
- ___

• ¶ ‘ P ~~ 39Q WHARTON SCHOOL OF ~~~~~~ AND COMMERCE PHILADCLPHIA P—ETC Pit 94
DETERMINISTIC V ERS~)S ~c~~ (TERMINISTIC PROCEDL*E ICR AUTOMATIC P—ETC(u)
OCT 76 0 Q ROOT N0001l 75”C floa

UNCLASSIFIED 76— 10— 01 pit.H

4

SECURITY CLASSIFICATION oe TN IS PA GE (Wh.n Oat. Ent.r•d)

~~~~~ ~~~~~~~ ~ ~~~~~~~~ ~~‘E  READ INSTRUCTIONS
I%crVl~ I IJU L..UM~~ I~ I ~ I IUl~ U 

~~~ BEFORE COMPLETING FORM
I REPORT NUMBER 2 GOVT ACCESS ION NO. 3. RECIpIENT’S CATA LOG NUMBER

4 T IT L E (end S..b tI i I .) 5. TYP E OF REP ORT & PERIOD CoVERED

Determ inistic ~~ Nondeterminjstjc
Procedure for Automatic Program
Generation in DBTG Data Base Access ~~~~~

~ PERFORMING ORG. REPORT NUMBER

c 76-10-01
7T~.—..... .~~ ,Q~~T~~ACT OR GRANT NUMBER(a)

(/ . .~ ~‘ K 4 L~~t..) (~~~ ~~~d~~14-75-C-G~~~
1

•

9 PERFORMING O R G A N I Z A T I O N NAME AND ADDR ESS 10. PROGRAM ELEMENT. PROJECT . TASK
AREA & WORK UNIT NUMBERS

Department of Decision Sciences
The Wharton School N 0 4 9 — 2 7 2University Of Pennsylvania , Phila., PA

_ _

~ CONTROLLING OFFICE NAME AND ADDRESS .
~~~~~~~~~~~~~~~~~~~ . ~~~.

Office of Naval Research 
~Information Systems, Arl ington , VA 22217

14 MONITORING AGENCY NA ME & AOORESS(II diflirw t f ront Controlling Offic.) 15. SECURITY CLASS. (ol thi. r.port)

(same) ,7~~~~~~,/~~~/p A  ( . Unclassified

•/ p-~~~~ 5.. DECLASS IFICAT ION/ DOWNORAD ING
SCH EDULE

(dnct s nnf ppp l y
16. DISTRIBUTION S T A T E M E N T  (of 1?i i~ R.porI)

Reporduction in whole or in part is permitted for any
purpose of the United States Government. STATEME~ ~~~~~~~

APP10~~~ j0h uic
~~

1e ~e;

17. DISTRIBUTION S T A T E M E N T  (of (h. .batract .nt.r. d 10 Block 20. II dIlI.rwt front R.por 
D I Jj 1,att~

g
~n Unl~xO.~

te< 
—.——

(same)

IS. S UPPLEMENTARY NOTES

IS. KEY WORDS (Continu. on rarer.. aid. if n.c..aazy mid ld.ntlly by block numb.r)

DBTG
Network Data Base
Query Language

~~Autornated Programming
20~~~~B5T RACT (Conf~flu. øai r.v.r.. .ld. II n.c....s~ mid Id.ntify by block nim,b.rJ

bAs information systems grow in scope and size, costs
associated with the programming activity are quickly becoming
major factors in the economic feasibility of such systems. One
obvious solution is to enlist the computer itself to aid in the
programming activity. The form of such aid could range from ( ‘V
interpreters to program synthesizers (automatic program
generation). To date few program synthesizers have been used in

FORMDD I JAN 73 1473 EDITION OF I NOV 65 15 OBSOLETE
S/N 0 1 0 2 0 1 4 -  6601

S ECURITY CLASSI FICAT ION OF THIS PAGE ( Saan Oat. lsI.,.d )

COPY AVAILABLE TO DOC INJES NOT
PERMIT FULLY LEGIBLE PRODUCTiON ~ ‘7~T

- -‘
~
-
~~~~~~~~ ~~~~~~~~~~~~~~~~~~~


r~~~~~~~i~ ~~~~~~~~
~~J 9 L t y C L A S 5 I F I CA T ~OW OF THIS PAG ~~(Wh.n 0.1. EnI. red)

~~‘real world’~ applications due to either need for more powerful
Al techniques to solve the problems involved, or to the costs of
the existing Al techniques wh3.ch they employ.

This paper describes the work involved in minimizing the use
of Al in one such program synthesizer, the Automatic Program
Generator (~PG), in its application to report generation fromnetwork (DBTG) data bases.

4
.

S~~CU~~ITY CLA UIFICATION OF THIS PAOI(IPb.n 0.1. Ints,.d)

p
DETERMINISTIC VS NONDETERMINISTIC

PROC EDURE FOR AUTOMATIC

PROGRAM GENERATION IN DBTG DATA BASE ACCESS

by

David J. Root

COPY AVAItABLE TO DUC 1~)ES NOT
7 6-10-01

PERMIT FUllY LEGIBLE PRUOUCT1OW

Prepared for the
Office of Naval Research

Information Systems
Arlington, Va. 22217

under
Contract N0014—75—C—~~~~

Proj ect No. 049—272

Distribution Statemei~t
Reproduction in whole or in part is permitted
for any purpose of the United States Government

• Depar tment of Decision Sciences ~~~~~ D C~
The Wharton School i~ ir’1~)I2IIflI7f~ ~University of Pennsylvania U

Philadelphia , Pennsylvania JAN 13 ¶g
~~

~~~~~~~~~~

Approved for public relea5e;
— 

DiBttLbUtIOfl Uzdjmj ted

* 

~~~~

_ _ _ _ _ _ _ _ _ —. _ _ _ _ _ —

V

ACKNOWLEDGEMENT

I thank Professor Rob Cerritsen, my thesis advisor, for the
I

direction and advice with which he has provided me. Portions of

Sections 2., 3., 4. and 7. of this paper have been taken, with

appropriate changes, from his PhD thesis [Gerritsen 1975]. 1 would
I

also like to thank my wife, Christine, for encouragement as well as for

m uch of the typing .

I

~~~~~~~~~ —----V
P~~PI~~ n i

~~&SiIII!!iC7~H
:. ~~~~~~~~~~~~~~~

T
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ :.: ~~~~._..


— .—=-
~~~~~~~~~~~~

.
~~~~~~~ --— —.— -

~~
—-

~~~~---.——..-.--—-—--——- — —— ,—--
~~

-
~~~ ~

.—— -—------— - -- — - - -—-.-—- —--. -
~~

-
~

Table of Contents

Section Page

1.0 Introduction I

2.0 Review of the APG System 4
2 . 1 Logic of Programs 4
2.2 Frames 5
2.3 Program Generation 8

3.0 The H I— IQ Query Language ii
3.1 Introduction ii
3.2 <Record Name> Subsequence 14
3.3 <Condition Lines> Subsequence 14
3.4 <Item Lines> Subsequence 16
3.5 Port Selection 20

4.0 Modifications of HI— IQ and APG - 22
4.1 Introduction 22
4.2 Request Handler Assertions 25
4.2.1 LINKS Assertion 28
4.2 .2 FOR Assertion 29
4 .2.3 TOBEUSED Assertion 31
4.3 Assertions 32
4 .4 Rule Assertions 34
4 .4 .1 Assertions for the Si Type Rules 34
4 .4.2 Miscellaneous Assertions 37
4 .4.3 LISP Functions 38

5.0 Rules for Planning 42
5.1 Downward Migration of Attributes 42
5.2 Location of Context Records 42
5.2 .1 Set Search 44
5.2.2 Calculated Keys 47
5.2.3 System Set Search 48
5.2.4 Area Search 48
5.3 Location of Data Items 49

0

—

--
~~~~~~ ~~~T . -

Table of Con ten ts (co nt’d)

Section Page

6.0 Rules for Program Generation 52
6.1 Introduction 52
6.2 Si Type Rules 52
6.3 S4 Type Rules 55
6.4 S2 and S3 Type Rules 56
6. 4. 1 PROGRAM 56
6.4.2 GETTOTOPLEV 57
6.4.3 GETTONEXTLEV 58
6.4.4 UPLINKED 59
6.4.5 DNLINKED 60
6.4.6 ALLFORFULINST 62
6.4.7 ALLFOR 64
6.4.8 DETVAL 67
6.4.9 DOACTION 70
6.4.10 GETRUNT 72
6.4.11 MAKEINCORE, FOLLOWPATH and GETPATH 73
6.4.12 INITVARS 75
6.4.13 DIVVARS 75
6.4.14 NEXTLEVOUT 76
6. 4.15 DETALLVAL 76

7.0 Examples of Program Generation 78

8.0 Cost Effectiveness 87

9.0 Further Work 89
9.1 Extensions of Task and Scope 89
9.2 Additional Modifications of the System 90

10.0 Nondeterministic vs Deterministic Procedures 91

~ -~~ 
- 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~



Page 1

1.0 INTRODUCTION

) 
-

As Information Systems grow in scope and size, the time and cost

involved in the programming activity are quickly becoming major factors

in the economic feasibility of such systems. The signifigance of the

programming activity is also an important current topic due to the

costs attributed to program errors [Baker 1973]. Efforts in the area

of “automated programming” or “automatic program synthesis” may hold

some solutions for these problems.

In the past, higher level languages (then considered automated

programming) helped to gain greater efficiencies in the programming

activity. Today , automated programming, or automatic program

synthesis, covers a somewhat nebulous area. As explained by Sikiossy

and Sykes [1975):

“Although a compiler for a high level language might be
considered a synthesizer, since it transforms an algorithm
written in the language into executable machine code,
generally discussions of program synthesizers are restricted
to those systems which transform into code descriptions which
are “far” from being executable. The concept of “far” is
relative to the state of knowledge.”

The system which will be described in this paper falls into the

gray area of this definition. Merely presented with the input and

output of the system, the reader would probably conclude that the

system qualifies as an automatic program synthesizer, as defined above.

However, once the reader becomes aware of the degree to which it was

possible to mechanize this task, he may feel that the system falls in

an area closer to the case of the high level language compiler.



__________________________________ -. .~~~~~~~~~

P Page 2

b are [.1972] identifies three aspects of a computer program that

determine its success as regards its task:

1. That those aspects of the real world with which the program is
concerned are completely and correctly represented in the logic
used to develop the program.

2. That the behavior of the program coincides with the steps called
for by the logic.

3. That the representation of the real world and the method of
manipulating that representation are such as to result in

‘acceptable program running costs.

Therefore the problem of automated programming is twofold. First,

the knowledge which is used by programmers to meet these criteria must

be identified and formalized (e.g. structured programming and the

Logic of Programs). Second, there must be a method to give this

knowledge to the computer and have the computer utilize it efficiently

in generating programs.

Buchanan [1974] has developed an Automated Programming Generator

(APG), which utilizes the Logic of Programs [b are 1972, Hoare and

Wirth 1972], primitive functions and procedures, axioms, definitions

and rules of program composition to generate programs to accomplish

given goals. This system is reviewed more extensively in Section 2.

Gerritsen [1975] applied the APG, with some modification, in developing

a system for use in the generation of reports from network type (DBTG)

data bases. If the reader does not have a previous knowledge of

network data bases, it would probably be helpful to first read

something about them. Gerritsen [1975] provides very complete coverage

______ _________________________________________________



0 Page 3

of the concepts involved in structuring of and data retrieval from

network (DBTG) data bases, or the basics of DBTG data bases are covered

in 1)ate [1975].

Buchanan’s APG System and Gerritsen’s application of it to DBTG

data base access accomplish the program generation through a

non—deterministic procedure implemented using backtracking and pattern

invoked procedures as provided by Micro— Planner [Hewitt 1971, Sussman

and McDermott 1972]. Several others, Sikiossy and Sykes [1975] , Green

and Barstow [1975], Manna and Waldinger [1975], and Haseman and

Whinston [1975], to mention a few, are developing automatic program

synthesizers which differ from Buchanan’s APG on points such as the use

of recursive structubes rather than iterative loops or producing

program traces prior to code generation, but all heavily utilize the

backtracking capability of Micro— Planner or some similar system to give

their system “intelligence”. This paper explores the benefits of

making the process as deterministic as possible. The system first

carries out any necessary search (planning) and then executes a

deterministic procedure to generate the program code.

It is hoped that the work discussed in this paper , along with the

planned extensions, will provide a better understanding of the general

logic which underlies a specific class of programs, that is the class

of programs used to extract information from network data bases.

Knowledge of this  logic should give insight in to the plann ing

capabilities which program synthesizers (automated or human) will need

in order to function economically in solving complex tasks.



____  
- - — 

-. —‘-

~1

Page 4

2.0 REVIEW OF THE APG SYSTEM

Program construction is carried out using a domain independent

automa tic program genera tion system , hereafter denoted by APG, reported

in [Buchanan and Luckham 1974; Buchanan 1974]. To sketch the logical

basis of the APG , some elements of the logic of programs are reviewed.

Also the formalism for describing APG (called a Frame) and its use in

program generation are illustrated . Sections 2.1 and 2.2 have been

condensed direc tly from the original reports [Buchanan and Luekham

1974; Buchanan 1974; Igarashi, London and Luckham 1973; Hoare 1969].

2.1 Logic Of Programs

Statements of the logic are of the form P{A}Q where P,Q ar-c

Boolean expressions (often called assertions) and A is a program or

program part. P{A)Q means “if P is true of the inrut state and A halts

then Q is true of the output state”.

A rule of inference is a transformation rule from the conjunction

of a set of statements (premises, say Hi ,...,Hn ) to a statemen t

(conclusion , say K). Such rules are denoted by

H1,...,Hn

• K

—-.

~ 

‘ _ .
~~~~~~~ ::~—~~~ ------- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-



p
Page 5

2.2 Frames

The rules in a frame F are of three kinds:

PROCEDURES transform states Into states and are expressed

as statements in the logic of programs.

SCHEMES are methods for constructing programs and are

expressed as rules of inference in the logic of programs.

RELATIONAL LAWS: def initions and axioms which hold in

all states and serve to “comp lete” incomplete state

descriptions by permitting f i r s t order deduc tion of other

elements of a state from those given.

A problem for program construction may be stated as a pair <I,G> ,

where I is an input assertion (or initial state) and G is the output

assertion (or goal that must be true in the output state). The program

construction task is to construct a program A such that I{A}I’, where

I’~~ G. A solution is the sequence of rules of F used in the

construction of the solution program A.

Notation :

Substitutions , deno ted by ~~~, do no t replace any var iable tha t

- 
. occurs in the initial state I. Expressions, all of whose variables

occur in the initial state are called “fully instantiated”. I— denotes

a first order deduction using F and the standard rules described below.

- •:

~~~~~~~~~~~ ~~~~ 
- —-

~~~~~~~~~ 
___



r
p 

Page 6

Standard rules : A set of rules representing standard programming

kti owledge are implemented in the program construction methods of the

pr oble m solv ing al gor it hm:

RO. Assignment Axiom: P(t){x*-t)P(x)

Ri. Rule of Consequence: P~~Q,Q {A )R P {A)Q,Q~~ R

P {A)R P {A )R

R2. Rule of Composition : P{A)Q,Q{B)R

P{A;B}R

R3. Rule of Invariance: if P{A}Q and I — P then
I {A)Q I’ where i~ is the largest subse t of I
consistent with Q.

R4. Change of Variables: P(x){A(x))Q(x)

P(y) {A(y) }Q ( y)

R5. Conditional Rule: PAQ{A}R , PA Q{B)R

P(1F Q ThEN A ELSE B}R

Frame rules: A Fra me def ines a pr ogramming env ironmen t using the

rules described below. These rules are used in conjunction with the

standard rules to generate programs.

Si. Primitive procedures (or operators): the rule
def ining procedure r is of the form P{r}Q . The
assertions P and Q are the pre— and post—condi tions
of r. r must contain a procedure name and
parameter list.

S2. Iterative rules: an iterative rule definition
containing the Boolean expressions P(basis), Q(loop
invar ian t) ,  R(iteration step goal), L(control test)
and G(rul e goal) is a rule of inf erence of the
fo r m :

P , ~~
— Q, QAL (?}R, R ( ?? }QV L , L~~ G

P{while L do ?;.??)G 

-~~~~~:i ii ~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~ -~ - — . -


r~ ~~~~ ~~~~
—• - - .

P
Page 7

S3. Definitions: A definition of C in terms of P
is a logical equivalence I — PEG .

S4. Ax ioms: A f r ame axiom I~ i s a logical axiom
P.

Si type rules generate a single line of code. The resul t is a

module consisting of a sing le operat ion:

-4Th ->

S2 type rul es genera te code for an itera tion loop as represen ted

in the module:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Where I N I T I A L I Z A T I O N and ITERATI ON STEP are generated by a specified

combination of SI , S2 and S3 type rules, and ACTION is generated by

some combina tion of Si , S2 and S3 type rules.

S3 type rules construc t modules from modules (submodules) produced

by specified SI, S2 and S3 type rules, through compos ition or

‘ a l t e rna t ion .

‘a.

_ _ _ _

_ __ -_—---

p - -
~~~~~

---- - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 

Page 8

2.3 Prqgram Generation

The theorems are used in a recursive subgoallng procedure to

generate information retrieval programs. The recursive procedure first

builds a plan for the target program in depth—first fashion. The plan

is a tree and the branches from a node correspond to the subgoals

spawned at that node. For examp le , if the current goal Is R, and R is

not directl y true in the current state, then the system examines the

set of theorems and selects one which has a post—condition , say Q, that

matches the current goal , i.e. RE Qo~ for some substitution ~~~~~. Q~~
may not be a fully bound formula, but a complete binding will be

constructed during the generation process.

If the rule instance Po({A)Qo( achieves R as above, then Po(

becomes the current goal. If I{B)P0tOC (I is the current state), then

by the rule of composition I(B;A)Qo~aC, and by the rule of

consequence , I{B;A}R. The system finds B;A as the program to achieve R

f rom the ini t ial  s tate  I.

The subgoaling process does not usual ly dis tinguish , except as

no ted below , between the types (Si through S4) of Frame rules. The

result is tha t all rules are scanned for  a post—condition matching the

current goal. The subgoaling process does distinguish between rules of

J type S4 and other rules in that only S4 rules or the set of assertions

can be used to prove the pro—conditions of an S4 rule. Rules of type

S3 and S4 are distinguished from the other rules in that they cannot

L _ _ ~~ _~~~_~~~~ 
— - - - - - - --- - - - -



r 
- -- - 

_ _  - -

P Page 9

change the set of assertions. This is a consistent distinction. Since

only program segments can effect changes in the environment (when

executed); only rules describing their effect should be allowed to

change the state description.

R ules may be specif ied having a pro-condition which matches an

assertion in its post—condition. Such a rule may be recursive. If it

is not recursive then it may not be used to satisfy its own

pro-condition.

I With the APG , Buchanan also introduces an interesting improvement

to the logic of programs by introducing uncertainty. The value of an

ossertion can be TRUE , FALSE ot UNCERTAIN. This uncertain logic

rt c’gnizes that there exist ass- ’iio~ s which can only be meaningfully

p ~c~-t cd du:~~.~ exe~-ution of the ‘~~nera ted program. Use of a rule

containing an uncertain assertion in its pro-condition will result in

the generation of a conditional procedure.

p
Th er e fo r e use of such a rule produces the module

p

_________________ -I,.— — ~~~~~~~ - — —  — — ---—-



~~~ -~~- _____ 
-~wI. , .- - - -—

~
.--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ____ ;—
___ —-—--- ‘-——— — --- -

I
- 

Page 10

Where TEST repr esents -ud~ which tests for the truth of the partial

precondition in question. A is the module which the rule h~~ ing that

precondition generates assuming that the partial precondition is true.

B is the module which results from invoking the last rule which was

- f ull y instantiated when called with the current state of the world , but

assuming the partial precondition to ~~ false.

The Fra me is comp iled by the APG to form the DMLP . Each rule in

tne Frame results in a Micro—Planner theorem. Such Micro-Planner

constructs are not actuall y theorems , but that terminology will be

adhered to because of histor ical precedent.

Each comp iled theorem contains premises (or a pro-condition) and

conclusions (or a post—condition) . For example , the Micr~5—Planner

theorem corresponding to the rule P(A)R has a theorem body for  the

pro-condition P and a calling pattern for the post—condition R.

Assertions describe the pro- and post— conditions of the rules.
p

Assertions also describe the current state.

P

P 
-

;‘ . p

p

________ — - - - — -—— — - -- - - - — — - - --——________ — — — — - --—-- — -, - -- --—-



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ‘~~~~~~~~~~~— - ‘~~~~~~~~~~~~

Page 11

3.0 THE HI—IQ QUERY LANGUAG E

3.1 In troduction

Gerritsen [1975] developed the HIerarchical lnteractive ~uery

language for the specification of hierarchical reports.

Because of the preponderance of hierarchies in report structure ,

statistical calculation , and log ical quantif ication , it seemed onl y

natural to give HI- IQ a hierarchical structure. The hierarchical query

structure is reinforced visually f or the user by fu r ther inden tations

of sys tem pro mp ts for every hierarchical level referenced .

A HI—IQ query contains one or more hierarchical levels. Each

level is used to spec if y a matrix in the output report , to specif y the

calculation of a statistic , or to check the truth value of a quantified

condition. A simple one l evel query results in a report consisting of

a single matrix which contains no statistics.

It is not unusual for the definition of a particular level to be

interrupted by the definitions of lower levels. If the user desires

the calculation of a particular statistic , say an average, then the

system next asks him to define the calculation of that average before

proceeding with the f ur ther spec if icat ion of the level in which the

average was requested. The prompt indentation indicates to the user

wh ich h ierarchical level he is curren tly in.

L-.

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~ ~~~~~

-
~~~~~~~~~~~~~~

- - -
~~~~~-~~~~ : 

_____________________ ____



- ~~-- — ---~~~~~—.--—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 12

Figure 3—1 presents a BNF description of HI—IQ. Since Hl— IQ is an

interactive language , only pottions of a query are typed by t h e user.

To distinguish such entries from the characters typed by the system,

all system typed characters have been underlined.

Backus—Naur Form (BNF) [Naur et al 1960] is a formalism invented

for  the descr ip t ion of programming languages , specif ically the

gramma tical struc ture (syn tax ra ther than seman tics) of those

programm ing languages. BNF can also be used to describe

- non—programming languages , such as a restr icted subse t of English. An

excellent description and illustration of BNF can be found in [McKeeman

et al 1970].

The sequence of promp ts for  a par ticular h ierar ch ical level always

consists of three subsequences. These three subsequences are <Record

name> , <CONDITION LINES> and <ITEM LINES>.

a

a

a

$



.4 .- ----- -—_-- ---— _— —.—-

Page 1

<QUERY> ::~ <LEVEL>

<LEVEL> : :- PRIMARY RECORD FOR (<C OMMAND>)
* <Record name>
CONDITIONS FOR RETRIEVAL
<CONDTIO~ULINES>
ITEMS OR STATS MODIFIER)
<ITEM LINES>

<CONDITION LiNES> ::— * NIL I
<CONDITION LINE> <CONDITION LINES>

<CONDITION LINE> : := *OR I *ALL <LEVEL> I

*ANY <LEVEL> J *~TEST >

<TEST> ::= (<b C> <REL> <10CR>) I

(cIOC> <REL> <STAT>) <LEVEL> I

(STAT> <REL> <10CR>) <LEVEL> I

(<STAT> <REL> <STAT>) <LEVEL> <LEVEL>

<10CR> : := RUNTIME j <b C>

< b C > : : =  <Item name> <Constant>

<REL> ::= LE I LT I G E I G T I E Q I N E

< i TEM LiNES> : : =  *NIL I
<ITEM LINE> <ITEM LINES>

<ITEM LINE> : : =  ~<IOC> I *<STAT> <LEVEL> I

*REPEAT <LEVEL> I *~r~ <LEVEL> I

*COND <TEST>

<COMMAND> : := MAIN I ALL I ANY
REPEAT I ONE I <STAT>

<STAT> ::= COUNT TOT I AVE I
M I N I M A X

<MODIFIER> : := TO BE DISPLAYED I FOR AVE
FOR TOT I FOR MIN FOR MAX

Figure 3—1. BNF for the Ht—IQ language
(System prompts are underlined.)

1’~

~~~~~~

-

~~~~~~~

•- 
~~~~ - ---~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—- - - -- - - -

— - , -~~~. - - - -- -, -~~~~~~~~~~~~~~~~~~~ __

Pa ge 14

3.2 <Record Name> Subsequence

The <Record name> subsequence consists of a single system prompt

and user rep ly wherein the user must name the context record for the

curren t hierarchical level. It is possible to have the system

determine the context record for a particular level from the other two

prompt subsequences. This would further reduce the knowledge that the

user must have to use the system , bu t it would also increase the

possibility of undetected errors because of the loss of redundancy.

3.3 <CONDITION LINES> Subsequence

The <CONDITION LINES> sub—sequence of prompts in a query level is

of indefinite length. This prompt sequence defines the condition that

must be true to retrieve the context record. The condition is

specified using the log ical connectives AND and OR and a set of tests

in a disjunctive form. That is to say, if A, B, C, and D are all

tests , AMVCN~ is equivalen t to (AM)V(CAD) . However, the latter
V

specification is not allowed; the user cannot control the bindings of

the logical connectives , AND and OR. This is not a major restriction.

Any condition can be specified in disjunctive form , albeit in a

• cumbersome way. Because of th e immediate binding of AND , it is the
F t

default connector and need not be specified by the user.

3

H V V . V

___________ —‘-4-- .—-- - — ---— —


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page IS

Particular tests are of the form (A REL B). REL can have one of

six values: EQ, NE , UT , LE, CT , GE. “A” can be an item name, a

statistic , or a numeric or non—numeric literal. “B” can be any of

these;, in addition “B” can be the keyword RUNTIME. The use of

RIJNTIME signals that the generated program will be an interactive

program. If execution of the generated program becomes dependent on an

actual value for “B ’, it (the generated program) will prompt the user

with “A REL?”, and the user’s reply will be used to determine the truth

value of (A REL B).

Universal or existential quantification can be specified as part

of a condition. Since quantification is only meaningful over a set of

possible values, the user must be ready to define a new hierarchical

level for every quantifier specified . After encountering either of the

quantifiers ALL or ANY, the system automatically proceeds to prompting

for the definition of a new hierarchical level.

The system also proceeds to a new hierarchical level whenever the

user specifies a statistic so that the calculation of the statistic can

V be defined. A statistic is specified with one of the following

keywords: COUNT, TOT, AVE , MIN, and MAX.

-; - 4 V  ~~~~ 

V 

~~~~~~~~~~~~ V 
--

Page 16

CONDITIONS FOR RETRIEVAL
*(PATNO EQ RUNTIME)
*(PATAGE LT 25)
*N IL

CONDITIONS POR RETRIEVAL
*(SALARY LT 6000)
*0 R
*(SALARY LT 10000)

—
PRIMARY RECORD (ANY)
*DEPENDENT

~ONDITIONS FOR RETRIEVAL
*(AGE LT 21)
*N IL

*NIL

Figure 3—2. Two examples of retrieval conditions.

Figure 3—2 illustrates two retrieval conditions. The first Is a

simple conjunction of two tests. The second condition indicates that a

record (employee) should be retrieved if the employee has a salary

below $6,000, or if he has a salary below $10,000 and at least one

dependen t child.

3.4 <ITEM LINES> Subsequence

THE <ITEM LINES> subsequence is also of indefinite length and is

used to define the matrix associated with the cutrent hierarchical

level. This matrix is either an output matrix (for the report) or a

statistical matrix, depending on the command which invoked the current

hierarchical level. The system calculates the statistic in each column

- _ J1LILL I j ~ - - -

V V V~ -
- -

_ _ _ _- -~~—~~

Page 17

of a statistical matrix. In other words , every column is totalled or

averaged , or the minimum or maximum is fo und in every colum n of the

statistical matrix.

Th e rep ly to a prompt in the <ITEM LINES> subsequence must be any

one of the statistical commands , an item nam e , the REPEAT command , the

ONE c ommand , the COND command or NIL. NIL terminates the subsequence.

Entering an item name or COUNT defines a column of the matrix.

Enter ing any other sta tistic will define one or more columns of the

matrix depending in turn on the number of columns in the matrix defined

for that particular statistic.

Any of the commands (with the exception of the COND command) will

cause the system to init ia te a new hierarchical level , so that the user

can further define the action associated with the command . The REPEAT

command is used for genera ting hierarchical reports. Figures 3—3 and

3—4 illustrate a complete query and the report it defines.

- —- - - T~~~~~~I ~~~~~~~~:iV: =~~~~~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV ~~~~~~~~~~ 
-
~~~~~~


Page 18

PRIMARY RECORI1(MAIN)
*DOCTOR
CONDITIONS FOR RETRiEVAL
*NIL
TTEMS OR STATS TO BE DISPLAYED
*DOCNANE
*DOCAGE
*s PECIALT Y
*REPEAT
— PRIMARY RECORD (REPEAT)

*PATIENT
CONDITIONS FOR RETRIEVAL
*(PATAGE CT 21)
*NIL
YTEMS OR STATS TO BE DISPLAYED
*PATNAXE

~ PATAGE
*D IAGNOSIS
*NIL

*NIL

Figure 3—3. Query (P1) for the report of Figure 3—4

FREDERICKS 41 G.P.
SMITH 48 BOTULISM
JONES 22 APPENDICITIS

BROWN 36 INTERNIST
SMITH 48 BOTULISM

SLENDER 52 GEN SURGERY
V JONES 22 APPENDICITIS

• BLUE 49 GYNECOLOGY
WILLIAMSON 31 MISCARRIAG E

V

Figure 3—4. A hierarchical— matrix report.

The top level matrix of this report contains three columns for

DOCN AM E , DOCAGE and SPECIALTY. The secondary matrix , hierarchically

nes ted in the top level ma tr ix, also con tains three columns , PATNANE ,

:i.~~

V _____ ~ V ~~~~~~~~~~~~~~~~~~~

Page 19

PATAGE and DIAGNOSIS.

Note tha t in Figure 3—3 , the p t o m p t sequen ce for bo th levels of

the report included all three sub—sequences as defined earlier. This

query specifies a condition in the second level (on the retrieval of

pat ients). This condition will not affect the retrieval of DOCTOR

tecords or any other records not within the context of the PATIENT

record . The condition (PATAGE GT 21) app lies onl y to this par ticular

context of the PATIENT record. The PATIENT record could have been

ref erenced elsewhere in the query , and the condition (PATAGE GT 21)

would not have ~pp 1 L ed.

The function of the ONE command is very similar to the REPEAT

command except that only the first line of the matrix at the next level

will be re tr ieved and d isplayed in the report. If the REPEAT command

in Figure 3—3 is rep laced wi th a ONE command , then the resul ting repor t

would resemble Figure 3—4 with the exception of the third line (which

would not be included).

The user can control the appearance of par ticular a tt ribu te values

on a par ticular line with the conditional output (COND) command . It is

especially useful for exception reporting . Subsequent to encountering

the COND command , the system responds as if a new hierarchical level

‘ had been specified , except that the first prompt sub—sequence is

skipped. The first sub—sequence is not necessary because COND canno t

change the reco rd context .

*1

11 i~~::::~ . . j-—— - -
~~~~~~~~~~~~ 

_ _ _ _



r ~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V

Page 20

There are a few other cases in which the full promp ting sequence

is not appl icable , and oth er prompting sub—sequences will occasionally

be suppressed. The third sub—sequence is not entered for the COUNT

command because counting app lies only to line occurrences of a mat r ix ,

the columns of the matrix do not affect it.

Similar l y , it does not make sense to specif y a matrix within the

con tex t of a cond i t ion q u a n t i f i e r (ALL or ANY) , so again the th i rd

p r o m p t sub-sequence is not enteted by the system.

3.5 Port Select ion

When the query ha s been comp leted the system tells the user which

items , if any , might be used for a calculated direc t access. To use

calculated keys for port selection , each disjunct for the top level of

ttie query must have one or more item s meeting the qualifications listed

below. For each disjunct the user is asked to select one of these

items or none. If the user selects none for any one disjunct , then no

calcula ted keys are used. Since an area search will have to be made to

test for the disjunct for which no calculated key was selected , the

other disjuncts can also be tested during the area search. Proper

selection can reduce searches through the data base. For an item to

q u a l i f y fo r use as a caicuiated key it must s a t i s f y all of several

restrictions:

a) It must be defined as a calculated key.

b) It must have been used in a test with an

-

Page 21

equality relation.

c) The item must be contained in the context
record for the top level of the query or in a
record h ig her in the hierarchy than the context
record for the top level of the query.

The need for the first two restrictions is obvious. The third

restriction is temporary, it is nece~~. -y until a set of rules to

govern the effiecient use of caickeys not meeting the restriction can

be developed.

~:

S? ,

I

• ~~~~~ -
V


~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

Page 22

4,0 MODIFICATIONS OF Hi—EQ AND APG

4.1 Introduc tion

In app lying the APG System to the generation of the programs to

prod uce reports from information in network type data bases, Gerr itsen

[1975) found it necessary to extend the original system. In the

or ig inal sys tem , program construction was accomp lished throug h app ly ing

rules of the type P{A)Q, where Q contained a comp lete and specif i c

description of the desired goal. Such a description of the desired

hierarchical report would be long and complex. The length and

comp lexity would cause two problems. First , rules to handle such goals

would themselves be rather complex and therefore difficult to

comprehend . Second , the number of different ways the goals can be

broken into subgoals increases with the length of the goals. Since the

breaking of the goals Into subgoals is what builds the search tree,

such long, comp lex goals could lead to ve ry large search trees. This

could be costly to system efficiency , since search is carried out by a

depth first search of the tree.

V To avoid these problems , Gerritsen had HI—IQ add assertions to the

program environment (the initial state). Therefore , ra ther than pos ing

a goal which is a complex description of the desired report , :he

initial goal is simply “write a program”. When the program genera tor

req ui res descr iptions of the various aspects of the desired report it

• finds them in the state description.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ - 

~~~~~~~~~~~~~~~~~



—

Page 23

In their paper , Sussman and McDermott [19721 discuss what they

feel are the problems with Micro—Planner. Two of these are:

1) The ineffic iencies of algorithm s which employ backtracking

or for tha t matter inefficiencies caused simply by

ma intaining the information needed to allow backtracking.

2) The lack of control over large goal invoked systems since

it becomes difficult for the human to follow all the subgoals

the system might create and try to prove in attempting to

achieve its goal.

Whil e these problems migh t exis t in the APG System, the system

does have some very strong benefits:

I) The use of the Logic of Programs aids in showing program

correctness.

2) It provides a convenient method for expressing programming

rules.

3) It allows the rules to be presented in a form that

facilitates human comprehension of the logic involved.

In Gerri tsen’s app lication , the onl y search (planning) activity

requ ired is to determine the path through the network (i.e. how to get

fron the record defining one level of the query to the record defining

one of that level’s sublevels) and thereby verify that a user’s reques t

• . is logical vis— a—vis the data structure. 

V :I :~~~~~~~~~~~~~~~~~~~~~~
. V  .



~

Page 24

One of the major steps taken in the extension of Gerrit sen ’s work

that is described herein , was to expand the assertions generated by

HI—IQ to Include the results of that search. With this extension , the

program genera tion p hase became a de termin istic procedure , and it was

no longer necessary tha t the program compos ition rules be theorems (in

the Micro — Planner sense) to allow backtracking . Therefore the compiler

that translated the rules into Micro-Planner theorems was modified to

translate them into LISP functions. (i.e. So that program generation

would proceed de term in ist icall y ra ther than nonde termin istically.).

This changeover necessitated one further modification of the

system. As explained in Section 2.2, when a rule con taining an

uncertain assertion (i.e. one that is neither true nor false in the

cu rrent state) in its pre—conditions is used , the generation of a

cond itional procedure will result. This conditional procedure is

obtained by invoking the most recent fully instantiated subgoal (i.e.

that subgoal for which all variables were defined when it was invoked).

Th e state used in reinvoking this sub goal is the state that existed

when the uncertain precondition was encountered but asserting the

V 
precondition to be false. In mod if ying the system to produce LISP

functions rather than Micro-Planner theorems, it was no longer possible

to permit unbound variables. This made it necessary to explicitly

V state which rule was to be invoked to generate the conditional

procedure. Explicit inclusion of alternation in the programming rules

should be an improvement vis— a—vis the original implementation.

(Proposed plans for changing this method of generating conditional



- ~~~~~ V~~V --- ~~V~~~~ V V~ -

Page 25

procedures are mentioned in Section 9.2.)

The system functions in two phases. First the Request Handler

(Sections 4.2 & 5.) interactively accep ts the query from the user and

generates a set of assertions describing that query. Then the Program

Generator (Sections 4.4 & 6.) takes the assertions describing that

query plus assertions describing the data base (Section 4.3) and

generates a program to answer that query. See Figure 4—1.

DATA BASE ASSERTIONS
DESCRIPTION

Request Program COBOL
QUERY 

::::R:: ONS 

GOAL Writer PROCEDURE

Figure 4—1. System flows.

V 4.2 Request Handler Assertions

The following is a description of the assertions generated by

HI—IQ. These assertions are generated for a specific request and are

• included in the initial state description. The user specifies his

request by responding to prompts from the Request Handler , and then the

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J !~~~~~~~~~~~~~~~~~~~~ V V V.V :~~~~~~~ V~~~~ V .


~
V

~
• V V

~

Page 26

Program Generator is given the task to generate a program. The

possible assertions are shown in Figure 4—2.

Th~ Request Handler describes the query with a set of assertions.

An assertion must conform to one of the templates in Figure 4—2.

There is exactly one TOBEOPND assertion per query . The AREAS list

indicates which areas of the data base contain records that will be

accessed during the processing associated with the query .

Determination of the AREAS list is not simply accomp lished by tallying

the names of the areas that contain the records referenced in the

query . It is possible that the generated program will access areas not

directly referenced via record names in the query. This situation

occurs if an access path between two records passes through an

intermediate record . Determination of the AREAS list therefore

involves a determination of all access paths.

r
~~~~~~~~

V. V V 
~~-

- - - ---

Page 27

TOBEOPND(AREAS)
AREAS is a list of all areas containing records
which may be accessed in the query .

L INKS(TY PE ,MTHD ,RECI ,REC2 ,LEVEL ,PATH) 
V

LEVEL is a Dewey—decimal identification of a query
level. This level has REC2 as the context record
and was entered with the command indicated by TYPE
from a level which had REC1 as the context record , 

V

and is reached by following PATH through the data
base netwo rk. MTHD is always equal to “PATH ”
except if the LINKS assertion is describing the top
level and a port record is being used to enter the

V 
da ta base , in which case MTHD is equal to “PORT ” .

FOR(COND ,LEVEL )
COND specifies the condition whose truth must be 

—

establ ished prior to any processing of the matrix.

TOBEUSED( ITEMS ,LEVEL)
ITEMS identifies the columns in the matrix for
LEVEt .

I SVAR (VAR )
VAR is a system generated variable .

Figure 4—2. Templates for Request Handler assertions.

LINKS , FOR and TOBEUSED are each asserted at most once for every

level specified in the query . There is a one to one correspondence

between these three and the three subsequences of prompting. The LINKS

assertion defines the context of a query level and assigns the LEVEL

iden t i f i e r .  The FOR assertion defines the retrieval condition , and the

TOBEUSED assertion defines the matrix.

• p
V 

A Dewey—decimal scheme is used to identify the levels of the

• query. The top level is indentif led as X. The first level occuring

within the context of the top level is identified as X.1. X.2.1

j~fr



Page 28

ident i f ies  the f i rst hierarchy in the second hierarch y occuring within

the top level of the query .

4.2.1 LINKS Assertion —

The TYPE parameter of LINKS is actuall y a list containing two

sub—parameters. Values of the first sub-parameter are limited to the

names given in Figure 4—3. With the exception of MAIN , these are all

commands which invoke new query levels. MAIN is used to identify the

top level of the query and has the same interpretation as the REPEAT

command.

The second TYPE sub-parame ter is a unique system—created variable

name. This variable is used for counting record occurences if the

first sub-parameter is COUNT or AyE, or for controlling quantification

if the first sub—parameter is ONE , ALL or ANY . Although TYPE will

always contain a variable name as its second parameter , this variable

is only used by the Program Writer if the first parameter in TYPE is

one of the five commands indicated above.

The PATH parameter contains information about the path through the

V 
data base network which is followed to reach the context record for

LEVEL. This parameter is discussed more fully in Section 5.2.

- - . •  ~~~~~~~~~~~~~~ .V ~~~~

______ :: ~~~~~~~~~
--

~ 
V ~~~~~~~~~ ~~-~~~~ -—-~~-~ ~~~~~ V 



V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~
--- - -

~~~~~~~~~~~~
- - _

Page 29

MAIN ALL TOT
REPEAT ANY AVE
ONE COUNT MIN

MAX

Figure 4—3 possible values of the TYPE parameter in LINKS

4.2.2 FOR Assertion —

The COND parameter of FOR is a list containing all of the tests

specified in the CONDITIONS FOR RETRIEVAL for a particular query level.

A test Is described in a sub-list containing seven entries. The first

entry is the relation involved in the test and the second and fifth

entries are the arguments of the test. The third entry gives the query

level which defines the calculation of the first argument. If the

second/f if th entry is a cons tan t , the fourth/seventh entry is simply

“CURLEV ”. It the second/fifth entry is a statistics command , the

• fourth/seventh entry is simply “NEXTLEV” . If the second/fifth entry is

a data item , the fou r th/seventh is a path , as described in Section 5.3, V

V which leads from the context record for the current level to the record

containing the desired data item. Similarly, the sixth entry gives the

level number associated with the second argument of the assertion.

These level numbers will be the same as the value of LEVEL in the FOR

assertion if the argument is not to be calculated but is a constant or

is available from the context record .

‘— -
-

V

V - . - - V --
_ _ _ _- . -

- .

Page 30

For examp le, such a lis t might be (EQ COUNT X.l <pathl> 5 X

<path2>). This test indicates that a count , as defined in the X.1

LEVEL , must be equal to 5. The path parame ters are no t shown here

explicitly. For information on these parameters see Section 5.3.

Disjunction and conjunction is indicated in the COND list as

follows. A simple list of tests represents a conjuction of those

tests. A list in turn , of such conjunctions represents a disjunction.

Th is list struc ture bears a close resemblance to the disj unc tive form

that the user must use to phrase the retrieval condition. If A, B, C

and D are tes ts, then the COND list for APtBVCAD would be ((A,B) (C ,D).

DMLP constructs tests to enforce quantification . If the user

spec ifies un iversal quantification , the system inserts the test (ALL EQ

0). The Program Writer will eventually cons truc t the program so tha t a

variable associated with ALL (defined in the TYPE parameter of the

LINKS assertion) is set to non—zero if the associated condition is ever

false. This variable, also called a quantification flag, signals the

truth value of the entire condition.

Similarly, specif ying ex isten tial quantification results in a test

(ANY EQ 1). The variable associated with ANY is set to non—zero in the

generated procedure if the associated condition is ever true.

V
—- _-~~~~~~ _~~~~ ,~~~~ _ . _ -_ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —V —

Page 31

4.2.3 TOBFUSEI) Assertion —

TOBEUSED desc ribes the matrix associated with a query LEVEL. The

ITE MS para meter is again a list, each entry describing a column of the

matrix. The entry descr ibing a column is In turn also a list

consisting of four entries. The first of these is an item name,

statistic command , or constant. The second entry indicates the query

level where the calculation of the entries in the column is defined .

The four th entry assigns a variable name which can be used by the

system for the calculation of a statistic. If the first entry is a

constant , the third entry is simp ly “NIL ” . If the first entry is a

statistics command the third entry is simply “NEXT LEV ” . If the first

en try is a da ta I tem, the third is a pa th , as described in Section 5.3,

which leads from the context record for the current level to the record

containing the desired data item.

As an illus tra tion , Figure 4—4 gives the compl ete set of

asser tions der ived by the Request Handler from the query of Figure 3—3.

It is these assertions along with assertions describing the data base,

that the Program Writer will use to generate the desired procedure.

— - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-~~~~-~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~~~~

V~~~~~~~~~~~~

Page 32

TOBEOPND ((A l A 2))
L I N K S ((M A I N) PATH DOCTOR x ((N I ! . DOCTOR AREA Al D N H I E R)))
L INKS ((R E P E A r X4)

DOCTOk
PATIENT
(X . 1)
((DOCTOR TREATMENT SET TREATING DN III ER)

(PATIENT TREATMENT SET TREATM ENTS U P H I E R))) V

FOR ((((C T PATAGE (X . 1) CURLEV (21) (K . 1) C U R L E V))) (X . 1))
TOBEUSED (((DOCNAM E K CURLEV XI)

(DOCAGE X CURLEV X2)
(SPECIALTY K CURL EV X3)
(REPEAT (X . 1) NEXTLEV XIO))

X))
TOBEUSED (((P ATNA M E (X . 1) CURV LEV X5)

(PATAGE (X . 1) CU R LEV X6)
(DIAGNOSIS (K . 1) N I L X 7))

(X . 1)))
ISVAR (X 1O)
ISVA R (X7)
ISVA R (X 6)
ISVAR (X5)
ISVAR (X4)
ISVAR (X3)
ISVAR (X2)
ISVAR (Xl)

Figure 4—4 Assertions describing the query of Figure 3—3

4.3 Assertions.

A Frame consists of a set of logical statements or rules. These

rules are of four different types as discussed in Section 2.2 and

rev iewed here:

V Si Primitive procedure rule.
S2 Iterative rule.
S3 Def inition rule.
S4 Axiom.

Rules and the current state are expressed with assertions. Each

assertion must correspond to a temp late with a semantic interpretation.

V V
~~~~~~~~~~~~~~~~~~~~~~~ V V



-~~~~~ 
- ______________- - —- —— — ——--— ~~~~~~~~ — 

~~~~~~~~~~~~~~~~~~~ 
— -

~~

-

Page 33

e.g. the assertion CONTAINS(F’ATIU’~1 , >ATNU) states that the PATIENT

record contains the PATNO item.

Evaluation of an assertion determines if it is true or false in

one of several ways:

(a) if previously stated to be true or false (i.e.
true or false in the current state)

(b) by evaluating a rule which has the assertion
in a post—condition

(c) by evaluating an ordinary LISP functions (i.e.
those not output by the APG from program generation
rules).

Rules m ay have assertions which contain variables which are to be

bound to values when a match is made with an assertion of the same

pattern in the data base describing the current state. Such variables

are denoted in the input rules by (MATCH <variable name>). e.g. If

CONTA I NS(PAT I ENT ,PATNO) is true in the current state , then eval uation

of CONTA INS((M A TC H RECX) ,PATNO) will bind RECX (a variable) to PATIENT.

DMLP uses 55 different types of assertions. Five of these were

described in Figure 4—2. Figure 4—5 describes the five used to define

the database structure . An earlier paper [Gerritsen 1974] Illustrates

the ease of conversion from a Data Definition Language specification of

a data base to a set of assertions.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ V~_V  V~~~~~~~~~~~~



Page 34

INA RE A(  RE CORI ) , AREA)
RECORD is c o n t a i n e d  in AREA .

C O N T A I N S ( R E C O R D , ITEM )
ITEM is is contained in RECORD .

1) B KE Y(R E CO RD , ITE M )
ITE M is a data base key for RECORD .

CALCK E Y(RECORD , h E M )
ITEt - 1 is a d i r e c t  access a t t r i b u t e  ( c a l c u l a t e d  key)
o f RECORD .

111 E R A R C H Y G R O U P ( R E C O R D L , RECORD2 , SET)
RECORD 1 is the  owner- of SET , and RECORD 2 is a
member of SET .

Figure  4 — 5 .  Asse r t ions  used to descr ibe  the data  base.

4 .4  Ru le  Asse r t i ons

4 . 4 . 1  A s s e r t i o n s  For The Sl Roles.  —

Figure  4—6 c o n t a i n s  the  assertions which describe the r e s u l t s  of

s ing le program steps.  These a sse r t ions  occur as pos t—cond i t i ons  of

ru ies  of t ype  SI .  Those pa rame te r s  which are under l ined  in Figure  4—6

have a uniqueness  p r o p e r t y .  For examp le , the  system wi l l  insure tha t  a

p a r t i c u l a r  ITEM w i l l  con ta in  onl y one VALUE:  If the asser t ion  C(X 1 , O )

has been made fo l lowed  by a l a te r-  a sse r t ion  C(X 1 , l ) ,  then  the  system

w i l l  e rase  the  f i r s t  a s se r t ion .

_ _ _  - 

_ i _
_

_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  ~~~~ —— -  V V~~~~~~~~~~~~~~~~~_~~~~~~~~~~ V -~~~~~~~~~~~~~~


-- V --

Page 35

OP EN ED (AREAS
AREAS is a list of areas that have been opened.

C LU S El) (AR EAS)
AREAS is a l i s t of a r ea s t h a t have been closed .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The program NAM E has been s topped .

ACC EPI( VAR I VABLE , lr E M ,RELA T I0 N)
VARIABLE c o n t a i n s  the  v a l u e  entered by the user in
response to the  p rompt  “iTEM RELATION? ”

C U R R E N T ( R E C O R D ,LEV E L)
RECORD is c u r r e n t  a t  LEVEL.  e . g . ,  The named record
has been f o u n d  w i t h i n  the  program segment
associated w i t h  the level i d e n t i f i e r .

INCO R E (REC ORD ,LEVEL)
The named RECORD is in core and avai lable fo r
processing to the  program segment assoc iated wi th
LEVEL.

C (I TEN ,VAL LJE )
The named ITEM contains  the  given VALUE.

ANY OL IT PU T( I TE M S , LEVEL)
ITEMS is a l i s t  of the columns of a m a t r i x  ( t h a t
has been o u t p u t  at the  given level)

F OUNDO WN E R(R E CO R D I , RECORD2 , SET ,LEV~ L)
The named RECORD I has been found  via the SET using
RECORD 2 , a member of t h a t  SET and bo th records ar e
now cur ren t  at the LEVEL s p e c i f i e d .

FO U NDNEXT(TY PE ,RECORD , UN I T , L ? V E L )
The next RECORD of the  spec i f i ed  UNIT which is
e i ther  an Area or Set as spec i f i ed  in TYPE has been
found and is c u r r e n t  f o r  the  LEVEL specif ied .

Figut - e 4— 6 is cont inued  on the  next  page .

H

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~ . i *-z~--~~~~- -- —

Page 36

FOU N D(RECOR [) , LT EM ,VALU E ,L E V EL)
The named RECORD has been found using iTEM as a
cal culated key with the given VALUE such that
RECORD is current for th~ specified LEVEL .

F O U N D U S I N G (R E C O R D ,KEY , LE VEL)
The named RECORD has been found using the data base
KEY and is current for the specified LEVEL.

F 0u N U F 1 R s T (r y p E , RE COR D ,1JN I f LEVEL)
The named RECORD has been found as the f irs t record
of the spec i f ied UNIT wh ich is eithe r a Set or Area
as spec i f i ed by the va lue of TYPE. The record is
current for the specified LEVEL.

Fi gure 4 — b . Asser t ions which ind ica te the resul ts of sing le
program statements.

The a s se r t i ons in F i g u r e 4 —6 appear to describe the status of an

execu t ing program . The desc r ip t ions are more p rope r ly interpreted for

program genera t ion if each is read as if preceded w i t h the phrase “Code

has been genera ted such t h a t . . .” .

.

—

.

F

- :~~~~
:-- - - -~~~~~~~ --- ------ - - V- -V V

- Page 37

iSITEM (il EM)
ITEM is conta in ed wi thin some record as an
attribute or data base key.

RC A~F (COM IAND)

COMMAND has the value “COUNT” or “Ay E ’.

BTMNA#(COMNANI))

COMMAND has t h e value ~V J~j j V~~
~

•-
~ IN ” , “MAX” or ‘AyE”

= (A B)
A is equa l t o B~

EQ (A , B)
A is equal to B. This assertion differs from the
preceeding one in that its value can be uncertain
if , fo r examp le, either A or B are program
variables.

TEST (COND IT ION ,LEVEL)
The CONDITION is true for the program segment
defined for LEVEL . CONDITION Is a list consisting
of a relation and two arguments. When the
arguments are program variables , TEST will hav e an
uncertain value .

Figure 4—7. Other assertions.

4.4.2 ~-I iscel1aneous Assertions. —

V
Figure 4—7 contains a set of assertions which are difficult to

cl~~ sify. The first is directl y der ivable f r o m the assertions

describing the data base structure . The next three ar’~ used to test

the values of their arguments, and the last two are used to test values

• or insert code to test values.

- V
V -~~~~~~ ~~~~~~~~~~~~~~~~~~~~

V V V
-~~~

- - . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —,-—~.

Page 38

* 4.4.3 LISP Functions —

Some of the assertions used in the preconditions of rules are not

used in post conditions of other- rules or in the current state. Such

assertions may be eval uated b y LISP func tions. Asser tions for which

there exists a LISP function have U as the last two characters in

their names. These assertions and their meanings are listed in Figure

4—~3.

-

_ _
V~~~~V_ ~~~~~~~_V _VV V__-V -~~~ V- - — -- —~~~ - -~~ - - —~~~~~ _ _ _ _ _ _ _ _ _ _ _ _

- -~~~.

Page 39

POPPATH## (PATH)
This assertion is only evaluated if MTHI) in the
LINKS assertion for the top level is “PORT” . It
pops the f i rst item from PATH in the L iNKS
assert ion for the top level .

POPFORLIS## (LEVEL)
This assertion pops the first item (disjunct
description) from the COND list in the FOR
assertion for LEVEL .

STAT##(CO MNAND)
COMMAND is one of the statistical commands.

RETQ#1/(COMMAND)
COMMAND is a retrieval quantifier (ANY or ALL).

REPQ##(COMMAND)
COMMAND is a reporting quantifier (MAIN ,REPEAT or
ONE) .

LITERAL##(ITEM)
ITEM is a number or non—numeric literal (enclosed
in single quotes).

BIN D I TM ##(I TEM S)
The variable ITML has been bound to a list of
printable items extracted from the ITEMS list.
Th is is done to elim ina te commands which cause the
printing of sub—matrices and also to rep lace
statistic commands with the variable containing the
value of the statistic.

Figure 4—8 is continued on the next page.

p

V
~~~~~~~~~~~~~ -~~~~~~

- - -  

~~~~~~~
- - —

~~~~~~~~~~~~~ 
- 

~~~~~~~~ ---  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - V - -


_ _ _ _ _- --V_-~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-~~~~~~~~

Page 40

READL##(ITM REL)
This assertion returns the value “ITM REL? ’, which
is used in the genera ted program to promp t the V

user.

CONTEST##(ACT ION ,ARG I , ARC2)
Th is asser tion retu rns a test wh ich will be used
for terminating a ioop. Appropria te tes ts for
earl y term ina tion of the ioop depending on the
ACTION of the loop are also generated . An early
termination test will involve ARG I and ARG2.

UN CE RT ER RSTAT## ( )
This  a s se r t i on  always evaluates to true . However
it also insures tha t  all  knowled ge about the value
of E RRORSTAT IJ S becomes uncertain . This is used to
indicate that  the val ue of ERRORSTAT IJ S becomes
unknown fo l lowing a data base access.

Figure  4—8 . Assertions evaluated by LISP.

Of the assertions in Figure 4—8, the first two are used to update

the state of the world for generation ot conditional procedures. The

next four assertions (STAT## through LITERAL##) are very simp le and

return true or false depending on the value of their single parameter.

The next assertion (BINDITM##) is used to bind variables to values

V extracted from lists. This assertion is necessary because of the list

structures contained in the assertions generated by the Req uest

Handler.

The last three assertions are unusual in that they are not

V 
evaluated for truth or failure. Instead , they re tur n a value or change

the state as is explained in Figu re 4— 8.



Page 41

Occasionally the pre—condition of a rule will include standard

LISP or Micro—Planner predicates (see (McCarth y et al 1972] and

[Sussman and Winograd 1972]). These predicates are illustrated in

Figure 4—9. Note that the functions CAR & CDR in Figu re 4—9 can be

combined to form functions. e.g. CADR(A) would be equivalent to

CAR(CDR(A)).

SETQ(A ,B) V

Sets variable A to the value of B.

NULL(A)
A is null.

CAR (A)
Returns the first element of the list A.

CDR(A )
Returns a list equivalent to A with its first
element removed.

*APP END (A , B)
Adds list B to the end of list A.

ATOM ( A)
Returns true if A is not a list but a single
element.

LIST (A ,B,C,...)
Cons tructs a list wi th elemen ts A , B, C, ... Note
that A , B or etc. can be atoms or lists.

SUBST (A ,B,C) Subs titutes A for  all occurences of B in
list C.

FIGURE 4—9. STANDARD LISP and Micro-Planner predicates used
in the rules. 

~~~ V 1-V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
~~~~~~~~~~



Page 42

5.0 RULES FOR PLANNING

5. 1 Downward MiZrat ton Of At t r ibu tes

The planning required of the system is that of “naviga ting”

through the data base network. Before discussing this planning , it is

necessa ry to discuss the concept of downward migration of attributes

(similar to Virtual Source in the CODASYL DBTG specification [1971]).

Th is is the concept that  in a hierarchical  data base s t ructure , all

a tt r ibu tes of a record can also be thoug ht of as being attributes of

any records which tha t record owns, and any records tha t those records

own , etc. e.g. Consider the data base as illustrated in Figure 7—1.

While Hospname is not actually a data element of the PATIENT record ,

each PATIENT record would be associated with only one l-iospname value.

That would be the value contained In the HOSPITAL record which owns

that PATIENI record . Therefore , it is possible to think of Hospname as

an attribute of a PATIENT record. V

5.2 Loactlon Of Context Records

Now , as to the problem of nav iga t ing thro ugh the da ta base

ne twork , there are two instances when the Request Handler must do this.

First, there is the problem of getting to the context record for a

given level. Records can be located in three different ways:

—V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --- --—---- — - - •V V ~~~~ V V V - V _ V ,~~~, V_-V~-V V

VV

-Vi~VV ~V-V -V
—

-
-

- -

~

Page 43

1) By a set search , or set ownershi p

2) By a calcula ted key

3) By an area search —

Wh ile any of the three methods may be used in loca t ing the top

level con text record (s) , only the first one is used in locating all

other context record(s). In Section 3.1, it was stated that all levels

other than the top level are defined within the context of the higher

levels. e.g. Given the data base in Figure 7—1 , in the following

query, the PATIENT record is referred to within the context of the

HOSPITAL record .

PRIMARY RECORD (MAIN)
*H05p ITAL
CONDITIONS FOR RETRIEVAL
*NIL
ITEMS OR STATS TO BE DISPLAYED
*HOSPNARE
* REPEAT

PRIMARY RECORD (REPEAT)
*PATIENT
CONDITIONS FOR RETRIEVA L
*NIL
YTEMS OR STATS TO BE DISPLAYED
*PATNO
*PATNAME
*N IL

*NIL

It is a reques t for a lis t of all hosp itals , and with each hosp ital a

• list of all its patients. The system would understand that the PATIENT

records would be located by a set search of the PATSET set. A g iven

record , Record A , can log ically be referenced within the context of

ano ther record , Record B , if any of the following three conditions are

satisfied .

J~~~~~~~
• - • - — — -

~~~~~~~~~
— 

~~~~~~~~~ V V 
— V~~~~ - ~~~~~~~~~~~~~~~~~ - - V V -

- - ~_ V V V~~~ V -V -V-V-V V~~~

V .—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
~~V • V _ V ~~~-

V •-V~ ~~~~~~~~~~~~~~~~~~~~~~~

Page 44

i) B owns a set of which A is a member , or B owns a set of

which C is a member and C owns a set of which A is a member,

e tc .

ii) A owns a set of which B is a member , or A owns a set of

wh ich C is a mem ber and C owns a set of which B is a member ,

et c.

iii) A owns a set of which C is a member and B owns a set of

which C is a member , A owns a set of which D is a member and

0 owns a set of which C is a member and B owns a set of which

C is a member , etc. In this case Record C is referred to as

a “common bo ttom”.

In terms of the data base this means the HOSPITAL record could be

men tioned within the context of the BILLENTRY record , or vice versa,

and the PATIENT record could be mentioned within the context of the

DOCTOR record , or vice versa, however , the ~.1ORKREC record canno t be

mentioned within the context of the BILLENTRY record , or vice versa.

5.2.1 Set Search —

The system uses a description of the data base structure in terms

of the assertions in Figure 4—2 to check for a path from the context

record on a given level to the context record fo r each of that level’s

sublevels. if no such path exists, the system informs the user with

the message: “No direct path from to . ‘ Assuming the system

f inds a pa th , it p laces information describing that path in the PATH

- -
‘ parameter of the LINKS assertion and the MTHD parameter is set equal to

V L _ V ~~~~~~~ •--- ‘— - -


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 45

“PATH” , (Section 4.2.1). The PATH parameter is a list of sublists.

I her e  is one sublist [or each set involved in the path. Each sublist

has f i v e  e l emen t s .  L h e y  a re :

1. REC H :  This is the  name of the context record for the current
record  on the  p a t h .

2. RE CL:  This  is the  name of the next record on the path

3. T Y P :  This is a lways  equa l to “SET” for a set search.

+ . N AN E: This  is the  name of the  set involved .

5. DI RE C: This  is equa l to ‘D N H I E R ” if RECH owns the set and RECL is
a member , it is equal to “U P H I E R ’ if RECL owns the set and RECI-! is
a member.

The re fo re  given the  data  base structure illustrated in Figure 7—1 ,

if  the  PATIENT record were ment ioned  w i t h i n  the context  of the DOCTOR

record the  path would be represented as

( (DOCTOR ,WORKREC ,SET ,WORKING ,DN HIER)
(WORKREC ,TREATMENT, SET,TREATING, DNHIER)
(TREATMENT ,PATIENT ,SET,TREATMENTS,UPHIER))

R u l e s  are invoked b y the system to try and prove various goals

(p o s t c o n d i t i o n s ) . In the presentation of the rules poscconditions are

i d e n t i t i e d  by the  preceding > . The bod y of the rule is what must be

t r u e  f o r  the postcondition to be true .

in the  ru les  ( E V <expression> ) is used to indicate that

<express ion> is not a variable or a constant but a function to be

eva lua ted .

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •


V_V VV ~~ _ V V~~ V V ~~•~ — ~V -V~ - VVV~V~~V V V
~V~V~~~

_ : -
-V -- - V -- -V - -V-

Page 46

There are two rules which the system uses to find the path. They

are:

U P L I N K
[=(REC1 ,REC2)A
SETQ(PATH,NIL)J V
(L-LIERARCHYGROUP (REC2, RECk , ST) A
SETQ(PATI4,(EV(LIST ~ (REC2 ,REC1,SET,ST,DNHIERfl)))1 V
[HIERARCHYGROUP (REC3 ,RECI ,ST)A

— —

UPLINK(REC3,REC2,PAT~TK
SETQ(PAT R ,(EV (*AP P END (

~~.Afl! ,
(LIST (LIST (REC2 ,RECI ,SET,ST,DNHIER)))))))]

> UPLINK (RECI,REC2,PATH)

COMEOT
UPLINK(REC3,REC 1,PATHI)A
UPL INK (R E C 3 ,RE C2 , PAT H2) A
SE TQ(PA TH ,(EV(*AP P END (PAT I-12,

(S(JBST (U PH I E R ,DN }IIE R ,(R E VERSE (P A T H 1))))))

> COMBOT(REC 1, REC2 , REC3 , PATH)

These are two of the three rules which are still implemented in

Micro—Planner. Therefore the system searches all possible paths ending

at the desired record , until it finds the path or exhausts all

possibilities. The system will choose a path which does not use a

common bottom over one which does. e.g. In the structure illustrated
V

in Figure 7—1 , the system would choose the pa th HOSPITAL — PATIENT to

get f rom the HOSPITAL record to the PATIENT record over the path

HOSPITAL — WORKREC — TREATMENT — PATIENT. The current implementation

of HI—IQ assumes that at most one path which does not use a common

bottom and at most one path which does use a common bottom exists

be tween any two records. This is a l imita t ion which is planned to be

eliminated in future extensions to the system. It is planned to have

the system generate all possible paths , and then logically eliminate as

V

many as possible. (The basis fo r this e l imina t ion wil l be the

V - V - -— — -
j——1-~~~~~~ -—--- -V _~~~~ -V-V-V -V _ T T V _ I V T

-
— V —

— _VVVVV y~ - V - —~~~~~~~~~~ —“—_ — -_ -- V -— --- -~~~~~~-V _VV_ .~i:- V ~

Page 47

difficult part to implement.) Lf more than one path still exists , the

sys t em w i l l then inform the user of the possibilities (along with some

d e s c k i p t ion of the r e l a t i o n s h i p r L ~)r esente d by the pa th) and ask the

user to choose one .

~. 2 .2 Calcula ted Keys —

In locat ing the con tex t record f o r the top level of the query , a l l

t h r e e of the methods men t ioned at the beg inn ing of t h i s sect ion may be

involved. If a ca lcu la ted key is to be used , Section (3 . 4) , the system

4gain r ep re sen t s the re levant i n f o r m a t i o n in the PATH parameter of the

- L I N K S a s se r t ion , bu t t he MTFI D p a r ame te r is set to “PORT ’. The PATH

pa rame te r is a l i s t of s u b l i s t s . There is one sublist for each

d i s j unct in the top level of the query (as mentioned in Section 3.4 ,

each disj unct must use a calculated key) . Each sithlist contains three

parameters . They are:

I . CALC : The name of the data i t em which is the calculated key.

2. TPATH: If CALC is a data i tem in the con tex t record fo r the top
level of the q u e r y , then th i s parameter is set equal to tha t record
name . If CALC is a data i tem in a record hig her in the hierarchy
than the con tex t record fo r the top level of the query, then this
parameter is a descript ion of a path (Section 5 .2. 1) leading f r om
the record which conta ins CALC to the context record for the top
level of the query .

-
- 3. VALUE: This is the va lue which CALC was speci f ied to have in the

q u e r y .

—-V- — -V__J -- -V IV__ - V - V - --- ~~ -V~~~~~~ •V V

- - ~~V~~~ V V -V~~~~~~~ _ _ _ _ _ _ _ _ _ _ _

Page 48

5.2.3 System Set Search —

I t VI calculated key i s no t u sed to locate the top level Context

r~-cor d then Lh second a l t e r n a t i v e t h e sys t em w i l l t r y is a s y s t e m set

search . rh i~; is onl y pos sible if the top leve l c o n t e x t r e c o r d is a

n €- mbe r of a sys tem owned set , or i f a record , w h i c h own s a set of w h i c h

the top level c o n t e x t r c c o r d is a member , is a me-m b~-r U t a sys tem set ,

or e t c . In t h i s case the top level con tex t record(s) a r e located b y a

set. search. The information is r e c o r d e d as desc r ibed in Sec t ion 5.2.1.

In the f i r st sub l ist RECI I is set equa l t o “ SYSTEM ’ .

D.~~.4 Area Search —

if n e i t h e r of t h e above two methods can be used to locate the top

level con tex t record , then an area search is used. (An area search

t reats the area in which the record type may be located as a sequent ia l

f i l e and an e x h a u s t i v e search takes p lace.) The relevant i n f o r m a t i o n is

again p laced in the PAT H p a r a m e t e r of the LINKS a sse r t ion and the MTH D

p a r a m e t e r is set to “PATH ” . The PATH pa rame te r wi l l be as described in

Sec t ion 5 . 2 . 1 , however t h e re w i l l be only one s u b li s t . In tha t

sub l ist , the RECH p a r a m e t e r is set to “ N I L ” , the RECL parameter is set

to t h e name o f t h e top l evel con tex t record , the TYP parameter is set

equa l to “AREA ” , NA hE is set equal to a l i s t of the names of the areas

to b e sea r ched , and the D I R E C pa ramete r is set equal to “ D N H I E R ” .

V - - - -- - - - - -

— - - - — ‘~~~~~ -~ _
~~

_
~~~

_
~
_ _  _ _ . ~~~ . _ _ —  — ---- --—-——--- ------- --- - -— ~~~~~~~~~~~~ — - .— _



- - , 
V V

Page 49

. 3 Lo cat ion Of Data Item

The other instance in which p lan n ing is necessary  is wh en a da ta

item name used within the context of a given record is associated with

that record throug h downward mi gration of attributes. The system

p laces in the FOR or TOBEUSEE ) assertions (Sect ions  4 .2 .2  and 4 . 2 . 3 )  the

d e s c r i p t i o n  of a p a t h  l ead ing  f r o m  the  con tex t  record fo r  the level in

w h i c h  the  da t a  i tem name is used to the record  in which the data item

is c o n t a i n e d . The p a t h  is rep resen ted  as descr ibed  in Section 5 .2 . 1 ,

except  t h a t  if  the da ta  i tem is con ta ined  in the  contex t  record fo r  the

level in which the data item is used , then instead of t he  l i s t

describing the path the  p a r a m e t e r  is simp ly set equal  to “ CURLEV ” . The

system finds the path by f irst trying the UPLINK rule (Section 5.2.1).

If that fails it tries the following rule.

ONP ATH
L TNKS(DUM 1 ,HRE C 1, REC2 , LE VN ,PATH1)A
[[ISCOMBOT(PATN1)A

U P L I N K ( C ~~,REC3 , PA TH ) ]  V
PATOM( (EV(CAR LEVN))) /~O N P A T I I ( ( E V ( C A R  LEVN)),HREC2 ,HRE C 1 ,PATH)fl

> O N P A T R ( L E V N , RE CZ , REC 3 , PATI -I )

This  is the t h i r d  r u l e  which  is s t i l l  imp lemented  in Micro-Planner.

ISCOI-IBOT is a f u n c t i o n  which r e t u r n s  T R U E  if  P ATH I  has a common bot tom

and FALSE if it does not. Ai~ examp le of a common bottom is record C as

descr ibed in ( i i i )  of Section 5 .2 . 1 .  ( e . g .  In the  examp le (Section

5 . 2 . 1 )  of the  p a t h  f rom the  DOCTOR r e co rd  to the  PAT I ENT record , the

TREATMENT record Is a common bottom). Essentiall y what ONPATI-{ does is

to work backwards up the path which leads from the top level con tex t

record to the context record of the level in which the data  i tem name

- ---

~ 

-“ - •
~~ V_-V~~~~~~~~ V~ —:__-

-



- ---- - V 
VV ~~ .~~~~~~~~~~~~~~~~~~~~ V —------- ~~~~~~~~ - -V - - -V - - V- V ~~- V - - V— -  

Page 50

was used . 1-or each common bo t tom f o u n d , i t  t r i e s  to I J P L I NK f rom that

common bottom record to the record w h i c h  c o n t a i ns  the data item. Note

that in the discussion in Section 5.1 , downward mig ration of attributes

was s t a t ed  as onl y o c c u r r i n g  f r o m  r ec ords  con ta in ing  those a t t r i b u t e s

( d a t a  i tems)  to r e c o r d s  owned by t hem , or records  owned b y records they

own , or  e t c .  i .e .  It  was S t a te d  t h a t  in a da ta  base s t r u c t u r e  as

illustrated in F i g u r e  1—1 , Docnane could  not in genera l  be considered

an a t t r i b u t e  of the P A T I E N T  record  b y downward m i g r a t i o n .  However ,

with the  ex i s tence  of c o n f l u e n t  h i e rarc i e s  ( a n d  common bot toms)  t h i s  is

not  t r u e  g iven  the  p roper  c o n t e x t s .  This can be i l l u s t r a t e d  b y the

f o l l o w i n g  q u e r y :

PRIMARY R ECOR I )  (MA IN)
*DOCTOR
CONDIT iONS FOR RE TR iEVA L
* ANY
— 

PRI MA RY REC ORD (ANY)
*PATIENT
CONDIT I ONS FOR RETRI E VAL
*(PATNAM E E~ 15OCNANE)

V 
*NIL

ITEMS OR STATS TO BE D i SPLAY E D
*DOCNANE
*NIL

Thi s  query  is r eques t i ng  a l i s t  of a l l  doctors  who t r ea t  themselves .

In general , g iven the da ta  base s t r u c t u r e  shown in Figure 7 — i , many

DOCTOR records could be assoc iated  w i t h  each PATIENT record . However

w i t h i n  the  con t ex t  of the  above query  each t ime a PAT IENT record is

obta ined  it is log ica l  to the  system tha t  one and only one DOCTOR

r e c o r d  is to be associated w i t h  i t , and t h a t  is the  DOCTOR record which

i n i t i a t e d  the  set search  which  lead to that PATIENT record. It is for

such occurences that the ONPA V I H rule is written.

V V~
V 

- --
-~~~~ -V 

- - - -

~~~~~~~~~~ 

-

~~~~~~



_ _ _ _ _ _ _ _ _ _  - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 51

The p a t h  d e s c r i p t i o n s  which  ONPATH and UPLINK produce lead from

the r e c o r d  c o n t a in i n g  t h e  da t a  i t em  name to the  con tex t  record fo r  the

leve l in which the data item is used . Before placing this description

of the path in t he FOR or VrUBEUSF.l) assertion , the system reverses it.

( i . e .  it changes the  p a t h  to lead f r o m  the context record to the

r e c o r d  c o n t a i n i n g  the  da ta  i t e m . )

L,~~~~

. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

V
~~~~~~~~~~~~~~~~~~ 1:T ~~~~~~~~~~~~~~~



-- — -  — - ------- - - - - - - - - - - --- - - -“ -- --. - - - -V_- . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
~~~~~

Page 52

b.() RULES FOR PRO GRAN GENERATION

6.1 I n t r o d u c t i o n

The following is a descri ption of the rules used in Program

G e n e r a t i o n .  In t he  APU Sy s t e m , a l l  precondi tions for rules had to be

s ta ted  because i t  was not a d e t e r m i n i s t i c  process and i t  was not

poss ib l e  to know a n y t h i n g  ap r i o r i  about  the  s t a t e  that would exist when

thìe r u l e  was i n v o k e d ,  in t he  present case , program generation is

d e t e r m i n i s t i c , based on t h e  p l a n  descr ibed  in the  asser t ions.

Therefore it is no longer necessary to state many of the preconditions

f o r  a ru le  since they  a r e  known to be t r u e  ap r i o r i  by the f ac t  t h a t  the

process had proceeded to a po in t  where  the  r u l e  is invoked.  Thus , one

of the benefits of p lanning is t h a t  i t  reduces rule  complex ity .  It is

because of this that most of the Si type rules have no preconditions.

6.2 SI~~~~~ Rules

For the SI type rules each is of the form P{A}R where A is a

single program operation or command . Many of the preconditions , P, of

the  r u l e  a re  not t e s t ed  ( s t a t e d  in the rul e) fo r  reasons jus t

exp lained.

Each rule in Figure 6— 1 is described with A , the operation ,

— f o l l owed in ord er by P, the preconditions (if any), and R, the post

V condition. The post condition is further identified by the preceeding

> . Variables in each rule are underscored.

‘-V

- - - - - __________

~~~~~~~~

-

~~~~~~~~ 

~~-TI~~ :I- -~~~ - -T ~~~~~~~~
V -

~~



Page 53

The operator rules are f a i r l y s imp le.  The interpretation of the

fi r st rule appearing in 1-’igure 6—I wou l d  be:

By executing MOVE VAL TO IJE ST t h e n  DEST is equal  to VAL ( i . e .
C(DEST,VAL).Note: imp licit preconaT~iIons for this rule are:
1) that VAL has a value , and 2) that DESI can be assigned a
value .

F i N D  REC RECOR1) is a bit more i nvo lved  and would be in te rpre ted  as

f o l l o w s :

If VAt is equal to RUN l IME , then generate the code to
de te rmine  t h e  des i red  v a l u e  of ITM interactively, otherwise
simp ly move VAL to ITM . Then by executing FIND REC RECORD,
the record will have been FOUND and be CURRENT but  not
INC ORE.  Al so , the  v a l u e  of ERRORSTATUS is uncer ta in , as the
desired record may not exis t  in the  da tabase .  Note:
imp l ic i t  p r e c o n d i t i o n s  to t h i s  ru l e  are : I )  that ITM is a
ca l cu l a t ed  key fo r  REC and 2 )  that VAL has a value  (poss ibl y
RUNTIME).

p 

T~~-i~~~1 
_ _ :_ _ _ _ _ _ _ _ _ _

-  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


_ _ _ _ _ _ _ _ _ —_~~~~-_- ---V--V--V - .—-V-

Page 54

~luv1- : VAt TO DEST

> C (DE ST ,VAL)

ACC EP V F VAR
ANYOUTPUT((EV (REAI)LIF# ITM REL)),VAR)

> ACC E P 1(V A R ,ItI’1,RE L) It C (V A R ,RU N T I M E)

DISPLAY Ilt’IL

> A N Y O U T P U 1 (I T M , L E V E L)

OPEN AREAS

> O P E N E D (A R E A S)

C LOS E AR EAS

> CLOS ED(A RE AS)

F I N D REC RECORD
T~~~(VAL ,R U N T L ME) V AC C EPT(I TM , ITr-1, E Q)] A C (I T M ,VAL)

> F O U N D (R E C , ITM ,VAL , L E V E L) ~ C U R R E N T (R E C ,LEVEL)
INC O R F~~~ G~~~ VE~~ ~~~~ GERTERR STAT #~T~~~

F I N D REC USING DBK

> F OU N DUS ING (RE C ,DBK , LEV EL) A CURREN T (RE C ,LEV~ L)
INCOR E (REC , LEVE L) A U N C E R T E R R S T A T # # ()

F I N D FIRST REC RECORD OF UNiT TYP

> FOUNDFIRST (TYP ,REC ,UNIT ,LEVEL) A CURRENT (R E C , LE V EL)

~ INCOR E (R EC ,LEVEL) ~ UNCERTERRSTAT##()
—

FIND NEXT REC RECORD OF UNIT TYP

> FOUNDNEXT(TYP ,RE C ,UNIT ,LEVE L) A CUR R ENT (R EC ,LEVE L)
I NCOR E (OWN , LEVEL) A UNCERTERRsTAr##()

GET REC

> I NCOR E (REC ,LE V E L)

STOP

> ST OP (N AN)

Figure 6—1 SI Type Rules

I. 4-

_ _

—-V.

—---V—_
‘ T V -_ _

~~~~~~~~
-V

~~~~~~~~~~ 
~~~ 

_ _ _ _ _ _



--_-
__

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 55
-

6.3 Rules

The following is a discussion of S4 type rules. These are axioms to

test the truth of certain conditions in the current state. The CIJRAX

axiom checks to see if a record is current by check ing for currency at

the current level in the hierarchy and if necessary, recursively checking

the hig her levels , w i t h i n the context of which the current level was

d e f i n e d . This is done throug h use of the Dewey Decimal structure of

LEVEL. (e.g. to find out if a record is current at LEVEL X.2.l, first

LEVEL X . 2 . l is checked; if that is unsuccessful , then LEVEL X.2 is

checked) .

The ITEMAX axiom checks to see if a given variable , ITM , is either a

database key or a data item.

The rules are illustrated in Figure 6—2 using the convention used in

presenting the Si type rules.

CU RR ENT
N U L L ((E V (C A R LEVEL)) A CU R R E N T (R E C , (E V (CAR L E V E L)))

> CURRENT(REC ,L E V E L)

lSl [E~t
D B K E Y (R E C , 1TM) A cONTAINs (REc ,I’rM)

> I SIT E I - l (IT M)

V Fig . 6—2 S4 V1y1,e Rules

-j ~~~~~~~~~~~~~~~~~~~~~~~~~

V V~~~~~~~~ -V -V-V~~~~~~~~~ ~~~ V~~~~~~~~~~~~~~~~~~ - -~~~~~~~

Page 56

6. 4 S2 And S3 Rules

Th e f o l l o w ing is a discussion of the S2 & 53 type rules. These are

the rules which actuall y accomp lish the program composition. Each rule

is given using the convention used to present the Si and S4 type rules.

Along with each rule is given an illustration of the possible program

modules it may construct , and a discussion of the states (requests) which

cause the rule to generate those modules. Which module is generated

depends on the state at the t ime when the rule is invoked.

In the flowcharts , rule names in modules containing an * are

expanded by the S2 or S3 Type Rule named in that module. Modules not

containing an * represent single program operations .

6.4.1 PROGRAM —

Ihi s is the rule which is invoked by the system to generate the

de si red program after Hl—IQ has added the assertions describing that V

program to the state description.

h~ku (;kA~’V1
LINKS ((MATCH ACTION),(MATCH M1’HD),(MATCH GREC),X,

(MATC H PATH)) A
TOBEOPND ((MAECll AREAS) ~ O P E N E D (A R E A S) ~
GETTOTO P LEV(MTIID ,ACT ION , PATH) A
TOBEOPND((MATCH AREAS) ~~ CLOSED(AREAS)A
S TOP P ED (N AM)

> P ROGR AM (N A M)

This rule results in the program module

Page S7
V

4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~

6.4.2 GET iO TOPLIV —

this t- ule ~~nera t es code for the data retrieval and report

generation.

GET 10 V I V O P L E V

[=(MTHD ,PATH) V
[ATOM((EV (CA D AR P A T H)))

F O U N D ((E V (C A D A R PATH) ,(EV (CAAR P A T H)) ,
(EV(CADDAR P A T H)) , X)

SE[Q(PATH,N I L)] V
[FOUND ((EV(CAAADAR PATH)),(EV(CAA R PATH)),

(EV(CADDAR PATH)),X)
SETQ(PATH ,(EV(CADAR PATIO))])]

GETTONEXTLEV(ACTION ,X,NIL ,N 1L , PATH)

> GETT OTOPLEV (P1THD ,A C TI ON ,PATH)

I) If MIHII equals ‘PATH” (i.e. This is for a set search to evaluate or

d isp lay a subl evel , or to perform a system search for location of the

top level context record(s).), this rule generates the program module.

~~~~~~~~~ ON E XTLEV

ii) If MTIID equals “PORT” (i.e. This is for the top level and data

base entry is through a port record.) and the calculated key value is

not to be specified interactively, this tule generates the program

module

FIND REC RECORD ~~~~~~~~~~~~~~~~~~~

—- ~~~~~~~~~~~~~~~~~~~ 
-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
-— - -

_ _ _ - -- - V V ~~~~~~~ -V-V - V -V -VV~~V-V~ ~~~
r~-~ ~~~ V

Page 58

iii) If MTF1D equals “PORT ” and the calculated key value is to be

determined interactive ly, this rule generates the program modu le

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

6.4.3 GETTONEXTLEV -

This rule generates code to move up or down hierarchies in the

network and to perform any required actions. V

GETTONEXTLEV
[= (PATH ,NIL) A

[~~~( ( E V ( C A R  A C T I O N ) ) , ALL) V C(E V(C A D R ACTION),l)] A
ALLFORFULINST(ACTION ,LEVEL)] V
[=((EV(CADDR(CDDAR PATH))),UPH1ER)A

U PL INKED(A C T I ON ,LEVEL ,PATH)J V
DNL1NKED (ACTION ,LEVEL ,ARG1 ,ARIJ2, PATH)

> GE TT ONEXTL E V(AC TION ,LEVEL ARG I ARG2 PATH)

i) if PATH equals “NIL” (i.e. The context record for LEVEL has been

made current by f o l l o w i n g  PATH to its end.) and (CAR ACTION) does not

V equal “ALL” , this rule generates the program nodule

~~~~~~~~~~~~R~~ LINST

ii) If PATH equals “N I L ” and (CAR ACTION) equals “ALL” , this rule

generates the program module

H H~~~~~
E 1 ALLF ORFU L 1NST

~~~~~~

Whet-c DEST is a flag which is set to I each time a record is to be

_ _ _ _  - - 

~~~~~~~ ~~~ V ~~~ V~~~~~~~~~~~~ V 
~~~~~~~~~~ 

--

~~~~~~~~~~~~~~~~~~~~~~


-~~~ - --—- ~~~~- - —~~~ ~~ —--—-~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _

Page 59

tested to see if it satisfies the conditions of the ALL command . Later

code is genera ted to reset the h a g to U it the record meets the

c o n d i t i o n s f o r the ALL command .

i i i) I f (CAD R(CDDAR P A T h)) equals “UPRIER” (i.e. The next record on

the path owns a set of which the current record is a member.) , this

rule generates the program module

4U
~~~~ KE1~~~~~~

iv) i f ( CADDR(CDDAR P A T H ) )  eq ual s “l)NHIER” (i.e. The next records on

the path are members of a set owned by the current record.), this rule

generates the program module

~~~NKE~~~~~~

6.4.4 UPLINKED —

This rule generates code to move up a level of the hierarchy in

the ne twork .

~J P L I N K E D
FOUNDUWNER((EV(CAAR PATH)) ,(EV(CADAR PATH)),

(EV(CADDAR P A T h)) , LEVEL) A
GE TT ON EXTLEV (A CT I ON ,LE V E L ,N I L ,N I L , (E V (C D R PATH)))

> U P L I N K E D (A C T I O N ,LEVE L ,PAT H)

This rule generates the program module

- -
—

~~~~
- -V --- -

~
- -
~~~~

_ IV ~~~~~~~ IT _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Page 60

F I N D OWNER GET TONEXTLEV
RECORD OF’ *

6.4.j DNLINKEI) —

This is the onl y examp le of a S2 Type Rule , therefore its form is

a little more comp lex than the other rules. As explained in Section

2.2 this rule generates a program segment of the type: While L do

?;??. The r u l e is defined by giving a precondition (P), a loop

invariant (Q) , an i t e r a t i o n step (R), a control test (L) and a rule

goal (G). UNLINKED generates code to perform an area search or a set

search.

UNLINKED
precondition:

SETQ(REC , (E V (C A D D D A R P A T H))) ~~.

SETQ(U N I T , (EV(C A DDDAR P A T H))) A
SETQ(TYP,(EV(CADDAR PATH))) I~.
FOUNDFIRST(TYP,REC ,IJNIT ,LEVEL) ~
DBKEY(R E C ,(MATCH DBK) A
C (D B K ,(CURS ’IAT<UN I T ,TYP ,O)

i n v a r i a n t :
C (D B K , (M ATC H CU R R V))

iteration step:
GE TTONEX TLE V (A C TION ,LEV E L ,ARG 1,AR G2 ,(EV(CDR PATH))) A
C (D B K ,(CURSTAT ,A ,B,CURRV)) A
FOUNDUS IN G (R EC ,DBK ,LEVEL) A
FO U NDN E XT(TYP ,REC ,UNIT ,LEVEL)

loop terminator:
V CONTEST#//((EV(CAR A C T I O N)) , AR GI ,ARGZ)

V post condition:
> D N L IN K E D (A C T I ON ,LEVEL ,ARGI ,ARG2 , PATH)

j

~~~~~~ V~~~~~

V T I
~~~~~~~~~~~~V~~~ 

_ 1 J1

r ‘

~~~~~~ 

_____________ 
_ _ _ _ _ _

Page 61

(CU R STAT ,A , B , C) is a function which is expanded to “CURRENCY

STATUS FOR A B ’. This rule generates the iteration loop. After the

d:tion of the loop has been performed , by the code generated by

GETTONEX I LEV , the currency for the context record , REC , of the loop is

reestablished in case it was altered during the execution of the code

generated by GETTONEXTLEV.

F I N D  NEXT RE~ FIND REC MOVE VAR GETTONEXTLEV

L~~
R
~~

F — USIN G D~ K TO DB~~~ *

_ _ _

~~~~~~~~~~~~~~~ 

~~~~~~ 

FÜR 
~~~~~~~~ 

_ _

CON TEST f~# sets up code for loop termination when

i) ERRORSTATUS is not equal to 0

ii) (CAR ACTION) is “ONE ’ and a record mee t ing the

necessary conditions has been found and disp layed .

iii) (CAR ACTION) is “ANY ” and a record meeting the

necessary conditions has been found .

iv) (CAR ACTION) is “ALL” and a record not meeting the

necessary conditions has been found .

v) Code is being generated to evaluate “A REL B” where B is

a constant , REL i_ s EQ, NE , LT, UT , LE or GE and A is

“COUNT ” , “M I N ’ OR ‘MAX” . The v a l u e of CULNT ’ or

will moriotonicall y increase and the value of MIN will

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 62

nionotonical l y decrease. Therefore the loop may be

-~ t e r m i n a t e d e a r l y once t h e truth/falsehood of the c o n d i t i o n

‘A REt U is determined without having determ ined t !u

a c t u a l value of A. (e.g. if “A REL B” is ‘M I N LI 10” once

an instance has been hound in wim ich the value of the item

of which the minimum is being calculated is LT 10 the 11

can be terminated even thoug h the true minimum may be iess

than the value found.)

6.4.6 ALLFORFUL1~~ST —

This rule generates code t o perform required actions and test for
V

any conditions on wht ck ì those actions are to be based .

ALLFORFUL INST
[NE Q# (ERR ORS T ATU S,u) A FOR(MATCU F O R L I S) , LEV E L) ~

N U L L (E V (C I) R FORL I S)) A P UPP ORTS~? # (PA TH) A
P O P F O R L I S # # (L E V E L) A
G E TTOT OP L E V(P O RT ,A C T IU N , LEV EL)] V

1 [[N T E S T ((M A T C H R E L) , LEV E L) ,\ FOR((MA TC H F O R L I S) , L E VEL) ~
SE T Q (F O R L I S 2 , (E V (C D R FORL I S)) A N U L L FO RL I S2 ,k4
POPFORLIS ## (L E V E L)] V
[FOR((MATCL i FORLIS2),LEVEL) V SETQ(FORL1S2,NIL)1] A
[N U L L (F OR L I S 2) / ~ DOACTION(ACTIVON,LEVEL)] V
A L L F O R (A C T I O N , (E V (C A R F ORL I S2)) ,LEVEL))]

> A L L F O R F U L L N S T (A C T I O N ,LEVEL)

This rule appears rather comp lex for the nodules which it generates.

This comp lexity is due to the fact that it is the rule which is invoked

to generate conditional procedures. Proposed changes (mentioned in

Section 9.2) would relocate this type of activity to the rule requiring

the generation ol the conditional procedure , thereb y making what the

. -r- -, --
— — - - - - -—— - ----— ~~~~~

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



- —----------- -- - V -V~~~ V_-V ~-r-: . = :— - t ~~~-=~-~-c - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -V ~~~~~~~~~~~~ V P - V - - V -V--V -- -V -~-V~~~~ _ - V  .— -- .—-—-

Page 63

r u l e s  ar e  do ing  more obvious.

i) It LEVEL equals “X ” (i.e. this is the top level) and MTI-hI) equals

‘PORT” and code h a s  been genera ted  fo r  a previous disjunct for LEVEL

and there are furthe r disjuncts for that level , then this rule

gene ra t e s  the  p r o g r a m  module

~~~~~~~~~ V~~ N F~XTL E V

This would only be the case if the rule was being invoked to generate a

conditional procedure. Therefore , before generating any code , the rule

up d a tes t h e st a te b y executing PO1’PURTS## so that the next port record

choosen will be for the appropriate disjunct , and P0PF0RLlS#1~ so that

the appropriate disjunct will be the f i r s t subl is t in FORL I S of the FOR

assertion for LEVEL.

i i) If t h e r e are no q u a l i f y ing conditions for LEVEL, the rule generates

the program module

~~~~~~~~~~ T 1ON

In this case, as well as in case (iii) , if the rule is being invoked to

generate a conditional procedure , it executes POPFORLIS## so that the

appropriate disjunct will be the first sublist in FORLIS of the FOR

assertion for LEVEL.

i i i )  If the re  are q u a l i f y ing  c o n d i t i o n s  fo r  LEVEL t h e  rule  generates

the program module

k - - - - - - -- -

-- -V V ~“~~L_ ~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ - . _
~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~ - 

._ - 4

— - - - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 64

-

‘

h .-+.7 ALLFOR —

Ihis rule generates code to test qualif ying conditions for LEVEL

and p e r f o r m the associa ted ac t ion

ALL FUR
EQ# (ERRORSTATUS ,U) A
[[N U L L (F O R L I S) A D OACTLON(ACT I ON ,L E V E L)] V

[SETQ(IT MI , (E V(CADAR F O R L I S))) A
SETQ(PATHI,(EV(C A DDD A R F O R L I S))) A
SETQ(LEV ELI , (EV(C AU DA R F O R L I S))) A
SETQ(ITM2 , (E V (C A D D R (C D D A R F O R L I S)))) A
SETQ(PATH2,(EV(CADDDR(CDDDAR FORLIS)))) A
SETQ(LEV E L2 , (E V (C A D D R (C D D D A R F O R L I S)))) 1A,
SETQ(RV EL ,(EV(C AA R F O R L I S))) A
DETV AL(ITM 2 ,LEVE L2 , PATH2 ,ARG2 , IITML , REL) A
DE TVAL(ITM1 , LEVE L I , PAT NJ ,ARGI ,ARG2 , REL) A
TEST((E V (LIST REL ARG 1 A R G 2)) , t~V~ L3~~~
ALLFOR(ACT ION , (E V (C D R F ORLI S)) , L E V E L)]]

> ALLFOR(A C TION ,FORLI S ,LEVE L)

1) If ERRORSTATUS is of uncertain value (i.e. code is being generated

for the top level and data base entry is via a port record) and there

is more than one disjunct left to be tested at LEVEL, this rule

generates the program module

• . ‘ ~~~‘
- - - -~~~~~ -~~~V-- -- -V —- V- V- - V- - V- V- V- V- V ~~—-----V- - - V - V —-V~~~ - -—~~~~~~- --~~~--~ -V - - - ~~~

_ _ _ _ _
-V_-- V— - -_— ----V - V - - V — -V--V

Page 65

ALL F ORF IJ L INST
*

F Y E S

ERRORS IATUS
0

NO
Y

Wtm ere V is a module as illustrated in case (7iii) , (7iv) or (7v) below.

This genera te s a condi t iona l procedure which is executed if there was

no port record in the data base which satisfy the conditions of the

first disjunct in FORL1S. This conditional procedure is generated by

asserting that ERR0RSTATUS is not equal to 0 and invoking the

ALLFORFULINST rule. That rule will generate the code to test for the

next disjunct. Note: if there are no more disjuncts (case ii), then

no conditional procedure Is generated.

ii) If ERRORSTATUS is of u n c e r t a i n value and there is just one disjunct

to test for at LEVEL, this rule generates the program module

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Where Y is a module illustrated as illustrated in case (7iii), (7iv) or

_ _ _ _ _  ~~TTTT _~~~~~~~~~ 
_±

_ 
~~~~~1I- -

~~~~
--.



-~~~~~~~ 
. - V  V~~~~~~~~~~~~~~~ V

Page 66

(7v) below.

iii) If ERRURSTATUS equals U and FORL1S equals “NIL” (i.e. There are

no further conditions that need be tested for- this ACTION.), this rule

generates the program module

H
~~~~~

TI0

~~
J
~~~~

iv) I f ERRORSTATUS eq uals  0 and FORL 1S d oes not equal “NIL” and code is

being generated for more than one disjunct , this rule generates the

program module:

ALLFORFUL INST
*

YES

DETVAL TEST

NO
ALLFOR

*

(Note that TEST is the negation ot the condition requested , therefor e

if TEST succeeds the record does not satisfy the condition requested.)

TEST is a partial precondition which is of uncertain value , ass uming a

given condition is not tested for twice in one disjunct. If a query

states a given conditon twice in the same disjunct , the sys tem will

only generate code to test for it once. Therefore this case generates

a cond itional procedure which is executed if the record does not

satisfy th~ condition currentl y being tested. This is done by invoking

~Ti - 

- - -V__ A



-~ 

Page 67

ALLF ORF U L I NST.  ALLFURFUL INST w i l l  check to see if code for one

disjunct has been generated , and if it has, then ALLFORFULINST will

begin to generate code for- the next disjunct. If there are no more

d i s junc t s  (case v ) ,  then no conditional procedure is generated .

v) If ERRORSTATUS equals (I and FORLIS does not equal “NIL” and code is

being generated to test the last disjunct , this rule generates the

program module

YES

~~~~~~~~~~~~~~~~~~~~~~

Note that two DETVAL modules appear , one for each argument of TEST (A

REL B). For relations which may be used for early termination of a

loop (Section 6.4.5), the statistic (thIN , MAX or COUNT) is evaluated

af ter the value which it is being compared to.

6.4.S DETVAL —

This rule generates code to determine required data item/statistic

values.

-V
- T~~~ -T~~~~_ -~~~Ti~~ VV V ~~~~~

- V- V_

~

_ - V - V

~~~~~~~~~~~~



--V — - -_ --------- — - -

Page 68

DET VAL
SETQ(PARG ,ITM) A
~LITERAL## (tT~1) V
[= (ITM ,RUNTIME) A NEW LISPVA R(PARC ) A

GET RUNT(PARG ,ARGI,REL)] V
[ISITEM(ITM) fl CONTA INS(( MATC H REC), ITM) A

FI A K E I NC O RE (REC ,LEVEL ,PATH) ]  V
[STAT##(ITM) V REPQ##(ITM) V RErQ##(LTM)] fl
L1NKS((MATCH ACTION),(MATCH PREC),(t~~T~ H G R E C ) ,

LEVEL ,(MVATCH NPATH))A
VBCA#(ITM) V C(LEV(CADR ACTION)),O] A
VRET Q#TrrTt’I) V C((EV(CADR ACTION)),Ofl A
[=(ITM,ONE) V C(( EV (CAD R ACTI ON)), 0) ]  A
[[BTMMM(ITM) A SETQ(PARG , ( E V ( C A D R A C T I O N ) ) ]  V
[T0BEUSEDT~~ATCH ITMS),

LEVEL) A INITVARS(ITMS)
SETQ(PARG ,(EV(CADDA R ITMS )) ) ] ]  A

G E TTON EXTLEV (ACT ION ,LEVEL ,PARC ,ARG3, NPATH) A
[ = (ITM ,AVE) A DIVVARS((EV(CAD R ACTION),ITMS)]] A

S ET ( ARC , PARC )

> D ET VAL (ITt’t, LEV EL ,PATU ,ARG , ARG3, REL)

i) If ITM is a constant , this rule generates the program module (i.e.

It generates no code.)

ii) If ITM equals  “RUNTIME” (i.e. The item value is to be specified

interactively.), this rule generates the program nodule

H
~~~~~

UN
~~
F

iii) L~ ITM is a data item , this rule generates the program module

H
~~~~

EINGORE .

This is to bring the record containing the data item into core.

COPY
~~

YM1kB1
?~~

0
~~~~~~c~~~~

-- ~~~~~ .. ~~~~~~~~~

. —~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~ - _ _~~~~~ V~~~~-V_~~~~~~~~~~~~~~~ -V _V- V~~~~~~~~~~~ V V ~~~~~~~~~~~~~~~~ V-~~~~~~~~~~~~~

Page 69

iv) If ITM equa l s “REPEAT” or “COND ”, th is rule generates the program

module

~~~~~~~~

TONEXTLEH

v) If LTM equals “COUNT ” , “ALL” , “ANY ”, or “ONE” , this rule generates

the program module

H 

~‘1UVE 0 ru GETTONEXTLEV .
(CADR ACTION ) *

Where (CADR ACTION ) is a system generated variable which is being

initialized to U. In the case of the “COUNT” command , the var ible is

used to store the total of the number of records found which meet the

conditions for that “COUNT” command . In the cases of the “ALL” , “ANY ’

and “ONE” commands , the variable is used as a flag. Later the system

will generate code (within GETTONEXTLEV) to reset the flag to 1 to

indicate that the “ANY ” comm and has been found to be true , that the

“ALL” command has been found to be false, or ‘ha t the ONE command has

been fulfilled.

vi) If ITM equals “TOT” , “MlN” , or “MAX” , this rule generates the

program module

• H
1N 1T

~~~~F.H 
GETTON EXTLEV ~~~~~~

vii) If ITM equals “AyE” , this rule generates the program module

_ _ _ _ _ _ A

- - -_ _ _~— - -V - -__-- -V - -__-V - V -V _ _ _ _ _ _ _ _ _ _ _

Page 70

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Where (CADR ACTION) is a system generated variable which is initialized

to hi. -[he variable is used to keep a tally of the number of record

instances over which the items being averaged are totalled .

6.4.9 DOACTION —

This rule generates code to perform ACTiON

DUACT ION
SETQ(ACT N ,(EV (CAR ACTION) A
VREPQ##(ACTN) V

[T OBEUSED((MATCH ITM S), LE VEL) A
DETALLVAL(ITMS ,(NIL)) I. BINDITML(LTMS) A
[NULL(ITh’IL) V AN Y OUTPUT (I T ML ,LEV EL)]
NEXTLEVOUT (ITM S)] A

[=(ACTN ,ALL) V C ((E V (C A D R ACTIO N) , O H A
[=(ACTN ,ANY) V C((EV(CA D R ACTION), 1)] A
[~ =(ACTN ,ONE) V C((EV(CAD R ACT ION), 1)]A
[13CA#ACT N) V [SETQ(ARG2 ,(EV (CAD R ACTI ON))) ~

C(ARG2 ,(ADD1 ARG 2))]] A
[BT MNA #(A CTN) V [T OBEUSED ((MATCH . ITMS) ,LEVEL) A

DETVALLVAL (ITMS ,ACTION) 1]

> DOACT ION(ACT 1ON ,LEV EL)

I) If ACTN equals “ONE ” , “REPEAT” , “MAIN” or “COND” , this rule

generates the program module

LV
~~~~~~~~~~~~

1SPLAY NEXTL EVOU
~~~~
H

— -V - - _ - _ _

Page 71

ii) if ACTN equals “ALL” , this rul e generates the program module

MOVE 0 TO
(CADR ACTION)

(CADR ACTION) is a flag. Before each record is tested to see if it

meets the conditions for the “ALL” command , this flag is set to 1. If

the record is found to meet the conditions , this code is executed to

reset the flag to 0. If the flag does not get reset to 0, the control

test for the iteration loop which is determining the truth value of the

“ALL” command will take this as a signal that a record which does not

meet the conditions for the “ALL” command has been found . Therefore

the loop will be terminated , and the truth value of the ALL command is

false.

iii) If ACTN equals “ANY ” or “ONE ” , this rule generates the program

module

~~~ LCAD~~~~TIONj~~~

(CADR ACTION ) is a flag which is set to I to indicate either that a

record satisfying the “ANY ” command was located or that the information

satisf ying the “ONE ” command has been d isplayed.

iv)  If  ACTN equals “COUNT” , this rule generates the program module

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~ ~~~~~~~~~~V


r - - - - -,
- - - — -V--V — - -- ---V—-V-_---_— -- V— - - —- - V —-- -- - --- - -V-V__ V.-

,’

Page 72

(CADR A C I X O N) is incremented to keep a tally of record instances for

the COUNT command .

v) It ACTN equals “TOT” , “MIN” or “MAX”, this rule generates the

p r o g r a m module

4T
ALLVA T}~~

v i) I f ACTN eq uals “ME” , this rule generates the program module

—~~~ COMPUTE DETALLVAL
ARG2 = *

ARG2 + I

(CAJJR ACTION) is incremented to keep a tally of the number of items

summed for the AVErage command .

6 . 4 . 10 GETRUNT —

This rule is used to generate code when a value to be specified

i n t e r a c t i v e ly is to be used in a loop. The test is used so that the

value is onl y requested once rather than for each iteration through the

loop.

GETR U N i
EQ#(VAR ,HIGH VALUES) A
ACC EP T(VA R , ITM, REL)

> GETRUNT(VAR ,ITM ,REL)

This rule generates the program module

—-~~~~~~~~~~~~ - - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

r ~~~~~~~~

-- --- - ~~~

1~~ge 73

~~~~~~~~~~~~~~~~~~ 

_ _

This module is used when values to be specified interactively are used

within iteration loops. With this structure , the value will only be

requested on the first pass throug h the loop, rather than on each pass

throug h it. In a future version of the system , this request for

interactive specification of the value will be brought outside of the

loop and the test for prior specification of it will not be needed .

6.4.11 MAKEINCORE , FOLLOWPATH , And GETPATH —

These rules generate any code necessary to br ing a desired record

incore. PATH is a list of records , and relevant set names, leading

from the context record for the current level to the desired record

(Section 5.3). It is onl y poss ibl e fo r such a targ et record to be a

r ecord h igher in tIme hierarch y than or the same record as the context

record or a record made cu r r en t  in reaching the context  record (This

concept is more comp letely discussed in Section 5.3.). If the target

record is not c u r r e n t  then  FOLLOWPATH f i n d s  the highest record in the

hierarch y which is current and from there GETPATH generates  code

~ 

~~- j ~~~ ~~~~~~~~~~~~~~~~ -



r - . _ — ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 74

n e c e s s a r y  to reach  tile target record.

MAK EI NC OR E

~C U R R E N T ( R E C ,L EVEL )  A
[ IN C O R E ( R E C ,(MATC H LEVEL ))  V GE TR E C( REC ,LEVEL)]1 V

[F ULLOWPATH (PATH ,L E VEL )  A GE T RE C (RE C ,LEVEL)] ft~
> MAK EI NCO RE( RE C ,PATH ,LEV E L )

FOLL OWP AT H
[ CURRENT(REC ,L E V E L)  ,*~ GET P AT H (PATH ,LEVEL)] V
F O L L O W P A T H ( ( E V ( C D R  P A T H ) )  ,LEVEL)

> FOLLUW P A I H ( P A T H ,LEV EL )

G ETPAT H
N U L L ( P A T H )  V
(FOUNDOWNER((EV(CAAR PATH)),(EV(CADAR PATIo),

(EV(CA DDDAR PATH))  ,LEVEL) A
GETPATIVI ((EV(CDR PATH)),LEVEL)]

> G E T PATH(PA TII ,L E V E L)

For each record in PATH which is not current these rules add the

program nodule

—~~~ FIND OWNER
RECORD OF
ST SET

Where ST SET is the set name of a member record on PATH which is

current and the owner record of which is on PATH but not current. Once

the target record is current , MAKEINCORE adds the program module

V 

GET REC
RECORD

where RE is the target record name .

p

_ _ _  ~~LV~ -V _~-V~~V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- V - - --V- V-V-~~-V .Ti~~~~



V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-V-

Page 75

6.4.12 INITVARS —

I N I I V A R S in itiali zes each variable on the list ITMS to 0. These

variables will be used to calculate totals , averages , maximums or

minimums.

[N LTVARS
N U L L ( I T M S ) V
[C((EV(CAI)DDAR IFMS)),0) A IN I T V ARS ( ( E V ( C D R  I T M S ) ) ) ]

> INITVARS(ITMS)

For each item , XITM, on the list , this rule generates the program

module

~~~~~~~~~~~~

6 . 4 . 1 3 DIVVARS —

TOIV S contains a list of variables each of which contains the total

of a value for which an average is being computed . CTX contains the

count of the instances for which each TOTS variable , XITM , was summed .

U I V VARS
N U L L (T O T S) V
[C ((E V(C &DR (CADDAR TOTS))),

(D I V I D E , (E V (C A D R (CADDAR T O T S))) , C T X)) A
DIVVARS(CTX ,(EV(CDR TOTS))))

—

DIV VARS (C TX ,TOTS)

For each variable in TOTS, this rule adds the program module

COMPUTE
XITM =

XITM/CTX

4
- -

— ~~~~~~ ~~~~~~
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —_ - -~~~~~~~~~~~~~~~~~~~ V- ~~~~~~~~ - - -

6.4. 14 NU X li j- ~VOUT —

For each item in the list iris, which is a “REPEAT ” or “UNE”

command , N EXTL EV OUT generates the code to carry out that command .

N EXTL EV OUT
[REPQ #i~((E V (C A A R I I M S))) V
DETVAL((EV(CAA R ITMS)),(EV(CAIJAR [TMS)),N I L ,DIJM ,L ,i,ILfl A

[N U L L ((E V (C D R 1TMS)) V N EXTL EV UU T ((E V (C I JR I T M S)))]

> N E X T L E V U U I V (I V I V M S)

For each such item it adds the program module

6 . 4 . 1 5 DETAL LVA L —

For each variable in the list ITMS which is a statistic (i.e.

COUNT , ~-1 [N , MAX , TOT or Ay E) , DE TALLVAL generates the code to update

variables as determined appropriate for the current context record .

D ETALLVAL
REPQ##((EV(CAA R ITt’IS))) V
[DETVAL((EV(CAAR ITMS)),(EV(CAUAR 1TMS)),

(EV(CADD A R I T M S)) , XVAR ,N I L ,N I L) A
[[[~ = ((E V (C A R A C T I O N)) , M I N) A = ((E V (C A R A C T I O N)) , MAX)] V

C ((E V (C A U D D A R I r i s)) ,
((E V (C A R A C T I O N)) ,(E V (C A D D D A R I T M S)) , X VAR))] A

([=((EV(CAR ACTIUN)),TOT) A =((EV(CAR ~~~TON)),AVE)J v
C((EV(CAD D DAR Ir i s)) ,

(PLUS , (E V (C A D D D A R I T M S))]]

~ i)ETALLVAL(ITNS ,ACT ION)

~

r I m i n i m u m to be calculated , this rule adds the program module

- - -~~ - _-V- -~~~~~
- - — -

~~~~~~~~~~~~~~~~~~~ V .—  -V -
~~~ 

- ---
--V

w—-— -- ~~~~~~~~~~~~~~~~
- -

~~—~- ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
~~~_ . ~~~~ —-—--- -- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

Page 77

Where VAR is a system generated var iable which has tim e value of the

d a t a  i tem , f o r  t i~ c u r r e n t  c o n t e x t  record , for -  which the minimum is

being c a l c u l a t e d .  XIT M is used to  s t o r e  the  min imum va lue  of a l l

r e l e v a n t  records examined so f a r .

i i )  For each maximum to be c a l c u l a t e d , t h i s rule generates the proram

module

D ETVAL CUF-I1 ’UTE
* X ITM =

M AX(X I TM ,VAR )

Where  VAR is a sys tem generated variable which has the value of the

data  i t em , f o r  the c u r r e n t  c o n t e x t  r eco rd , f o r  which  t he  maximum is

being calculated . XITM is used to s t o r e  the  max icu ~: v a l u e  of a l l

relevant records examined so far.

i i i )  For each AVErage or a TOTa l to be c a l c u l a t e d , t h i s  r L l e  ge n e r a t e s

r a e  p r o g r a m  modu le

DET VAL COMPUTE
* XITM =

XIT M + VAR

Note: the average is later calculated by DIVVARS , d ivid ing each XITM

b y (CA I ) R ACTION),  the  t a l l y of the  n u m b e r  of i tems summed im X ITM .

- —

~

-— -V
_-

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ -.--- V- -V - -


r — -

~~~~~~~ 

— V-— 

~~

-

~~

-----

~~ 

—

~~

----

~~~

----- =--
~~

--—
~~~

w-V-

Page 78

7.0 EXAMPLES OF PROGRAM GENERATION

U i i - s s ec ti o n  g iv~ V s  sone examp les of programs generated by the

system i r o n  some r e l a t i v e l y  more comp lex U 1 — I Q  quer ies .  The queries

a re ad dt e ~-sed to t h e  da ta  base i l l u st r a t e d  in F igure  7 — 1 .

SY STEM

A . AREA HUSPSET A2 AREA

‘ SEXI-IDR 
- 

~~~CEHDR f~~t~~TAL 
DOCTOR

(SDBKEY) (RD BKEY) (HDBKEY) (DDBKE Y)
Sex Race I-Iospno Docno ,Addr e ss

Hspaddress Docname ,Docage

\ I-Iospname Specialty

SEXS E T RACESET PA TSET ~JOR K SF OR WORKIN G

PAT I ENT
—

~~~~~~ 
WORK RE C

(P DBKEY ) I (W D BKEY)
Patno ,Patname 

I
B I L L iNGS TRE AT MENTS TREATING

_ / /

1

BI L L EN T R Y j [~~~ATMENT
( B D B K E Y )  (TDS K EY)
Code , Dat e  Diagnosis
Amou rm t

O R DERS E T

ORDERS
(O D BKEY)
Ordno
Prescription

Figure 7—1 . A community medical data base structure.

--—- V ~~~~~~~~~~ 
- .‘—_——-. -V_ — 

__V~ - V- VV~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —V--V--V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- - - 
—-V - -  -- --.----~-~_ -  _- — - --- — ---------—---—---- __________

Page 79

Pr ogram P 1 (F igure 7—2) was generated from the query in Figure

I— I.

Program P2 (Figures 7—13 , 7 — 4 )  w i l l  l i s t  ( f o r  a hosp i t a l  specified

at execution time) all patients who have accumulated a total uninsured

b i l l i n g  of over $200. Uninsured billings are identified with one of

two b i l l i n g  codes.  This disjunction leads to the separate section

ca l led  PR OC 3 . P2 i l lu s t r a t e s  the unnecessary genera t ion  of dup l icate

paragrap hs that may occur: PARA—105 is identical to PARA—301.

Prograa P3 (Figures 7—4, 7— 6) generates a doctor ’s cross

reference: for a particular doctor , each patient and all of each

p a t i e n t ’s doctors  are l i s t e d .  It is for programs like these , wh ich

traverse a confluent hierarchy in two directions , that conservation of

the loop invariant becomes important. The loop invariant is the

current of set.

The report generated by P3 will list the top level doctor in many

locations: at the beginning of the report and with each patient

(because he is one of the doctors associated with each of his

p a t i e n t s ) . This  is a m i n o r  d e f i c i e n c y  but  it can be cured w i t h  a

simp le ex tens ion  to the  DM LP. Prov idi ng for the definition of

temporary variables would allow the user to d i f f e r e n t i a t e  between

doctors at different levels of the query. This would be accomp l ished

b y specif ying the storage of the doctor ’s number in a temporary

variable at the top level of the query; e.g. SAVE DOCNO IN TDOC.

Then r e t r i e v a l  a t  t he  t h i r d  leve l would  be specif i ed  to be condi t ional

— - --V - -V — V -- V-- V - ----V.- -, - --

— -V -- - V

~

-- - -— — - - - -- — - — -V --V-V -V -— - -V - - - -— —- -- - -- - ---- —--- V-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~



r
~~~~~~~~~~~~

V

~~~~~~~~~~~~
V- VV - 

V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _

Pag e 80

on (D O GNO NE TDOC).

- - V ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

~
~~~~~~~ V V~~~~~~~~~~ V 

Page 81

‘l I IE :GOAL : (PROGRAM P 1 ) :  IS :ATTA I NABLE: B Y:T HE :FOLLOW ING: P R OGRAM :

PROCEDURE DIVISION . V

PROd SECTION.

PARA— 100.
OPEN AREA Al A2 .
FIND FIRST DOCTOR RECORD OF Al AREA .
MOVE CURRENCY STATUS FOR Al AREA TO DDBKEY .
PERFORM PARA—lOl UNTIL ERRORSTATUS IS NOT EQUAL TO 0.
CLOSE AREA Al A2 .

V 
STOP.

PARA—lOl.
MOVE CURRENCY STATUS FOR Al AREA TO Z2.
GET DOCTOR RECORD .
DISPLAY IJUCNAME DOCAG E SPECIALTY .
FIND FIRST TREATMENT RECORD OF TREATING SET .
MOVE CURRENCY STAtUS FOR TREATING SET TO TDBKEY.
PERFORM PARA—102 UNTIL ERRORSTATUS IS NOT EQUAL TO 0.
MOVE Z2 TO DDBKEY.
FIND DOCTOR USING DDBKEY.
FIND NEXT DOCTOR RECORD OF Al AREA .

PARA— 102.
MOVE CURRENCY STATUS FOR TREATING SET TO Z i .
FIND OWNER RECORD OF TREAT M ENTS SET.
GET PATiENT RECORD .
IF PAlAC E IS NOT GREATER THAN 2 1 NEXT SENTENCE

ELSE PERFORM PARA— 103.
MOVE Xl  TO TDBKEY .
F I N D  TREATMENT USING TD BKEY
FIND NEXT TREATMENT RECORD OF TREATING SET.

PARA— 103.
(;ET TREAIVMENT RECORD .
DISPLAY PATNAM E PATAC E DIAGNOSIS.

Figure 7—2. Program P1 in COBOL.

F ~ -

F ~~~~

L
~~~~

V
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ —



y V ~~~~~~~~~~~~~~ V V~~~~~ -V V _ V _ _ V V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ENrER PROGRAM NAM E P2
REAl) 1)5K:? T

PRIMARY RECORD (MAIN)
*}jOSp ITAL
CONDITIONS FOR RETRIEVAL
*(HOSPNO EQ RUNTIME)
* NI L
TrEMS OR STATS TO BE I ) I SPLA YED
*IIOSPNAME
* 110 S P NO
*REP E AT

V 

— 
PRIMARY RECORD (REPEAT )
* PAT I ENT
COND I TIONS FOR RE TRIEVAL
* (TOT GE 200)
— PRIMARY RECORD (TOT )

*BILLENTRY
CON D ITIONS FOR RETRIEVAL
*(CODE EQ “~~‘T
*0 R
*(CODE EQ “Z”)
*NIL
ITEMS OR STATS FOR TOT
* AMOUNT
*NIL

*NIL
TTEMS OR STATS TO BE b I SPLAYE D
*PATNAM E
*P ATN O
*NI L

*N IL
POSSIBLE PORTS ARE:
(H O SPN O )
SELECT ONE OR TYPE N I L  HOSPNO

Figure 7—3. Query P2: “For a hospital specified at run—time , list its

name and number and the name and number of all patients whose total
b i l l i n g s  of code “X ” or “Z” exceeds or equals $200. ”

— —- 
i_
~_~:L ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~



- - -- —.-- -
~~~

- -‘-V - - — V .- - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
S-V-V .. --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 83~

THE:GOAL : (PROGRAM P2):IS:ATTAINABLE:BY :THE:FOLLOWING:PROGRAM:

PROCEDURE DIV ISI UN.
PROC I SECTION.

PARA—100 .
OPEN AREA Al A2.
DISPLAY “HOSPNO” “EQ?” .
ACCEPT HOSPNU.
FIND HOSPITAL RECORD.
IF ERRORSTATUS IS NOT EQUAL TO 0 NEXT SENTENCE

ELSE PERFORM P A R A — l U l .
CLOSE AREA Al A2.
STOP.

PARA— 101.
GET HOSPiTAL RECORD.
DISPLAY II OSPNANE FIOSPNO.
FIND F IRS t  PATIENT RECORD OF PAT SET SET.
MOVE CURRENCY STATUS FOR PATSET SET TO PDBK EY .
PERFORM PARA —10 2 UNTIL ERRORSTATUS IS NOT EQUAL TO 0.

PARA— l02.
MOVE CURRENCY STATUS FOR PATSET SET TO Z2.
MOVE U TO X5.
FIND FIRST BI LL ENTRY RECORD OF BILLINGS SET .
MOVE CURRENCY STATUS FOR BILLINGS SET TO BDBKEY .
PERFORM PARA—103 UNTIL ERRORSTATUS IS NOT EQUAL TO 0.
IF X5 IS LESS THAN 201) NEXT SENTENCE

ELSE PERFORM PARA— 104.
MOVE Z2 TO PDBKE?.
FIND PATIENT USING PDBKEY .
FIND NEXT PATIENT RECORD OF PATSET SET.

PARA— 103.
MOVE CURRENCY STATUS FOR BILLINGS SET TO ZI.
GET BILLENTRY RECORD.
IF CODE IS NOT EQUAL TO “X ” PERFORM PARA—3 00

ELSE PERFORM PARA— 105 .
MOVE Xl TO BDBKEY .
FIND BILLENTRY USING BDBKEY .
FIND NEXT BILLENTRY RECORD OF BILLiNGS SET.

PARA—luS .
COMPUTE KS = X5 + AMOUNT .

PARA— 104.
GET PATIENT RECORD .

V - DISPLAY PATNAME PATNO.

-V -_— ~~~~~~~~~~~ 

~~~~~~~~~~~ V V
~~~~~~~~~~~~~~~ :-V-V :TT-V~~ -V~~ .- rj  V -V -V - j 

~~~~~~~~~~~


F
-
—

- - -

~~~~~~~

-V - -—-- - - - -

~~~~~~

—
- -V

~~~~~V ~~ V -V~~~~~~ -V~-V 

~~~~~~~~~~~~~~~~~~~~

Page 84

- PROC3 SECTION.
PARA— 300.

IF CODE IS NUT EQUAL V 1O “Z” NEXT SENTENCE
ELSE PERFORM PARA—301.

PARA— 30 1.
COMPUTE X5 = KS + AMOUNT .

V Figure 7—4. Program P2.

~~~~~~
--V-

~~~~~ 

-

-
~~~~~~~ V V V~~~~~~~~~~

-V
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Page 85

ENTER PR OG RAM NAM E P3
READ O SK:? T

PRIMARY RECORD (MAIN)
*DOCTOR
COND iTION S FOR RETR iEVAL
*(DOCNO EQ RUNTIME)
*N IL
TTEMS OR STATS FO BE DISPLAYED
*DOCNO
*DOCNAM E V

* REPEAT

PRIMARY RECORD (REPEAT )
*PATIENT
CONDITIONS FOR RETRIEVAL
*NIL
TTEMS OK STATS TO BE DISPLAYED
*p ATNO
*PATNAME
*REP EAT

PRIMARY RECORD (REPEAT)
*DOCTOR
CONDITIONS FOR RETRIEVAL
*NIL
TTEMS OR STATS TO BE DISPLAYED
*DOCNO
*DOCNAN E
*NIL

*NIL
POSSIBLE PORTS ARE:
(DOCNO )
SELECT ONE OR TYPE N I L  DOCNO

Figure  7— 5.  Query P3: “Disp lay the name and number of a doc tor
speci f ied  at run—time . Also disp lay the name and number of all of his
pa tien ts, and f or each patient disp lay the name and number of all of
his doctors.”

L .

- — — -— V --V. ~~~~~~~~~~~~~~~~~~~~~ ~- V - V V  ~~~

-V-V -V 

—----V -V—- — - - - - V - V - - V -V ~~~~~~~~~ ~~~~~~~ 

V V



Page 86

THE:GOAL: (PROGRAM P3):IS:ATTAINABLE:BY :THE :FOLLOW1NG:PROGRAM :

PROCEDURE DIVISION .
PROC I SECTION.

PA RA—I OU .
OPEN AREA Al A2 .
DISPLAY “DOCN O” “EQ?” .
ACCEPT DOCNU.
FIND DOCTOR RECORD.
IF ERRORSTATUS IS NOT EQUAL TO 0 NEXT SENTENCE

ELSE PERFORM P A R A — l O l .
CLOSE AREA Al A2.
STOP.

PARA— 101.
GET DOCTOR RECORD.

V DISPLAY DOCNO DOCNAME .
FIND FIRST TREATMENT RECORD OF TREATING SET.
MOVE CURRENCY STATUS FOR TREATING SET TO TDBKEY .

V PERFORM PARA—l02 UNTIL ERRORSTATUS IS NOT EQUAL TO 0.

PARA— 102.
MOVE CURRENCY STATUS FOR TREATING SET TO Z2.
FIND OWNER RECORD OF TREATMENTS SET.
GET PATIENT RECORD.
DISPLAY PATNO PATNAME.

V 

FIND FIRST TREATMENT RECORD OF TREATMENTS SET.
MOVE CURRENCY STATUS FOR TREATMENTS SET TO TDBKEY.
PERFORM PARA—10 3 UNTIL ERRORSTATUS IS NOT EQUAL TO 0.
MOVE Z2 TO TDBKEY.
FIND TREATMENT USING TDBKEY.
FIND NEXT TREATMENT RECORD OF TREATING SET.

PARA— 103.
MOVE CURRENCY STATUS FOR TREATMENTS SET TO Zi.
FIND OWNER RECORD OF TREATING SET.
GET DOCTOR RECORD.
DISPLAY DOCNO DOCNAME .
MOVE Zi  TO TDBKE Y .
FIND TREATMENT USING TDBKEY .
FIND NEXT TREAT MENT RECORD OF TREATMENTS SET .

Figure 7—6. Program P3.

hf.~~~~~ 
-V

~~~~~~~~~~~~
- - V

- —~~~~~-—-—-- - — - —V--—V-V-~~~~~~~~
—-

-- -—-- -V- --—-———----— -‘— -V. -V --V— - - ---- — - - -- - V - V — V -
- V

-- V --V - ~~~~~~~~~~ — - -V— —

r V~~~~~~~~~~~ -V~~~~~~~~~~~~~~~~ V - - V - V -~~~~~~~~ —--- ~~~ ~~~ - V - V V-~~ ---—-—-- -

Page 87

8.0 COST EFFECTIVENESS

In hi s pap er , Gerritsen [1975] concluded that his DMLP system

reduced program generation costs by 77% to 95%. Note that this was in

examining costs of executing the DMLP system vs costs of human

programming. It did not include costs of generating the DMLP system ,

however , as Gerritsen pointed out , with savings of such magnitude it

should be possible to absorb such costs and still come out ahead .

Figure 8—1 compares the program generation costs of the three

programs illustrated in Section 7.0 for the modified DMLP system and

trie original DMLP system.

Program Orig inal DMLP Mod ified DMLP
Run Time KCS Time $ Run Time KCS Time $

P1 1.37 7151 37.33 1.10 4622 24.78
P2 2 .40 10556 55 .17 1.24 6318 33.88
P3 1.44 8909 47.08 1.10 5165 27.37

Figure 8—1 Performance of Original DMLP system vs Modified DMLP
system .

This da ta shows a cost r e d u c t i o n of approximately 40%. Of course

this is somewhat dependent on the billing algorithm , but cost savings

would still result with other algorithms. The cost savings shown in

Figure 8—1 could have been further increased by running the modified

DMLP with less core. The costs shown are for running both systems with

the same core , howev er , since Micro— Planner is used to a much smaller

degree in the modified version , it is possible to run it with

approximately 70% of the core requirement of the original system. If

-V -- V ~~~~~~~~~~~~~~~~~ ~~~~~~~
:— -V::-

~:~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~V V V - .4

-V-V.- ,, - -V--——---—--— V -—— V— V ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - -V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V

V 

Page 88

t~~~- changeover to LiSP discussed in Section 9.2 were imp lemented still

turth er cost savings could be re~i1ized both in execution time and core

r e l u i  r e in e n ts .

-V — - -V



V 

Page 8

f 
9.0 FURTHER WORK

9. 1 Extensions Ut The Task S c p ~ V

In his thesis , Gerritsen [197)] identified several desired

ex t e n s i o n s  to t h e  SC O R e  u f  programs which the system could generate.

th ese extensions fall mostl y into two categories. First , there are

V extensions to increase program efficiency. These would inc lude  such

things as eliminating redundant code , making use of ordered sets ,

ordering disjuncts and conjuncts to qualify or disqualif y a given

t eco rd  w i t h  minimal testing, and “intelligently ” choos ing between area

and set. searchs so as to minimize the number of data base accesses.

Second , there are extensions which would Increase the scope of possible

queries. These would include allowing calculation and storage of

tempora ry items , and conceptuall y hav ing a “top of the world ” record to

V 
fac ilitate such queries as ‘What is the total number of Doctors?” .

Many of the extensions of t h e first type will require providing

a d d i t i o n a l  information in the initial state. While providing the

information about ordered sets is no great problem , the information

needed to choose be tween  an area search and a set search is not so

readil y obtainable and would change over t ime . ~t would be feasible to

have the 1)ata Base Management System up date such information. Most

e x t e n s i o n s  of the first type will not involve altering the ~rogram

generation rules , but will involve altering the p lann ing stage (I.e.

I-II— IQ ’s interaction wIt~m t1~e user and tim e its generation of assertions

V a bou t  the  q u e r y )

- ‘ V

-V-V 

- 

-V~~~ -V~~~~ - V . -- - —-—~~~~~~~~~~V-- - — - V - - V  - V -  ~~~~ -V



_____ -___

— AD—nM 390 WHARTON V F I NA NCE AND COMMER CE PHILADELPHIA P €TC P16 9,2
.~~~ : SUS MONDET(RMINIS IIC PROCEDURE FOR AUTOMATIC P—CTC(U)

OCT 76 - N000fl—75—C—O*62
UNCLASSIFIED It

~r:ir1flfl _____ 

END

I

_ _ _  
a



Page 90

9.2 Additional Modifications To me System

As shown in Section 8, the elimination of most of the use of

Micro—planner resulted in savings on execution costs of approximately

40%. Since Micro—Planner is now used only to plan the path through the

data base and for pattern matching capabilities to access the state

description , it should be possible to change the system over completely

to LISP and allow it to be run as compiled rather than interpreted

functions. This would result in further cost savings.

Besides this changeover to LISP, one additional change is

desirable to create a ‘ cleaner” looking system. That is to make the

generation of conditional procedures more explicit than it is in the

present system. The use of three valued logic (true, false and

uncertain) was an effective way of allowing the system to generate

conditional procedures when it was operating nondeterministically.

However, now that the Program Generator’s activities are deterministic,

it does not have to be left to the system to discover it needs to

generate a conditional procedure through three valued logic. The rules

could explicitly show where, when and how conditional procedures are

generated , rather than using the less obvious method of uncertain

partial preconditions causing the system to generate conditional

procedures.

- 
- —~----—--- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ -

Page 91

10.0 NONDETERMINISTIC VS DETERMINISTiC PROCEDURES

If the question of the benefits of deterministic vs

nondeterministic procedures in automatic program synthesis were to be

decided merely on the grounds of the relative costs of program

generation, the results in Section 8 would support the assertion that a

deterministic route is better. However, the question is not that

simple. There are several aspects to the problem , some favor one

approach and some favor the other.

1) Given the current state of the art of Artificial Intelligence, if a

deterministic method exists for solving a problem , it can usually do so

with considerably less machine effort than a nondeterministic method.

(This is a conclusion which Wang [1960] drew back in 1960 in relation

to Newell and Simon’s [1956, 1957a, 1957b] “Logic Theorist”.)

2) Not all problems are currently solveable by deterministic

procedures. Futhermore, there is the question of whether all problems

will ever be solveable by deterministic procedures.

3) Deterministic procedures are more confined to solving only those

• problems for which they were designed than are nondeterministic

procedures.

As regards this application , for the present the deterministic

• approach seems best. The task is clearly enough defined that lack of

flexibility is not a problem , and plans to expand the system, as

mentioned in Section 9, appear to be made easier by having separated

the planning stage from the code generation stage. (Note: this

separation does not truly require a deterministic approach, Sikiossy



Page 92

and Sikes [1975] are currently working on a system which separates the

two functions, but the system currently only works on tasks of fairly

low complexity.) ~.any of the proposed changes will involve only the

formulation of the plan as it is set down in the initial state which

the Request Uandler generates. Therefore in making the necessary

changes only one segment of the system will be involved (this is

similar to the benefits associated with structured programming).

A major benefit of the deterministic approach is its lower cost.

With the extensions outlined in the previous section, the system should

be capable of generating a fairly wide range of complex programs for

querying a network data base. While other automatic program

synthesizers might be able to duplicate the complexity of tasks, the

cost would most likely be prohibitive . In the approach used here, the

systems actions are almost entirely preplanned, thereby eliminating

costs of trial and error. While this limits the systems capabilities

to a very specific scope of tasks, it does provide a currently

economical system, and the task of preplanning the systems activities

will probably help give an understanding of what kind of knowledge a

system will have to have to exercise its own ‘common sense”.



_ _ _ _ _ _ _ _ _ _ _  

-~~~~ —-~~~~~~~~ -—— -

Bibliograp hy

baker , Tetry F. and Hatlon U. MUls  (197 3) , ”Chl ef Pr ogrammer Teams”,
Datamatton, December 1973, pp 58—61.

Buchanan , J. R. (1974),”A Study 1-n Automatic Program*ping”, PhD
Thesis, Stanford University.

Buchanan , J. R. and D. C. Luckman (1974),”On Automating the
Construction of Programs”, Stanford Al Memo~ Stanford University.

CODASYL (1971),CODASYL Data Base Task Group April 1971 Report, ACM, New
York City.

Date, C. (1976),Introductton to Data Base Systems, Addison—Wesley,
Menlo Park, Calif.

Dijkstra, E. W. (1976),A Discipline of Programming, Prentice Hall,
Englewood Cliffs , N. J.

Gerritsen , Rob (1974),”Automatically Generated Programs for Information
Retrieval; IRP, a Rudimentary System”, Carnegie—Mellon Graduate School
of Industrial Administration , W.P.—47—73—74.

Gerritsen , Rob (1975),”Understanding Data Structures”, PhD Thesis,
Carnegie—Mellon University, Pittsburgh, Penn.

Green, Cordell and David Barlow (1975),”Some Rules for the Automatic
Synthesis of Programs”, Advance Papers of the Fourth International
Joint Conference on Artificial Intelligence, Thilsi, Georgia, USSR, 3—8
Sept 1975.

Haseman, William D. and Andrew B. Whinston (1975),”Pr ob lem Solving
Approach to Data Base Management”, Advance Papers of the Fourth
International Joint Conference on Artificial li enc~, Thilsi,
Georgia, USS~R, 3—8 Sept 1975.

Hewitt, C. (1971),”Description and Theoretical Analysis of Planner”,
PhD Thesis, Massachusetts Intstitute of Technology.

Hoare, C. A. R. ( 1969) , ”An Axiomatic Basis for Computer
Programming”, CACM 3, October 1969, pp 576—580.

Hoare, C. A. R., 0. J. Dahl and E. W. Dijkstra (1972),Stroctured
Programming, Academic Press, New York City.

Hoare, C. A. R. and N. Wirth ( 1972) ,”An Axiomatic Definition of the
Programming Language PASCAL”, Berichte der Fachgrappe Computer
Wissenschaften 6, E.T.H., Zur ich , November 1972.

Igarashi, S. R., L. London and D. C. Luckham (1973),”Automatic
Program Verification I: A Logical Basis and Implementation”, Stanford

__________________________________________________________



_ _  --

Al Memorandum 200, May 1973.

Lee, R. C. 1., C. L. Chang and R. J. Waldinger (1974),”An
Improved Program—Synthesizing Algorithm and Its Correctness”,
Communications of the ACM, April 1974 Vol 17 No 4.

Manna, Zohar and Ricahrd Waldinget (1975),”Knowledge and Reasoning in
Program Synthesis”, Advance Papers of the Fourth International Joint
Conference on Artificial Intelligence, ThTT I , Georgia , U SSR , 3—8 Sept
1975.

McCarthy, J., P. W. Abrahams, D. J. Edwards , T. P. Hart  and M.
I. L.evin (1972) ,LISP h5 Programmers Manual, MIT Press.

McKeeman, W., J. J. Horning and D. B. Wortman (1970),A Compiler
Generator, Prentice Hall, N. J.

Mills, Harlan D. (1975),”The New Math of Computer Programming”,
Communications of the ACM, January 1975 Vol 18 No 1.

Naur, P. et al (1960),”Report on the Ai gorithmlc Language ALGOL 60”,
Communications of the ACM No 3 1960.

Newell, A. and H. A. Simon (1956) ,“The Logic Theory Machine”, IRE
Transactions on Information Theory l956.

Newell, A., J. C. Shaw and H. A. Simon (1957a) ,”Empirical
Explorations of the Logic Theory Machine”, Proceedings of the Western
Joint Computer Conference 1957, pp 218—239.

Newell, A. and J. C. Shaw (1957b),”Programming the Logic Theory
Machine”, Proceed ings of the Western Joint Computer Conference 1957, pp
230—240.

Siklossy, L. and D. A. Sykes (1975),”Automatic Program Sythesis From
Example Problems,” Advance Papers of the Joint Conference on Artificial
Intelligence, Thilsi, Georgia, USSR, 3—8 Sept 1975.

Sussman, Gerald J. and Drew V. McDermott (1972),”Why Conniving is
Better than Planning”, Massachusetts Institute of Technology,
Artificial Intelligence Memo 255A .

Sussman, Gerald J. and Terry Winograd (1972),”Micro—planner Reference
Manual”, MIT Project MAC Report.

_~~~~~ ~~~~~~



D I S T R I B U T I O N  L I S T

Depat tment of the Navy - Office of Naval Research

Data Base Management Systems Project

Defense Documentation Center Office of Naval Research
Ca meron Station Information Systems Program
Alexandria , VA 22314 Code 437

Arlington , VA 22217

Off ice of Naval Research Office of Naval Research
Code 1021P branch Office , Boston
Arlington , VA 22217 495 Summer Street

Boston , MA 02210

Off ice of Naval Research Office of Naval Research
Branch Office , Chicago Branch Office , Pasadena
536 South Clark Street 1030 East Green Street
Chicago , IL 60605 Pasadena , CA 91106

New York Area Office Naval Research Laboratory
715 Broadway. — 5th Floor Technical Information Division
New York , NY 10003 Cod e 2 6 2 7

Wash ington , DC 20375

Dr. A. L. Slafkosk y Office of Naval Research
Sc ientific Advisor Code 455
Commandant of the Marine Corps Arlington , VA 2 2 2 1 7
(Cod e RD— i)
Washington , DC 20380

Office of Naval Research Naval Electronics Laboratory Center
Code 458 Advanced Software Technology Divisios
Arlington , VA 22217 Code 5200

San Diego , CA 921-52

Assistant Chief for Technology
Office of Naval Research
Code 200
Arlington , VA 22217

e

p

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- -----.

~~~~

-

~~

Mr. E. U. Gleissner Captain Grace M. Hopper
Naval Ship Research and NAICOM/MIS Planning Branch
Development Center (0P 9160)
Computation & Mathematics 1)ept. Office of Chief of Naval Operations
Bethesda , MD 20084 Washington , DC 20350

M r . Kim B. Thompson Bureau of Library and
Techn ical Director Information Science Research
Information Systems Division Rutgers — The State University
(OP—91T) 189 College Avenue
Off ice of Chief of Naval Operations New Brunswick , NJ 08903
Washington , DC 20350 Attn: Dr. Henry Voos

Professor Omar Wing
Columbia University
In the City of New York
Dept. of Electrical Engineering
and Computer Science
New York , NY 10027

*

~~~~~~~~~


