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Abstract

In this report, a covariance analysis is performed on
two Kalman filters proposed for use in a weapon system
utilizing a strapdown inertial navigation system (INS), up-
dated by position data from a radiometric area correlator
(RAC) , for guidance. Filter performance is analyzed when
primary navigation information is provided by a Sperry INS,
which uses laser gyroscopes, and when an INS employing
conventional dry-tuned gyroscopes, manufactured by Hamilton-
Standard, is incorporated into the weapon system. For the
covariance analysis, truth models in the form of linear
state equations are presented which reflect the best
description of the weapon system when either the Sperry or
Hamilton-Standard INS is used. The Sperry system model is
composed of 46 states and the Hamilton-Standard system model
61 states. Primary emphasis in this investigation is placed
on minimizing system terminal navigation error. This is
done through a filter tuning process, and an optimization of
six highly accurate RAC position fixes along a simulated
trajectory which reflects the actual system dynamics. The
two filters analyzed each employ a linear six state mathe-
matical model. Due to the security classification of the
trajectory and RAC characteristics, filter performance is

conveyed through unscaled graphs and percentages.

xi
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I. Introduction

A lesson learned from the Vietnam conflict is that
heavily defended tactical and strategic targets are
destroyed at a severe price in terms of attacking men and
aircraft. The fact that the highly sophisticated and
extremely accurate weaponry developed to attack such targets
in that conflict required delivery within their vicinity
contributed greatly to the losses. The length of time spent

by the pilot acquiring a target, delivering his ordinance,

and in some cases "steering" it to impact, subjected him to
considerable risk in that hostile environment. The Air :
Force Armament Test Laboratory (AFATL), Eglin Air Force

Base, is currently developing weapons systems which will

afford the pilot a "standoff capability" in ordinance deliv-

ery. One such weapon system utilizes a radiometric area
correlator (RAC) and a strapdown inertial navigation system
(INS) in conjunction with an estimator for midcourse and
terminal guidance. The RAC, INS, and the estimator are
housed in a glide vehicle which is capable of maneuvering

through pitch and "skid to turn" along an extended trajec-

tory to a target.
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System Operation

In concept, the glide vehicle is released from a cap-
tive aircraft at a drop point, within its glide range to the
target, which is determined using the existing atmospheric
conditions. It "flies" a specified trajectory toward the
target, relying on the INS for navigation information and on
the RAC and estimator for updating the INS optimally. At a
specified point, dependent on the range of the target, the
radiometer "looks down" and takes a picture of the terrain.
This "picture" is correlated with a preloaded map of the
area, and a position fix is thereby generated. This
position fix is supplied to the estimator, which updates its
navigation error estimates. This process continues through
a number of "fixes" until the vehicle is within a certain
altitude-range "window" with respect to the target. At that
time, the controlled glide of the vehicle is converted into
a rapid dive by initiating a pitchover maneuver. Closely
following the completion of pitchover, the vehicle impacts
the ground.

Inertial Navigation Systems. Two strapdown inertial

navigation systems are presently being considered for imple-
mentation in the RAC weapon system. The first INS is a
Sperry model, which employs laser gyroscopes to measure
angular rates. The second model is manufactured by Ham-
ilton-Standard, and uses conventional dry-tuned gyroscopes
to provide angular information. Both of these systems use

2
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conventional accelerometers to measure specific force.
Because the weapon system is designed for one-time use,
these inertial navigation systems are being considered
because they are "low cost."

Radiometric Area Correlator. The RAC provides a number

of highly accurate position fixes as the glide vehicle
"flies" the trajectory. The number of fixes is limited by
the storage space allotted for the reference maps. In the
present design phase, five or six maps are considered to be
the maximum practical number. The RAC is mounted on a gim-
baled platform, which allows it a limited capability for
"looking" down. A design gquestion still to be answered is
whether the degree of freedom of movement of the gimbaled
platform should be large enough to allow a RAC fix when the
vehicle is in its steep dive during and after pitchover.

The Estimator. The estimator for the RAC system com-

bines the information received from the INS and the RAC, and
estimates the navigation errors committed by the INS through
a set of recursion algorithms. These algorithms are pro-
grammed into a portion of the general purpose guidance com-
puter located onboard the vehicle. The estimator presently
under consideration is a Kalman filter designed by Lockheed.
This design is deliberately simple, because the estimator
was allocated a limited amount of memory space in the on-
board guidance computer during preliminary planning for the

RAC system. The Lockheed filter provides estimates of the

3
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errors committed by the INS which are fed back to the INS
to correct its navigation information. In this way, the INS
errors are kept small, and the adequacy of linear error

models is enhanced.

Scope of this Study

This report is an extension of the RAC Guidance System
Analysis completed by Professor Maybeck, Air Force Institute
of Technology, Wright-Patterson Air Force Base (Ref 1;

Ref 2). He analyzed the navigation errors committed by a
simple six-state Kalman filter and the Lockheed approxi-
mation to that filter as the weapon system flew a benign
trajectory in a computer simulation. His study compared the
filter error estimates when either the Sperry or Hamilton-
Standard inertial navigation systems were implemented into
the system. These filter error estimates were compared to
the true navigation errors committed during the "flight" by
means of a covariance analysis. Thus, a measure of how well
the filter actually performed was obtained. The major
extensions made to that study in this report are as follows:

1. The benign trajectory will be replaced by one that
is more realistic for the glide vehicle under consideration.

2. The estimation errors committed by the Lockheed
filter design and an alternate Kalman filter, which is in
reality the correct Kalman filter formulation for the Lock-

heed design, as the system flies the more dynamic trajectory
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will be analyzed through a covariance analysis.

3. The position fixes taken by the RAC will be opti-
mized in time so that terminal navigation error is mini-
mized.

The development of this report is presented by chapters
in the following sequence. Possible integration of the var-
ious components (RAC, INS, and estimator) into a workable
unit is outlined in the second chapter. Chapter III intro-
duces the algorithms used by the Kalman filter in estimating
INS errors, and also discusses the covariance analysis proc-
ess. In Chapter IV, two models developed by Professor May-
beck describing the overall system when either the Sperry or
the Hamilton-Standard INS is used are presented. Chapter V
details the Lockheed filter model and the alternate filter
model used as the estimators in this study. A mathematical
model for the more realistic trajectory of this work is
developed in the sixth chapter. In Chapter VII, the process
for determining the values of system variables that yields
the best filter performance is outlined. In addition, the
resulting performance is analyzed. Filter performance is
further analyzed in Chapter VIII, in which effects of
varying the trajectory and the RAC position update schedule
are explored. The last chapter details the results and con-
clusions of this study, and proposes system changes that may

reduce overall system navigation error.




Limitations of this Study

An inherent step in any problem-solving technique is to
"define the problem." In an attempt to define the problem
for this work, certain assumptions were made and some
restrictions imposed. These assumptions and restrictions
are important factors in the work to be presented, and
broadly fall into four categories: modeling, interpretation
of results, security classification, and approximations made
due to insufficiency of data.

Modeling. Extensive mathematical representation of
"real world dynamics" is done in this work so that certain
tools of linear analysis may be employed. It is realized
that these real world dynamics defy exact mathematical rep-
resentation, so the modeling performed in this study can at
best be considered an approximation. Care has been taken,
however, to model as completely and accurately as the "state
of the art" will allow.

Interpretation of Results. It is tempting to equate

the results presented in this work with overall system cir-
cular error probabilities, but this would not be valid. The
results reflect only the probable navigation errors com-
mitted by the filter if the system flew the trajectory
precisely. Thus, the errors committed by a controller
attempting to keep the vehicle on flight path are not con-

sidered. 1In addition, the ability of the system to correct
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the trajectory in order to impact the target when conditions
such as adverse winds are encountered is in no way reflected
in the results.

Security Classification. A major restriction on the

work presented here is imposed due to the security classi-
fication of several aspects of the RAC system. The trajec-
tory of the glide vehicle is classified Secret, so altitudes,
distances, and flight times are not presented. In addition,
several parameters of the RAC are classified, so their spe-
cific numerical values are not included. Whenever possible,
classified information pertinent to the development is san-
itized and presented in the form of percentages or unscaled
graphs.

Approximations Due to Insufficiency of Data. Because

the RAC system is stillvin the developmental stage, overall
system specifications have not been finalized. Also, the
performance capabilities of individual components have not
yet been fully evaluated. Based on the known parameters,
judgment has been exercised to approximate unknowns through-
out this work. Where they occur, these approximations have

been delineated.
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II. System Mechanization

In this chapter, functional block diagrams of the var-
ious components of the RAC system will be developed. These
block diagrams will then be integrated to form one possible
scheme for system mechanization. Before developing these
components, however, it is useful to define the coordinate

frames and transformation matrices that will be used.

Coordinate Frames

Five different coordinate frames are described below
for use in this study. The axes of each of these respective
reference frames form an orthogonal right-handed triad.

Inertial Reference Frame. The inertial reference frame,

I-frame, has its origin at the center of mass of the earth
and is nonrotating with respect to the stars. The Z-axis
extends through the™North Pole in alignment with the earth's
spin axis. The X and Y axes of the inertial frame are
coincident with the X and Y axes of the earth-fixed frame at
the start of the navigation problem.

Earth-Fixed Frame. The earth-fixed reference frame,

E-frame, has its origin at the center of mass of the earth
with its Z-axis coincident with the Z-axis of the I-frame.
The X-axis extends outward through the intersection of the

Greenwich meridian and the equator, while the Y-axis is




directed through the intersection of the 90 degree east
meridian and the equator. Since this frame rotates with the
earth, its angular velocity with respect to the I-frame,
Wrge is one revolution per day. Points on the earth's sur-
face can be expressed in terms of two Euler angle rotations
in the earth-fixed frame. The first is longitude, a
rotation about the Z-axis, and the second is latitude, a

rotation about the displaced X-axis. Inertial longitude, ),

is related to geographical longitude, %, by the equation

A=W

1E At + & (1)

where At is the elapsed time from the start of the navi-

gation problem.

Navigation Frame. The navigation frame, N-frame, for

this study is the coordinate system in which the navigation
problem is solved. INS errors as computed by the estimator
are expressed in this frame. For this work, the navigation
frame is defined as an east-north-up (ENU) triad. The ENU
navigation frame has its origin at the center of mass of the
glide vehicle with its axes pointing in the east, north, and
up directions respectively. "Up" is defined to be normal to
the reference ellipsoid at all times. The geometry relating
the inertial, earth-fixed, and navigation frames is illus-
trated in Figure 1, where the xI—YI—ZI axes represent the

inertial triad, XE-YE-ZE are the earth-fixed axes, and E-N-U

are the navigation frame axes.
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Figure 1. Coordinate Frame Orientation
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Body Frame. The body frame, B-frame, is fixed relative

to the glide vehicle with its origin located at the vehi-
cle's center of mass. The B-frame's X and Y axis extend out
the nose and right wing of the glide vehicle respectively,
while the Z-axis points down through the fuselage.

Platform Frame. The platform frame, P-frame, is

aligned with the X-Y-Z sensitive axes of the gyrosccpe and
accelerometer triads of the INS system. This frame differs

for each of the two inertial navigation systems considered

in this study.

Transformation Matiices

Vectors representing quantities such as position,
velocity, or angular rate coordinatized in a particular ref-
erence frame can be transformed to another frame through a
direction cosine matrix (DCM). The DCM or transformation

matrix is defined for this work as follows:

. Y22 Sap g
& s
DR = 0 = fo,, G ©ug (2)
“n ;. ‘s

where Ci is the DCM transforming a vector coordinatized in
the i-frame to a vector expressed in the j-frame. The ele-
ment Ckz is the direction cosine between the kth axis in the

j-frame and the 2th axis in the i-frame.
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Useful properties of the DCM which apply to the orthog-
onal frames outlined above are:
1. The inverse of the DCM is equal to its transpose,

j 3
for example Ci = \Cj)T

2. Transformation matrices relating frames can be

found using intermediate frames in the following manner:

I
C; = C,CC

k
i il

(3)
3. If the angular velocity vector of the j-frame
relative to the i-frame (mij) is expressed in j-frame
coordinates as “ij’ an expression for the time rate of
i
change of the DCM Cj can be written as (Ref 3:17)
i.]

g, = &

1
J Jk3 (4)

where Qij is the skew symmetric matrix defined in terms of

J
and w, components of the vector w;; as

the w v’ 7 j

xr @

4
oj = w 0 -w (5)
Sy Z X
Twy Wy 0

Platform to Body Transformation. The time invariant

transformation matrices for each of the two inertial

12




navigation systems, relating the platform triad of the

accelerometers and gyroscopes to the fixed body frame are

(13 1//3 13
0 INE -INT (6)
-2//6 1//6 1/]%

CE of the Sperry INS

Cg of the Hamilton~- (7)

Standard INS

Il

o o

!

o (o
o

| —

in the Sperry design, the sensitive axes of the measuring
instruments are skewed from the body axes to avoid sub-
jecting any one instrument to the full input of a vehicle
yaw, pitch, or roll.

Body to Navigation Transformation. The transformation

from the body to the navigation frame is time-varying, as it
depends on the time history of the vehicle's orientation in i
space as it flies the trajectory. At a specific instant of

time, this transformation matrix can be determined using the

three Euler angles of the vehicle, i.e., heading, ¥, pitch,
©, and roll, ®. Because the vehicle under consideration

maneuvers through pitch and skid, the roll angle for this
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study will always be considered zero degrees. With this

simplification, the DCM is

sinycos0 cosy sinycos0@
Cg = cosycoso -siny cosysin® (8)
sin0® 0 -cos0

Navigation to Inertial Transformation. The time-

varying DCM relating a vector expressed in the ENU frame

to one in inertial coordinates is

-sinA -sinLcosA cosLcosA

C. = COSsA -sinLsinA cosLsin) (9)

ZH

0 cosL sinL

where

A

inertial longitude

L

geographic latitude

Earth-Fixed to Inertial Transformation. The following

is the transformation between the earth-fixed and inertial
coordinate reference frames, where again, Wig is the earth's
angular velocity with respect to inertial space and At is

the elapsed time from the start of the navigation problem:

cos(wIEAt) -51n(wIEAt) 0
o .
cE = s1n(wIEAt) cos(mIEAt) 0 (10)
0 0 &
14
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Other Transformations. Using the properties of orthog-

nal reference frames outlined above, the relationships
between any of the five frames used in this work may be

found at any instant of time.

INS Mechanization

The two strapdown inertial navigation systems under
consideration differ radically in the gyroscopes they
employ, but they both generate navigation information in the
same manner. In general, the strapdown INS experiences the
same specific forces, angular velocities, and angular accel-
erations as the vehicle. To resolve these dynamic inputs
accurately, the vehicle's orientation with respect to some
reference frame must constantly be tracked. This can be
accomplished by utilizing a property of the DCM presented
above, i.e.,

& = o505, (4)
if the navigation and body reference frames are used, the
onboard guidance computer can be programmed to estimate the
Cg DCM cursively through an approximate first-order inte-

gration routine, in discrete time, using the following

equations as a basis:

°N _ N )

CB(At) = CB(tl)QNB (11)

= =cN oN 12

CB(tz) = CB(tl) + cB(At) (12)
15
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Cg(tl) = the DCM relating the inertial and body frames
at time tl

Cg(tz) = the DCM relating the inertial and body frames
at time t

"N e N :

CB(At) = the change in the Cy DCM from time t, to
time t2

QSB = the angular velocity of the becdy frame rel-

ative to the navigation frame expressed in
body frame coordinates

The recursion is initiated with the estimated CN matrix

B
after system initial alignment.
The ESB vector for this integration scheme is generated

by the onboard guidance computer using the angular velocity
vector of the platform in inertial space estimated by the

rate gyro triad, and the angular velocity vector of the

wP
=Ip’

navigation frame with respect to the inertial frame, Q?N'

The computation made is

YNB T 218 T 21N il
where
B Sl Bla P P
Wrg Cp(wIP + wPB) (14)
and
B o oAb N
Wiy = CNYIN (15)
Equation (14) simplifies to
B _ ~B P
Yrp = CpYrp (16
16




because the platform and body frames are mutually non-

rotating. The EN

IN vector of Equation (14) is computed in

discrete time by using navigational information to update

the following relationship:

=L
N ! .
WrN = AcosL (17)
AsinL
Through the recursively generated Cg DCM, the specific force

in platform coordinates sensed by the accelerometers can be

transformed to navigation frame coordinates as follows:

N _ .N.B_.P
£7 = CgCrf (18)
where
fN = specific force vector in navigation coordinates
£P = specific force in platform coordinates as sensed

by the accelerometer triad
By subtracting the navigation frame referenced gravity vec-
tor gN from EN, the vehicle acceleration vector relative to
the navigation frame is obtained. There are many ways to
estimate this gravity vector, dependent on the sophisti-
cation of earth modeling, the use of external altitude meas-

uring devices such as altimeters, and inclusion of higher

order effects. An excellent development of a gravitational

field model is presented in Reference 3. For this work, the

gravity vector is assumed to be calculated discretely. The
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+ -
N

©
. s
*

&L

B




calculations are based on a reference ellipsoid earth model
with altimeter supplied altitude information. Irregular-
ities to the surface of the reference ellipsoid are
accounted for indirectly through noise processes that are
described in Chapter IV.

The acceleration vector in the navigation frame, iﬁ,
formed by differencing the specific force and gravity vector
can be integrated twice to yield navigation frame referenced

velocity, EN' and position, £N_ Figure 2 illustrates the

mechanization outlined above for the INS in block diagram

form. |

RAC Mechanization

Using the filter-aided navigation information, the

RAC's gimbaled platform is leveled relative to the reference

ellipsoid, and a "picture" of the terrain is taken when the
vehicle is over the area recorded on one of the pre-loaded
maps. After a processing delay in which the picture is
correlated with the map, a position fix is generated. One
of the approximations made in this work is to disregard the

processing delay, and to assume the fix is made instanta-

l neously. Thus, at an update time, an instantaneous fix is
made by the RAC which can be expressed in geographical

latitude and longitude.

B e o R
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Filter Mechanization

The estimator implemented in the RAC guidance system is
an indirect feedback Kalman filter. In this configuration,
the filter estimates INS navigation errors rather than total
navigation parameters (indirect), and directs these error
estimates back to the INS for navigation correction (feed-
back). These errors are estimated in discrete-time and can
be calculated as RAC position fixes become available. The
algorithms used by the filter to generate these error esti-
mates are detailed in Chapter III. An overall represen-
tation of the information channeling for the INS, RAC, and

filter is shown in Figure 3.

20
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f INS NAVIGATION INFORMATION

INS >

€

\ KALMAN

FILTER
DISCRETE INS POSITION,
VELOCITY, AND ATTITUDE N
ERROR ESTIMATES DISCRETE RAC
AVAILABLE AFTER RAC POSITION
UPDATE \\ FIXES
RAC e

Figure 3. RAC/INS Guidance System Information Channeling
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III. Kalman Filter Equations as Used in a Covariance Analysis

Analyzing the performance of a Kalman filter through a
covariance analysis requires a state-space formulation of the
filter and its driving dynamics. This chapter introduces the
computations performed by the filter as it propagates in time
and updates its estimates after a measurement. With this
background, the incorporation of the equations into a form

suitable for a covariance analysis will be discussed.

System Equations

In designing the optimal Kalman filter, a mathematical
description of the entire system dynamics is made through a
set of linear first order stochastic differential equations.
These equations should describe the system as completely and
accurately as possible. This formulation is known as the
"system model," with the following vector stochastic differ-
ential equation:

2s = F.X

S + GSES + B

U,

< (19)

S S

where
§S is an Nl-vector representing the system state
F_. is an N1 x N1 system dynamics matrix
G, is an N1 x M1l gain matrix

W. is an Ml-vector of white Gaussian noise inputs which

22




are zero mean and of strength Qs where
i . Qs(tl) t, = t,
E[Wg ()W (t,)] =
0 tl # t2
and E[+ ] is the expectation operator
BS is an N1 x Pl gain matrix
HS is an Pl vector of deterministic control inputs.

The initial conditions for this differential equation are

~

gs(to) - an Nl-vector representing the estimate (the

~

denotes estimate) of the system state at time t,
Ps(to) - an N1 x N1 matrix representing the covari-
ance of the system state at time to.
Discrete-time measurements made of linear combinations

of the system's state variables are represented by the fol-

lowing vector equation:

gs(ti) = Hsﬁs(ti) + Zs(ti) (20)
where
gs(ti) is an Rl-vector of measurements taken at time ty
Hg is an Rl x N1 measurement matrix
Ys(ti) is an Rl-vector of white Gaussian noise inputs

which are zero mean and of strength R, where

S

E T, Baltyl & = %
E(V_(£.)VE(t)] =
Vg (£1)Vg (E,

0 G, F
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Filter Equations

In practice, the optimal Kalman filter based upon the
high-dimensioned "system model" is seldom used because of
the heavy computational load required to implement it. A
sub-optimal filter with fewer states, yet designed to have
many of the characteristics of the optimal filter, is used
instead, resulting in a loss in performance for a gain in
computational ease and storage requirements. The sub-
optimal filter can be described by the linear first order

vector stochastic differential equation

Xp= FeXp* Gllp + Byly (21)
where
is an N2-vector representing the filter state (N2
typically much less than N1)
F_ is an N2 x N2 filter dynamics matrix

G_ is an N2 x M2 gain matrix

is an M2-vector of white Gaussian noise inputs which

are zero mean and of strength QF where

Gglt) | % =k

T y » 1 2
elu (epwlee,)| =
b | 0 t, ¥t
{
‘ BF is an N2 x P2 gain matrix
Uy is an P2-vector of deterministic control inputs.
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The initial conditions for this differential equation are

§F(t0) - an N2-vector representing the estimate of

the filter state at time to

PF(to) - an N2 x N2 matrix rerresenting the covariance
of the filter state at time to.
The associated discrete-time linear vector measurement

equation is
gF(ti) = HF§F(ti) + ZF(ti) (22)

where

EF(ti) is an Rl-vector of measurements taken at time t1

HF is an Rl x N2 measurement matrix
!F(ti) is an R2-vector of white Gaussian noise inputs

which are zero mean and of strength RF where

1

RF(tl) ty = t2

T &
E[\_/F(tl)\_/'F(tz)] =
0 ty # t2

Kalman Filter Equations

The Gaussian probability density function is an inte-
gral assumption in the Kalman filter formulation. If the
statistics of both the states and the driving noises of the

f system can be modeled as Gaussian, then the mathematics of
the optimal filter become tractable. Modeling the states
and noises as Gaussian random variables is not a limiting
restriction, because it can be shown mathematically (through

use of the Central Limit Theorem) that a large number of

25
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random variables when added together have statistics that
are very nearly Gaussian regardless of their individual
density function (Ref 4:96).

The Gaussian probability density function is a normal
bell-shaped curve centered about its mean, p. The measure
of the spread of this curve is called the standard devi-
ation, or one-sigma value, o. The region under the curve
and one-sigma value to the left and right of the mean covers
68.3% of the function's area. Thus, a sharply peaked Gauss-
ian density function will have a smaller standard deviation
than a flatly peaked Gaussian density function. Since the
Gaussian density function of a variable relates probability
of occurrence, 68.3% of the time the estimate of the vari-
able will be within the bounds p + 0. The equations
describing the Gaussian density function and its associated
mean and variance are given below (Ref 4:78-86).

Gaussian density function

2
Fx(e) = ———23—- exp :ié:%l— (23)
(21T)TU 20
Mean
w=gx] = [ZeF (c)de (24)
Variance
o2 = B[x?] = fojoo(g—p)zFx(e)dE (25)

where € is a dummy variable representing possible values of

26




X, the random variable, and E[-] is the expectation oper-
ator. i
If the states and associated driving noises of the

system are modeled as Gaussian, then it can be shown that
one joint Gaussian density function of the same dimension
as the state vector can be used to describe the state-
vectors probability (Ref 4:49). The Kalman filter provides
estimates of individual states by propagating this joint
density function in time and altering its shape when "new
information" is obtained at a measurement time. The initial
conditions for this propagation are provided to the filter
in the g(to) vector, this vector contains the initial mean
of each state, and the initial covariance matrix, P(to),
this matrix is formed by finding the covariance kernel of

the state vector at time t0 (Ref 4:48), i.e.,

- o - " T
P(ty) = E {[X(ty) - §(t0)]|_§(t0) - X(tgy)] 7} (26)

If the states are independent, this matrix is diagonal with

L element equal to the variance of the ith state. As

its ii
the joint density function at any instant of time represents
total knowledge of the state and its associated covariance,

the conditional mean and the conditional covariance of this

function form the best estimates of system performance. The

conditional mean of the state is propagated in time through
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the following continuous time matrix equation:

X=FX+BU (27)

starting from the initial condition X(t,).
The conditional covariance of this state vector is propa-

gated through a similar continuous time matrix equation,

ﬁ = FP + PFT + GQGT (28)

starting from the initial condition P(to).
When an external measurement is used to update the
filter's estimate of the conditional mean and its associated

covariance matrix, the following Kalman filter equations are

used:
K =P~ HT[HP'HT + g = (29)
p" = p” - RHP™ (30)
é+ = g— + K[g - Hgi (31)

where

K is the Kalman gain matrix

. - :
superscript represents the best estimate just after
update

superscript represents the best estimate just prior

to update.
From these equations, it can be seen that the Kalman
filter does the following:
1. Takes estimates of the initial state vector and

its corresponding error covariance matrix, g(to) and P(to),

28




and propagates them in time until a measurement is supplied.

The filter's best estimates before incorporating the meas-

1
2. Computes a weighting matrix, K, based upon P(tI),

urement at time t, are §(t1) and P(ti).

the measurement matrix H (which indicates the states or
combination of states to be measured), and the variance of
the white noise corrupting the measurement vector.

3. Updates the covariance matrix. (Note that there is
no dependence on the measurement value for this update.)

4. Provides a new estimate of the state vector, g(ti),

by updating its previous estimate, g(t;), with a weighted

estimate of the error between the actual measurement and

the filters a priori estimate of the measurement,

K[g = Hg(th .
5. Iterates on the above procedure to step along in

£
1t

ditions, and the recursion continues.

time; i.e., X(t,) and P(tI) become the new initial con-

Covariance Analysis Equations

The Kalman filter equations presented above are suffi-
cient to completely evaluate the performance of the optimal
filter, or system model, along a given trajectory. This i

filter's state vector, X and its associated covariance

Sl

matrix P represent the true statistics of the entire

sl
system at any point in time. Although the optimal filter is
seldom implemented, it can be very useful in evaluating the

performance of a particular sub-optimal filter. The process

29




by which this is done is called a covariance analysis. Con-
ceptually, the system model provides measurements, gs, to
the sub-optimal filter, which uses this information to

~

provide an estimate of the state vector, XF’ through the
propagation and update equations presented above. The
difference between the filter's state estimate and the true
state is the error vector. The principal concepts involved

in obtaining the error vector are characterized in Figure 4

(Ref 1:18). Note that the difference in vector dimension

SYSTEM ES SUB-OPTIMAL |
3 MODEL FILTER
Xs

Figure 4. Concept of the Error Vector

can be corrected by the following mathematical manipulation, |

provided that the states of the sub-optimal filter are the

same as the first N2 components of Xg:

=T %" T

where T = [—%J with I an N2 x N2 identity matrix and 0 an

sen gty

T ———
. .r—
£, -4
ooy

(N1 - N2) x N2 null matrix.
i 4 30

g B, S o




It is the statistics of the error vector, especially

the upper N2 partition, that determine how well a sub-
optimal filter will perform, because the error vector is
the best description of the "true" errors being committed
by the sub-optimal filter. If the covariance of the error
vector closely matches the covariance of the filter's state
vector, the filter is accurately estimating the errors it
is committing. A computer program that can be used to per-
form the analysis of the sub-optimal filter is General

Covariance Analysis Program (GCAP) (Ref 5). This program

yields the covariance matrices of the sub-optimal filter
state vector and the error-vector at specified points in
time. GCAP generates the filter covariance through the
Kalman filter equations presented above. To show how the
covariance of the error vector is obtained in this program,
the following derivation is presented (Ref 5:20-32).

The following augmented state vector is defined:

E Xg = TXp
£ = j=x=] = - - (32)
s X X

ZF 2

differentiating both sides and substituting Equations (19)

b X
and (21) for X, and KF'
. Lgig * Gglig = Tigdy
X =  |eemecememegemccneaaas (33)
=aug F X
F-F
31




which can be rewritten as:

. _ |Fg¥g * GgWg - TE, X - FTXp+ FoTX o
—aug = TP S35 IS W P O P RO R Y 0 P T T RS, TR I
Frip )

g o |is2l T - el T Cols
—aug 5

F

X5

This equation can be factored into the following form:

A s o sl 30 < | B
—aug 0 : FF —aug 0 =S
or for simplicity,
éaug ir Faug Kaug t Gaug ES (35)

This equation is in state-space form with the covariance of

the augmented state vector satisfying the differential

equation
P = FP + PF' + GQGY (36)
where
*E .y 1a
P = |——=—=- ——————
o
Py | WBgT - T
F = —-————‘ ———————————
0 \ F
e . F
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Equation (36) shows the covariance propagation of the
augmented state vector, with the upper left partition the
desired entity; i.e., the covariance of the error vector.
The covariance of the error vector is updated after a

measurement using the following relationships:

Xg = Xg (37)
/\+ A- o /\_
Ip =~ %y * Kpligk, = Bely + Bl =59
+ + +

Substituting Equations (37) and (38) into Equation

(39) and rearranging terms,

E" = Xg - TlgF + Kp (HgXg = HXp + Ysﬂ

+ TKgHGTX = TK HgTX (40)

the associated error vector covariance after update is

pt = ap7aT + BRSBT (41)
where
:
| I TKFHS : TKF(HF HgT)
A= —-———____-__.l_ _________________
E + ‘I + K HT - K H
| KF H : 1 RF s -
and
..TI%
B =
K
F
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GCAP iteratively solves the continuous time equations

presented above using a fourth-order Runge-Kutta approxi-

mation integration routine and then performs the discrete-

time measurement updates.




»

IV: System Models

The highly dimensioned system models (one each for the
Sperry and Hamilton-Standard inertial navigation systems)
used in the covariance analysis of the sub-optimal filter
designs were developed by Professor Maybeck (Ref 1; Ref 2).
Because the states of the two linear system models are
modeled as initially Gaussian and driven by white Gaussian
noise, the first section of this chapter will discuss noise
modeling. The second section will define the state vari-
ables used in each sy%lem model and their associated initial
conditions and noise étréngths. In the last section, the
and the meas-

dynamics matrix, F_, noise gain matrix, G

s’ S"
urement matrix, Hs,{for each system will be presented, along
with some justification for the difference in states and

state dimension between the two models.

Noise Modeling

The system model state equation is representative of
the best mathematical model that can be used to describe a
given system. It is necessarily complex to include the
dynamics associated with all the significant factors influ-
encing perforﬁance. In some cases, a systems second-order
effects are so small a factor in overall performance that

they can be disregarded and a linear mathematical model
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generated. Such is the case for an inertial navigation
system. Although the linear equations governing the error
response of an INS are well documented in the literature
(Ref 3; Ref 6; Ref 7), certain influencing factors and ini-
tial conditions cannot be specified exactly due to limi-
tations in the developed theory, tes‘ing procedures, and
measuring devices. Although an exact magnitude cannot be
put on these "influencing factors and initial conditions,"
careful observation may allow the designer to propose sto-
chastic process models whose power spectral densities are
good approximations to these unknowns. In the INS portion
of the system state equation, these uncertainties are mod-
eled as additional states driven by white Gaussian noise,
and their relationship to the position, velocity, and atti-
tude states is expressed by augmenting the Fs matrix. Simi-
larly, uncertainties associated with the RAC can be modeled
as "noise states" and augmented into the system dynamics
matrix. The following two noise models are presented to
show the effects an augmented "noise state" introduces into
the system state equation.

Random Bias. The random bias models a constant of

unknown magnitude. It is formed by setting an undriven
integrator with a random initial condition. Figure 5 shows
the random bias in block diagram form (Ref 4:174). From
this block diagram, it can be seen that the state equation

for a random bias is X(t) = 0. As the integrator is not
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X(to)

ot | X8

Figure 5. Random Bias

driven by white Gaussian noise, the QS element for this |
state is 0. The initial condition is supplied in the Gauss-
ian random vector gs(to) with mean equal to §S(t0). Careful
testing may limit the range of values this constant may ini-
tially assume; this information is embodied in the Ps(to)
matrix for the system as the variance of the state. Exam-
ples of errors that are modeled as random biases in the
system model are accelerometer and gyroscope scale factor

errors.

Exponentially Time-Correlated Noise Model. The expo-

} [ nentially time-correlated noise model is a useful represen-
tation of a random quantity whose variance kernel is a

decreasing exponential in the difference. This can be
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expressed as follows for the scalar case:

r-v'v AR ; . il TS — ,
51
' 1
1
|
|

2 -o|At|
e

E[X(t)X(t+At)] = © (42)

where E[-] is again the expectation operator

and
X(t) = random gquantity being modeled
02 = the variance of X(t)
o = 1/T where T is the correlation time of the 3

random quantity
Figure 6 illustrates the exponentially time-correlated noise

in block diagram form (Ref 4:178).

wit) « fae X '!

Figure 6. Exponentially Time-Correlated Noise Model
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From Figure 6, it can be seen that the uncertainty X(t) is
the output of a first order lag driven by white Gaussian

noise. The state equation for the noise X(t) is
X(t) = -z X(t) + w(t) (43)

As it is desired to model a stationary process, the appro-

priate strength, Q of the white Gaussian noise can be

SI
found by setting the variance propagation equation equal to
zero and solving for the Qs magnitude which achieves a

desired 02 value. The equation is solved below:

I T 2 A
PS— FSPS o5 PSFS + GSQSGS =0 (44)

or for this scalar case

N AR B S |
0 = 7O o F + QS (45)
2
_ 20
g " SH .

Therefore, the uncertainty being modeled as exponentially
time-correlated requires an input noise strength numerically
equal to twice the state variance divided by the correlation
time. 1In the system models, certain accelerometer and gyro
error characteristics are modeled as exponentially time-
correlated. \

An exponentially distance-correlated process can be

modeled following the above development and making the sub-

stitution V/D for T, where D is the correlation distance of

39




the process and V the velocity in the appropriate direction.

Gravity deflections and anomalies are expressed as exponen-

r tially distance-correlated processes in the system models.

System Model State Variables

In this section, the state variables used in the Sperry
and Hamilton-Standard system models will be defined. As
stated in Chapter II, the Kalman filter formulation being
implemented in the RAC-INS system is the indirect feedback :

filter. 1In this configuration, the Kalman filter estimates

T ————

the errors being committed by the system rather than the
quantities of direct interest such as position, velocity,
and altitude. Thus, the first nine states in each system
model are the error states associated with the three axes of
the east-north-up coordinate frame (three error states for
each axis, one each for position, velocity, and attitude
errors). A modeling assumption made for the two system
models is that, on an ensemble basis, all errors at time tO

will be zero mean; thus the initial condition for the states

of both systems is a zero vector, i.e.,

~

Xg(tg) = L0] (47),

In addition, the PS(to) matrix is assumed to be diagonal.

Sperry System Model. The 46 states embodied in the

Sperry system model, together with their initial variances

and appropriate noise strengths, are listed in Table I.
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This table is taken directly from Professor Maybeck's report
(Ref 1) in which an explanation of how the Ps(to) and QS
magnitudes were chosen can be found. The first nine states
represent the errors committed by the system in estimating
position, velocity, and attitude expressed relative to the
ENU coordinate frame for convenience. States 10 through 27
represent accelerometer errors committed with respect to the

X

P—YP—ZP platform frame (From Chapter II, the platform

frame of the accelerometers and gyros is related to the
navigation frame through the cgcg direction cosine matrix) .
These errors are described by means of a day-to-day repeat-
ibility bias, scale factor error, input-axis misalignment
angles about two orthogonal directions, and two exponen-
tially time-correlated biases for each accelerometer.
States 28 through 30 describe the errors between the true
earth geoid ana the reference ellipsoid assumed in the on-
board navigation algorithm through exponentially distance-
correlated processes. States 31 through 42 describe the
laser gyro errors in terms of a gyro drift rate process,
gyro scale factor error, and input-axis misalignment angles
about two directions for each gyro, again with respect to
the XP-YP-ZP platform frame. The reason this simplistic
model of gyro errors is implemented will be summarized when
the differences between the Sperry and Hamilton-Standard
system models are discussed later in this chapter. States

43 and 44 model a bias error in the RAC estimates of
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position along the east and north axes of the reference
frame. The initial variance for these states is classified.
The last two states, 45 and 46, are altimeter errors, one a
time-correlated noise process, and the other a scale factor
error. The dynamics matrices relating these states will be
presented in the next section.

Hamilton-Standard System Model. Table II lists the 61

states comprising the Hamilton-Standard system model
together with their initial variances and appropriate noise
strengths. Again, this table is taken directly from Pro-
fessor Maybeck's report (Ref 2). The first 42 states are
identical to those of the Sperry system model, with initial
conditions and noise strengths that differ from the Sperry
system due to the quality of the accelerometers and gyro-
scopes used. Table III summarizes the initial variance of
similar error sources for the two systems. This table indi-
cates that the quality of the accelerometers and gyroscopes
used in the Sperry INS is better than that of those used in
the Hamilton-Standard INS.

In addition to the errors analogous to those by the
laser gyros of the Sperry system, the conventional dry-
tuned gyros of the Hamilton-Standard INS introduce four
additional sources of error. These sources of error are
modeled in states 43 through 57 as two time-correlated gyro
drift rate processes, a two-axis gravity-sensitive drift
rate error, and a Gz-sensitive drift rate error for each
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Table III

Comparison of Initial Variance in Accelerometer and
Gyroscope Errors Between the Sperry and
Hamilton-Standard System Models

Error Source Initial Variance Initial Variance
Sperry Hamilton-Standard
i Accelerometer Bias 2 2
(Day-to-Day (250 pg) (200 ug)
Nonrepeatibility)
Accelerometer Scale 2 2
Factor Errors (500ppm) (405.6ppm)
Accel. Input Axis 2 2
Misalignment (10 arc sec) (30 arc sec)
e s Accelerometer Bias 2 2
(Correlation Time 60 min) (40 ug) (60 ug)
Accel. Bias 2 2
(Correlation Time 15 min) (20 ug) (30 ug)
Gyro Drift Rate Bias (.09 deg/hr)? (1.33 deg/hr) >
Gyro Scale Factor Errors (100ppm)2 (500ppm)2
e e (6 arc sec)2 (30 arc sec)2

Misalignment

oy

....-..
T
“

L =
i
:
{
11




gyroscope. An explanation for this modeling versus that for

the Sperry gyroscopes is presented in the last section of

this chapter. The last four states model the RAC and altim-
eter errors committed by the system and are identical to the

last four states in the Sperry model.

Dynamics of the Sperry Models

In Chapter III, the state equation of the system model
was defined as

Iq ™ Fgly T Bl

g ¥ G,

In this section, the F. and G, matrices relating the state

S S
variables and additive white Gaussian noise for each system

will be defined. The BS matrix is not relevant to this

analysis, because there are no deterministic open-loop con-

trol inputs for this analysis. The measurement matrix HS

associated with the system models will also be presented in
this section.
Sperry Dynamic's Matrices. The FS matrix for the 46

state Sperry system model may be partitioned as shown on the

following page in Equation (48). The Fij partitions of

»

Equation (48) will be displayed in the following development.
% { The F,_, partition is the fundamental matrix relating
the error states of the INS. Professor Maybeck used the

fundamental matrix presented in Inertial Navigation System

Error Models (Ref 8:26) as the F matrix for this system

de=l
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Fee
-
e
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e-ip

FH'H
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o

model with one change: the error-states 6 and 6%, repre-
senting the errors in longitude and latitude, expressed in
degrees or radians have been transformed to the error-states
GXE and GXN expressed in feet. The Fi_3 matrix is shown
explicitly in Figures 7 and 7a.

The remainder of the Fi-j matrices relate the "noise

states" to the error states. These matrices are presented
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as Equations (49) through (57).

1-4

——————————— ——

CquX CuYfY quZ

T8 m ]

Cexfy Cexfz ~Ceyfx Crvfx Crzfx ~
Cyxfy Cnxfz Cnyfx Cnyfz Cnzf

C . f

€. ok —CuYfX C

(49)

(50)

(51)

(52)

(53)




F =|C C C (54)

0 (6x3) i

Cex®x CeyYy Cgz¥z

F1-9 = | Snx®x  Cwy“y Cnz¥z e
| “ux"z “ux% “uz% |
i 0 (3x6) ]
~Cex“y “Ex“z Ev“x “CEY¥Yz ~CEz%x CEZ%Y

F1-10 = | -Gy Cuyy Cppidy =Cvty ~Cyay Cygly (56)
Cux®y Cux?z Cuv®x “Cuy®z ~Cuz®x Cuz®y
R T e S

Fi_ 11 ™ Fy.35 = L0 (9239 ] (57)

For the states modeling accelerometer and gyroscope
uncertainties, a transformation is made in their respective
partit.ons from the platform frame to the ENU frame. This
transformation is accomplished through the Cg direction
cosine matrix where the Cij element is the direction cosine

th h

between the i axis of the ENU frame and the jt axis of

the platfor-m frame. The X, Y, and Z subscripts on specific

59




force, £, and angular velocity, w, denote vector components
of these quantities in the platform frame.

The remainder of the Fii matrices represent the "noise
state" dynamics. Uncertainties modeled as biases have null
dynamics partitions, while those that are modeled as expo-
nentially time or distance-correlated have the negative
inverse of their correlation time along the diagonal of
their partition (For distance-correlated processes the
correlation time is expressed as T = D/V.). The F2_2

through Fi,_1, partitions are

F,_, = Fy_ 5 =00 (3x3)] (58)
Fy_q = L0 (6x6)] (59)
k [ i
| . -1/T, 0 0
Feo=| 00 /%, 0O (60)
0 0 -1/1,

-1/, o o ]
Fee=| 0 -u/1, o0 (61)

0 0 —l/T2

— r

f 'ZV/Dl 0 0

F,,=| 0o -vwp, o (62)

0 0 -v/D
2
L N
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Fg-3™ Fous ™ Fypean ™ [Q <3x3>] (63)

Foiini = g_(zxzﬁ (64)
3
-V/D3 0 '
Fia-32 = (65)
0 0

where from Table I,

Tl = 60 min
T2 = 15 min
P =

1 10 nautical miles

o
1

5 60 nautical miles

)
Il

3 250 nautical miles

The Gs matrix adds the white Gaussian noises associated

with the state vector into the linear differential system
equation. This matrix is 46 x 19 where 19 is the number of
white noise sources associated with the system. The matrix

is composed of ones and zeros, with a one in the ijth

th

element indicating the i state is corrupted by white noise

j of the W, vector. A zero row is used for a state which is
not directly corrupted by white noise. This matrix is not
shown explicitly.

The discrete-time measurements made' available to the

filter are the difference between position indications of

INS and the RAC. The INS position indications can be
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expressed as

Xp-1ns (ti) = Xptrue ¥ Xglt;) (66)
Xg-1ns (ti) = Xn-true T Xy(t;) (67)
where
X_ _iyg(t;) = east or north position indication of the
INS at time ti
X_ -true(ti) = the true east or north position at

time ti

The RAC position fixes can similarly be expressed as

Xg-rac (ti) = ¥p-true(ty) * Pg = Vp(%;) (68)

Xy-rac (ti) = Xy-true(Fy) * Py ~ Vy(ty) L6

X_ _pac(tyj) = east or north position measurement
indication of the RAC at time t.

b_= east or north RAC bias (states 43 and 44 in the

system model)

V~(ti) = corruptive white Gaussian noise whose strength
at time ti is a function of vehicle altitude
(The negative coefficient is adopted for
convenience to generate Z = HX + V instead of
Z = HX - V)

The strength of the white noise corrupting the measurement

can be expressed as

& : 2 (
Rs(ti) = 0 Altltude(ti) (70)
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where 0 has a classified numerical value.

The appropriate H_, matrix is formed by differencing corre-

S
sponding INS and RAC position estimates to form the meas-

urement vector. The resultant equation in matrix form is

3 8 ‘1 0 6 © Vg (t))
o |
z(t;) = 0(2x40) ! Xg(t;) +

0 1 ¢ & 1 @ @ VN(ti)

(71)

where the matrix premultiplying the system state vector is

the HS matrix.

Hamilton-Standard Dynamic's Matrices. The Fs matrix

for the 6l-state Hamilton-Standard system model may be

partitioned as follows in Equation (72). The partitions
Fi1 through Fl—lO and F2_2 through Fl0-10 correspond

exactly to the same partitions in the Sperry model.
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Partitions F

F\-‘ h-x. Fm) Frw F.., Mo

1-11

-

Fr) FiV FM f’a-m "vn FI'IL F.-ns Fn-)" F-o' Fo-u.

through Fl—l4

and F

Fis

F’G-' ‘v

i

11-11

-1

EZ‘:L
ﬁﬁs

F,;.N

Flf I

b

through Fl4—l4

introduce the additional error characteristics of the dry-

tuned gyros of the Hamilton-Standard system. These matrices

are as follows:

1-11

[ 0 (6x3)
’- — e — —_— —
Cex Cry
Cyx  Cwny
Lcux CuY
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(72)




e 5 B 250 o O S St 5

F =F ‘ (74)

—————————————— ——————————— " ——— - —————

Cexfx Cexfx Cryfy Cevfx Crzfy Crzfy

Fio13 = | Saxfx Caxfy Snyfy Cnyfx Cnzfz Cnzfy (75)

| Cuxfx Cuxfy Cuyfy Curfx Cuzfz Cuzfyl

—————————————— — —————————————

Cexfxfy Ceyvfxfy Crzfvfy

Fio1a = | Caxfxfy Cavfxfy Cnzfvfs (76)

| Cuxfxfy  Cuvfxfy Cuzfyfs

-l/Tl 0 0
Fii.11 =] 0O -1/T, 0 (77)
§ g ~1/T |
-l/T2 0 0
Fi,.12 = 0 -1/T, 0 (78)
0 0 ~1/T,]
Fig 13 = L0 (6x6)] (79)
E | Pig-1a = [0 (3x3)] (80)
% ]
where from Table II the correlation times Tl and T2 are
i T, = 60 min
%
E-‘}», T2 = 15 min
L““ 65

‘
{
R’
[
!




-

R e I

4 re-g

¥

. bns
¥

1 5

i
!
3
{
}

The Fi 15 Fio16’ Fig_15¢ and F16—16 partitions of Equation
1-33" Fi-32¢ Fyyape 204 Frgo e
matrices of Equations (57), (64), and (65) respectively.

(72) correspond to the F

The GS matrix for the Hamilton-Standard system is
formed in the same manner as that for the Sperry system.
Its dimension is 61 x 16. This matrix is not shown
explicitly.

The discrete-time measurements made available to the

filter are composed of the same information as those of the

Sperry system. The measurement matrix Hg is
S t1 @& 0 ®

Hg = i 0 (2x56) | (81)
¢ 1 | e 1 8 ©

The system eguations for the Sperry and Hamilton-Standard
systems having been defined, the differences will now be
discussed.

System Model Differences. The major difference in the

two system models is the additional 15 gyro error sources

incorporated into the Hamilton-Standard system model. These

error sources representing the G-sensitive and Gz—sensitive
drift coefficients of conventional gyros do not appear in
the Sperry system model because its laser gyros are vir-
tually gravity insensitive.

The white Gaussian noise associated with the attitude

error-states of the Sperry system is again due to the dif-

ference in gyroscopes used for the two INS'. A typical gyro
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drift rate model is shown in Figure 8 (Ref 1:14). This

; model indicates that gyro drift rate is composed of an expo-
* nentially time-correlated noise € (with a correlation time
of T and an independent white Gaussian noise WZ‘

In conventional gyros, the € contribution to
drift rate predominates W5, and typically the strength
of the white Gaussian noise W, is set at some finite
value while the strength of W, is set to zero. How-
ever, for laser gyros, the effect of W, predominates;
this noise strength_is depicted througﬁ the Qg terms
of 7.61 x 10~11 rad?/sec driving the attitude error
differential equations in Table I | Ref 1:13].

W,

W 4 ;Jt € +

.

} Figure 8. Gyro Drift Model

The system models having been detailed, Chapter V will

define the sub-optimal filter models considered in this work.

B T, S R
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V. The Lockheed Kalman Filter Design and an Alternate Design

In this chapter, the sub-optimal Kalman filter design ;
as proposed by Lockheed will be presented. 1In addition, an
alternate design based on the Lockheed filter will be devel-
oped. A comparison of the merits and possible drawbacks of

each of these filters when driven by either INS and updated

by the radiometric area correlator will also be made. In
Chapter VII the performance of these two filters will be

evaluated.

Lockheed's Kalman Filter

The basis for the Lockheed filter is a mathematical
model composed of six error states. This model can be
decomposed into two decoupled three-state partitions, each
embodying errors in position, velocity, and attitude angle
in one direction. In this decoupled form, and with the
east-north-up coordinate frame instrumented, the state-

space equations are (Ref 1:1)

- - - p- - - = r ]
§Xg 0 1 0 § X, 0 0 "
El
Sl Y e B (82)
E2
: 1
¢N 0 R 0 ¢N 0 1
L - - o b e b -
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0
"N1

0 (83)
W2

1

east position

north position

east velocity

north velocity

2
2

are white Gaussian noises modeling acceleration

T ——
fie s 2 8] T} Ta
&y &y
. = 0 0 G +]1
GVN va
. 1
?E | P R 0_ LQE .0
where
8 is the error in the INS-indicated
E
3% is the error in the INS-indicated
N
sV is the error in the INS-indicated
E
&V is the error in the INS-indicated
N
¢E is the attitude error, east component
QN is the attitude error, north component
R is the equatorial radius of the earth--2.09 x 10 Ft
G is the magnitude of gravity--32.2 Ft/Sec
Yg1r Wn1
associated errors
WEZ’ WN2 are white Gaussian noises modeling attitude

angular rate associated errors

Chapter III,

i
H
3
4 r,
LA
i P
)
%
{

G -

Zp

= FpX, + GgW, + B.U

F=F

69

These equations form the linear stochastic differential

equation upon which the filter is based as described in




where for each partition,

Up = control input - a zero vector

Q for €. = t
= 22 i
ELw_, (£)W_; ()] = (84)

0 for t1 # t2

E(W_j (¢)W_,(t,)] = 0
Q for t, = t

E(W_, (W _,(¢,)] = { °° e (85)
0 for t1 # t2

and the subscripts for each Q were chosen because they
assume those positions in the diagonal GFOFGF matrix.
The discrete time measurement for each filter partition

is formed by subtracting INS-indicated position from the RAC-

indicated position. INS-indicated east position is the sum

of true position and the east position error state,

Xgo1ns (t1) = Xpoqpyg (t;) *+ SXg(t) 106
where
E INs(t ) = INS-indicated east position
XE-TRUE(ti) = true east position

Similarly, the RAC-indicated position is the sum of true
position and a corruptive white Gaussian noise whose magni-
tude is proportional to the square of the altitude. This

cquation is shown below where the negative sign has been
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adopted for convenience:

o

Xg-rac(ti) = Xg_qrug ~ VE(ti) (87)
where
xE—RAC(ti) = RAC-indicated east position
¥ VE(ti) = zero mean, white Gaussian noise corrupting
the RAC position measurement
and

RF = the strength of the measurement corrupting noise
Vy = 0 - (altitude)?
with © a classified numeric value. Therefore, subtracting
Equation (87) from Equation (86) yields the desired meas-

urement equation for the east-position partition as
Z(ty) = SXp(t;) + Vp(t,) (88)

Because position is the only quantity measured by the
RAC, this measurement egquation can be expressed as:
6X, ()

Z(e.} = [1 0 0] JS@.(t ) + voiey) (89)

@N(ti)

- -~

Similarly, the measurement equation for the north-

position partition is

[ox (£4)]
3~ 2(t;) =[10 0] [sv (t)] + Vg(ty) (90)
B o5 (t;) |
L: 71
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These equations correspond to the measurement equation for

the sub-optimal filter presented in Chapter III, i.e.,
Z(ti) o= HF§F(ti) + YF(ti)

These filter models are extremely simple, six total
states as opposed to the 46 and 61 state optimal filters of
the Sperry and Hamilton-Standard systems' truth models
respectively, thereby reducing the computational load and
storage requirements for the onboard computer. In addition,
a simplification to the covariance propagation equation is
made in the Lockheed design. The continuous time equation

describing the covariance propagation is from Equation (28):

P = FP + PFY + GQGT

The equivalent discrete time equation is (Ref 4:163)

- _ O

£
+ [ l@(ti,T)GQGTQT(ti,T)dT (91)
1—

where
T is a dummy variable representing time

superscript * is the time instant just after a meas-
urement update

superscript  is the time instant just before a meas-
urement update

@(ti,ti_l) is the state transition matrix, the matrix
which satisfies the differential equation
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d &
over the time interval ti—l to ti starting from the initial
condition

o(t =1I

i-1%i-1)
where I is an identity matrix of the same dimension as
Bl 4oty 4)-

The simplification made by Lockheed is to approximate
the full matrix resulting from the integration term in the
discrete equation as a diagonal matrix. Thus for each
three-state partition the full 3x3 additive noise matrix is
approximated as a 3x3 diagonal matrix. This approximation
leads to the following discrete time covariance propagation

equation for the Lockheed design (Ref 1:2)

r o
gy ¥ 9
o Py n L
~0 0 q33d
where
- phpa eyl : 3,2
q;1 = (30t )7Q,, + (5.3666At7) Q55
= Ak 2,2
- A
e
Q,, = strength of white Gaussian noise W_, as expressed
in Equation (84)
Q34 = strength of white Gaussian noise W_, as expressed

in Equation (85)
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Advantages

The major advantage of this design is simplicity. The

onboard computer has only to propagate and update two three-
state partitions, a considerable computational and storage
reduction from tracking even one six-state filter whose
states are coupled. In addition, the computer burden is
further lessened using a discrete noise formulation obtained
through straightforward mathematical "adds" and "multiplies";
a function the computer can accomplish far more efficiently

than numerical integration.

Disadvantages

One possible disadvantage of such a simple design is
accuracy, whether the tradeoff in accuracy between the six-
state filter model and a more sophisticated design is
warranted can only be evaluated when system specifications
are finalized. Accuracy will also be lost in approximating
the full 3x3 additive noise matrix for each filter as diag-
onal. This loss is illustrated in the following development.

Using Equation (92) the initial covariance matrix,
PF(to), is propagated to its first measurement update time,

tl, as follows:

=Y. = T
2 T T 93
+ o7 0ty T)IGEQECRE" (£, TV AT (93)
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The matrix multiplication and integration terms may be

expressed in the simplified form below for each partition.

b . - = -
Byy By By Myy By Ny
Bity d = 4Fy Tos Bl *i¥ys Ny W (94)
Ejyz Egz Ea, Ny3 Ny B,y
| <} . vl
r where

Eij are elements of the @(-)PF(tO)QT(-) matrix, with

Eij = Eji from symmetry

and

T . -
Q;4 are elements of the fe(+) GLQLGL® (+)dT matrix with

; Qij = jS from symmetry

The Kalman gain matrix, K, is then calculated:
B = =T -1
Kity) = B be, IRLR R 0t "I + &) (95)

Using Equations (90) and (100), in matrix form this

gain for either partition can be expressed as:

=
* E)y*Ny; 0 0]

| K(ty} = |EjptN;5 0 0 : 2

‘ Ell+Nll+O-(alt1tude)
j Spyths 0 (96)

This gain matrix is then used to update the covariance

| matrix according to Equation (30), i.e.,

+ - . -
PF(tl ) = PF(tl ) - AHFPF(tl )

T
.

.
*

?.' . e
‘A Wy
£y

3
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In lower triangular matrix form, this expanded matrix

equation is:

Eq iy,
P (t, ") = |E, 4N E.. +N
pltp ) = [EpptNy, EpptN,,
Byt q Epgtliag Byytlag
- 2 1
(By1¥N,y,)
2
— | (EgptNpo) (B #N,4) (B ,4N,,) ;
2
Byt By gl (B ol Byl Byt |
L - (97)
E11+Nll+®-(a1t1tude)

Although this equation is quite cumbersome, it serves
to point out that every element of the updated covariance
matrix, except the upper left, is dependent upon the off-
diagonal noise elements. Thus, in ignoring these off-
diagonal elements, a certain degree of accuracy will be

lost in determining the variance of the error-states.

Alternate Design

Because the computational load and storage requirements

T

placed upon the onboard computer were the ultimate limiting
factors in any design for this application, the six error-
states as proposed by Lockheed were used in the following

g filter formulation. The alternate design utilizes an
.
£

e g approximation to the full 3x3 additive noise matrix that is
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generated from the covariance propagation equation for each
of the three-state partitions, instead of Lockheed's diag-
onalized approximation. Since the best performance for the
two three-state filter models can be obtained using the
correct covariance propagation equation, an approximation
closely matching the full noise matrix rather than just the
diagonal elements should provide better filter estimation
precision than the Lockheed design. Although this formu-
lation should provide a better estimate of the system
navigation errors than the Lockheed design when properly
"tuned" (the tuning process is described in Chapter VII),
the enhanced estimation precision is bought at a "cost" of
additional storage space in the onboard computer, a critical
consideration. The additional storage space is required
because the three equations in the Lockheed design involving
"adds" and "multiplies" would be extended to six in the
alternate design. The additional three equations character-
ize the noise added to the off-diagonal elements of the
covariance matrix during propagation; three equations are
sufficient because through symmetry, the upper three trian-
gular elements of each partition's covariance matrix are
equivalent to the lower three triangular elements. The
following is the derivation used to obtain the six additive

noise equations.
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The term for which an equivalent set of simple equations

is sought is

Ny Njo Ny,
N N N %y T T
21 N2z Np3f o ft ®(t,,T)GLQGLe" (&, ,T)dr (98)
E i-1
! LN31 Nis Njj

The state transition matrix, @(ti,r), for a time period

ti-l to ti’ At, can be found through straightforward manip-
ulation of the filter Fo matrix using Laplace transformation
methods since Fr is time invariant (Ref 9:161).
1 Isin(wst)  -RL1-cos(ubt)]
@(ti,ti_l) = ¢(At) = |0 cos (wAt) -Rwsin (wAt) (99)
0 & sin(wAt) cos (wAt)

where the substitution w =/ % has been made.

Substituting this equation together with the filter G
and Qp matrices into Equation (98) and performing the inte-

gration, the following results are obtained:

Q2 -1 At R

P

Nll = wz iacos(wAt)51n(wAt)+7— + Q33R o wik 651n(wAt)

5 } + %Gsin(wAt)cos(wAtﬂ (100)
e

D At
i N22 = sz[%651n(wAt)cos(wAt)+2]
!
9 + 0538%% |ZLcos (wat) sin (wat) +5E (101)
&
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Qo | -1

5 : At
N33 W —— iacos(wAt)51n(wAt)+5~
R™w
Lo At
+ Q33[%651n(wAt)cos(wAt)FE{] (102)
Q2 . 2 21 . 2
N = ——sin” (wAt)-Q,,R°| 5sin” (wAt) +cos (wAt) -1 (103)
2 Rgoar 33% |2
Qaf -1 At
N = ——| s—cos(wAt)sin (wAt) + =—
31 R 21 2w 2
w
+ Q33R[%asin(wAt)cos(wAt)+%E - %sin(wAtJ (104)
0] Q. 5R
N.., = —22.gin® (uht] - —23 sin® (wht) (105)
32 7 ap.2 2
w
le = N, (106)
Nj3 = Njy (107)
N,y = Nj, (108)

These equations can be further simplified by intro-

ducing the power

series expansions of the trigonometric

terms. The relationships used are (Ref 10:456):

sin (wAt) cos (wAt)

sin (wAt) = wAt -

- sin (2wAt)

2
Y sune - 2088)® | oat)® + | (109)
B B 31 5T
3 5
(wAt) (wAt)
3T + - L (110)
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2 4
cos(wat) = 1 - {28l lwdt) . (111)
!

When these substitutions are made into Equations (100)
thru (105) the results, disregarding higher order terms,
are:

Q At3 Q R2Lu4At5
N o A + 33 (112)
§ 11 3 20 .
Q33R2w4At3
N22 = Q22At + R (113)
L Q,,At>
E N33 = a2 + Q35At (114)
0,,0t% o RZuiatt
N = + (115)
21 2 8
0.0t o .reat3
Moy = =2t o 32 (116)
31 3R 6
Q,,0t% 0. rw®at?
L T i - AR

Because the covariance can be propagated and updated
without the need for an external measurement, Ref Chapter
III,-a shorter time span than that between measurements is
used to keep the covariance estimate current. A time period

of four seconds was used in the computer simulation until

just prior to pitchover, and this time period will be used
to show the accuracy of the six equation approximation to

the additive noise integral solution. Table IV depicts the
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exact solution, power series approximation, and Lockheed

approximation to Equation (105) over a period of four
seconds.

Table IVindicates that the power series approximation
is very accurate, which leads to the conclusion that imple-
menting a filter that uses this approximation instead of
the exact Kalman filter equations will suffer little loss
of accuracy. The Lockheed approximations differ greatly
from the elements of the exact solution; however, this
difference may be an attempt to negate the effects of
ignoring the off-diagonal noise elements. Chapter VII will

compare the performance of these filters.
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VI. Trajectory

This work analyzes the navigation errors committed by
a Kalman filter as the weapon system "flies" a typical tra-
jectory. The trajectory was provided by AFATL in the form
of strip charts. These strip charts represent a six-degree-
of-freedom glide-to-impact time history of the variables of
interest as simulated on an analog computer. The glide-to-
impact simulation is indicative of the maximum range the
unpowered vehicle possesses. Although six degrees-of-
freedom were simulated, the fact that it was a no-wind
flight, with the vehicle maneuvering only in pitch, limited
the geometry to two dimensions, i.e., the vertical plane.
The strip charts are classified Secret; however, Figures 9
thru 12 characterize some of the dynamics of the vehicle.
The figures are not to scale and do not accurately reflect
relative time periods, distances, altitudes, or velocities.

After release at altitude, the system goes into an
extended glide. Through this glide period, a pronounced
phugoid motion is present which affects position, velocity,
normal acceleration, glide-path angle, and pitch rate. The
angle of attack is kept relatively constant by an autopilot

and thus does not reflect the phugoid.
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At a geographical point dependent on vehicle altitude
and distance to the target, the system begins a rapid pitch-
over that ends just before impact with the ground. To
introduce the dynamics of this trajectory into the system
model and the sub-optimal Kalman filter, two options were
available:

1. Tabularize the data for table lookup

2. Approximate the data through mathematical functions

Although tabularized data would enable an exact repre-
sentation of the trajectory to be made, the computer program
used to perform the covariance analysis, GCAP, uses an inte-
gration routine that requires four data points for each
integration step; thus, the amount of computer core memory
needed to facilitate the table lookup scheme would be

prohibitive.

Functions Used to Approximate the Trajectory

In approximating the data mathematically, good accuracy
was obtained through the use of two "curve fit" computer
routines (Ref 11; Ref 12). These routines use an orthogo-
nalization technique to minimize the root mean square (RMS)

error between the actual data points and the computer gen-

S @ et

, erated points at corresponding times. The RMS error mini-

mized may be mathematically represented as

# of data points

2
RMS Error = L ) Ry (118)
1=

# of data points 1

o
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where Ri = the difference between user supplied ordinate
f magnitude at time corresponding to i and computer
generated ordinate magnitude at time corre-

sponding to time i

The computer generates 27 third-order polynominals for each
variable. Each polynominal, covering a certain length of
the axis, is continuous to the second derivative with the
polynominals representing the time axis adjacent to it. Two
sets of these "curve fit" polynominals, coupled with certain
kinematic relationships, are sufficient to describe the
trajectory. The first set, depicting altitude versus time,
has a 24.2 ft RMS error, while the second set, velocity
versus time, has a 1.65 ft/sec RMS error. The form one

polynominal of each of these sets takes is shown below.

Altitude = H = A(t-ty)> + B(t-t,)® + C(t-ty) + D (119)
Velocity = VT = E(t-ty) >+ F(t-ty)® + G(t-t) + P (120)
where
A,B,C,D,E,F,G, and P = constant coefficients
»: { t0 = the point on the time axis where the poly-
: ' nominal first becomes valid
: |
: j t = the time, within the polynominal's valid
: range, at which the function is to be
evaluated
f[ With the altitude and velocity specified as functions
'
gﬁ, of time, and motion restricted to the vertical plane, the
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kinematic relationships below provide all the necessary

information to specify the vehicles dynamics.

further illustrates these relationships.

Figure 13

Time

Figure 13. Trajectory Vector Relationships

+ 2B(t-t

+ C

+ 2B

Vertical Velocity = Qé%L = VD = 3A(t-t0)2
a2 (1)
Vertical Acceleration = 5 = VD = 6A(t-t0)
dt
. 2 2
Forward Velocity = VF = vT~-VD

Total Acceleration = a(vr) . VT = 3E(t-t0)2

+ 2F(t-t0) + G

0
(121)

(122)

(123)

(124)
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Forward Acceleration = déZF) = V%
_ VT (VT) -VD (VD)
= VF (125)
Glide Path Angle = 0 = TAN 1 ‘% (126)
: - di(ey - =
Pitch Rate = o i 0
e 1 > \% = VD(\ZIF) (127)
n 2 i
VF

In developing Equations (121) thru (127), one simpli-
fying assumption has been made: that the attitude of the
vehicle is such that the vehicle is always tangential to the
altitude vs. time curve. This assumption allows the total
velocity to be expressed as a vector whose direction is
parallel to the flight path at any instance of time. The
components of velocity and accelefation are ihen determined
through straightforward vector calculus. Although simpli-
fying the vehicle's equations of motion, one disadvantage is
encountered by making this assumption: the effect of the
autopilot maintairing a constant positive angle-of-attack
has been ignored. The fact that the constant positive
angle-of-attack has been ignored does not greatly diminish
the validity of the mathematical model above. Because a
constant angle-of-attack of zero is implied in the
assumption that the vehicle is tangential to the glide-path,

the vehicle will still be subjected to approximately the
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same pitch rates indicated on the strip-charts. Thus, the

actual dynamics experienced by the vehicle "flying" the
mathematical trajectory will be very similar to those
experienced by the vehicle "flying" the strip-chart tra-

jectory, with the major difference being the orientation

of the vehicle in flight.

S @ e

v
>

L;“ 90




Siong v e

5
¥ reg
&
'

k1

{

$

VII. Filter Tuning and Performance

Because the sub-optimal filter designs of Chapter V
have many fewer states than either the Sperry or Hamilton-
Standard system models presented in Chapter IV, it is
unlikely that the same initial conditions and corruptive
white noise strengths that reflect true performance in the
system models will yield best performance for the filter
designs. In this chapter, the process through which the
initial conditions and white noise strengths for the sub-
optimal filter models were obtained will be described.
Filter performance using these values will then be eval-
uated. In the last section, an error budget will be
presented which indicates the contribution various error

sources make to overall system navigation error.

Filter Tuning Philosophy

As presented in Chapter III, the covariance of the
states for the two sub-optimal filter model partitions and
the error vector's covariance form the output of the covar-
iance analysis computer program, GCAP. Filter tuning is the
process of aligning as closely as possible the corresponding
error statistics by properly setting the filter model's
initial covariance matrix, PF(tO)' and the additive white

Gaussian noise strengths, Q_'s and RF's. When "tuned," the

F
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filter correctly estimates true system error. In tuning a
filter, many approaches can be taken. Since it is mathe-
matically impossible to match the variance of the sub-
optimal filter's states exactly with the appropriate var-
iance terms of the error vector, certain decisions must be
made. Should the tuning process seek to optimize the per-
formance for one or more "key" states at the expense of
accuracy in estimating the true variance of the other
states. Or, should a medium be struck, and an attempt made
to align the variance of all the filter's states with those
of the corresponding elements of the error vector, thereby
possibly reducing the performance capability on the "key"
states. Professor Maybeck chose to closely match the
variances of the position error-states, 6xE and GXN, with
their corresponding true error vector variances and achieved
excellent results. Although he attained a close match in
the first two states of each filter, position and velocity
errors, the variance estimates of the attitude error state,
the third state of each partition, were significantly lower
than the true variances of the error vector for this state.
The tuning philosophy adopted in this work is to
attempt to align the variances of all three states in each
filter model partition closely with the true variances of
the error-vector. This philosophy is adopted because the
movement of the platform to "point" the RAC vertically down

for a position measurement will be governed by the INS/

92

i gt e e T i i - . :




PSRN

filter generated attitude angles of the vehicle relative to
the east-north-up coordinate frame. Thus, for this work all
of the states in each filter model partition are considered
equally important.

Trajectory Specifications and Update Schedule Used for
Filter Tuning

Although the kinematics of the trajectory are completely
described in Chapter VI, the geographic starting location
and the heading angle of the "flight" remain to be specified.
The geographic starting location chosen was the same as that
used in Professor Maybeck's study, latitude 39%50" north,
longitude 83°40" west, to afford a means of comparison
between system performance along the relatively benign tra-
jectory of that investigation and system performance along
the more dynamic trajectory of this work. The heading angle
is 450, approximately 8° less than the heading angle used
in Professor Maybeck's simulation. This angle was chosen
because it subjects the vehicle to the same vector components
of angular velocity and angular acceleration inputs along
the east and north axes of the navigation frame. The effects
of varying the heading angle from 45°, thus causing greater
vector components of angular velocity and angular acceler-
ation along either the east or north axis of the navigation
frame will be investigated in Chapter VIII.

The measurement update schedule was verbally obtained

from Mr. P. Richter, AFATL, and consisted of six "fixes."
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These fixes were spaced in time such that the distance
between successive RAC updates was progressively smaller.
The last update it taken after vehicle pitchover is complete.

This fix schedule is illustrated in Figure 14.

Figure 14. Spacing of RAC Update Fixes
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Filter Tuning

Rather than tune each of the two filter designs of
Chapter VI, only the design reflecting the correct covar-
iance propagation will be tuned (i.e., the proper nocn-
diagonal integral solution to the additive noise matrix).
The initial covariance matrices and the white Gaussian
noises that provide the best performance for this filter in
the Sperry and Hamilton-Standard systems will then be used
in the Lockheed filter and the filter incorporating a power
series approximation to the correct covariance propagation
to evaluate their performance.

The actual tuning process can be approached in a number
of ways. One method is to set the initial covariance matrix
and the white Gaussian noise strengths of the filter model
equal to their corresponding values in the system model and
vary these numerical magnitudes one-by-one in a number of
computer simulations, observing the effect each change has
on filter performance. With this information, different
combinations of noise strengths and initial conditions can
be simulated until a combination is found that provides
"best performance." This 'tut and try" approach can be very
time consuming, with no guarantee that the combination
chosen really does provide "best" performance. Another
method of tuning the sub-optimal filter is to find mathe-
matical relationships that give insight into how the initial

covariance elements and noise strengths affect individual
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states, and set these elements to increase the filter's
accuracy. A combination of these methods was used to tune
the filter model of Chapter VI which reflected the true
covariance propagation. In setting the initial covariance
matrix and white noise strengths equal to their corre-
sponding system model elements, and then varying the mag-
nitudes of these elements slightly in succeeding computer
simulations, five filter characteristics were noted:

1. The variances of corresponding error states in the
two three-state partitions were essentially the same, i.e.,:

A~

~
Error variance of GXE = error variance of 6xN

~
Error variance of 6éV_

E error variance of GVN

error variance of QE

Error variance of SN

2. The two three-state partitions had a noticeable
"transient"” lasting through approximately the first two
updates, during which they consistently underestimated the
variance of errors they were committing.

3. After a measurement update, the variances of the

errors in the estimates of positions 6X, and éxN and their

E
corresponding error-vector variances were very close.
4. The variances of the errors in estimates of atti-

tudes ¢N and ¢_ were consistently underestimated.

E
5. The covariance of the error-vector formed a numer-
ical pattern, through the first two updates, that was essen-

tially the same in all computer simulations run, even when
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the filters were estimating very poorly. i

These characteristics were displayed when the three-state

filters were estimating the errors for either the Hamilton-

Standard or Sperry system models.

Since the two three-state filter model partitions
yielded the same variance estimates when supplied identical
initial conditions and noise strengths, mathematical insight
was sought from only one set of filter equations, the east
position set, and the results applied to the other partition.
Using the development of Chapter VI, the initial covariance
matrix, a 3x3 diagonal matrix, is propagated to the first

update time, tl' as follows:

TR T
PF(tl ) = Q(tl,O)PF(O)Q (tl,O)

t
+ [ob ety me0pGReT (b, TV AT (128)

After performing the matrix multiplication and integration,
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Pyaltg )
Pplty ) = [Pyplty ) Poylty )
LP13(t1 ) Pyylty ) Paalty )
Ell(tl)
= |E,(t)) Eyy(t))
(Byaity)  Bgghtyd Bouity)
Nty Ny (Ey)
Nj3(t)) Nys(ty) Niy5(ty)
where
s 2
Eyp (t)) = Py (0) + [a sin (wAt)] P,,(0)

+ [ -R(1-cos (wat))]? P, (0)

E,,(t)) = [cos(o.\At)]2 P,, (0)

22
+ [ -Rw sin(wAt)]? P45 (0)
Eyylty) = [%B sin (wAt)] ? P,, (0)
+ [ cos(wat)]? B4, (0)
E;,(t)) = [+ sin(uat)cos (uat)] P, (0)

+ [sz sin(wAt)(l—cos(wAt))]P33(0)
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the lower triangular 3x3 PF(tl-) matrix may be expressed as:

(129)

(130)

(131)

(132)

(133)
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:
E,5(t;) = -R—17 sinz(wAt)] P, (0)
. Rw
+ [<8 costars) (l—cos(wAt))] Py, (0) (134)
Eyylty) = _ﬁ sin (uAt) cos (wat)| B, (0)
+ < cos(wAt)sin(wAt)] Py5(0) (135)

and the Nij(tl) elements are equivalent to the corresponding
Nij(At) of Equations (103) through (108) with At = tl - 0.

th h

Pij(O) =i row - jt column element of the filter

initial covariance matrix
Pij(tl-) = i yow - 5 column element of the filter
covariance matrix at the first update time,
before the measurement is incorporated.

If the values for the covariance of the error vector at
time t1 (in the "cut and try" approach above, the covariance
matrix of the error vector at time t1 was essentially the
same in all simulations run) are substituted on the left

side of this equation for the corresponding filter covar-

iance elements, a set of six simultaneous linear equations

can be formed.
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These equations in matrix notation are:

~ -

PEll(tl ) 1ABCD Pll(O)

PEZZ(tl ) 0O EFGH P22(0)

Pooailt. ) 0 I JKL| |P,,(0)

E33*1 2 33 (136)

PElZ(tl ) OMNPQ QZZ

PE13(tl ) O RSTU Q33 |

LPE23(tl L P VWY ZJ

where
PEij(tl-) = ith row - jth column element of the error

vector covariance matrix at time t1 - before

the measurement is incorporated.

Expressions for dummy coefficients A-Z can be obtained

from Equation (129).

This set of independent linear equations is over-

specified, i.e., six equations in five unknowns, so an exact

solution cannot be found; however a computer routine is

available, LSQUAR (Ref 13), which yields an approximate

i solution to such overspecified sets of equations. If

Equation (136) is represented as

e

AX + B (137)
where

A is the 6x5 coefficient matrix

r ATty eeas
E a

5
o e
PepF- S

X is the 5x1 variable matrix

2
.

B is the 6x]1 desired variance matrix
100

.
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The software package LSQUAR forms the pseudo-inverse of the

.

A matrix, A+, and then premultiplies both sides of the
AX = B equation with A+. The resultant solution for the X
matrix is such that the Euclidean norm of the system matrix

is a minimum. That is

. € 5 ol L
J |1ax - Bl|; = |1 ) AL X - By 12 38
i=1l k=1

where | represents the Euclidean norm, and the i, k,

e
and 1 subscripts denote elements of the indicated matrices

In using LSQUAR, relative weighting of the equations was
accomplished by multiplying through with appropriate con-
stants. This procedure precluded a solution which minimized
; , errors about the larger elements of the desired variance
elements while ignoring smaller elements.

LSQUAR was used to find the two sets of filter values,

Pll(O), P22(0), P33(0), 022, and Q33 (one set each for the
Hamilton-Standard and Sperry systems) which most closely
aligned the filter covariance matrix with the error-vector
covariance matrix at time t). Excellent results were
obtained in both cases. As a percentage of the individual
variances of the error-vector, the corresponding filter
l states variances fell in the range 99-101%.

To find the magnitude of the corruptive measurement

noise that yields best filter performance at the first

} update time, the Kalman filter equations are again used.
r
b
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From Chapter VI, the covariance matrix of the filter's
states at time tl after including the measurement is,

written in lower triangular form:

Pyt

s e - —
P(tl ) = Plz(tl ) P22(tl )

f13(t1 ) Pyzlty ) Paslty )
F -2
Pll(tl )
% & o
Pafty )tPy (k) ) Pyolty ) . i
= L ] = = L ] = 2 ]
Pi3lty VoPyp(ty ) Pyo(ty )oPyalty) Pygit,y )

- -

‘ L (139) g‘
. Bya(t:7) 4 0+ (altitude)?

3
: where
P(tl+) = the filter covariance matrix after the meas-
i urement update is incorporated at time ty
t; ‘ Pij(tl ) = the it? row x j*® column element of the filter
! covariance matrix before the measurement update
[‘ i is incorporated at time tl
] = the measurement variable for which a best value

S

is sought.

1 Substituting the variance values of the error-vector

1 after update for the lower triangular elements of the P(tl+)

matrix, there are six linear equations in one unknown, O.

i ‘l'
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Again using LSQUAR, a "best" value for O at this update
can be found.

These techniques can be used to tune the filter over
the remaining measurement time intervals if one change is
made. After the first measurement update the filter's
covariance matrix is known so the six propagation equations
until the second update contain only two unknowns, 022 and
Q33. It was found that after the second update (the end of
the filter transient period noted above) one set of Q values

. for the filters of each system model provided good perform-

ance. Tables V and VI summarize the initial covariance
matrices and the Q55 and Q33 values which "tune" the filters
for the Hamilton~-Standard and Sperry system models. The
value of 0 used during measurement updates is classified

as it is within 1% of the "true” 0 of the system models.

Filter Performance

A comparison between the RMS values of the state esti-
mate errors of the tuned sub-optimal filter reflecting the
correct covariance propagation and the true RMS errors of
the RAC guidance system when the Sperry INS is implemented
is presented in Figures 15 through 20. The variances of the
error-states for the filter partition estimating north
position errors are identical to those presented and are not
shown. The plots are unscaled for security classification

considerations, so a direct numerical comparison cannot be
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Table V

Variables Which Tune the Hamilton-Standard System Filters

Initial Covariance Matrix, PF(O)

Pll = 2.27E+6 ft
P22 = 4.051 ft/sec
Py = 3.2371E-7 rad ;
Big " Pyp m Pag = gy = Fgy = Bgpy = 0.0 !
|
QF Values |
Time Interval Q22 Q33
0o - t1 -.43491 .15884
tl - t2 .1E-4 .22E-7
ty - impact .1E-4 .16E-7
Table VI

Variables Which Tune the Sperry System Filters

Initial Covariance Matrix, PF(O)

P11 = 2.22E+6 ft

P22 = 3.9 ft/sec

P33 = 2.5E-7 rad

Fig = 8y3 ® Bgg & Bgy S kay = Eag = Ue0
i QF Values
|
i ‘ Time Interval sz Q33

0o - tl .31489E-1 .12057E-9

i tl - t2 .87651E-1 .98724E-10
; t2 - impact .1E-6 .3E-9
s
&
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East RMS Position Error

Time
Figure 15. Standard Propagation Filter, East RMS Position
Error Using Sperry INS
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i Time
2 Figure 16. True East RMS Position Error Using
3 Standard Propagation Filter and Sperry INS
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East RMS Velocity Error

g e

t Time
T Figure 1l7. Standard Propagation Filter, East RMS Velocity
: Error Using Sperry INS
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True East RMS Velocity Error

Time
Figure 18. True East RMS Velocity Error Using
Standard Propagation Filter and Sperry INS
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East RMS Attitude Error
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Figure 19. Standard Propagation Filter, East RMS Attitude
Error Using Sperry INS
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True East RMS Attitude Error

Time
Figure 20. True East RMS Attitude Error Using
Standard Propagation Filter and Sperry INS

110




—

-T-a T e
N

s B, S -

ey

o

.

made. The plots do indicate however that the sub-optimal
filter is accurately estimating system RMS navigation
errors, and that these errors are significantly lessened
after each RAC position update. The filters estimating
navigation errors for the Hamilton-Standard system are
similarly well-tuned. The plots are not shown however
because the benefits of many unscaled figures are doubtful.
Comparisons between the two systems will be made through

percentages depicted in tabular form. i

Filter Performance: Sperry INS Versus Hamilton-

Standard INS. The Sperry system significantly out~performed

the Hamilton-Standard system on all three information chan-
nels. This can be attributed to the higher quality accel-
erometers and gyroscopes of that INS as indicated in Table
III, Chapter IV. A percentage comparison between terminal
RMS errors for the two systems is made in Table VII. The
Sperry system is used as a baseline, and its errors arbi-
trarily labeled 100%.

Filter Performance: Benign Trajectory Versus Dynamic

Trajectory. The errors committed by the sub-optimal filter

in this work when the system is flown along the dynamic

trajectory using either INS are significantly greater than
similar errors committed along the relatively benign tra-
jectory of Professor Maybeck's studies. Table VIII compares
the terminal RMS errors when either INS is implemented into

the system for the two trajectories.
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Table VII

Terminal Navigation Error: Sperry System vs.
Hamilton-Standard System

System with Sperry INS Hamilton-Standard INS
RMS Position Error 100% 116%
RMS Velocity Error 100% 185%
RMS Attitude Error 100% 357%
Table VIII

System Performance: Dynamic Trajectory vs.
Benign Trajectory

System with Sperry INS Hamilton~Standard INS
Trajectory Benign Dynamic Benign Dynamic
RMS Position Error 100% 226% 100% 241%
RMS Velocity Error 100% 105% 100% 96%
RMS Attitude Error 100% 94% 100% 95%

A logical conclusion that can be drawn from Table VIII is
that if the navigation errors committed by the filters of
this work are greater than finai specification will allow,
damping the dynamics of the vehicles trajectory with better

autopilots will reduce terminal navigation errors.

Ao s < me

Lockheed Filter Performance. Using the initial covar-

iance matrices and white noise strengths of the standard
propagation filter for the RAC guidance systemwith either

INS implemented and the Lockheed filter performing the
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estimation, the systems were flown over the dynamic tra-
jectory. Figures 21 through 26 illustrate the RMS values of
the errors produced by the Lockheed filter. The Lockheed
filter provides fairly accurate position error information,
but its estimates of velocity and attitude RMS errors are
considerably higher than the true errors. Table IX compares
the Lockheed and standard propagation filter terminal RMS

error estimates.

Table IX

Terminal Navigation System Error: Standard Propagation
Filters vs. Lockheed Filters

INS Sperry Hamilton-Standard
Filter Standard Lockheed Standard Lockheed
Pr.gagation Propagation
RMS Position Error 100% 105% 100% 109%
RMS Velocity Error 100% 129% 100% 134%
RMS Attitude Error 100% 156% 100% 158%

Power Series Approximation of Standard Propagation

Filter. The RMS navigation errors committed by the system
when the power series approximation is substituted for the

standard propagation filter are essentially the same as

reflected in Figures 15 through 20. The difference in esti-
mates is less than one-half percent for any of the infor-
mation channels. Whether the additional memory required to

implement the three additional off-diagonal variance

113
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True East RMS Position Error

Time
Figure 22. True East RMS Position Error Using
Lockheed Filter and Sperry INS
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East RMS Velocity Error

Time
Figure 23. Lockheed Filter, East RMS Velocity Error
Using Sperry INS
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.True East RMS Velocity Error

R

Time
it Figure 24. True East RMS Velocity Error Using
: Lockheed Filter and Sperry INS
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East RMS Attitude Error
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Figure 25. Lockheed Filter, East RMS Attitude
Error Using Sperry INS
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Figure 26. True East RMS Attitude Error
Using Lockheed Filter and Sperry INS
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equations of the approximation as compared to the Lockheed

-y

design should be allotted is dependent on the adequacy of
the Lockheed filter to meet system specifications. In the
remaining discussion, the power series approximation will
be considered to perform identically to the standard propa-

gation filter.

Error Budget

If overall system navigation error is considered to be /|
too large for weapon system effectiveness, it may be decided
to replace certain system components with moré accurate ones.
To aid in determining which components offer the most cost

effective means for reducing system RMS navigation error, an

error budget has been made. This error budget reflects the
increase in RMS navigation accuracy attained if the effects
of various error sources were eliminated. The budget was
obtained by setting the noise strengths and initial vari-
ances of various error sources to zero in the system model.
Table X is the error budget for the system employing the
Sperry INS, and Table XI reflects the increase in navigation
accuracy attained by zeroing these error sources for the
f system using the Hamilton-Standard INS. In both cases, the
terminal navigation errors of the systems using the standard
propagation filters were used as a 100% baseline.

From these tables it can be seen that the most dramatic

reduction in RMS navigation error occurs when the RAC is
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providing perfect position fixes. In this case, position
errors are only approximately one-fourth as great as when
the RAC's position fixes are corrupted by the bias and white
Gaussian measurement noise. Velocity and attitude errors
are also substantially reduced when the RAC is error-free.
Perfect gyroscopes also increase system accuracy sig-
nificantly,. especially for the Hamilton-Standard INS. The
G and G2 errors introduced by the dry-tuned gyros of that
system seem to contribute heavily to RMS attitude errors.
The only other significant reduction in RMS navigation error
occurs when the Sperry system is initiated with perfect

knowledge of vehicle position, velocity, and attitude.

Filter Performance With Fixed QF

The results presented thus far were obtained by
supplying the sub-optimal filters with the initial conditions
and time-varying white Gaussian noise strengths depicted in
Tables V and VI. Again due to computer memory restraints,
it may not be practical to implement the three sets of QF
that tune the filters over fixed time periods. A simulation
was made using the QF values that tuned the filters after
the initial transient period was complete and the results

are discussed in Appendix A.
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VIII. Changes to the Trajectory and RAC

Update Schedule Optimization

Introduction

In this chapter, the performance of the tuned standard
propacgation filters of Chapter VII will be evaluated for the
cases in which changes to the trajectory are necessitated by
mission objectives. Two alterations will be investigated:
first, changes in vehicle heading toward the target from the
original 450, and secondly, lowering the pitchover altitude
of the present trajectory to simulate an extension of the
vehicle flight time to adjust for adverse headwinds.

In addition, the six RAC position fixes will be opti-
mized in time so that terminal RMS navigation errors are
minimized. The fix schedules will be optimized for both the
Sperry and Hamilton-Standard system models, along the stand-
ard and lowered pitchover trajectories to include the pos-
sibility that a post-pitchover fix cannot be made. As a
final consideration, the performance of the filters will be

evaluated allowing two fixes per stored reference map while

LRI

the vehicle is at relatively high altitude. Again, due to
security considerations, performance of the filters will be
expressed in tabular form as a percentage of the tuned
standard propagation filter errors of Chapter VII. These

errors are referred to in the tables as baseline.
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Changes to the Trajectory

Heading Changes. The 45° vehicle heading angle used in

the simulations of Chapter VII was selected to subject the
vehicle to equal angular velocity and acceleration vector
components in the east and north axes of the ENU frame. It
was feared that the unequal force and rate vector components
in the ENU frame that would be experienced by the vehicle

flying headings other than 45° along the dynamic trajectory

would make the accuracy of the sub-optimal filters "heading
dependent.” This heading dependence would arise if the
difference between true navigation errors in the east and
north directions grew large as a function of heading, because
i the filter, as presently tuned, would not detect this differ-
» | ence.

To determine if the accuracy of the standard propa-
gation filters for the two system configurations was indeed

heading dependent, computer simulations were conducted in

which the four cardinal directions, north, east, south, and
west, were used as heading angles for the vehicle. Although
there was a slight deviation between corresponding true
position, velocity, and attitude variances in the east and
north directions for each heading simulated, the difference
was so small, especially in position errors, that the fil-
ters retained their estimation precision. The largest devi-

ation was 14% between the true 6¢N and 6¢E attitude error

: : )
F Fg variances for the Hamilton-Standard system with a 180
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heading angle. The results of these simulations indicate
f that the tuned filters are good error estimators regardless
of vehicle heading angle.

Lowered Pitchover Altitude. The second change to the

trajectory is a lowering of the altitude at which vehicle
pitchover is initiated. This extends the glide period of
the vehicle before pitchover, resulting in a greater range
and flight time for the weapon system in no-wind conditions.
Due to the security classification of the trajectory, the
distance the pitchover altitude is lowered cannot be
specified.

Because the actual dynamics of the extended glide
period from the present pitchover altitude to the lowered
one were not exactly known, an approximation was used to
implement the new pitchover altitude into the existing tra-
jectory. The approximation was a linear extension in alti-
tude versus time of the flight path from the present pitch-

over altitude to the lowered one. Along this linear exten-

sion, the vehicle total velocity, forward velocity, vertical
velocity, and glide path angle were kept constant at the

values they had last assumed. The dynamics of the pitchover

|
4 |
: f are incorporated at the termination of the linear flight
1 path extension. With this trajectory change, the time from
completion of pitchover until vehicle impact is lessened

considerably. System performance utilizing this lowered
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trajectory will be evaluated in this chapter, after the

conditions for update schedule optimality are set forth.

Update Schedule Optimization

Because navigation RMS errors are so dramatically
reduced when each RAC position fix is taken, an optimal RAC
position fix schedule is sought to reduce the errors com-
mitted by the tuned filters of Chapter VII. Using six fixes
as the maximum practical number set by storage requirements,
it was found that by taking as many fixes as possible toward
the end of the trajectory, terminal navigation errors for
the systems are the lowest. This is due to the altitude
dependence of the white Gaussian noise strength corrupting
the RAC position measurement. It is impractical however to
take all six fixes at the end of the flight profile for
two reasons:

1. Since the navigation information provided by the
INS is inherently divergent unless updated by external aids,
relying totally on the INS to guide the vehicle for the
extended period from weapon release to near the end of the
flight profile invites the danger of totally missing the
area covered by the first stored reference map.

2. Even if a successful first fix were made it is
possible that the controller's capabilities would be insuf-
ficient, in so short a time, to incorporate the fix, correct

the flight path, and impact the target.
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To insure a successful first fix, yet still incorpo-
rate the RAC's low altitude accuracy by taking as many fixes
toward the end of the trajectory as possible, the following
guidance, from Mr. P. Richter, AFATL, was used: if the 30
value of the position errors reaches one fourth of the

v; vehicle altitude, a fix must be taken. This criterion

suggests that the area encompassed by the stored reference
maps is dependent on the anticipated vehicle altitude at
update time, and that by using the 30 value of position
errors, in approximately 99% of the cases the vehicle will
be somewhere above this area at update time, assuring a
successful fix.

Optimal Update Schedule Along the Standard Trajectory

Incorporating a Post-Pitchover Fix. Implementing the above

criterion, the Hamilton-Standard system required three RAC
fixes along the standard trajectory before pitchover, and
the more accurate Sperry system required two fixes.

Allowing for a post-pitchover position fix, this left two
low altitude fixes for the Hamilton-Standard system and i

three for the Sperry system to be taken just prior to vehi-

cle pitchover. A time interval approximating the RAC's

processing time was used between these low altitude fixes.
The improvement in accuracy for the two systems using this

optimized update schedule is displayed in Tables XII and

XIII.




Table XII

Sperry System Performance

Update Schedule Baseline Optimized (With Post-
Pitchover Fix)
RMS Position Error 100% 74%
U RMS Velocity Error 100% 109%
RMS Attitude Error 100% 100%
Table XIII

Hamilton-Standard System Performance

—

Update Schedule Baseline Optimized (With Post-
Pitchover Fix)

E RMS Position Error 100% 75.4%
L RMS Velocity Error 100% 104.0%
RMS Attitude Error 100% 100.3%

From these tables, it can be seen that terminal
position errors are reduced by approximately 25% for the two

systems while utilizing the optimum fix schedule.

e

‘ Optimal Update Schedule Without a Post-Pitchover Fix:

Standard Trajectory. It is of design interest to know the

i degree of freedom that must be allowed the RAC's gimbaled
r
&

platform. Since the steepest vehicle glide path angle

!
|




occurs after pitchover, by eliminating a post-pitchover

position fix the freedom of movement designed into the

platform would not have to be as great.

navigation error information about the RAC/INS guidance

system's performance without a post-pitchover fix, a simu-

lation was conducted in which the

30 = 1/4 altitude cri-

terion for an update was implemented, with the sixth

position fix taken just prior to pitchover.

ance is reflected in Tables XIV and XV.

Table XIV

Sperry System Performance

Update Schedule Baseline

Optimized (Without A
Post-Pitchover Fix)

RMS Position Errors 100% 124%

RMS Velocity Errors 100% 126%

RMS Attitude Errors 100% 101%
Table XV

Hamilton-Standard System Performance

Update Schedule Baseline

Optimized (Without A
Post-Pitchover Fix)

RMS Position Errors 100%
RMS Velocity Errors 100%
RMS Attitude Errors 100%

157%

137%
113%

129
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System perform-




These tables indicate that position errors are severely
increased when either system is subjected to the relatively
violent pitchover without the benefit of a low-altitude
post-pitchover RAC fix. The Hamilton-Standard system

especially suffers a performance degradation, seemingly due

to the excitation of the G and G2 gyro error sources during
pitchover.

Optimal Update Schedule Without a Post-Pitchover Fix:

Lowered Pitchover Altitude. Implementing the lowered pitch-

over altitaae into the trajectory and using the 30 = 1/4
altitude fix criterion, a position update fix schedule was
found for both systems with all six fixes occurring before
vehicle pitchover. A comparison between the terminal

F navigation errors of the system using the lowered pitchover

altitude with an optimum fix schedule and the baseline

system errors is made in Tables XVI and XVII.

\\

‘; Table XVI

Sperry System Performance

é Trajectory Baseline Lowered Pitchover Altitude
4 ( Update Schedule Baseline Optimized (Without A
; l Post-Pitchover Fix)
; RMS Position Errors  100% 87% 1
4 RMS Velocity Errors 100% 115% |
; RMS Attitude Errors 100% 102%
T
&
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Table XVII

Hamilton-Standard System Performance

Trajectory Baseline Lowered Pitchover Altitude
Update Schedule Baseline Optimized (Without A
Post-Pitchover Fix)
4 RMS Position Errors 100% 105%
RMS Velocity Errors 100% 130%
RMS Attitude Errors 100% 110%

The results reflected in these tables are significant.
If cost prohibits incorporating a gimbaled platform for the
RAC into the system with a freedom of movement sufficient to
allow a post-pitchover fix, lowering the planned pitchover
altitude can result in system performance that parallels the

baseline cases. If the pitchover altitude were lowered, the

reduced capability of the system to extend its flight time
if adverse winds were encountered would have to be con-

sidered.

System Performance Along the Lowered Pitchover Tra-

jectory Allowing More Than One Fix Per Reference Map.

Vg eyt

{ Because the size of a reference map is proportional to the
vehicle's anticipated altitude at fix time, it may be pos-
sible to generate two position updates from the first few

; maps. A simulation was conducted, using the lowered pitch-
r
¥

over trajectory, in which eight fixes were allotted to the
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Sperry system and nine to the Hamilton-Standard system. Six
of these fixes correspond to the optimal update schedule
outlined above for the lowered pitchover altitude, and the
additional updates simulate a second fix taken on the
largest reference maps. One less fix was allocated to the
Sperry system because using the 30 = 1/4 altitude criterion,
the third RAC update for this system occurs at an altitude
that was judged to be too low to ensure two successful fixes
from the same relatively small reference map. The less
accurate Hamilton-Standard system builds up RMS position
error faster than the Sperry system, thus requiring updates
earlier in time. The third fix was judged to occur when the
vehicle is at an altitude sufficiently high to make the
probability of two successful updates from the same refer-
ence map good.

Tables XVIII and XIX reflect the results of this simu-

lation.
Table XVIII
Sperry System Performance
Trajectory Standard Lowered Pitchover Altitude
Fix Schedule Baseline Optimized With Two Updates
on Each of the First Two
Reference Maps (No Post-
Pitchover Fix)
RMS Position Errors 100% 82%
RMS Velocity Errors 100% 98%
RMS Attitude Errors 100% 101%
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Table XIX

Hamilton-Standard System Performance

Trajectory Standard Lowered Pitchover Altitude

Fix Schedule Baseline Optimized With Two Updates '
on Each of the First Three ]
Reference Maps (No Post-
Pitchover Fix)

RMS Position Errors 100% 97%
RMS Velocity Errors 100% 113%
RMS Attitude Errors 100% 103%

A comparison of these results with those reflected in
Tables XVI and XVII indicates that the additional high
altitude fixes do enhance system performance. RMS position
error in the Sperry system was decreased approximately 5%
with the two additional position updates, while the Hamilton- ;
Standard's RMS position error estimation capability was !
enhanced by 8% incorporating three additional position up-

dates. r
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fo

.+. 133




.

IX. Results and Conclusions

Based on the material presented in this thesis, the
results and conclusions are summarized as follows:

1. The Sperry INS provided more accurate navigation
information than the Hamilton-Standard INS in every simu-
lation conducted. The better accuracy of the Sperry INS is
attributed to the higher precision accelerometers and gyro-
scopes of that INS as compared to those of the Hamilton-
Standard INS, and also to the fact that its laser gyroscopes
are not subject to G and G2 error excitation as are the drv-
tuned gyros of the Hamilton-Standard system.

2. System performance is severely degraded along a
realistic dynamic trajectory as compared to a benign tra-
jectory. Performance degradation is due to the relatively
high pitch rates and accelerations encountered by the
inertial navigation systems, especially during and after
pitchover. If terminal navigation error is larger than
final specifications will allow, two steps can be taken to
limit error due to the trajectory. First, better autopilots
can be designed to damp the dynamics inherent in the glide
vehicle, and secondly, a more gradual pitchover maneuver

could be planned.
3. The standard propagation filter, whose additive

noise contributions can be accurately calculated using six
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equations, outperforms the Lockheed filter, which uses three
equations to approximate the noise dynamics. Performance
for the standard propagation filter is only slightly better
in the position error channel at impact than the Lockheed
filter's; however, in the velocity and attitude error
channels it performs significantly better. If either of
these filters is to be implemented into the RAC/INS weapon
system, the tradeoff in storage space versus accuracy will
be a significant factor in the decision process.

4. The low altitude accuracy of the RAC position
fixes can be used to significantly decrease system navi-
gation errors. High altitude position fixes should be
taken only when necessary, and if possible, two fixes taken
on each high altitude reference map to enhance filter
estimation precision.

5. Without the benefit of a post-pitchover position
fix, system terminal navigation errors are significantly
higher than when one is utilized. This performance degra-
dation can be totally offset, however, by lowering the
vehicle pitchover altitude sufficiently. This is due to the
shorter time span the vehicle is subjected to the relatively
high dynamic inputs of post-pitchover flight. This shorter
time span also limits the propagation of the velocity and
attitude error sources excited during pitchover which aids

in the reduction of position error.
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It is emphasized that the results of the covariance
analysis performed on the filters of this study are valid
only to the extent that the mathematical models used do in

fact provide an adequate representation of system behavior.
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Appendix A

The tables below compare the terminal performance of
the filters for each system model using a fixed QF for the
entire simulation. The noise strengths used for both the
standard propagation and Lockheed filters are as follows:

1. Sperry system - Q22 = .1E-6, Q33 = .3E-9

2. Hamilton-Standard system - Q22 = .1lE-4, Q33 = .16E-7

Table XX

Standard Propagation Filter: Fixed QF vs. Variable QF

System with Sperry INS Hamilton-Standard INS
QF Variable Fixed Variable Fixed
RMS Position Errors 100% 99% 100% 101%
RMS Velocity Errors 100% 94% 100% 100%
RMS Attitude Errors 100% 111% 100% 99%
|
%
!
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Table XXI
? Lockheed Filter: Fixed QF vs. Variable QF
System with Sperry INS Hamilton-Standard INS 1
{
QF Variable Fixed Variable Fixed

RMS Position Errors 100% 98% 100¢% 100%

J RMS Velocity Errors  100% 943 1008 993

RMS Attitude Errors 100% 109% 100% 99%

These tables indicate that terminal navigation errors are
approximately the same using a fixed or variable QF‘ The
loss in filter estimation precision lost by implementing a
fixed QF is encountered early in the simulation when the

difference between filter RMS position errors and the true

RMS position errors was as large as 43%.
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