the algorithm, a limit of 200 vectors has been set,
If the selected data set has more than 200 vectors, a data-
clustering routine is automatically called which forms a new MOOS
data tree whose fewer vectors are, hopefully, representative of
the original data set. The nlm algorithm itself begins at this
point on the "clustered" tree. An association between the
clustered tree and the original data tree is maintained., This
means that any restructuring done on the clustered tree is also
carried out on the original data tree.

Throughout the execution of nlm, the user is given the
choice of more iterations to make the mapping more accurate, or
of viewing the current mapping. The relative error function
should eventually become small and tend to '"level off." A
point should soon be reached when further iterations would
cause little improvement in the mapping.

If the three-space option is chosen, the projection
| shown throughout the execution of nlm will be on the first two
! of the three coordinate axes. When the algorithm is complete,
| the other pairs of axes may be viewed by typing seq.

2-108

-\,

Function Call: nmv (treename) (classname)

Additional User Interaction:

Enter an option:

simple nearest mean vector

inverse variance weighting (weighting vector)
Mahalanobis (weighting matrix)

you wish to implement any reject boundaries?

S 9B wh -

IOO

Function Description: nmv generates nearest mean
vector logic (see Section 1.3.3.2.1) based on various user-
specified options. After partial logic evaluation, the user
may choose to accept the results of the evaluation, or recreate
the logic with a different set of opntions.

Options:

Option 1. The simple nearest mean vector option
causes a vector to be assigned to the class whose mean the
vector is closest to in Euclidean distance.

Option 2. The weighting vector option operates
in the same manner as simple nearest mean vector except that
each dimension is weighted by the inverse of the class
variance along that dimension.

Option 3. Mahalanobis weighting is weighting the
distance calculations by the inverse covariance matrices of
the classes.

The user may set a raject distance for all classes,
or a specific reject distance may be entered for each class.

2=109

P —— e ——

T T T YT T W m— T

Function Call: nmvmod (treename) (classname)

Additional User Interaction: The user is asked to select which
nearest mean vector logic node is to be modified and then to
enter options for that node.

Function Description: nmvmod is designed to cycle
through all nearest mean vector logic nodes, retrieving nodes for
modification, presenting evaluation options, and performing
partial logic evaluation (if requested). The program will exit
if no MOOSLOGIC file exists for the treename-classname pair, if
there are no nearest mean vector logic nodes, or if the user
enters a 0 in response to the option for selection of a nearest
mean vector logic node. See program nmv for details on the
options available.

Function Call: normxfrm (treename)

Additional User Interaction:

Input new treename
treename

Function Description: normxfrm produces a new data tree
which 1s a normalized version of the selected data tree., The
normalization procedure involves dividing each measurement of
each vector by the standard deviation of that measurement for
the entire data tree. The variance of each measurement in the
new data tree is, therefore, one,

Z=LELL

Function Call: page
Additional User Interaction: None

.~

age allows the user to page
Up to 50 measurements can appear
if there are more measure-
s the user to see them.

Function Description:

through a rank-order display.
on the screen at one time, and thus,

ments to be seen, the page option permit

e

Function Call: pairmod (treename) (classname)

Input Parameters: treename and classname are
optional and designate a data set other than the current one.

Additional User Interaction: If there is an error associated
with the input data, one of the following self-explanatory
messages is printed and the user is returned to the command
level:

1) '"no logic file currently exists for this data set"

2) '"dimensionality and/or number of low nodes of data
files and logic files are not equal"

3) '"no completed pairwise nodes exist"

4) '"current logic node is illegal"

The user is first asked whether there are any logic nodes
to be combined. I1f the user responds ''ves", the Fisher
logic is recomputed with some of the data classes combined.
Further logic may then be desipgned to separate the classes
that were combined.

The classes at the user-snecified Fisher node are then
listed and the user is asked to input the pair to be modified.

"Enter class pair to be modified (on one line-no delimiters)"

For example, to adjust the logic for the pair nodl versus
nod2, the correct response is '"12."

If this information is entered incorrectly, the following
is printed:

"a/b is an invalid class pair;

Do you wish to continue?"

If the answer to the question is ''yes,' execution of
airmod recommences. A ''no" response brings the user back to
the command level.

Based upon the existing logic for the selected class pair,
a list of options is presented; the user should enter the number
of the desired option.

OPTIONS

A) '"Change the number of thresholds"

This option allows a user to change the number of Fisher
thresholds used in evaluation of a specific pair or of all
pairs of a Fisher node.

The user is asked

"Is this adjustment to apply to all pairs?" A "no"
response will change the number of thresholds for the selected
pair. The user then enters the new number of thresholds.

2-113

"The current number of thresholds used is n"
"Enter the number of thresholds"

If this new number is not valid, the following is printed:

"Number of thresholds must be between one and four"
"Enter the number of thresholds"

The user should then reenter the number of thresholds.

B) '"Change the location of thresholds"

This option is valid if the present logic for this pair is
Fisher or arbitrary one-space. The data is projected upon the
appropriate basis vector and the threshold(s), either one or two
for arbitrary one-space, or five for Fisher, are represented by
vertical lines. If the logic is Fisher and the threshold is
being used in evaluation, a number representing its sequential
position from left to right on the screen is printed above the.
vertical line. For example, if the current logic was Fisher
with three thresholds being implemented, the display would be:

1 g 5

] |

B P

These numbers do not appear above existing arbitrary one-
space thresholds.

A numbered 1list of display options will appear in the upper
right-hand corner of the screen, The list of options below follows
with a brief description of each, a letter that indicates which
type of logic is applicable (F for Fisher, 0-S for arbitrary
one-space), and which user program contains more detailed infor-
mation about the operation of each option.

(F,0-S) 1. '"select cr'" change the range of the display
see select

(F,0-8) 2. '"select cb" change the number of bins
see select

(0-5) 3. '"draSbndy" draw a threshold

see dra§bndv
(0-5) &,

"dboundry delete a threshcld

see dboundr
‘ (F,0-8) 5. ''display A" display class A of pair A/B
’ see select

2-114

(F,0-S) 6. ‘'display B" display class B of pair A/B
see select

(F,0-8) 7. "display A,B'" display both classes.
see select

(F,0-S) 8. "index count'" statistical information for a
see index particular bin.
(F,0-S) 9. 'hgprint" copy display to printer.

see hgprint
(F,0-8)10. "intensfy" intensify both classes.

see intensf
(F)11l. '"move tEres” move threshold(s). This option must
be selected to move any thresholds for

Fisher.
(F,0-S)12. '"continue" resume execution of pairmod. This
option must be the last selected. 1If

the user does not want to modify the
first display, this option number must
be entered to continue with pairmod.

The user enters the desired option number.

To draw thresholds when the logic is arbitrary one-space,
option number 3 is used. When the user has finished drawing
thresholds, the 'continue' option number (i.e. 12) should be
entered.

When the Fisher logic exists and the display has been
examined and modified as desired, the user should enter the
"move thres'" option number (11). The following dialogue then
occurs.

"Enter number of thresholds to be moved" n
"Send character corresponding to the number of the threshold
to be moved"

The cursor will be activated n times. Each time, the user
moves it to the new threshold position and enters the appropri-
ate number, from the numbers 1 thru 5 above the boundaries,
that corresponds to the threshold to be adjusted.

For arbitrary one-space logic the user is then asked
for 1 boundary:

"Enter class present on right of boundary"
"Enter class present on left of boundary"

for 2 boundaries:

"Enter class present on right of right boundary"
"Enter class present on left of left boundary"
"Enter class in middle region"

The user should send the correct class symbol, or ''#*&¥k&"
to designate a reject region.

w,“: 2-115

e e T T e

This option
used to determine
is the capability

C) '"Change the number of measurements"

allows a user to modify the number of features
the Fisher direction. With this option, there
of also modifying the number of thresholds to

be used in evaluation. The user is asked:

"Enter the number of thresholds to be used in evaluation"
To retain the present number used, the user must input this value.
D) '"Change the number of and/or location of boundary(ies)"
' The two-space ploé is generated and the user is presented

with the following list of display options. The list below contains
brief descriptions of each option and tells which user program

describes the operation of the option in more detail.

1. '"scale$zm"
see scale$Szm
2 "scaIe$rtii
see scaleSrt
3. 'Hra$hn %
see draSbndy
4, "dboundry
see dboundry
5. "display A"
see elimclas
6. "display B"
see elimclas
7. “display A,B"
see elimclas
8. '"index count"

see index
9. "index 1id"
see index
10. '"ecdisplay"

see cdisglaz
11,

"clprint

see clprint

12, '"continue

enlarge a subarea of display
return to "original" data ranges
draw boundaries

delete boundaries

display class A of the pair A/B
display class B of the pair A/B
display both classes

obtain the number of vectors in a cluster nlct
grid

obtain vector ID numbers

change the display from cluster to scatter
and vice versa

copy the '"cluster" plot to the printer

resume execution of pairmod.

2=116

——

e b e

Before drawing new boundaries, the user must delete the
existing ones by entering option number 4. When the display has
been modified and the new boundaries drawn, the following

dialogue occurs:

for one boundary:

" Enter the class present on the convex side of boundary 1"
"Enter the class in excess region"

for two boundaries:

'""Enter the class present on the convex side of boundary 1"
"Enter the class present on the convex side of boundary 2"
'"Enter the class in excess region"

The appropriate class symbols should be entered, or
"kkkk'" {f a reject reglon is desired.

E) ' Change to Fisher"

This option is only applicable after the logic has been
changed from Fisher to some other type.

The type of Fisher logic returned is the latest version.
For example, if the logic sequence had been: a) alter the i
number of measurements for determining the Fisher direction, and 5
b) optimal discriminant plane, the Fisher direction used by this
option is the direction calculated when fisher was last called.
To return to the "original" Fisher direction, the MOOS function
fisher has to be called again.

The user is requested to:
" Enter the number of thresholds to be implemented.'" This
is the number of thresholds used in evaluation,
F) " Changeto arbitrary one-space'
The logic enables the user to employ a previously saved
vector as a projection vector. The user is asked to enter a

vector or supply the name of a vector which has been stored via
the utility function vec$save.

ﬁ‘; 2-117

_E
|

The data is then projected upon the basis vector and the
histogram appears with the display option list as described
under option B. By entering appropriate option numbers, the
user can manipulate the display and construct one or two thresholds.
When he is finished, the option number for "continue'" should be
entered. The user is then asked:

for one boundary:

"Enter class present on right of boundary"
"Enter class present on left of boundary"

for two boundaries:

"Enter class present on right of right boundary"
""Enter class present on left of left boundary"
"Enter class present in middle region"

The user should reply with the class symbols, or "#*¥%*'
to create a reject region.

G) '"Change to optimal discriminant plane"

The discriminant plot is generated with the display
option list equal to that under logic option D. Upon completion
of display manipulation and boundary construction, the user
will proceed to answer the dialogue as described under option D.

H) ' Change to arbitrary two-space'

The user supplies either the two basis vectors or the
names of vectors entered by the MOOS utility function vec$save,

The user then proceeds in the manner described under
logic option D.
I) " Change to/modify Boolean'"

The user can supply or modify an existing Boolean statement
for use in pairwise logic evaluation. The maximum length for the

statement is 132 characters. The user is asked:

" Enter Boolean statement for partition logic"

After the statement is entered the user is asked:

'-w~w-—-!-Illllllllllllﬂﬁnunﬁmmw~=-

"If above statement is true, what class should be assigned?"

The user's response to this is the class symbol of the class
desired.

Upon completion of a specific logic option, a "mini"
confusion matrix, consisting only of the pair involved, is
printed, and the user is asked:

"Is this logic acceptable for the pair?"

No existing logic is modified until the answer to this
question is '"'yes'.

Then the user is asked:
'™
"Is there another pair to be modified?

A "no" response produces the confusion matrix of the entire
Fisher node, while a "yes" response makes pairmod recommence

; execution.
Function Description: Through pairmod, the logic for
any or all pairs of classes of a pairwise logic node can be

altered. The user can make as many changes as desired (for
example, using the Fisher logic with the four different numbers
of thresholds, moving thresholds, examining the discriminant
plane, and any arbitrary two-space) with or without having the
current pairwise logic modified.

airmod saves the current version of Fisher logic and the
current modified logic, but only those two. In the above
sequence, the Fisher and the arbitrary two-space logic would be
saved while the intermediate designs would be destroyed.

LI B

AD=AO34 393 PATTERN ANALYSIS AND RECOGNITION CORP ROME N Y F/6 9/2
MULTICS OLPARS OPERATING SYSTEM, VOLUME I.(U) _
SEP 76 D B CONNELL: K N KLINGBAIL F30602-75-0-0226
UNCI.ISSIFIED PAR=T4§=25=A RADC=TR=76=271=VOL=1

END
DATE

FILMED

=

Function Call: probconf (treename) (classname)

Additional User Interaction:

do you want the default interval range of 3 standard
deviations?
no

should the interval range be calculated using a number

of standard deviations (s), or the absolute range of

the data (r)

type in s or r

r

¥*At this point, a table is presented which contains the
number of bins, interval size, lower bound, upper bound,
and range for each measurement

Do you want to change the interval size?

no

**At this point, a rank order display is presented

Function Description: probconf produces a measurement
evaluation for the selected data set based on a histogram
estimation of the marginal class conditional probabilities. The
values produced are measures of the overlap of these probabilities;
therefore, the smaller the value, the better the measurement.

Probability histograms used in this calculation may be
viewed directly by selecting the histgram option.

The dialogue is designed to allow the user to select the
interval range and nurber of histogram bins which will best
represent the data distribution.

2-120

I e Lo T e T

Function Call: rdisplay

Additional User Interaction: None

Program Description: rdisplay reconstructs the most
recent two-space plot, one-space pEot, or confusion matrix
(through a call to displacm).

T S e
o P a1

Function Call: reasname (treename) (classname)

Additional User Interaction:

**Upon initiation, a table is printed which contains
each lowest logic node number, the class name which
belongs at that node by design, and a 'reassociated” name. l

Enter number of logic nodes whose reassociated names are
to be changed

n

Enter n logic node numbers and corresponding new
reassociated names.

2 name(l
3 name

m namegnz

**At this point, the original table is redisplayed with
; the input changes

Are these reassociated names correct?

yes/no
Function Description: reasname allows the user to

change reassociated names to whatever he desires. This is
useful in cases where a test data set is to be evaluated against
logic designed on a tree which had different class names. A
more complete description of the purpose of reassociated names
can be found in Section 1,3.3. 1

i

iy 2-122

U g A € TR NPT 5 M T R e

Function Call: redraw

Additional User Interaction: None

Function Description: If a boundary has been drawn on
a one—or two-space plot and a new plot of the same data put on
the screen, the boundary does not automatically reappear.
redraw reconstructs the boundary, and in the case of two-space,
it extends line segments to the edge of the projection.

redraw also reconstructs boundaries drawn on the original
projection onto "zoomed" projections, and vice versa,

2-123

e e =] W Bk b

Function Call: remtree (treename/'"all")

Input Parameters:

treename specify a particular data set

E "all" delete all existing trees from
the "trandata" directory

Function Description: This routine deletes any or all
trees and nodes under these trees that have been saved, via the
utility function savec, in the common-access 'trandata"
directory.

T 7 P L T T

The user is cautioned against the use of the "all"
parameter, as all trees, regardless of which user saved them,
will be removed.

2-124

N Y e ST A N

p—

s
i

Function Call: restore treename/'all"

Input Parameters:

treename specify a particular data set

"all" copy all existing trees in the
user ''saved_trees' directory

Additional User Interaction: If the name of any data set that
Is being copied 1s alreaay in the process directory, an error
message is printed and the user is asked to enter a unique eight-
character treename. The data set will be restored under that

name.

Function Description: This routine returns from the
user "saved trees" directory any or all data sets that have
previously been saved via the utility function save.

2-125 5

r—

Function Call: restorec treename/"all"

Input Parameters:

treename specify a particular data set

"all" copy all existing trees in the
"trandata' directory

Additional User Interaction: If the name of any data set that
1s being copied 1s already in the process directory, an error
message is printed and the user is asked to enter a unique eight-
character treename. The data set will be restored under that
name.

Function Description: This routine returns any or all
data sets Irom the common-access directory 'trandata' to the
process directory.

These trees must have been stored via the utility function
savec,

- g

f::fA'

- ™
Ve sy, A
gy 5

2-126

&
§

'
I
3

.

o PP L

-

-

Function Call: restruct (treename)

Additional User Interaction:

type in the name of the lowest node to be restructured
from the following list

node(l) node(2) ... node(n)

nodename

input 3 new 4-character node names
newname (1)

newname

newname (3)

Function Description: After a boundary has been drawn
on a one-space or two-space plot, the user must invoke restruct
so that data vectors will be relabeled according to the
boundary (ies).

The two-space naming convention is as follows: the first
name input is the name of the class on the convex side of the
first boundary drawn. If there are two boundaries, the second
name input is the name of the class on the comvex side of the
second boundary drawn. The last name input is always the name

of whatever region remains,

In one-space, input names will refer to the boundary-
separated regions from left to right.

2-127

Function Call: rnk$bcls classname or unique
class character

Additional User Interaction: None
Function Description: rnk$bcls ranks the measurements 3
associated with the current data set in order of their effectiveness in 1

discriminating the selected class from all other classes (as determined
by dscrmeas cr probconf). See Section 1.3.1.

2. P™
¥

ke)
b 2-128

|
{
|
|
|
|
|

Function Call: rmk$bycp classl class2

Input parameters:

classl and class2 are class names or unique class characters
Additional User Interaction: None

Function Description: rnkSbycp ranks the measurements
associated with the current data set in order of their effective-
ness in discriminating 'classl'" from '"class2'", See Section 1.3.1.

2-129

L TS A S5 S A

NPNPSNTR

Function Call: rnk$mbc measurement number
Additional User Interaction: None

Function Déscription: rnk$mbc ranks the classes in the
current data set according to the effectiveness of the selected

measurement in discriminating each class from all others (as
determined by dscrmeas or probconf). See Section 1.3.1.

Function Call: rnk Smbc measurement number
Additional User Interaction: None
Function Description: rnk$mbcp ranks the possible class

pairs in the current data set according to the effectiveness of
the selected measurement in discriminating between the classes
in each pair (as determined by dscrmeas or probconf). See
Section 1.3.1.

2-130

S

: Function Call: rnk$oall

Additional User Interaction: None

Function Description: mk$oall gives an overall ranking
by means of running dscrmeas or probconf. An ordered list of
f the measurements is given (a result of the overall ranking

y calculations) along with the class and class pair best discrim-

inated (or least confused) for each measurement, Refer to

Sections 1.3.1.1 and 1.3.1.2 of this report for a mathematical
discussion,

£=131

T e .

e ROy v 5 . i il s

Function Call: save treename/'all"

Input Parameter:

treename specify a particular data set

Yall" copy all existing trees in the
process directory

Additional User Interaction: If the name of any tree that is
saved already exIsts In the user's '"saved trees" directory, an
error message is printed and the user is asked to enter a unique
eight-character tree name. The data set will be saved under
that name.

Function Description: This program copies any or all
trees in the "sysdata' file into the user's "saved trees"

directory. This directory is only accessible by thHe particular
user who created it.

For other users to be able to access this data, it must
be stored in the "trandata" directory via the savec utility
function.

2-132

e € - T

Function Call: savec treename/"all"

Input Parameters:

treename specify a particular data set
"all" copy all existing trees in the process
directory
Additional User Interaction: If the name of any data set that

1s being copied already exists in the common-access ''trandata'
directory, an error message is printed and the user is asked to
enter a unique eight -character tree name. The data set will be
saved under this name.

Function Description: This program copies any or all
trees iIn the "sysdata'" file into the '"trandata" directory, where
other users can access these data sets.

To save these data for the specific user's exclusive
reference, the utility function save should be used.

2-133

ey Y.~

R et g —_y

Function Call: scale$zm
Additional User Interaction: Using the crosshair, the user

must select the portion of the current display to be ''zoomed"
upon. When the crosshair is on for the first time, the user
positions it at the lower left-hand corner of the new display
area and enters a "c ". The second time, the user positions it
at the upper right-hand corner of the new display area, and

enters another "c ".

Function Description: scale%zm allows the user to

select a subarea of the current display and have a closer, more
detailed examination of that area. In the manner described
above, the user first selects the lower left-hand, then the upper
right-hand, corner of the area to be magnified. The new display
is that subarea.

2-134

Ty v —— ey 7y =

P

Function Call: sca1e§rt
Additional User Interaction: None

Function Description: scale$rt is the complement of
scalejzm, This routine allows the user, upon completion of one
or several zooming operations, to return to the display with the
original x-and y-ranges.

2-135

Function Call: selfmeas meas] meas) ... Measp

Additional User Interaction: None

Function Description: selSmeas enables the user to

select a given set of measurements. "% will appear next to

all selected measurements. However, if an "*" already exists

for a measurement, selecting that measurement again will cause

the "*" to be turned off. This routine is used in conjunction with

rnk routines and the routine trnsform to transform a data set.
AIT "*"ed measurements are used in the transformation.

2-136

-

> e
v

- r -

-

Function Call: se1§thrs value

Additional User Interaction: None

Function Description: This routine is similar to
seldmeas, except that a threshold value is entered; all measure-
ments whose value is greater (for dscrmeas) or less (for

robconf) than the entered value will appear with an "*'" next
to them.

2-137

i W43 e I TP RIS RS ~

e gy - . e Ty DY St et

Function Call:

Input Parameters:

macro/micro

classlist

cr

cbnnn

prob/count

select (macro/micro) (classlist)
(cr) (cbnnn) (prob/count)

The display format will be_ changed
according to the user's selection.

The class list is a set of data
class symbols separated by commas
or blanks, The classes seen in
subsequent displays will be only
those listed.

The cursor will be activated to
allow selection of range points
representing tihe minimum and
maximum data desired in the dis-
play. The original scale will be
restored when the second range
point selected is to the left of
the first range point. Selected
range points will be indicated by
moving the vertical crosshair to

the desired location and entering

a I'c ”

The cb option resets the number
of bins desired in the data pre-
sentation to nnn, eg, cb50
results in a 50-bin display.

The area under each class histogram
is affected by the selection of
prob or count in the parameter
list. Under the count option,

each histogram column is propor-
tional in area to the number of
vectors in each displayed class
which falls into a given bin;
therefore, the total area under an
entire class histogram is indica-
tive of the number of vectors in
each class, The prob option
produces histogram columms repre-
senting the percentage of each class
within a given bin; therefore, the
total areas under all class histo-
grams are equal to one another
(that is, totals to 100 percent),

24137

Additional User Interaction: None
Function Description: select is the major one-space

display utility routine. The one-space algorithms will default
to a macro display of all classes, if there are more than three
classes in the data tree, or to a micro display if there are
three or less classes in the data tree. If there are more than
18 classes in the data tree, the first 18 are displayed and the
user is asked if he would like to see the remaining classes. A
"yes" response erases the screen and presents the other classes;
a '"mo" response terminates the routine. The type of display,
either macro or micro, will remain the same until the other is
specified. When the alternative is specified, all classes are
displayed unless a class list is also input. In that instance,
only those classes specified are displayed. The class list
consists of the display characters separated by commas or blanks,
All parameters are also to be separated by blanks.

Parameter cr indicates '"change range '". If this option is
selected, the crosshair is turned on. The user then moves it to
the desired new xmin and sends a "c¢ ', The crosshair then returns
for user selection of a new xmax and again accepts a '"c ". If,
having already zoomed on a display, the user wishes to return
to his original display, cr is again the appropriate parameter,
When the crosshair is turned on, the new xmax is placed to the
left of the new xmin (xmax< xmin). This will cause regeneration
of the original range.

The cbnnn parameter changes the number of bins, where nnn
is the new integer number of bins. There is no blank between
"cb" and "nnn'". The original display will be recreated only
via another cbnnn call, where nnn is the original number of bins.

The prob/count parameter is applicable only to the micro
view. The selection of this option changes the scaling in the
micro view either to probabilities or to counts of each bin. The
macro view uses probabilities where the largest ''spike' or value
corresponds to the maximum probability of a bin for all classes
that are currently displayed. Counts are default in the micro
view,

The following is an example of how to manipulate the
display, given that there are five classes A,B,C,D and E:

Initial display: (from crdv$sal, for example) macro view, all
classes displayed, range is the overall range of data along
some coordinate, N bins and probabilities scaling.

select ¢ cr macro view, crosshair turned on,
class C is the only class displayed,
probabilities scaling

2-13a

.y - — —

select macro macro view, all classes displayed,
"current" range, probabilities
scaling

select micro D micro view, class D only dis-
played, ''current' range, count
scaling

select micro B C cb75 prob micro view, classes

B and C displayed, ''current"
range, 75 bins instead of
original N, y-axis probabilities
scaling 1

select macro cr cbN crosshair turned on, return the
number of bins to N, macro view.
This can return to the original
display. In a macro view,
probabilities scaling is always
used; thus, the display scaling
is probabilities, although it
was not specified with the prob
parameter,

A T
v

>
-

2-140

L}
*’ b
.

Function Call: a) sense number on
b) sense number off

Additional User Interaction: None

Function Description: Function sense provides user
control over the sense switch settings. Sense switches may be
used to control any dynamic options as required by the system
designer. The sense switch numbers range from 1 to 36,

Currently assigned switches:

1

If this switch is set, overall logic evaluation
(logicevl) will produce a listing of pairwise vote
counts for all vectors which are assigned to pairwise
logic nodes, whether correct or not.

2 - If this switch is set, the test for correctness of a
vector in overall logic evaluation is performed on the
display symbols of the classes involved, rather than
on the full four-character names.

3 - Used as an internal flag to indicate the excess
measurement mode.

4 - 1If this switch is set prior to running logicevl, all :
vectors to be evaluated must be specified by vector
I.D. number.

- Used as an internal flag by dgSdcrmsu and dgfdd.
Used as an internal flag by features.

- Used as an internal flag by features.

0 ~ N w
]

- Used as an internal flag by fortlogc.
15 - Used by tapinput as an internal flag. |

>

P —
- 75
-

2
13

k‘ 2-141

Function Call: seq
Additional User Interaction: None
Function Description: seq may be used after the following

MOOS functions:
a) eigv$sal, eigv$sa2

The ordered list of eigenvalues reappears and the data will
subsequently be projected on a newly selected eigenvector(s).

b) nlm (three-space)

seq is used to sequence through the three possible pairs of
projection axes.

¢) crdv$sal, crdv$sa2

The user will be allowed to select a new coordinate axis (or
axes) for data projection.

d) gndv$sal, gndvSsa2

The ordered list of eigenvalues reappears and the data will
subsequently be projected on a newly selected generalized
discriminant vector(s).

>

o
S
»

%

2-142

Function Call: setdata filename

Additional User Interaction:

Enter range values (first & last index) number number
Enter type of entry

'char' - character string of length four
'flot' - floating
'intg' - integer

'bits' - bit stream
four-character option

(enter each word)

Request complete. Do you want to read more? (yes/quit)
quit

Function Description: setdata allows the user to
insert data into any MULTICS file available to him in his
process directory. The data may be inserted in any of four
forms (character, floating point, integer, or bit stream).

2-143

Function Call: summrycm

Additional User Interaction: The user is asked if he desires a
hardcopy of the information.

Function Description: summrycm outputs confusion matrix
information to the screen in a summary format, listing percentages

for the number of vectors correct, in error and rejected, by
class and overall,

g PN
¥
-

PR
'

- ! -

L 2-144

'

Function Call: tapeoput (treename)

Additional User Interaction:

Input tape label
label

Input file number to be written
1

—_—

Tape (label) will be mounted on drive 1 with a write ring
Tape ready

Tree (treename) written into file 1

Function Description: tapeoput writes a MOOS data tree
onto a seven-track, 556 BPI magnetic tape. The tree may be
reentered to the MOOS system through a call to the tapinput
function. The exact format of the data is described in the

writeup on tapinput.

2=145

Function Call: tapinput treename

Additional User Interaction:

Input tape label: label

Input tape file number: number

Input data dimensionality for tree treename: number
[tape is mounted and selected file is read]

Do you want to input another tree from tape X?
no

Function Description: The tapinput function transforms

a data set on a MOOS data tape into a system data tree. The

multiple-file MOOS data tape contains one data set per file,

zach set composed of data vectors in the following 36-bit MULTICS
ormat:

Measurement 1 (MULTICS floating point)
Measurement 2

vector 1 .
Measurement ndim
Vector Index (integer value)
Data class name (four ASCII characters)

vector n {

The physical records on the MOOS tape may be up to 1632
36-bit words in length. Each record must contain an integral
number of vectors21. The tape must be low-density (556 BPI),
with no labels, header records, or any other excess words.,

Function Call: treedraw (treename) (classname)
Additional User Interaction: None
Function Description: treedraw displays a selected MOOS

data tree, showing the structural relationship between various
intermediate and lowest nodes of the tree. If the selected
class name is *%*% the entire tree is displayed. Portions of
the tree may be viewed by selecting other class names,

If any level of a tree contains more than 32 nodes, that
level and any structure below it will not be displayed. Instead,
lines indicating where this excess structure is located will be
drawn.

If the first level below the senior node has more than
32 nodes, a message is printed and nothing will be drawn. The

dataprnt '"tree structure" option may be used to display a tree in
outIine form in cases where a tree is too large for treedraw.

2-147

| Function Call: treelist

i

1 Additional User Interaction: None

i Function Description: This program lists all data trees

that are currently active in user's "sysdata'" file in a given
process.

e

g

R A Y /0 g . e o

Function Call: trnsform

Additional User Interaction:

enter a new tree name
eight-character tree name

Function Description: trnsform performs a transformation
on the data tree that was most recently used for doing the measure-
ment evaluation. The tree name of the new tree is the entered

tree name (see Additional User Interaction). trnsform saves

those measurements which have an "*" next to them, the "#"
appearing as the result of using a measurement selection routine
(e.g. selSmeas, selSthrs, or un bbc). The tree structure is

copied from the old tree to the new tree.

2-149

Function Call: un$bbc

Additional User Interaction: None

L Function Description: un$bbc works similarly to the
i sel routines 1n that it gives the user the ability to select
i certain measurements for transformation. unSbbc places an "*"
next to those measurements that best class or discriminate

each class in the data set.

2-150

Function Call: un§bbc2

Additional User Interaction: None

Function Description: un$bbep works similarly to
un3bbc, except that un$bbcp places an "*" next to those
measurements that best classify or discriminate each class pair
in the data set,

W‘.
Function Call: vecSdel saved vector name
Additional User Interaction: None

Function Description: vec$del deletes from the saved-
projection-vectors file the saved vector whose name is entered.

Function Call: vec§hall

Additional User Interaction: None

Function Description: vec$hall is a means for hardcopying
to the line printer a complete listing of all saved vectors,
including each vector's name, length, and components.

Function Call: vec$lall
Additional User Interaction: None

Function Description: vec$lall is a means for listing,
on the display, the name and length of all saved projection
vectors,

Function Call: vec§1ist saved-vector name
Additional User Interaction: None

Function Description: vec$list is a means for listing,
on the display, information about one particular saved projection
vector, including the vector's name, length, and components.

|
|
|

Function Call: vec§save

Additional User Interaction: Do you wish to save the x
projection, the y projection, or both the x & the y projection?
(x,y,xy)

X
enter a vector name
a five- to eight -character name

Function Description: vec$save saves projection vectors
for the user. For example, suppose that after a scatter plot is
displayed, the user wishes to save the projection vectors;
vecgsave is the correct routine to use, The user can save just
the x-projection, just the y-projection, or both the x- & the

y-projection. Each saved projection vector has a unique name with

up to eight characters (not to be confused with the eight-
character tree name).

e e - P TR O PR RS - T AP

