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(
Preface

In the past, many more laser designers have probably used roof

reflectors than have reported their experiments in the literature. They

have undoubtedly tried using roof reflectors to gain relief from the

chronic problem of alignment sensitivity that plagues laser resonators,

but they obtained poor quality output beams and large divergences. So

the roof reflectors were shelved in favor of the better understood plane

or spherical mirror resonator. This thesis provides a geometric

understanding of what is going on inside of a roof reflector resonator.

After reading it, the laser designer should have a solid feeling about

how to avoid the problems. As a result, roof reflectors can return to

the laboratory as a real alternative to ordinary mirrors.

In developing this geometric theory, it has been assumed that the

interested laser designer - and reader of this thesis - is already

familiar with (1) first-order matrix optics and (2) the geometric

analysis of stable resonators. (For the reader who is not familiar with

these topics, Chapter 8 of A. E. Siegman's text, An Introduction to

Lasers and Masers (Ref 37), and Kogelnik and Li's excellent review

article, "Laser Beams and Resonators" (Ref 25), are recommended as

preliminary reading.) It will be found that results drawn from these

areas are taken to be generally known and are not specifically

referenced. But otherwise, the analysis of roof reflector resonators

presented in the body of this thesis is not exactly traditional,

rIthough every effort has been made to make the presentation logical

(ii



( and easy to follow. Two appendices treat certain aspects of roof

reflector resonators in the same manner as conventional resonators, to

emphasize the contrast between roof reflectors and ordinary mirrors.

On the other side of the house, the reader of this theoretical

thesis will be interested to know that experiments on the same subject

have also been performed. Simultaneously with the author's research,

fellow student R. Grotbeck has built and tested a CO2 laser using roof

reflectors. His work, entitled An Experimental Investigation of the

Resonant Modes of a Roof-Top Laser (Ref 19), gives an account of his

findings and, as an independent thesis, is complementary to the

present work.

The author wishes to express gratitude to his thesis advisor,

H. Weichel, for the helpful suggestions and many hours of time given

during the course of this investigation.

Howard E. Evans II
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Abstract

Laser resonators using roof reflectors with 900 - m roof

angles ( a small and positive) are analyzed geometrically uhen

the ioof edges at opposite ends of the resonator are aligned

either parallel or perpendicular (crossed). Stability conditions,

involving reflectcr dimensions, are found which specify a maximum

axis length for the existenne of stable rays. In the parallel-

roof case, stable rays are shom to be ring-type, making any given

number of round-trips before spatially repeating. Stable rays

in the crossed-roof case are superpositions of two parallel-

roof ray patterns in orthogoral planes. For any pattern, the

reflector roof edges are shown to be geometrically excluded when

the axis length is greater than one-half the maximum length for

that pattern. It is then predicted that when the roof edges are

excluded, the resonant modes are pure Gaussian.
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ThE GEOMETRIC THEORY OF

ROOF REFLECTOR RESONATORS

I. Introduction

The objects studied in this thesis are laser resonators using roof

reflectors - instead of curved mirrors - for end reflectors. This

chapter first describes typical roof reflectors and gives some reasons

why they are thougit to be practical and useful devices in laser

resonators. The purpose of this thesis is then presented, and its

scope is narrowed to the specific approach taken here. Criteria to be

applied and simplifying assumptions are next listed; and finally, the

plan for development of the theory is given.

Roof Reflectors

Roof reflectors are simple optical devices for redirecting light.

In general, they are two plane, front-surface mixwors attached along

one edge called the "roof edge." A suitably shaped prism could also be

used as a roof reflector, if properly oriented, (The terms "roof-top

prism," "right-angle prism," and - incorrectly - "Porro prism" are

encountered in .the literature.) Figure I is a line drawing of a

typical roof reflectors surfaces ABFE and CDEF are mirrors joined

along roof edge EF, and Angle AED is called the "roof &ngle." In the



B

ROOOF

D

Fig. 1.. 'Typical Roof Reflector
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figure, ABCD is the front face, or aperture, and line ZV - here

perpendicular to the front face - is called the "reflector axis.'

The primary difference between ordinary mirrors and roof

reflectors is that light beams, oi. rays, reflect once from a mirror but

twice in a roof reflector. The two reflections - one at each of the

two surfaces in succession - are specular and retro-re:'lect the light

beams back toward their sources (if the roof angle is 900).

Desirability of Roof Reflectors

Roof reflectors have occasionally been used as end mirrors in

laser resonators. The primary reason that roof reflector resonators

have been built recently is because thsy are reported to be particular-

ly insensitive to misalignment, or tilt. Consequently, roof reflector

resonators are attractive for use in high-vibration environments (laser

range-finders on artillery pieces, for example) and under conditions

which could mechanically deform the reesonator (as a laser target

designator on a tactical aircraft).

In addition to the optical (or alignment) stability that roof

reflectors give to laser resonators, there are other reasons why they

are desirable,

(1) Cost. In their simplicity, roof reflectors should be cheaper

to make than spherical mirrors with large radii of curvature.

(2) No focusing. Since roof reflectors are made of plane

mirrors, there is no focusing. Thas, in the absence of other focusing

elements, electric field amplitudes will remain relatively small.

( 3



(3) Large mode volume. Roof reflectors are made of plane

mirrors, so the properties of a roof reflector resonator should be

similar to those of a plane mirror resonator. One of these properties

is a large mode volume - limited only by the smallest aperture.

•These features point to the roof reflector resonator as being

desirable for high energy lasers, where high field amplitudes in larg

volumes are prevented from focusing with negatively cur:ed mirrors.

Typically, high energy laser resonators are lossy, or unstable, but it

is not known whether roof reflector resonators have unstable

characteristics. Further (aside from mechanical stability having been

observed) there is no known theory which specifies the resonator

stability in terms of its physical dimensions, as for spherical mirror

resonatoru.

Purpose and Scope of this Thesis

The purpose of this thesis is to provide a simple theory of the

stability of the roof reflector resonator, in terms of its physical

dimensions. Since this is the first known attempt to develop this

theory, it is necessarily limited in scope. Only geometric optics is

used to predict when the resonator is stable or unstable. In certain

instances, however, it is possible to predict quantities which would

otherwise require a physical optics analysis - such as resonant modes

and cavity losses - and this has been done here.

The geometric theory presented here is limited in that only two

resonator configurations are considered, but it is extended to include

4



( a class of roof reflectors. The two special cases analyzed are (1) the

parallel-roof resonator, where the roof edges of the reflectors at

opposite ends of the resonator are coplanar, and (2) the crossed-roof

resonator, where the roof edges are perpendicular, or crossed. The

class of roof reflectors studied is that in which the roof angle iA

less than or equal to 900. This is due, in part, to the reality that

physical devices always have some manufacturing tolerances so the roof

angle is hereafter taken to be 900 - a, where a is called the

"variant angle" and is either small and positive or zero.

Criteria and Assumptions

In geometric optics, the criterion for stability of laser

resonators is that rays remain close to the axis and not diverge past

the edges of the end reflectors. This is the criterion that will be

used here to establish whether or not rays are stable in roof reflector

resonators. Whatever dimensions are then required of the resonator In

order for stable rays to exist - the distance between roof edges, the

roof reflector apertures, and the variant angles - are called the

"stability conditions."

The stability conditions for a laser resonator, in reality, depend

on many physical variables. Since a geometric theory provides only the

first approximation to the physical situation, two assumptions arv

listed below which simplify this analysis and eliminate many of the

unknownss

(1) The roof reflectors are assumed to be as shown in Fig. I

with rectangular apertures and perfectly reflecting, front-surface

( 5



( mirrors; but the roof edges are not necessarily assumed to be perfect,

since they are not in reality.

(2) The space between the roof reflectors is assumed to be empty

and contains no other optical elements or apertures.

How the Theory is Developed

Before applying the above assumptions to develop a geometric

theory, previously published literature on roof reflector resonators is

reviewed in Chapter II. Articles that have been found directly

involving the present topic are briefly summarized in two areass

experimental work and theoretical work. A short discussion emphasizes

the important results of the other authors which have influenced the

development of this theory.

Chapter III considers roof reflectors individually. First, the

class of reflectors considered here is shown, by geometrical

demonstrations, to preserve the mechanical stability of roof reflectors

with 900 roof angles. Second, the basic analytic tool used in

geometric optics - the ray transformation matrix - is derived for a

roof reflector. This is done in two dimensions, but is extenled to

three dimensions in later chapters.

Chapter IV combines two roof reflectors to form a laser resonator

and treats the first of the two special configurationss roofs

parallel. Rays are traced through this resonator and its equivalent

waveguide with the matrix transformation derived in Chapter III.

Stable rays axe shown to be possible in an infinity o• different

geometric patterns, but these patterns are shown to be of only two

( 6



basic types uhich depend on resonator dimerzions. The dimensions

necessary for the stable rays to exist are given as the stability

conditions. The resonant modes of the parallel-roof resonator are then

predicted, based on the geometric theory.

Crossed-roof resonators are next treated in Chapter V. At first,

both variant angles are taken to be zero: then one zero and one non-

zero; finally both non-zero. An infinity of patterns is again shown to

be possible, depending on the resonator dimensions, but they axe

related to those in Chapter IV. Again the resonator 04iensions are

given as the stability conditions. zad the resonant modes of the

crossed-roof resonator are predicted.

Finally , Chapter VI summarizec stability conditions from the

previous two chapters. Based on the resonant modes predicted by the

geometric theory, the major conclusion of this thesis is drawns roof

reflectors with roof angles less than 900 are more desirable in laser

resonators than right-angled roof reflectors. Recommendations for

areas of future study are then made with emphasis on problems relating

to the design of laser systems using roof reflector resonators.

7



(
II. The Literature of Roof Reflectors

The use of roof reflectors in laser resonators is not a new idea.

Gould, et al., remark in a footnote that "a laser cavity of a crossed

pair of 900 roof prisms was first described in an unpublished proposal

to ARPA [Advanced Research Projects Agency], December 1958." (Ref

180534) Since then, reports of the use of roof reflectors as static

elements (not spinning Q-switch prisms) in laser resonators have been

infrequent compared to the attention given spherical mirrors.

This chapter summarizes the relevant literature found during the

course of thesis research. First, experimental papers are grouped

together, and second, theoretical work is presented topically. The

important results from both experimental and theoretical papers that
(

influenced the development of this geometric theory are then discussed.

Experimental Papers

There has been a variety of experiments using roof reflectors.

Both parallel-roof and crossed-roof configurations have been studied.

Fabrv-rerot Interferometer. The first experiments with roof

reflector resonators appears to have been done by Gould, Jacobs,

Rabinowitz, and Shultz in 1962. (Ref 18) Their work involved a Fabry-

Perot interferometer in which 900 roof reflectors replaced the usual

plane mirrors. Figure 2 shows the basic experimental arrangement

these authors used to observe that the crossed-roof configuration

indeed has relaxed alignment tolerances. Here, roof edges R1 and R2

are spaced an axial distance, L, apart, and the axis of the

8
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y L

Fig. 2. Crossed-Roof Reflector Interferometer
(After Ref 18t533)

RUBY ROD Output
Coupling

I FPrism

900 output

Fig. 3. Total Internal Reflection Laser Resonator
(After Ref 311833)

( 9



Interferometer is a line perpendicular to both roof edges. Line R! is

parallel to R1 .

These experimenters observed Haidinger fringes with the same

angular spacing and free spectral range as those in a plane Fabry-Perot

with mirror spacing 2L. They noted that rotating the left roof

reflector around its roof edge - the P-direction in Fig. 2 - did not

change the fringe pattern. Also, rotation around R1 - the y-

direction - was seen to merely tilt the optic axis and consequently

reduce the aperture. These greatly improved freedoms in the alignment

of the crossed-roof interferometer thus led these authors to conclude

that there is always a single direction in which rays (dashed lines in

Fig. 2 ) remain undeviated - namely parallel to the optic axis.

Gould, et al., go on to predict that, if the crossed-roof

interferometer were used for a laser resonator, there would always be

at least one model and it would be the same as for a plane mirror

resonator. They further suggest that, because of the mechanical

alignment stability of rays parallel to the axis, the resonator would

operate in just a single mode. It is also noted in the paper that the

cavity of Fig. 2 has only two plane eigenpolarizations and that they

become interchanged by the crossed roofs.

Roof-tco Rub Rods. The total internal reflection principle has

been used with ruby lasers since 1962. In an experiment by Bergstein,

Kahn, and Shulman (Ref 3), the ends of a ruby rod were shaped like roof

reflectors, and outcoupling was accomplished by frustrated total

internal reflection through one of the angled ruby faces (see Fig. 3 ).

Similar experiments by Bertolotti, Muzii, and Sette (Ref 4) used roof

( 10



prisms in optical contact with the faces of a ruby rod, while

outcoupling was through the slightly flattened roof edge of one of the

prisms. These devices were observed to lase satisfactorily, with the

output polarizations being dependent on the alignment of the roof edges

with respect to the ruby crystal axes (investigated by Gibbs and

Whitcher, Ref 17).

In general, the configurations studied by all of the above

experimenters were parallel-roof, and more than one output was

observed. 'Is is shown in Fig. 3, which is the experimental

arrangement used by Bergstein, et al., who noted the phenomenon and

offered this explanations

"...0 other optical-maser resonator cavities use either metallic or
multi-layer dielectric coating of the end walls to normally
reflect the light beam. As a result a definite phase relationship
exists between the two contradirectionally traveling wave systems.
No such relationship is established by the boundry conditions
existing in the total reflection resonator. It would therefore
appear that this configuration can support two mutually
independent contradirectionally traveling resonant wave systems.
The only process which might couple these two wave systems is the
emission process." (Ref 331833)

Multiple Mode Operation. A roof prism was used as an end

reflector in a He-Ne laser system at 1.1,5 by DeLang and Bouwtuis in

1963 (Ref 14). Their experimental arrangement is shown in Fig. 4(a),

where A and B are prism surfaces where total internal reflection takes

place, and C is a flat multilayer interference mirror. The front face

of the prism is at Brewster's angle to the axis of the gas tube, and

its roof angle is slightly less than 900. Drawings (b) - (d) of Fig.

4 are equivalent to the resonator, and the roof angle between surfaces

A and B is 900 - a where a - 0.0020 radians - the index of refraction

• 11
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(a)

(b) (c)(d

BBB

A A

C C

Fig. 4. DeLang and Bouwhuis' Experiment
(After Ref 14t48, 49)

Outputs
900 Cc

RUBY ROD.-

"Cell O

Ic

Fig. 5. Soncini and Svelto's Experiment
(After Ref 39t262)
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of the prism having been taken into account. Only the relationship

between the reflecting surfaces is shown.

DeLang and Bouwh'liis observed their system to lase in the different

modes shown in Fig. 4(b) - (d). Significantly, the first and second of

these were seen to occur simultaneously. Also, the different modes

were generally seen to have the multiple outputs shown in the drawings,

and these beams were noted to form interference patterns on the surface

of mirror C. This implies that standing waves were present in the

resonator "built up from two coherent oppositely travelling waves,

which probably choose their phase relation 6 for minimum loss, e.g. in

surh a way that their interference pattern on the dielectric mirror has

a minimum integrated intensity." (Ref 14&49) These are similar to the

patterns obtained by Ledger (Ref 27) to confirm standing waves in a

laser resonator.

Travelling waves were also obtained, but only in the mode of Fig.

4(b). The experimenters found this possible by deliberately spoiling

the quality factor of the resonator in one direction with a wedge-

shaped glass plate in optical contact with one of the prism faces.

Single Mode 0peration. Roof prisms with roof angles smaller than

900 have also been used with solid state lasers, beginning in 1967.

Soncini and Svelto (Refs 39 and 40) and Cubeddu, Polloni, Sacchi, and

Svelto (Ref 11) have used pairs of 900 - a prisms, in a parallel-roof

configuration, to obtain outputs consisting of pure modes in pulsed

ruby lasers. The basic experimental arrangement used by these authors

is shown in Fig. 5.

13



In all experiments the output was found to be highly repeatable

from pulse to pulse. Soncini and Svelto state, for example, that "Once

a TEM00 mode is obtained, it 4" usually preserved from threshold to

:30% above threshold...." and that "...the beam divergence of our TEMo0

mode is almost diffraction limited, whereas a 935 mrad divergence has

been measured in the case of the plane-parallel resonator." (Ref 39#

262) Using a Fabry-Perot interferometer, "it was also checked that the

output beam was constituted of a single longitudinal mode." (Ref 401

422)

The high-purity modes were explained by these authors to be due to

two circumstancess (1) since the beam passes through the ruby rod

twice, the cavity averages internal distortions and crystalline

imperfections and (2) the spot size of the beam (half-width at I/e 2

intensity points) depends on thermal lensing in the ruby rod due to

pump light heating. (Ref 24,321, 338) The spot size, w, then

determines a critical resonator axis lengtht

L0  2_W (1)

where CL is the variant angle of the prlsms, Then "if the length EL]

of the cavity is greater than [LLc, the edges of the prisms are not

involved in laser action and oscillation takes place according to the

path Cof Fig. 5 ]." But "If the length of the cavity is smaller than

CLc , laser action extends over the prisms edges, no pure modes are

observed and the beam becomes similar to that observed with plane or

spherical mirrors." (Ref 39s262)

--- 14



Recent Experiments. Since 1972, Teppo has heed roof reflectors in

a compact NdYAG laser system intended for use as an airborne target

designator (Refs 42 and 43). In one experiment, a 900 roof prism was

tested in a resonator with a 70% reflecting filat mirror. Thus, in Fig.

2, the right roof reflect--- was replaced with the flat mi..ror, and

rotation of the left roof reflector around its roof edge showEd no

appreciable degradation in output energy through the flat mirror.

Rotation of the roof reflector in the y-direction of Fig. 2, however,

showed that it had alignment tolerances similar to a large-radius

curved mirror. Teppo's experimental data is shown in Fig. 6 together

with his test results of a 10 meter radius mirror for comparison.

Using the same arrangement, Teppo also measured the uniformity of

the output beam of the Nd:YAG laser when operating non-Q-switched at

10pps. His results are shown in Fig. 7, where typical burn patterns are

on the left and a scan trace on the right. (The scan was taken

perpendicular to the roof edge and was done with an SGD-100 photodiode,

with an 0.030 inch aperture, moved across the beam at 0.78 inch per

minute - 0.065 inch per division on the oscilliscope trace. The scan

photograph thus provides a time-averaged beam uniformity profile.) As

can be seen from Fig. 7, "The roof prism tested did not lase par-

ticularly well near the roof edge, and the bimodal lasing structure

normal to the roof edge is evident." (Ref 42z157) Teppo also states

as a qualitative observation that "Compared with a simple end mirror,

generally the roof-prism end reflector... increases the raw-beam

divergence and beam non-uniformity." (Ref 42t25)

15



1.0
S10-meter end reflector

.9
Sroof-prism end reflector

.8 misaligned about an axis
normal to the roof edge

-.7

p4 0

P4.

o.6

61

> .5

.4

0
0 0 20 350 40 50

M~isalignmnent (Aresec)

Fig. 6.Roof Reflector Misalignment Sensitivity
(From Ref 42s28)
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"' ' F•I• ?14 i

Fig. 7. Laser Output UsJng One 900 Roof
Reflector (From Ref 421162)
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The roof prism used by Teppo was not a perfect specimen, but was

reported to have had "several burn spots near the roof edge." (Ref 421

24) He states, however, that other experimenters obtained similar non-

uniformity results with contractor-supplied prisms. (Ref 42:24) In

general, the specifications on the prisms state that "Ihe Croof] edge

shall be a maximum of .002 inches wide without pits or fissures...*

(Ref 43033) Thus, the typical prism, with which the results of Fig. 7

were obtained - has a roof edge on the order of 50 wavelengths wide at

optical frequencies.

Theoretical P

Methods which have been used to analyze laser resonators include

(1) the geometric approach by matrix optics and (2) computer solutions

for resonant modes and eigenvalues. Accordingly, some work has been

done on roof reflector resonators in both areas, and is reviewed below.

A procedure for calculating the eigenstates of polarization has also

been given and is included under a separate heading.

Geometric Approach. Rather than roof reflectors, a paper by Kahn

(Ref 21) considers the related case of dihedral reflectors. Dihedral

reflectors, like roof reflectors, are made of two planar surfaces

Joined at an edge, but the angle is close to 1800 rather than 900.

The difference between the two types of reflectors is that rays are

reflected from only one surface of a dihedral reflector, while they are

reflected from both surfaces of a roof reflector.

Kahn shows that if a light ray in a resonator is characterized (in

two dimensions) by its distance from the axis, x, and its slope with
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respect to the forward direction, e, and ordered as a column vectors

X m[ (2)

then it is transformed by a dihedral reflector with the transformation

(Ref 21,866)s

where subscript r refers to the reflected ray, subscript i refers to the

incident ray, and matrix elements A - F are characteristics of the

dihedral reflector. If only paraxial. rays are considered, these matrix

elements are independent of ray parameters, and Eq. (3) is linear.

(Note that if E - F- 0, this is the form of the matrix transformations

for thin lenses and curved mirrors.)

Using Eq. (3), Kahn shows that stable rays in dihedral reflector

resonators are bounded by an envelope. This envelope is the most

significant result of Kahn's geometric solution, because "such

contours, which form the boundary between geometric-optically accessible

and inaccessible regions are indicative of the variation in the over-all

intensity distribution within the resonator." (Ref 21,867)

Another theoretical paper by Ronchi (Ref 34) uses the geometric

approach to find sets of circles that fit inside the parallel-roof

resonator. The circles are shown to be caustic surfaces for high-order

Bessel functions chosen in such a way as to match boundary conditions on

the surfaces of the roof reflectors. As in Kahn's work, the caustic

surfaces separate regions of high and low fields so that the
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resonant modes are exponentially low in the region of the edges of the

reflectors. Thus, Ronchi shows, diffraction at the edges can be

neglected.

Numerical Approach. The integral equations of laser resonator

theory (Ref 16) were computor-programmed for roof reflector resonators

by Pasqualetti and Ronchi in 1974 (Refs 31 and 32). The particular

geometry that they studied was the parallel-roof configuration with the

(equal) variant angles no larger than about five degrees. Since their

work was motivated by other research in microwave theory, the

dimensions used were typically small in terms of wavelengths (W)s

axis length L - 100k and half-aperture a - 10k. (Distance Z in

Fig. 1 is said to be the full aperture dimension.) Thus, the
2

Fresnel number, N - , of the resonator was on the order of 1.

Regardless of the resonator dimensions, Pasqualetti and Ronchi's

numerical approach was correct for the geometry considered, and the

field amplitudes and phases of the resonant modes were computed and

plotted. When a > 00, the resonant modes were generally found to be

narrow in field distribution, and they propagate through the resonator

on a path shown in Fig. 8. Of this, the authors says

"For symmetry reasons, the beam propagating in the indicated way
has to be accompanied by a beam propagating in the reverse way.
An even mode is formed by two beams with the same amplitude and
phase at the points of the resonator axis! for an odd mode, the
phase of the two beams differ by Tr at the points of the axis.
Thus, one and the same beam may form either an even or an odd mode
of the roof mirror resonator. In a first approximation, apart
from deformations due to diffraction, these beams should be the
modal beams of a LFabry-Perot] resonator..." (Ref 31o294)

As for diffraction, Pasqualetti and Ronchi conclude in their second

paper "By noting that in a quasi-corner mirror L C. u 00 1 resonator a
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Fig. 8. Pasqualetti and Ronchi's Result For a > 00
(From Ref 31:293)

(a) (b)

Ha~
L

Fig. 9. Four-mirror Ring Resonator and Its Limit
(After Ref 36:1051)
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.( beam interacts with a mirror twice per transit, we deduce that

diffraction deforms the field configurations in such a way as to

diminish the losses." (Ref 321654)

In certain instances then, Pasqualetti and Ronchl noted that their

theoretical resonator appeared to operate as a four-plane-airror

resonator rather than as a two-roof-mirror resonator. This case was

studied independently by Checcacci, Falciai. and Scheggi in 1974

(Refs 8 and 36). They considered the 900 roof reflector resonator as a

limiting case of a four-plane-mirror ring resonator; the problem that

these authors programmed is shown In Fig. 9, where 6 is a spacing that

was variable. The dimensions considered were again motivated by

microwave theory, but Fresnel numbers as large as 10 were used.

Figure 10 shows typical numerical results where the field

amplitude is plotted as a function of distance perpendicular to the

resonator axis. The half-aperture dimension, a, and its position is

indicated in exch plot, an& the spacing, 6, is also shown. It is

evident that a broad, centralized field distribution - when - 0 -

quickly separates and narrows as 6 increases. At a separation of

6 = 32k, the resonator is clearly operating as a ring, and the field

distribution on one side of the resonator does not disturb that on the

other side, as is evidenced by the lack of interference in Fig. 10(d),

compared to (b).

Polarization Calculation. A method for calculating the

eigenpolarizations in a roof reflector resonator has been given by

Bobroff (Ref 5). His procedure uses 2x2 matrices to calculate the
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Fig. 10. Numerical Solutions for Ring Resonator
(From Ref 36t1051)
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round-trip phase changes of electric field components initially

chosen parallel and perpendicular to one of the roof edges. A

computation of the eigenvalues of the round-trip phase-change matrix,

and its subsequent diagonalization, gives the eigenpolarizations of

the resonator.

For the two special cases of roofs parallel and crossed,

Bobroff's theory shows that the two eigenpolarizations are plane

polarizations oriented either parallel or perpendicular to the roof

edges, and the eigenvalues are unity. This can also be seen by

irspection, since only plane polarizations whose plane of vibration is

parallel or perpendicular to a roof edge are reflected from a roof

reflector with their plane of vibration unchanged. (Ref 6s41-51)

Discussion

All of the above papers have been considered in the development of

the present geometric theory. Primarily, the experimenters'

observations on the outputs of working laser systems have been most

influential.

Operation as a Ring. Geometrically speaking, the beam paths that

DeLang and Boumhuis (Fig. 4(b) ) and Soncini and Svelto (Fig. 5 ) have

observed in their lasers are the samn except that iii the former the

roof reflector is imaged by the plane mirror. These are clearly ring-

type beams since rays traveling in either direction close on themselves,

and this is the same behavior as the computer solutions of Pasqualetti

and Ronchi (Fig. 8 ).
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Even for the case of 900 roof reflectors, the burn pattern and

scan trace by Teppo (Fig. 7 ) suggest that the laser is operating as &

ring. This is further emphasized by the computer solutions of

Checcacci, et al., (Fig. 10(d) ) whiere a spacing between the roof

reflector surfaces of 32k gives ring-type operation. This spacing is

the same order of magnitude as the width of the roof edges on the prim

used by Teppo. So it is deduced that real roof reflector resonators

operate as ring resonators, and stable rays of this type are therefore

sought by this geometric theory. (A geometric theory for curved-mirror

ring resonators has been given by Clark, Ref 10, and by Rigrod,

Ref 33.)

Physical Modes. The modes observed by Teppo were evidently not of

high purity. In his experiment, as with the roof-top ruby rod

experiments and Checcacci's computer work, the roof edges are not

geometrically excluded. Only in the computer solutions are the roof

edges of the 900 roof reflectors perfect - the space being in effect a

perfect absorber. Real devices, therefore, probably suffer from

diffraction effects caused by their imperfect roof edges. (Checcacci

and Scheggi - Ref 9 - built and tested a microwave model to confirm

their numerical predictions. Roof edge diffraction was not observed,

but the wavelength, ) - 3 cm, was much larger than any imperfections

in the apparatus.)

In contrast, Soncini ard Svelto's modes are of high purity. In

their case, as with the patterns drawn for DeLang and Boumhuis'

resonator, the roof edges are apparently excluded. If this is indeed

the case, then Kahn's statement (see p. 19) applies and Ronchi's work
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can be extended to show that diffraction by the roof edge can be

neglected. This seems to be possible when roof angles less than 900

are considered; that is, therefore, the class of roof reflectors

studied here. (Hermite-Gaussians propagating linearly are more typical

at optical frequencies than Ronchi's cylindrical Bessel functions, but

both are exponentially low in the region of the roof edges and the

reflector edges.)

The question of counter-traveling waves also seems partly

satisfied by using 900 - a roof reflectors. When the two waves cross

one another, they are apparently coupled by the lasing medium, and

standing waves are formed. Standing waves were, in fact, observed to

be the usual case by DeLang and Bouwhuisl so it will be assumed that

the resonant modes in the resonators studied here are generally

standing waves. (It will later be shown that, in the crossed-roof

resonator, a single beam does not cross itself, but it is still

reasonable to expect standing waves.)

Geometric Tools. Since the roof reflectors considered here are

not necessarily right-angled, the mechanical stability noted by Gould,

et al., is no longer generally valid. It is shown below, however, that

rotation of an individual 900 - a roof reflector around its roof edge

does not affect a resonator. Thus, 900 - - roof reflector resonators

still have relaxed alignment tolerances and Gould's concept that there

will always be at least one mode still applies.

To determine whether a given resonator is otherwise stable, the

paper by Kahn has had the most influence on the present work. His

inhomogeneous ray transformation, Eq. (3). is the primary geometric
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tool that has been used here. With Eq. (3), rays ci . be traced through

a roof reflector resonator, and established as stable ring-type ays if

they close on themselves. The resonator dimensitns become the

determining factor as to whether this is possible and are the sought-

after stability conditions. The stability conditions found in this

manner are, not surfrisingly, similar to the critical length, Eq. (i),

computed by Soncini wA Svelto.

/
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III. Characteristics of Roof Reflectors

The most well known characteristic of 900 roof reflectors is that

the direction of a reflected ray remains unchanged as the reflector is

rotated around its roof edge (0-direction in Fig. 2 ). In this chapter,

it is first shown that this is true for the 900 - (t roof reflector; and

second, Eq. (3) is developed for tracing rays in roof reflector

resonators.

Rotational Invariance

To demonstrate that the direction of a reflected ray is not

altered When a 900 - C1 roof reflector is rotated around its roof

edge, a convenient way of visualizing the reflector as "unfolded" in

introduced here. Once this property is established, the physical

dimensions of a 900 - ( roof reflector are used to define quantities

which will be useful in later chapters.

Ray Crossing Angle. For roof reflectors with roof angle 9(00 -,

it is noted that a ray is no longer retro-reflected parallel to its

incident direction. Consider, for example, the roof reflector of

Fig. 11 where a ray crosses itself at P after two reflections at B1

and B2 . The ray crossing angle, Angle B PB2 , is found by the following

geometric considerations (Ref 7s178-179).

Let constructions FBI and FB2 be normals to their respective

surfaces. Then from quadrilateral BIFB2 V1

Angle B1 FB2 - 90(0 + (4)
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From triangle B1FB2 , it follows that:

((
2 " 900 ( - -1 (5)

Then, since t.e reflectlons are specular, the result from summing the

angles in triangle B PB2 in

Angle B1PB2 - 2, (6)

Also, since the incident ray makes an angle e with the axis of the

roof reflector, ZV, and the reflected ray makes an angle er, from

triangle CPC',

ei +e r - 2 (7)

where both ray angles axe measured with respect to the forward

direction of the ray.

C Unfolded Roof Reflector. A construction which will be useful

later is shown in Fig. 12. (Ref 45.713) In this drawing, line Z•W

is the axis of roof reflector A1 VA2 , while line NV is normal to the

axis. The image of the roof reflector in its own surface, AIV, is

A VA" with axis N'V. The second Image - in surface A"V - Is A"VA"

with axis Z"V and normal to this axis N"V. Each of the two reflections,

or "unfoldings," amounts to a rotation of the roof reflector through

900 - a around its roof edge, V. The second image thus faces 1800 - 2m

from the roof reflector's direction so that the image axis, Z"V, makes

an angle 2x with the real axis. Axis ZV and its image - and normal Ni

and its image, N"V - are seen to be symmetrically positioned with

respect to line N'V, which acts the same as a plane mirror except that
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Ve image (which has actually undergone two reflections) is inverted.

Line N'V is inclined to NV at an angle a and, in this case, in

coincident with the first image axis.

A ray, such as In Fig. 11, can be unfolded into a straight line.

Thus a ray from P, making an angle 6i with the real axis, passes

through its twice reflected image point, P', and makes an angle 8 withr

the image axis. (But P' is not the reflection of P in line NY unless

P lies on the axis, in . case FP-' is perpendicular to NrV.)

The distance P-' is equal to the distance PBI + BIB2 + B2  in Fig. 11

(Ref 35:1191-119), and the same angular relationships hold. The

latter may be seen from triangle CVC0 in Fig. 12. The sense of 0 r has

been inverted, however.

Rotation Around Roof Edge. If axis ZY- and direction 7-- (in Fig.

12 ) are thought of as fixed in space, and the roof reflector isV

rotated around its roof edge by an arbitrary angle 0, Fig. 13 results.

The first and second images - and the axes YV, Y'7, and Y"V as well -

are seen to be rotated an angle 0 with respect to the fixed direction.

Now, the first image of the fixed axis, Z'V, is tilted 2Z with respect

to its former direction, but ZVV remains stationary. This may be

demonstrated as followsi

Angle ZVA1  g2 -2 c

Angle Z'VA - Angle ZVA (9)

Angle ZIVA' 2 (900 - c) - Angle Z'VA1

9 (1o)2
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Angle Z"VA 2 - Angle Z*V
2 e Ie V (11)

Therefore, by summing Eqs. (8) through (11)t

Angle ZVZ" - 1800 - 2a (12)

which is independent of • and is the same as for a perfectly aligned

roof reflector.

This demonstration could be carried out for a line from V to any

arbitrary point. For the ray crossing point, P, in particular, the

image point. P', unchanged; so the distance PP' is a constant and the

ray holds an invariant relationship to axes ZV and Z"V. Therefore, the

direction of the reflected ray is unaltered and a 900 - a roof

reflector indeed has relaxed alignment tolerances as does a 900 roof

reflector. Now that this is established, all roof reflectors in

subsequent work will be considered perfectly aligned and the effects of

misalignment due to vibration or mechanical stress will be neglected.

Dimensions. It is apparent from Fig. 13 that all rays which

cross at a distance PV from the roof edge can be made to appear the

same by rotating the roof reflector until the axis, YV, lies through P

and the image axis, Y"V, lies through P'. In this position, let the

ray be known as the "standard ray" and it is illustrated in Fig. 14,

both folded and unfolded. Now let the dimension of the roof

reflector's surface, A1 V, be d0 and the distance B1V d. The ray

crossing distance, TV - D, is thena

I cos~sins

33



d 0

D0

/0

Fi N V4 h Vadn

(b) 
m~



If the standard ray strikes the roof reflector at A1 (that is, the

aperture limit, then substituting d0 for d in Eq. (13) defines the

maximum ray crossing distance, D0 . This is the greatest possiblc

distance for which a ray can reflect from a 900 - a roof reflector and

not diverge past the aperture.

The length of the ray's path from P back to the crossing point

will be important later and can easily be computed from Fig. 14(b).

This distance, PP' - 1, is called the "loop length" and is

I - 2D cos X (14)

For small values of the variant angle, a << 1, first order

approximations of Eqs. (13) and (14) axe

-2D (16)

Roof Reflector Ray Matrix

Because roof reflector surfaces are plane mirrors, rays could be

traced by considering a specular reflection at each surface. A point-

imaging procedure has been worked out which does this (Ref 7:l-7), but

it is more convenient to use matrix optics. This section develops the

ray matrix transformation for a roof reflector.

Coordinate Transformation. Let a ray propagating through an

optical system be described by the column vector of Eq. (2). Then,

upon passing through an element, the input ray, x1 , is transformed into

an output ray:
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( .~ (17)

where M is a 2x2 matrix characteristic of the element. For a roof

reflector, consider the plane of the transformation to be perpendicular

to the optical axis throue the roof edge. Then consider the input and

output rays to be extended from the actual points of reflection to

points xI and x2 , respectively, as in Fig. 15(a). Thus, the input

ray has coordinates (X1 . 01) in the transformation plane, and the

output ray has coordinates (x 2 , 02 ). The transformation between these

coordinates is
%1 Cos 01

X2 os(ei - 2) (18)

02 -0- + 2 (19)

Optical systems involving mirrors - such as resonators - are

frequently unfolded into a series of equivalent elements aligned on an

axis. This is done be reflecting the output rays of the mirrors throug

their transform planes. Performing this operation on a roof refleotor

results in Fig. 15(b), where the ray is obviously discontinuous.

Inverting the Image in Fig. 15(c) (that is -. -x ) emphasizes the

relationship between ray slopes and nearly aligns the position

coordinates. One more operation - rotating the inverted image through

2a in Fig. 15(d) - recovers the unfolded reflector picture.

The input and output rays have now become continuous, but the

optic axis is no longer straight (thus, the position coordinate, -X20

is measured along -VV). From the figure, a better choice for the

transforin plane would apparently be NIV, where the position coordinates
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coincide at x0 . If a is small and only paraxial rays ame considered,

x and -x 2 approach x0 , and the transformat:on becomes simplys

x2" - X (20)

02 ft - 0 1÷ 24 (19)

Homogeneous Matrix. This transformation cannot be put into the

form of Eq. (17) except in the special cases of a - 0 or 0 -CE

In the first cases

While in the seconds

(22)

Equation (21) has been given for 900 roof reflectors by Maitland

and Dunn (Ref 29M111), except that they define the sense of the slope

with respect to a fixed direction (not always the forward direction of

the ray). Equation (22) is seen to be the correct transformation for

the standard ray only. In either of these cases, the transformation,

!, is not particularly useful. (For another approach to the

homogeneous matrix transformation, see Appendix A,)

Inhomogeneous Matrix. Ray coordinate transformation Eqs. (19) and

(20) (for the small angle approximation) can be written in the linear

form of Eq. (3). The transformation is thus inhomogeneous (that is,

the additive constant is non-zero), and the ray matrix transfoniation
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for a roof reflector becomess

0~ 1 -

This is extremely simple, but is not the usual sort of matrix

transformation encountered in the analysis of laser resonators. But as

pointed out by Kahn (see p. 19), it is independent of the ray

parameters because of the paraxial approximations made.

Nonlinearity. Transformation Eq. (23) has been derived assuming

that the input ray is incident on the roof reflector above the axis, as

the ray labeled A in Fig. 16. Consider ray B in that figure, which is

incident with the same slope as A, but below the axis. Both rays cross

themselves at 2m, but the correct transformation for ray B is

x cos ( 4
""2 cos(0 1 + (2)

02 " 1 - 2 (25)

Evidently, then, the correct expression for the inhomogeneous

matrix transformation, for small angles must bes

[x2 - 1 [1 3 . [ (26)

where the "t" sign is a "nonlinearity" becaure it is a discrete

function (this was noted by Kahn for thin diamond-shaped prisms - Ref

21:867). Apparently, the choice of sign must be the same as that of

x1 . In unfolding ray B, the image axis would be angled downward by 2,
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and the transformation plane, N-V, tilted --. Otherwise, the unfolded

reflector is the same.

If ray A were held at the same incident slope, but translated

downwaxd in Fig. 16, its reflected direction would not change smoothly

as it moved across the roof edge. In theory, the ray could be moved as

close to the roof edge as desired - from either top or bottom - until

reflection exactly from the roof edge took place in some limiting

process. But the direction of this reflected ray is meaningless

because (1) geometric optics is invalid when distances approach a few

wavelengths and (2) real roof reflectors do not have perfect roof edges

anyway. The roof edge is to be geometrically avoided.

Equation (26) then becomes the most important idea in this

chapter, and will be used extensively in the following theory. The

unfolded roof reflector, also developed In this chapter, will be used

in an equivalent waveguide to decide whether the plus or minus sign is

to be used in any individual transformation.
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IV. Resonators With Roofs Parallel

'Me first resonator to be considered is with opposite roof edges

contained in a plane and parallel. This resonator may be represented by

a two-dimensional drawing as in Fig, 17. There are no restrictions on

the y-dimension of the reflectors, of course, but only rays which are

contained in the xz-plane can stay in the resonator.

Stable Ego

The standard geometric approach for analyzing laser resonators in

two-dimensions is to trace a ray through a round-trip using matrices.

Elgenvalues of the round-trip system matrix then determine whether

stable rays exist. This approach cannot be used with a roof reflector

(• resonator because the ray transformation matrix, Fq. (26), for a roof

reflector - and subsequently the round-trip system matrix - is

inhomogeneous (Ref 30t249). Also, there is a choice of signs -when

applying Eq. (26). This problem can be conveniently solved with the

equivalent waveguide developed below.

Equivalent Waveguide. Stable rays in laser resonators can also be

thought of as propagating through an equivalent lens waveguide, as in

Fig. 18(a). There is no equivalent "lens" for a roof reflector, but an

equivalent waveguide could be drawn using Fig. 15(b). This has been

done in Fig. 18(b), but the ray is discontinuous. As has been seen in

Chapter III, the ray can be straightened out if the roof reflector is

unfolded - Fig. 15(d) - however the axis no longer appe&as a.N a

straight line, but is bent up or down by 2m.
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An equivalent waveguide - using unfolded roof reflectors - is thus

drawn in Fig. 18(c). In this figure, the variant angles - cc and •2 -

are relatively large to emphasize the bends. The direction the axis

bends depends on the ray that is being traced, but the rule for

constructing the equivalent waveguide is simples the axis always bendcs

toward the ray.

An unconventional feature of this equivalent waveguide must be

pointed out. When a roof reflector is unfolded, the image is inverted

(see pp. 30-31). Thus, every other section of the waveguide in Fig.

18(c) is actually inverted. As a reminder, arrowhesda (A) are drawn

on each section of axis indicating which way is "up."

The equivalent waveguide just constructed is a valuable aid in

visualizing the way in which rays can be analytically traced with

( matrices. If a ray is incident on a roof reflector on the same side of

the axis as the arrowhead, then the "e" sign is to be chosen when

applying tranGformation Eq. (26), and conversely.

First Pattern. Stable rays (ring-type like those in Fig. 5 or

Fig. 8 ) in the equivalent waveguide developed here are those where the

axis oscillates periodically arotud the ray. In terme of analytically

tracing a ray, this is the equivalent of one round-trips two reflector

transformations and translation through two axis lengthis (2L).

In Fig. 18(c), the third section of wauegulde axis makes an angle

of 2(0.1 - a 2 ) with the axis of the first section. If an equivalent

waveguide were drawn with alter.nating up and down bends, this angle

would be repeated every other section. No ray can be contained in such

a waveguide unless 2(at - C 2 ) a 0. The two cases of CX1  a W2 a
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-" = - are illustrated in Fig. 19(a) and 19(b), respectively,

where only the axis and ray are drawn for simplicity. In Fig. 19(a),

the ray crosses the axis once between each bend - but at an angle

different by 2(a 1 - (Y) each time - and diverges. In Fig. 19(b),

however, the ray always crosses the axis at the same angle. By

inspection, o a ray making an angle C with the axis is stable, and

this ray is called the "first pattern" for later convenience.

To generate the system matrix for one round-trip, assume for the

moment that 9L i a2 and that the reference plane is chosen at mid-

axis (L/2). Then, starting with a ray (xO, e0), the sequence of matrix

operations is worked out here for illustration, and reference to Fig.

19(a), shows that "4" signs are chosen in the reflector transformations.

First, translate to R I

I [ M 2K- (27)

Second, transform through R I2 [ 0 X!:1 + °0
1 L

10 -1 00o 2

Third, translate to R2 1

4~5
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•0
Fourth, tra~nsform through R21

0 1 o0 .-2(mt 1 a2) (30)1

Finally, translate to the reference planes

[i 2L x0l -31.I + La1 (3k)

[o J~ 0 J 1~(t - Jx2
Ors

x5  xo +•2Leo - 3Ia1 + 2  (32)

a5 = 00 - 2((L1 -2 2 ) (33)

By now setting x5 - x0 and e, - 00 for the first pattern, Eqs. (33) and

(32), respectively, may b'. satisfied only fore

(I " a2 (34)

00 = -LI (35)
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Thus the stable ray found by inspection is confirmed analytically.

(The fact that x0 is unspecified indicates that the ray is not unique

but that a facily, or packet, of rays exists.)

Second Pattern. There are other stable ring-type rays which close

on themselves after more than one round-trip, so the equivalent

waveguide picture becomes more useful as the number of roof reflector

transfoinations increases. (In general, after p round-trips with two

transformations each, there are 22p possible sign sequences.) For two

round trips, the number of axis bends is four. The equivalent

waveguide is drawn in Fig. 20(a); the stable ray is shown as it

appears in the resonator in Fig. 20(b).

The system matrix may be worked out as above. Using the same mid-

axis reference plane, Fig. 20(a) indicates that the sequence of signs

( that must be used In applying Eq. (26) is +, -, -, +. After these four

transfon•iatlona and translation along the axis four times (4L), the

resulting ray is

[xJ [ 4L] x[;] [411(:, * ,21) (36)

Th1,e showt tfat e9 = 0 so that for rays of this, the second pattern,

it is thus required thato

eo M t I+ -2 (37)

to satisfy Eq. (36). Stable rays, therefore, ave ora. those hiich cross

the axis &t %in angle; but note, however, that the restriction that

a a 2 - in the case of the first pattern - is removed.
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Higher-order Patterns. In general, let p2 denote the pattern

number - which is the number of round-trips that a ray makes before

repeating the same path in the two-dimensional resonator - so that the

first pattern is henceforth designated p2 M 1. Not all of the

patterns are independent of one another, as will now be shown.

Consider a resonator with two roof reflectors of equal aperture

and having a 1 -2 "- E, but with the axis length, L, being variable.

Fig. 21(a) then shows a standard ray associated with the right-hand

reflector diverging past the edges of the left-hand reflector. As L is

decreased, a p2 - I pattern becomes stable in Fig. 21(b). This

pattern disappears as L is further shortened (Fig. 21(c) and (d)),

until a P2 - 3 pattern appears in Fig. 21(e). Evidently the axis

could ;e further shortened until higher-order odd-numbered patterns

appear. This same demonstration could be carried out starting with

p2 - 2, and all even-numbered patterns would be seen to be similarly

related by the variation of axis length.

Drawings of high-order patterns become complex, but the equivalent

waveguide picture gives an easy way to visualize the patterns.

Patterns P2 - 3 through P2 - 6 are unfolded in Fig. 22 where the

sign to be applied to each roof reflector transformation is also shown.

Extending both odd and even patterns to the general case, the sign

sequences are (there are 2p 2 signs in each sequence),

(1) for P2 odds

+ - +* " + 11+ - + " +1 (38)

p2 signs p2 signs

(



(a)

(C)

6C

Fig. 21. Relation of First and Third Patterns
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(a)a,-a a

(b)

%4 - 4. 2 -c I + +2

12=2

(d)
p2- 6

Fig. 22. Equivalent Wav'eguides for Higher-Order Patterns
(If a ray Is Incident on a roof reflector on this
samne side of the axis as the arrowhead, then the
"+$# sign is to be chosen when applying Sq. (26),

( and conversely.)
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(2) for P2 event

+ " + ".' - + - too + (39)
P2 signs P2 a15Ds

Applying these sign rules to tracing a ray through p2 round-trips

(starting and ending at mid-axis), the general form of the system

matrices are

(1) for p2 odds

I 4~1 P2 I FI 2p2L1[z01+ p2lCP2(at14Ct2) + 2C1M) 4DLo o 4.L - 2(1 -0) J(40)

(2) for P2 event[x4pej1  
- 2P21 XOl + _P22 I + aX2)1 (41)

SIt is seen that if a1 - L, (which is Indeed required for ring-type

rays to exist when P2 is odd), then Eqs. (40) and (41) become

identical. In either case, however, the initial angle which the stable

rays make with the axis is

P2
60 P2 (aX + a 2 ) (42)

This angle is indicated in Fig. 22.

One more feature of the patterns illustrated in Fig. 22 is their

increasing distance from the axis with pattern number. But for small

variant angles, the distance a ray travels before closing, P P2 is

approximately the same as the axis length for the same number of

round-tripse
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PP2 M 2P 2 L (43)

Since the ray transfer matrices used to derive Eqs. (40) and (41) are

themselves only good to first order, it is not surprizing that this

length appears as the upper right element of the 2x2 matrix in these

equations.

Importance of the patterns. The importance of the different stable

ray patterns is that they are essentially separated in space, aside

from a finite number of crossing points. The patterns that can exist

depend on axis length and roof reflector aperture as is evident from

Fig. (21). This dependence is discussed below under stability

conditions, but for now let it be said that different patterns could

operate simultaneously. Patterns P2 1 1, 2, and 3 were in fact

observed in the resonator of DeLang and Bouwhuis. They remark that the

7" different patterns were observed to be operating simultaneously (see

P. 13 and Fig. 4

When o, - -2 - 0 for a 900 roof reflector, both Eqs. (40) and (41)

become homogeneous and are automatically satisfied by a ring-type ray

of any pattern number. Thus there is always a stable ray in this case,

and Eq. (42) indicates that it is parallel to the axis.

Stability Conditions

Now that stable ring-type rays have been found, the parallel-roof

resonator dimensions that allow them to exist - the stability

conditions - can be determined.

Variant Angle Conditions. From the solutions of the general ray

transfer Eqs. (40) and (41), restrictions which must be imposed on the

( .53



roof reflector variant angles - for stable rays to exist - are

(1) for p2 odds

al '-a (314)

(2) for p)2 event

(No restriction on variant angles) (44)

Thus it is easy to build a Practical device which will not operata in

any odd pattern, simply by choosing a• 1 a2.

Axis L and Aperture Conditions. The dependence of roof

reflector aperture and resonator axis length - held over from the

discussion of Fig. 21. - will now be quantified. In Fig. 23, let the

two roof reflectors be identical with surface dimension d., The upper

drawing shows the maximum axis length that just allows the P2 - I

stable rays to fit in the resonator - using the full apertures of the

ieflectors. The lower drawing shows the same condition for the p2 = 3

pattern.

The odd patterns have previously been shown to be related, and that

is again evident here. In Fig. 23(b), two standard rays (filling the

apertures) for the right and left reflectors - virtually crossing at

Q' and Q" - are each reflected by the opposite reflector and join at Q.

The total path length for three round-trips in the P2 - 3 pattern is

thus the same as the path length for one round-trip in the P2 " 1

pattern:

P - 2 (46)

where I is the standard ray loop length defined by Eq. (16). The

path length is, in fact, a constant for all old-numbered patterns by
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(b ) . -, , . , -.0 , 0

Fig. 23. Dependence of Odd Patten on Axis Length and Aperture
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the demonstration of Fig. 21. Using the relations of Chapter III -

and considering the maximum path length when filling the apertures for

threshold conditions as in Fig. 23 - this becomes, to first orders

. 2 r d0  (46)

Total path length for even patterns has a similar relationship,

shown in Fig. 24. Here Cdj a C2 with CLI < a2" Fig. 24 (a) shows

an unsuccessful attempt to construct a p2 - 2 pattern where a ray from

the left reflector, with virtual crossing at S', diverges from the

resonator after reflection from the right reflector. This is because

D.9 the crossing distance for the right reflector, is less than that

for the left, DL. Fig. 24(b) shows a P2 - 2 pattern successfully

constructed when the ray crossing points, T' and T", for the right

reflector have been reflected by the left reflector to join at T, Thus

the total path length is again twice the loop length from T, and - since

all even patterns are related - this is true in general. For small

angles, the ray crossing distance in Fig. 24(b) is approximately Do,

so (to first order) for even patterns:

P - 4Do

2qdd0  (46)

which Is identical to the expression for odd-numbered patterns, hbt

the larger of a1 and cL2 must be used.
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Fig. 24. Dependence of Even Patterni on Axis Length and Aperture
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Total path length has also been given in terms of axis length for

odd and even patterns by Eq. (43), correct also to first order. If

L(P) is the maximum axis length that will permit stable rays in pattern

P., then it is seen that the conditions for stability are

(1) for P2 odd
2p D!O 42 do

L L 0 -2 _ . -p (47)

(2) for p2 event 2D
L -< L0) D •_o

o P2  p2e

where the larger variant angle must be used.

Significance. The significance of the above result is that if L

is greater than L0P, then stable rays of pattern number P2 and hi,.gher

do not exist. For example, if L - 1.1 Do, which is greater than

L(2)" - Do. then only stable rays of the first pattern will exist.

Thus, by appropriately choosing L, it is possible to select only low-

order patterns. As a further example, if L - 0.7 D0 , then only P2 " i

and P2 - 2 could operate, but if a1 1 a2' then p2 - I is excluded.

Pattern Area. If L is less than L0), then there is no unique

stable ray, but an entire "packet." For example, the dependence of the

ray packet, for p2 = 1, on L is shown in Fig. 25. From the figure, the

following facts can be generalized which are valid for both odd and

even pattern ray packetes

(1) For L(P) > L 0/ the ray packets are limited by the

apertures of the roof reflectors and the roof e are geometrically

excluded.
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(a)

L--D

Fig. 25, Dependence of p2 - 1 Ray Packet on L
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(2) For L P 0O/2( the area covered by the ray packet is a maximum,

and the pattern(a proaches the roof edges.

(3) For L < "0 /2 the ray packets are no longer aperture limited, but

do diffract from the roof edges.

For small angles, the maximum area covered by the ray packets is

given by the approximate expressions,

(1) for P2 odd, 2
Amax 22 (4)

CL P2

(2) for p2 evens

A. 22 ( 2 a~ ("9)
P2

Fig. (26) Js a plot of geometric pattern area as a function of axis

lengi-h. The peaO values have been computed from Eqs. (48) and (49)

using d0 - I cm and a - 0.01 rad (which gives D0 = 71.1 cM).

Resonant Modes

The stable geometric ray "patterns" just developed are not to be

confused with resonant "modes." Rhesonant modes are the electromagnetlc

fields in a resorAtor which, at a discrite frequency, spatially

reproduce themselv•s In amplitude and phase &- they reflect back and

forth. The patterns provide a way of predicting the physical

distribution of the fields in the resonator. This follows from the

statement in Kahn's paper, quoted on p. 19. Thus, for example, in

Fig. 25(b) the area of the resonator covered by the ray packet could

be expected to have lezge field a.plitudcs while the exclnded areas

have small field anplitudes (or none).
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Gaussian Modes. Particular fielf distrilutions which are known to

be self-reproducing in laser ressoinatori (with rectangular reflectors)

are Hermite-Gaussian modes. Therefore, It is reasonable to assume that

the resonant modes of zoof reflector resonators are Hermite-Gaussian.,

However. these modes a& predicted to exist only in cases where the

resonator is designed to orerate in a particular pattern not

approaching the roof edges. Otherwise, diffraction by the roof edges

becomes important and the resonant rcdes a.•r no lorger pure Gaussians.

Steier (Ref 41) has shown that a Gaussian beam can be described by

an equivalent packet of rays. According ti hii. work: "the position of

the beam center, the beam spot size, and the phase front curvature can

be found for a Gaussian beam passing through any sequence of perfect,

large-aperture lenses or flat dielectric Interfaices." (Ref 4 1%1229)

"Although in the present case, "perfect, large-aperture lenses or flat

dielectric interfaces" are not involved, Steier shows that If ýcays can

be traced through an optical system having an inhomogeneous system

matrix like Eqs. (40) and (41), then the quoted properties of a

Gaussian beam will be carried by the equivalent ray packet (Ref 4.i230).

The fact that Steier's theory necessitates large apei.tures

remains, however. If the ray packet patterns in a roof reflector

resonator are to be e'.,Aivalents of Gaussian beams, they are obviously

aperture-limited. A quantitative relationship between the aberturing

effect and the dimension (spot aie) of the ray packet that shoult be

chosen as a Gaussian beam equivalent is beyond the scope of thlo, st•iyi

but the following qualitative argument shows that, indeed, a Gawasian

beam can propagate in roof reflector resonators.
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Fox and Li (Refs 16 and 28) have shown that plane mirrors in laser

resonators can be treated as apertures in equivalent waveguides. Thus,

self-reproducing modes can be found which propagate through a waveguide

of equally spaced apertures. Now for roof reflectors, the reflecting

surfaces are plane mirrors, and Fig. 27(a), for example, is Fig. 19(b)

redrawn with these plane mirrors in place. The effect of aperturing on

the ray packet is evident in this figure, where, for small angles, the

heist of the ray packet is

h - - a L (50)
2

while the aperture of the mirror surfaces normal to the direction of

propagation is

b 2 (51)

SSince Ithe reflecting surfaces are stigmatic (Ref 20:94) they could

be replaced at once by apertures normal to the direction of propagation,

but it must be required that h < b to geometrically exclude the roof

edge,. I this condition is satisfied, Fig. 27(b) follows - showing

apertures replacing the roof reflectors. Unlike the waveguide

1cprqsentation of a Fabry-Perot resonator, the spacing between

apertures is not uniform, nor are the apertures aligned. The spacings

in Fig. 27(b) are

"L L - J2 do (52)

L2  4 W - 0 (dW)

Figure 27(b) also shows a sketch of t. wavefront which, after four

apertures, is a self-reproducing Gaussian - even though thje apertures
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are offset. This latter does not prevent the predicted modes from

being Gaussian because, if the spot size (full width at the I/e

amplitude points) is less than h, the amplitude in the offset regions

is negligible. Thus, the paper by Ronchi is applicable in this regard

(see pp. 19-20).

From Chapter II, there is evidence that the Gaussian modes

predicted here are corrects the output from ruby by Soncini. and Svelto

was reported to be pure Gaussian. (Their critical resonator axis

length, Eq. (1), appears to be similar to Eq. (47) developed here,

with p2 - 1. From their discussion, however, it is clear that they

mean Lc 2 L but their description of axis length longer or shorterc /2'

than Lc is backwards compared to this theory. Here, L < Lc indicates

that it is roof edge diffraction that spoils the output beam, whereas

( Soncini and Svelto thought L < L meant the pattern was spilling past• . c

the apertures. See p. i4.)

Axia Mode Frequency Interval. Figure 27(a) points out another

important feature of the resonator patterns. Since every stable ray

crosses the axis at exactly the same angle, every ray of a particular

pattern has the same length for a closed path. To first order, this

distance is P P2 2p2 L, from Eq. (43).

The frequency interval between resonant axial, or longitudinal,

modes can then be computed as follows. Let a ray packet be the

equivalent of a Gaussian mode (according to Steier) with resonant

frequencys

fq
q
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where c is the velocity of light and I is the wavelength of the q-
q

axial mode. Then the requirement that the mode be self-reproducing

(standing waves) establishes the conditions

2q.r - 2- +r (55)
q

or

2q~r -Z 2p2L f+(56)C q

where 0 is a phase shift due to reflection from the surfaces of the

roof reflectors. The same requirement on the next higher allowed

frequency is
2P2 L

2(q + i),T - 2,n" ý_ fq~ + 0 (57)
2(q i)I

Subtracting Eq. (56) from (57) gives the axial mode frequency interval,

which is an expected result,

aI .q _.S _ (5 8 )q 2P2L

Transverse Mode Frequency Interval. Since an infinite set of

Hermite-Gaussian modes is mathematically possible for every pattern,

the resonant frequency, fqmn (for rectangular reflectors) depends on

the orders, m and n, of the Hermite polynomials. This is given by

(Ref 18190)3

2v 2!P - (m + n + )cos-1 A + D (59)2q TT"Z W*•fqmin-( n1)o 2

where A and D are elements of the homogeneous round-trip ray matrLxs

E:] L ] ::1 (60)
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This is from the theory of Arnaud where, it is pointed out, stable rays

which close on themselves satisfy Eq. (60) only if:

A - - and B - C - o (61)

In the present caze, the closed path patterns are known to be solutions

of Eqs. (40) and (41); and consequently, they also satisfy the

homogeneous Eq. (60) with the restrictions of Eq. (61). Therefore,

A + D - 2 and cos-1 A + D . 0 in Eq. (59), and for any change in a2

or n, the transverse mode frequency interval is given byi

-,on . 0 (62)

Losses in the Unstable Region. All laser resonators suffer losses

as energy is diffracted past the apertures of the reflectors, but this

( geometric theory is not capable of predicting them. (A geometric

theory of diffraction has been given by Keller, Ref 23, but is not used

here.) However, a simple geometric construction has been devised for

estimating losses in the P2 - 1 pattern when the resonator is unstable,

that is X Xi • .

An equivalent waveguide for the p2 -1 pattern and a, 7 (2 is

shown in Fig. 19(a) - with succeeding alternate sections rotated an

additional angle 2(( 1 - (X2) with respect to the first section. If this

waveguide is drawn through many sections, it would eventually curve

through an entire circle of radius approximately given by:

r -a L (63)

(This is the radius of the cylindrical Bessel functions given by

Ronchl.) A ray cannot remain inside this waveguide, but the maximum
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distance a ray can travel can be estimated by calculating the chord

length in Fig. (28), 1/2 (64)

In terms of the number of (one-way) trips or reflections that the vaV

makes in the resonator, this is

S- - _ (65)

If a packet of rays is then considered to be launched through the

waveguide, all rays will be lost after M reflections, so the geometric

loss, 5 g, can be approximated bys

6 ' X --X / (66)

This expression Is in qualitative agreement with what would be expected
(

for the p2 - 1 pattern in an actual device (larger do, less loss).

Eigenpolarizations. As has been noted in Chapter I1, only those

plane polarizations oriented parallel or perpendicular to the roof edge

of a roof reflector are reflected with their planes of vibration

unchanged. Strictly speaking, the theory of Bobroff (Ref 5), which

shows that thes,. are the self-reproducing polarizations (elgen-

polarizations) in a 900 roof reflector rest,. tor (roofs either parallel

or crossed), assumes that polarized wavefronts propagate parallel to the

axis in the resonator. The direction of propagation in the 900 - a

parallel-roof resonator is not necessarily parallel to the axis, but

the plane of incidence (xz-plane in Fig. 17 ) is nevertheless

perpendicular to the roof edges. This is sufficient to show that these
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Fig. 28. Estimate of Maximum Ray Length
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two plane polarizations are still the eigenpolarizations of this

resonator.

In a laser system using a parallel-roof resonator, the eigen-

polarization that would be dominant depends on two factors. Firet is

the presence of other surfaces, such as Brewster windows on a gas tube

or the Q-switch cell shown in Fig. 5. Second is the loss for each

polarization at the four roof reflector surfaces. For metal front-

surfaced reflectors, for exwaple, these losses could be computed from

the Fresnel formulas given by Born and Wolf (Ref 6t628-629).
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V. Resonators With Roofs Crossed

The resonator considered in this chapter is similar to the one

studied by Gould, et al., shown in Fig. 2. Here, the right-hand

reflector, RI, has variant angle aI and roof edge horizontal (parallel

to the y-axis), and the left-hand reflector, R2 , has variant angle z2

and roof edge vertical (parallel to the x-axis). As in Chopter IV,

the variant angles are considered to be smal1, so the apertures of the

two reflectors are considered equal and (approximately) square. The

resonator axis is of length L so that when the roof reflectors are

perfectly aligned, the axis joins the midpointe, of the roof edges.

The crossed-roof resonator can be considered as a three-dimensional

superposition of two two-dimensional resonators. This is shown in

K Fig. 29 where a vertical cross-section of the resonator - called the

"elevation" - is shown to contain the profile of R and the roof edge

of R2. A horizontal cross-section - called the "plan" - is shown to2
contain the profile of R2 and the roof edge of RI. This decomposition

suggests that stable rays in the crossed-roof resonator can be found

from superpositions of the patterns of Chapter IV. This is indeed the

case, as will be shown after some preliminary work.

Three-Dimensional Ray Tracing

Before considering the general case of both variant angles non-zero

in a crossed-roof resonator, the basic geometric tool for ray tracing

will be worked out and applied to two simpler examples.
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Fig. 29. Three-Dimensional Roof Reflector Resonator as a
Superposition of Twc-Dimensional Resonators

71



4 x4 Matrix Transformations. In three-dimensions, as in two, rays

can be described analytically with column vectors. This may be done by

projecting a ray into two orthogonal planes; then two coordinates -

position and slope - are required in each plane, as in Fig. 30. Thust

X

e
X (67)

y

IP

where the x- and y-displacements axe independent of one another, as axe

the angles d and T. As in two-dimensions, the forward direction of the

ray determines the sense of the angles e and T. (Ref 22:50Z-504)

The propagation of three-dimensional rays is similar to that of

two-dimensional rays. Since the two projections are independent, the

familiar tz.anslation matrix of first-order optics can be used when

suitably arranged in a partitioned 4x4 form. For example, to translate

a ray through a distance L, the matrix equation is

x:! 1 L 0 0 x0

, (68)

Y oL 0 1 L Yo

where the zeros in the upper-right and lower-left quadrants clearly

indicate that the x- and y-directions are uncoupled.

The 4x4 ray transformation matrix for a roof reflector is also a
4

partitioned form of 2x2 matrices and - in the general case of non-zero

(
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Fig. 30. Three-Dimensional Ray Coordinates
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Fig. 31. Image Inversion by a Roof Reflector
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variant angles - follows from the inhomogeneous transformation of

Chapter III. To develop this three-dimensional transformation, first

consider reflection by a plane mirror as in Fig. 31(a). Since an image

is neither inverted nor reversed, the transformation for a plane mirror

is an identity matrix:

"x 1 0 0 0 Xo

0 0 1 0 0 00 (9S- (69)
YJ0 0 i 0 Y

,0 0o 1 TO

For a 900 roof reflector, however, the image is inverted while left-and-

right remain the same as in Fig. 31(b). The transformation for this

roof reflector is then:

"x -1 0 0 0 XO

81 - 0 0 0 (70)
yl 0 0 1 0 YO

1 10 0 0 1 TO

Thus, considering cnly roof reflectors whose roof edges are in the x-

or y-directions, the minus signs (which signify inversion) go with the

ray projection in the plane perpendicular to the roof edge.

Extending the transformation Eq. (70) to the case of non-zero

variant angles, the ray transformation is as given by Eq. (26) in the

projection perpendicular to the roof edge. Using Fig. 29 as an

example, the transformation for a ray incident on R is given byt
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x i 0 0 0 xO 00--1 0 0 o 0o
S 0-1 , (71)

yl 0 0 1 0 YO 0

0PI 0 0 1 0 o

where the "+" sign is to be taken when the ray is incident on the upper

surface of R1 , and conversely. For R2 , the trarnsformation is

X1 1 0 0 0 x ±

__1 _ _ 0 0 o 0 0 (72)

Yi 0 0 -1 0 Yo 0

U,0 0 0 -1 -_P 2A 2 -

where now the "+" sign goes .Ath a ray incident on the front surface,

and conversely.

RIgbt-angled Crossed-Roof Resonator. As a simple example of

three-dimensional ray tracing, the ray shown in Fig. 2 is particularly

easy to follow. Here, aI M L2 = 0 - so Eqs. (71) and (72) are both

homogeneous - and the ray makes two round-trips before closing on

itself. To trace this ray, consider a starting point in a plane at

mid-axis. The ray then translates a total of four times the length of

t:ýe axis and four transformations before returning to the reference

polut. Following this ray around, it is not surprizing to find that

'the syxtem matrix is

x 9 14L Q 0 x0

09 0 1 0 0 (0
Y9 0 0 1 4L YC
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Equation (73) is just the result expected from tracing a ray
(°

through one round-trip in a plane mirror resonator of length aL. Since

the stable ray solutions are parallel to the resonator axis (0 0- TO

0), they are not restricted from approaching the roof edges, and the

resonant modes should therefore be expected to be the same as for a

Fabry-Perot resonator except for diffraction by the imperfect roof

edges. (It has been suggested by Weichel, Ref 44, that computer

solutions for the modes of a 900 crossed-roof resonator could be done

by replacing the roof reflectors with alertaures and approximating the

roof edges with thin wires across the apertures.)

One Variant Angle Non-zero. The second example to be considered

is for one variant angle non-zero. With aI 11 0 and a2 0 O, the

resonator is similar to one roof reflector, R1 in Fig. 2, facing a

( plane mirror, except that left-and-right 'become interchanged by R2 . To

trace a ray through two round-trips, the ordar of signs to be used when

applying transformation Eq. (71) at RI is the same as for a p2 " 1

pattern from Chapter IV. The result is

x 9 1 4L 0 0" x0 -4IL;

e9 0 1 0 0 (74)

Y9 0 0 1 JL YO 0

and, for closed path rays, the solutions are O0 M (1 and T- 0.

A solution ray is illustrated in Fig. 32 where the actual

crossing point, K, In imaged at K' by the front surf'ace of R2 . The

image point, K', Is also shown to be projected onto the roof edge in
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the elevation, which is seen to be (half of) a p2  1 pattern. In the
(.

plan projection, the ray of Fig. 32 is seen to be a patteL.z of the 900

parallel-roof resonator, and is not restricted, geometrically, from

approaching the roof edge of R 2 .

Although Fig. 32 shows a P2 - I pattern in elevation, it should

be clear that other patterns become possible as the resonator axis length

decreases, as in Chapter IV. All the results of Chapter IV, in fact,

apply if the pattern number is defined.

3 [# of round-trips! (5)
"P3 ' 2 ()

The general ray-trace matrix through an even number of round-trips then

becomess

+ I 4pL 0 0 x 0  31

a 08p +1 0 1 0 0 + (76)3- + (76)
yap3 ÷1  0 0 1 4p3L YO 0

%p3+10 0 0 1 0PO 0

Closed pa"h rays of a particular pattern exist when the axis length is

lese tha~n
L o(1) . o07
L0

where D is calculated for the right-hand reflector. The stable rays

are characterizcd by,

eo - •• • % •
and he il te wu CPO - 0 (78)

and they fill the maximum volume in the resonator whefli
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2 2P 3

The optical path length is

PpP3 p3)

The importance of these patterns is not in their existance in a

physical device, but as a logical step in developing the more general

theory that follows. It Is seen that crossed-roof resonato.-s with only

one non-zero variant angle are probably not desirable because the roof

edge of the 9O0 reflector is geometrically accessible.

The General Case

The most geaeral case of crossed-roof resonators can now be

considereds bo-th va:xant angles non-zero. As in the second example

just cornidered, the patterns of the three-dimensional resonator are(
superpositions of the patterns in Chapter IV.

When the two-dimensional resonator was studied in Chapter IV, the

sequences of sis that 'ere developed, Eq. (38) and Eq. (39), for

applying Eq. (26) in tracing a ray through p2 rourd-trips all began

with "÷". The sequences could equally well have begun with "-" and

have followed the same alterna'Ang scheme; but all these sequences axe

identical to the former - they just trace a ray through the resonator

in reverse. While the individual elevation and plan projections

considered in this chapter are, indeed, identical whether traced

forward or backwardp, it will now become important which direction the

tracing proceeds as the two are combined ir the three-dimensional

resonator.
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First Pattern. The first demonstration that the order of signs is

important comes in tracing what should be expected to be the p3 I I

pattern - two round-trips in a crossed-roof resonator with 7E J 0

and ,2 7 0. Again starting at mid-axis and first translating to the

right, the sequence in which the roof reflectors is encountered is

right / left / right / left (81)

Since the right and left reflectors determine the patterns that are

projected into the elevation and plan, respectively, two-dimensional

P2 " 1 patterns are expected in these two planes, with sign sequences

either 1, + or -, - for either reflector. Substituting these

independent sequences into the above transformation order, there are

four possibilities t

C right(- ( + +•7 '7 ' + +
._. .[-.. left

(2) + +-/*I_ 
(82)

(3) -I+I- I÷

(4)

Not all of these eign eequences lead to distinct stable ray

solutions, however. The same comment an above about tracing a ray

forward or backward applies, and the first and fourth sequences

describe the same ray, as do the second and third.

Applying the first sequence of signs to trace a ray through two

round-trips, the resultant system matrix is
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X9 1 4L 0 0 o -41ai I

1 9 0 1 0 0 00 0" v (83)

Ya 0 0 0 1 TO 0" 2

which will have stable ray solutions characterized by:

0o " al a M o - ,2 (84)

Applying the second sequence of signs, the resultant system matrix is

e 0 1 00 0 0I
9 + (85)
Y9 0 0 1. 4L. YO 4a

UP9 0 0 0 1 0

',"

"which will have stable ray solutions chax-acterized by:

00 a I a po - -a2 (86)

The two rays characterized by Eqs. (84) and (86) are drawn in

Figs. 33 and 34, respectively, where the individual reflections axe

numbered as an aid to tracing the rays. It is easy to see that

following the rays in reverse leads to the sequences of signs that were

claimed to be identical to those taken to develop Eqs. (83) and (85).

More important, however, is that the two stable rays are independent

and do not coincide within the resonator, except at a finite number of

crossing points. (Assuming the losses are equal, It is assumed that
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the rays are sufficiently coulpled by the lasing medium at the crossing

points to form standing waves. See p. 26.)

Central Rays and First Pattern Volume. The rays drawn in Figs.

33 and 34 are not the only possible stable rays of the first pattern.

As in Chapter IV, the maximum axis length (stability condition) for

this pattern is

m - D0 (87)

where D0 is computed for the reflector having the larger variant angle.

When the axis length is less than this value, a packet of rayt, in t~th

projections can be combined in the three-dimensional resonator to form

a geometric tube with rectangular cross-section. This has been done In

Figs. 35 and 36 where the geometrically accessible areas on the roof

reflector surfaces are rectangular. The dimensions of the tube cross-

sections are given by the ray packet heights in the two projections,

h and h2 , which may be computed from Eq. (50).

The tubes of rays in Figs. 35 and 36 have interesting

properties. A ray which defines one corner of the tube traces through

two round-trips before closing on itself. Thus, starting at A in

Fig. 35, after one round-trip the ray is at A' on the opposite corner

of the tube cross-section; and after two round-trips it is back to A.

This is true for any ray in the interior of the tube (except for the

central ray which is discussed below). This feature of the ray tubes

is reminiscent of the Moebius strip which is a two-dimensional figure

but has only one surface and one edge. Here, the ray tube similarly
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makes a half-twist in joining on itself, but is a three-dimensional

figure with a single two-dimensional surface.

In either Fig. 35 or Fig. 36, it is seen that there is a central

ray in both the plan and elevation that makes only one round-trip

before closing on itself. (These are shown as dashed lines in the

figures and still represent p2 m 1 patterns.) Figure 37 shows these

two central rays in the crossed-roof resonator, and correspond to the

ray tubes of Figs. 35 and 36. The central rays still are a part of

the p3  I pattern, but are apparently degenerate in that the same path

is traced twice. Analytically tracing the central rays through one

round-trip (again starting at mid-axis), it is found for the one

corresponding to Fig. 35:

-x5- -1 -2- 0 0 Xo 31"

0 5s 0 -1 0 0 60 1 (88)
(_:o5 o -I o ol+ (88)

y 5  0 0 -1 -2L YO l ,2

0 0 0 -1 1

and for the other:

S-1 -2L 0 0 xol 31a 1

5 0 -i 0 0 600 21(
0 0 -1 -2L y (89)

0 0 0 -1 CpoJ "2.U'5.j _ oj o. -2 -

As expected, the central rays are unique solutions of these

equations. The ray that satisfies Eq. (88) is

87



R 2 A

R 0

Fig. 37. Central Rays



( 2
e0 - (Z

L- *La2  (90)
YO 2

and the ray that satisfies Eq. (89) is

o0 2

L a 2
YO =-42

'2

" It is seen that the two rays do not cross between the reflectors, but

do cross between the surfaces of an Individual reflector.

There is an important similarity between the two central rays in

Fig. 3?. Both have the same path length for one round-trip. By

inspection of Eqs. (88) and (89), this path length is

F - 2 L (92)

The volume of the p3 - 1 pattern (for one of the central rays) Is

thus approximately given by

V • 2 L hI h2

2 L d
2

d d
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where d and d02 are the dimensions of the surfaces of RI and R.2

respectively. Since there are the two possible central rays, the

entire volume that is geometrically accessible by the P3 - 1 pattern

is approximately twice that given by Eq. (93). There is some overlap

between the two ray tubes near the reflector surfaces.

Higher-order Patterns. As with the two-dimensional resonator,

stable patterns are possible in which rays make a multiple of two round-

trips. As the pattern number increases, the number of independent

solutions that can be found increases due to the different ways of

combining elevation and plan sign sequences. In actual devices, each

independent ray would produce an output beam in a different direction,

so patterns higher than p3 - I are probably undesirable. Accordingly,

the general system matrices for higher order patterns are not given

here, but a method for finding the different independent rays is

illustrated in the following example for p3 - 2.

Tracing a ray through four round-trips, it is reasonable to expect

P2 w 2 patterns to be projected into the elevation and plan as the ray

undergoes eight roof reflector transformations. In either projection,

the sequence of signs could be either 4, -, -, + or -, +, +, - from

Eq. (39). (the two sequences are equivalent, however, so only one need

be considered. This may be seen by writing two successive P2 - 2

sequences - starting with either a plus or minus sign - and noting that

it is an alternating pattern of pairs of like signs.) If the

alternating sequences

right / left / right / left / right / left / right / left (94)
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is considered, there are four ways in which the p2 - 2 sign sequences

can be combined. They are listed here, and a ray corresponding to the

first sequence is drawn in Fig. 381

(i) - right+I / +
/i' -left

() *I ÷I -I÷I I I •

(2) + / / / / / / .+1-

(95)
(3) + + + I+__ I -__ I

I I I
() ÷I /" II i I ÷ I, /J

In addition to independent rays for thece sequences, it is also

possible to mix different patterns from the two projections. While the

projection of a p3 - 2 ray in the elevation could be a P2 - 2

pattern, for instance, its projection in the plan could be a p2 2 I

pattern that is traced around twice for once in the elevation.

Different combinations of these patterns give rise to other distinct

sequences such as theses

(5) + + + I+
(96)

(6) +1 + + +. -+I

In general, the number of independent rays of the first type (both

elevation and plan pattern numbers equal to p3 ) that can be found is

thougt to be 2 p3. The number of possible rays of the second type

(elevation and plan pattern numbers different) obviously increases as

P3 increases, but a general expression for their number has not been

worked out.
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Significance. The most important feature of the crossed-roof

resonator patterns is that they are superpositlons of the two projec-

tions. The results of Chapter IV apply to the two projections

independently. Thus Eq. (47) can be modified and the stability

condition for stable rays of pattern P2 to exist in either plan or

elevation is < L P) _D 0 d
"L -T- = p2 .2 p2 0a (97)

(There is no restriction on the variant angle.) The same condition also

holds that, in order for the roof edge to be geometrically excluded,

L(P)
the axis length must be greater than 0 2 computed for that roof

reflector. It must be noted, however, that in order for the crossed-

roof resonator to have any stable rays, both elevation and plan must

have stable patterns simultaneously, so Eq. (97) is the general

stability condition for p3 - I or higher when p2 - 1, and Do

is computed for the larger variant angle.

The combination of the two independent patterns can get quite

complicated if the individual pattern numbers are high. This is due

to the fact that if the axis length is such as to permit, say, a

P9 a 4 pattern in elevation, then p2 = 3, 2, and 1 are also stable

and may combine with the plan patterns. Some of these elevation

patterns may approach the roof edges and, consequently, resonant modes

free of diffraction effects would not be expected. (This is possibly

why z90O crossed-roof resonators with extremely small variant anglea -

manufacturing tolerances - are noted to have poor beam divergence.

The pattern numbers can be very large in these cases. See p. 15.)
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Resenant Modes of the First Pattern

For exactly the same arguments as were given in Chapter IV, it is

reasonable to expect that Hermite-Caussian modes can be supported by

the crossed-roof resonator when the roof edges are geometrically

excluded. If the tube of rays in either Fig. 35 or Fig. 36 is drawn

out straight and the effect of aperturing by the roof reflector

surfaces is considered, a picture such as Fig. 39 results, Here It

has been assumed that each reflector surface can be replaced with a

rectangular aperture normal to the ray tube. Each aperture limits the

ray tube on only one side; but after travelling a distance 2L, the tube

has been restricted on all four sides.

From the point of view of either Fig. 35 or 36, the tube of rays

appears to close on itself after one round-trip, so it is reasonable to

expect that a wav,:front could propagate a distance 2L through the

apertures of Fig. 39 and be relf-reproducing. This is indeed possible

for Hermite-Gaussian wavefronts, and a careful consideration of the

phase relationships indicates that both odd and even modes are allowed.

Odd and Even Modes. Consider a cross-section of the ray tube as

in Fig. 40. The central ray pierces the cross-section in the center

and any other ray pierces the cross-section twice at A and A'. These

tT'o points are symmetric with respect to the central ray. On this

cross-section, let the phase of a wavefront - propagating either

direction along the ray tube - be OA at A0 and OA; at A;. Also, let

the difference in phase between points A0 and A; be 00, so thatt

A " 0 + 00(98)

94



EQUIVALENT

SAt-ER70RES

RAY WlBE

Fig. 39. Aperture Effects oi p3 - 1 Ray Tube

CENTRAL
RAY

AFTER AFTER INITIAL
SECOND FIRST WAVE-
ROUND- ROUND- FRONT
TRIF TRIP

CROSS-SECTIONS AS TH{EY APPEAR WHEN CROSSING REFERENCE PLANE

Fig. 40. Ray Tube Cros8-Section

95



After the wavefront has propagated through one round-trip, the ray

that started at A0 is now at A1 , but Is spatially coincident with A

and conversely for the ray starting at As. The phase at AI is

where the second term in the sum is the phase shift due to the

propagation through distance aL and tý is the phase shift due to

reflection from the roof reflector surfaces. Now let the wavefront

propagate through a second round-trip, and A and A' interchange again.

The phase at A2 is now:

0A2  OA 2 L• ÷

O- A0 + 2 (21T 2 + •)(100)

Then assuming that standing waves are formed (from the discussion

of the first pattern), the requirement that the phase be self-

reproducing in two round-trips is certainly reasonables

0A 0, - 22A2 0

= 0 (mod 2iT) (101)

"This implies thatt

2 L+ - 0 or 1 (mod 2ff) (102)

which Is the same as OA - O from Eq. (99). But also Eq. (98) can.h~h s he am a - A0

be subtracted from Eq. (99) to gets

OA 0A.- (2TT 2L+ (103)
1 0
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Since these two phases, OA and OA. occur at the same point in space,

they must be the same for self-reproducibility, and Eq. (103) must

therefore be set equal to zero (rood 2v). Then substitution from

Eq. (102) into Eq. (103) yields,

0o 0 or iT (104)

The importance of this result is that wavefronts propagating

through the ray tubes are allowed to be either even or odd with respect

to the center of the mode pattern. The familiar Hermite-Gaussians

(for the rectangular cross-section of the ray tube) indeed display

this characteristic.

Axial Mode Frequency Interval. If go - 0, self-consistency

Eq. (103) can be rewritten ass

'i 3- L + ( = 2qff (105)
Xq

where q is the number of wavelengths thai can be fit into one round-

trip. An was done In Chapter IV, the expression for the axial mode

frequency interval followL at onces

'L .- Ci6q (206)

If jTr - , Eq. (103) becomes,

21-X+ -'r - 2qIT (107)
q

and the same result - Eq. (106) - again is obtained.

Intuitively, Afq - C/4L oight have been a more expected result

since rays travel a distance 4L before closing on themselves, If this
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were true, however, the central ray would be a null if there happened

to be an odd number of wavelengths in two round-trips - that is the

wavefront is out of phase with itself by .T after one round-trip. This

is not satisfying physically, since it is also reasonable to expect that

the fundamental - or 00 - Hermite-Gaussian mode has the lowest loss arid

is therefore dominant. This mode is definitely non-zero at its center.

Transverse Mode Frequency Interval. The same arguments as were

used in Chapter IV for the transverse mode frequency interval also

apply here. The only difference is that the closed path rays satisfy

a 4x4 matrix equation rather than a 2x2 matrix equation. For any

closed path, this is given by Eq. (69) which is nothing more than an

identity transformation. It is therefore expected that the transverse

mode frequency Interval is

(. ~Mn -o0 (62)
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VI. Conclusion

The geometric theory of roof reflector resonators has been

developed for the two cases of (1) parallel-roof resonators (Fig. 17 )

and (2) crossed-roof resonators (Fig. 29 ). The assumptions that were

made are listed in Chapter I, and the basic malhematical tool for ray

tracing - an inhomogeneous ray transformation matrix - is derived in

Chapter III. This chapter summarizes the Important results of the

theory and recommends areas for further study.

Summary of Stability Conditions

Stability conditions are the physical dimensions of a resonator

that allow stable rays to exist. Stable rays in roof re41.ector

resonators have been shown in Chapters IV and V to be only those

which close on themselves - that is, ring-type rays. Stability

conditions for parallel-roof and crossed-roof resonators are given

separately below.

Parallel-Roof Resonator. Stable rays can be found in the parallel-

roof resonator that make any number of round-trips and are designated

as "patterns" with a pattern number, p2 , defined as the number of

round-trips a ray makes before closing on itself. There are two sets

of stability conditions depending on whether p2 is odd or evens

(1) for p2 oddo

(X ( 2 lat (34)

L (P) s (47)
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where CI and a12 are the variant angles, L is the resonator axis length.

L(P) is the maximum length for pattern p2 to exist, and do is the

surface dimension (see Fig. 14(a) ).

(2) for p2 evens

(No restriction on variant angles) (44)

L L(P) - do

0 P

where a is the larger of the two variant angles.

Remarks are in order concerning these stability conditions.

First, Eq. (47) implies that if the resonator axis length is chosen

less than, say, L3), then either (1) stable rays of patterns p2 .

3, 2, or I could exist if Eq. (34) is satisfied, or (2) stable rays of

only p2 - 2 could exist if 91 j a•. Second, it is possible for

different patterns to exist simultaneously - in which case they are

spatially separated except at a finite number of crossing points. They

are not unique rays, but entire bundles of parallel rays called

"packets." Third, the number of possible patterns is theoretically

infinite as L - 0, but is practically limited in a real device. And,

if l I 2 -0 0, then there is no defined maximum axis length, implying

that there is always a stable ray in a 900 parallel-roof resonator.

Crossed-Roof Resonator. The stable rays that can exist in the

crossed-roof resonator are shown, in Chapter V, to be superpositions

of two parallel-roof patterns in orthogonal planes (see Fig. 33, for

example). The pattern number, p3 0 fcr a stable ray is defined aso

P L# of round-trips) (7)
p3  2
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The condition that stable rays exist in the crossed-roof resonator

is that stable patterns must exist in both of the projections.

Accordingly, there are no restrict.ons on the variant angles, and the

minimum condition that stable rays of any pattern number to exist is

L (108)

where a is the larger variant angle.

The above remarks concerning patterns which can exist in the

parallel-roof resonator also apply to the crossed-roof resonator, but

one additional comment is necessary. This geometric theory predicts

that, for any given p3 P there will be more than one stable ray packet,

und these will generally be spatially separated and not parallel.

Their number increases in a complicated way as the pattern number

increases.

r.aajor FIredictions of Tis Thesis

The stated purpose of this thesis has been fulfilled with the

above listing of the stability conditions, but the most important

conclusion is the prediction that can be made based on the stability

conditions. This conclusion is of extreme interest to the designer of

successful laser systems using roof reflectors.

Use of 900 - a Roof Reflectors. From the geometric theory, it is

concluded that 900 - a roof reflectors are more desirable than 9_! roof

reflectors in laser resonators. This is an extremely simple conclusion

and is motivated by the prediction of the resonant modes, discussed

below. Bazically, the reason why 900 - a roof reflectors are desirable
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is because the roof edges can be geometrically excluded. This is fully

discussed in Chapters IV and V for parallel-roof and crossed-roof

resonators, respectively.

It is also important, for the purpose of design, that 90 - roof

reflectors preserve the relaxed mechanical alignment tolerances of 900

roof reflectors. T"his is demonstrated in Chapter III.

Resonant Modes. When the roof edges of the reflectors are

geometrically excluded, it is predicted that roof reflector resonators

can support e Gaussian modes. This is argued in both Chapters IV

and V, and there is evidence in the literature that this prediction is

correct (reviewed in Chapter II ). For the parallel-roof resonator,

the axial mode frequency interval is predicted to bet

CAf - (58)
q 2 p2 L

while for the P3 I pattern in the crossed-roof resonatort

c

Aq (106)

For both restnators, the transverse modes are claimed to be frequency

degenerates

Smn -0 (62)

An Example. Tne desirability of 900 - a roof reflector resonators

can be further emphasized with a simple example. Suppose a laser is to

be designed for field use in a high-vibration environment. The

crossed-roof configuration is then desired for mechanical stability,

and 900 - a roof reflectors are to be used to obtain a pure mode
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output. The beam divergence wi1 then be less than if 900 roof

reflectors were used since roof edge diffraction will be avoided.

Now suppose that precision-built roof reflectors are not available,

but that two approximately matched items can be found. The first

reflector has a side dimension d01 - 1 cm, variant angle a, " 31'

- 0.0090 rad, and a roof edge 0.5 mm wide. The second reflector has

d - 1 cm, a 2 - 29' - 0.0084 rad, and roof edge 0.5 mm wide. From

Eq. (i5)1 j d - 8

D01 " 2 a1 -78.4 cm. (109)

D02 2 - 83.8 ca (110)

In order for the resonator to be stable, the axis length must be

chosen less than the smaller of these two, by Eq. (108). In order to

( exclude the roof edges with the p3 . 1 pattern, however, L must be
\3

greater than one-half of the larger (from the discussion on p. 93).

Thus, ifs

41.9 cm < L < 78.4 cm (111)

the resonator will operate only in the p3 . 1 mode.

Let L - 50 cm be a convenient axis length, then by Eq. (50) the

cross-sectional dimensions of the P3 - 1 ray tube are

.I: doi
h " 2 -aL - 0.26 cm (112)

F2• do0 2
h2 z a 2 L - 0.29 c (113)

It Is also easy to calculate that the size of the geometrically

excluded area at the roof edge of the first reflector (measured
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perpendicular to the axis) is approximately 3.8 mm, and for the second

2.6 ms. Thus the geometrically excluded areas are clearly much larger

than the size of the roof edge width, so roof edge quality need not be

of great concern. Also, the conditions have been satisfied which,

according to the predictions of this theory, permit the resonator to

support the desired pure modes.

Recommendations for Further StudY

Many questions have arisen in the course of developing this theory,

and not all have been answered. Listed below are recommended areas

for further study which either (1) logically extend the work presented

here or (2) involve designing practical devices.

Extending the Theory. This geometric theory is thought to be the

first of its kind for roof reflector resonators, and has only been a
/

beginning in the study of these devices. The following topics are

recommended as areas for research to extend the theory, listed In order

of increasing sophistication. Possible methods for solution are also

suggested.

(1)• Arbitrarily aligned roof edges. The two configurations

examined in this thesis are, admittedly, only special cases of the

general 900 - a roof reflector resonator. Kahn and Nemit (Ref 22)

provide a 4x4 rotation matrix which could be used to extend the work of

Chapter V to find stable rays in the general case.

(2) Computer solutions for resonant modes. Self-reproducing

wavefronts could be found using iterative methods to substantiate the

predicted resonant modes. These numerical results would also provide
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calculations of diffraction losses that cannot be given by geometric

"theory.

(3) Thermal lensing by lasing medium. Soncini and Svelto

(Ref 39) partly attribute the pure modes they observed to thermal

lensing in their ruby rod. This is a topic for study by computer that

could be added on to (2) above. A paper by Kurauchi and Kahn (Ref 26)

addresses the problem of focusing media in resonators having stable

ray envelopes as the roof reflector resonator certainly does.

(4) Polarization analysis. Although a method of determining the

eigenpolarizations in roof reflector resonators has been given by

Bobroff (Ref 5), it is noted that the direction of propagation of the

ray tubes in the crossed-roof resonator is not parallel to the nxis

and, hence, the plane of incidence at each reflection is neither

parallel nor perpendicular to the roof edge. The eigenpolarizations

of this resonator are thus thought not to be so simple as in the 900

roof reflector case treated by Bobroff (or the parallel-roof resonator

of Chapter IV ). In order to take into account the vectorial nature of

light, the eigenpolarizations need to be more closely studied for this

resonator. DeLang (Ref 13$1-20) discusses the interaction of polarized

beams with active laser media, and a possible method for computing Is

the polarization transfer function given by Azzam and Bashara (Ref 2).

Designing Practical Devices. Before operating lasers can be

built, there are a number of design problems which must be dealt with.

Three of these which seem to be of immediate interest to the designer

are recommended as areas for advanced study.
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(1) Stable or unstable opetation. Apparently the crossed-roof

configuration is preferable where mechanical stability and relaxed

alignment tolerances are needed. Then it would also seem to be most

advantageous to design for p3 = I operation only. On the other hand,

unstable operation may be more desirable as in high-energy laser

applications. Then perhaps a parallel-roof resonator would be better

with a, 9 (12 and, say, the roof edges aligned with the gas flow in

a gas-dynamic laser.

(2) Best method for outcoupling. The traditional methods of

extracting energy from a laser resonator are through a partially

reflecting mirror if the resonator is stable, or allowing energy to

diffract past the mirrors if it is unstable (Ref 38). Both of these

methods are possible with roof reflector resonators, but there are

other methods which have been proposed, or used on a limited basis, that

require further evaluation: (a) frustrated total internal reflection

has been used by Soncini and Svelto (Ref 39), (b) less than total

internal reflection on one surface of a roof prism was used by Farkas

(Ref 15) in a high-power ruby laser, (c) a beamsplitter was inserted

into a resonator using a 900 - a roof reflector on one end by Dahlstrom

(Ref 12), and (d) a birefringent crystal was placed in a 900 crossed-

roof resonator by Teppo (Ref 43) to outcouple one of the eigen-

polarizations.

(3) Multiple beams. Another problem facing the designer of

practical devices is the possibility of multiple beams predicted in the

crossed-roof resonator. A reasonable solution would be to eliminate

all but one by internal aperturing. Or possible multiple beams may be
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desired, in high-energy lasers for instance, and some clever arrangement(
of reflectors outside the resonator could be used to focus them onto

a common target.

Regardless of the above design problems, the advantages of roof

reflector resonators - mechanical stability and pure mode outputs - are

felt to be worthy of the effort to design working lasers using them.

Due to their simplicity alone - and the possible savings in cost and

fabrication time - roof reflector resonators are seen to offer a

v,.urtical alternative to curved mirrors in laser systems of the future.
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Appendix A

Similarities Between Roof

Reflectors and Spherical Mirrors

Roof Reflectors with roof angle 900 - ci, where a is small and

positive, are noted to have a "focusing" effect: that is, incident rays

are reflected back and converge on thei- former direction, crossing at

an angle of 2a (see Fig. 11 ). This focusing is remarkably similar

to the familiar results of first-order optics applied to spherical

mirrors.

For a spherical mirror, M in Fig. 4 1(a), the center of curvature,

C, lies on an axis of symmetry through the vertex, V. Any ray incident

on M which passes through C is reflected back through C, while any ray

which is incident parallel to the axis is reflected through i. point, F,

on the axis. To first order, the relation holds thatt

2(114)

For a roof reflector, R in Fig. 41(b), there is no "center of

curvature." But through any point, C', on the axis, a unique ray

making an angle c with the axis will be reflected back through CO,

If a point, V', is then located on a line perpendicular to the axis

through C' (the line P'V' makes an angle a with the axis), an incident

ray through P' parallel to the axis will be reflected back through P1.

This latter ray crosses the axis at a point, V', where the exact

relationship is
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FI-V an cove I -(115)
( 2 coB2 (C)

If a is small, then the first-order statement of this expression is

" -- V-- (116)

which is analogous to spherical mirrors.

The rays traced through C' and P' of R are reminiscent of the

imaging of an object placed at C in front of M. The analogy can be

forced by finding a "focal length" for a roof reflector that can be

used in a homogeneous ray transformation. (Call it "f*" to distinguish

it from an ordinary focal length.) That is, let the transformation:

[ ~ý] 4 117)
,¢

carry the ray (x 1 , e1) through a roof reflector just the same as the

inhomogeneous trasformation of Chapter IlIt

(The 2x2 matrix of Eq. (117) takes into account the inversing, and

Eq. (23) assumes the ray is incident on the roof reflector above the

axis.) Equating these last two expressions, the quantity f* is found

to be,
x1

- 2-- (118)

In terms of the dimension d, which measures the distance from the

vertex to where the ray strikes the roof reflector surface, this is
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d 2+ 20 1 - a
- - 2 1 r (119)

The concept of focal length for roof reflectors (and consequently

radius of curvature) is not a particularly useful one since this

quantity turns out to depend on the components of the incident ray.

If, however, only rays crossing the axis at the angle a are considered,

then putting 01 - a in Eq. (119) results in,

f. d2+a (120)

Or, if a is also considered to be a small angles

f -1- 4 (121)

Comparing this last formula with Eq. (15) of Chapter III, it is then

seen thats

-f (122)2

where D - C'V' in Fig. 41(b).

While f* is seen to be variable, there is an easily recognized

constant parameter associated with roof reflectors. This has to do with

the discrete roof angle, and is contrasted with spherical mirrors in

Fig. 42. Here two resonators are drawn which have concentric propertiess

(1) The spherical mirror resonator has a unique point, C, through

which all statle rays pass. Within the limits of the apertures, the

rays make a continuum of angles with the resonator axis.

(2) The roof reflector resonator has a unique anie, 1, with which

all stable rays cross the axis. Within the limits of ..e apertures, the

rays cross the axis at a continuum of points between C' and C'.
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Appendix B

Roof Reflectors and the g-Parameter

For spherical mirrors, a frequently used parameter in laser

resonator design is

S(- .- 1. 2) (123)
Ri

where L is the resonator axis length and RI is the radius of curvature

of the i-t mirror. The condition for stability is often expressed in

terms of these g-parameters ass

0< ;5 g " 1 (124)

That is, the resonator operates in a low-loss regime when this relation

is satisfied.

For roof reflectors, there is no radius of curvature. But if the

ray crossing distance, D, is taken to be a characteristic (on-axis)

radius, tnen the dimensionless parameters

9* . I -- 1(125)D

can be considered by definition. In terms of the roof variant angle,

a, and the dimension d, this is

g,- _- (126)

from Chapter III. Although this is chazacteristic of a roof reflector,

it is not a constant except when a - 0 (or D - oc ). In this case,

117



S- 1 which, by way of comparison, is what would be expected for a

plane mirror (R - 9 ).

The product, , is then seen to involve three dimensions (L,
1 d1 .~ ~ d2 )p

DI or do , and D2 or d2). But for a given pattern number, p2 these

lengths axe not independent in the parallel-roof resonator, and it

can be shown from Chapter IV thats

D 2 + p2 ,L (127)

Substituting from Eq. (125), it is found that;

P 2 - I P2 - 2

SP- (0 + * +-- . 0 (128)

Apparently, this relation describes a curve on a g1 vs. q graph on

which a parallel-roof resonator operates when a ray makes P2 round-

trips before spatially repeating.

A particular resonator operates on only a portion of the curve.

For example, considor a stable parallel-roof resonator I - a2)

operating in the p2 -1 i pattern with resonator length L -3D0/2.

Then it is seen that;

--0 D1  "DO and 1-- D2  D (129)

-2 d -2 - - < (1)

g1g"1 (131)

from Eqs. (127), (125), and (128), respectively. This is shown in

Fig. 43 together with possible resonator configurations that will

operate on the curve. Note that a 1 - Ct2 does not imply g1 " g2"
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In general, Eq. (128) is a rectangular hyperbola, sketched in

Fig. 44, having horizontal and vertical asymptotes:

pg - I

" -P2 (132)

and transverse axiss

t &- 2_ (133)P2

The curve has two branches: resonator configuration for the lower

branch is a 1 and a2 both positive, .hile the variant angles are of

opposite sign on the upper branch.

In the limit of P2 -. 0 (a large number of round-trips), it is

seen that the hyperbola degenerates into the crossed straight lines:

64 9; 1(131&)

Thus, the point (1, 1) satisfies Eq. (128) for all values of p2.

Therefore, a parallel-roof resonator with two 900 reflectors is

infinitely degenerate.
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