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ABSTRACT

The Green's function approach for the subsonic compressible potential
flow over a helicogpter rotor in hover or steady state vertical climb was
examined. Several methods of approach were taken to derive the Green's
function. An attempt to derive the Green's function directly from the
differential equation written in the non-inertial coordinate system
(rotating Cartesian coordinates attached to the blade) was not successful.
However, since the Greens function was known in the inertial system, a
transformation of the integral equation for the velocity potential in this
system was transformed successfully to the blade fixed coordinate system.
The resulting integral equation involves surface derivatives of 09 which
precludes the use of previous numerical schemes for its solution.

A second part of the report includes the results of the second iteration

for the force-free wake of a rotor in hover.
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1. INTRODUCTION

The demand for heavily loaded, high performance helicopters has

grompted & great deal of research work on the aerodynamics of the
fotor blades, Lifting line theory has been employed to indicate the
#ffeces of the distorted wake vortices. Various ways of prescribing
W lecatliasg the distorted vake were developed, however, due to the
Sremendens amount of calculation, verv few studies have been made
welng Lictng surface theory applied to helicopter rotor blades.

e major drawback of a 1ifting line model is that it cannot
gowdies the wariacion of the induced flow in chordwise direction which
& very slgnificant for a heavily loaded helicopter, especially in
Bower .  Lifelsg surface theory can give the details of the flow in both
spanwise and chordwise directions. This is extremely important in new
Slade design because the method is capable of showing the effects of any
change ia blade geommtry.

Mere are three sethods of approach that can be used when applying
Lifsing surface theory. One method of approach predicts the local surface
lond lage by sesuming & loading function which is expressed in a series
of sssumed sodes with unknown coefficients. These unknown coefficients
#vs then obtsined by satisfying the normal velocity conditions, either
#issesly o iadirectly at a set of points on the surface. The second
seehed of approach predicts the local surface loadings by first assuming
#n tafloence funetion, such as sink and source, vortex, or doublets, of
wnlinewn et tengthe distributed on the surface. By satisfying the normal

e leeise condicion, an integral equation is formed and then solved by




approximating the surface with a finite number of elements. The solution
of the influence distribution provides the velocities, pressures and

hence the loadings. The third method predicts the local surface leading

by directly solving the governing equation in terms of the velocity 4
e potential through the application of Green's theorem. An integral equation
i is formed and solved in the same way as in the second method. In fact,

| { this method results in the same integral equation as the second method

when the flow is incompressible. However, the use of Green's theorem
generalizes the second method and is capable of solving compressible

flow problems.

It should be noticed that the first method gives the pressure
coefficient without going through the calculation of velocities and
pressures, as is required in the latter two methods. When the actual
wetted surface of the blade is used to satisfy the normal boundary
conditions and to calculate the velocities and pressures, these data
can be used in the analysis of viscous flow problems.

An attempt has been made to apply lifting surface theory using the
second approach to an arbitrary helicopter rotor blade system which is
in axial motion including hover as a special case. A test case was run

with the elements assumed on the actual wetted surface of the blade.

Two reports have been published on this work. The first report1 assumed
a classical helical rigid wake with a doublet distribution on the wetted
surface of the blade and the wake. The second report2 attempted to

;. compute the force free wake by starting with the rigid wake results and
(1 iterating on the geometry of the wake. A force free wake requires that

each point on the wake is free to convect at its local velocity. However,

e )

e e e
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because of the complexity of this problem, only the results of the first
iteration were included.
Both of the above referenced reports are concerned with incompressible

flows. In order to investigate the effect of compressibility, in this

g repovt the compressible case of helicopter rotor 1lifting surface theory
will be considered. Since the influence functions for an incompressible
case will not satisfy the governing equation of a compressible case, the
third approach was used. In other words, Green's theorem was applied in

this case in order to get an appropriate influence function. The analysis

will be compared with a general compressible theory. In addition, the
{ iteration scheme used in Ref. 2 was further pursued'and modified, and

the results of the second iteration are included in this report.




2. LITERATURE REVIEW

Extensive reviews, as well as listing of references on 1lifting
surface theory and helicopter wake analysis were presented in Refs. 1
and 2. In summary, very few reports have been published on the
application of lifting surface theory to helicopter rotor blades. Most
of the previous studies circumvent the complicated calculations by using
the camber plane instead of the wetted surface of the blade. The
description of helicopter wake geometry, either the prescribed rigid
wake or force free distorted wake, has had some success under the
limitations of the lifting line mode’. In most caaés the wake sheet
concept were not maintained wherein the tip vortex is separated from
the inboard vortices. In the compressible helicopter rotor lifting
surface theory to be considered in this report, the true wetted surface
on the biade will be used and the sheet concept will be maintained. The

Green's theorem approach will be used to get the influence function.

The literature concerned with the compressibie flow over a helicopter

rotor blade system is sparse. In 1969, Sopher3 presented an analysis on
a hovering, nonlifting thickness problem. The solution of the velocity
potential in the general aeoustic equation was taken from Garrick's non-
steady wing theory.4 With some approximations made for the steady case,
the velocities and pressures were calculated and then compared with the
results of blade element theory. It illustrated that blade element
theory was inaccurate near the blade tip and became worde as the blade
speed was increased. This was the first attempt to check the dependence

of three-dimensional flow on compressibility.




Caradonna and Isom5 also solved a hovering, nonlifting problem by

| S

using the mixed-difference relaxation method. Both subsonic and transonic
flows were considered. Scale factors in terms of aspect ratio were

introduced to simplify the equations. These equations were then solved

;W by a finite difference scheme. The results show the importance of tip
Mach number and aspect ratio on the growth and extent of shock waves in
the tip region, andd indicate a significant reduction in shock strength
with decreasing aspect ratio.

A second paper6 was presented by Caradonna and Isom in 1975 on the
transonic case in formard motion. Scale factors were employed and
Successive Over Relaxation (S.0.R.) schemes were uéed. This was an
unsteady problem. The results show that the flow in the tip region is
mostly unsteady in the decelerating flow region. The influence of aspect
ratio, advance ratio and Mach number on this process was discussed.

All of the papers cited above (Refs. 4, 5, and 6) deal with nonlifting
problems and these are the only major works that have attempted to solve
the compressible flow over helicopter rotor blades. The approaches are
different from what is ususally called lifting surface theory and wakes
are not included because there is no 1lift.

A general formulation of subsonic lifting surface theory using the
Green's theorgm approach was given by Morino and Kuo.7 The theory is so
general that it can include any type of motion, even rotational. However,
it 18 very difficult to visualize the rotational problem unless the
coordinate system is attached to the rotating body. No attempt was made
to apply this theory to helicopters. In this report, this general equation
will be transformed into rotational coordinate systems in order to compare

with the present analysis.

e —————————
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3. FORMULATION OF THE PROBLEM

3.1 Problem Definition

Steddy potential flow is considered over an arbitrary helicopter rotor
with any number of blades in axial motion including hovet: The rotational
speed of the rotor is assumed to be large so that compressibility effects
must be taken into account. The problem is to determine the velocities
and pressures on the wetted surfaces of the blade and to study the effecfs

of compressibility. The influence of the wake will also be included.

3.2 6overning Equation

If a Cartesian coordinate system is attached to one of the rotating
blades, (see Fig. 1), the governing equation for linearized subsonic or
supersonic flow was shown by Caradonna and Isom5 to be as follows:

[a;_(wy);] ? 2 a¢

+[au-(waf ] T ra it

al
I Xt

1, 2P 2 iy B0 OV
+zwxym’ o 7,7

where Qg9 18 the sonic speed of the medium at 'rest,
i W  1is the rotational speed of the blade, and

f is the perturbation velocity potential, defined in

the following equation .

The total velocity at any point iu the flow field is

-V'-—(WEXF)*‘VA;-{-V?? (3-2)
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where [ = XX*,’*?Z;, V'-',— means taking gradient with respect to the x}’?
coordinate system, and \(‘ is the climbing speed. For the hover case

\{\ = 0. V is the velocity as viewed by an observer in the rotating

coordinate system.
3.3 Boundary Conditions

The boundary conditfons are the same as in the incompressible case.

That 1is,

(1) At very far reglons where there is no induced velocity

V- p=0 (3-3)
(2) On the blade surface, the normal velocity is 0

— -

Vp=V:-n =0, _ (3-4)

3.4 Pressure Coefficient

The pressure coefficient is usually defined by
Cf ﬁ S ﬂo
= : N
2 ﬁa »Gu

A
where V“ from Eq. (3-2) is equal to l-(wé X ?)-!-\4 2 I , which is

(3-5)

dependent on the radius )Y . 1In order to use a constant as the reference,

CP is redefined as

ﬁ"fa

P 2 (3-6)
3 fo (WR YY) y
where R is the rotor tip radius. For the hover case
f =i ﬁw
P | 2
'i' /’oo (w R) g
If the parameter B 1is defined as
wR
p = (3-8)

a~ '
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then
P' fav
- d ¥ a? 2z
2 ﬁo ) P ;
By using perfect gas relations a: = _ﬁ.

[

B s TS S0 S SR '
T s LR o

(3-9)

To express ﬁ in terms of the velocity, one has to consult the energy

equation. For compressible or incompressible flow

2 z
-'zy"' s i CPT = CPI (3-11)
where c’ is the specific heat and subscript 0 designates the reservoir

condition. With the expressions cpn)‘k/()'—-l) and = yRT -
Eq. (3-11) becomes

2 1 =
—Y— -+ a == dg
F y = et P

This can be rewritten as

PR
E. PR "SI, o . o
s -7 [4<5 (a). (3-13)
The isentropic relation f/ﬁo e (T/T; )y/()-,.,) may be used to obtain
7
Lo, L= (VN r- (3-14
P [ I+ 2 (a ) ] . )
Similarly for the pressure in the free stream '
-
£ r-l ( Vo ]r~/
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Dividing Eq. (3~15) by Eq. (3-14) given

Vi )2 s

¢ =[2+('"”’)(7:,

z]r-’ (3~16)
fo z+(r-:)(_h\£_) ,

To eliminate az ,» one may write Eq. (3-12) in another form

s LB e 3-17
ooy e (3-17)
This gives
2 z
& —L(Va'—Vt)-f--—aﬁ—' (3-18)
y-i 2 =
or
2 2
%
(r=1)Y = y 3 (3-19)
. x Qoo
& L W e

Substituting this into Eq. (3-16) one gets

A SR
L[ B T o

therefore the pressure coefficient from Eq. (3-10) is

2 2+
o= {1 ST (- HTP1 ) o

’

This is the exact expression for CP . Since the local velocity
can be easily obtained from Eq. (3-2), there is no need to expand this
out to get an approximation. It should be noted that for a rotor blade

V,. usually lias a significant magnitude in the spanwise direction as
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well as in the chordwise direction, and is a variable depending on the
radius. It is dangerous to use the familiar expression 2(&96§err

L
regular wings especially near the inboard tip because the contribution

from the spanwise direction will be overlooked.

3.5 Nondimensionalization

It is always conventent to nondimensionalize the equations and
introduce some nondimensional parameters. p as given by Eq. (3-8)
is a very important parameter for compressible rotary flow and is
equivalent to the Mach number in rectilinear flow. It will be used
throughout ¢hese equations.

In the following, all the lengths will be divided by tip radius A
end all the velocities will be divided by tip speed wWA. Let superscript

# designate nondimensional quantities, and define

\
A
o
r= %
-
£
AP, "
? R L | (3-22)
n' o Lt
0
Vo =k
/-V
Vo = R
etc. J

The governing equation, Eq. (3-1) can be rewritten as
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[i- (py’)‘]—;—;f;; +[ I- (p?c’)l]%;%—e—%

{240y’ 220 L 429 L 2Py
+ P ( x’y 2T i~ et o ) 0 (3-23)

The boundary conditions become

(1) in free stream
Ve p'=0 (3-24)

(2) on blade surface

V': = i/', £,E= (V,: + V;fr ?,)‘HIIR=0. (3-25)

or
20 _ v/
-311.’ S v”n. (3~25a)

Other quantities and equations can be written in a similar way.

arwmu———u—-‘—’
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4. APPLICATION OF GREEN'S THEOREM

For the sake of convenience, the superscript "' in the ncndimensional

equations will be dropped in this section, without being confused with

the dimensional ones. Eq. (3-23) may be rewritten as

[—(Py)]ax, Ll—(P )]—ﬁ-r

+ x 9
fie z}a;n');y ax )
=L g =0 (4-1)
The boundary conditions now have the form

(1) in the free stream

e = 4-2
Vrp=0 (4-2)
(2) on blade surface
20
V""n_- on - (4-3)

To solve Eq. (4-1), one may multiply the equation by a function & ,
which is called Green's function and will be determined later, and
integrate it throughout the volume in which the flow field is being
considered, then transform it into an integral equation. The volume
of integration contains the region from the body surface to infinity,
therefore this is an exterior problem. Integration by parts was applied
to each term and the volume integral was transformed into surface integral.
This is actually the approach of Green's theorem. The details of this
derivation are given in Appendix A.

Fig. 2 shows the volume of integration |/ and the surface boundary

S . The result of Creen's theorem is




oL 47
-~ﬁ[{6[l (B ] 2 —[1-(p2Y ] 57 +2 £ S X5 2 +66a¢)
+{e[n~<px>J -[i- (0] T
+{&Z§’—%§-f} A
+m{[l—(p7J ]——€L+[i—(px ] +24
+2pi (G 5y it y2L)- Pétiiﬂr) Flog-+pt7

= (. (4-4)

- g2 f{ay+2y L)+ E47}E

Let the operator in the curled bracket of the volume integral be

% o > >*

L™= [1-(pyP ] L= +[1—(px)‘];,—;+ T
2 > 2 AT LR N

(4-5)

Incidentally, by rearranging, one finds
L “"[]‘_(P'f) ] ;'T'[’ px)Jay"-f.?a"

"'PI(ZX}W'* 7‘}7* 73’7— (4-6)

which turns out to be the same as | , i.e., L*=L . This shows that

L. 1is self-adjoint.

If one can find the function Q— such that

L*G=L&=35(2=%, §=, 2-%) =)

where 5(2”*&,}"},’2‘2:) is the Dirac delta function, then by

definition of Dirac delta function, the volume integral becomes
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((fotedv=[ff¢8(x=n,y-g,2-2)dT
T v
; YO IED 4-8)
?Q L Now. Eq. (4-4) can be rewritten as
P 2 3 29
?(x.,3.,2,>=—J’S[{G—[»-(Pyﬂ;{f——[n—(py)];?tf +Ip il
- +p GXf}x +{G[t—(px)]—gz [t—(PX)’]"%’
X 26yt g2 )P+ ay9} G +{6 - 229} ]‘""5
; ¥ _ (4-9)
g This includes the surface integral only. It could be solved by approxi-
is mating the surface with a finite number of elements if Green's function
T é}- can be obtained. The remaining question is how to find & .

- é} has to be solved from Eq. (4-7). The symmetry of the operator

-

| suggests that it is better to do this in cyclindrical coordinates.

After transformation one gets

Lg=-L 2 (r2E)+0- p‘r‘)J——’ZPJrig} o(r-r,8-6,2-2)

¥

-

4 (4-10)
| o Consider L,G”*O first and separate the¢ variables. The details are

.-

shown in Appendix B. It turns out that | 1is of the standard Bessel type

and é} may be expressed in terms of Bessel functions. Unfortunately,

%; it sttll has to be written in integral form and no compact expressions
- can be achieved.

i* Several attempts were made to expand the integral form in series
E' such as P ¥ p; ,» or 2—2, , however all these series are divergent.
ii

The technique of perturpbation was also applied in light of the fact that
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e Gwsen's fumctlon for the Laplace equation is well known, but singularity

BUGRLaRe wave sncountered, The details of all of the above investigation
WLLL Aes e prssented 1a this report because of its complexity.

e ssaseh for Cyeen's function has been one of the main tasks of
EREe pealeet, hewewer, a workable form could not be obtained and
B (5=9) 1& net selwable ia its present form.

e wend shewld be mentioned finally with regard to notation.
B SRk sscnton the demmy wariables of integration do not have the
sbnertas "1, shereas the coordinates of the field point do. This
b & semuls  of she destivation of Creen's theorem, and is opposite

6 Bhe sonvent ton ssed I the following section.




5. COMPARISON WITH A GENERAL COMPRESSIBLE THEORY

Unsteady compressible flow was treated by Marino and Kuc:o7 by using
Green's function. This is & very general theory that will accomodate
any complex configuration in any motion. However, in order to visualize
the rotational motion of the blades, one has to transform the equation
into rotational coordinate systems. This will be done in this section
in an attempt to compare with the results in the last sectilon.

The perturbaticn velocity potential in Marino and Kuo's paper
(designated as MK in the following) is different from that in this
report by a constant U,, , which 1s the free stteém velocity of the
body. If the total velocity potential is fMK s the perturbation

potential 7"( i1s defined by
P = Uy (X + ") (5-1)

while this report, from Eq. (3-2), uses

P =gt =)

where
A —> A
Vep,=—(wzxr)+x2 (5-3)

Clarifying this difference, one can rewrite the governing equation
in MK , with respect to an inertial coordinate system 27_ 73

attached to the body and moving with velocity [/, in x-direction, as
2 | p) U PJ )1
[ — — —— 5«4
Vr=w (Jt tlez) 7, =

where all the notations have been, and will be, written in this report's
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convention. The surface of integration is represented by

${%. 4.4, x)=0 (5-5)

The boundary condition can be written as DS/Df = (), or

k. SESONEL S T _".5_.) (5-6)
Py 173) (?f i Mok I,

All the overhead bars (—) mean the quantity in the inertial coordinate
system.

For the hovering helicopter case, the inertial coordinate system is
attached to the body of the helicopter with z-axis at the center of the
hub. Since there is no advancing speed, %:o , the transformation
from Ej’f{ system to the rotational X; 2L systems (refer to
Fig. 3) then has the following relationship:

¥ = X cosw )+ ysin(wt)

Y =-~Zsm(wx) +§ cos(wt) (5-7)
z=2
t=4xK

The time 7 1in rotational coordinate systems will be considered for
the transformation and 3/3[ terms will be dropped later for the steady
case. Using Eq. (5-7), the following relevant relations can be obtained:

X =xcos(wil)~ysin(wi) :

[T in (WA s

-9 xsin (WA) +y cos (WZ) i
2 =2

A =1 J




d | N,
i cos(wt)ﬁ sin(wi)

e
%

D — ] b
—_ = Sin (wt);;:—-'f' cos (wt)f;—

i

A P
"(LU 2 x r'> Iﬁ? =+ Dt—

>

A

x coS(wf)-f—:j Sin (wi)

>
|

9 o st (wi) +§ cos (WX)

2 =z
‘;’f\ = x cos (wt) - 2? Sn(wx)
X A A
g =Asm(wl) +Ycos(wi)
2 A
Z 2= 3
¥ = Ir
2 2
Tl

>

(5-9)

(5-10)

(5-11)

(5-12)

(5-13)
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The Jacobian of the transformation

2 1)
J'__:a(x/j’ £ 4 :::}

p (7,?,3,1:) (5-14)
Using the above relations, with (/ =0 and 3217 =0 , one can rewrite
Eq. (5-4) as
[71;0_._’_[— (w? x.7)-17-.]17>=o (5~15)
P e & ‘
Rembering ( wix ) p=uw } 7and expanding the square brackets

in the above, this now has the form

[’_—(%)z.] :x [l“ wﬂ’ ]37’ 99:

aﬂq 22

(5~-16)

. 0
ol s
A 3)(0; 39 ’
which is just the governing equation given in Section 3. The boundary

condition becomes

4 [ (wer7 )] VS (5-17)
n W’Sl
The @reen's function im the inertial system for the unsteady case is
- X(t -t +6) (5-18)
47";(
where
—_— — & 2 — - B — ey }é :
w={F-E)+ £ [(G-5)+3-E) ]} (5-19)
— — - T — :
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2

- [1- (%)
A9

(5-21)

In the rotational system now, with U~==o s p(z' ’

i
& 4 Ix

(5-22)

but now
2 P L Vz
= (A= r g el 2] (5-23)

When Green's theorem is applied to Eq. (5-4), the integral equation

in the general form with respect to the inertial coordinate system is

frEp(x, 7, %, %)

_ L ds dp® | dec’
z” RI WH sl I 59

d 0 0 drf
ffl s o)z 7 (=) 1) o

g 04 ¢
_aix_z![ar.'s.va L4 14y 20Y] g1 4E

QG d3 %, ’V”S’f (5-24)
where
4 T a 2
o e —— (5~25)
F ey,
oS . . e ‘ N e ot T BTANTAY
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E=0 inside €
E "i’ on 0 (5-26)
E=1 outside ¢

and [ 1‘ indicates evaluation at f’=f-p. Similarly, Za is the surface
given by
i X, Ji, 2, I—8)
= S(%.5,3,1-¢ (5-27)
where (Z,, "7, r ;, ) is the dummy point of integration on Z’ .
Substituting in the transformation relations, Eq. (5-24) in the

inertial system with U,=0 and 2/22 =0 becomes
SMEP (x.Y,2)
as
= _f“' P S- % ¢— _L.[(wz,xr,) V,S][(wz,xr, 7] = M’S'l

*H7 S @)+ e lwin D wsflea i

+(w2xr)- u»jj[v.s 0+—-L—(wzxr, S‘][go]r’ __1_,%‘55'
where (5-28)

6=z (5-29)
Oeg
and 0' or 2 now is just the surface given by S'(xy t}=0, which is

independent of time.

Substituting the boundary condition, Eq. (5-17), and remembering

-
(Wé‘l"r:)'77= w l'a""wX/L and ._Yb___ ==.-._...
! g axf )}, ,VO S, an' .

Eq. (5~28) can be rewritten as
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+TE¢(%4.2)

= JIL5% g w Ot g

n &gi x

4,
+S5[an' m) 7'— an ;Z-w"r,;i)(—)]‘fds'

" (w7——-¢wx > )ﬂ(_aﬁ i _ﬂ)j; 45,
97 n, am an Ve (5-30)
All of the above equations in this section are written in dimensional
form. In order to compare with the results in the last section, these
equations have to be nondimensionalized. Using the same notation defined

in Section 3, and noting that d§ = 4(2’47 :—-—kidk'dy'zk'}/f’one can
rewrite Eq. (5-30) as

4TEP (x40 %)
vp’ l- /0 20N\ L 4¢’
=~g[a% w (4172 (P A5y Ur,: 45,
LR -t s
=4 [ 4)-E - 4

(5-31)
To compare this with Eq. (4-9), one should ignore the primes ("-/")
and remember that the variables with subscript "|" are dummies of

integration. Eq. (4~9) can be rewritten in the following form using the

convention of this section
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¢y 2)
=f{a-ep (54 *“’ff/?'/)'A/
S.’ |

ox/
' 36' 7 3& >
3"1 ?P(’l X,-}—K'——Q;,)
2 ;"l/ dJ,
+pLe(ny 2 fsﬂ'*,)ﬂf’-f’(*:;: +67 LAk j !
] 5-32)
Though this looks very similar in form as Eq. (5-31), it is not easy
to get an expression for ( by comparison.

The terms 3?’/3!1,’ in Eq. (5-31) can be substituted by the boundary
condition shown in Eq. (3-25a). However, the term ( y’, 3?’/ 0%, —
X/29/9Y4 ) 1s not known. This makes Eq. (5-31) difficult to be
solved by transforming it into an algebraic equation. This is also the

reason why no numerical solution is attempted in this report.




sy

Py
L ]

-

e

»

24
6. SOME RESULTS FROM SECOND ITERATION

This section will present some results for the second iteration of
the force-free wake aad a continuation of the first iteration results of
Ref. 2.

The damped first iteration wake geometry calculated in this reference
was taken to be the basis of the second iteration. In order to get a
better understanding of the wake distortion near the trailing edge,
additional steps were used in this region. Moreover, it was found that
since the control points on the radial lines were no longer linear after
distortion, some irregularities would occur due to fhe differentiation
of 5? in the radial direction. Therefore, before starting the second
iteration, the distorted radial lines should be projected onto each
radial plane, which was done by using the projection routine discussed
in Appendix B of Ref. 2, to make them linear again. The final input wake
geometry of the second iteration looks like the one shown in Fig., 4. The
sizes of the inserted steps are shown in Fig. 6. The step size for the
far wake calculations was similar to that used in Ref. 2,

This second iteration process has been carried out, including finding
a new wake, solving the equations and finally recalculating the loadings.
In the calculation of the new wake geometry, the contribution to the
velocity due to the derivative of the velocity potential in the streamwise
direction was also included. It should be understood that the value of jP
along any given streamline leaving the trailing edge would remain constant
and equal to ‘Afﬁhf if the wake geometry was correct. This contribution

was neglected in the first iteration. All the techniques developed for
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the first iteration were used and therefore the program is essentially
the same.

The resulting geometry of the second iteration is shown in Figs. 5
and 6. Instead of rolling up, the points near both tips were washed
downward. The downward distortion increased the loading on the blade
and therefore made the result more divergent.

The damping technique was used again. The geometry used to calculate
the new loading is the average of the one shown in Fig. 5 and the damped
first iteration, Fig. 4.

The 4Mre and loading curve, are shown on Figs. 7 and 8 respectively.
Yhe overall thrust coefficient is .005424. |

It 1s obvious that the present result is caused by the fact that
the wake distortion scheme was not working well near the outer edges
of the wake sheet so that the expected tip roll-ups were not generated.
Before carrying out additional iterations, the wake distortion calculation

scheme must be thoroughly investigated in this region.
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7. CONCLUSIONS

One of the objectives of this work was to adapt our lifting surface theory
programs, as described in Refs. 1 and 2, to the subsonic compressible ucze.
One procedure that was attempted was the use of the Green's theorem approach
whereby the governing integral equation was transformed into a set of
algebraic equations. It was hoped that this approach would lead to an
analytical and exact form of the Green's function so that the resulting
integral equation could be solved by applying the same numerical scheme
as developed in Refs. 1 and 2. The analysis was not restricted to any
particular compressible flow region on the blade so that.the effect of
compressibility would be accounted for throughout the complete flow field.

The attempt to derive the Green's function directly from the differential
equation written in the non-~inertial coordinate system (rotating Cartesian
coordinates attached to the blade) was not successful. However, since the
Green's function was known in the inertial system, a transformation of the
integral equation for the velocity potential in this system was transformed
successfully to the blade fixed coordinate system. Investigation of the
resulting integral equation (Eq. 6-31)) shows that the appearance of terms
involving surface derivatives of 7> precludes the use of our previous
numerical scheme. Further attempts were made to investigate the Green's
function in a rotating cylindrical coordinate system. It was found that
the Green's function for the appropriate differential equation would be in
the form of an integral which would result in a numerical scheme that was too
complicated to be practical.

A second part of this study was related to improving the force free wake
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geometry by extending further the procedures used in Ref. 2 for the first
iteration wake. Extensive calculations were carried out in attempting to
find a convergent procedure which would result in the correct force free
wake geometry. The results appear to show that the inboard portion of the
wake was convergent, however, the outboard portion of the wake diverged. It
was felt that tYis divergent tendency was caused by inaccurate calculations
of the induced velocities near the edges of the wake sheet. Further attempts
should be made at improving numerical procedures to compute these induced

velocities in the region of the free edges of the wake.
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Figure 1 Blade-Fixed Coordinate System




Figure 2 Flow Field for Integration
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Figure 3 Relation between Rotation Coordinate System
and Inertial Coordinate System




Lat

s 1
i

- L1

-

cilti

1

[alat
e

r/R

Figure 4 Damped Piret Distortion with Inserted Small Steos
Near Trailing Edge




L

.0

0.0C 0.50

i

c
-

0.

L ZBRR

&,.._n X
,,,.\.,« L5

L\
WIDAX 6“‘\ e
laiote { )
Rl S¢ 1)

it i

-
e d
-
-

A A TR, T A e

C.

=g

<1.Uc

Lo

Figure 5 Wake Geometry of Second Iteration

el
s ]

geny




06T~ ONTTR- QGITD- ON2TD- OG2T0- 0ETD- it
| S ! ‘

=
3
:

1

-
|

|
—
)

|

|

!
-
~

-
c
T
CECRESEICIES NS
' -

I
L

f f il o] e
w > % e S
\ 4 \.\fﬂ/ //Jﬂ 3 3
V.HJ. i llri_,f. 3 /// P // o RE m
e = ~ /\/A(// T s el

Figure 6 Cress-Sections of the Second Distorted Wake

= &
= =
{ ' ] w W
.‘ w .h i t
H e il i ﬁ;.
: | H i e
| b ,\ x R “ | .
bR Ll fi t :
‘WO W ¢ o ‘n °
4 -.\ﬂur 20 w ~ O n ”
| ’ - 3 {
L e e e | M, | i et o Lie._
i) VG=  @antge T gers 0ne - Uhetns iEas Gt s auheus aitlshiis
¥ /z
| == 1 =D s ) = B e R e (- R - N




36

3lyy¢y 30 uor3eIaBA Osymueds / @an3yy

NVdS
mo w- No Oo mo Q- Mo

. N
.
—

1 .
_
_
_ :
_ \ - %000°
” \\\\“ ;
, \w\\\ j
/ \\\\ W\\ - 8000°
./ \\\\\\w\\\% .
\ o
\ \\\\\\\\\ _z100°
/// \\\\N\\\\ \ NOILVNZLI ANODES QAdWVa o MCV
B\ \\ #* \\ DIVA (I9T¥ — ——— (%) |
L e g \\\\ 31f o ONISN NOILVMALI ISyI1d -— (€)
/ﬂ// \ \\\\\ é QILVINOTVD ONISA NOIIVMALI IS¥Id —— --—— (2) -9100°
- Y
,/ﬂ....\\ NOIIVYAlI 1414 Q3dWVg ——---—— (1) |
. 0200*

L e




g o0 4

37

6°1

saaan) Juypeo] jo uostaedwo)y 8 2INITJ

3
(7x/1) NOIIVLIS NVdS

6 8 L 9 S N € 4 1 0
1 N 1 i 1 { ) ! 1 ] | | 1 1 1 1 1 o
~ 1°
- 2"
/ “\\\ - IT0ST NOILVYALI QNOJES QIdWVad — —(9) |
/, \\w\o“\\\\\\ (ES6ZNL VOVN WO¥d NMVNQTY) INAWI¥EdXda —(S) | €°
\“““\a‘ 1I0STY TAVM QIOTH — — — — — |
\\\ (*T°1 WONA NIIVL & ) 1T10STW NOIIVYALI IS¥Id — — —(€)
7/ ! .
{\\\. (DIVM NO QIIVINOTVD &b ) 110STY NOIIVNALI ISHId — - —(2)
l\ X
& LI0STY NOIIVHALT IS¥Id QIdWvg ——---——(T)
e m.

*NI/E1 ‘3OY0d TYWMON




+ e

S

Puss——

e
mrm

[——

APPENDIX A DERIVATION OF GREEN'S THEOREM

In this appendix, Eq. (4-1) multiplied by function G
2] 9% 2P

G[1- (pyr) o+ G[1- a7 ] 55 r 653

e (2x9 22 af a2 N (a-1)
+p6( JEe w oot 73?)
will be integrated throughout on volume f’ , and by using integration by parts

the volume integral will be transferred into surface integral.

Consider each term one by one. For the first term, let
27 ™ 3?2 i
fgye[x—(pg) ok dy =j1£f@Aa—§ dxdyd -2

Referring to Fig. 2, consider the integration in the x-direction first. For ¢
a strip that does not pass through the internal boundary surface S , the i
limit is from -00 to @ , therefore for x-direction
’* P |® ~ 2(GA) 2
[“eAZE ix=(aa)22|" - 27 dx
o X X 0% X
- 09 -~&
= 0 -—-JM” iZQiA) EEZ. d%x
X

e [ L[~ a‘(&A) y
TR ?I_N+J sk

=D

(A-3)

5 J—‘: Dzax‘A 7.0{7(

For a strip that passes through .5 , 1t is split into two parts:

(f ,(‘4,2)_’.‘}"”
—-00

X (4,2)

x(4,2) (Xa(y,?)
~[eap] ] A ] e

P
¥4 A

i __JW 26A4) 29 1&’}

( y, 2)

Xulys) 9% OX
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Py ro———

X, (y,2) X, (3,8) roo o(¢A) 0@
"'(TA;);: X (4% [(Lu ‘rjxfy 3?)73;‘”] |

ey SRR 264),, (g2 (%G8 e
— @A X lx, (9.2) l- j Xt ?dxj
g )(QA) “ > 4) ¢ dx
ch (y.2) x (, 2) “} ]

2(4,2)
et A
%49 o i (a-4)

Now consider the integration in y- and z-directions. Since

d;&(?——-' %.14ds

the bracketed terms in Eq. (A-4), after putting back into the volume integral,

become

fsg[-(‘rﬁfz +9£§A) 7]9‘(-?\48

The other terms in Eq. (A-4) together with the term in Eq. (A-3) gives,

for ~he total volume J,

R g

therefore

J:r” s dxdydz,.:ij [-¢422 +1§§(ﬂ¢]f.axg+g jg’%ﬂw
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By substitution of Eq. (A~2)

SSM' (pyr] 2L dn
~IH a[1-(p)'] 52
+m il cpm i

”D ~¢37] }92-245

‘ﬁi G[1- <P3)] 2 1~ 89" g} % A ds
*fﬁ[’*(P;U’] T9dv

SUG[I (p07] 22 =
‘ ‘ﬁ[ C’B"f ‘L@‘?” Rds.ﬂ 9(‘“’)?417
' | "H{“&[’ (P’f)]——t-r[l (px)] ?’}5 A ds
*m[' (50"

I dV—
73

and

fﬂér’“v—-jj[ gL+ =Le]d. nlS’-f—ffj 5 dr

For
Jg&'z*yfj—fg dugj@c% dxdydz

in x- and y-direction it could be either

(A-6)

(A-7)

(A-8)
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[ J2 05 andy=[" feorst | - |~ 2 S xlas

-o- T[T 2 T dydr

f [a(&c) l S‘” ;)((g;) gdydx]

=J‘ j‘” 2*(4¢) fd;dx (A~9)

2x 04

P % ( i)
j—nf&ca—é—dxﬁs.—.f (J z J;(”) axay al)qd#

=§_ {(&C)—Lﬁ(}‘)_I (QC) —Ld

37 . 2 O 2
®  2Gd 9P 4xl d
O I
L o4 ().3) szt 2) £ ’4 } ’

1, u; ?) ACAS O 3@c)’? 4,4
7 % ([x +J;$U,x)) ol d7 .

'ij ( (L&)J 3(¢C)39)4 4x
% () paC 2X of

=([t<‘4£ G))[ cTc)—t]

430 »(1.81 % (3 ((,c) (%)
=(£~ lj;ﬁ) *(QC)S_ﬂ x (3.8 Xl J J [a 7 @x a/x
e i f:m;) T gdydn
1(2,%) 2'(¢0)
+~f&czp([ s J;; (¢ X)) 2%04 P4 dm' (A-10)

Together with the integration in z~direction by noting
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4712=f-&‘¢(5

&(X'42'==‘9- ;¢1$

ona has

jSS &C—l—dV ﬁf"fc"t x"f'wf}'] nJS+IJ[M7dV

v
‘{5[’50",})3}?-9(1‘—&—3')3)(” 2y "LJS*QJ—LMM; 94T
~[EageitivlayenfElof]. ads

rs 2’4
*gﬁ[‘ﬁ })37* xfxi t 73}'@] FI¥, (A-11)

Also

f exgdv=[[[-ext)-aes- (2 x4 )54

(A-12)

(Wapsgav= L5845 [[{ G2 yre) 9 47

{A-13)

Putting all these together into Eq. (A-1) one has

jij GLopdT =

._.‘£f[{&[:~ (1L -[1- G Bfgap RS IR

R 15 B S DY el ]
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o[- [ -[1- V] 5 -2 terrrgi) epnf
ol -2g} 3].;1:

fﬁ{fl (W] 5+ [1- (e 55

.‘. ;-,;‘! claoo’Lﬁ‘ _13-46) ﬂl( ?*Q)}?JV-

(A-14)




APPENDIX B TRANSFORMATION OF THE GOVERNING

EQUATION INTO BESSEL EQUATION

Consider the following equation

Dividing through by R@Z ,

“‘—'———L i—(f— o a .—'-& al’q— ==
LG=~37 (v ar)+(' pr)y‘*,;y i el
(B-1)
Let
| G=R(rNOB)Z (Y (3-2)
) then Eq. (B-1) becomes
i "ray(ﬂ’Z <K) + /PZM P/R’Z R@
;‘ (B-3)
5 Again let
Q=" g=2e"° (B-4)
' where (=[] ; then
dl
Sr=-net’=—r'g
3, (B-5)
. JZZI _— mse/lni:’ mz_z
“ and i
n
g L6=021L(9K)-RZ L 0 +f*RZO+RBZ=0
(B-6)
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[
1] |
| —,,’—,_(r R) =L 1 g+ =0 (3-1)

b, or
i | d = ik
E rLdr +[( m+ B ]/R d (B-Ta)
| |
} 1 Letting
] ié Af f
. ye=-t-=

1 A Jeepn
. ‘j and
1L R(nN=P() (B-8)

gg then

" 7 . G | e £

g; dr — dp Ar A RE s

Eq. (B-7a) becomes

74- ﬁ [ - ] : (8-10)

d n1p=—
‘%(f’j}i)‘*ff “,;‘]P—O .

(B-10a)

This is the standard form of Bessel equation whose solution is

P=Ju (f)




5ne=EE =) Z“) i

S k!(ntk)!

Therefore, by substitution,

R =Tn(fm+Fn" )

and

G= Tn(Im+pn f) gtn6 ¢ ™*




