AO34 390

UNCLASSIFIED

WHARTON SCHOOL OF FINANCE AND COMMERCE PHILADELPHIA P==ETC F/6 9/2
DETERMINISTIC VERSUS NONDETERMINISTIC PROCEDURE FOR AUTOMATIC P==ETC(U)
ocT 1676213 2201 NOOD14=75-C~0462

o go. P™

-

SECURITY CLASSIFICATION OF TH1S PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1

~ REPORT NUMBER

‘y‘:/e 1d-61 | e

2. GOVY ACCESSION NO.

»\‘)YC' < J

3. RECIPIENT'S CATALOG NUMBER

4

YKYLE (and Subtule)

Deterministic V‘si Nondetermlnlstlc
Procedure for Automatic Program

S. TYPE OF REPORT & PERIOD COVERED

Generation in DBTG Data Base Acceos

” 2 e g

6. PERFORMING ORG. REPQRT NUMBER

76-10-01 —

‘
"\‘; bag

U S

v 5 wet) G ks

(, _CONTRACT OR GRANT NUMBER(s)

§d14-75-c—omma

..-_....._..-- ¢%r_l- =

PERFORMING ORGANIZATION NAME AND ADDRESS
Department of Decision Sciences

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Office of Naval Research .//

The Wharton School e
University Of Pennsylvania, Phila., PA NR049-272
V1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE . o -_—

k /

/ ot o976 |

Information Systems, Arlington, VA 22217

13, nmbozza OF-PAGES

MONITORING AGENCY NAME & ADDRESS(/! different from Controlling Office)
— y
(27617 |

y i

v,

(same)

15. SECURITY CLASS. (of this report)

3 Unclassified

1Sa. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

1"

. DISTRIBUTION STATEMENT (of this Report)

purpose of the United States Government.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report]

(same)

(does not_a.pp_]_y.b

Reporduction in whole or in part is permitted for any

SUPPLEMENTARY NOTES

. KEY WORDS (Continue on reverse side if necessary and identify by block number)

DBTG

Network Data Base
Query Language
Automated Programming

20.

BSTRACT (Continue on reverse eide If necessary and {dentify by block number)

As information systems grow in scope and size, costs

associated with the programming activity

major factors in the economic feasibility of such systems.

are quickly becoming
One

obvious solution is to enlist the computer itself to aid in the

programming activity.

The form of such aid could range from

interpreters to program synthesizers (automatic program

generation).

To date few program synthesizers have been used in

DD , 3% 1473

EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-014-6601

COPY AVAILABLE TO DDC COES NOT
PERMIT FULLY LEGIBLE PRODUCTION

N T Y

- _ ey " AN
- - o b

SECURITY CLASSIFICATION OF THIS PAGE (am Data Entered)

il

I
SR

L

Y i -
s o
E 1,
~, v~

r——

LLLURITY CLASSIFICATION QF THIS PAGE(When Date Entered)

Ndd;eal world"applications due to either need for more powerful

AI techniques to solve the problems involved, or to the costs of
the existing AI techniques which they employ.

This paper describes the work involved in minimizing the use
of AI in one such program synthesizer, the Automatic Program

Generator (APG), in its application to report generation from
network (DBTG) data bases.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

DETERMINISTIC VS NONDETERMINISTIC
PROCEDURE FOR AUTOMATIC

PROGRAM GENERATION IN DBTG DATA BASE ACCESS

by

pavid J. Root

COPY AVAILABLE TO DDC DOES NOT
__ PERMIT FULLY LEGIBLE PRODLCTION

76-10

Prepared for the
Office of Naval Research
Information Systems
Arlington, Va. 22217
under O‘/é&
Contract NQQl4-75-C-Gusk
Project No. 049-272

Distribution Statement
Reproduction in whole or in part is permitted
for any purpose of the United States Government

Department of Decision Sciences
The Wharton School
University of Pennsylvania
Philadelphia, Pennsylvania

JAN 18 1977

SR

=Y

uu

v -I\ -

| LISTRIBUTION STATEMENT &
Approved for public release;
Distribution Unlimited [

T

ACKNOWLEDGEMENT

I thank Professor Rob Gerritsen, my thesis advisor, for the
direction and advice with which he has provided me. Portions of
Sections 2., 3., 4. and 7. of this paper have been taken, with
appropriate changes, from his PhD thesis [Gerritsen 1975]. 1 would

also like to thank my wife, Christine, for encouragement as well as for

much of the typing.

by
faﬂ‘l [G, \)\ & .\}f}__'i‘

—
.
(=}

NN N
e o o
LN r—~Co

wwwweww
e o o o o o

e o o o o o o o o o
PP PP LUNNDNDNDNA~O

E R S S S R T S S S S S

)
LoD~ O
.

e o
e o
SN

5
5
5
5
5
5
3
5

Table of Contents

Introduction

Review of the APG System
Logic of Programs

Frames

Program Generation

The HI-IQ Query Language
Introduction

<Record Name> Subsequence
<Condition Lines> Subsequence
<Item Lines> Subsequence

Port Selection

Modifications of HI-IQ and APG
Introduction

Request Handler Assertions
LINKS Assertion

FOR Assertion

TOBEUSED Assertion

Assertions

Rule Assertions

Assertions for the Sl Type Rules
Miscellaneous Assertions

LISP Functions

Rules for Planning

Downward Migration of Attributes
Location of Context Records

Set Search

Calculated Keys

System Set Search

Area Search

Location of Data Items

—

e AV AT, AT SR

Table of Contents (cont‘d)

|
i Y Section) ~ Page
5 6.0 Rules for Program Generation 52
i 6.1 Introduction 52
I 6.2 S1 Type Rules 52
i 6.3 S4 Type Rules 55
|) 6.4 S2 and S3 Type Rules 56
6.4.1 PROGRAM 56
I 6.4.2 GETTOTOPLEV 57
? 6.4.3 GETTONEXTLEV 58
6.4.4 UPLINKED 59
I 6.4.5 DNLINKED 60
% 6.4.6 ALLFORFULINST 62
_ 6.4.7 ALLFOR 64
j 6.4.8 DETVAL 67
i 6.4.9 DOACTION 70
1 6.4.10 GETRUNT 72
L 6.4.11 MAKEINCORE, FOLLOWPATH and GETPATH 73
6.4.12 INITVARS 75
6.4.13 DIVVARS 75
i 6.4.14 NEXTLEVOUT 76
; 6.4.15 DETALLVAL 76
: 7.0 Examples of Program Generation 78
§
8.0 Cost Effectiveness 87
9.0 Further Work 89
9.1 Extensions of Task and Scope 89
3 9.2 Additional Modifications of the System 90
10.0 Nondeterministic vs Deterministic Procedures 9t

.

L B R ‘s

s
O
- e . e

- -,
al ’ il e
e

EARR

1

1.0 INTRODUCTION

As Inforﬁation Systems grow in scope and size, the time and cost
involved in the programming activity are quickly becoming major factors
in the economic feasibility of such systems. The signifigance of the
programming activity is also an important current topic due to the
costs attributed to program errors [Baker 1973]. Efforts in the area
of "automated programming" or ''automatic program synthesis" may hold

some solutions for these problems.

In the past, higher level languages (then considered automated

programming) helped to gain greater efficiencies in the programming
activity. Today, automated programming, or automatic program
synthesis, covers a somewhat nebulous area. As explained by Siklossy
and Sykes [1975]:

"Although a compiler for a high level language might be
considered a synthesizer, since it transforms an algorithm
written in the language into executable machine code,
generally discussions of program synthesizers are restricted
to those systems which transform into code descriptions which
are "far" from being executable. The concept of "far" is
relative to the state of knowledge."

The system which will be described in this paper falls into the
gray area of this definition. Merely presented with the input and
output of the system, the reader would probably conclude that the
system qualifies as an automatic program synthesizer, as defined above.
However, once the reader becomes aware of the degree to which it was

possible to mechanize this task, he may feel that the system falls in

an area closer to the case of the high level language compiler.

st s M TP o g " s B S 52 %0 MEy 4

¥

D8

Yip
et

3 o

«

F1igt
FEre s
h

S

‘

Page 2

Hoare ([1972] identifies three aspects of a computer program that
determine its success as regards its task:
l. That those aspects of the real world with which the program is
concerned are completely and correctly represented in the logic

used to develop the program.

2. That the behavior of the program coincides with the steps called
for by the logic.

3. That the representation of the real world and the method of

manipulating that representation are such as to result in
‘acceptable program running costs.

Therefore the problem of automated programming is twofold. First,
the knowledge which is used by programmers to meet these criteria must
be identified and formalized (e.g. structured programming and the
Logic of Programs). Second, there must be a method to give this
knowledge to the computer and have the computer utilize it efficiently

in generating programs.

Buchanan [1974] has developed an Automated Programming Generator
(APG), which wutilizes the Logic of Programs [Hoare 1972, Hoare and
Wirth 1972], primitive functions and procedures, axioms, definitions
and rules of program composition to generate programs to accomplish
given goals. This system is reviewed more extensively in Section 2.
Gerritsen [1975] applied the APG, with some modification, in developing
a system for use in the generation of reports from network type (DBIG)
data bases. If the reader does not have a previous knowledge of
network data bases, it would probably be helpful to first read

something about them. Gerritsen [1975] provides very complete coverage

&

Page 3

of the concepts involved in structuring of and data retrieval from
) network (DBTG) data bases, or the basics of DBTG data bases are covered

in Date [1975].

Buchanan's APG System and Gerritsen's application of it to DBTG
data base access accomplish the program generation through a
non-deterministic procedure implemented using backtracking and pattern
invoked procedures as provided by Micro-Planner ([Hewitt 1971, Sussman

and McDermott 1972]. Several others, Siklossy and Sykes [1975], Green

e

and Barstow [1975]), Manna and Waldinger [1975], and Haseman and

Whinston [1975], to mention a few, are developing automatic program

synthesizers which differ from Buchanan‘s APG on points such as the use
of recursive structubes rather than iterative 1loops or producing

program traces prior to code generation, but all heavily utilize the

backtracking capability of Micro-Planner or some similar system to give
their system '"intelligence'". This paper explores the benefits of
making the process as deterministic as possible. The system first
carries out any necessary search (planning) and then executes a

i deterministic procedure to generate the program code.

It is hoped that the work discussed in this paper, along with the
planned extensions, will provide a better understanding of the general
logic which underlies a specific class of programs, that is the class
of programs used to extract information from network data bases.

Knowledge of this logic should give insight into the planning

e ™
.

capabilities which program synthesizers (automated or human) will need

in order to function economically in solving complex tasks.

P

1

g Page 4

2.0 REVIEW OF THE APG SYSTEM

Program construction is carried out wusing a domain independent
automatic program generation system, hereafter denoted by APG, reported
in [Buchanan and Luckham 1974; Buchanan 1974). To sketch the 1logical
basis of the APG, some elements of the logic of programs are reviewed.
Also the formalism for describing APG (called a Frame) and its wuse in
program generation are illustrated. Sections 2.1 and 2.2 have been
condensed directly from the original reports [Buchanan and Luckham

1974; Buchanan 1974; Igarashi, London and Luckham 1973; Hoare 1969].

2.1 Logie Of Programs

Statements of the logic are of the form P{A}Q where P,Q are
Boolean expressions (often called assertions) and A is a program or
program part. P{A}Q means "if P is true of the input state and A halts

then Q is true of the output state'.

A rule of inference is a transformation rule from the conjunction
of a set of statements (premises, say Hl ,...,Hn) to a statement

(conclusion, say K). Such rules are denoted by

Hl, ¢¢e,Hn

R

* e
-

'

*

Page 5

2.2 Frames

The rules in a frame F are of three kinds:
PROCEDURES transform states into states and are expressed
as statements in the logic of programs.
SCHEMES are methods for constructing programs and are
expressed as rules of inference in the logic of programs.
RELATIONAL LAWS: definitions and axioms which hold in
all states and serve to '"complete'" incomplete state
descriptions by permitting first order deduction of other

elements of a state from those given.

A problem for program construction may be stated as a pair <I,G>,
where I is an input assertion (or initial state) and G is the output
assertion (or goal that must be true in the output state). The program
construction task is to construct a program A such that I{A}I', where
I1'>G. A solution is the sequence of rules of F wused in the

construction of the solution program A.

Notation:

Substitutions, denoted by o¢, do not replace any variable that
occurs 1in the initial state I. Expressions, all of whose variables
occur in the initial state are called "fully instantiated". |- denotes

a first order deduction using F and the standard rules described below.

i o ot b

Page 6

Standard rules: A set of rules representing standard programming

knowledge

are implemented in the program construction methods of the

problem solving algorithm:

RO. Assignment Axiom: P(t) {x€t}P(x)

Rl. Rule of Consequence: P>Q,Q{A}R P{A}Q,Q=R

— s st ot ot —

R2, Rule of Composition: P{A}Q,Q{B}R

-t ot ot e

R3. Rule of Invariance: if P{A}Q and I |~ P then

I{A}Q I where I' is the largest subset of I
consistent with Q.

R4, Change of Variables: P(x){A(x)}Q(x)

P(y){A(y) }Q(y)

R5. Conditional Rule: PAQ{A}R, PATQ{B}R

Frame rules:

rules described below.

- ot ot o P g 2t Tt S o ot st

P{IF Q THEN A ELSE B}R

standard rules to generate programs.

Sl. Primitive procedures (or operators): the rule
defining procedure r 1is of the form P{r}Q. The
assertions P and Q are the pre- and post~conditions
of Te r must contain a procedure name and
parameter list.

§2. Iterative rules: an iterative rule definition
containing the Boolean expressions P(basis), Q(loop
invariant), R(iteration step goal), L(control test)
and G(rule goal) is a rule of inference of the
form:

P, |- Q, QAL{?}R, R{2?}QV°L , “LDG

P{while L do ?;.27?}G

A Frame defines a programming environment using

the

These rules are used in conjunction with the

iy et

Page 7

S3. Definitions: A definition of G in terms of P
is a logical equivalence |~ PZG.

S4. Axioms: A frame axiom P is a logical axiom |-
P'

Sl type rules generate a single line of code, The result is a

module consisting of a single operation:
r
{

S2 type rules generate code for an iteration loop as represented

in the module:

ITERATION ACTION

STEP Rl

(R{¥QV7L) (Q L{}R)
NO

INITIALIZATION ® YES
P{}Q

Where INITIALIZATION and ITERATION STEP are generated by a

specified
combination of 8l, 852 and S3 type rules, and ACTION is generated by

some combination of Sl, S2 and S3 type rules.

S3 type rules construct modules from modules (submodules) produced

by specified Sl, S2 and 83 type rules, through composition or

alternation.

- B e——— 4um-nnu-!-sunu-umuumuun-unn---u-uu--—1--||

Page 8

2.3 Program Generation

The theorems are used in a recursive subgoaling procedure to
generate information retrieval programs. The recursive procedure first
builds a plan for the target program in depth-first fashion. The plan
is a tree and the branches from a node correspond to the subgoals
spawned at that node. For example, if the current goal is R, and R is
not directly true in the current state, then the system examines the
set of theorems and selects one which has a post-condition, say Q, that
matches the current goal, i.e. R& Qo for some substitution of . Qet
may not be a fully bound formula, but a complete binding will be

constructed during the generation process.

If the rule instance PoX{A}Qo{ achieves R as above, then Pe<
becomes the current goal. If I{B}PeXOC (I is the current state), then
by the rule of composition I{B;A)QeXxol, and by the rule of
consequence, I{B;A}R. The system finds B;A as the program to achieve R

from the initial state I.

The subgoaling process does not wusually distinguish, except as

noted below, between the types (S1 through S4) of Frame rules. The
result is that all rules are scanned for a post-condition matching the
] current goal. The subgoaling process does distinguish between rules of
type S4 and other rules in that only S4 rules or the set of assertions
can be wused to prove the pre-conditions of an S4 rule. Rules of type

’ S3 and S4 are distinguished from the other rules in that they cannot

Page 9

change the set of assertions. This is a consistent distinction. Since
) only program segments can effect changes in the environment (when
executed) ; only rules describing their effect should be allowed to

change the state description.

Rules may be specified having a pre-condition which matches an
assertion in its post-condition. Such a rule may be recursive, If it

is not recursive then it may not be wused to satisfy its own

S

pre-condition.

With the APG, Buchanan also introduces an interesting improvement

) to the logic of programs by introducing uncertainty. The value of an
assertion can be TRUE, FALSE ot UNCERTAIN. This uncertain logic

recognizes that there exist ass.~lions which can only be meaningfully

» tested duriuy execution of the <enerated program. Use of a rule
contalning an wuncertain assertion in its pre~condition will result in

the generation of a conditional procedure.

Therefore use of such a rule produces the module

) YES

NO

- - . o) - e e ’ " - s ? . y R

Page 10

Where TEST represents code which tests for the truth of the partial
) precondition in question. A is the module which the rule hqying that
precondition generates assuming that the partial precondition is true.
B is the module which results from invoking the last rule which was
) ~ fully instantiated when called with the current state of the world, but

assuming the partial precondition to be false.

The Frame is compiled by the APG to form the DMLP. Each rule in
the Frame results in a Micro-Planner theorem. Such Micro-Planner
constructs are not actually theorems, but that terminology will be

adhered to because of historical precedent.

Each compiled theorem contains premises (or a pre-condition) and
conclusions (or a post-condition). For example, the Micro-Planner
) theorem corresponding to the rule P{A}R has a theorem body for the

pre~condition P and a calling pattern for the post-condition R.

Assertions describe the pre-~ and post- conditions of the rules.

H
Assertions also describe the current state.
&
|
.
» . i
|
b
;‘ Es '
S5}
b
L'
4
-

B PO) P P T 0 M e A ST SO ST 57 A 0 N R R E T R A, R AR e e

|
i
:
3
Lb“ b i i st it

PR,
NP,

™

3.0 THE HI-IQ QUERY LANGUAGE

3.1 Introduction

Gerritsen [1975] developed the Hlerarchical Interactive Query

language for the specification of hierarchical reports,

Because of the preponderance of hierarchies in report structure,
statistical calculation, and logical quantification, it seemed only
natural to give HI~IQ a hierarchical structure. The hierarchical query
structure 1is reinforced visually for the user by further indentations

of system prompts for every hierarchical level referenced.

A HI-IQ query contains one or more hierarchical levels. Each
level 1is used to specify a matrix in the output report, to specify the
calculation of a statistic, or to check the truth value of a quantified
condition. A simple one level query results in a report consisting of

a single matrix which contains no statistics.,

It is not unusual for the definition of a particular level to be
interrupted by the definitions of lower levels. If the user desires
the calculation of a particular statistic, say an average, then the
system next asks him to define the calculation of that average before
proceeding with the further specification of the level in which the
average was requested, The prompt indentation indicates to the user

which hierarchical level he is currently in.

AT LT R A 0 o R TR RN

Page 11

/‘4;17

s s e

- ' i o
4 -~
5.2

R

Page 12

Figure 3-1 presents a BNF description of HI-IQ. Since HI-IQ is an
interactive language, only portions of a query are typed by the user.
To distinguish such entries from the characters typed by the system,

all system typed characters have been underlined.

Backus=Naur Form (BNF) [Naur et al 1960] is a formalism invented
for the description of programming languages, specifically the
grammatical structure (syntax rather than semantics) of those
programming languages. BNF can also be used to describe
non-programming languages, such as a restricted subset of English, An
excellent description and illustration of BNF can be found in [McKeeman

et al 1970].

The sequence of prompts for a particular hierarchical level always
consists of three subsequences. These three subsequences are <Record

name>, <CONDITION LINES> and <ITEM LINES>,

D e e e e

g.

:‘

[}
g
"-,

.
-5

<QUERY>

<LEVEL>

<CONDITION LINES>

<CONDITION LINE> ::

<TEST>

<I0CR>

<IO0C>

<REL>

<ITEM LINES>

<ITEM LINE>

<COMMAND>

<STAT>

<MODIFIER>

e

<LEVEL>

PRIMARY RECORD FOR (<COMMAND>)
1 <Record name>

CONDITIONS FOR RETRIEVAL
<CONDTION LINES>

ITEMS 25 STATS <MODIFIER>
<ITEM LINES>

s:= % NIL |
<CONDITION LINE> <CONDITION LINES>

*OR | *ALL <LEVEL> |
*ANY <LEVEL> | *<TEST>

(<10C> <REL> <IOCR>) |

(<10C> <REL> <STAT>) <LEVEL> |
(<STAT> <REL> <IOCR>) <LEVEL> |
(<STAT> <REL> <STAT>) <LEVEL> <LEVEL>
RUNTIME | <I0C>

<Item name> | <Constant>

LE | LT | GE | GT | EQ | NE

ANIL |
<ITEM LINE> <ITEM LINES>

*<10C> | *<STAT> <LEVEL> |
:REPEAT <LEVEL> | :pNE <LEVEL> |
*COND <TEST>

MAIN | ALL | ANY |
REPEAT | ONE | <STAT>

COUNT | TOT | AVE |
MIN | MAX

TO BE DISPLAYED | FOR AVE |
FOR TOT | FOR MIN | FOR MAX

Figure 3~1. BNF for the HI-IQ language
(System prompts are underlined.)

Page 1

Page 14

3.2 <Record Name> Subsequence

The <Record name> subsequence consists of a single system prompt

T

and user reply wherein the user must name the context record for the
current hierarchical level, It 1is possible to have the system
determine the context record for a particular level from the other two
prompt subsequences. This would further reduce the knowledge that the
user must have to use the system, but it would also increase the

possibility of undetected errors because of the loss of redundancy.

3.3 <CONDITION LINES> Subsequence

The <CONDITION LINES> sub-~sequence of prompts in a query level is
k of indefinite length. This prompt sequence defines the condition that
must be true to retrieve the context record. The condition is
specified using the logical connectives AND and OR and a set of tests
in a disjunctive form. That is to say, if A, B, C, and D are all
tests, AABVCAD is equivalent to (AAB)V(CAD). However, the latter

; ! specification is not allowed; the user cannot control the bindings of

the logical connectives, AND and OR. This is not a major restriction.

F : Any condition can be specified in disjunctive form, albeit in a
} F cumbersome way. Because of the immediate binding of AND, it is the
w '
- default connector and need not be specified by the user.
i .
!‘ g
P &
| : ' ¥ E
| ‘
2
[
4
+

A N T W OO ST A .0 Pbgge .SF,

.

>

» o,
¥

ol

vy -

Page 15

Particular tests are of the form (A REL B). REL can have one of
six values: EQ, NE, LT, LE, GT, GE. "A" can be an item name, a
statistic, or a numeric or non-numeric literal., "B" can be any of
these;. in addition "B" can be the keyword RUNTIME. The use of
RUNTIME signals that the generated program will be an interactive
program. If execution of the generated program becomes dependent on an
actual value for "B", it (the generated program) will prompt the user
with "A REL?", and the user's reply will be used to determine the truth

value of (A REL B).

Universal or existential quantification can be specified as part
of a condition. Since quantification is only meaningful over a set of
possible values, the user must be ready to define a new hierarchical
level for every quantifier specified. After encountering either of the
quantifiers ALL or ANY, the system automatically proceeds to prompting

for the definition of a new hierarchical level,

The system also proceeds to a new hierarchical level whenever the
user specifies a statistic so that the calculation of the statistic can
be defined. A statistic 1is specified with one of the following

keywords: COUNT, TOT, AVE, MIN, and MAX.

e TPet——yre——— T R

PR

Page 16

CONDITIONS FOR RETRIEVAL
*(PATNO EQ RUNTIME)

¥ (PATAGE LT 25)

FNIL

CONDITIONS FOR RETRIEVAL
*(SALARY LT 6000)
*0R
*(SALARY LT 10000)
*ANY
PRIMARY RECORD (ANY)
*DEPENDENT
TONDITIONS FOR RETRIEVAL
*(AGE LT 21)
*NIL
ANIL

o~ o o -

Figure 3~2. Two examples of retrieval conditions.

Figure 3-2 illustrates two retrieval conditions. The first is a
simple conjunction of two tests. The second condition indicates that a
record (employee) should be retrieved if the employee has a salary
below 56,000, or if he has a salary below $10,000 and at least one

dependent child.

3.4 <ITEM LINES> Subsequence

THE <ITEM LINES> subsequence is also of indefinite length and is

used to define the matrix associated with the current hierarchical

5 level. This matrix is either an output matrix (for the report) or a
' statistical matrix, depending on the command which invoked the current

! hierarchical level. The system calculates the statistic in each column

e

S
v

* 2
-

ke
‘ <

7]

Page 17

of a statistical matrix. In other words, every column is totalled or
averaged, or the minimum or maximum is found in every column of the

statistical matrix.

The reply to a prompt in the <ITEM LINES> subsequence must be any
one of the statistical commands, an item name, the REPEAT command, the

ONE command, the COND command or NIL. NIL terminates the subsequence.

Entering an item name or COUNT defines a column of the matrix.
Entering any other statistic will define one or more columns of the
matrix depending in turn on the number of columns in the matrix defined

for that particular statistic.

Any of the commands (with the exception of the COND command) will
cause the system to initiate a new hierarchical level, so that the user
can further define the action associated with the command. The REPEAT
command 1is wused for generating hierarchical reports. Figures 3~3 and

3-4 illustrate a complete query and the report it defines.

Page 18

PRIMARY RECORD(MAIN)
*DOCTOR
CONDITLONS FOR RETRIEVAL
ANIL
TTEMS OR STATS TO BE DISPLAYED
*DOCNAME S
*DOCAGE
*SPECIALTY
XREPEAT
PRIMARY RECORD (REPEAT)
*PATLENT
TONDITIONS FOR RETRIEVAL
* (PATAGE GT 21)
ANIL
ITEMS OR STATS TO BE DISPLAYED
*PATNAME SO ARt
*PATAGE
*DIAGNOSIS
*NIL
ANIL™

Figure 3-3. Query (Pl) for the report of Figure 3-4

FREDERICKS 41 G.P,.
SMITH 48 BOTULISM
JONES 22 APPENDICITIS

BROWN 36 INTERNIST

SMITH 48 BOTULISM
SLENDER 52 GEN SURGERY
JONES 22 APPENDICITIS

BLUE 49 GYNECOLOGY
WILLIAMSON 31 MISCARRIAGE

Figure 3~4. A hierarchical-matrix report.

The top level matrix of this report contains three columns for

DOCNAME, DOCAGE and SPECIALTY. The secondary matrix, hierarchically

g
-y

nested in the top level matrix, also contains three columns, PATNAME,

Page 19

PATAGE and DIAGNOSIS.

Note that in Figure 3-3, the prompt sequence for both levels of
the report included all three sub-sequences as defined earlier. This
query specifies a condition in the second level (on the retrieval of
patients) . This condition will not affect the retrieval of DOCTOR
records or any other records not within the context of the PATIENT
record, The condition (PATAGE GT 21) applies only to this particular
context of the PATIENT record. The PATIENT record could have been
referenced elsewhere 1in the query, and the condition (PATAGE GT 21)

would not have applied.

The function of the ONE command is very similar to the REPEAT
command except that only the first line of the matrix at the next level

will be retrieved and displayed in the report. If the REPEAT command

in Figure 3-3 is replaced with a ONE command, then the resulting report
would resemble Figure 3~4 with the exception of the third 1line (which

would not be included).

The user can control the appearance of particular attribute values
on a particular line with the conditional output (COND) command. It is
especially useful for exception reporting. Subsequent to encountering
the COND command, the system responds as if a new hierarchical level

L had been specified, except that the first prompt sub-sequence is
skipped. The first sub-sequence is not necessary because COND cannot

change the record context.

Page 20

There are a few other cases in which the full prompting sequence
is not applicable, and other prompting sub-sequences will occasionally
be suppressed. The third sub-sequence is not entered for the COUNT
command because counting applies only to line occurrences of a matrix,

the columns of the matrix do not affect it.

Similarly, it does not make sense to specify a matrix within the
context of a condition quantifier (ALL or ANY), so again the third

prompt sub-sequence is not entered by the system.

3.5 Port Selection

When the query has been completed the system tells the user which
items, 1if any, might be used for a calculated direct access. To use
calculated keys for port selection, each disjunct for the top level of
the query must have one or more items meeting the qualifications listed
below. For each disjunct the user is asked to select one of these
items or none. If the user selects none for any one disjunct, then no
calculated keys are used. Since an area search will have to be made to
test for the disjunct for which no calculated key was selected, the
other disjuncts can also be tested during the area search, Proper
selection can reduce searches through the data base. For an item to
qualify for use as a calculated key it must satisfy all of several
restrictions:

a) It must be defined as a calculated key.

b b) It must have been used in a test with an

Page 21

equality relation.
c¢) The item must be contained in the context
record for the top level of the query or in a
record higher in the hierarchy than the context
record for the top level of the query.
The need for the first two restrictions is obvious, The third

restriction is temporary, it 1is neces<.ry until a set of rules to

govern the effiecient use of calckeys not meeting the restriction can

be developed.

T T ey e — j

Page 22

4,0 MODIFICATIONS OF HI~IQ AND APG
4.1 Introduction

In applying the APG System to the generation of the programs to
produce reports from information in network type data bases, Gerritsen
[1975) found it necessary to extend the original system. In the
original system, program construction was accomplished through applying
rules of the type P{A}Q, where Q contained a complete and specific
description of the desired goal. Such a description of the desired
hierarchical report would be long and complex. The 1length and
complexity would cause two problems. First, rules to handle such goals
would themselves be rather complex and therefore difficult to
comprehend. Second, the number of different ways the goals can be
broken into subgoals increases with the length of the goals. Since the
breaking of the goals into subgoals is what builds the search tree,
such long, complex goals could lead to very large search trees. This
could be costly to system efficiency, since search is carried out by a

depth first search of the tree.

To avoid these problems, Gerritsen had HI-IQ add assertions to the
program environment (the initial state). Therefore, rather than posing
a goal which is a complex description of the desired report, the
initial goal 1is simply "write a program'. When the program generator
requires descriptions of the various aspects of the desired report it

finds them in the state description.

e e - e 2 E o " -

Page 23

In their paper, Sussman and McDermott [1972] discuss what they
feel are the problems with Micro~Planner. Two of these are:

1) The inefficiencies of algorithms which employ backtracking

or for that matter inefficiencies caused simply by
maintaining the information needed to allow backtracking.

2) The lack of control over large goal invoked systems since

it becomes difficult for the human to follow all the subgoals

the system might create and try to prove in attempting to

achieve its goal.

While these problems might exist in the APG System, the system
does have some very strong benefits:

1) The use of the Logic of Programs aids in showing program

correctness,

2) It provides a convenient method for expressing programming

rules.

3) It allows the rules to be presented in a form that

facilitates human comprehension of the logic involved.

In Gerritsen's application, the only search (planning) activity
required is to determine the path through the network (i.e. how to get
from the record defining one level of the query to the record defining

one of that level‘s sublevels) and thereby verify that a user's request

T T

is logical vis~a-vis the data structure.

S R

Page 24

One of the major steps taken in the extension of Gerritsen‘s work
that is described herein, was to expand the assertions generated by
HI-IQ to include the results of that search. With this extension, the
program generation phase became a deterministic procedure, and it was
no longer necessary that the program composition rules be theorems (in
the Micro-Planner sense) to allow backtracking. Therefore the compiler
g that translated the rules into Micro-Planner theorems was modified to
translate them into LISP functions. (i.e. So that program generation

\ would proceed deterministically rather than nondeterministically.).

This changeover necessitated one further modification of the

system. As explained in Section 2.2, when a rule containing an
uncertain assertion (i.e. one that is neither true nor false in the
current state) in 1its pre-conditions 1is used, the generation of a

conditional procedure will result. This conditional procedure is

: obtained by invoking the most recent fully instantiated subgoal (i.e.

that subgoal for which all variables were defined when it was invoked). ’

The state used in reinvoking this subgoal is the state that existed
when the uncertain precondition was encountered but asserting the

precondition to be false. In modifying the system to produce LISP

functions rather than Micro~Planner theorems, it was no longer possible
to permit unbound variables. This made it necessary to explicitly
state which rule was to be invoked to generate the conditional
procedure. Explicit inclusion of alternation in the programming rules
should be an improvement vis-a-vis the original implementation.

(Proposed plans for changing this method of generating conditional

Page 25

procedures are mentioned in Section 9.2.)

The system functions in two phases. First the Request Handler
(Sections 4.2 & 5.) interactively accepts the query from the user and
generates a set of assertions describing that query. Then the Program
Generator (Sections 4.4 & 6.) takes the assertions describing that
query plus assertions describing the data base (Section 4.3) and

generates a program to answer that query. See Figure 4-1.

DATA BASE ASSERTIONS
DESCRIPTION|
Request Program| {COBOL
QUERY | Handler GOAL JJWriter PROCEDURE
—ZL DIVISION
ASSERTIONS
S

Figure 4~1. System flows.

4,2 Request Handler Assertions

The following is a description of the assertions generated by

HI-IQ. These assertions are generated for a specific request and are

included in the initial state description. The user specifies his

request by responding to prompts from the Request Handler, and then the

Page 26

Program Generator is given the task to generate a program. The

possible assertions are shown in Figure 4-2,

The Request Handler describes the query with a set of assertions.

An assertion must conform to one of the templates in Figure 4-2,

There is exactly one TOBEOPND assertion per query. The AREAS list
indicates which areas of the data base contain records that will be
accessed during the processing associated with the query.
Determination of the AREAS list is not simply accomplished by tallying
the names of the areas that contain the records referenced in the
query. It is possible that the generated program will access areas not
directly referenced via record names in the query. This situation
occurs if an access path between two records passes through an
intermediate record. Determination of the AREAS 1list therefore

] involves a determination of all access paths.

Page 27 1

TOBEOPND (AREAS)
AREAS is a list of all areas containing records
which may be accessed in the query.

LINKS(TYPE,MTHD,REC1,REC2, LEVEL, PATH)

LEVEL is a Dewey-decimal identification of a query
level. This level has REC2 as the context record
and was entered with the command indicated by TYPE
from a level which had RECl as the context record,
and is reached by following PATH through the data
base network. MTHD is always equal to '"PATH"
except if the LINKS assertion is describing the top
level and a port record is being used to enter the
data base, in which case MTHD is equal to "PORT".

FOR(COND,LEVEL)
COND specifies the condition whose truth must be
established prior to any processing of the matrix.

TOBEUSED(ITEMS,LEVEL)
ITEMS identifies the columns in the matrix for
LEVEL..

ISVAR(VAR)
VAR is a system generated variable.

A ——

Figure 4~2, Templates for Request Handler assertions.

LINKS, FOR and TOBEUSED are each asserted at most once for every

level specified in the query. There is a one to one correspondence
between these three and the three subsequences of prompting. The LINKS
4 assertion defines the context of a query level and assigns the LEVEL
identifier. The FOR assertion defines the retrieval condition, and the

TOBEUSED assertion defines the matrix.

A Dewey-decimal scheme is used to identify the levels of the
query. The top 1level is indentified as X. The first level occuring

within the context of the top 1level is identified as X.l. X.2.1

Page 28

identifies the first hierarchy in the second hierarchy occuring within

the top level of the query.

4.,2.1 LINKS Assertion ~

The TYPE parameter of LINKS is actually a 1list containing two
sub—-parameters. Values of the first sub~parameter are limited to the
names given in Figure 4~3. With the exception of MAIN, these are all
commands which invoke new query levels. MAIN is used to identify the
top level of the query and has the same interpretation as the REPEAT

command.

The second TYPE sub~parameter is a unique system-created variable
name. This variable is wused for counting record occurences if the
first sub-parameter is COUNT or AVE, or for controlling quantification
if the first sub~parameter is ONE, ALL or ANY. Although TYPE will

always contain a variable name as its second parameter, this variable

is only used by the Program Writer if the first parameter in TYPE is

one of the five commands indicated above.

The PATH parameter contains information about the path through the

data base network which is followed to reach the context record for

LEVEL. This parameter is discussed more fully in Section 5.2.

Page 29

MAIN ALL TOT
REPEAT ANY AVE
ONE COUNT MIN

MAX

Figure 4-3 possible values of the TYPE parameter in LINKS

4.2.2 FOR Assertion -

e i

The COND parameter of FOR is a list containing all of the tests
specified in the CONDITIONS FOR RETRIEVAL for a particular query level.
A test is described in a sub~list containing seven entries. The first
entry is the relation involved in the test and the second and fifth
entries are the arguments of the test. The third entry gives the query

level which defines the calculation of the first argument. If the

second/fifth entry is a constant, the fourth/seventh entry is simply
"CURLEV". If the second/fifth entry is a statistics command, the
fourth/seventh entry is simply '"NEXTLEV". 1If the second/fifth entry is
a data item, the fourth/seventh is a path, as described in Section 5.3,
which leads from the context record for the current level to the record
containing the desired data item. Similarly, the sixth entry gives the
level number associated with the second argument of the assertion.
These level numbers will be the same as the value of LEVEL in the FOR

assertion if the argument is not to be calculated but is a constant or

is available from the context record.

Page 30

For example, such a list might be (EQ COUNT X.l1 <pathl> 5 X
<path2>). This test indicates that a count, as defined in the X.l
LEVEL, must be equal to 5. The path parameters are not shown here

explicitly. For information on these parameters see Section 5.3.

Disjunction and conjunction is indicated in the COND 1list as
follows. A simple 1list of tests represents a conjuction of those
tests. A list in turn, of such conjunctions represents a disjunction.
This 1list structure bears a close resemblance to the disjunctive form
that the user must use to phrase the retrieval condition. If A, B, C

and D are tests, then the COND list for AABVCAD would be ((A,B)(C,D).

DMLP constructs tests to enforce quantification. If the wuser
specifies universal quantification, the system inserts the test (ALL EQ
0). The Program Writer will eventually construct the program so that a
variable associated with ALL (defined in the TYPE parameter of the
LINKS assertion) is set to non-zero if the associated condition is ever
false. This variable, also called a quantification flag, signals the

truth value of the entire condition.

Similarly, specifying existential quantification results in a test
(ANY EQ 1). The variable associated with ANY is set to non-zero in the

generated procedure if the associated condition is ever true.

Page 31

4.2.3 TOBEUSED Assertion =~

TOBEUSED describes the matrix associated with a query LEVEL. The
ITEMS parameter is again a list, each entry describing a column of the
matrix, The entry describing a column is in turn also a 1list
consisting of four entries. The first of these is an item name,
statistic command, or constant. The second entry indicates the query

level where the calculation of the entries in the column is defined.

The fourth entry assigns a variable name which can be wused by the
system for the calculation of a statistic. If the first entry is a
constant, the third entry is simply 'NIL". If the first entry is a
statistics command the third entry is simply "NEXTLEV". 1If the first
entry is a data item, the third is a path, as described in Section 5.3,
which leads from the context record for the current level to the record

containing the desired data item.

As an illustration, Figure 4~4 gives the complete set of
assertions derived by the Request Handler from the query of Figure 3-3.
It is these assertions along with assertions describing the data base,

that the Program Writer will use to generate the desired procedure.

o

T

TOBEOPND ((Al A2))
LINKS ((MAIN) PATH DOCTOR X ((NIL DOCTOR AREA Al DNHIER)))
LINKS ((REPEAT X&)
DOCTOK
PATIENT
(X « 1)
((DOCTOR TREATMENT SET TREATING DNHIER)
(PATIENT TREATMENT SET TREATMENTS UPHIER)))
FOR ((((GT PATAGE (X . 1) CURLEV (21) (X . 1) CURLEV))) (X . 1))
TOBEUSED (((DOCNAME X CURLEV X1)
(DOCAGE X CURLEV X2)
(SPECIALTY X CURLEV X3)
(REPEAT (X . 1) NEXTLEV X10))
X))
TOBEUSED (((PATNAME (X . 1) CURLEV X5)
(PATAGE (X . 1) CURLEV X6)
(DIAGNOSIS (X . 1) NIL X7))
(X o LN
ISVAR (X10)
ISVAR (X7)
ISVAR (X6)
ISVAR (X5)
ISVAR (X4)
ISVAR (X3)
ISVAR (X2)
ISVAR (X1)

Figure 4~4 Assertions describing the query of Figure 3-3

4.3 Assertions.

A Frame consists of a set of logical statements or rules. These
rules are of four different types as discussed in Section 2.2 and
reviewed here:

Sl Primitive procedure rule.
S2 Iterative rule,

S3 Definition rule.

S4 Axiom.

Rules and the current state are expressed with assertions. Each

assertion must correspond to a template with a semantic interpretation.

Page 33

e.g. the assertion CONTAINS(PATIENT,’ATNO) states that the PATIENT

record contains the PATNO item,

Evaluation of an assertion determines if it is true or false in
one of several ways:

(a) 1if previously stated to be true or false (i.e.
true or false in the current state)

(b) by evaluating a rule which has the assertion
in a post-condition

(c) by evaluating an ordinary LISP functions (i.e.
those not output by the APG from program generation
rules).

Rules may have assertions which contain variables which are to be
bound to values when a match is made with an assertion of the same
pattern in the data base describing the current state. Such variables
are denoted in the input rules by (MATCH <variable name>). e.g. If
CONTAINS(PATIENT,PATNO) is true in the current state, then evaluation

of CONTAINS((MATCH RECX),PATNO) will bind RECX (a variable) to PATIENT.

DMLP uses 55 different types of assertions. Five of these were
described in Figure 4-2, Figure 4~5 describes the five used to define
the database structure. An earlier paper [Gerritsen 1974] illustrates
the ease of conversion from a Data Definition Language specification of

a data base to a set of assertions.

Page 34
INAREA(RECORD,AREA)
RECORD is contained in AREA.
CONTAINS (RECORD, ITEM)
ITEM is is contained in RECORD.
DBKEY (RECORD, ITEM)
ITEM is a data base key for RECORD.
CALCKEY(RECORD, LTEM)
ITEM is a direct access attribute (calculated key)
; of RECORD.
HIERARCHYGROUP(RECORD1, RECORD2, SET) F
RECORD1 is the owner of SET, and RECORD2 1is a
member of SET.

Figure 4=5. Assertions used to describe the data base.

4.4 Rule Assertions

4.4,1 Assertions For The §£ Rales. =

Figure 4-~6 contains the assertions which describe the results of
single program steps. These assertions occur as post-conditions of
rules of type Sl. Those parameters which are underlined in Figure 4-6
have a uniqueness property. For example, the system will insure that a
particular ITEM will contain only one VALUE: If the assertion C(XI1,0)

L has been made followed by a later assertion C(Xl,1), then the system

will erase the first assertion.

[
*
i*;

OPENED (AREAS)
AREAS is a list of areas that have been opened.

CLOSED(AREAS)
AREAS is a list of areas that have been closed.

STOPPED(NAME)
The program NAME has been stopped.

ACCEPT(VARIABLE, ITEM,RELATION)
VARIABLE contains the value entered by the user in
response to the prompt "ITEM RELATION?"

CURRENT (RECORD,LEVEL)
RECORD is current at LEVEL. e.g., The named record
has been found within the program segment
associated with the level identifier.

INCORE(RECORD, LEVEL)
The named RECORD is in core and available for
processing to the program segment associated with
LEVEL.

C(ITEM,VALUE)
The named ITEM contains the given VALUE,

ANYOUTPUT(ITEMS,LEVEL)
ITEMS is a list of the columns of a matrix (that
has been output at the given level)

FOUNDOWNER(RECORD1, RECORD2, SET, LEVEL)
The named RECORD! has been found via the SET using
RECORD2, a member of that SET and both records are
now current at the LEVEL specified.

FOUNDNEXT(TYPE,RECORD,UNIT, LEVEL)
The next RECORD of the specified UNIT which is
either an Area or Set as specified in TYPE has been
found and is current for the LEVEL specified.

Figure 4=6 is continued on the next page.

Page 36

FOUND(RECORD, ITEM, VALUE , LEVEL)
The named RECORD has been found wusing ITEM as a
calculated key with the given VALUE such that
RECORD is current for the specified LEVEL.

FOUNDUSING(RECORD,KEY, LEVEL)
The named RECORD has been found using the data base
KEY and is current for the specified LEVEL.

FOUNDFIRST(TYPE,RECORD,UNIT,LEVEL)
The named RECORD has been found as the first record
of the specified UNIT which is either a Set or Area

as specified by the value of TYPE. The record is
current for the specified LEVEL.

—

Figure 4-6. Assertions which indicate the results of single
program statements.

The assertions in Figure 4-6 appear to describe the status of an
executing program. The descriptions are more properly interpreted for
program generation if each is read as if preceded with the phrase '"Code

has been generated such that...".

———

ISITEM(LTEM)
ITEM is contained within some record as an
attribute or data base key.

BCA# (COMMAND)
COMMAND has the value "COUNT"" or "AVE".

BTMMA# (COMMAND)
COMMAND has the value "TOT", "MIN", "MAX'" or "AVE"

=(A,B)
A is equal to B.

EQ# (A, B)
A is equal to B. This assertion differs from the
preceeding one in that its value can be uncertain
if, for example, either A or B are program
variables.

TEST(CONDITION,LEVEL)
The CONDITION 1is true for the program segment
defined for LEVEL. CONDITION is a list consisting
of a relation and two arguments. When the
arguments are program variables, TEST will have an
uncertain value.

Figure 4~7. Other assertions.

4.4.2 Miscellaneous Assertions. -

Figure 4-7 contains a set of assertions which are difficult to
classify. The first is directly derivable from the assertions
describing the data base structure., The next three are used to test

the values of their arguments, and the last two are used to test values

or insert code to test values.

4.,4.,3 LISP Functions -

Some of the assertions used in the preconditions of rules are not
used in post conditions of other rules or in the current state. Such
assertions may be evaluated by LISP functions. Assertions for which
there exists a LISP function have ## as the last two characters in

their names. These assertions and their meanings are listed in Figure

4-8.

POPPATH#{# (PATH)
This assertion is only evaluated if MTHD 1in the
LINKS assertion for the top level is "PORT'. It
pops the first item from PATH in the LINKS
assertion for the top level.

POPFORLIS##(LEVEL)
This assertion pops the first item (disjunct
description) from the COND 1list in the FOR
assertion for LEVEL.

STAT## (COMMAND)
COMMAND is one of the statistical commands.

RETQ### (COMMAND)
COMMAND is a retrieval quantifier (ANY or ALL).

REPQ## (COMMAND)
COMMAND is a reporting quantifier (MAIN,REPEAT or

ONE) .

LITERAL##(ITEM)
ITEM is a number or non-numeric 1literal (enclosed

in single quotes).

BINDITM## (ITEMS)
The variable ITML has been bound to a 1list of
printable items extracted from the ITEMS list,
This is done to eliminate commands which cause the
printing of sub-matrices and also to replace
statistic commands with the variable containing the
value of the statistic.

Figure 4=8 is continued on the next page.

Page 40 1

READL##(ITM REL)
This assertion returns the value "ITM REL?", which
is wused in the generated program to prompt the
user,

CONTEST## (ACTION,ARGL, ARG2)
This assertion returns a test which will be wused
for terminating a loop. Appropriate tests for
early termination of the loop depending on the
ACTION of the 1loop are also generated. An early
termination test will involve ARGl and ARG2.

UNCERTERRSTAT## ()
This assertion always evaluates to true. However
it also insures that all knowledge about the value
of ERRORSTATUS becomes uncertain. This is used to
indicate that the value of ERRORSTATUS becomes
unknown following a data base access.

Figure 4-8. Assertions evaluated by LISP.

0Of the assertions in Figure 4-8, the first two are used to update
the state of the world for generation of conditional procedures. The
next four assertions (STAT## through LITERAL##) are very simple and

return true or false depending on the value of their single parameter.

The next assertion (BINDITM##) is used to bind variables to values 1
extracted from lists. This assertion is necessary because of the list |
structures contained in the assertions generated by the Request

Handler.

The last three assertions are wunusual in that they are not

. evaluated for truth or failure. Instead, they return a value or change

the state as is explained in Figure 4-8.

Page 41

Occasionally the pre-condition of a rule will include standard
LISP or Micro-Planner predicates (see [McCarthy et al 1972] and
[Sussman and Winograd 1972]). These predicates are illustrated in
Figure 4=9. Note that the functions CAR & CDR in Figure 4~9 can be
combined to form functions. €e8e CADR(A) would be equivalent to

CAR(CDR(A)).

SETQ(A,B)
Sets variable A to the value of B.

NULL(A)
A is null.

CAR(A)
Returns the first element of the list A.

CDR(A)
Returns a list equivalent to A with its first
element removed.

* APPEND(A, B)
Adds list B to the end of list A.

ATOM(A)
Returns true if A is not a 1list but a single
element.

LIST(AB;Cseiis)
Constructs a list with elements A, B, C, ... Note
that A, B or etc., can be atoms or lists.

SUBST(A,B,C) Substitutes A for all occurences of B in
list C.

FIGURE 4-=9. STANDARD LISP and Micro~Planner predicates used
in the rules. !

B B

——

Page 42

5.0 RULES FOR PLANNING

5.1 Downward Migration 9£ Attribuates

The planning required of the system is that of ‘'navigating"
through the data base network. Before discussing this planning, it is
necessary to discuss the concept of downward migration of attributes
(similar to Virtual Source in the CODASYL DBTG specification [1971]).
This is the concept that in a hierarchical data base structure, all
attributes of a record can also be thought of as being attributes of
any records which that record owns, and any records that those records
own, etc. e.g. Consider the data base as illustrated in Figure 7-1.
While Hospname is not actually a data element of the PATIENT record,
each PATIENT record would be associated with only one Hospname value.
That would be the value contained in the HOSPITAL record which owns
that PATIENT record. Therefore, it is possible to think of Hospname as

an attribute of a PATIENT record.

5.2 Loaction 9£ Context Records

Now, as to the problem of navigating through the data base
network, there are two instances when the Request Handler must do this.
First, there is the problem of getting to the context record for a

given level. Records can be located in three different ways:

Page 43

1) By a set search, or set ownership

2) By a calculated key

3) By an area search

While any of the three methods may be used in locating the top
level context record(s), only the first one is used in locating all
other context record(s). In Section 3.1, it was stated that all levels
other than the top level are defined within the context of the higher
levels. e.g. Given the data base in Figure 7-1, in the following
query, the PATIENT record is referred to within the context of the
HOSPITAL record.

PRIMARY RECORD (MAIN)

*HOSPITAL
CONDITIONS FOR RETRIEVAL
FNIL
ITEMS OR STATS TO BE DISPLAYED
*HOSPNAME
*REPEAT
PRIMARY RECORD (REPEAT)
*PATIENT
CONDITIONS FOR RETRIEVAL
*NIL
TIEMS OR STATS TO BE DISPLAYED
*PATNO '
*P ATNAME
*NIL
ANIL™

It is a request for a list of all hospitals, and with each hospital a
list of all its patients. The system would understand that the PATIENT
records would be located by a set search of the PATSET set., A given
record, Record A, can logically be referenced within the context of

another record, Record B, if any of the following three conditions are

satisfied.

Page 44

PR r—

i) B owns a set of which A is a member, or B owns a set of
which C is a member and C owns a set of which A Is a member,
etc.

ii) A owns a set of which B is a member, or A owns a set of
which C is a member and C owns a set of which B is a member,
etc.

iii) A owns a set of which C is a member and B owns a set of

which C is a member, A owns a set of which D is a member and

D owns a set of which C is a member and B owns a set of which

C is a member, etc. In this case Record C is referred to as

a '"common bottom".
In terms of the data base this means the HOSPITAL record could be
mentioned within the context of the BILLENTRY record, or vice versa,
and the PATIENT record could be mentioned within the context of the
DOCTOR record, or vice versa, however, the WORKREC record canmot be

mentioned within the context of the BILLENTRY record, or vice versa.

5.2.1 Set Search =

The system uses a description of the data base structure in terms

of the assertions in Figure 4~2 to check for a path from the context
record on a given level to the context record for each of that level's
sublevels. If no such path exists, the system informs the user with

the message: ''No direct path from to ."" Assuming the system

finds a path, it places information describing that path in the PATH

parameter of the LINKS assertion and the MTHD parameter is set equal to

T o — renp—. -

Page 45

"PATH'", (Section 4.2.1). The PATH parameter is a list of sublists.

There is one sublist for each set involved in the path, Fach sublist

has five elements. They are: |

l. RECH: This is the name of the context record for the current
record on the path.

2. RECL: This is the name of the next record on the path

3. TYP: This is always equal to "SET" for a set search.

4., NAME: This is the name of the set involved.

5. DIREC: This is equal to "DNHIER' if RECH owns the set and RECL is

a member, it is equal to "UPHIER" if RECL owns the set and RECH is
a member.

Therefore given the data base structure illustrated in Figure 7-1,
if the PATIENT record were mentioned within the context of the DOCTOR
record the path would be represented as

((DOCTOR ,WORKREC, SET ,WORKING, DNHIER)
(WORKREC, TREATMENT, SET , TREATING, DNHIER)
(TREATMENT ,PATIENT,SET, TREATMENTS ,UPHIER))

Rules are invoked by the system to try and prove various goals

(postconditions). In the presentation of the rules postconditions are

identified by the preceding >, The body of the rule is what must be

true for the postcondition to be true.

In the rules (EV <expression>) is wused to indicate that

<expression> 1is not a variable or a constant but a function to be

evaluated.

Page 46

There are two rules which the system uses to find the path. They
} are:

UPLINK
[=(RECL, KLC2)A
SbTQ(PATH NIL)] V
[HIERARCHYGROUP (REC2, REC!, ST) A
SETQ(PATH,(EV(LIST (LIST (RLCZ RECL, SET,ST,DNHIER)))))] V
[HLERARCHYGROUP (REC3, REC! §1)A
UPLINK(REC3,RECZ, PATH) A
SETQ(PATH, (EV(*APPEND (PATH,
o (LIST (LIST (REC2,RECL,SET,ST,DNHIER)))))))]

> UPLINK(RECt,REC2,PATH)

COMBOT
; . UPLINK(REC3,REE€L,PATHL) A
: UPLINK(REC3,REC2,PATH2) A
SETQ(PATH, (EV(*APPEND (PATH2,
(SUBST (UPHIER,DNHIER,(REVERSE (PATH1))))))

> COMBOT(REC!,REC2,REC3, PATH)

These are two of the three rules which are still implemented in
Micro-Planner. Therefore the system searches all possible paths ending
at the desired record, wuntil it finds the path or exhausts all
possibilities. The system will choose a path which does not use a
common bottom over one which does. e.g. In the structure illustrated
in Figure 7~1, the system would choose the path HOSPITAL - PATIENT to
get from the HOSPITAL record to the PATIENT record over the path
HOSPITAL - WORKREC ~ TREATMENT - PATIENT., The current implementation
of HI~IQ assumes that at most one path which does not use a common
bottom and at most one path which does use a common bottom exists
between any two records. This is a limitation which is planned to be
eliminated 1in future extensions to the system. It is planned to have
* the system generate all possible paths, and then logically eliminate as

many as possible, (The basis for this elimination will be the

Page 47

difficult part to implement.) Lf more than one path still exists, the
system will then inform the user of the possibilities (along with some
description of the relationship represented by the path) and ask the

user to choose one.

5.2.2 Calculated Keys -

In locating the context record for the top level of the query, all
three of the methods mentioned at the beginning of this section may be
involved. 1If a calculated key is to be used, Section (3.4), the system
again represents the relevant information in the PATH parameter of the
LINKS assertion, but the MTHD parameter is set to 'PORT". The PATH
parameter is a list of sublists. There 1is one sublist for each
disjunct in the top level of the query (as mentioned in Section 3.4,
each disjunct must use a calculated key). Each sublist contains three

parameters. They are:

1. CALC: The name of the data item which is the calculated key.

2, TPATH: 1If CALC is a data item in the context record for the top
level of the query, then this parameter is set equal to that record
name. If CALC is a data item in a record higher in the hierarchy
than the context record for the top level of the query, then this ‘
parameter is a description of a path (Section 5.2.1) leading from 1
the record which contains CALC to the context record for the top
level of the query.

3. VALUE: This is the value which CALC was specified to have in the
query.

v

5.2.3 System Set Search =

If a calculated key is not used to locate the top level context
record then the second alternative the system wili try is a system set
search, This is only possible if the top level context record is a
member of a system owned set, or if a record, which owns a set of which
the top level context record is a member, is a member of a system set,
or etc. In this case the top level context record(s) are located by a
set search, The information is recorded as described in Section 5.2.1.

In the first sublist RECH is set equal to "SYSTEM".

5.2.4 Area Search -

lf neither of the above two methods can be used to locate the top
level context record, then an area search is used. (An area search
treats the area in which the record type may be located as a sequential
file and an exhaustive search takes place.) The relevant information is
again placed in the PATH parameter of the LINKS assertion and the MTHD
parameter is set to '"PATH". The PATH parameter will be as described in
Section 5.2.1, however there will be only one sublist. In that
sublist, the RECH parameter is set to "NIL", the RECL parameter is set
to the name of the top level context record, the TYP parameter is set
equal to "AREA", NAME is set equal to a list of the names of the areas

to be searched, and the DIREC parameter is set equal to '"DNHIER".

: Page 49

L 5.3 Locatlon Of Data Item |

The other instance in which planning is necessary is when a data
! item name used within the context of a given record is associated with |
that record through downward migration of attributes. The system ‘

|
places in the FOR or TOBEUSED assertions (Sections 4.2.2 and 4.2.3) the]
description of a path leading from the context record for the level in |
which the data item name is used to the record in which the data item

is contained. The path is represented as described in Section 5.2.1,

except that if the data item is contained in the context record for the
level in which the data item is wused, then instead of the 1list
describing the path the parameter is simply set equal to "CURLEV". The 1
system finds the path by first trying the UPLINK rule (Section 5.2.1).
It that fails it tries the following rule.
ONPATH

LINKS(DUM!,HREC1,REC2, LEVN, PATH})A

[[LSCOMBOT (PATHL) A

UPLINK(CB,REC3,PATH)] V

[TATOM((EV(CAR LEVN))) A
ONPATH((EV(CAR LEVN)),HREC2,HREC!,PATH)]]

> ONPATH(LEVN,REC2,REC3,PATH)

This is the third rule which is stiil implemented in Micro~Planner.
ISCOMBOT is a function which returns TRUE if PATH! has a common bottom
and FALSE if it does not. An example of a common bottom is record C as |
described in (iii) of Section 5.2.1. (e.g. In the example (Section

. 5.2.1) of the path from the DOCTOR record to the PATIENT record, the
TREATMENT record is a common bottom). Essentially what ONPATH does is

to work backwards up the path which leads from the top level context

record to the context record of the level in which the data item name

Page 50

was used. For each common bottom found, it tries to UPLINK from that
common bottom record to the record which contains the data item, Note

that in the discussion in Section 5.1, downward migration of attributes

was stated as only occurring from records containing those attributes
(data items) to records owned by them, or records owned by records they
own, oOr etc. s IRT= It was stated that in a data base structure as
illustrated in Figure 7-1, Docname could not in general be considered
an attribute of the PATIENT record by downward migration. However,

with the existence of confluent hierarcies (and common bottoms) this is

not true given the proper contexts. This can be illustrated by the
following query:

PRIMARY RECORD (MAIN)

*DOCTOR
CONDITIONS FOR RETRIEVAL
*ANY

PRIMARY RECORD (ANY)
¥PATIENT

CONDITIONS FOR RETRIEVAL
* (PATNAME EQ DOCNAME)

ANIL
ITEMS OR STATS TO BE DISPLAYED
*DOCNAME o
ANIL

This query is requesting a list of all doctors who treat themselves.
In general, given the data base structure shown in Figure 7-1, many

DOCTOR records could be associated with each PATIENT record. However

within the context of the above query each time a PATIENT record is

obtained it is logical to the system that one and only one DOCTOR

i

? ! record is to be associated with it, and that is the DOCTOR record which
initiated the set search which lead to that PATIENT record. It is for

|

E { such occurences that the ONPATH rule is written.

~y

Page 51

The path descriptions which ONPATH and UPLINK produce lead from

the record containing the data item name to the context record for the
level in which the data item is used. Before placing this description
of the path in the FOR or TOBEUSED assertion, the system reverses it.
(i.e. It changes the path to lead from the context record to the

record containing the data item.,)

L R ST

Page 52

6.0 RULES FOR PROGRAM GENERATION

6.1 Introduction

The following is a description of the rules wused in Program
GCeneration. In the APC System, all preconditions for rules had to be
stated because it was not a deterministic process and it was not
possible to know anything apriori about the state that would exist when
the rule wag invoked. In the present case, program generation is
deterministic, based on the plan described in the assertions.
Therefore it is no longer necessary to state many of the preconditions
for a rule since they are known to be true apriori by the fact that the
process had proceeded to a point where the rule is invoked. Thus, one
of the benefits of planning is that it reduces rule complexity. It is

because of this that most of the Sl type rules have no preconditions.

6«2 St TzEe Rules

For the Sl type rules each is of the form P{A}R where A is a
single program operation or command. Many of the preconditions, P, of
the rule are not tested (stated in the rule) for reasons just

explained.

Each rule in Figure 6-1 1is described with A, the operation,
followed in order by P, the preconditions (if any), and R, the post
condition. The post condition is further identified by the preceeding

>, Variables in each rule are underscored.

L PR A SRR

Page 53

The operator rules are fairly simple. The interpretation of the
first rule appearing in Figure 6-1 would be:

By executing MOVE VAL TO DEST then DEST is equal to VAL (i.e.

C(DEST,VAL) .Note: implicit preconditions for this rule are:
1) that VAL has a value, and 2) that DEST can be assigned a
value.

FIND REC RECORD is a bit more involved and would be interpreted as

follows:

If VAL is equal to RUN TIMk, then generate the code to
determine the desired value of ITM interactively, otherwise
simply move VAL to ITM. Then by executing FIND REC RECORD,

the record will have been FOUND and be CURRENT but not
INCORE. Also, the value of ERRORSTATUS is uncertain, as the
desired record may not exist in the database. Note:
implicit preconditions to this rule are: 1) that ITM is a
calculated key for REC and 2) that VAL has a value (possibly
RUNTIME) . BN i

S R —— - - . -

MOVE VAL TO DEST
> C(DEST,VAL)

ACCEPT VAR
ANYOUTPUT ((EV(READL## ITM REL)),VAR)

> ACCEPT(VAR,ITM,REL) A C(VAR,RUNTIME)
DISPLAY ITML

> ANYOUTPUT(LTM,LEVEL)
OPEN AREAS

> OPENED(AREAS)
CLOSE AREAS

> CLOSED(AREAS)

FIND REC RECORD
[=(VAL,RUNTIME) V ACCEPT(LTM,ITM,EQ)] A C(ITM,VAL)

> FOUND(REC,ITM,VAL,LEVEL) A CURRENT(REC,LEVEL)
INCORhiRE A UNCERTERRSTAT##T)

FIND REC USING DBK

> FOUNDUSING(REC,DBK,LEVEL) A CURRENT(REC,LEVEL)
~INCORE(REC,LEVEL) A UNCERTERRSTAT## ()

FIND FIRST REC RECORD OF UNIT TYP

> FOUNDFIRST (TYP,REC,UNIT,LEVEL) A CURRENT(REC,LEVEL)
~INCORE(REC,LEVEL) A UNCERTERRSTAT##()

FIND NEXT REC RECORD OF UNIT TYP

> FOUNDNEXT(TYP,REC,UNIT,LEVEL) AN CURRENT(REC, LEVEL)
“INCORE(OWN, LLVEL)A UNChRThRRQTAF##()

GET REC
> INCORE(REC,LEVEL)
STOP

> STOP(NAM)

Figure 6=1 S1 Type Rules

6.3 84 nge Rules

The following is a discussion of S4 type rules., These are axioms to
test the truth of certain conditions in the current state. The CURAX
axiom checks to see if a record is current by checking for currency at
the current level in the hierarchy and if necessary, recursively checking
the higher levels, within the context of which the current 1level was
defined. This is done through wuse of the Dewey Decimal structure of
LEVEL. (e.g. to find out if a record is current at LEVEL X.2.1, first
LEVEL X.2.1 is checked; if that is unsuccessful, then LEVEL X.2 is

checked) .

The ITEMAX axiom checks to see if a given variable, ITM, is either a

database key or a data item.

The rules are illustrated in Figure 6-~2 using the convention used in
presenting the Sl type rules.

CURRENT
“NULL((EV(CAR LEVEL)) A CURRENT(REC,(EV (CAR LEVEL)))

> CURRENT(REC,LEVEL)

ISTTEM
DBKEY (REC,ITM) A CONTAINS(REC,ITM)

> ISITEM(ITM)

Fig. 6~2 S4 Type Rules

6.4 52 And S3 Type Rules

The following is a discussion of the S2 & S3 type rules. These are
the rules which actually accomplish the program composition. Each rule
is given using the convention used to present the Sl and S4 type rules.
Along with each rule 1is given an illustration of the possible program
modules it may construct, and a discussion of the states (requests) which
cause the rule to generate those modules. Which module is generated

depends on the state at the time when the rule is invoked.

In the flowcharts, rule names in modules containing an * are

expanded by the S2 or S3 Type Rule named in that module. Modules not

containing an * represent single program operations.

6.4.1 PRCGRAM = E

This is the rule which is invoked by the system to generate the
desired program after HI-IQ has added the assertions describing that
program to the state description.

PROGRAM
LINKS ((MATCH ACTION),(MATCH MTHD),(MATCH GREC),X,
(HMATCH PATH)) A
TOBEOPND((MATCH AREAS) N OPENED(AREAS) A
GETTOTOPLEV (MTHD ,ACTION, PATH) A
TOBEOPND((MATCH AREAS) A CLOSED(AREAS) A
STOPPED (NAM)

> PROGRAM(NAM)

This rule results in the program module

T A

¥ A Mgy s .

OPEN .| GETTOTOPLEV CLOSE STOP

AREAS * AREAS
6.4.2 GETTOTOPLEV - i

This rule generates code for the data retrieval and report

generation.

GETTOTOPLEV
[=(MTHD, PATH) V
[[ATOM((EV(CADAR PATH)))
FOUND((EV(CADAR PATH),(EV (CAAR PATH)),
(EV(CADDAR PATH)),X)

s

SETQ(PATH,NIL)] V
(FOUND((EV(CAAADAR PATH)),(EV(CAAR PATH)),
(EV(CADDAR PATH)),X)
SETQ(PATH, (EV(CADAR PATH)))]]] o
GETTONEXTLEV(ACTION,X,NIL,NIL,PATH)

> GETTOTOPLEV(MTHD,ACTION, PATH)

i) If MIHD equals "PATH" (i.e. This is for a set search to evaluate or
display a sublevel, or to perform a system search for location of the

top level context record(s).), this rule generates the program module.

GETTONEXTLEV
* >

ii) If MTHD equals "PORT" (i.e. This is for the top level and data
base entry is through a port record.) and the calculated key value is

not to be specified interactively, this rule generates the program

module

FIND REC RECORD GETTONEXTLEV
Sy],

iii) If MTHD equals "PORT" and the calculated key value 1is to be

determined interactively, this rule generates the program module

DISPLAY ITM ACCEPT FIND REC GETTONEXTLEV
"gQ 2" ITM RECORD * »

6.4.3 GETTONEXTLEV -

This rule generates code to move up or down hierarchies in the
network and to perform any required actions.

GETTONEXTLEV
[=(PATH,NIL) A
(T=((EV(CAR ACTION)),ALL) V C(EV(CADR ACTION),1)] A
ALLFORFULINST(ACTION,LEVEL)] V
(=((EV(CADDR(CDDAR PATH))),UPHIER) A
UPLINKED(ACTION,LEVEL, PATH)] V
DNLINKED(ACTION,LEVEL,ARG, ARG2, PATH)

> GETTONEXTLEV(ACTION,LEVEL,ARGt,ARG2, PATH)

i) If PATH equals "NIL" (i.e. The context record for LEVEL has been
made current by following PATH to its end.) and (CAR ACTION) does not

equal "ALL", this rule generates the program module

ALLFORFULINST
— 2

ii) If PATH equals "NIL" and (CAR ACTION) equals "ALL", this rule

generates the program module

| MOVE 1 | ALLFORFULINST
TO DEST *

Where DEST is a flag which is set to 1 each time a record is to be

Page 59

tested to see if it satisfies the conditions of the ALL command. Later
code is generated to reset the flag to 0 it the record meets the
conditions for the ALL command,

iii) If (CADR(CDDAR 2&1&)) equals "UPHIER" (i.e. The next record on]
the path owns a set of which the current record is a member.), this

rule generates the program module

UPLINKED

i

iv) Lf (CADDR(CDDAR PATH)) equals '"DNHIER"' (i.e. The next records on
the path are members of a set owned by the current record.), this rule

generates the program module

B

DNLINKED
* >

6.4.4 UPLINKED -

This rule generates code to move up a level of the hierarchy in
the network,
UPLINKED
FOUNDOWNER ((EV(CAAR PATH)),(EV(CADAR PATH)),
(EV(CADDAR PATH)),LEVEL) A
GETTONEXTLEV(ACTION, LEVEL,NIL,NIL,(EV(CDR PATH)))

. 39 > UPLINKED(ACTION,LEVEL,PATH)

This rule generates the program module

-

FIND OWNER GETTONEXTLEV
=] RECORD OF * T
ST SET

6.4.5 DNLINKED =

This is the only example of a S2 Type Rule; therefore its form is
a little more complex than the other rules. As explained in Section
2.2 this rule generates a program segment of the type: While L do
Vi Tl The rule is defined by giving a precondition (P), a loop
invariant (Q), an iteration step (R), a control test (L) and a rule
goal (G). DNLINKED generates code to perform an area search or a set
search.
DNLINKED
precondition:
SETQ(REE, (EV(CADDDAR PATH))) A
SETQ(UNIT,(EV(CADDDAR PATH)))A
SETQ(TYP, (EV(CADDAR PATH))) A
FOUNDFIRST(TYP,RE€,UNIT,LEVEL) A

DBKEY (REC, (MATCH DBK) A
C(DBK, (CURSTAT<UNIT,TYP,0)

invariant:
C(DBK, (MATCH CURRV))

iteration step:
GETTONEXTLEV(ACTION,LEVEL,ARGl,ARG2, (EV(CDR PATH))) A
C(DBK, (CURSTAT,A,B,CURRV)) A
FOUNDUSING(REC,DBK,LEVEL) A
FOUNDNEXT(TYP,REC,UNIT,LEVEL)

loop terminator:
CONTEST##((EV(CAR ACTION)),ARGL,ARG2)

post condition:
> DNLINKED(ACTION,LEVEL,ARGl,ARG2,PATH)

Page 60

(CURSTAT,A,B,C) is a function which is expanded to '"CURRENCY
STATUS FOR A B'". This rule generates the iteration loop. After the
action of the loop has been performed, by the code generated by
GETTONEXTLEV, the currency for the context record, REC, of the loop is
reestablished in case it was altered during the execution of the code

generated by GETTONEXTLEV.

Page 61

FIND NEXT REC FIND REC | | MOVE VAR | | GETTONEXTLEV
RECORD OF USING DBK TO DBK *
UNIT TYP
YES
FIND FIRST MOVE CURRENCY MOVE DBK
| REC RECORD STATUS FOR ‘ T0 VAR | X
2| OF UNIT TYe UNIT TYP TO DBK

CONTEST## sets up code for loop termination when
i) ERRORSTATUS is not equal to 0
ii) (CAR ACTION) 1is "ONE" and a record meeting the
necessary conditions has been found and displayed.
iii) (CAR ACTION) is '"ANY" and a record meeting the
necessary conditions has been found.
iv) (CAR ACTION) is "ALL" and a record not meeting the
necessary conditions has been found.
v) Code is being generated to evaluate "A REL B" where B is
a constant, REL is EQ, NE, LT, GT, LE or GE and A is
"COUNT", "MIN" OR "MAX". The value of "“COUNT" or "MAX"

will monotonically increase and the value of MIN will

“NO

monotonically decrease. Therefore the loop may be

- terminated early once the truth/falsehood of the condition
"A REL B" is determined without having determined the
actual value of A. (e.g. if "A REL B" is "MIN LT 10" once
an instance has been found in which the value of the item
of which the minimum is being calculated is LT 10 the I«
can be terminated even though the true minimum may be less

than the value found.)

6.4.6 ALLFORFULINST -

This rule generates code to perform required actions and test for
any conditions on which those actions are to be based.

ALLFORFULINST

[NEQ# (ERRORSTATUS,0) A FOR(MATCH FORLIS),LEVEL) A

~NULL(EV(CDR FORLIS)) A POPPORTSF#(PATH) A

POPFORLIS##(LEVEL) A

GETTOTOPLEV(PORT,ACTION, LEVEL)] V

[[[NTEST((MATCH REL),LEVEL) A FOR((MATCH FORLIS),LEVEL) A
SETQ(FORLIS2, (EV(CDR FORLIS)) A “NULL(FORLIS2) A
POPFORLIS##(LEVEL)] V
(FOR((MATCH FORL1S2),LEVEL) V SETQ(FORLIS2,NIL)]] A
[[NULL(FORLIS2) A DOACTION(ACTION,LEVEL)] V
ALLFOK(ACTION,(EV(CAR FORLIS2)),LEVEL)]]

> ALLFORFULINST(ACTION,LEVEL)

This rule appears rather complex for the modules which it generates.
This complexity is due to the fact that it is the rule which is invoked
to generate conditional procedures. Proposed changes (mentioned in

Section 9.2) would relocate this type of activity to the rule requiring

the generation of the conditional procedure, thereby making what the

rules are doing more obvious.

i) If LEVEL equals "X" (i.e. this is the top level) and MIHD equals

“PORT" and code has been generated for a previous disjunct for LEVEL

and there are further disjuncts for that 1level, then this rule

generates the program module

GETTONEXTLEV
* >

This would only be the case if the rule was being invoked to generate a
conditional procedure. Therefore, before generating any code, the rule
updates the state by executing POPPORTS## so that the next port record
choosen will be for the appropriate disjunct, and POPFORLIS## so that
the appropriate disjunct will be the first sublist in FORLIS of the FOR
assertion for LEVEL.

ii) If there are no qualifying conditions for LEVEL, the rule generates

the program module

DOACTION
>.‘ * | B

In this case, as well as in case (iii), if the rule is being invoked to
generate a conditional procedure, it executes POPFORLIS## so that the
appropriate disjunct will be the first sublist in FORLIS of the FOR
assertion for LEVEL.

iii) If there are qualifying conditions for LEVEL the rule generates

the program module

Page 63

ALLFOR
*

6.4.7 ALLFOR -

This rule generates code to test qualifying conditions for LEVEL

and perform the associated action

ALLFOR

EQ# (ERRORSTATUS,0) A

[[INULL(FORLIS) A DOACTION(ACTION,LEVEL)] V
(SETQ(LTML, (EV(CADAR FORLIS))) A
SETQ(PATH!, (EV(CADDDAR FORLES))) A
SETQ(LEVEL!, (EV(CADDAR FORLIS))) A
SETQ(ITMZ, (EV(CADDR(CDDAR FORLIS)))) A
SETQ(PATH2, (EV(CADDDR (CDDDAR FORLIS)))) A
SETQ(LEVEL2, (EV(CADDR(CDDDAR FORLIS)))) A
SETQ(REL, (EV(CAAR FORLIS))) A
DETVAL(ITM2,LEVEL2, PATH2, ARG2, ITMI,REL) A
DETVAL(LTMI, LEVELT, PATHY, ARGl,ARGZ, REL) A
TEST((EV(LIST REL ARGI ARG2)),LEVEL) A
ALLFOR(ACTION,(EV(CDR FORLIS)),LEVEL)]]

> ALLFOR(ACTICN,FORLIS,LEVEL)

i) If ERRORSTATUS is of uncertain value (i.e. code is being generated
for the top level and data base entry is via a port record) and there
is more than one disjunct 1left to be tested at LEVEL, this rule

generates the program module

ALLFORFULINST

*
ERRORSTATUS 5
0
NO
Vi

Where Y is a module as illustrated in case (7iii), (7iv) or (7v) below.
This generates a conditional procedure which is executed if there was
no port record in the data base which satisfy the conditions of the
first disjunct in FORLIS. This conditional procedure is generated by
asserting that ERRORSTATUS is not equal to 0 and invoking the
ALLFORFULINST rule. That rule will generate the code to test for the
next disjunct. Note: if there are no more disjuncts (case 1ii), then
no conditional procedure is generated.

ii) If ERRORSTATUS is of uncertain value and there is just one disjunct

to test for at LEVEL, this rule generates the program module

NO

Where Y is a module illustrated as illustrated in case (7iii), (7iv) or

Page 65

Page 66

(7v) below.
iii) If ERRORSTATUS equals 0 and FORLIS equals "NIL" (i.e. There are
no further conditions that need be tested for this ACTION.), this rule

generates the program module

DOACTION
—y PN L

iv) If ERRORSTATUS equals 0 and FORLIS does not equal '"NIL" and code is

being generated for more than one disjunct, this rule generates the

program module:

ALLFORFULINST
‘ *
YES
DETVAL DETVAL
'ﬁﬂ * *
NO
ALLFOR
* D

(Note that TEST is the negation of the condition requested, therefore
if TEST succeeds the record does not satisfy the condition requested.)
TEST is a partial precondition which is of uncertain value, assuming a

given condition 1is not tested for twice in one disjunct. If a query |

¥ states a given conditon twice in the same disjunct, the system will
only generate code to test for it once. Therefore this case generates
a conditional procedure which 1is executed if the record does not

satisfy the condition currently being tested. This is done by invoking

Page 67

ALLFORFULINST. ALLFORFULINST will check to see if code for one
disjunct has been generated, and if it has, then ALLFORFULINST will
begin to generate code for the next disjunct. If there are no more
disjuncts (case v), then no conditional procedure is generated.

v) Lf ERRORSTATUS equals 0 and FORLIS does not equal "NIL" and code is
being generated to test the last disjunct, this rule generates the

program module

DETVAL DETVAL
— . ___;[i]

NO

ALLFOR
*

Note that two DETVAL modules appear, one for each argument of TEST (A
REL B). For relations which may be used for early termination of a
loop (Section 6.4.5), the statistic (MIN, MAX or COUNT) 1is evaluated

after the value which it is being compared to.

6.4.8 DETVAL -

This rule generates code to determine required data item/statistic

values.

DETVAL
SETQ(PARG, ITM) A
[LITERAL##(ITM) V
[=(LIM,RUNTIME) A NEWLISPVAR(PARG) A
GETRUNT (PARG,ARG3,REL)] V
(ISITEM(LTM) A~ CONTAINS((MATCH REC),LTM) A
MAKEINCORE (REC,LEVEL, PATH)] V
[[STAT##(TTM) V REPQ##(LTM) V RETQ##(LTM)] A
LINKS((MATCH ACTION),(MATCH PREE),(MATCH GREC),
LEVEL, (MATCH NPATH)) A
[~BCA#(1TM) V C(LEV(CADR ACTION)),0] A Y
[“RETQ#FTIIM) V C((EV(CADR ACTION)),0)] A
[~=(1TM,0NE) V C((EV(CADR ACTION)),0)] A
[["BTMMA# (ITM) A SETQ(PARG, (EV(CADR ACTION))] V
[TOBEUSED((MATCH ITMS),LEVEL) A INITVARS(LTMS)
SETQ(PARG, (EV(CADDAR ITMS)))]] A
GETTONEXTLEV(ACTION, LEVEL, PARG, ARG3, NPATH) A
~=(LIM,AVE) A DIVVARS((EV(CADR ACTION),ITMS)]] A
SET (ARG, PARG)

>DETVAL(ITM,LEVEL,PATH,ARG,ARG3, REL)

i) If ITM is a constant, this rule generates the program module (i.e.

It generates no code.)

—0—

ii) If ITM equals "RUNTIME" (i.e. The item value is to be specified

interactively.), this rule generates the program module

GETRUNT
% :_—+

—

iii) 1f ITM is a data item, this rule generates the program module

MAKEINCORE -
e —

This is to bring the record containing the data item into core.

AVAILABLE TO DG DJES NOT
%glm FULLY LEGIBLE PRODUCTION

Page 68

iv) If ITM equals "REPEAT" or "COND", this rule generates the program

module

GETTONEXTLEV
-— v —3

v) Lf ITM equals '"COUNT", "ALL", "ANY", or "ONE", this rule generates

the program module

MOVE ¢ TO GETTONEXTLEV |
> (CADK ACTION) * —

Where (CADR ACTION) is a system generated variable which 1is being
initialized to (. In the case of the '"COUNT' command, the varible is
used to store the total of the number of records found which meet the
conditions for that "COUNT"' command. In the cases of the "ALL", "ANY"
and "ONE" commands, the variable is used as a flag. Later the system
will generate code (within GETTONEXTLEV) to reset the flag to !l to
indicate that the "ANY'" command has been found to be true, that the
"ALL" command has been found to be false, or that the ONE command has
been fulfilled.

vi) If ITM equals "TOT", “"MIN", or "MAX", this rule generates the

program module

=‘ INITVARS GETTONEXTLEV
* * >

vii) If ITM equals "AVE'", this rule generates the program module

- - . -

 § B = -
P |

age 70

e il ¢

3 INITVARS MOVE 0 TO

; * (CADR ACTION)
y
GETTONEXTLEV DIVVARS
* * >

]
Where (CADR ACTION) is a system generated variable which is initialized

to 0. The variable is used to keep a tally of the number of record

instances over which the items being averaged are totalled.

6.4.9 DOACTION -

This rule generates code to perform ACTION

DOACTION
SETQ(ACTN, (EV(CAR ACTION) A
1 (REPQ## (ACIN) V
= [TOBEUSED((MATCH ITMS),LEVEL) A
DETALLVAL(ITMS,(NIL)) A BINDITML(LIMS) A
(NULL(LTML) V ANYOUTPUT(LTML,LEVEL)]
NEXTLEVOUT(LIMS)) A
~=(ACTK,ALL) V C((EV(CADR ACTION),0)]A ;
(~=(ACTN,ANY) V C((EV(CADR ACTION),1)] A
(~=(ACTN,ONE) V C((EV(CADR ACTION),L)]A
[~BCAFACIN) V [SETQ(ARG2, (EV(CADR ACTION))) A
C(ARGZ, (ADD1 ARG2))]] A
[“BTMMA# (ACTN) V (TOBEUSED((MATCH ITMS),LEVEL) A
DETVALLVAL(LTHS,ACTION)])

|

> DOACTION(ACTION,LEVEL)

i
' i) 1f ACIN equals 'ONE", YREPEAT", "MAIN' or 'COND", this rule

generates the program module

;' DETALLVAL DISPLAY NEXTLEVOUT
* 1TML > * >

ii) If ACTN equals "ALL'", this rule generates the program module

MOVE 0 TO
(CADR ACTION) [

(CADR ACTION) is a flag. Before each record is tested to see 1if it
meets the conditions for the "ALL" command, this flag is set to l. If
the record is found to meet the conditions, this code 1is executed to
reset the flag to 0. If the flag does not get reset to 0, the control
test for the iteration loop which is determining the truth value of the
"ALL" command will take this as a signal that a record which does not
meet the conditions for the "ALL" command has been found. Therefore
the loop will be terminated, and the truth value of the ALL command is
false.

iii) If ACIN equals "ANY" or "ONE", this rule generates the program

module

MOVE 1 TO
(CADR ACTION) |7

(CADR ACTION) is a flag which is set to l to indicate either that a
record satisfying the "ANY'" command was located or that the information
satisfying the "ONE'" command has been displayed.

iv) If ACIN equals '"COUNT", this rule generates the program module
e prog

COMPUTE
ARG2 =
ARG2 + 1

oy ——

Page 71

Page 77

(CADR ACTION) is incremented to keep a tally of record instances for

the COUNT command.

v) If ACTN equals "TOT', 'MIN' or '"MAX", this rule generates the

DETALLVAL
-9’ 3 ——>

vi) If ACTN equals "AVE'", this rule generates the program module

program module

COMPUTE | DETALLVAL
ARG2 = *
ARG2 + 1

(CADR ACTION) is incremented to keep a tally of the number of items

summed for the AVErage command.

6.4.10 GETRUNT -

This rule is used to generate code when a value to be specified
¥ interactively 1is to be used in a loop. The test is used so that the

value is only requested once rather than for each iteration through the

loop.

GETRUNT
EQ# (VAR,HIGH VALUES) A
ACCEPT(VAR, ITM,REL)

'
E g > GETRUNT(VAR, ITM,REL)
|
I

This rule generates the program module

-

DISPLAY ITM ACCEPT
"EQ 7" VAR

This module is used when values to be specified interactively are used
within iteration loops. With this structure, the value will only be
requested on the first pass through the loop, rather than on each pass
through it. In a future version of the system, this request for
interactive specification of the value will be brought outside of the

loop and the test for prior specification of it will not be needed.

6.4.11 MAKEINCORE, FOLLOWPATH, And GETPATH -

These rules generate any code necessary to bring a desired record
incore. fézﬂ is a 1list of records, and relevant set names, leading
from the context record for the current level to the desired record
(Section 5.3). It is only possible for such a target record to be a
record higher in the hierarchy than or the same record as the context
record or a record made current in reaching the context record (This
concept is more completely discussed in Section 5.3.). 1f the target
record is not current then FOLLOWPATH finds the highest record in the

hierarchy which is current and from there GETPATH generates code

necessary to reach the target record.
MAKEINCORE
[CURRENT(REC,LEVEL) A
[INCORE(REC,(MATCH LEVEL)) V GETREC(REC,LEVEL)]] V
[FOLLOWPATH(PATH,LEVEL) A GETREC(KEC,LEVEL)] A
> MAKEINCORE(REC,PATH,LEVEL)

FOLLOWPATH
[TCURRENT(REC,LEVEL) A GETPATH(PATH,LEVEL)] V
FOLLOWPATH((EV(CDR PATH)),LEVEL)

> FOLLOWPATH(PATH,LEVEL)
GETPATH
NULL(PATH) V
[FOUNDOWNER ((EV(CAAR PATH)),(EV(CADAR PATH)),
(EV(CADDDAR PATH)),LEVEL) A
GETPATH((EV(CDR PATH)),LEVEL)] =
> GETPATH(PATH,LEVEL)

For each record in PATH which is not current these rules add the

program module

FIND OWNER
”| RECORD OF | 7

ST SET

Where ST SET is the set name of a member record on PATH which is
current and the owner record of which is on PATH but not current. Once

the target record is current, MAKEINCORE adds the program module

GET REC

5 RECORD

where REC is the target record name.

Page 74

s

R —

Page 75

6.4.12 INITVARS =

INITVARS initializes each variable on the list [TMS to 0. These
variables will be wused to calculate totals, averages, maximums or
minimums.

INITVARS

NULL(ITMS) V

[C((EV(CADDDAR ITMS)),0) /\ INITVARS((EV(CDR ITMS)))]

> INITVARS(ITMS)

For each item, XITM, on the list, this rule generates the program

module

MOVE 0
> TO XITM | >

6.4.13 DIVVARS -

TOTS contains a list of variables each of which contains the total
of a wvalue for which an average is being computed. C€TX contains the
count of the instances for which each TOTS variable, XITM, was summed.
DIVVARS

NULL(TOTS) V

[C((EV(CADR (CADDAR TOTS))),

(DIVIDE,(EV(CADR (CADDAR TOTS))),CTX)) A
DIVVARS(CTX, (EV(CDR TOTS)))]
>DIVVARS(CTX,TOTS)

For each variable in TOTS, this rule adds the program module

COMPUTE 3
> XITM =

XITH/CTX

Page 76

6.4.14 NEXTLEVOUT -

For each item in the list ITMS, which is a "“REPEAT" or "ONE"
command, NEXTLEVOUT generates the code to carry out that command.

NEXTLEVOUT
[TREPQ##((EV(CAAR ITMS))) V
DETVAL((EV(CAAR ITMS)),(EV(CADAR ITMS)),NIL,DUM,1,NIL)] A
[NULL((EV(CDR ITMS)) V NEXTLEVOUT((EV(CDR ITMS)))]
> NEXTLEVOUT(ITMS)

For each such item it adds the program module

DETVAL

—— . [=>

6.4.15 DETALLVAL -

For each variable in the list ITMS which 1is a statistic (i.e.
COUNT, MIN, MAX, TOT or AVE), DETALLVAL generates the code to update

variables as determined appropriate for the current context record,

DETALLVAL
REPQ## ((EV(CAAR ITMS))) V
[DETVAL((EV(CAAR ITMS)),(EV(CADAR 1TMS)),
(EV(CADDAR ITMS)),XVAR,NIL,NIL) A
[[[T=((EV(CAR ACTION)),MIN) A ~=((EV(CAR ACTION)),MAX)] V
C((EV(CADDDAR ITMS)),
((EV(CAR ACTION)),(EV(CADDDAR ITMS)),XVAR))] A

[(T=((EV(CAR ACTION)),TOT) A ~=((EV(CAR ACTION)),AVE)] V
C((EV(CADDDAR ITMS)),
(PLUS,(EV(CADDDAR ITMS))]]

> DETALLVAL(ITHMS,ACTION)

minimum to be calculated, this rule adds the program module

sach

. o gy T L.

ot

%{_

DETVAL COMPUTE

o " XITH = | i
MIN(XETM, VAR)

Where VAR is a system generated variable which has the value of the
data item, for the current context record, for which the minimum is
being calculated. XITM is used to store the minimum value of all
relevant records examined so far.

ii) For each maximum to be calculated, this rule generates the proram

module

DETVAL COMPUTE
* XITH = ’
MAX(XITM,VAR)

Where VAR is a system generated variable which has the value of the
data item, for the current context record, for which the maximum is
being calculated. XITM is used to store the maximum value of all
relevant records examined so far.

iii) For each AVErage or a TOTal to be calculated, this rule generates

the program module

DETVAL | COMPUTE
* XITM = z
XITM + VAR

Note: the average is later calculated by DIVVARS, dividing each XITM

by (CADR ACTION), the tally of the number of items summed im XITM.

i
&
i
I

7.0 EXAMPLES OF PROGRAM GENERATION

[his section gives some examples of programs generated by the
system from some relatively more complex HI~IQ queries. The queries

are addressed to the data base illustrated in Figure 7-1.

| SYSTEM
Al AREA | HOSPSET A2 AREA
L.
SEXHDR RACEHDR , HOSPITAL DOCTOR
(SDBKEY)| | (RDBKEY) (HDBKEY) (DDBKEY)
Sex Race ‘ Hospno bocno,Address
Hspaddress Docname,Docage
Hospname Specialty
SEXSET RACESET ' PATSET WORKSFOR WORKING
| |
PATIENT WORKREC
(PDBKEY) l (WDBKEY)
Patno,Patname
Patage ____i;;77

BILLINGS TREATMENTS] TREATING
/

BILLENTRY i

TREATMENT
(BDBKEY) (TDBKEY)
Code,Date l Diagnosis
Amount

ORDERSET

i

ORDERS
(ODBKEY)

I Ordno
Prescription

Figure 7-1. A community medical data base structure.

Page 78

E

Program Pl (Figure 7-2) was generated from the query in Figure

Program P2 (Figures 7-3, 7-4) will list (for a hospital specified
at execution time) all patients who have accumulated a total uninsured
billing of over $200. Uninsured billings are identified with one of
two billing codes. This disjunction leads to the separate section
called PROC3. P2 illustrates the unnecessary generation of duplicate

paragraphs that may occur: PARA~105 is identical to PARA-30l.

Program P3 (Figures 7-4, 7-6) generates a doctor's cross
reference: for a particular doctor, each patient and all of each
patient's doctors are listed. It is for programs like these, which
traverse a confluent hierarchy in two directions, that conservation of
the loop invariant becomes important. The 1loop invariant 1is the

current of set.

The report generated by P3 will list the top level doctor in many
locations: at the beginning of the report and with each patient
(because he 1is one of the doctors associated with each of his
patients). This 1is a minor deficiency but it can be cured with a
simple extension to the DMLP. Providing for the definition of
temporary variables would allow the wuser to differentiate between
doctors at different levels of the query. This would be accomplished
by specifying the storage of the doctor's number in a temporary

variable at the top level of the query; (% -8 SAVE DOCNO IN TDOC.

Then retrieval at the third level would be specified to be conditional

Page 79

Page 80

on (DOCNO NE TDOC) .

_ f'* o

THE:GOAL: (PROGRAM P1):IS:ATTAINABLE:BY:THE:FOLLOWING:PROGRAM:

PROCEDURE DIVISION.
PROCl SECTION.

PARA-100.

OPEN AREA Al A2,
FIND FIRST DOCTOR RECORD OF Al AREA.
MOVE CURRENCY STATUS FOR Al AREA TO DDBKEY.

PERFORM PARA-101 UNTIL ERRORSTATUS IS NOT EQUAL TO 0.

CLOSE AKEA Al A2,
STOP.

PARA-101.

MOVE CURRENCY STATUS FOR Al AREA TO 22,

GET DOCTOR RECORD.

DISPLAY DOCNAME DOCAGE SPECIALTY.

FIND FIRST TREATMENT RECORD OF TREATING SET.
MOVE CURRENCY STATUS FOR TREATING SET TO TDBKEY.

PERFORM PARA-102 UNTIL ERRORSTATUS IS NOT EQUAL TO 0.

MOVE Z2 TO DDBKEY.
FIND DOCTOR USING DDBKEY.
FIND NEXT DOCTOR RECORD OF Al AREA.

PARA-102.

MOVE CURRENCY STATUS FOR TREATING SET TO Zl.

FIND OWNER RECORD OF TREATMENTS SET.

GET PATIENT RECORD.

IF PATAGE IS NOT GREATER THAN 21 NEXT SENTENCE
ELSE PERFORM PARA-103.

MOVE Z1 TO TDBKEY.

FIND TREATMENT USING TDBKEY.

FIND NEXT TREATMENT RECORD OF TREATING SET.

PARA-103.

Figure 7-2.

GET TREATMENT RECORD.
DISPLAY PATNAME PATAGE DIAGNOSIS.

Program Pl in COBOL.

a

ENTER PROGRAM NAME P2

READ DSK:? T
PRIMARY RECORD (MAIN)
*HOSPITAL
CONDITIONS FOR RETRIEVAL
*(HOSPNO EQ RUNTIME)
*NIL
TIEMS OR STATS TO BE DISPLAYED
*HOSPNAME
FHOSPNO
FREPEAT
PRIMARY RECORD (REPEAT)
*PATLENT
TONDITIONS FOR RETRIEVAL
*(TOT GE 200)
PRIMARY RECORD (TOT)
FBILLENTRY
CONDITIONS FOR RETRIEVAL
*(CODE EQ "X')
*OR
*(CODE EQ "2')
*NIL
TTEMS OR STATS FOR TOT
* AMOUNT |
*NIL
*NIL
TTEMS OR STATS TO BE DISPLAYED
*PATNAME
*PATNO
*NIL
*NIL
POSSIBLE PORTS ARE:
(HOSPNO)
SELECT ONE OR TYPE NIL HOSPNO

Figure 7=3. Query P2: "For a hospital specified at run-time, list its
name and number and the name and number of all patients whose total
billings of code "X" or "Z" exceeds or equals $200."

o —

THE:GOAL: (PROGRAM P2):IS:ATTAINABLE:BY:THE:FOLLOWING:PROGRAM:

PROCEDURE DIVISION.
PROC1 SECTION.

PARA~100.
OPEN AREA Al A2,
DISPLAY '"HOSPNO" "EQ?".
ACCEPT HOSPNO.
FIND HOSPITAL RECORD.
IF ERRORSTATUS IS NOT EQUAL TO 0 NEXT SENTENCE
ELSE PERFORM PARA-10l.
CLOSE AREA Al AZ2.
STOP.

PARA~101.
GET HOSPITAL RECORD.
DISPLAY HOSPNAME HOSPNO.
FIND FIRST PATIENT RECORD OF PATSET SET.
MOVE CURRENCY STATUS FOR PATSET SET TO PDBKEY.
PERFORM PARA~102 UNTIL ERRORSTATUS IS NOT EQUAL TO 0.

PARA-102,
MOVE CURRENCY STATUS FOR PATSET SET TO Z2.
MOVE 0 TO X5.
FIND FIRST BILLENTRY RECORD OF BILLINGS SET.
MOVE CURRENCY STATUS FOR BILLINGS SET TO BDBKEY.
PERFORM PARA-103 UNTIL ERRORSTATUS IS NOT EQUAL TO 0.
IF X5 1S LESS THAN 200 NEXT SENTENCE
ELSE PERFORM PARA-104.
MOVE Z2 TO PDBKEY.
FIND PATIENT USING PDBKEY.
FIND NEXT PATIENT RECORD OF PATSET SET.

PARA~103.
MOVE CURRENCY STATUS FOR BILLINGS SET TO Z1.
GET BILLENTRY RECORD.
IF CODE IS NOT EQUAL TO "X'" PERFORM PARA-300
ELSE PERFORM PARA-105.
MOVE Z1 TO BDBKEY.
FIND BILLENTRY USING BDBKEY.
FIND NEXT BILLENTRY RECORD OF BILLINGS SET.

PARA~105.
COMPUTE X5 = X5 + AMOUNT.

PARA-104,
GET PATIENT RECORD.
DISPLAY PATNAME PATNO.

- gy ——

PROC3 SECTION.
PARA-300.

IF CODE IS NOT EQUAL TO "Z" NEXT SENTENCE

ELSE PERFORM PARA-301.

PARA-301.
COMPUTE X5 = X5 + AMOUNT.

-

Figure 7-4. Program P2.

N— - PO -

Page 84

]

e o o

ENTER PROGRAM NAME P3

READ DSK:? T

PRIMARY RECORD (MALN)
*DOCTOR

CONDITIONS FOR RETRIEVAL
* (DOCNO EQ RUNTIME)

*NIL

TTEMS OR STATS "0 BE DISPLAYED
*DOCNO e

*DOCNAME

FREPEAT

PRIMARY RECORD (REPEAT)
*PATIENT

CONDITIONS FOR RETRIEVAL

*NIL R

ITEMS OR STATS TO BE DISPLAYED
*PATNO

*PATNAME

*REPEAT

PRIMARY RECORD (REPEAT)
*DOCTOR
CONDITIONS FOR RETRIEVAL
*NIL
ITEMS OR STATS TO BE DISPLAYED
*DOCNO
*DOCNAME
*NIL
*NTIL
*NIL
POSSIBLE PORTS ARE:

SELECT ONE OR TYPE NIL DOCNO

(DOCNO)

Figure 7=5. Query P3: 'Display the name and number of a doctor
specified at run-time. Also display the name and number of all of his
patients, and for each patient display the name and number of all of
his doctors."

Page 86

THE:GOAL: (PROGRAM P3):IS:ATTAINABLE:BY:THE:FOLLOWING:PROGRAM:

PROCEDURE DIVISION.
PROCl SECTION.

PARA~100.
OPEN AREA Al A2,
DISPLAY "DOCNO" "EQ?".
ACCEPT DOCNO.
FIND DOCTOR RECORD.
IF ERRORSTATUS IS NOT EQUAL TO 0 NEXT SENTENCE
ELSE PERFORM PARA-101l.
CLOSE AREA Al A2,
STOP.

PARA-101.
GET DOCTOR RECORD.
DISPLAY DOCNO DOCNAME.
FIND FIRST TREATMENT RECORD OF TREATING SET.
MOVE CURRENCY STATUS FOR TREATING SET TO TDBKEY.
PERFORM PARA-102 UNTIL ERRORSTATUS IS NOT EQUAL TO 0.

PARA-102.
MOVE CURRENCY STATUS FOR TREATING SET TO Z2.
FIND OWNER RECORD OF TREATMENTS SET.
GET PATIENT RECORD.
DISPLAY PATNO PATNAME.
FIND FIRST TREATMENT RECORD OF TREATMENTS SET.
MOVE CURRENCY STATUS FOR TREATMENTS SET TO TDBKEY.
PERFORM PARA-103 UNTIL ERRORSTATUS IS NOT EQUAL TO 0.
MOVE Z2 TO TDBKEY.
FIND TREATMENT USING TDBKEY.
FIND NEXT TREATMENT RECORD OF TREATING SET.

PARA-103.
MOVE CURRENCY STATUS FOR TREATMENTS SET TO Z1.
FIND OWNER RECORD OF TREATING SET.
GET DOCTOR RECORD.
DISPLAY DOCNO DOCNAME.
MOVE Z1 TO TDBKEY.
FIND TREATMENT USING TDBKEY.
FIND NEXT TREATMENT RECORD OF TREATMENTS SET.

E Figure 7-6. Program P3.

8.0 COST EFFECTIVENESS

In his paper, Gerritsen [1975]) concluded that his DMLP system

reduced program generation costs by 77% to 95%. Note that this was in

examining costs of executing the DMLP system vs costs of human

programming. It did not include costs of generating the DMLP system,

however, as Gerritsen pointed out, with savings of such magnitude it

should be possible to absorb such costs and still come out ahead.

Figure 8-1 compares the program generation costs of the three

programs illustrated in Section 7.0 for the modified DMLP system and

the original DMLP system.

Program Original DMLP Modified DMLP
Run Time KCS Time $ Run Time KCS Time $
Bk L 37 7151 37.33 1.1o 4622 24,78
P2 2,40 10556 9o L7 1.24 6318 33.88
P3 l.44 8909 47.08 L.10 5165 27.37
Figure 8~1 Performance of Original DMLP system vs Modified DMLP
system,

This data shows a cost reduction of approximately 40%. Of course

this 1is somewhat dependent on the billing algorithm, but cost savings

would still result with other algorithms. The cost savings shown in

Figure 8=1 could have been further increased by running the modified

DMLP with less core. The costs shown are for running both systems with

the same core, however, since Micro~Planner is used to a much smaller
degree in the modified version, it 1is possible to run it with
approximately 70% of the core requirement of the original system. If

Page 87

the changeover to LISP discussed in Section 9.2 were implemented

still

further cost savings could be realized both in execution time and core

requirements.

Page 88

9.0 FURTHER WORK

9.1 Extensions Of The Task Scope

In his thesis, Gerritsen [1975]) identified several desired
extensions to the scope of programs which the system could generate.
These extensions fall mostly into two categories. First, there are
extensions to increase program efficiency. These would include such
things as eliminating redundant code, making use of ordered sets,
ordering disjuncts and conjuncts to qualify or disqualify a given
record with minimal testing, and "intelligently'" choosing between area
and set searchs so as to minimize the number of data base accesses.
Second, there are extensions which would increase the scope of possible
queries. These would include allowing calculation and storage of
temporary items, and conceptually having a '"top of the world" record to

facilitate such queries as "What is the total number of Doctors?".

Many of the extensions of the first type will require providing
additional information in the initial state. While providing the
information about ordered sets is no great problem, the informatioa
needed to choose between an area search and a set search is not so
readily obtainable and would change over time. It would be feasible to
have the Data Base Management System update such information. Most
extensions of the first type will not involve altering the program
generation rules, but will involve altering the planning stage (i.e.
HI-IQ's interaction with the user and the its generation of assertions

about the query).

" AD=AD3% 390

UNCLASSIFIED

WHARTON SCHOOL OF FINANCE AND COMMERCE PHILADELPHIA P=<ETC F/6 9/2
DETERMINISTIC VERSUS NONDETERMINISTIC PROCEDURE FOR AUTOMATIC P==ETC(U)

OCT 76 D J ROOT NOOO14=T5=C~0462
76=10=01 NL
2 OF
A END
AQ34380 DATE
FILMED
= 525

=R

.

[

A

9.2 Additional Modifications 22 The System

As shown in Section 8, the elimination of most of the use of
Micro-planner resulted in savings on execution costs of approximately
40%. Since Micro~Planner is now used only to plan the path through the
data base and for pattern matching capabilities to access the state
description, it should be possible to change the system over completely
to LISP and allow it to be run as compiled rather than interpreted

functions. This would result in further cost savings.

Besides this changeover to LISP, one additional change is
desirable to create a 'cleaner" looking system. That is to make the
generation of conditional procedures more explicit than it is in the
prfsent system. The wuse of three valued 1logic (true, false and
uncertain) was an effective way of allowing the system to generate
conditional procedures when it was operating nondeterministically.
However, now that the Program Generator's activities are deterministic,
it does not have to be 1left to the system to discover it needs to
generate a conditional procedure through three valued logic. The rules
could explicitly show where, when and how conditional procedures are
generated, rather than using the 1less obvious method of wuncertain
partial preconditions causing the system to generate conditional

procedures.

AL)
-

L,
alee

L
A
i.

10.0 NONDETERMINISTIC VS DETERMINISTIC PROCEDURES

If the question of the benefits of deterministic vs
nondeterministic procedures in automatic program synthesis were to be
decided merely on the grounds of the relative costs of program
generation, the results in Section 8 would support the assertion that a
deterministic route is better, However, the question 1is not that
simple. There are several aspects to the problem, some favor one
approach and some favor the other.

1) Given the current state of the art of Artificial Intelligence, if a
deterministic method exists for solving a problem, it can usually do so
with considerably less machine effort than a nondeterministic method.
(This 1is a conclusion which Wang [1960] drew back in 1960 in relation
to Newell and Simon‘'s [1956, 1957a, 1957b] "Logic Theorist".

2) Not all problems are currently solveable by deterministic
procedures. Futhermore, there is the question of whether all problems
will ever be solveable by deterministic procedures.

3) Deterministic procedures are more confined to solving only those
problems for which they were designed than are nondeterministic

procedures.,

As regards this application, for the present the deterministic
approach seems best. The task is clearly enough defined that lack of
flexibility is not a problem, and plans to expand the system, as
mentioned in Section 9, appear to be made easier by having separated
the planning stage from the code generation stage. (Note: this

separation does not truly require a deterministic approach, Siklossy

A

Sl o

‘,
v
8
i

hti
"

.l

and Sikes [1975] are currently working on a system which separates the
two functions, but the system currently only works on tasks of fairly
low complexity.) rany of the proposed changes will involve only the
formulation of the plan as it is set down in the initial state which
the Request Handler generates. Therefore in making the necessary
changes only one segment of the system will be.involved (this is

similar to the benefits associated with structured programming).

A major benefit of the deterministic approach is its lower cost.
With the extensions outlined in the previous section, the system should
be capable of generating a fairly wide range of complex programs for
querying a network data base. While other automatic program
synthesizers might be able to duplicate the complexity of tasks, the
cost would most likely be prohibitive. In the approach used here, the
systems actions are almost entirely preplanned, thereby eliminating
costs of trial and error. While this limits the systems capabilities
to a very specific scope of tasks, it does provide a currently
economical system, and the task of preplanning the systems activities
will probably help give an understanding of what kind of knowledge a

system will have to have to exercise its own 'common sense".

Bibliography

Baker, Terry F. and Harlan D, Mills (1973),"Chief Programmer Teams',
Datamation, December 1973, pp 58-6l.

Buchanan, J. R. (1974),"A Study in Automatic Programming", PhD
Thesis, Stanford University.

Buchanan, J. R. and D. Ce Luckman (1974),"On Automating the
Construction of Programs', Stanford AI Memo; Stanford University.

CODASYL (1971),CODASYL Data Base Task Group Aprii 197%F Report, ACM, New
York City.

Date, C. (1976),1Introduction to Data Base Systems, Addison-Wesley, 4
Menlo Park, Calif. |

Dijkstra, E. W. (1976),A Discipline of Programming, Prentice Hall,
Englewood Cliffs, N. J.

Gerritsen, Rob (1974),'"Automatically Generated Programs for Information
Retrieval; IRP, a Rudimentary System'", Carnegie-Mellon Graduate School
of Industrial Administration, W.,P.=47-73=74,

Gerritsen, Rob (1975),"Understanding Data Structures", PhD Thesis,
Carnegie-Mellon University, Pittsburgh, Penn.

Green, Cordell and David Barlow (1975),'"Some Rules for the Automatic
Synthesis of Programs'", Advance Papers of the Foarth International
Joint Conference on Arttficial Intelliggpce, Tbilsi, Georgia, USSR, 3-8
Sept 1975.

Haseman, William D. and Andrew B. Whinston (1975),"Problem Solving
Approach to Data Base Management', Advance Papers of the Fourth

International Joint Conference on Artificlal Intelligence, Tbilsi,
Georgia, USSR, 3-8 Sept [9/5.

Hewitt, C. (1971),"Description and Theoretical Analysis of Planner",
PhD Thesis, Massachusetts Intstitute of Technology.

Hoare, C. A. R. (1969),"An Axiomatic Basis for Computer
Programming", CACM 3, October 1969, pp 576-580.

B Hoare, C. A. R., O, J. Dahl and E. W. Dijkstra (1972),Stroctared
- Programming, Academic Press, New York City.

Hoare, C. A. R. and N. Wirth (1972),"An Axiomatic Definition of the
Programming Language PASCAL", Berichte der Fachgrappe Compater =
Wissenschaften 6, E.T.H., Zurich, November 1972.

Igarashi, S. R., L. London and D. C. Luckham (1973),"Automatic
Program Verification I: A Logical Basis and Implementation", Stanford

Al Memorandum 200, May 1973.

Lee SRl T iCo L. Chang and R, Je Waldinger (1974),"An
Improved Program-Synthesizing Algorithm and 1Its Correctness",
Communications of the ACM, April 1974 Vol 17 No 4.

Manna, Zohar and Ricahrd Waldinger (1975),"Knowledge and Reasoning in
Program Synthiesis", Advance Papers of the Foarth International Joint
Conference on Attificial Intelllgence, Ibilsi, Georgla, USSR, 3-8 Sept
1975.

McCarthy, J., P. W. Abrahams, D, J. Edwards, T. P. Hart and M.
I. Levin (1972),LISP 1.5 Programmers Manual, MIT Press.

McKeeman, We, J. J. Horning and D. B. Wortman (1970),A Compiler
Generator, Prentice Hall, N. J.

Mills, Harlan D. (1975),"The New Math of Computer Programming",
Commonications of the ACM, January 1975 Vol 18 No 1.

Naur, P. et al (1960),"Report on the Algorithmic Language ALGOL 60",
Communications of the ACM No 3 1960.

Newell, A. and H. A. Simon (1956),"The Logic Theory Machine", IRE
Transactions on Information Theory 1956.

Newell, A., J. (6 Shaw and H. A. Simon (1957a),"Empirical
Explorations of the Logic Theory Machine", Proceedings of the Western
Joint Computer Conference 1957, pp 218-239.

Newell, A. and J. C. Shaw (1957b),"Programming the Logic Theory
Machine", Proceedings 2£ the Western Joint Compater Conference 1957, pp

Siklossy, L. and D. A. Sykes (1975),"Automatic Program Sythesis From
Example Problems," Advance Papers of the Joint Conference on Artificial
Intelligence, Thbilsi, Georgia, USSR 3-8 Sept 1975.

Sussman, Gerald J. and Drew V. McDermott (1972),"Why Conniving is
Better than Planning', Massachusetts Institute of Technology,
Artificial Intelligence Memo 255A.

Sussman, Gerald J. and Terry Winograd (1972),'"'Micro-~planner Reference
Manual", MIT Project MAC Report.

0 ahacb i

p-——-m-"mm“

DISTRIBUTION LIST

Department of the Navy - Office of Naval Research

Data Base Management Systems Project

Defense Documentation Center
Cameron Station
Alexandria, VA 22314

Office of Naval Research
Code 1021IP
Arlington, VA 22217

Office of Naval Research
Branch Office, Chicago
536 South Clark Street

Of fice of Naval Research
Information Systems Program
Code 437

Arlington, VA 22217

Office of Naval Research
Branch Office, Boston
495 Summer Street
Boston, MA (02210

Office of Naval Research
Branch Office, Pasadena
1030 East Green Street

¥

E Chicago, IL 60605 Pasadena, CA 91106
New York Area Office

715 Broadway. - 5th Floor
New York, NY 10003

Naval Research Laboratory
Technical Information Division
Code 2627

Washington, DC 20375

Pr. A. L. Slafkosky Office of Naval Research
¢ Scientific Advisor Code 455

Commandant of the Marine Corps Arlington, VA 22217
(Code RD-1)

Washington, DC 20380

~veyrT>

Office of Naval Research Naval Electronics Laboratory Center

Code 458 Advanced Software Technology Division
Code 5200 |
San Diego, CA 92152

Arlington, VA 22217

Assistant Chief for Technology
Of fice of Naval Research
Code 200

- Arlington, VA 22217

o
)
‘0

’.r co.r{',‘

»

Mr. E. H. Gleissner Captain Grace M. Hopper

Naval Ship Research and NAICOM/MIS Planning Branch
Development Center (0P=-9160)

Computation & Mathematics Dept., Office of Chief of Naval Operations
Bethesda, MD 20084 Washington, DC 20350

Mr. Kim B. Thompson Bureau of Library and

Technical Director Information Science Research
Information Systems Division Rutgers - The State University
(OP=91T) 189 College Avenue

Office of Chief of Naval Operations New Brunswick, NJ 08903
Washington, DC 20350 Attn: Dr. Henry Voos

Professor Omar Wing

Columbia University

in the City of New York

Dept. of Electrical Engineering
and Computer Science

New York, NY 10027

