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FPreface

In the'past. many more laser designers have probadbly used roof
reflectors than have reported their experiments in the literature, They
have undoubtedly tried using roof reflectors to gain rellef from the
chronic problem of alignment sensitivity that plsgues laser resonators,
but they obtained poor quality output beams and large divergences, So
the roof reflectors were shelved in favor of the better understood plane
or spherical mirror resonator. This thesis provides a geometric
understanding of shat is going on inside of a roof reflector resonator.
After reading 1t, the laser designer should have a solid feeling about
how to avoid the problems. As a result, roof reflectors can return to
the laboratory as a real alternative to ordinary mirrors.

In developing this geometric theory, it has been assumed that the
interested laser designer - and reader of this thesls - is already
familiar with (1) first-order matrix optics and (2) the geometric
analysis of stable resonators. (For the reader who is not familiar with
these topics, Chapter 8 of A. E, Siegman's text, An Introduction to

Lasexs and Masers (Ref 37), and Kogelnik and Li's excellent review

article, "Laser Beams and Resonators" (Ref 25), are recommended as
prelininary reading.) It will be found that results drawn from these
areas are taken to be generally known and are not specifically
referenced, But otherwlse, the analysis of roof reflector resonators
presented in the body of this thesis is not exactly trasditional,

¢lthough every effort has been made to make the presentation logical
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and easy to follow. Two appendices treat certaln aspects of roof
reflector resonators in the same manner as conventional resonators, to
emphasize the contrast between roof reflectors and ordinary mirrors.
On the other side of the house, the reader of this theoretical
thesis will be interested to know that experiments on the same subject
have also been performed. Simultaneously with the author®s research,
fellow student R, Grotbeck has built and tested a 002 laser using roof
reflectors. His work, entitled An Experimental Investigation of the

Resonant Modes of a Roof-Top Laser (Ref 19), gives an account of his

findings and, &s an independent thesis, is complementary to the
present work.

The author wishes to express gratitude to his thesis advisor,
H, Weichel, for the helpful suggestions and many hours of time glven

during the course of this investigatlon.

Howaxd E. Evans 11
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Abstract

Laser resonators using roof reflectors with 90° - @ roof
angles ( a small and positive) are analyzed geometrically when
the 10o0f edges at cpposite ends of the resonator are aligned
either parallel or perpendicular (crossed). Stability conditionms,
involving reflectcr dimensions, are found which specify a maximum
axis length for the existence of stable rays, In the parallel-
roof case, stable rays are shown to be ring-type, making any given
number of round-trips before spatially repeating. Stable rays
in the crossed-roof case are superpositlons of two parallel-
roof ray patterns in orthogonal planes. For any pattern, the
reflector roof edges are shown to be geometrically excluded when
the axls length is greater than one-half the maximum length for
that pattern. It is then predicted that when the reof edges are

excluded, the resonant modes are pure Gaussian.
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THE GEOMETRIC THEORY OF
ROOF REFLECTOR HRESONATORS

I. Introduction

The objects studied in this thesis are laser resonators using Toof
reflectors - instead of curved mirrors - for end reflectors, This
chapter first describes typical roof reflectors and gives some reasons
vhy they are thought to be practical and useful devices in laser
resonators. The purpose of this thesis is then presented, and its
scope is narrowed to the specific approach taken here, Criteria to ba
applied and simplifying assumptions are next listed; and finally, the

plan for development of the theoxry is given.

Roof Reflectors

Roof reflectors are simple optical devices for redirecting light.
In general, they are two plane, front-suxrface mirrors attached along
one edge called the "roof o»dge." A sultably shaped prism could also be
used as a roof reflector, if properly oriented. (The terms "roof-top
prism,” "right-angle prism," and - incorrectly - "Porzxc prism" are
encountered in'the literature.) Figure 1 is a line drawing of s
typical roof reflector: surfaces ABFE and CDEF are mirrors joined

along roof edge EF, and Angle AED is called ths "roof angle." In the




ROOF

Typlcal Roof Reflector

1.

Fig.




figure, ABCD is the front face, or aperture, and line ZV - heve
perpendicular to the front face ~ is called the "reflector axis."

The primary difference between ordinary mirrors and rvof
reflectors is that light beams, oi rays, reflect once from a mirror but
twilce in a roof reflector. The two reflections - one at each of the
two surfaces in succession ~ are specular and retro-relect the 1light

beams back toward their sources (if the roof angle is 90°).

Desirability of Roof Reflectors

Roof reflectors have occasionally been used as end mirrors in
laser resonators. The primary reason that roof reflector resonators
have been btuilt recently is because thesy are reported to be particular-
1y insensitive to misalignment, or t1lt. Consequently, roof reflector
resonators are attractive for use in high-vibration environments (laser
range-finders on artillery pieces, for example) and under conditions
which could mechanically deform the resonator (as a laser target
desgignator on a tactical aircraft).

In addition to the optical (or angmuént) stability that roof
reflectors glve to laser resonators, there are other reasons why they
are deslrable:

(1) cCost, In their simplizity, roof reflectors should be cheaper
to make than spherical mirrors with large radii of curvature,

(2) No focusing. Since roof reflectors are made of plane
mixrors, there is no focusing. Thus, in the absence of other focusing

elements, electric fleld amplitudes will remain relatively small,




(3) large mode volume. Roof reflectors are made of plane
mirrors, so the properties of a roof reflector resonator should be
similar to those of a plane mirror resonator. One of these properties
is a large mode volume -~ limited only by the smallest aperturse.

.These features point to the roof reflector resonator as being
desirable for high energy lasers, where high fleld amplitudes in large
volumes are prevented from focusing with negatively curved mirrors.
Typically, high energy laser resonators are lossy, or unstable, but it
1s not known whether roof reflector resonators have unstable
characteristics, Further (aside from mechanical stability having been
observed) there is no known theory which specifies the resonater
stability in termms of 1ts physical dimensions, as for spherical airror

resonatoru.

Purpose and Scope of this Thesis

The purpose of this thesis is to provide a simple theory of the
stabllity of the roof reflector resonator, in terms of 1ts physical
dimensions., Since this 1s the first known attempt to develop this
theory, it is necessarily limited in scope. Only geometrlc optics is
used to predict when the resonator is stable or unstable. In certsin
instances, however, it is posslible to predict quantities which would
othexrwise require a physical optics analysis - such as resonant modes
and cavity losses -~ and this has been done here,

The geometric theory presented here is limited in that only two

resonator conflgurations are considered, tut it 1s extended to include
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a class of roof reflectors. The two special cases analyzed are (1) the
parallel-roof resonator, where the roof edges of the reflectors at
opposite ends of the resonator are coplanar, and (2) the crossed-rcof
resonator, where the roof edges are perpendicular, or crossed, The
class of roof reflectors studied is that in which the roof angle is
less than or equal to 90°, This is due, in part, to the reality that
physical devices always have some manufacturing tolerances so the roof
angle is hereafter taken to be 90° - a, where a 4s called the

"variant angle"” and is elther small and positive or zero.

Criteria and Assumptions

In geometric optlcs, the criterlon for stability of laser
resonators is that rays remain close to the axis and not diverge past
the edges of the end reflectors. This 1s the criterion that will be
used here to establish whether or not rays are stable in roof reflector
resonstors. Whatever dimenslons are then required of the resonator in
order for stable rays to exist - the distance between roof edges, the
roof reflector apertures, and the variant angles - are called the
"stabllity conditions,”

The stadbility conditions for a laser resonator, in reality, depend
on many physical varlables. Since a geometric theory provides only the
first approximation to the physical situation, two assumptions are
listed below which simplify this analysis and eliminate many of the
unknowns

(1) The roof reflectors are assumed to be as shown in Fig. 1

with rectangular apertures and perfectly reflecting, front-surface




mirrors; btut the roof edges are not necessarily assumed to be perfect,
since they are not in reality.
(2) The space between the roof reflectors is assumed to be empty

and contalns no other optical elements or apertures,

How the Theory is Developed

Before applying the above assumptions to develop a geometric
theory, previously published literature on roof reflector resonators is
reviewed in Chapter 1I. Articles that have been found directly
involving the present topic are briefly summarized in two areas:
experimental work and theoretical work, A short discusslion emphasizes
the important results of the other authors which have influenced the
development of this theoxy.

Chapter III considers roof reflectors individually. ¥First, the
class of reflectors considered here is shown, by geometrical
demonstrations, to preserve the mechanical stability of roof reflectors
with 90° roof angles, Second, the basic analytic tool used in
geometric optice - the ray transformation matrix -~ is derived for a
roof reflector. This is done in twe dimensions, but is exienled to
three dimensions in later chapters,

Chapter IV cumbines two roof reflectors to form a laser resonator
and treats the first of the two speclal configurationss roofs
parallel. Rays are traced through this resonator and its equivalent
vaveguide with the matrix transformation dexrived in Chapter III.

Stable rays are shown to be possibls in an infinity of different

gecmetric pattems, tut these patterns are shown to be of only two




basic types which depend on resonator dimerzions. The dimensions
necessary for the stable raye to exist are given as the stability
conditions. The resonant modes of the parallel-roof resonator are then
predicted, based on the geometric theory.

Crossed-roof resonators are next treated in Chapter V. At first,
both variant angles are taken to be zero: then one zero and one non-
zero; finally both non-zero. An infinity of patterns is agaln shown to
be possible, depending on the resonator dimensions, but they are
related to those in Chapter IV, Again the resonator dizensions are
glven as the stability conditions, zud the Yesonant modes of the
crossed-roof resonator are predicted.

Finally, Chapter VI summarizec stability conditions from the
previcus two chapters, Based on the resonant modes predicted by the
geometric theory, the major conclusion of this thesis is drawn: roof
reflectors with roof angles less than 90° are more desirable in laser
resonators than right-angled roof reflectors. Recommendations for
areas of future study are then made with emphasis on problems relating

10 the design of laser systems using roof reflector resonators,
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II. The Literature of Roof Reflectors

The use of roof reflectors in laser resonators 1s not a new idea.
Gould, et al., remark in a footnote that "a laser cavity of a crossed
pair of 90° roof prisms was first described in an unpudlished proposal
to ARPA [Advanced Research Projects Agency], December 1958," (Ref
18:534) Since then, reports of the use of roof reflectors as static
elements (not spinning Q-switch prisms) in laser resonators have been
infrequent compared to the attention given spherical mirrors.

This chapter summarizes the relevant literature found during the
course of thesis research, First, experimental papers are grouped
together, and second, theoretical work is presented topically. The
important results from both experimental and theoretical papers that

influenced the development of this geometric theory are then discussed.

Experimental Papers
There has been a variety of experiments using roof reflectors,

Both parallel-roof and crossed-roof configurations have been studied,

Fabry-Terot Interferometer. The first experiments wlth roof

reflector resonators appears to have been done by Gould, Jacobs,
Rabinowitz, and Shultz in 1962, (Ref 18) Their work involved a Fabry-
Perot interferometer in which 90° roof reflectors replaced the usual
plane mirrors. Figure 2 shows the basic experimental arrangement
these authors used to obeerve that the crossed-roof configuration
indeed has relaxed alignment tolerances. Here, roof edges Ri and Rz
are spaced an axial distance, L, apart, and the axis of the




A

31 Ry

Fig. 2. Crossed-Roof Reftlector Interferometer
(After Ref 18:533)

Coupling

BUBY ROD Output
I. Frism

Output

Fig. 3. Total Internal Reflection laser Resonator
(After Ref 3:1833)
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interferometer is a line perpendicular to both roof edges. Line Ri is
parallel to Rl’

These experimenters observed Haldinger fringes with the same
angular spacing and free spectral range as those in a plane Fabry-Perot
with mirror spaclng 2L. They noted that rotating the left roof
reflector around its roof edge - the B-directlion in Fig. 2 - did not
change the fringe pattern. Also, rotatlon arocund Ri - the y-
direction - was seen to merely tilt the optic axis and consequently
reduce the aperture., These greatly improved freedoms in the aligmment
of the crossed-roof interferometer thus led these authors to conclude
that there is always a single direction in which rays (dashed lines in
Fig. 2 ) remain undeviated - namely parallel to the optic axis,

Gould, et al., go on to predict that, if the crossed-roof
interferometer were used for a laser resonator, there would always be
at least one mode; and it would be the same as for a plane mirror
resonator. They further suggest that, because of the mechanical
alignment stabllity of rays parallel to the axis, the rescnator would
operate in just a single mode. It is also noted in the paper that the
cavity of Fig. 2 has only two plane eigenpolarizations and that they
become interchanged by the crossed roofs,

Roof-tcp Fuby Rods. The total internal reflection principle has
been used with ruby lasers since 1962, In an experiment by Bergstein,
Kahn, and Shulman (Ref 3), the ends of a ruby rod were shaped like roof
reflectors, and outcoupling was accomplished by frustrated total
internal reflection through one of the angled ruby faces (see Fig. 3 ).

Similar experiments by Bertolotti, Muzii, and Sette (Ref 4) used roof

10




prisms in optical contact with the faces of a ruby rod, while
outcoupling was through the slightly flattened roof edge of one of the
prisms, These devices were observed to lase satisfactorily, with the
output polarizations being dependent on the alignment of the rvof edges
with respect to the ruby crystal axes (investigated by Gibbs and
Whitcher, Ref 17).

In general, the configurations studied by all of the above
experimenters were parallel-roof, and more than one output was
observed, T.:is 1s shown in Fig. 3, shich is the experimental
arrangement used by Bergstelin, et al., who noted the phenomenon and
offered this explanation:

"...0ther optical-maser resonator cavities use either metallic or

multi-layer dielectric coating of the end walls to normally

reflect the 1light beam. As a result a definite phase relationship
exists between the two contradirectionally traveling wave systems,

No such relationship 1s established by the boundry conditions

existing in the total reflection resonator. It would therefore

appear that this configuratlon can support two mutually
independent contradirectionally traveling resonant wave systems.

The only process which might couple these two wave systems is the

emission process."” (Ref 311833)

Multiple Mode Operation. A roof priem was used as an end

reflector in a He-Ne laser system at 1.15: by Delang and Bouwhuis in
1963 (Ref 14)., Their experimental arrangement is shown in Fig, 4(a),
where A and B are prism surfaces where total internal reflection takes
place, and C is a flat multilayer interference mirror. The front face
of the prism is at Brewster's angle to the axis of the gas tube, and
its roof angle is slightly lees than 90°, Drawings {(b) - (d) of Fig.

L are equivalent to the resonator, and the roof angle between surfaces

A and B 1s 90° - @ where & = 0.0020 radians - the index of refraction

11
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Fig. 4. Delang and Bouwhuis' Experiment
(After Ref 14148, 49)

Outputs
90° —a *’7

RUBY ROD _\l
- Z
| 90° - q

Q~Switch
Cell

L, -

Fig. 5. Soncini and Svelto's Experiment
(After Ref 39:262)
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of the prism having been taken into account. Only the relationship
between the reflecting surfaces is shown,

Delang and Bouwhuls observed thelr system tc lase in the different
modes shown in Fig. 4(b) - (d). Significantly, the first and second of
these were seen to cccur simultaneously, Also, the different modes
were generally seen to have the multlple outputs shown in the drawings,
and these beams were noted to form interference patterns on the surface
of mirror C. This implies that standing waves were present in the
resonator "bullt up from two coherent oppositely travelling waves,
which probably choose their phase relation & for minimum loss, e.g. in
surh a way that thelr interference pattern on the dielectric mirror has
a minimum integrated intensity.” (Ref 14149) These are similar to the
patterns obtalned by Ledger (Ref 27) to confirm standing waves in a
laser resonator.,

Travelling waves were also obtained, but only in the mode of Fig.
4(v). The experimenters found this possible by deliberately spoiling
the quality factor of the resonator in one direction with a wedge-
shaped glass plate in optical contact with one of the prism faces,

Single Mode Operation. Roof prisms with roof angles smaller than

90° have alsc been used with solid state lasers, beginning in 1967,
Soncini and Svelto (Refs 39 and 40) and Cubeddu, Polloni, Sacchi, and
Svelto (Ref 11) have used pairs of 90° - @ prisms, in a parallel~-roof
conflguration, to obtaln outputs consisting of pure mcedes in pulsed
ruby lasers. The baslc experimental arrangement used by these authors
is shown in Fig. 5.

13




In all experiments the output was found to be highly repeatable
from pulse to pulse. Soncinl and Svelto state, for example, that “Once

a TEM,.. mode is obtalned, it *s usually preserved from threshold to

00
~30% above threshold....” and that ",..the tsam divergence of ouxr TEMy
mode 1s almost diffraction limlited, whereas a =5 mrad divergence has
been measured in the case of the plane-parallel resonator.® (Ref 39:
262) Using a Fabry-Perot interferometer, "it was also checked that the
output beam was constituted of a single longitudinal mode.” (Ref 403
422)

The high-purlty modes were explained by these authors to be due to
two circumstances: (1) since the beam passes through the ruby rod
twice, the cavity averages internal distortions and crystalline
imperfections and (2) the spot size of the beam (half-width at 1/ o2
intensity points) depends on thermal lensing in the ruty rod due +o
pump light heating. (Ref 241321, 338) The spot size, w, then

determines a critical resonator axis lengthi

2w
Lc 5—&— (1

vhere @ 1s the variant angle of the prisms. Then "if the length [LJ
of the cavity is greater than [Lc]. the edges of the prisms are not
involved in laser actlon and oscillation takes place according to the
path [of Fig. 5 ]." But "If the length of the cavity is smaller than
[Lc]' laser action extends over the prisms edges, no pure modes are
obeerved and the beam becomes similar to that observed with plane or
spherical mirrors.” (Ref 39:262)

14




Recent Experiments. Since 1972, Teppo has hsed roof raflectors in

a compact Nd1YAG laser system intended for use as an airborme target
designator (Refs 42 and 43), 1In one experiment, & 90° roof prism was
tosted in a resonator with a 70% reflecting flat mirror. Thus, in Fig.
2, the right roof refleci-. was replaced with the tlat mirror, amd
rotation of the left roof reflector around its roof edge showed no
appreciable degradation in output energy through the flat mirror.
Rotation of the roof reflector in the y-direction of Fig. 2, howaver,
showed that it had alignment tolerances similar to a large-radius
curved mirror. Teppo's experimental data is shown in Fig, 6 together
with his test results of a 10 meter radius mirror for comparlson.
Using the same arrangement, Teppo also measured the uniformity of
the output beam of the Nd:YAG laser when operating non-Q-switched at
10pps. His results are shown in Fig. 7, where typlcal burn patterns are
on the left and a scan trace on the right. (The scan was taken
perpendicular to the roof edge and waz done with an SGD-100 photodiode,
with an 0.030 inch aperture, moved across the beam at 0.78 inch per
minute -~ 0.065 inch per division on the osciliiscope trace. The scan
photograph thus provides a time-averaged beam uniformity profile.) As
can be seen from Fig. 7, "The roof prism tested did not lase par-
ticularly well near the roof edge, and the bdbimodal lasing structure
normal to the roof edge is evident.” (Ref 42:157) Teppo also states
as a qualitative observation that "Compared with a simple end mirror,
generally the roof-prism end reflector...increases the raw-beam

divergence and beam non-uniformity." (Ref 42:125)

15
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Relative Energy Output

1.0 |
O 10-meter end reflector
19 1
A  roof-prism eni reflector
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normal ito the roof edge
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Misalignment (Arcsec)

Fig. 6. Roof Reflector Misalignment Sensitivity
(From Ref U42:28)
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The roof prism used by Teppo was not a perfect specimen, but was
reported to have had "several burn spots near the roof edge.” (Ref 421
24) He states, however, that other experimenters obtained similar non-
uniformity results with contractor-supplied prisms. (Ref 42:24) In
general, the specifications on the prisms state that “The [roof] edge
shall be a maximum of ,002 inches wide without pits or fissures,..”
(Ref 43:33) Thus, the typical prism, with which the results of Fig. 7
were obtained - has a roof edge on the order of 50 wavelengths wide at

optical frequencles.

Theoretical Papers

Methods which have been used to analyze laser resonators include
(1) the geometric approach by matrlx optics and (2) computer solutions
for resonant modes and elgenvalues, Accordingly, some work has been
done on roof reflector resonators in both areas, and is reviewed below,
A procedure for calculating the elgenstates of polarization has also
been glven and is included under a separate heading.

Geometric Approach. Rather than roof reflectors, a paper by Kahn

(Ref 21) considers the related case of dihedral reflectors, Dihedral
reflectors, like roof reflectors, are made of two planar surfaces
Joined at an edge, but the angle is close to 180° rather than 90°,
The difference between the two types of reflectors is that rays are
reflected from only one surface of a dihedral reflector, whlle they are
reflected from both surfaces of a roof reflector,

Kahn shows that if a light ray in a resonator is characterized (in

two dimensions) by its distance from the axis, x, and its slope with
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respect to the forward direction, 9, and ordered as a column vector:

x = [x] (2)
2]

then it is transformed by a dihedral reflector with the transfomation
(Ref 211866):

- + (3)

where subscript r refers to the reflected ray, subscript i1 refers to the
incident ray, and matrix elements A - F are characteristics of the
dihedral reflector. If only paraxial rays are considered, these matrix
elements are independent of ray parameters, and Eq. (3) is linear.

(Note that if E = F = 0, this is the form of the matrix transformations
for thin lenses and curved mirrors.)

Using Eq. (3), Kahn shows that stable rays in dihedral reflector
resonators are bounded by an envelope. This envelope is the most
significant result of Kahn's geometric solution, because "such
contours, which form the boundary between geometric-optically accessible
and inaccessidle reglons are indicative of the variation in the over-all
intensity distribution within the resonator." {Rer 211887)

Another theoretical paper by Ronchi (Ref 34) uses the geometric
approach to find sets of circles that fit inside the parallel-roof
resonator, The circles are shown to be caustic surfaces for high~order
Beesel functions chosen in such a way as to match boundary conditions on
the surfacee of the roof reflectors, As in Kahn's work, the caustic

surfaces separate regions of high and low flelds so that ths
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resonant modes are exponentlially low in the region of the edges of the
reflectors, Thus, Ronchi shows, diffraction at the edges can be
neglected,

Numerical Approach. The integral equatlons of laser resonator
theory (Ref 16) were computer-programmed for roof reflector resonators
by Pasqualetti and Ronchi in 1974 (Refs 31 and 32). The particular
geometiry that they studied was the parallel-roof configuration with the
(equal) variant angles no larger than about five degrees. Since their
work was motivated by other research in microwave theory, the
dimensions used were typically small in terms of wavelengths (A):
axis length L = 100A and half-aperture a = 10A. (Distance AD in
Fig. 1 1is sald to be the full aperture dimension.) Thus, the
Fresnel number, N = 2 /Lk » of the resonator was on the oxder of 1.

Regardless of the resonator dimensions, Pasqualettl and Ronchi's
numexrical approach was correct for the geometry considered, and the
fleld amplitudes and phasss of the resonant modes were computed and
plotted., When @ > 0°, the resonant modes were generally found to be
narrow in field distribution, and they propagate through the resonator
on a path shown in Fig. 8, Of this, the authors say:

"For symmetry reasons, the beam propagating in the indicated way

has to be accompanied by a beam propagating in the reverse way.

An even mode is formed by two beams with the same amplitude and

phase at the points of the resonator axis; for an odd mode, the

phase of the two beams differ by 1 at the points of the axis,

Thus, one and the same beam may form elther an even or an odd mode

of the roof mirror resonator. In a first approximation, apart

from deformations due to diffraction, these beams should be the

modal beams of a [ Fabry-Perot] resonator..." (Ref 31:294)

As for diffraction, Pasqualetti and Ronchl conclude in thelr second

Paper “By noting that in a quasi-corner mirror [ a = 0° ] resonator a
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Fig. 8, Pasqualetti and Ronchi's Result For a > 0°
(From Ref 31:293)

(a) (v)

"
x / M2

Fig. 9. Four-mirror Ring Resonator and Its Limit
(After Ref 36:11051)
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beam interacts with 2 mirror twice per transit, we deduce that
diffraction deforms the fleld configurations in such a way as to
diminish the losses." (Ref 3216%4)

In certain instances then, Fasqualetti and Ronchl noted that their
theoretical resonator appeared to operate as a four-plane-mirror
resonator rather than as a two-roof-mirror resonator. This case was
studied independently by Checcaccl, Falcial, and Scheggl in 1974
(Refs 8 and 36)., They considered the 90° roof reflector resconator as a
limiting case of a four-plane-mirror ring resonator; the problem that
these authors programmed 1s shown in Fig. 9, where § is a spacing that
was variable, The dimensions considered were again motivated by
microwave theory, but Fresnel numbers as large as 10 ware used.

Figure 10 shows typical numerical results where the field
amplitude 1s plotted as a function of distance perpendicular to the
resonator axis., The half-aperture dimension, a, and its position is
indicated in each plot, andi the spacing, §, is also shown. It is
evident that a broad, centralized field distribution - when § = 0 -
quickly separates and narrows as 8 increases. At a separation of
5 = 32\, the resonator is clearly operating as a ring, and the field
distributlion on one side of the resonator does not disturb that on the
other side, as is evidenced by the lack of interference in Fig. 10(d),
compared to (b).

Pelarization Calculation, A method for calculating the
eigenpolarizations in a roof reflector resonator has been given by

Bobroff (Ref 5). His procedure uses 2x2 metrices to calculate the
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Discussion

round~-trip phase changes of electric fleld components initially
chosen parallel and perpendicular to one of the roof edges. A
computation of the eigenvalues of the round-irip phase-change matrix,
and its subsequent diagonalization, gives the eigenpolarizations of
the resonator,

For the two special cases of roofs parallel and crossed,
Bobroff's theory shows that the two eigenpolarizations are plane
polarizatlions orlented elther parallel or perpendicular to the roof
edges, and the elgenvalues are unity. This can also be seen by
irspection, since only plane polarizations whose plane of vibration is
parallel or perpendicular to a roof edge are reflected from a roof

reflector with their plane of vibraticn unchanged. (Ref 6é:141-51)

All of the above papers have been considered in the development of
the present geometric theory. Primarily, the experimenters’
observations on the outputs of working laser systems have been most

influential.

Operation as a Ring. Geometrically speaking, the beam paths that
Delang and Bouwhuis (Fig, 4(b) ) and Soncini and Svelto (Fig. 5 ) have
observed in their lasers are the sam- except that in the former the
roof reflector is imaged by the plane mirror, These are clearly ring-
typre bteams since rays traveling in either direction close on themselves,
and this 1s the same behavior as the computer solutions of Pasqualetti
and Ronchi (Fig. 8 ).
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Even for the case of 90° roof reflectors, the burn pattern and
scan trace by Teppo (Fig. 7 ) suggest that the laser is operating as a
ring. This is further emphasized by the computer solutlons of
Checcacel, et al., (Fig. 10(d) ) where a spacing between the roof
reflector surfaces of 32\ gives ring-type operation. This spacing is
the same order of magnitude as the width of the roof edges on the prism
used by Teppo. So 1t is deduced that real roof reflector resonators
operate as ring resonators, and stable rays of thls type are therefore
sought by this geometric theory. (A geometric theory for curved-mirror
ring resonators has been given by Clark, Ref 10, and by Rigrod,

Ref 33.)

Physical Modes. The modes observed by Teppo were evidently not of

high purlity. In his experiment, as with the roof-top ruby rod
experiments and Checcacci's computer work, the roof edges are not
geometrically excluded. Only in the computer solutions are the roof
edges of the 90° roof reflectors perfect - the space being in effect a
perfect abeorber, Real devices, therefore, probably suffer from
diffraction effects caused bty their imperfect roof edges, (Checcacci
and Scheggl - Ref 9 - bullt and tested a microwave model to confimrm
their numerical predictions. Roof edge diffraction was not obeerved,
but the wavelength, A = 3 cm, was much larger than any imperfections
in the apparatus,)

In contrast, Soncini ard Svelto's modes are of high purity. 1In
their case, as with the patterns drawn for DelLang and Bouwhuils®
resonator, the roof edges are apparently excluded, If this is indeed

the case, then Kahn's statement (see p. 19) applies and Ronchi's work
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can be extended to show that diffraction by the roof edge can be
neglected. This seems to be possible when roof angles less than 90°
are considered; that is, therefore, the class of roof reflectors
studied here, (Hermite-Gaussians propagating linearly are more typical
at optical frequencles than Ronchi's cylindrical Bessel functions, but
both are exponentlally low in the region of the roof edges and the
reflector edges,)

The question of counter-traveling waves also seems partly
satisfled by using 90° - 0 roof reflectors. When the two waves cross
cne another, they are apparently coupled by the lasing medium, and
standing waves are formed. Standlng waves were, in fact, observed to
be the usual case by DelLang and Bouwhuis; so it will be assumed that
the resonant modes in the resonators studied here are generally
standing waves. (It will later be shown that, in the crossed-roof
resonator, a gingle beam does not cross itself, but it is still
reasonable to expect standing waves.)

Geomeiric Tools. Since the roof reflectors considered here are

not necessarily right-angled, the mechanical stability noted by Gould,
et al., is no longer generally valid. It is shown below, however, that
rotation of an individuval 90° - & roof reflector around its roof edge
does not affect a resonator. Thus, 90° - @ roof reflector resonators
still have relaxed alignment tolerances and Gould's concept that there
will always be at least one mode still applies.

To determine whether a glven resonator is ctherwise stadle, the
paper by Kahn has had the most influence on the present work. His

inhomogeneous ray transformation, Eq. (3), is the primary geometric
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tool that has been used here, With Eg. (3), rays ci 1 be traced through
a roof reflector resonator, and established as stable ring-type 1ays if
they close on themselves, The rescnator dimensicns become the
determining factor as to whether this is possible and are the sought-
after stability conditions. The stability conditions found in this
manner are, not surprisingly, similar to the critical length, Eq. (1),

computed by Soncini ani Svelto.

Ir‘\'
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III. Characteristics of Roof Reflectors

The most well known characteristic of 90° roof reflectors is that
the direction of a reflected ray remains uachanged as the reflector is
Totated around its xoof edge (B-direction in Fig. 2 ). In this chapter,
i1t is first shown that this is true for the 90° - @ roof reflector; and
second, Eq. (3) is developed for tracing rays in roof reflector

resonators,

Rotational Invarxrilance

To demonstrate that the direction of a reflected ray is not
altered when a 90° - a roof reflector is rotated around its roof
edge, a convenient way of visualizing the reflector as "unfolded® is

introduced here, Once this property is established, the physical

~

dimensions of a 90° -~ @ 1roof reflector are used to define quantities
which will be useful in later chapiers.

Ray Crossing Angle. For roof reflectors with roof angle 90° - a,

it is noted that a ray 1s no longer retro-reflected parallel to its
incident direction, Conslder, for example, the roof reflector of

Fig. 11 vhere a ray crosses itself at P after two reflectlons at B1
and Bz. The ray crossing angle, Angle BIPBZ' is found by the following
geometric considerations (Ref 7:178-179).

Let constructions fﬁi and FB, be nommals to thelr respective

surfeces. Then from quadrilateral BIFBZVa
Angle B,FB, = 90° + a (&)

( 28
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Fig. 12.

Unfolded Roof Reflector
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From triangle BiFBZ’ it follows that:
g, = 90° -a-4§ (s)

Then, since the reflections are specular, the result from summing the

angles in tr.angle B1P82 is

Aogle BB, = 20 ' (6)

Also, since the incident ray makes an angle ei with the axie of the
roof reflecter, EV. and the reflected ray makes an angle Or. from
triangle CFC'1

0, +0_ = 21 (?)

where both ray angles are measured with respect to the forward
direction of the ray,

Unfolded Roof Reflector. A constrvction which will be useful

later is shown in Fig. 12. (Ref 45:713) 1In this drawing, line ZW
is the axis ¢f roof reflector A1VA2' while 1line NV 1 normal to the
axls, The image of the roof reflector in its own surface, Alv, is

AVA3 with axis N'V., The second image - in surface A"V - is ATVAY

2 1

with axis 2"V and nommal to this axis N"V, Each of the two reflections,
or "unfoldings," amounts to a rotation of the roof reflector through
90° - a around its yoof edge, V. The second image thus faces 180° - 2
from the roof reflector's direction so that the image axls, 2"V, makes
an angle 20 with the real axis. Axis ZV and its image - and normal NV
and 1ts image, N"V - are seen to be symmetrically positloned with

respect 1o line ﬁTV. which acts the same as a plane mirror except that
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ihe image {w¥hich has actually undergone two reflections) i3 inverted,
Line N'V is inclined to NV at an angle o and, in this case, is
coincident with the first image axis,

A ray, such as in Fig, 11, can be unfolded into a straight line,
Thus a ray from P, making an angle 91 wlth the real axis, passes
through 1ts twice reflected image point, P', and makes an angle Gr with
the image axis. (But P' is not the reflection of P in line N'V unless
P lies on the axis, in w:... case PP' is perpendicular to N'V.)
The distance PP’ 1s equal to the distance P'_:B1 + -_132 + '1'3—21_3 in Pig. 11
(Ref 3511191-1192), and the same angular relationships hold, The
latter may be seen from triangle CVC® in Fig. 12. The sense of er has

been inverted, however,

Rotation Around Roof Edge. If axis ZV and direction N'V (4in Pig.

12 ) are thought of as fixed in space, and the roof reflector is
rotated around its roof edge by an arbitrary angle £, Filg. 13 results,
The first and second images - and the axes YV, Y'V, and Y"V as well -
are seen to be rotated an angle B with respect to the fixed direction,
Now, the first image of the fixed axis, 2'V, is tilted 28 with respect
to 1ts former direction, tut Z"V remains stationary. This may be

demonstrated as follows:

Angle zvA, = 228 g (8
Angle Z'VA, = Angle ZVA, (9)

Angle Z'VA5 = (90° - a) - Angle Z'VA,

- 200—2-—@ + B (10)

31




Fig. 13,

Roof Reflector Rotated Around Its Roof Edge
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Angle Z"VAZ = Angle Z'VA; (11)

Therefore, by summing Eqs. (8) through (11):
Angle ZVZ" = 180° - 2a (12)

which is independent of B and is the same as for a perfectly aligned
roof reflector. -

This demonstrﬁtidn éould be carried out for a line from V to any
arbitrary point. For the ray crossing point, F, in particular, the
image point, P', unchanged; so the distance PP' 1s a constant and the
ray holds an invariant relationship to axes ZV and ZV, Therefore, the
direction of the reflected ray is unaltered and a 90° - a roof
reflector indeed has relaxed alignment tolerances as does a 90° roof
reflector. Now that this is established, all roof reflectors in
subsequent work will be considered perfectly aligred and the effects of
misalignment due to vibration or mechanical stress will be neglected.

Dimensions., It is apparent from Fig. 13 that all rays which
cross at a distance PV from the roof edge can be made to appear the
same by rotating the roof reflector until the axis, 7?. lies through P
and the image axis, T"V, lies through F'., In this position, let the
ray be known as the "standard ray" and 1t is 1llustrated in Fig. 14,
both folded and unfolded, Now let the dimension of the roof

reflector's surface, X;V. be d, and the distance 5;7 = d, The ray

crossing distance, PV = D, 1s thens

D = JZEQ -—l-a * *'kj; (13)

cos 7 sin 3
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If the standard ray strikes the roof reflector at A, (that is, the
aperture limit, then substituting d, for d in Eq. (13) defines the
maximun ray crossing distance, Do. This 1s the greatest possiblc
distance for which a ray can reflect from a 9° -~ a roof reflector amd
not diverge past the aperture.

The length of the ray's path from P back to the croesing point
will be important later and can easily be computed from Fig. 14(b).

This distance, FP* = £, is called the "loop length" and is
L = 2Dcos a (14)

For small values of the variant angle, @ << 1, first order
approximations of Eqs, (13) and (14) are

D = [%g (15)
L = 2D (16)

Roof Reflector Ray Matrix

Because roof reflector surfaces are plane mirrors, rays could be
traced by considering a specular reflection at each surface, A point-
imaging procedure has been worked out which does this (Ref 7:11-7), but
it is more convenlent to use matrix optics., This section develops the
ray matrix transformation for a roof reflector.

Coordinate Transformatlon. Let a ray propagating through an
optical system be described by the column vector of Eq. (2). Then,
upon passing through an element, the input ray, ;1, ie transformed into

an output rays
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-y -y

X " Ex (17)

vhere M ic a 2x2 matrix characteristic of the element. For a roof
reflector, consider the plane of the transformation to be perpendicular
to the optical axis through the roof edge. Then consider the input and
output raye to be extended from the actual points of reflection to
points x, and x,, Tespectively, as in Fig. 15(a). Thus, the input
ray has coordinates (xl. 91) in the transformation plane, and the

output ray has coordinates (12, 82). The transformation between these

X, COB 61 \
X = - cosZO1 = 2a) (18)

0, ~ - °1.* 20 | (19)

coordinates is

Optical zystems invoiving mirrors - such as resonators - are
frequently unfolded into a series of equivalent elements aligned on an
axis., This 1s done be reflecting the output rays of the mirrors through
their transform planes, Performing this operation on a roof reflcector
recults in Fig, 15(b), where the ray is obviously discontinuous.
Inverting the image in Fig. 15(c) (that is ;2 - ;;2 ) emphasizes the
relationship between ray slopes and nearly aligns the posltion
coordinates. One more operation - rotating the inverted image through
2q in Fig. 15(d) - recovers the unfolded reflector picture.

The input and output rays have now become continuous, but the
optic axis is no longer straight (thus, the position coordinate, Xy
s measured along N"V). From the figure, a better cholce for the

iranaform plane would apparently be 577. vhere the position coordinates
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coincide at Xy If a is small and only paraxial rays are considered,

x1 and ) approach Xqge and the transformat!on becomes simply:

2 T ox (20)

o, = -8 +2 (19)

2

Homogeneous Matrix. This transformation cannot be put into the

form of Eq. (17) except in the special cases of a =0 or 91 =,

In the first case:

-1 0
N - (21)
0 -1
While in the seconds
-1 0
M= (22)

Equation (21) has been given for 90° roof reflectors by Maitland
and Dunn (Ref 29:1111), except that they define the sense of the slope
with respect to a fixed direction (not always the forward direction of
the ray). Equation (22) is seen to be the correct transformation for
the standard ray only. In either of these cases, the transformation,
M, is not particularly useful. (For another approach to the
homogeneous matrix transformation, see Appendix A,)

Inhomogeneous Matrix, Ray coordinate transformation Eqs, (19) and
(20) (for the small angle approximation) can be written in the linear
form of Eq, (3). The transformation 1s thus inhomogeneous (that is,

the additive constant is non-zero), and the ray matrix transformation

( | %




for a roof reflector becomes:

- + (23)
This 1s extremely simple, but.is not the usual sort of matrix
transformation encountered in the analysis of laser resonators, But as
pointed cut by Kahn (see p. 19), it is independent of the ray
parameters because of the paraxial approximations made.

Nonlinearity. Transformation Eq. (23) has been derived assuming
that the Anput ray is incident on the roof reflector above the axis, as
the ray labeled A in Fig. 16. Consider ray B in that figure, which is
incident with the same slope as A, but below the axis. Both rays cross

themselves at 20, but the correct transformation for ray B is

( x, cos 91
X ® - cosie1 + 20) (2v)
92 - - 01 - 20 (25)

Evidently, then, the correct expression for the inhomogeneous

matrix transfommation, for small angles must bes

- * (26)

vhere the "i" sign is a “nonlinearity"” hbecauce it is a discrete
function (this was noted by Kahn for thin diamond-shaped prisme - Ref
21:867). Apparently, the cholce of sign must be the same as that of

Xqo In unfolding ray B, the image axis would be angled downward by 2u,
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Fig. 16, Discrete Nonlinearity
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and the transformation plane, N'V, tilted -a. Otherwise, the unfolded
reflector ls the same, '

If Tay A were held at the same incident slope, but translated
downward in Fig. 16, its reflected direction would not change smoocthly
as it moved acrouss the roof edge. In theory, the ray could be moved as
close to the roof edge as desired - from elther top or bottom ~ until
reflection exactly from the roof edge took place in some limiting
process. But the direction of this reflected ray is meaningless
because (1) geometric optics 1s invalid when distances approach a few
wavelengths and (2) real roof reflectors do not have perfect roof edgee
anyway. The roof edge'is to be geometrically avoided.

Equation (26) then becomes the most important idea in this
chapter, and will be used extensively in the following theory. The
unfolded roof reflector, also developed in this chapter, will be used
in an eguivalent waveguide to decide whether the plus or minus sign is

10 be used in any individual transformation.
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IV, Resonators With Roofs Parallel

The first resonator to be considered 1s with opposite roof edges
contained in a plane and parallel. Thls rescnator may be represented by
a two-dimensional drawinz as in Fig. 17. There are no restrictions on
the y-dimension of the reflectors, of course, but only rays which are

contained in the xz-plane can stay in the resonator.

Stable Rays

The standard geometric approach for analyzing laser resonators in
two-dimensions is to trace a ray through a round-trlp using matrices,
Eigenvalues of the round~trip system matrix then determinc whether
stable rays exist, This approach cannot be used with a roof reflector
resonator because the ray transformation matrix, %3. (26), for a roof
reflector - and subsequently the round-trip system matrix - is
inhomogeneous (Ref 301249)., Also, there 1s a cholce of signs when
applying Eq. (26). This problem can be conveniently solved with the
equivalent waveguide developed below,

Equivalent Waveguide. Stable rays in laser resonators can also be

thought of as propagating through an equivalent iens waveguide, ag in
Fig., 18(a). There is no equivalent “"lens" for a roof reflector, tut an
equivalent waveguide could be drawn using Fig. 15(b). This has been
done in Fig, 18(b), but the ray is discontinuous., As has been seen in
Chapter III, the ray can be stralghtened out if the roof reflector is
unfolded - Fig. 15(d) - however the axis no longer appears as a

straight 1line, but is bent up or down by 2.
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Fig. 17. Resonator with Roofs Parallel

Fig. 18. Equivalent Waveguldes
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An equivaient wavegulde - using unfolded roof reflectors - ig thus
drawn in Fig. 18{c). 1In this figure, the variant angles - a, and a, -
are relatively large to emphasize the bends. The direction the axis
bends depends on the ray that is being traced, tut the rule for
constructing the equivalent waveguide 1s simple: the axis always bends
tovard the ray.

An unconventional feature of this equivalent waveguide must be
pointed out, When a roof reflector is unfolded, the image is inverted
(see pp. 30-31). Thus, every other seztion of the waveguide in Fig,
18(c) 1is actually inverted, As a reminder, arrowhesds (A) are drawn
on each section of axis indicating which way is "up.,”

The equivalent wavegulde just constructed 1s a valuable aid in
visualizing the way in which rays can be analytically traced with
matrices. If a ray 1s incident on a roof reflector on the same side of
the axis as the arrowhead, then the "+" sign is to be chosen when
applying tranzformation Eq. (26), and conversely.

First Fattern. S<able rays (ring~type like those in Fig., 5 or

Fig. 8 ) in the equivalent waveguide developed here are those where the
axis oscillates periodically armnund the ray. 1n terme of analytically
tracing a ray, this is the equivalent of one round-trips two reflector
transfomations and +translation through two axis lengthe {2L),

In Fig. 1€(¢), the third section of wuveguide axis makes an angle
of 2((11 - az) with the axis of the first section., If an equivalent
vavegulde vere drawn with alternating up and down bends, this angle
would be repeatied every other section. No ray can be contained in such

a waveguide unless 2(011 - a?) = 0, The two cases of &, ¥ a, aud

by



S —

®y =a,=0a are illustrated in Fig. 19(a) and 19(b), respectively,
where only the axis and ray are drawn for simplicity. In Fig. 19(a),
the ray crosses the axis once between each bend - but at an angle
different by 2(a1 -Aaz) each time - and dlverges. In Filg. 19(b),
however, the ray always crosses the axis at the same angle, By
inspection, only a ray making an angle a with the axis is stable, and
this ray is called the "first pattern” for later convenience.

To generate the system matrix for one round-trip, assume for the
moment that a, ¥ 0, and that the reference plane is chosen at mid-
axis (1/2). Then, starting with a ray (xo. eo), the sequence of matrix
operations is worked out here for illustration, and reference to Flg.
19(a), shows that "+" signs are chosen in the reflector transformations,

First, translate to 31:

X 1 L x
i ~ 2 0 (27)
91 o 1 90
Second, transform through R1:
X, . -1 0 Xy . 0
62 C -1_ L"91_ _ZaL
- 1 - a—ry -
-1 -% X0 0 )
- + ’ (28)
Third, translate to Rza
ks
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(a)
AXIS

(%) N > RAY
x \_/( AXIS

Fig. 19. Ray lropagating through Equivalent
Waveguide - First Pattern

(a) \\\‘ L Y > RAY

Flg. 20, Second Fattern
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x3 i1 0 12-1
03 i U 1— _ezd
175 | % 2y
- + (29)
I 0 -1- .60- 2a1
Fourth, transform through an
pu— ﬁ o -1 p
X . -1 0 x3 . 0
e“ ] 0 -1" “eu_ _2&12
P 31.‘-- - - p=
_ 1 = Xy . «?.I.-a.1 ( )
- - \ 30
..o 1- ._eo-J I 2(<:L1 ) ;
Finally, translate to the reference plane:
~ 2
L
X5 - 1 '2' x“
05 I 0 1~ l..el‘d
] 1 2L- r-x R -9Lo, + Iaz
o e° + 2 ( 1 ; (31)
-2{0, =~
oxrs
xg = %, + 216, - 310.1 + m2 (32)

By now setting Xs ™ X, and 65 = 8, for the first pattern, Eqs. (33) and

(32), respectively, may bo satisfled only for:

a = a (34)
8 = o (35)
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Thus the stable ray found by inspectlon is confirmed analytically.
(The tact that Xy 1s unspecified indicates that the ray is not unique
but that a farily, or packet, of rays exists.)

Second Pattern. There are other stable ring-type rays which close

on themselves afier more than one round-trip, so the equivalent
wavegulde plcture becomes more useful as the number of roof reflector
transformations increases, (In general, after P round-trips with two
transformations each, there are 2%P possible sign sequences.) For two
round trips, the number of axis bends is four. The equivalent
waveguide is drawn in Fig, 20(a); the stable ray is shown as it
appears in the resonator in Fig., 20(b).

The system matrix may be worked out as above. Using the same mid-
axis reference plane, Fig. 20(a) indicates that the sequence of signs
that must be used in applying Eq. (26) is +, -, -, +. After these four
transformations and translation along the axis four times (41.), the
resulting ray ie

Xy } 1 43 X, . -l+L(a.1 + az) (36)

$9 0 1 60 0

Thie shows that 69 - 90 g0 that for rays of this, the second pattem,
it is thus required thats

0, = a, +aq, (37)

to satisfy Eq. (36). Stable rays, thexefore, ave only those which cross
the axie &t ihis angle; but note, howaver, that the restriction that

ay = az = in the case of the first pattern - is removed,
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Higher-order Patterns. In general, let p2 denote the pattern

number -~ which is the number of round-trips that a ray makes before
repeating the same path in the two-dimensional resonator - so that the
first pattern is henceforth designated P, - 1. Not all of the
vatterns are independent of one another, as will now be shown.

Consider a resonator with two roof reflectors of equal aperture
and having a =a,=a, but with the axis length, L, being variabls.
Fig. 21(a) then shows a standard ray associated with the right-hand
reflector dlverging past the edges of the left~hand reflector. As L 1is
decreased, a p, = 1 pattern becomes stable in Fig. 21(b). This
pattern disappears as L is further shortened (Fig. ’Zi(c) and (d) ),
until a p, = 3 pattern appears in Fig. 21(e). Evidently the axis
could se further shortened until higher-order odd-numbered patterns
appear, This same demonstration could be carried out starting with
Py = 2, and all even-numbered patterns would be seen to be similarly
related by the varlation of axis length,

Drawings of high-order patterns become complex, but the equivalent
waveguide picture gives an easy way to visualize the patterns.
Patterns P, = 3 through P, = 6 are unfolded in Fig, 22 where the
slgn to be applied to each roof reflector transformation is also shown,
Extending both odd and even patterns to the general case, the sign
sequences are (there are 2p, slgns in each sequence)

(1) for P, odds
I (38)

by




.

(a)

Rl

Fig. 21. Relatlon of First and Third Patterms




~

Fig. 22, Equivalent Waveguides for Higher-Order Fatterns
(If a ray is incident on a roof reflector on the
same slde of the axis as the arrowhead, then the
“+" gign 1s to be chosen when applying Eq. (26),
and conversely.)
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(2) for P, event
l-.- - % L. -Il- + - .. +l (39)
pz signs pz 81@3

Applying these sign rules to tracing a ray through P, round-trips
(starting and ending at mid-axis), the general formm of the system
matrices are

(1) for P, odds

"up2+1-‘ 2 N ) “pllpylaytay) + 2(a)-0))] ko)

9 o 1 0 - 2(a, - a,)
+ 0 2
i 4p2 1& | | 1
(2) for P, even:

o 1 -~

X 1 2p.L x -pZL(a. +a,)

4])2"'1 - 2 0 + 2 1 a‘Z (ul)

It is seen that if a, = @, (which is indeed required for ring-type
rays to exist when p, 1is odd), then Eqs. (40) and (41) bvecome
identical, In elther case, however, the initial angle which the stable

rays make with the axis is

P
0, = 3% (o, +a,) (42)

This angle is indicated 1in Fig. 22, ‘

One more feature of the patterns illustrafed in Fig, 22 1s thelr
increasing distance from the axis with pattern number. But for small
variant angles, the distance a ray travels before closing, sz. is
approxizately the same as the axis length for the same number of
round-tripsi



PPz - 2p, L (43)

Since the ray transfer matrices used to derive Eqs. (40) and (41) are
themselves only goed to first oxder, it is not surprlzing that this
length appears as the upper right elément of the 2x2 matrix in these
equatlons.

Importance of the patterns. The importance of the different stable

ray patterns 1s that they are essentially separated in space, aslde
from a finite number of crussing points., The patterns that can exist
depend on axis length and roof reflector aperture as is evident from
Fig. (21). This dependence 1s discussed below under stability
conditions, but for now let it be sald that different patterns could
operate simultaneously, Patterns Py = 1, 2, and 3 were in fact
obeerved in the resonator of Delang and Bouwhuls. They remark that the
e different patterns were observed to be operating simultaneously (see
P. 13 and Fig, & ).

When @, = @, = 0 for a $0° roof reflector, both Eqs. (40) and (M)
become homogeneous and are automatically satisfied by a ring-type ray
of any pattern number, Thus there is always a stable ray in this case,
and Eq. (42) indicates that it is parallel to the axis,

Stability Conditions

Now that stable ring-type rays have been found, the parallel-roof
resonator dimensions thatv allow them to exist - the stabllity
conditione - can be determined,

Variant Angle Conditions. From the solutions of the general ray

transfer Eqs. (40) and (41), restrictions which must be imposed on the
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roof reflector varlant angles - for stable rays to exist - are
(1) for P, odds
a, = a, (34)
(2) for P, even:
(No restriction on variant angles) (44)

Thus it is easy to bulld a vractical device which will not operata in
any odd pattern, simply by choosing a, va a,.

Axis Length and Aperture Conditions. The dependence of roof

reflector aperture and resonator axis length - held over from the
discussion of Fig. 21. - wlll now be quantified. In Fig, 23, 1let the
two roof reflectors be identical with surface dimension do. The upper
drawing shows the maximum axis length that just allows the P, " 1

stable rays to fit in the resonator - using the full apertures of the

!”\-

1eflectors, The lower drawing shows the same condition for the P, = 3
pattern.

The odd patterns have previously been shown to be related, and that
1s again evident here. In Fig. 23(b), two standard rays (filling the
apertures) for the right and left reflectors - virtually crossing st
Q' and Q" - are each reflected by the opposite reflector and join at Q.
The total path length for three round-trips in the P, = 3 pattern is
thus the same as the path length for one round-trip in the Py, ™ 1
pattern:

P = 212 (46)

where £ 1s the standard ray loop length defined by Eq. (16). The

path length is, in fact, a constant for all ¢ ld-numbered patterns by

S
[



(a)

Fig. 23.

Dependence of 0dd Patterns on Axis Length and Aperture

55




the demonstration of Fig. 21. Using the relations of Chapter II1 -
and consldering the maximum path length when filling the apertures for

threshold conditions as in Fig. 23 - this becomes, to first order:

P = U4 D,

- 2% 4 (1)
Q

Total path length for even patterns has a similar relationship,
shown in Fig. 24, Here o 7 a, with @, <a,. Fig. 2l(a) shows
an unsuccessful attempt to construct a P, = 2 pattern vwhere a ray from
the left reflector, with virtual crossing at S', diverges from the
resonator after reflection from the right reflector. This is because
D., the crossing distance for the right reflector, is less than that
for the left, D;. Fig. 24(v) shows a P, = 2 pattern successfully
constructed when the ray crossing points, T' and T, for the right
reflector have been reflected by the left reflector to join at T. Thus
the total path length is again t{wlice the loop length from T, and ~ since
all even patterns are related - ihis 1is true in general, For smell
angles, the ray crossing distance in Fig. 24(b) 1s approximately Dys

s0 (to first order) for even patterms:

P = 4D,

22 4 (46)
a

vhich 1s identical to the expression for odd-numbered pattexns, but

the larger of a1 and o, must be used.

2
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Fig. 24, Dependence of Even Patterns on Axis Length and Aperture
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Total path length has also been given in terms of axls length for
odd and even patterns by Eq. (43), correct also to first order, If
L(()p) is the maximum axis lengih that will permit stable rays in pattern
p2. then it is seen that the conditions for statility are
(1) for P, odd

2D JZ 4
L Lg 5 TR (47)
(2) for p, eveni
¢ 1 S 1(® . 20 _ 'ﬁdo 9?)
0 P, P,

where the larger variant angle must be used.

Significance. The significance of the above result is that if L
is greater than Lép). ther stable rays of pattern number P, and hligher
do not exist, For example, if L = 1,1 Do. which is grester than
L((Jz) = Dy, then only stable rays of the first pattern will exist.

Thus, by appropriately choosing L, it is possible to select only low-
order patterns., As a further example, if L = 0.7 Do. then only Py * i
and p, = 2 could operate, tut if a, ¥ a,, then p, = 1 1s excluded.

Fattern Axea. If L is less than L(()p). then there ic no unique
stable ray, tut an entire “packet.,® For example, the dependence of the
ray packet, for Py = i, on L is shown in Fig. 25. From the figure, the
following facts can be generalized which are valid for both odd and
even pattern ray packetss
(1) For L(()p) >L> Lop/2 the ray packets are limited by the

apertures of the roof reflectors and the roof edges are geometrically

excluded.




-

(a)

(b)

EXCLUDED
AREAS

(c)

L=2

(d)

3D
L"Tg

Fig. 25. Dependence of Py ™ 1 Ray Packet on L
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(2) For L= Lgp}z the area covered by the ray packet is a maximum,
and the pattern approaches the roof edges,
{(3) For L< I‘Op/z the ray packets are no longer sperture limited, tut
de diffract from the roof edges,

For small angles, the maximum area covered by the ray packeis is

glven by the approximate expressions:

(1) for P, odds 2
do 2 1
Apy = —3(p-ap;-3+ap,) (48)
a P,
{2} for P, evens 2
2 .
Am"'_qi(l’z“apz) (1‘9)
ap,

Fig. (26) 131s a plot of geometric pattern area as a function of axis
length. The peak values have been computed from Eqs. (48) and (49)
using d, =1 cm and o = 0,01 rad (which gives D, = 71.1 cn),

Resonant Modes

The stable geometric ray "pattexrns" just developed are not to be
confused with resonané "modes.” Resonant modes are the electromagnetic
flelds in a resonator which, &t a discr:te frequency, spatially
reproduce themselves in amplitude and phase an they reflect back and
forth., The patterns provide a way of predicting the physical
distribution of the fields in the resonator. This follows from the
staterent in Kahn's paper, quoted on p. 19, Thus, for example, in
Fig., 25(b) the avea of the rescnator coversd by the xay packet could
be expected to have large field smplitudes while the exclnded arsas

have small field amplitudes (or none).
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Fig. 26. Dependence of Pattern Area on Axis Length
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Fig. 27. Roof Reflector Aperture-Equivalent Wavegulde
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Gaussian Modes, Particular field distrilutions which are known to

be self-reproducing in laser rssonatofw (with rectangular reflectors)
are Hermite-Gaussian modes. Therefore, 1t is reasonable to assume that
the resonant modez of ~oof reflectur resonators are Hermite-Gausslan,
However, these modes wue predicted to exist only in cases whers the
resonator is designed to operate in a particular pattern not
approaching the roof edges. Otherwise, diffraction by the roof edges
becomes important and the resovnant modes are no longer pure Gaussians,

Steler (Ref 41) has shown that a Gaussian beam can be described by
an equivalent packet of rays. Accordiag t» hls work: "the position of
the beam center, the beam spot size, and the phase front curvature can
be found for a Gaussian beam passing through any sejuence of perfect,
large-aperture lenses or flat dielectric interfaces.” (Ref 41:11229)
Although in the present case, "perfect, large-aperture lenses or flat
dielectric interfaces" are not involved, Steler shows that if cays can
be traced through an optical system having an inhomogeneous asystex
matrix like Eqs, (40) and (41), then the quoted properties of a

Caussian beam will be carried by the equivalent ray packet (Ref 41:1231).

The fact that Steler's theory necessitates large apeitures
remains, however. If the ray packet patterns in a roof reflector
resonator are to be erulvalents of Gausslan beams, they are obtviously
aperture-limited. A quantitative releaticnship between the averturing
effect and the dimension (spot size) of the ray packet that should be
chosen as a Gaussian beam equivalent is beyond the scope of thiz study,
but the following qualitative argument shows that, indeed, a Gaussian

beam can propagate in rocf reflecior resonators.
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Fox and L1 (Refs 16 and 28) have shown that plane mirrors in laser
resonators can be treated as apertures in eguivalent waveguides., Thus,
self-reproducing modes can be found which propagate through a waveguide
of equally spaced apertures, Now for roof reflectors, the reflecting
surfaces are plane mirrors, and Fig. 27(a), for example, is Fig. 19(b)
redrawn with these plane mirrors in place, The effect of aperturing on
the ray packet is evident in this figure, where, for small angles, the

height of the ray packet is

V2 4,

h = ——-al (50)

while the aperture of the mirror surfaces normal to the direction of

propagation is
V2 4,
~2 (51)

D =

Since the reflecting surfaces are stigmatic (Ref 20:94) they could
be replaced at c¢nce by apertures normal to the direction of propagation,
but 1t must be required that h < b to geometrically exclude the xoof
edger, I{ this condition is satisfied, Fig. 27(b) follows - showing
aperturus replacing the roof reflectorxs. Unlike the waveguide
representation of a Fabry-Perot resonator, the spacing between
apertures i1s not uniform, nor are the apertures aligned, The spacings
in Fig. 27(b) are

L, = L-ﬁdo (52)
L, = V24, (53)

Figure 27(b) also shows a sketch of u wavefront which, after four

apertures, is a self-reproducing Gaussiun - even though the apertures
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are offset, This latter does not prevent the predicted modes from
being Gaussian because, if the spot size (full width at the 1/°
amplitude points) is less than h, the amplitude in the offset regions
is negligible. Thus, the paper by Ronchi is applicable in this regard
(see pp. 19-20).

From Chapter 1I, there is evidence that the Gaussian modes
predicted here are corrects the output from ruby by Soncini and Svelto
was reported to be pure Gaussian. (Their critical resonator axis
length, Eq. (1), appears to be similar to Eq. (47) developed here,
with P, = 1Z1)From their discussion, however, it 1s clear that they
mean Lc ~ L0 /2, but thelr description of axis length longer or shorter
than Lc is backwards compared to this theory. Hexre, 1L < Lc indicates
that it is roof edge diffraction that spoils the output bean, whereas
Soncinl and Svelto thought L < Lc neant the pattern was spilling past
the apertures, See p. 14.)

Axial Mode Frequency Interval. Figure 27(a) points out another

important feature of the resonator patterns. Since every stable ray
crosses the axis at exactly the same angle, every ray of a particular
pattern has the same length for a closed path, To first order, this
distance 1is PP2 = 2p,L, from Eq. (43),

‘The frequency interval tetween resonant axlial, or longitudinal,
modes can then be computed as follcows. Let a ray packet be the
equivalent of a Gaussian mode (according to Steler) with resonant

frequencys

f, ° © (5%)




where c is the velocity of light and A it the vavelength of the paci}
axial mode. Then the requirement that the mode be self-reproducing

(standing waves) establishes the condition:

2p,L
2gn ~ 2=+ 0 (55)
q
or
2p2L
2qm = 2w . fq +¢ (56)

vhere § is a phase shift due to reflection from the surfaces of the
roof reflectors. The same requirement on the next higher allowed
frequency is

2p2L
£f . +0 (57)

20+ 1) = 2¢ = el

Subtracting Eq. (56) from (57) glves the axial mode frequency interval,
which is an expected result:

ot = 2;21, (58)

Transverse Mode Frequency Interval. Since an infinite set of

Hermite-Gaussian modes is mathematically possidle for every pattemrn,
the resonant frequency, fqmn (for rectangular reflectors) depends on
the orders, m and n, of the Hermite polynomials., This is given by

(Ref 11190):

1A+4D

2qm = 2 5 (59)

2p.L
o -
= fqmn - (m+ n+ 1)cos

vhere A and D are elements of the homogeneocus round-trip ray matrix:

(60)
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This is from the theory of Arnamd where, 1t is pointed out, stable rays

which close on themselves satisfy Eq. (60) only ifs
A =D=1 and B =¢C = 0 (61)

In the present caze, the closed path patterns are known to be solutions
of Egs, (40) and (41); and consequently, they also satisfy the
homogeneous Eq, (60) with the restrictions of Eq. (61). Therefore,

A+ D=2 and cos'lA;D

= 0 in Eq. (59), and for any change in a

or n, the transverse mode frequency interval is given by:

Af = 0 (62)

mn

Losses in the Unstable Region. All laser resonators suffer losses

as energy is diffracted past the apertures of the reflectors, btut this
geometric theory is not capable of predicting them, (A geometric
theory of diffraction has been given by Keller, Ref 23, but is not used
here.) However, a simple geometric construction has been devised for
estimating losses in the P, = 1 pattern when the resonator is unstabdle,
that 1s ay ¥ ye

An equivalent wavegulde for the p, = 1 pattern and a, ¥ a, is
shown in Fig. 19(a) - with succeeding alternate sections rotated an
additional angle 2(a1 - 2) with respect to the first section. If this
waveguide is drawn through many sections, 1t would eventually curve

through an entire circle of radius apprcximately given bys
L
ro= (63)

(Tnie is the radius of the cylindrical Bessel functions given by

Ronchi,) A ray cannot remain inside this waveguide, tut the maximum
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distance a ray can travel can be estimated by calculating the chord

length in Fig. (28):
214, [1/2

z (64)
@, - a,)
In terms of the number of (one-way) trips or reflections that the ray
makes in the resonator, this 1is

1/2
- [L. ‘_12] / (65)

2
a -a, L

M =

[ ]

If a packet of rays 1s then considered to be launched through the
vaveguide, all rays will be lost after M reflections, so the geometric
loss, 66' can be approximated by:
1 @ -a, |1/2
66 -5 " [—J_T— a;] (66)

This expression 1s in qualitative agreement with what would be expected
for the p, = 1 pattern in an actual device (larger dy, less loss).

Eigenpolarizations. As has been noted in Chapter II, only those
plane polarizations or}ented parallel or perpendicular to the roof edge
of a roof reflector are reflected with their planes of vibration
unchanged. Strictly speaking, the theory of Bobroff (Ref 5), which
shows that thes: are the self-reproducing polarizations (eigen-
polarizations) in a 90° roof reflector resc..tor (roofs either parallel
or crossed), assumes that polarized wavefronts propagate parallel to the
axis in the resonator. The direction of propagation in the 90° - q
parallel-roof resonator is not necessarily parallel to the axis, but
the plane of incidence {xz-plane in Fig. 17 ) is nevertheless

perperidicular to the roof edges. This is sufficient to show that these
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Fig. 28, Estimate of Maximum Ray length
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two plane polarizations are still the elgenpolarizations of this
resonator,

In a laser system using a parallel-roof resonator, the elgen-
polarization that would be dominant depends on two factors. Flrst is
the presence of other surfaces, such as Brewster windows on a gas tube
or the Q-switch cell shown in Fig. 5. Second is the loss for each
polarization at the four roof reflector surfaces. For metal front-
surfaced reflectors, for example, these losses could be computed from

the Fresnel formulas given by Born and Wolf (Ref 61628-629),

~
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V. Resonators With Roofs Crossed

The resonator considered in this chapter 1s similaxr to the one
studied by Gould, et al., shown in Fig. 2. Here, the right-hand
reflector, Rys has variant sngle @, and roof edge horizontal (paxrallel
to the y-axis), and the left-hand reflector, R,, has variant angle a,
and roof edge vertical (parallel to the x-axis). As in Chapter 1V,
the variant angles are considered to be small, so the apertures of the
two reflectors are considered equal and (approximately) square, The
resonator axis is of length L so that when the roof reflectors are
perfectly aligned, the axls joins the midpoints of the roof edges.

The crossed-roof resonator can be considered as a three-dimensional
superposition of two two-dimensional resonators. This is shown in
Fig. 29 where a vertical cross-sectlon of the resonator - called the

"elevation” - 1s shown to contain the profile of R, and the roof edge

1
of RZ' A horizontal cross-section - called the "plan" - is shown to
contain the profile of Rz and the roof edge of Rl' This decomposition
suggests that stable rays in the crossed-roof resonator can be found

from superpositions of the patterns of Chapter IV. This is indeed the

case, as will be shown after some preliminary worxk,

Three-Dimensional Ray Tracing

Before considering the general case of both variant angles non-zero
in a crossed-roof resonator, the basic geometric tool for ray tracing

will be worked out and applied to two simpler examples,
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Fig. 29, Three-Dimensional Roof Reflector Resonator as a
Superposition of Twc~Dimensional Resonators
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4xl4 Matrix Transformations. In three-dimensions, as in two, rays

can be described analytically with column vectors., This may be done by
projecting a xay into two orthogonal planes; then two cooxdinates -

position and slope - are required in each plane, as in Fig. 30. Thues

“d
]

(67)

)

b

where the x~- and y-displacements are independent of one another, as are
the angles 9 and . As 1in two-dimensions, the forward direction of the
ray determines the sense of the angles ® and 9. (Ref 22:502-504)

The propagation of three-dimensional rays is similar to that of
two~dimensional rays. Since the two projections are independent, the
familiar translation matrix of first-order optics can be used when
sultably arranged in a partitioned 4x4 form. For example, to translate

a ray through a distance L, the matrix equation is

x4 1 L}J0 O Xy
91 ] 0o 1]0 O 60 (68)
Y4 0 0}11 L Yo

i fpi. | 0o o0}o 1- I Q)o-

vwhere the zeros in the upper-right and lower-left quadrants clearly
indicate that the x- and y-directlons are uncoupled,
The 4x4 ray transformation matrix for a roof reflector 1‘3 also a

partitioned form of 2x2 matrices and ~ 1n the general case of non-zero
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Fig. 31. Image Inversion by a Roof Reflector
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varlant angles - follows from the inhomogeneous transformation of
Chapter I1I. To develop this three-dimensional transformatlon, first
consider reflection by a plane mirror as in Fig, 31(a). Since an image
is neither inverted nor reversed, the transformation for a plane mirror

i an identity matrix:

'x,l" "1 o030 olf ::01
8 o 1o olle
vy o o]t o Yo

Lqi. L 0 o0} 0O 1- bq%L

For a 90° roof reflector, however, the image is inverted while left-and~
right remain the same as in Fig. 31(b). The transformation for this

roof reflector is then:

- - — -

Xy -1 010 O X,
e 0 -1 0 0 0
1 0 (
= 70)
¥y 0O o011 0 Yo
O o}o0o 1

Thus, considering c¢nly roof reflectors whose roof edges are in the x-
or y-directions, the minus signs {which signify inversion) go with the
ray projection in the plane perpendicular to the roof edge.

Extending the transformation Eq. (70) to the case of non-zero
variant angles, the ray transformation is as glven by Eq. (26) in the
projection perpendicular to the roof edge, Using Fig., 29 as an

exanple, the transformation for a ray incident on R1 is given by:
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] [t oy0 ofx] [o]
8 o -1]o offe 2
- ol £ 1 (7)
vy o o1 oy, 0
o olo 1 0
Re8 | ' J L %] | © ]

where the "+" sign is to be taken when the ray is incldent on the upper

surface of Rl' and conversely, For RZ' the transformation is

x, 1 040 0f[x,] 0]
o, o] © 2fo ofjef |0 (72)
yi , ] 0 i-1 0 yo 0

Uvid i 0 0 0 -1 | ~Qb- LZ&Z“

vhere now the "+ sign goes .ith a ray incident on the front surface,

and conversely,

Right-angled Crossed-Roof Hesonator. As a simple example of

three-dimensional ray tracing, the ray shown in Flg. 2 is particularly
easy to follow, Here, o, = a, = 0 - so Egs. (71) and (72) are both
homogeneous - and the ray makes two round-trips before closing on
1teelf, To trace this ray, consider a starting point in a plane at
mid-axis. The ray then translates a total of four times the length of
tae axis and four transformations before returning to the reference
peiut. Following this ray around, it is nét surprizing to find that

‘the gysten matrix is

xg | 1 e ofx
9 o 110 ofla
7| - 0 (73)
Y o o l 1wy,
f o olo 1
el . 1 L%
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Equation (73) 1s just the result expected from tracing a ray
through one round-trip in a plane mirror resonator of length 2L, Since
the stable ray solutions are parallel to the resonator axis (60 )
= 0), they are not restricted from approaching the roof edges, and jhe
resonant modes should therefore be expected to be the same as for a
Fabry-Perot resonator except for diffraction by the imperfect roof
edges, (It has been suggested by Weichel, Ref 44, that computer
solutions for the modes of a 90° crossed-roof resonater could be done
by replacing the roof reflectors with aprerturee and approximating the
roof edges with thin wires across the apertures,)

One Variant Angle Non-zero., The secord example to be considered

is for one varlant angle non-zero. With o, ¥ 0 and a, = 0, the

b3

resonater is similar to one reoof reflectors, R1 in FPig. 2, facing a
plane mirror, except that left-and-right tecome interchanged by RZ' To
trace a ray through two round-trips, the ordsr of signs to be used when
applying transformation Eq. (71) at Rl ie the same as for a P, = i

pattern from Chapter IV, The result is

[~ h [~ i I o i [~
xg 1 w0 offx -t;mi"
0 o 1|10 olle 0
71 - °f + (74)
Yg 0 o0} 1 AL Yo 0
o olo 1 0
-mg - b - L mO., - -

and, for closed path rays, the solutions are eo - cxi and P = 0,
A solution ray is 1llustrated in Fig. 32 where the actual
creesing point, K, %5 imaged at X' by the front surrace of Rz. The

image point, K, 1s also shown to be projected onto the roof edge in
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the elevation, which is seen to be (half of) a p, = 1 pattern. In the
plan projection, the ray of Fig. 32 1is seen to be a patiein of the 90°
parallel-roof resonator, and is not restricted, geometrically, from
approaching the roof edge of Hz.

Although Fig. 32 shows a 1:2 = {1 pattern 1n elevation, it should
be clear that other patterns become possible as the resonator axis length
decreases, as in Chapter IV, All the results of Chapter IV, 4n fact,

apply if the pattern number is defined:

o, = L#_of round-trips}
Py > (75)

The general ray-irace matrix through an even number of round-trips then

becones
1 T I T o]
a1 1 dptjo o || x -upgml
8 0 110 0 ] 9
mﬂp +1 0 0j]0 1 Do 0
L 0] N JL . " J

Closed path rays of a particular pattern exist when the axis length is

lesr than:

(r) ., 20
Lgf 5 (7?7)

where DO is calculated for the right-hand reflector. The stable raye
are characterized bys

8y Py and @, = O (78)

and they fili the maximum volume in the resonator whani
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L =» - (79)

The optical path length is

ij = 4pL (80)

The importance of these ﬁatterns is not in their exlstance in a
physical device, but as a logical step in developing the morw general
theory that follows. It is seen that crossed-roof resonato.s with only
one non-zern variant angle ace probably not desirable because the roof

edge of the 20° reflector is geometrically accessible,

The General Case

The most geadcral case of crossed-roof resonators can ncw te
consldered:s both variant angles non~zero. As in the second example
just consldered, the patterns of the three-dimensional resonator are
superpositions oi' the patterns in Chapter IV.

When the “‘wo-dimensional resonator was studied in Chapter IV, the
sequences of sizns that were developed, Eq. (38) and Eq. (39), for
applying Bq. (26) in tracing a ray through P, Tourd-trips all began
with "+", The sequences could equally well have begun with "-* and
have followed the same alterna:ing scheme; but all these sequences are
identical to the former - they Jjust trace a ray through the resonator
in reverse. While the individual elevation and plan projections
considered in this chapter are, indeed, identical whether traced
forwaxrd or backward, it will now become importent which direction the
tracing proceeds as the two are combined ir the three-dimensional

resonator.
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Pirst Pattern. The first demonstration that the order of signs is

important comes in tracing what should be expected to be the p3 =1
pattern ~ two round-trips in a crossed-roof resonator with a, 70
and a, ¥ 0. Again starting at mid-axis and first trznslating to the

right, the sequence in which the roof reflectors is encountered is
right / left / right / left (81)

Since the right and left reflectors determine the patterns that are
projected into the elevation and plan, respectively, two-dimensional
Py = 1 patterns are expected in these two planes, with slgn sequences
elther 4, + or -, - for elther reflector. Substituting these
independent sequences into the above transformation order, there are

four possibilities:

t , right
1y +/+« /) + /[«
e—————Jert

@ +/-/+/-
R (82)

(3) -/*/-7/+
w -/ -/-/-

Not all of these elgn sequences lead to distinct stable ray
solutions, however., The same comment as above about tracing a ray
forward or backward applies, and the first and fourth sequences
describe the same ray, as do the second and third,

Applying the first sequence of signs to trace a ray through two

round-trips, the resultant system matrix is

s
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xg 1 410 0] -umﬂ

)
;] Q 1 ¢ 0 9 0
1 - o1 (83)
Yg 0 01 4|y, -b1a,
0 ] 0 1 0

which will have stable ray solutions characterized by:

8, = o and @, = a, (84)

Applying the second sequence of signs, the resultant system matrix is

~ = “r T ~ N
x9T 1 4L} 0 O© Xy -4D11
] c 1 0 0 ] 0
91 = L I (85)
Yg o o1t umlly, +41a,
i-mg e e 0 0 0 1 = ..mo-i b o wad

which wlll have stable ray solutions characterized by:
8 = @ and @, = -0, (86)

The two rays characterized by Eqs. (84) and (86) are drawn in
Figs. 33 and 34, respectively, where the individual reflections are
numbered as an ald te tracing the rays. It is easy to see that
following the rays in reverese leads to the sequences of signs that were
claimed to be 1dentical to those taken to develop Eqs. (83) and (85).
Fore importent, however, is that the two stable rays are independent
and do not colncide within the resonator, except at a finite number of

crossing points. (Assuming the losses are equal, it is assumed that
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Fig. 33. First Crossed-Reof p3 = 1 Pattern
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ZOHMMpP>aEHEHH

Fig. 34, Second Crossed~Roof p3 = 1 Pattern
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the rays are sufficiently coulpled by the lasing medium at the crossing
points to form standing waves, See p. 26.)

Central Rays and First Pattern Volume. The rays drawn in Figs.

33 and 34 are not the only possible stable rays of the first pattern.
As in Chapter IV, the maximum axis length (stability condition) for

this pattern 1s

Lhax = DO (8?)

vhere Do is computed for the reflector having the larger varlant angle,
When the axis length is less than this value, a packet of rays in tuth
projections can be combined in the three-dimensional resonator to form
a geometric tube with rectangular cross-section, This has been done 1in
Figs. 35 and 36 where the geometrically accessible areas on the yoof
refiector surfaces are rectangular. The dimensions of the tube cross-
sections are givgn by the ray packet heights in the two projections,
hl and h2’
The tubes of rays in Figs. 35 and 36 have interesting

which may be computed from Eq. (50).

properties, A ray which defines one corner of the tube traces through
two round-trips before closing on itself. Thus, starting at A in

Fig. 35, after one round-trip the ray is at A' on the opposite corner
of the tube cross-section; and after two round-trips it is back to A.
This is true for any ray in the interior of the tube (except for the
central ray which is discussed below)., This feature of the ray tubes
is reminiscent of the Moebius\strip which is a two-dimensional flgure

but has only one surface and one edge, Here, the ray tube similarly
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Fig. 35. First @eometric Tube of Rays for p3 = { Pattern
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ZOH>» <=

Fig. 36. Second Geometric Tube of Hays for p3 = ] Fattemn
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makes a half-twist in joining on itself, but is a three-dimensional
figure wlth a single two-dimensional surface,

In either Fig. 35 or Fig. 36, it is seen that there is a central
ray in both the plan and elevatlon that makes only one round-trip
before closing on itself. (These are shown as dashed lines in the
figures and still represent p, = 1 patterns.) Figure 37 shows these
two central rays in the crossed-roof resonator, and correspond to the
ray tubes of Figs, 35 and 36, The central rays still are a part of
the p3 = 1 pattern, btut are apparently degenerate in that the same path
is traced twice. Analytically tracing the central rays through one
round-trip (again starting at mid-axis), it is found for the one

corresponding 4o Fig. 35:

x ] [ om0 o) [x] [
95 . 0 -1 0 0 90 . 2&1 (86)
yS 0 0 }-1 -2L Yo mz

_QB_ N 0 0 0 ~1~ ;mo. _ Za%-

and for the other:

[ x p ] -1 2 0 o] [xg] [ ona]
05| | o -t]o offe . 20 )
Ys 0 o0 -1 2]y, -,

-cp5~ i 0 0 0 -1 cpo- —20.2

As expected, the central rays are unique solutions of these

equations. The ray that satisfies Eq. (88) is
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It is seen that the two rays do not cross between the reflectors, but
do cross between the surfaces of an individual reflector,

There is an important similarity between the two central rays in
Flg. 37. Both have the same path length for one round-trip. By
inspection of Eqs. (88) and (89), this path length is

F = 2L (92)

The volume of the Py = 1 pattern (for one of the central rays) is

thus approximately given by

V& 2Lh,  h

172
2Ld4,, 4 2+ .2 [a1 az]
£ + 1 ¥
01 “02 3.—'01 dyp
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where do1 and do2

respectively, Since there are the two possible central rays, the

are the dimensions of the surfaces of Bl and R2.

entire volume that is geometrically accessible by the Py = 1 pattern
is approximately twice that given by Eq. (93). There is some overlap
between the two ray tubes near the reflector surfaces.

Higher-order Patterns, As with the two-dimensional resonator,

stable patterns are possible in which rays make a multiple of two round-
trips. As the pattern number increases, the number of independent
solutions that can be found increases due to the different ways of
combining elevation and plan sign sequences. In actual devices, each
independent ray would produce an output beam in a different direction,
so patterns higher than p3 = 1 are probably undesirable. Accordingly,
the general system matrices for higher order patterns are not given
here; but a method for finding the different independent rays 1s
11lustrated in the following example for p3 - 2.

Tracing a ray through four round-trips, it 1s reasonable to expect
P, " 2 patterns to be projected into the elevation and plan as the ray
undergoes eight roof reflector transformations., In elther projection,
the sequence of signs could be either +, -, -, ¢+ or -, +, +, - from
Eq. (39). (the two sequences are equivalent, however, so only one need
be considered. This may be seen by writing two successive P, ~ 2
sequences - starting with either a plus or minus sign - and noting that
1t is an alternating pattern of pairs of like signs.) If the

alternatilng sequence:
right / left / right / left / right / left / right / left  (9%)

50




!‘f.\_

is consldered, there are four ways in which the Py = 2 sign sequeinces
can be combined, They are listed here, and a ray corresponding to the

first sequence is drawn in Fig. 38

. right
W /4t /) =/ ]+
left

@ <+ /v /) /)< -

, l - : (95)
) +/ </ =)= -

1 L
() + / N /o~ 3 VAR AR S AR N j

In addition to independent rays for thece sequences, it is also
possible to mix different patterns from the two projections, While the
projection of a p3 = 2 ray in the elevation could be a Py -2
pattern, for instance, its projection in the plan could be a Py =1
pattern that ls traced around twice for once in the elevation.
Different combinations of these patterns give rise to other distinct

sequences such as thesei

) + /% /v )</ +/):/+/]%

(96)

© /)%

In general, the number of independent rays of the first type (both
elevation and plan pattern numbers equal to p3) that can be found 1is
thought to be 2p3. The number of posslble rays of the second type
(elevation and plan pattern numbers different) obviously increases as

p3 increases, tut a general expresslon for thelr numbver has not been

worked out,
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Significance. The most lmportant feature of the crossed-roof
resonator patterns is that they are superpositions of the two projec-
tions. The resultis of Chapter IV apply to the twc projections

independently. Thus Eq. (47) can be modified and the stability

condition for stable rays of pattern Py to exist in either plan or

elevation is ( )
L\P D, V2 e,

< 70
L-—_u—
2 P, @

2 p2

(97)

(There is no restriction on the variant angle.) The same condition aiso
holds that, in order for the roof edge to be geometrically excluded,

the axis length must be greater than Lgp}z computed for that roof
reflector. It must be noted, however, that in order for the crossed-
roof resonator to have any stable rays, both elevation and plan must
have stable patterns simultaneously, so Eq. (97) 1s the general
stabllity condition for p3 = 1 or higher when P, = 1, and Do

is computed for the larger variant angle,

The combination of the two independent patterns can get quite
complicated if the individual pattern numbers are high, This is due
to the fact that 1f the axis length 1s such as to permit, say, a
p2 = L pattern in elevation, then p2 = 3,2, and 1 are also stabdble
and may combine with the plan patterns. Some of these elevation
patterns may approach the roof edges and, consequently, resonant modes
free of diffraction effects would not be expected. (This is possibly
vhy %90° crossed-roof resonators with extremely small variant angles -

manufacturing tolerances - are noted to have poor beam divergence,

The pattern numbers can be very large in these cases. See p. 15.)
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Rescnant Modes of the Filrst Pattern

For exactly the same arguments as were glven in Chapter IV, it is
reasonable to expect that Hermite-Gausslan modes can be supported by
the crossed-roof resonator when the roof edges are geometrically
excluded. If the tube of rays in either Fig. 35 or Fig. 36 is drawn
out stralght and the effect of aperturing by the roof reflector
surfaces 1s considered, a picture such as Fig. 39 results, Here it
has been assumed that each reflector surface can be replaced with a
rectangular aperture normal to the ray tube. Each aperture limits the
ray tube on only one side; but after travelling a distance 2L, the tube
has been restricted on all four sides.

From the point of view of elther Fig. 35 or 36, the tube of rays
appears to close or itself after one round-trip, so it is reasonable to
expect that a wavr.front could propagate a distance 2L through the
apertures of Fig. 39 and be relf-reproducing. This is indeed possible
for Hermite-Gaussian wavefronts, and a careful consideration of the
phase relationships indicates that both odd and even modes are allowed,

0dd and Even Modes. Conslder a cross-section of the ray tube as
in Fig. 40, The central ray pierces the cross-section in the center
and any other ray plerces the cross-sectlion twice at A and A'. These
t4o points are symmetric with respect to the central ray. On this
cross-section, let the phase of & wavefront - propagating either
direction along the ray tube - be ﬂAo at A, and ¢A6 at Aj. Also, let

the difference in phase between points A and Al be ¢0' so thats

fao = 0, + 9, (98)

'
0 0
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After the wavefront has propagated through one round-trip, the ray

that started at AO i5 now at Al. but 1s spatially colncident with Aa;
and conversely for the ray starting at Ab. The phase at Ai is
By " voamEleg (%9)
0

vhere the second term in the sum is the phase shift due to the
propagation through distance 2L and { is the phase shift due to
reflection from the roof reflector surfaces. Now let the wavefront
propagate through a second round-trip, and A and A' interchange again.

The phase at A2 is nows

-y, 2len 2L . 9) (100)

Thern assuming that standing waves are fommed (from the discussion
of the first pattern), the reguirement that the phase be self-
reproducing in two round-trips is certalnly reasonable:

2L
- - —
¢A2 ¢A0 2(2n 5=+ Q)

= 0 (mod 21) (101)

This implies that:

Zﬂgil"—"'@ = 0 or (mod 2m) (102)

vhich 1s the same as ¢A - ¢A from Eq. (99). But also Eq. (98) can
1 0
be subtracted from Eq. (99) to get:

RN SR (103)
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Since these two phases, ¢A and ¢A' occur at the same point in space,
1 o

they must be the same for self-reproducibility, and Eq. (103) must

therefore be set equal to zero (mod 2n). Then substitution from

Eq. (102) into Eq. (103) yields:
¢0 = 0 or m (104)

The importance of thls result ls that wavefronts propagating
through the ray tubes are allowed to be elther even or odd with respect
to the center of the mode pattern. The familiar Hermite-Causslans
(for the rectangular cross-section of the ray tube) indeed display

this characteristic.

Axial Mode Frequency Interval. 1I1f ¢0 = 0, self-consistency

Eq. (103) can be rewritten as:

e SE @ = 2qm (105)

where q 1s the number of wavelengths that can be fit into one round-
trip. As was done in Chapter IV, the expression for the axlal mode

frequency interval follows at onces

br, = 5T (106}
If § = m, Bq. (103) becomess
2n gI& +Q - = 2qnm (107)
q

and the same result - Eq. (106) - again is obtained.
Intuitively, qu - c/uL might have been a more expected result

since rays travel a distance 4L before closing on themselves. If this

7




were true, however, the central ray would be a null if there happened
10 be an odd number of wavelengths in two round-trips - that 1s the
wavefront is out of phase with itself by m after one round-trip. This
is not satlsfying physically, since it is also reasonable to expect that
the fundamental - or 00 - Hermite~Gaussian mode has the lowest loss and
is therefore dominant. This mode is definitely non-zero at its center.

Transverse Mode Frequency Interval. The same arguments as were

used in Chapter IV for the transverse mode frequency interval also
apply here, The only difference is that the closed path rays satisfy
a 4xlr matrix equation rather than a 2x2 matrix equation. For any
closed path, this is given by Eq. (69) which is nothing more than an
identity transformation. It 1s therefore expected that the transverse
mode frequency interval is

AF = 0 (62)

nn

98




e

VI. Conclusion

The geémetric theory of roof refiector resonato;s has teen
developed for the two cases of (1) parallel-roof resonators (Fig. 17 )
and (2) crossed-roof resonators (Fig. 29 ). The assumptions that were
made are listed in Chapter I, and the basic maihematical tool for ray
tracing - an inhomogeneous ray transformation matrix - is derived in
Chapter 111. This chapter summarizes the important results of the

theory and recommends areas for further study.

Summary of Stability Conditions

Stability conditions are the physical dimensions of a resonator
that allow stable rays to exist. ©Stable rays in roof reflector
rescnators have been shown in Chapters IV and V to bte only those
¥hich close on themselves - that is, ring-type rays., Stability
conditions for parallel-roof and crossed-roof resonators are given
separately below,

Parallel-Roof Resonator., Stable rays can be found in the parallel-

roof resonator that make any number of round-trips and are designated
as "patterns” with a pattern number, Ppo defined as the number of
round-tripe a ray makes before closing on itself, There are two sets
of stability conditions depending on whether Py is odd or evani

(1) for P, odds

a = o = a (34)
P2 a
1 = L(()P) " 5 ao (47)
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where a1 and a2 are the variant angles, L is the rescnator axis length,
Lgp) is the maximum length for pattern P, to exist, and do is the
surface dimension (see Fig. 14(a) ).

(2) for p, even:

(No restriction on variant angles) ()
J2 4
s () . 0

L L 7y (97)

where 0 is the larger of the two variant angles.,

Remarks are in order concerning these stability conditions.
First, Eq. (47) implies that if the resonator axis length is chosen
less than, say, LSB). then either (1) stable rays of patternms I
3, 2, or 1 could exist if Eq. (34) is satisfied, or (2) stable rays of
only p, =2 could exist if a, ' a,. Second, it is possible for
different patterns to exist simultaneously - in which case they are
spatially separated except at a finite number of crossing points. They
are not unique rays, but entlre bundles of parallel rays called
"packets,” Third, the number of possible patterns 1s theoretlcally
infinite as L -~ 0, tut is practically limited in & real device, And,
if a =o, = 0, then there is no defined maximum axis length, implying
that there 1s always a stable ray in a 90° parallel-roof resonator,

Crossed-Roof Resonator. The stable rays that can exist in the

crossed-roof resonator are shown, in Chapter V, to be superpositions

of two parallel-roof patterns in orthogonal planes (see Fig. 33, for

example). The pattern number, p3. fcr a stable ray is defined asi
£ d-tri
p, - Lfof round-tripe) (75)
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‘e conditlon that stable rays exist in the crossed-roof resonator
is that stable patterns must exist in both of the projectionms.
Accordingly, there are no restrictions on the variant angles, and the
minimum condition that stable rays of any pattern number to exiat is

2 a
3 0
L X (108)

uhére a is the larger variant angle,

The above remarks concerning patterns which can exlist in the
parallel-roof resonator also apply to the crossed-roof resonator, but
one additional comment is necessary. This geomeiric theory predicts
that, for any given p3. there will be more than one stable ray packet,
und these wlll generally be spatially separated and not parallel,
Their number increases in a complicated way as the pattern number

increases,

Major Fredictions of This Thesis

The stated purpose of this thesis has been fulfilled with the‘
above listing of the stability conditions, tut the most important
conclusion 1s the prediction that can be made based on the stability
conditions. This conclusion is of extreme interest to the designer of
successful laeser systems using roof reflectors.

Use of 90° -~ a Roof Reflectors. From the geometric theory, it is

concluded that 90° - a roof reflectors are more desirable than 90° roof

reflectors in laser resonators. This is an extremely simple conclusion

and 1s motivated by the predictlon of the resonant modes, discussed

below, Basically, the reason why 90° - a roof reflectors are desirable
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is because the ronf edges ¢

be geometrically excluded. This is fully

discussed in Chapters IV and V for parallel-roof and crossed-roof
resonators, respectively.

1t i3 also important, for the purpose of design, that 90° - a roof
reflectors preserve the relaxed mechanical alignment tolerances of 90°
roof reflectors, This is demonstrated in Chapter III.

Resonant Modes, When the roof edges of the reflectors are

geometrically excluded, it is predicted that roof reflector resonators

can support pure Gaussian modes. This 1s argued 1in both Chapters IV

and V, and there is evidence in the literature that this prediction is
correct (reviewed in Chapter II ). For the parallel-roof resonstor,

+he axial mode frequency interval 1is predicted to bes

¢
vhile for the p3 = {1 vpattern in the crossed-roof resonator:
c .
qu - 31 (106)

For both resunators, the transverse modes are claimed to be frequency

degenerates

Af = 0 (62)

mn

An Example, The desirability of 90° - a roof reflector resonators
can be further emphasized wlith a simple example., Suppose a laser 1s to
ve designed for fleld use in a high-vibratlon environment. The
crossed-roof configurmation is then desired for mechanical stability,

and 90° - a roof reflectors are to be used to obtain a pure mode
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output. The beam divergence w.ll then be less than if 90° roof
reflectors were used since roof edge diffraction will be avoided.

Now suppose that precision-built roof reflectors are not available,
but that two approximately matched items can be found, The first
reflector has a side dimension d01 = {1 cm, variant angle a.1 - 3]
= (0,0090 rad, and a roof edge 0.5 mm wide, The secord reflector has
dgo = i cm, a, = 29' = 0,0084 rad, and roof edge 0.5 mm wide, From
Eq. (i5)1

2 dog
Doy ™ 3 & = 78,4 cn (109)
JZ a
- 02
Do ™ 3 3, 83.8 cm (110)

In order for the resonator to be stable, the axis length must be
chosen less than the smaller of these two, by Eq. (108). In order to
exclude the roof edges with the pa = 1 pattern, however, L must be
greater than one-half of the larger (from the discussion on p. 93).
Thus, ifs

41.9cm < L < 784 cm (111)

the resonator will operate only in the p3 = {1 mode,
Let L = 50 cm be a convenlent axis length, then by Eq. (50) the

cross-sectional dimensions of the p3 = 1 ray tube are

V2 4

hy = —5—-qL = 0,26 cm (112)
2 a

h, = —-2-—03-a21, = 0,29 em (113)

It 15 also easy to calculate that the size of the geometrically

excluded area at the roof edge of the first reflector (measured
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perpendicular to the axis) is approximately 3.8 mm, and for the second
2.6 mm. Thus the geometrically excluded areas are clearly much larger
than the size of the xoof edge width, so roof edge quallity need not be
of great concern. Also, the conditions have been satisfied which,
according to the predictions of'this theory, permit the resonator to

support the desired pure modes,

Recommendations for Further Study

Many questions have arisen in the course of developing this theory,
and not all have been answered. Listed below are recommended areas
for further study which either (1) logically extend the work presented
here or (2) involve designing practical devices.

Extending the Theory. This geometric theory is thought to be the
first of its kind for roof reflector resonators, and has only been a
beginning in the study of these devices, The followlng topics are
recommended as areas for research to extend the theory, listed 1n order
of increasing sophisticatlion. Fosslble methods for solution are aiso
suggested,

(1) Arcitrarily aligned roof edges. The two configurations
examined in thils thesis are, admittedly, only special cases of the
general 90° - a roof reflector resonator. Kahn and Nemit (Ref 22)
provide a 4x4 rotation matrix which could be used to extend the work of
Chapter V to find stable rays in the general case,

(2) Computer solutions for resonant modes., Self-reproducing
wavefronts could be found using iterative methods to substantlate the

predicted resonant modes. These numerical results would &ls¢ provide
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calculations of diffraction losses that cannot be glven by geometric
theory.

(3) Themmal lensing by lasing medium. Soncini and Svelto
(Ref 39) partly attribute the pure modes they observed to thermal
lensing in their ruby rod. This is a toplc for study Yy computer that
could be added on to (2) above. A paper by Kurauchl and Kahn (Ref 26)
addresses the problem of focusing media in resonators having stable
ray envelopes as the roof reflector resonator certainly does,

(4) Polarization analysis. Although a method of determining the
eigenpolarizations in roof reflector resonators has been given by
Bobroff (Ref 5), it is noted that the direction of propagation of the
ray tubes in the crossed-roof resonator is not parallel to the axis
and, hence, the plane of incidence at each reflection is nelther
parallel nor perpendicular to the roof edge, The elgenpolarizations
of this resonator are thus thought not to be so simple as in the 90°
roof reflector case treated by Bobroff (or the parallel-roof resonator
of Chapter IV ), 1In order to take into account the vectorial nature of
1light, the eigenpolarizations need to be more closely studied for this
resonator. Delang (Ref 13:11-20) discusses the interaction of polarized
beams with active laser media, and a possible method for computing is
the polarization transfer function given by Azzam and Bashara (Ref 2).

Designing Fractical Devices., Belore operating lasers can be

built, there are a number of design problems which must be dealt with,
Three of these which seem to be of immedlate irnterest to the designer

are recommended as areas for advanced study.
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(1) Stable or unstable opération, Apparently the crossed-roof
configuration is preferable where mechanical stablility and relaxed
alignment tolerances are needed. Then it would also seem to be most
advantageous to design for p3 = 1 operation only. On the other hand,
unstable operation may be more deslirable as in high-energy laser
applications. Then perhaps a parallel-roof resonator would be better
with a, # a, and, say, the roof edges aligned with the gas flow in
a gas-dynamic laser,

(2) Best method for outcoupling. The traditional methods of
extracting energy from a laser resonator are through a partially
reflecting mirror if the resonator is stable, or allowing energy to
diffract past the mirrors if it 1s unstable (Ref 38). Both of these
methods are possible with roof reflector resonators, tut there are
other methods which have been proposed, or used on & limited tasis, that
require further evaluation: (a) frustrated total internal reflection
has been used by Soncini and Svelto (Ref 39), (b) less than total
internal reflection on one surface of a roof prism was used by Farkas
(Ref 15) in a high-power ruby laser, (c) a beamsplitter was inserted
into a resonator using a 90° - a roof reflector on one end by Dahlstrom
(Ref 12), and (d) a birefringent crystal was placed in a 90° crossed-
Troof resonator by Teppo (Ref 43) to outcouple one of the eigen-
polarizations.

(3) Multiple beams, Ancther problem facing the designer of
practical devices 1s the posslibllity of multiple beams predicted in the
crossed-roof resonator. A reasonable solution would be to eliminate

all but one by internal aperturing. Or possible multlple beams may be
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desired, in high-energy lasers for instance, and some clever arrangement
of reflectors outside the resonator could be used to focus them onto
a common target.

Regardless of the above design problems, the advantages of roof
reflector resonators - mechanical stability and pure mode outputs - are
felt to be worthy of the effort to design working lasers using them.

Due to their simplicity alone - and the possible savings in cost and
fabrlcatlon time - roof reflector resonators are seen to offer a

vla”tlcal alternative to curved mirrors in laser systems of the future,
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Appendix A

Similarities Between Roof

Reflectors and Spherical Mirrors

Roof Reflectors with roof angle 90° - a, where @ is small and
positive, are noted to have a "focusing" effect; that is, incident rays
are reflected back and converge on their former direction, crossing at
an angle of 2a (see Fig. 11 ). This focusing is remarkably similar
to the familiar results of first-order optics applied to spherical
mirrors.

For a spherical mirror, M in Fig. 41(a), the center of curvature,
C, lies on an axis of symmetry through the vertex, V, Any ray incldent
on M which passes through C is reflected back through C, while any ray
vwhich is incident parallel to the axis is reflected through .« point, F,

on the axis. To first order, the relation holds that:

FV =

NS

(114)

For a roof reflector, R in Fig. 41(b), there is no "center of
curvature.” But through any point, C', on the axis, a unique ray
making an angle o with the axis will be reflected back through C°*,

If a point, F', is then located on a line perpendicular to the axis
through C' (the line P'V' makes an angle @ with the axis), an incident
ray through P' parallel to the axis will be reflected back through P'.
This latter ray crosses the axis at a point, F', vhere the exact

relationship is
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Fig. 41, Similarities Between Roof Reflectors
and Spherical Mirrors
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=T oo CV 1
F'V > 3 (115)

cos Q

If a 4is small, then the first-order statement of thils expression is

T e OV
F'V 3 (116)

vhich i1s analogous to spherical mirrors,

The rays traced through C' and P' of R are reminiscent of the
imaging of an object placed at C in front of M, The analogy can be
forced by finding a "focal length" for a roof reflector that can be
used in a homogeneous ray transformation. (Call it "f*" to distinguish

1t from an ordinary focal length,) That is, let the transformation:

-1 0 x
KRIERP ' (117)
92 T+ -1 61

carry the ray (xl, 91) through a roof reflector just the same as the

inhomogeneous transfcrmation of Chapter IlIs

] (23)

(The 2x2 matrix of Eq. (117) takes into account the inversing, and
Eq. (23) assumes the ray is incident on the roof reflector above the
axis,) Equating these last two expressions, the quantity f* is found

to bes

o]
[ 4

4 =

(118)

™

a

In terms of the dimension d, which measures the distance from the

vertex to where the ray sirikes the roof reflector surface, this is
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2 Jga

The concept of focal length for roof reflectors (and consequently

% = (119)

radius of curvature)is not a particularly useful one since this
quantity turns out to depend on the components of the incident ray.
If, however, only rays crossing the axis at the angle a are consldered,

then putting 6, = a in Eq. (119) results in:

2

+
=

d
f* = = (120)
2 Jé a
Or, if o 1s also considered to be a small angles
- ¥2 4
bl % (121)

Comparing this last formula with Eq. (15) of Chapter III, 4t is then
seen that:

fi =

Ny

(122)

where D = C'V' 4n Fig. 41(db).

While f* is seen to be variable, there 1s an easlly recognized
constant parameter assoclated with roof reflectors. This has to do with
the discrete roof angle, and is contrasted with spherical mirrors in
Fig. 42. Here iwo resonators are drawn which have concentric properties:

(1) The spherical mirror resonator has a unigue point, C, through
which all statle rays pass, Within the limlts of the apertures, the

rays make a continuum of angles with the resonator axis.

(2) Te zoof reflector resonator has a unique angle, a, with which
all stable rays cross the axls, Within the limits of ‘ .e aperturen, the
rays cross the axis at a continuum of polints between C

] ]
1 and Cz.
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Fig. 42,

Dissimilarities Between Roof Reflectors
and Spherical Mirrors
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Appendix B

Roof Reflectors and the g-Parameter

For spherical mirrors, a frequently used parameter in laser
resonator deslgn is

g, = 1-3 (1 =1,2) (123)

where L is the resonator axis length and Ri is the radius of curvazture
of the 12 mirror. The condition for stability is often expressed in

terms of these g-parameters ass

o = €&, sS4 (124)

That 1s, the resonator operates in a low-loss regime when this relation
is satisfied.

For roof reflectors, there is no radius of curvature, But if the
ray crossing distance, D, is taken to be a characteristic (on-axis)

radlus, taen the dimensionless parameter:

e =~ 1-3 (125)

can be consldered by definition. In terms of the roof variant angle,
a, and the dimension d, thie is

from Chapter III. Although this is characteristic of a roof reflector,

it is not a constant except when a = O (or D~ = ), In this case,
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g* = 1 which, by way of comparison, is what would be expected for a

( plane mirror (R = = ),
The product, gfes, is then seen to involve three dimensions (L,
D1 or dl' and D2 or d2). But for a glvean pattern number, p2. these
lengths are not independent in the parallel-rocof resonator, and it
can be shown from Chapter IV thats
Dy +D, = p,lL (127)
Substituting from Eq. (125), it is found thats
P, -1 P, - 2
eres - ” (gi'-i— 35) + 5 = 0 (128)
Apparently, this relation describes a curve on a gf VS, 55 graph on
which a parallel-roof resonator operates vwhen a ray makes P, round-
¢ trips before spatlially repeating,

A particular resonator operates on only a portion of the curve,
For exemple, consider a siable parallel-roof resonator (a1 - az)
operating in the p2 = ] pattern with resonator length L = 3D0/2.

Then it iz seen thats

D D
0 g S 9 = s
5 D, D, amd 3 D, Dy (129)
s s -1 o = s -1
-2 & 5 and -2 e 3 (130)
gjes = 1 (131)

from Eqs. (127), (125), and (128), respectively. This is snown in
Fig. 43 +together wilth possible resonator configurations that will

operate on the curve, Note that a, = a, does not imply g{ - 55.
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Fig. 43. Operating curve for P, = 1
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In general, Eq. (128) is a rectangular hyperbola, sketched in

Fig. 44, having horizontal and vertical asymptotess

pz -1
&g - & " 7 (132)
and transverse axis:
t = g-’;é (133)
2

The curve has two dbranches: resonator configuration for the lower
branch is a1 and az both positive, while the variant angles are of
opposite sign on the upper branch,

In the limit of p, = e (a large number of round-trips), it is

seen that the hyperbola degenerates into the crossed stralght liness

g = & = 1 (134)

Thus, the point (1, 1) satisfies Eq., (128) for all values of Pye
Therefore, a parallel-roof resonator with two 90° reflectors 1is

infinitely degenerate.
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