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Preface

The subject of this report in its broadest aspects, has been the topic of many

conferences between personnel of the Design Climatology Branch, AFGIL.; its

contractor, St. [.ouis University; and the Air Weather Service. The latter had
! expressed requirements, since 1969, for conditional climatolegy for military
3 operations aimed at short-range predictions of 1 to 6 hours in advance. and moie
i recently for military planning of worldwide Air Force missions. This writer's
: discussions with Capt. Albert R. Boehm, AWS DN\T. have been most valuable,
; Capt. Boehm used an alternative method to obtain.the model algorithm from the

basic equations of T. W. Anderson. His knowledge and expertise in the statistical

literature, freely shared, are gratefully acknowledged.
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1. INTRODUCTION

SRS

H Beginning with the climatic frequency of a weather condition or event, it is

possible to estimate the modified probability of its occurrence, or to give its
conditional probability following certain antecedents. Symbolically, if Y is the
predictand, and X3, ---, X, are n predictors, then it is desired to find

2 (Y 2 YC ‘ Xl' R X!‘l)

it AT A A M T AN

where Yo is a threshold value of the predictand, and P is the symbol for
probability.

It need not be assumed that Y and Xj (i = 1,n) are d scribed in categories
only. Instead, in this report, all weather elements are assumed transformable
into continuous variables. If X or Y is transformed into a normal Gaussian vari-

able, then the new variable, x or y, is conveniently called the transnormalized

variable, a term first suggested to this writer by Capt. Albert Boehm, Air
Weather Service. The predictors, Xl’ ---, X, and predictand Y are considered
specific values such as temperature (for example, 12°C) or cloud cover (for
example, 3/10). Each transnormalized counterpart, xj, ---, X, or y has mean
zero and variance 1.0 and Gaussian distribution.

(Received for publication 5 October 1976)
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While often times there are analytical formulas for the transformation of
X to x, it is always possible to do this transformation and obtain a one-to-one
correspondence, through the cumulative distribution of X or by plotting X on
normal probability paperl. Essentially, the transnormalization is accomplished

through the probabilities. Thus:
BP(x >%xc) = P X >XK) (1)

where the subscript (c) is used to denote an assigned threshold value. In this
report, for convenience, the symbol for probability is sometimes written as P(€)
to denote the probability of equalling or exceeding the bracketed quantity. Thus,

Eq. (1) is also written as
P(xc) = P(X() .

A difficulty arises when the minimum of X must be categorized, such as ""no
rain''. When this happens, arbitrarily, half of the relative frequency of no rain

(Xo) can be added to the frequency of rain to give P (X > XO).

2. HYPOTHESIS

The analytical model for conditional probability, or algorithm, is based on
the assumption of linear dependence of the transnormalized predictand on trans-
normalized predictors. Thus:

y < apxg 4+ om——t a X, +bn (2)
where n is random and normally distributed, a;, ---, a, are partial regression
coefficients, and b is a coefficient with magnitude such that the normality of y is

preserved.

3. ANALYSIS

Because of normality, correlation coefficients (hereafter abbreviated as cc)

are given by:

Gringorten, I.1. (1972) Conditional probability for an exact noncategorized
initial condition, Monthly Weather Review 100:796-798.
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for cc between predictand (y) and the ith predictor (x;).

values,

i=1 i#]
By multiplying both sides of (2) by x; and taking expected values,
P At 2 3 Pij
JE

In matrix form, where

R p

then Eq. (4) becomes R - CA.

By premultiplying both sides of this last equation by the inverse of C,

A-c’lr-¢r/]|c|

o

where Pij is the symbol for cc between predictors X and xj, and Py is the symbol

From Eaq. (2), after squaring both sides of the equation and taking expected

(3)

(4)

(5)

(6)

(7

(8)




where ICl is the determinant corresponding to C; E‘ is the adjoint matrix of C, or
the matrix of cofactors (piJ); p.lj = (_1)i+j lMijl where [Mij‘ is the determinant
of the submatrix of order (n-1) obtained by deleting the ith row and jth column
from C. ¢
From Eaq. (3)
2

; b* = - |aTea] =1 -|atg|

or

b:\/l-alpl-...-a Oy s (9)

From Eq. (2) for specific values of By = X, the value of n will exceed n, as

frequently as y exceeds an assigned minimum Yo or
P (n 2nc) =P(y> yc| Xpp 77T xn)- (10)

f Or, the probability that n will exceed e is the conditional probability that y will

exceed Y- Its solution, therefore, is given by the solution of L in

M= (yC agXy - - anxn)/b (11)
where a, (i = 1,n) and b are given by Egs. (8) and (9) supported by Egs. (5) and (6).
Since n has a Gaussian distribution, the probability of it exceeding e is given in
tables of almost any text in statistics or approximately by algorithm (see below).
Capt. Albert R. Boehm, in personal correspondence, revealed that the
results in Egs. (10) and (11) are obtainable from the deductions of T. W. Anderson.>
Anderson's theorem bears promise of further enhancement of the results by giving
solutions for the conditional probability of several predictands in combination, as
well as predictors in combination. This possibility, however, has not yet been

examined.

2. Hohn, Franz E. (1964) Elementary Matrix Algebra, The MacMillan Company,
New York.

3. Anderson, T W. (1958) An Introduction to Multivariate Statistical Analysis,
John Wiley and Sons, New York.
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3.1 Single Predictor

For a single predictor R = p, C - 1, and consequently a; - p whence
nc=(yc-px)/V1 -pz (12)
a result previously obtainedl.

3.2 Two Predictors

In this case, the solution for . in Eq. (11) becomes

l"Ic 2 (yc -alxl -azxz) u\/(l -alpl -azpz) (13)

5 £ 2 2
82y ~pp) /(A =0yp)
where

L o
a3 g -pypyn) /1 -0 50,

3.3 Three or More Predictors

In terms of the cc's (ol and pu ), the expressions for a,--iay become too
long and complicated for hand-written analysis. But solutions are feasible if a
computer technique will previde numerical answers for A in Eq. (8), using
Eqgs. (5) and (6) as input. One such computer program was used as a subroutine
in the example described below. It is kmown as the "CDC-6600 Subroutine
MATRIX'". The method of this subroutine is basically the classical Gauss-Jordan
Method.4 Once the vector A, or the partial regression coefficients (al, - an),
are determined, then b is determined from Eq. (9).

Now, the values of the transnormalized predictors, x;, ---, X, and predictand
y may be given. Alternatively, each x; may need to be [ound from the given
probability of x; being equalled or exceeded. Where P(x) - p,

© 2
- /2
- fe d€ = p , (14)
X

4. Dixon, W.J. (1965) BMD Biomedical Computer Programs, University of
California at Los Angeles, Health Sciences Facility, Los Angeles.

11

ot




the value of x can be approximated to a high degree of accuracy by a convenient
algorithm:5

x=k[t_ 2.30753 + 0. 27061t 2] (15)
1+ 0.99229t + 0. 04481t

where

k=1, t -A/in(1/p?) for p<0.5, and
k=-1,1t= ‘\/in{l/(l-p)zi forp > 0.5.

Once X; and ¥y, are known, then n. is determined by Eq. (11), and the condi-

tional probability follows by Eq. (10). Again a useful approximation is provided
by an algorithm:5

2 3 4 4] =
P(nc)=1 + m [2(1+c1 "c+°2"c +c3nC +teyn, ) (16)
where
¢ = 0. 196854,
cgy = 0.115194,
Cg = 0. 000344,
cy = 0.0195217,

£ =0, m=1forn2>0, and

£ =1, m=-1forn < O.

4. SAMPLE APPLICATION

For the following illustrative application, some readily available data were
chosen from another recent study. Records of WSR-57 radar pictures at five
stations in the eastern half of the United States, in the midseasonal months of
January, April, July and October, taken every 3 hours, that is, eight times per
day, were used. The five stations were: (1) Minneapolis, Minnesota, (2) Key
West, Florida, (3) Wichita, Kansas, (4) Cape Hatteras, North Carolina,

(5) Evansville, Indiana.

5. National Bureau of Standards (1964) Handbook of Mathematical Functions
with Formulas, Graphs and Mathematical Tables, Applied Mathematics
Series No. 55, for sale by Supt. of Documents, U.S. Govt. Printing Office,
Washington, D.C.

12

e




] [Figure 1 is an example of a radar picture. The observer usually sees the
negative of pictures like Figure 1, so that radar echoes from rainstorms appear
as white clouds on a black background surrounding the radar station. In Figure 1,
the outermost circle has a radius of 125 nmi, and the second circle 100 nmi.

A large storm is shown centered approximately 85 nmi northeast of the radar

station,

L1 Data Collection

To study each picture, a transparent template was superimposed over it —as

i shown in Figure 1 —to divide the area between the 25-nmi circle and the 100-nmi
circle into 64 cells, each of 460 nmi. Each of the 64 cells was examined to
estimate what fraction of the cell, in eights or oktas" was covered by precipitation
echo. The coverage was recorded as zero for no coverage, one okta for 1/8
coverage, =---, eight oktas for full coverage of the cell. For this exercise the
cells were grouped into eight equal-area groups, each group consisting of a ring or
part of a ring, and numbered 1 to 8 (Figure 2). A record of the number of oktas
(from 0 to 64) in each group was made for each 3-hourly picture. As an example,
in Figure 1, the number of oktas in Groups 1 to 8 were estimated, by eve, as 3

0

’

6 6 1, 17, 6, 8

’ ’

, 3, 0, respectively.

Figure 1. Sample of a PPI Radar-scope  Figure 2. [llustration of the Eight Equal

i Picture of Storms Within 125 nmi of Areas, Each Obtained by the Grouping
{ the Radar Station of Eight Cells (Figure 1)

{ 6.  McIntosh, D.H. (1972) Meteorological Glossary, Chemical Publishing, New
{ York.
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Table 1 shows an example of the entries of the okta counts in groups 1 to 8.
The okta count in group 1 was chosen as the predictand. The okta counts in
groups 2 to 8 were chosen as the seven predictors, and were matched with okta
counts in group 1 at time lags of zero (for simultaneous coverage), 3 hours,

6 hours, 9 hours, and 12 hours later. Thus, in the example of Table 1, the num-
bers on the first line (17, 18, 35, 4, 26, 30, 9) were tested as predictors of the
okta count (11) on the first line, then of the okta count (40) on the second line,
then (12) on the third line, then (7) on the fourth line, and lastly (2) on the [ifth

line.

Table 1. Sample Data Collection of Radar Coverage of Precipitation. The
example is for Minneapolis, Minnesota, 26 October 1970. The entries are
the okta counts

Hour Group

1 2 3 4 5 6 7 8
0100 11 17 18 35 4 26 30 9
0400 40 31 35 9 12 18 7 8
0700 12 13 9 ) 30 3 1 8
1000 7 7 8 8 19 9 3 18
1300 2 4 17 0 10 3 0 0
1600 0 0 0 0 4 1 0 0
1900 0 0 0 0 0 0 0 0
2200 0 0 0 0 0 0 1 0

For each station the number of radar pictures, in one midseasonal month, was
equal to the number of years (6) times the number of days per month (30 to 31)
times the number of 3-hourly periods per day (8) for a total of 1440 or 1488 pic-
tures, less a generally small number of pictures missing from the record. Most
of the pictures, by far, showed no precipitation echoes, revealing that there was

little or no precipitation on most days.

1.2 Finding the Correlations

For each station and midseason month, a computer program yielded the
following:

(1) Thesample size (< 1488).

(2) The number of missing observations, which together with the sample size
added up to 1440 or 1488,

(3) The sample size, in which the seven predictors (groups 2 to 8) of one
picture could be matched to the predictand (group 1) at lag times 0, 3, 6, 9, or 12

hours later,




(4) A table of the frequency of the areal coverage in each group (1 to 8)
starting with full coverage (64 oktas), then 63 oktas, =--- 2 oktas, 1 okta, and

lastly none (for example, Table 2).

Table 2. The Frequency of Fractional Cover, in Oktas, The coverage is by
radar echoes as in Figure 1. The case is for Minneapolis, Minnesota,
January 1969-1974,

Okta Group (i)
Count i
(L) 1 2 3 4 5 6 7 8 !
64 (full cover) 1 0 0 0 0 0 0 0
63 0 0 0 0 0 0 0 0 :
62 4 2 1 0 0 0 0 0 0 :
4 10 16 8 11 3 4 2 1
3 11 12 14 16 3 5 9 4 {
2 14 17 28 7 6 8 6 11
1 39 32 31 31 13 12 18 10 i
0 1217 1231 1288 1298 1395 1388 1384 1390 |
Total 1428 1428 1428 1428 1428 1428 1428 1428 i
f

(5) A table of the cumulative relative frequency of coverage equal to or
greater than I, oktas in each group, for L. - 64, 63, ---, 1,0 (for example,

Table 3). The Blom formula’ was used to calculate relative frequency.

Table 3. The Cumulative Relative Frequency of Coverage Equal to or Greater
Than L. Oktas. The example is for Minneapolis, Minnesota, January

Okta Group (i)

Count

(L) 1 2 3 4 5 6 Ké 8 ;
64 0.0004 - - - - - “ -
63 0. 0004 - - - - - - &

62 0.0018 0.0004 - - = % L £

4 0.115 0.095 0.047 0. 046 0.0074 0.0102 0.0074 0.0088
3 0.122 0.1¢3 0. 056 0.057 0,0095 0.0137 0.0137 0.0116
2 0.132 0.115 0.0761 0,0691 0,0137 0,0193 0.0179 0.0193
1 0.148 0.138 0.0978 0.0908 0.0228 0.0277 0.0305 0. 0265
0 0.575 0. 569 0. 549 0. 546 0.512 0.514 0.515 0.514

*This relative frequency is obtained by adding half of the frequency of no echo to
the total number of cases with echoes, and dividing by the overall sample size,

7. Blom, Gunnar (1958) Statistical Estimates and Transformed Beta-Variables,
John Wiley and Sons, New York,
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(6) A table of the transnormalized variable (x;) corresponding to the okta
count (L) in the ith group. This was nbtained by substituting relative frecuency
for the probability (p) in Eq. (15) (for example, Table 4).

Table 4. The Values of the Transnormalized Variables Corresponding to the
Relative Frequencies of Table 3

Okta Group (i)

| Count
| (L) 1 2 3 4 5 6 T 8
! 64 3533 - - - - - - -
| 63 g a3 - - - - - - -

62 2.91 3.33 - - - - - -
ettt wtt .
! 1 1. 20 e 1.68 1.68 2.44 2.32 2,44 2.37
! 3 1. 16 1.26 1.58 1.58 2,34 2,21 2,21 2,07
. 2 112 1.20 1.43 1.48 2. 21 2.07 2,10 2.07
{ 1 1,04 1.09 1.29 1.34 2.00 1.92 1.87 1.94
| 0 -0.19 -0.17 -0.12 -0.11 -0.03 -0.04 -0.04 -0. 03

(7) The matrix of the correlation coefficients (")ii between the predictors

(for example, Table 5).

Table 5. The Cross-Correlation Coefficients (‘)i‘) Between the Trans-
normalized Values of the Fractional Cover or OKa Count in Groups
1 to 8. The example is for Minneapolis, Ninnesota, January

Group Group (i)
I () 1 2 3 4 5 i 7 8
! 1 1.00 0. 90 0.72 0. 68 0.32 0.44 0.43 0.29
2 1.00 0.81 0.77 0.39 0.44 0.49 0.36
, 3 1.00 0. 63 0.51 0.59 0.42 0.37
i 4 1.00 0. 38 0.41 0. 62 0.54
| 5 1.00 0.28 0. 24 0.51
{ 6 1.00 0.44 0.21
; i 1.00 0.26
8 1.00

(8) A matrix of correlation coefficients, each row of which consisted of the
cc (p;) between the predictand (y) and each predictor x; (i - 2, 8). Table 6 is an

example. In each successive row, the predictand is the transnormalized value of

i the okta count at time 0, 3, 6, 9, 12 hours later,

16




Table 6. The cc of the Predictand With Each Predictor. The First Line is for
the group 1 predictand occurring at the same time as the predictors. The
second line is for the predictand occurring 3 hr later, ---, the fifth line is for
the predictand occurring 12 hr later. The column headed "'1" gives the
incidental information of the correlations of group 1 of one time with group
10f0,3,6,9, 12 hr later

Predictand | Predictor Group (i)

Group 1 i

LAG 1 2 3 4 5 6 7 8
0 hours 1.00 * 0.90 0.72 D.68 0.32 0.44 0.43 0. 29
3 0.67 0.70 0.51 0.67 0.19 C.28 0. 40 0.34
6 0.46 0.48 .35 0.45 0.10 0.16 0. 27 0.16
9 0.30 0.33 0. 25 0.32 0.08 0.09 0. 20 0.12
12 0.18 0.21 0. 14 0. 20 0.04 0.03 0.14 0. 05

1.3 Finding the Partial Regression Coefficients

Given the p; and Pij for one station, one month and a time lag, the computer
solution of Egs. (8) and (9) yielded values for ag, ---, ag and b. Table 7 shows
the set of values of a; (i = 2, ---, 8) and b for time lags 0 to 12 hours, for Key i
West, Florida, in January. It demonstrates decreasing importance, with time, of
group 2 as a predictor of group 1 and the varying importance of the other predictors.
Group 8, which is situated northwest of the radar station (Figure 2) is a better
predictor of the weather of group 1 than group 2 for tjme lags 6, 9 and 12 hours.
This is easily understood since the weather tends to fnigrate eastward.

Table 7. The Partial Regression Coefficients of Eq. (11) as Determined for
Key West, Florida, January, for Time Lags 0, 3, 6, 9, 12 hr Between
Predictors and Predictand

Time

Lag

(Hours) 2 %3 ay "5 g o ag b
0 0.751 0.071 -0.007 0.079 -0.023 0.031 0.033 0.474
3 0.316 0.139 0.136 -C.038 0.004 0,120 0.197 0.675
6 0.118 0.076 0.102 -0.029 0.082 0.125 0.263 0.809
9 0.010 0.053 0.049 0.000 0.110 0.159 0.219 0.881
12 0.03¢ 0.046 -0.001 -0.004 0.100 0.133 0.159 0,931

This last consideration prompts an examination of the coefficients at one
station (Key West) to compare their values from season to season (Table 8). For
Key West, Florida, at a time lag of 6 hours, they show a greater importance, in

17




Table 8. The Coefficients aj Divided by b, Determined for Key West, Florida
for Time Lag of 6 hrs, in January, April, July, and October

Midseason (ai/b)

Month i=2 3 4 5 6 7 8 b
January 0.15 0.09 0.13 -0.04 0.10 0. 15 0.32 0. 809
April 0.19 0.09 0.15 0.14 -0.06 0.12 0.17 0. 832
July 0.13 0.02 0.13 0.11 0.15 -0.903 0.19 0.887
October 0.13 0.18 0.17 0.09 0.12 0. 24 0.11 0.770

winter of the condition 55 to 73 miles to the northwest (group 8) than the weather
closer to the area of verification (group 2). This is true in summer also, although
not as spectacularly. The month of October offers the best opportunity for pre-
diction by conditional probability. In the fall there must be a more prevalent
southwesterly flow (group 7) than northwesterly.

{.4 Estimating Conditional Probability

Given coefficients ag, ---, ag and b, the model of Egs. (11) and (10) yields
probability estimates. For example, on 3 January 1974, at 0100, at Key West,
Florida, the seven predictor values, in oktas, were observed to be 2, 0, 2, 0, O,

1, 1 oktas, which are transnormalized into x = 1.219, ~0.453, 1.223, -0.255,
-0.371, 0.924, 1.449, respectively. The predictand values, at time lags 3, 6, 9,
12 hours later were 1, 18, 25 and 20 oktas respectively, which had (unconditional)
frequencies of being equalled or exceeded: 0.16, 0.026, 0.017, 0,022 respectively,
and therefore were transnormalized into y, = 0.977, 1.937, 2.122 and 2. 006,
respectively. Inserting these transnormalized values and the coefficients,

a; (i =2, 8) and b (Table 7) into Eq. (11), the values of n, become 0. 124, 1.52,
1.865, 1,791 and consequently the conditional probabilities, through Eq. (16), are
P (no) = 0.451, 0.064, 0.031, 0.036, respectively. As to be expected, the increase
of the conditional probabilities.over the unconditional probability is demonstrated
best on the 3-hour lag.

A priori, Egs. (11) and (10) are applied to give the conditional probability that
certain thresholds of areal coverage are exceeded. As an example, if the problem
is to give the probability that group 1 will have 8 oktas or more coverage, of which
the unconditional probability is 0. 0413, then in the above example for Key West,

3 January 1974 the model estimates of conditional probabilities for 3-, 6=, 9-,
12-hour lags are 0,106, 0.102, 0,077, 0.066, respectively, These are all improved
probabilities over the unconditional probability. In verification, there was an echo

on all except the 3-hour lag.
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A computer program was written to caiculate the conditional probabilities of
the fractional cover in group 1, successively equal to or greater than 8 oktas,
16 oktas, 32 oktas, and lastly 64 oktas (complete coverage), given the number of
oktas in groups 2 to 8 at the initial hour. This was done for time lags of 0, 3, 6,
9, 12 hours, at each of the five stations for each midseasonal month and for each
hour for which there was a recorded verification.

The following illustration is for Minneapolis in October. The climatic fre-

quency of the predictand, equal to or exceeding the fractional cover, was:

Full cover (64 oktas) : 0.0011
Half cover (32 oktas) : ,0340
One-quarter cover (16): 0.0764
One-eighth cover (8) : 0.1236

Average: 0.059

The total nninber of "forecasts'', .always less than the maximum possible
number (4 x 1488), is shown in the second column (Table 9). The number of times
that the conditional probability was computed to be: 0.00 to 0.099, 0.100 to
0.199, -~-, 0.900 to 0.999 is shown in tk~» next 10 columns. All eleven pieces of

information are sh-wn for the forecasts of time lags 0, 3, 6, 9, 12 hours.

Table 9. The Number of Times That the Conditional Probability of
Fractional Coverage of 1/8, 1/4, 1/2 or Full Coverage was
Estimated in the Range 0.0 to 0.097%, 0.1 to 0.19%, ---. The
example is for Minneapolis, Minnesota, October

. e

Conditional Probability Range
TEe Aok 0 0.1 0.2 0.3 0.4
Lag No. t
o i o to to to to

{Honzs} B 0.099 0.199 0. 290 0.399 0. 490
0 5844 5247 123 87 51 52

3 5780 5169 169 124 66 3

6 5752 5078 312 137 101 61

9 5724 5049 395 164 79 3

12 5692 5071 411% 192 47 9

(0,55 0.6 0.7 0.8 0.9

to to to to to

0. 599 0. 699 0.799 0. 899 0. 999

5844 50 42 34 51 107

5780 49 52 34 28 16

5752 36 21 6 0 0

5724 6 0 0 0 0

5692 0 0 0 0 0
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Viewed as forecasts, the conditional probability estimates, by definition, are
sharp when they are close to 1.0 or 0.0, implying a high degree of confidence by
the forecaster. In actual fact, there are many low estimates, simply because the
echo-producing rainstorms are so infrequent. But there are relatively few high
conditional probabilities. Table 10 presents the overall relative frequency of
prediction, for all five stations and all four midseasonal months. An estimate of
0. 70 or higher was never made beyond the 3-hour lag. Even on the zero lag, the
degree of certainty of radar echoes in group 1 — when there are echoes in groups

2 to 8 — is not generally high.

Table 10. The Frequency (% ) of the Estimates of Conditional Probability of
Fractional Coverage (Including 8, 16, 32 and 64 Oktas) Among the Cases
When the Conditional Protability was Estimated >0.10. The figures are
averages for all five stations and midseasonal months

Time Conditional Probability Estimate:
Lag
(Hours) | >0.10 >6.20 >0.30 >0.40 >0.50 >0.60 =0.70 >0.80 >0.90
0 100% 2% 53% 43%, 34% 26% 20% 14% o
3 1007, 5% 3%, 23% 147, o 47, 2% 1%
6 1007, 41% 19% 8% 497 19 - - -
9 1007, 267 8% 2%, 1% - - - -
12 100’/’) 10”‘() w! . - ' g - -

The sharpness of the conditicnal probabilities, as a forecast tool, was mea-
sured by a statistic related to Brier's scored as described below. 1l.et

(1) P(L) - P(n > ny), the conditional probability that the areal coverage
(number of oktas) in group 1 will equal or exceed the number I. (- 8, 16, 32, 64);

(2) F(L) - Climatic frequency or the unconditional probability that the
number of oktas in group 1 will equal or exceed the number I.;

(3) V - 1 when, on the hour of verification, the number of oktas equals or
exceeds the number I.; and

(4) V - 0 when, on the hour of verification, the number of oktas is less than

the number [..

8. Brier, G.W., and Allen, R.A. (1951) Verification of weather forecasts,
Compendium of Meteorology, American Meteorological Society, Boston,
MA., 925-996,
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For this test of verification and scoring, L was made successively equal to 8, 16,
32, and 64 corresponding to fractional coverages of 1/8, 1/4, 1/2 and full cover-
age, respectively.

In the Brier scoring system, if the estimated conditional probabilities are
correct, or perfectly valid, then the essence of the test is in the sharpness of the
probability, P(L). If P(L) is greater than the climatic frequency, F(L), then the
difference squared,

E; - [P(L) - V)2
would be smaller than

E, - [F(L) - V) (18) 3

when V = 1 denoting occurrence. Conversely, if P(L) is smaller, than F(L),
implying lowered confidence in the occurrence of the event (L), then E; would be
4 smaller when the event does not occur. |

For all forecasts, totalled over all probability estimates, over all lags and
for all times when the forecast is made, the total

T=% (PL) -V)?

is intended to be as small as possible. For completely sharp probability state-
ments P(L) is either equal to 1 or 0, and if completely matched to the values of V,
then T would be identically zero.

Skill, as apparently first propos-d by Heidke,7 is judged by the advantage of
the forecasts over the information in the climatic frequencies. If the symbol C is
used, instead of T, for the total when climatic frequencies are used as probabili-
ties, then

C:=%|F(L)-V]2.
The skill (S) is ultimately judged by

Ss=(C-T)/C .
The statistic S has the property that it will be equal to 1.0 for perfectly sharp and
accurate forecasts, and will be equal to 0.0 for conditional probability statements

that do not differ profitably from the unconditional probabilities. It is possible
for forecast probabilities to be so much in error that T will be greater than C, to
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make S negative. Generally speaking, the conditional probability will be greater
than the unconditional probability when there is an improved chance of the event
occurring, and smaller for a reduced chance. Hence, the term Ey will generally
be less than the corresponding E.. All told, the score S is best when it is closest
to 1.0. A value of 0.0 for S would imply that the conditional probabilities offer no
information over that of the unconditional probabilities. Table 11 lists all of the
skill scores for each of the five stations by midseasonal month and lag., As to be
expected, the score decreases with time lag. At zero lag, or for simultaneous
occurrences, the fractional covers over groups 2 to 8 collectively must be consi-
dered as fair to good estimates of the coverage over group 1. But, in 3 hours the
predictability decreases rapidly. In 12 hours it almost vanishes, and in fact does
at Cape Hatteras, North Carolina.

Table 11. The Skill Scores Which Range From 0 for '""No Skill" to 1.0 for
Perfectly Correct Forecasts. The stations are (1) Minneapolis, Minnesota,
(2) Key West, Florida, (3) Wichita, Kansas, (4) Cape Hatteras, North
Carolina, and (5) Evansville, Indiana

Time January April
Lag

(Hours) | (1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

0 0.63 0.65 0.66 0.76 0.73{ 0.71 0.54 0.58 0.65 0.70

3 0.35 0.40 0.43 0.50 0.40 | 0.41 0.33 0.32 0.40 0.35

6 0.14 0.19 0,20 0.31 0.25 | 0.20 0,11 0.13 0,18 O.11

9 0.07 0,08 0.10 0.14 0.14 | 0.11 0,06 0,03 0.10 0.05

12 0.03 0,03 0,04 0,00 0.08 | 0.07 0.02 0.02 0.00 0.03
July October

0 0.64 0.42 0.53 0,56 0.52 | 0.71 0.55 0.60 0.59 0.72

3 0.32 0,10 0,27 0.27 0.27 | 0.44 0.32 0.35 0.32 0.48

6 0.06 0,02 0,09 0.10 0.08) 0.23 0.20 0,17 0,17 0,27

9 0.00 0,01 0,03 0.05 0.04 | 0.12 0,13 0.04 0.10 0.12

12 0.00 0.04 0,01 0,00 0,02 0.08 0,06 0,02 0.00 0.07

5. SUMMARY AND CONCLUSIONS

The conditional probability of Y equal to or greater than a threshold Y., given
several or many predictors X;, ---, X, is determined from the transnormalized
variables. Symbolically
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p(Y)ZYch --,X)=P(y2ycl Ryy ==y %)

; n n

n

P(n2n))

where Yor %Xy, ===, X are the transnormalized variables obtained from their res-
pective climatic prob‘abilities (p) through Eq. (14) or its approximation Eq. (15).

The value of n, is obtained through Eq. (11). If the partial regression
coefficients a; (i = 1, ---, n) and their function b are not provided, they are
determinable in terms of the cross-correlation coefficients between the predictors
(p ij) and the cc's between predictand and predictors (pi) through Eqgs. {8) and (9).
The approximation for the conditional probability, good to four decimals, is given
by Eq. (16).

The model was tested on some readily available data, consisting of radar-
echo coverage around each of 5 stations in the eastern half of the United States.
The tests herein for veriflication provided no measure of the degree of validity of
the conditional probability estimates. But there is strong evidence, in Table 11,
that they are satisfactorily valid, because the skill scores fall to zero but do not
fall below zero.

Assuming validity, the Brier scoring system provides a measure of sharpness.
Table 10 displays a low measure, in general. But the model is capable of estima-

ting high probabilities as evidenced by the frequencies in the first two lines of
Table 10,
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