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Abstract

In this report, a covariance analysis is performed on

two Kalman filters proposed for use in a weapon system

utilizing a strapdown inertial navigation system (INS), up-

dated by position data from a radiometric area correlator

(RAC), for guidance . Filter performance is analyzed when

primary navigation information is provided by a Sperry INS,

which uses laser gyroscopes , and when an INS employing

conventional dry-tuned gyroscopes, manufactured by Hamilton-

Standard , is incorporated into the weapon system. For the

covariance analysis, truth models in the form of linear

state equations are presented which reflect the best

description of the weapon system when either the Sperry or

Hamilton-Standard INS is used . The Sperry system model is

composed of 46 states and the Hamilton-Standard system model

61 states. Primary emphasis in this investigation is placed

on minimizing system terminal navigation error . This is

done through a filter tuning process, and an optimization of

six highly accurate RAC position fixes along a simulated

trajectory which reflects the actual system dynamics. The

two filters analyzed each employ a linear six state mathe-

matical model. Due to the security classification of the

trajectory and RAC characteristics, f ilter performance is

conveyed through unscaled graphs and percentages.
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I. Introduction

A lesson learned from the Vietnam conflict is that

heavily defended tactical and strategic targets are

destroyed at a severe price in terms of attacking men and

aircraft. The fact that the highly sophisticated and

extremely accurate weaponry developed to attack such targets

in that conflict required delivery within their vicinity

contributed greatly to the losses. The length of time spent

by the pilot acquiring a target, delivering his ordinance,

and in some cases “steering” it to impact, subjected him to

considerable risk in that hostile environment. The Air

Force Armament Test Laboratory (AFATL), Eglin Air Force

Base , is currently developing weapons systems which will

af ford the pilot a “standoff capability” in ordinance deliv—

ery. One such weapon system utilizes a radiometric area

correlator ( RAC ) and a strapdown inertial navigation system

(INS) in conjunction with an estimator for midcourse and

terminal guidance . The RAC , INS, and the estimator are

housed in a glide vehicle which is capable of maneuvering

through pitch and “skid to turn” along an extended trajec-
‘ I

tory to a target.
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System Operation

In concept, the glide vehicle is released from a cap-

tive aircraft at a drop point, within its glide range to the

target, which is determined using the existing atmospheric

conditions. It “flies” a specified trajectory toward the

target, relying on the INS for navigation information and on

the RAC and estimator for updating the INS optimally. At a

specified point, dependent on the range of the target, the

radiometer “looks down” and takes a picture of the terrain.

This “picture” is correlated with a preloaded map of the

area, and a position fix is thereby generated. This

position fix is supplied to the estimator , which updates its

navigation error estimates. This process continues through

a number of “fixes” until the vehicle is within a certain

altitude—range “window” with respect to the target. At that

time, the controlled glide of the vehicle is converted into

a rapid dive by initiating a pitchover maneuver. Closely

following the completion of pitchover , the vehicle impacts

the ground .

Inertial Navigation Systems. Two strapdown inertial

navigation systems are presently being considered for imple-

mentation in the RAC weapon system. The first INS is a

Sperry model, which employs laser gyroscopes to measure

angular rates. The second model is manufactured by Ham—

ilton-Standard , and uses conventional dry—tuned gyroscopes

to provide angular information. Both of these systems use

2
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conventional accelerometers to measure specific force.

Because the weapon system is designed for one-time use,

these inertial navigation systems are being considered

because they are “low cost. ”

Radiometric Area Correlator. The RAC provides a number

of highly accurate position fixes as the glide vehicle

“flies” the trajectory . The number of fixes is limited by

the storage space allotted for the reference maps. In the

present design phase , five or six maps are considered to be

the maximum practical number . The RAC is mounted on a gim-

• baled platform , which allows it a limited capability for

“looking” down. A design question still to be answered is

whether the degree of freedom of movement of the gimbaled

platform should be large enough to allow a RAC fix when the

vehicle is in its steep dive during and after pitchover .

The Estimator. The estimator for the RAC system com-

bines the information received from the INS and the RAC , and

estimates the navigation errors committed by the INS through

a set of recursion algorithms. These algorithms are pro—

grammed into a portion of the general purpose guidance com-

puter located onboard the vehicle . The estimator presently

j under consideration is a Kalman filter designed by Lockheed .

This design is deliberately simple, because the estimator

was allocated a limited amount of memory space in the on-

board guidance computer during preliminary planning for the

r RAC system. The Lockheed filter provides estimates of the

ii~ii~ ~~~~~~~~~~~~~~~~~~ • i~~~~~ ~~~~~~~~~ - - - - -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ • — - • .d4



errors committed by the INS which are fed back to the INS

to correct its navigation information. In this way , the INS

• errors are kept small, and the adequacy of linear error

• models is enhanced .

Scope of this Study

This report is an extension of the RAC Guidance System

Analysis completed by Professor Maybeck , Air Force Institute

of Technology , Wright-Patterson Air Force Base (Ref 1;

Ref 2). He analyzed the navigation errors committed by a

simple six-state Kalinan filter and the Lockheed approxi-

mation to that filter as the weapon system flew a benign

trajectory in a computer simulation. His study compared the

filter error estimates when either the Sperry or Hamilton-

Standard inertial navigation systems were implemented into

the system. These filter error estimates were compared to

the true navigation errors committed during the “flight” by

means of a covariance analysis. Thus, a measure of how well

the filter actually performed was obtained . The major

extensions made to that study in this report are as follows:

1. The benign trajectory will be replaced by one that

is more realistic for the glide vehicle under consideration.

• 2. The estimation errors committed by the Lockheed

• filter design and an alternate Kalman filter , which is in

reality the correct Kalinan filter formulation for the Lock-

heed design , as the system flies the more dynamic trajectory

k
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will be analyzed through a covariance analysis.

3. The position fixes taken by the RAC will be opti-

mized in time so that terminal navigation error is mini-

mized .

The development of this report is presented by chapters

in the following sequence. Possible integration of the var-

ious components (RAC, INS, and estimator) into a workable

unit is outlined in the second chapter . Chapter III intro-

duces the algorithms used by the Kalman filter in estimating

INS errors, and also discusses the covariance analysis proc-

ess. In Chapter IV , two models developed by Professor May-

beck describing the overall system when either the Sperry or

the Hamilton-Standard I N S  is used are presented . Chapter V

details the Lockheed filter model and the alternate filter

model used as the estimators in this study . A mathematical

model for the more realistic trajectory of this work is

developed in the sixth chapter . In Chapter VII, the process

• for determining the values of system variables that yields

the best filter performance is outlined . In addition , the

resulting performance is analyzed . Filter performance is

further analyzed in Chapter VIII, in which effects of

varying the trajectory and the RAC position update schedule

are explored . The last chapter details the results and con-

clusions of this study , and proposes system changes that may

reduce overall system navigation error.

5 
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Limitations of this Study

An inherent step in any problem-solving technique is to

“define the problem .” In an attempt to define the problem

for this work, certain assumptions were made and some

restrictions imposed . These assumptions and restrictions

are important factors in the work to be presented , and

broadly fall into four categories: modeling , interpretation

of results, security classification, and approximations made

due to insufficiency of data.

Modeling. Extensive mathematical representation of

“real world dynamics” is done in this work so that certain

tools of linear analysis may be employed . It is realized

that these real world dynamics defy exact mathematical rep-

resentation , so the modeling performed in this study can at

best be considered an approximation . Care has been taken,

however , to model as completely and accurately as the “state

of the art” will allow.

Interpretation of Results. It is tempting to equate

the results presented in this work with overall system cir-

cular error probabilities , but this would not be valid . The

results reflect only the probable navigation errors corn-

• mitted by the filter if the system flew the trajectory

precisely . Thus, the errors committed by a controller

- • 
attempting to keep the vehicle on flight path are not con-

sidered . In addition , the ability of the system to correct

6
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the trajectory in order to impact the target when conditions

such as adverse winds are encountered is in no way reflected

in the results.

Security Classification. A major restriction on the

work presented here is imposed due to the security classi-

fication of several aspects of the RAC system . The trajec-

tory of the glide vehicle is classified Secret, so altitudes,

distances, and flight times are not presented . In addition ,

several parameters of the RAC are classified , so their spe-

cific numerical values are not included . Whenever possible ,

classified information pertinent to the development is san-

itized and presented in the form of percentages or unscaled

graphs.

Approximations Due to Insufficiency of Data. Because

the RAC system is still in the developmental stage , overall

system specifications have not been finalized . Also , the

performance capabilities of individual components have not

yet been fully evaluated . Based on the known parameters ,

judgment has been exercised to approximate unknowns through-

out this work. Where they occur , these approximations have

been delineated .

I
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II. System Mechanization

In this chapter , functional block diagrams of the var-

ious components of the RAC system will be developed . These

block diagrams will then be integrated to form one possible

scheme for system mechanization . Before developing these

components, however, it is useful to define the coordinate

frames and transformation matrices that will be used .

Coordinate Frames

Five different coordinate frames are described below

for use in this study . The axes of each of these respective

reference frames form an orthogonal right-handed triad.

Inertial Reference Frame. The inertial reference fram e ,

I-frame, has its origin at the center of mass of the earth

and is nonrotating with respect to the stars. The Z-axis

extends through the’North Pole in alignment with the earth ’s

spin axis. The X and Y axes of the inertial frame are

coincident with the X and Y axes of the earth-fixed frame at

the start of the navigation problem.

Earth-Fixed Frame. The earth—fixed reference frame,

E—frame, has its origin at the center of mass of the earth

with its Z-axis coincident with the Z-axis of the I-frame.

The X-axis extends outward through the intersection of the

Greenwich meridian and the equator , while the Y—axis is

8
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directed through the intersection of the 90 degree east

meridian and the equator . Since this frame rotates with the

earth, its angular velocity with respect to the I-frame ,

WIE~ 
is one revolution per day. Points on the earth ’s sur-

face can be expressed in terms of two Euler angle rotations

in the earth-fixed frame. The first is longitude , a

rotation about the Z-axis, and the second is latitude , a

rotation about the displaced X-axis. Inertial longitude, A ,

is related to geographical longitude , £, by the equation

X = W IE ~~ + 2~ (1)

where t~t is the elapsed time from the start of the navi-

gation problem .

Navigation Frame. The navigation frame, N-frame, for

this study is the coordinate system in which the navigation

problem is solved . I N S  errors as computed by the estimator

are expressed in this frame. For this work, the navigation

frame is defined as an east-north-up (ENIJ) triad . The ENU

navigation frame has its origin at the center of mass of the

glide vehicle with its axes pointing in the east, north , and

up directions respectively . “Up” is defined to be normal to

the reference ellipsoid at all times . The geometry relating

the inertial, earth-fixed , and navigation frames is illus-

trated in Figure 1, where the X1—Y1-Z1 axes represent the

inertial triad , XE~ Y E~ Z E are the earth-fixed axes , and E—N -U

are the navigation frame axes .

- —~~- ~~~~~~~ ~~~~~~~ • 
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y Frame. The body frame , B-frame , is fixed relative

to the glide vehicle with its origin located at the vehi-

cle ’s center of mass. The B-frame ’s X and Y axis extend out

the nose and right wing of the glide vehicle respectively,

while the Z-axis points down through the fuselage.

Platform Frame. The platform frame, P-frame, is

aligned with the X-Y-z sensitive axes of the gyroscope and

accelerometer triads of the INS system. This frame differs

for each of the two inertial navigation systems considered

in this study.

Transformation Matrices

Vectors representing quantities such as position ,

velocity , or angular rate coordinatized in a particular ref-

erence frame can be transformed to another frame through a

direction cosine matrix (DCM). The DCM or transformation

matrix is defined for this work as follows:

C11 C12 C13
DCM = C ? = C

21 C22 C23 (2 )

• C31 C 32 C33

where C~ is the DCM transforming a vector coordinatized in

the i-frame to a vector expressed in the j-frame . The ele-

ment Ck~ 
is the direction cosine between the kth axis in the

j-frame and the £th axis in the i-frame.

- — —

~ 
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Useful properties of the DCM which apply to the orthog-

onal frames outlined above are:

1. The inverse of the DCM is equal to its transpose ,

for example C~ =

2. Transformation matrices relating frames can be

found using intermediate frames in the following manner:

j  j i kC1 = C~ C~ C~ ( 3 )

3. If the angular velocity vector of the j-frame

relative to the i-frame (~~~ ) is expressed in j-frame

coordinates as L . ,  an expression for the time rate of

change of the DCM C~ can be written as (Ref 3:17)

.i i i
= C~~2 1~ (4 )

where is the skew symmetric matrix defined in terms of

the 
~~~~~

‘ 
w~1, and w~ components of the vector as

0 -w~ w~
•

= 0

~x 0

Platform to Body Transformation. The time invariant

transformation matrices for each of the two inertial

12
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navigation systems, relating the platform triad of the

accelerometers and gyroscopes to the fixed body frame are

~ 
l/f~ l/J~ 1/IT

C~ of the Sperry INS = 0 1/fl -1/JY (6)

l//~ i/~T~

—l 0 
01

C~ of the Hamilton- 
= 0 -l 0~ (7)

Standard INS 0 0 1]

in the Sperry design , the sensitive axes of the measuring

instruments are skewed from the body axes to avoid sub-

jecting any one instrument to the full input of a vehicle

yaw, pitch, or roll.

Body to Navigation Transformation. The transformation

from the body to the navigation frame is time—varying , as it

depends on the time history of the vehicle ’s orientation in

• space as it flies the trajectory . At a specific instant of

time, this transformation matrix can be determined using the

three Euler angles of the vehicle, i.e., heading , ~ , pitch ,

0, and roll, ~~~. Because the ve~ic1e under consideration

maneuvers through pitch and skid , the roll angle for this

13
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study will always be considered zero degrees. With this

simplification, the DCM is

sini~cos0 cosll sini~’cos0

• C~ = cosi~cos0 —sinlj cos~isin0 (8)

sinO 0 —cosO

Navigation to Inertial Transformation. The time-

varying DCM relating a vector expressed in the ENU frame

to one in inertial coordinates is

-sinA -sinLcosA cosLcosA

I •CN 
= cosA —sinLsinA cosLsinX (9)

0 cosL sinL

$ 

where

A = inertial longitude

L = geographic latitude

Earth-Fixed to Inertial Transformation. The following

• is the transformation between the earth-fixed and inertial

coordinate reference frames , where again , WIE is the earth ’s

angular velocity with respect to inertial space and L~t is

the elapsed time from the start of the navigation problem :

rcos (w
IE~t) 

~
sin (W IEL

~
t) 01

C~ = 
~
sin (W IEL

~
t) cos(W IEL

~
t) 0 (10)

0

14
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Other Transformations. Using the properties of orthog-

nal reference frames outlined above, the relationships

between any of the five frames used in this work may be

found at any instant of time.

INS Mechanization

The two strapdown inertial navigation systems under

consideration differ radically in the gyroscopes they

employ , but they both generate navigation information in the

same manner. In general, the strapdown INS experiences the

same specific forces, angular velocities, and angular accel-

erations as the vehicle. To resolve these dynamic inputs

accurately, the vehicle ’s orientation with respect to some

reference frame must constantly be tracked . This can be

accomplished by utilizing a property of the DCM presented

above , i.e . ,
i j

C .  = C .~2 . ( 4 )
:i j  iJ

if the navigation and body reference frames are used , the

onboard guidance computer can be programmed to estimate the

C~ DCM cursively through an approximate first-order inte-

gration routine, in discrete Lime, using the following

• • equations as a basis:

C~ (~t) = C~~
(t l )

~~~B (11)

• C~~(t 2 ) = C~~(t 1) + c~~(1~t ( 12)

15
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where

C~~(t1) = the DCM relating the inertial and body frames
at time t1

C~~(t2) = the DCM relating the inertial and body frames

at time t2
C~~(L~t) = the change in the C~ DCM from time t1 to

time t2

~NB 
= the angular velocity of the body frame rel-

ative to the navigation frame expressed in

body frame coordinates

The recursion is initiated with the estimated C~ matrix

after system initial alignment.

The 
~NB 

vector for this integration scheme is generated

by the onboard guidance computer using the angular velocity

vector of the platform in inertial space estimated by the

rate gyro triad, w~~ , and the angular velocity vector of the

navigation frame with respect to the inertial frame,

The computation made is

B B B

~NB 
= 

~-IB - 

~-IN 
(13)

where

B B P P

~ IB 
= C~~(w1~ + 

~PB~ 
( 14)

and

I i  B B N

~IN 
= CN W IN (15)

Equation (14) simplifies to

B — B P
~ IB 

— C~w1~ (16)
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because the platform and body frames are mutually non-

rotating. The W
~N 

vector of Equation (14) is computed in

discrete time by using navigational information to update

the following relationship:

-L

~IN 
= AcosL (17)

AsinL

Through the recursively generated C~ DCM, the specific force

in platform coordinates sensed by the accelerometers can be

transformed to navigation frame coordinates as follows:

f N — CNCBfP 18
— B P —  ( )

where

N • .  • -f = specific force vector in navigation coordinates

• = specific force in platform coordinates ~s sensed

by the accelerometer triad

By subtracting the navigation frame referenced gravity vec-

• tor f rom ~N, the vehicle acceleration vector relative to

the navigation frame is obtained . There are many ways to

estimate this gravity vector, dependent on the sophisti—

• cation of earth modeling , the use of external altitude meas-

• I 
uring devices such as altimeters, and inclusion of higher

order effects. An excellent development of a gravitational

field model is presented in Reference 3. For this work, the

gravity vector is assumed to be calculated discretely . The

17
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calculations are based on a reference ellipsoid earth model

with altimeter supplied altitude information . Irregular-

ities to the surface of the reference ellipsoid are

• accounted for indirectly through noise processes that are

described in Chapter IV.

The acceleration vector in the navigation frame,

formed by differencing the specific force and gravity vector

can be integrated twice to yield navigation frame referenced

velocity, rN , and position , r1
~. Figure 2 illustrates the

mechanization outlined above for the INS in block diagram

form.

RAC Mechanization

Using the filter-aided navigation information , the

RAC ’s gimbaled platform is leveled relative to the reference

ellipsoid , and a “picture” of the terrain is taken when the

vehicle is over the area recorded on one of the pre-loaded

maps. After a processing delay in which the picture is

correlated with the map , a position fix is generated . One

of the approximations made in this work is to disregard the

• ~

• 

processing delay , and to assume the fix is made instanta-

• neously. Thus, at an update time, an instantaneous fix is

made by the RAC which can be expressed in geographical

latitude and longitude .

L
-
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• Filter Mechanization

The estimator implemented in the RAC guidance system is

an indirect feedback Kalman filter. In this configuration ,

the filter estimates INS navigation errors rather than total

navigation parameters (indirect), and directs these error

estimates back to the INS for navigation correction (feed-

back). These errors are estimated in discrete-time and can

be calculated as RAC position fixes become available. The

algorithms used by the filter to generate these error esti-

mates are detailed in Chapter III. An overall represen-

tation of the information channeling for the INS, RAC , and

• filter is shown in Figure 3.

L I
- 

• - 20
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FILTER
DISCRETE INS POSITION ,
VELOCITY , AND ATTITUDE
ERROR ESTIMATES DISCRETE RAC
AVAILABLE AFTER RAC POSITION
UPDATE

• Figure 3. RAC/INS Guidance System Information Channeling
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III. Kalman Filter Equations as Used in a Covariance Analysis

Analyzing the performance of a Kalman filter through a

covariance analysis requires a state-space formulation of the

filter and its driving dynamics . This chapter introduces the

computations performed by the filter as it propagates in time

and updates its estimates after a measurement. With this

background , the incorporation of the equations into a form

suitable for a covariance analysis will be discussed .

System Equations

In designing the optimal Kairnan filter, a mathematical

description of the entire system dynamics is made through a

set of linear first order stochastic differential equations.

These equations should describe the system as completely and

accurately as possible. This formulation is known as the

“system model,” with the following vector stochastic differ-

• 
ential equation :

~
S = F sXs + G sWs + B sUs (19)

where

~~ 
is an Ni-vector representing the system state

is an Ni x Ni system dynamics matrix

G5 is an Ni x Ml gain matrix

is an Ml-vector of white Gaussian noise inputs which

22
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are zero mean and of strength 
~~ 

where

( Q~~(t 1) t1 
=

ECWs(ti)w~
(t2)] = iç

I*~b 
0 t1~~~ t2

and EL’] is the expectation operator

B
~ 

is an Ni x P1 gain matrix

is an P1 vector of deterministic control inputs.

The initial conditions for this differential equation are

- an Ni-vector representing the estimate (the

denotes estimate) of the system state at time t0
P s (t o ) - an Ni x Nl matrix representing the covari-

ance of the system state at time t0.

Discrete-time measurements made of linear combinations

of the system ’s state variables are represented by the fol-

lowing vector equation :

= HsXs(t•) + V5(t.) (20)

where

~s
(ti) is an Rl-vector of measurements taken at time t~

is an El x Nl measurement matrix

V5(t~ ) is an Ri-vector of white Gaussian noise inputs

which are zero mean and of strength R5 where

ç R 5 (t 1) 
~1 

=

E[V5
(t
1

)V~~(t 2)] = t ~
23
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Filter Equations H
In practice , the optimal Kalman filter based upon the

high-dimensioned “ system model” is seldom used because of

the heavy computational load required to implement it. A

sub—optimal filter with fewer states, yet designed to have

many of the characteristics of the optimal filter , is used

instead , resulting in a loss in performance for a gain in

computational ease and storage requirements. The sub—

optimal filter can be described by the linear first order

vector stochastic d i f ferent ia l  equation

= F
~
XF + G EW E + BFUF (21)

where

• 
~F 

is an N2-vector representing the filter state (N2

typically much less than NI)

F
F 
is an N2 x N2 filter dynamics matrix

G
F 
is an N2 x M2 gain matrix

is an M2-vector of white Gaussian noise inputs which

are zero mean and of strength Q
~ 

where

(Q t  t = t

E [WF(t l ) W F(t 2 ) I =

0

B is an N2 x P2 gain matrix
F

is an P2-vector of deterministic control inputs.

24 
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The initial conditions for this differential equation are

- an N2-vector representing the estimate of

the filter state at time t0

PF(to) 
- an N2 x N2 matrix representing the covariance

of the filter state at time t0.

The associated discrete-time linear vector measurement

equation is

~F
(ti) = H

F~F
(ti) + IF

(t
i

) (22)

where

Z ( t . )  is an Ri—vector of measurements taken at time t
F 1

H is an Ri x N2 measurement matrix
F

is an R2-vector of white Gaussian noise inputs

which are zero mean and of strength R
F 
where

(R t  tr T ~ ) F 1 1 2
E L VF (t l )V F (t 2~j 

= S
1. 0 t1~~~~t2

Kalman Filter Equations

The Gaussian probability density function is an inte-

gral assumption in the Kalman filter formulation . If the

statistics of both the states and the driving noi ses of the

system can be modeled as Gaussian , then the mathematics of

the optimal filter become tractable. Modeling the states

• and noises as Gaussian random variables is not a limiting

restriction , because it can be shown mathematically (through

use of the Central Limit Theorem) that a large number of

25
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random variables when added together have statistics that

are very nearly Gaussian regardless of their individual

density function (Ref 4:96).

The Gaussian probability density function is a normal

bell-shaped curve centered about its mean , p . The measure

of the spread of this curve is called the standard devi-

ation , or one—sigma value , a. The region under the curve

and one-sigma value to the left and right of the mean covers

68.3% of the function ’s area. Thus, a sharply peaked Gauss-

ian density function will have a smaller standard deviation

than a flatly peaked Gaussian density function . Since the

Gaussian density function of a variable relates probability

of occurrence, 68.3% of the time the estimate of the van -

able will be within the bounds p ± a. The equations

describing the Gaussian density function and its associated

mean and variance are given below (Ref 4:78-86).

Gaussian density function

2
F ( c) = 

1 exp — ( c — t i ) ( 2 3 )
( 2 r r ) 1a 2a

Mean
• p = ~ x1 = f~~

cF
~
(c)d

~ 
(24)

Variance

cr2 = ELX2] = f~~~
(c—p) 2F

~
(c)dE (25)

where c is a dummy variable representing possible values of

26
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X , the random variable , and EL’] is the expectation oper-

ator.

If the states and associated driving noises of the

system are modeled as Gaussian , then it can be shown that

one joint Gaussian density function of the same dimension

as the state vector can be used to describe the state-

vectors probability (Ref 4:49). The Kalman filter provides

estimates of individual states by propagating this joint

density function in time and altering its shape when “new

information ” is obtained at a measurement time. The initial

conditions for this propagation are provided to the filter

in the X (t0) vector, this vector contains the initial mean

of each state, and the initial covariance matrix , P(t0),

this matrix is formed by finding the covariance kernel of

the state vector at time t0 (Ref 4:48), i.e.,

P(t0) = E { Lx (t 0 ) — x(t0)]L x(t0) 
— x(t0)] 

T} (26)

If the states are independent , this matrix is diagonal with

its ~~~~ element equal to the variance of the 1
th state. As

the joint density function at any instant of time represents

total knowledge of the state and its associated covariance,
- 

•~ I the conditional mean and the conditional covariance of this

function form the best estimates of system performance . The

conditional mean of the state is propagated in time through

- 

L 27
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the following continuous time matrix equation :

X = F X + B U  (27)

starting from the initial condition X(t0).

The conditional covariance of this state vector is propa-

gated through a similar continuous time matrix equation ,

P = F P + PFT
+ GQG

T (28 )

starting from the initial condition P(t0).

When an external measurement is used to update the

filter ’s estimate of the conditional mean and its associated

covariance matrix , the following Kalman filter equations are

used :

K = P HT[HP HT + R]~~~ (29 )

P+ = P — KHP (30)

X+ (+K [Z - HX J (31)

where

K is the Kalman gain matrix

superscript+ represents the best estimate just after

update

superscript represents the best estimate just prior

to update .

From these equations, it can be seen that the Kalman

filter does the following:

1. Takes estimates of the initial state vector and

its corresponding error covariance matrix , X(t0) and P(t0),

28
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and propagates them in time until a measurement is supplied .

The filter ’s best estimates before incorporating the meas-

urement at time t1 are X ( t
1

) and P ( t
1

) .

2. Computes a weighting matrix, K, based upon

the measurement matrix H (which indicates the states or

combination of states to be measured) , and the variance of

the white noise corrupting the measurement vector.

3. Updates the covariance matrix . (Note that there is

no dependence on the measurement value for this update.)
,‘ +4. Provides a new estimate of the state vector , X (t1),

by updating its previous estimate , X ( t
1

) ,  with a weighted
estimate of the error between the actual measurement and

the filters _a priori estimate of the measurement,

K[Z - HX(t~~~~ )j

5. Iterates on the above procedure to step along in
-• + + .time; i.e., X(t1) and P(t1) become the new initial con-

ditions, and the recursion continues.

Covariance Analysis Equations

The Kalman filter equations presented above are suff i—

cient to completely evaluate the performance of the optimal

filter , or system model , along a given trajectory . This

filter ’s state vector , X~ , and its associated covariance

matrix P5 , represent the true statistics of the entire

system at any point in time. Although the optimal filter is

seldom implemented , it can be very useful in evaluating the

performance of a particular sub-optimal f i l ter. The process

— 
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by which this is done is called a covariance analysis. Con-

ceptually, the system model provides measurements, Z5, to

the sub—optimal filter , which uses this information to

provide an estimate of the state vector , XF~ 
through the

propagation and update equations presented above. The

difference between the filter ’s state estimate and the true

state is the error vector. The principal concepts involved

in obtaining the error vector are characterized in Figure 4

(Ref 1:18). Note that the difference in vector dimension

SYSTEM ~S SUB-OPTIMAL 1 ~F A

MODEL FILTER

+

- 

_ _

Figure 4.  Concept of the Error Vector

can be corrected by the following mathematical manipulation ,

provided that the states of the sub-optimal filter are the

same as the first N2 components of

where T = {-

~
-
~
] with I an N2 x N2 identity matrix and 0 an

(Nl - N2) x N2 null matrix.

4
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It is the statistics of the error vector, especially

the upper N2 partition , that determine how well a sub-

optimal filter will perform , because the error vector is.

the best description of the “true ” errors being committed

by the sub-optimal filter . If the covariance of the error

vector closely matches the covariance of the filter ’s state

vector , the filter is accurately estimating the errors it

is committing . A computer program that can be used to per-

form the analysis of the sub-optimal filter is General

Covariance Analysis Program (GCAP) (Ref 5). This program

yields the covariance matrices of the sub—optimal filter

state vector and the error-vector at specified points in

time. GCAP generates the filter covariance through the

Kalman filter equations presented above. To show how the

covariance of the error vector is obtained in this program,

the following derivation is presented (Ref 5:20-32) .

The following augmented state vector is defined :

• E Xs TX
x = -

~~~~
- = 

— F_ (32)—aug
• 

—F —F

differentiating both sides and substituting Equations (19)

and (21) for and

X = ~~~~~~~~~ ( 33)—aug F
F
X
F 

j

31 
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which can be rewritten as:

[F5
X
5 

+ G5W5 
- TF

F
X
F

_ F
S

TX
F
+ FSTX F1

—aug =

- 

FFXF
and simplified to

= 
1Fs~~

+ sT T F F)~F
+ G s~s—aug 

[ 
F X
F—F

This equation can be factored into the following form :

F
s 

(F
5
T - TF

F
) 1 rG~

~aug 
= 

j  
~aug 

+

or for simplicity,

X = F  X + G  W ( 35 )—aug aug —aug aug —S

This equation is in state-space form with the covariance of

the augmented state vector satisfying the differential

equation

P = F P + PFT + GQGT ( 36)

where

p
12

P =

(F
5
T - TF F1

F =

32
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Equation (36) shows the covariance propagation of the

augmented state vector , with the upper left partition the

des ired entity; i . e . ,  the covariance of the error vector .

The covariance of the error vector is updated after a

measurement using the following relationships:

. 

= (37)

(3 8)

E~~ = X ~~ - T~~ (39)

Substituting Equations (37) and (38) into Equation

(39) and rearranging terms,

= - 

T[
~~~~ + K1,(HsX~ 

- H
F~~~~ 

+ Vs )
]

+ TKFHSTXF 
- TK

F
HSTX (40)

the associated error vector covariance af ter  update is

2+ 
= A P A ’

~
’ 

+ BR5B
T (41)

where

I - TK

F

H
S 

TK
F

(H
F 

- HsT)
A =

• I C + H  I + K H T - K H• 5 F S  F F
• and

~
TK
F

B =  

[ K F ]

33
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GCAP iteratively solves the continuous time equations

presented above using a fourth-order Runge-Kutta approxi-

mation integration routine and then performs the discrete-

time measurement updates.
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IV. System Models

The highly dimensioned system models (one each for the

Sperry and Hamilton-Standard inertial navigation systems)

used in the covariance analysis of the sub-optimal filter

designs were developed by Professor Maybeck (Ref 1; Ref 2).

Because the states of the two linear system models are

modeled as initially Gaussian and driven by white Gaussian

noise, the f i rs t  section of this chapter will discuss noise

modeling. The second section will define the state vari-

ables used in each system model and their associated initial

conditions and noise 1 strengths. In the last section , the

dynamics matrix , Fs, noise gain matrix , G~ 1 and the meas-

urement matrix, H5,. for each system will be presented , along

with some justification for the difference in states and

state dimension between the two models.

Noise Modeling ~

The system model state equation is representative of

the best mathematical model that can be used to describe a

• given system . ,It is necessarily complex to include the

dynamics associated with all the significant factors influ-

encing performance. In some cases, a systems second—order

effects  are so small a factor in overall performance that

they can be disregarded and a linear mathematical model

k. :
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generated . Such is the case for an inertial navigation

system . Although the linear equations governing the error

response of an INS are well documented in the literature

(Ref 3; Ref 6; Ref 7), certain influencing factors and mi -

tial conditions cannot be specified exactly due to limi-

tations in the developed theory , tes3.ing procedures , and

measuring devices. Although an exact magnitude cannot be

put on these “influencing factors and initial conditions,”

careful observation may allow the designer to propose sto-

chast ic process models whose power spectral densities are

good approximations to these unknowns. In the INS portion

of the system state equation , these uncertainties are mod-

eled as additional states driven by white Gaussian noise,

and their relationship to the position , velocity , and atti-

tude states is expressed by augmenting the F5 matrix. Simi-

larly, uncertainties associated with the RAC can be modeled

as “noise states” and augmented into the system dynamics

matrix . The following two noise models are presented to

show the ef fec ts  an augmented “noise state” introduces into

the system state equation.

Random Bias. The random bias models a constant of

unknown magnitude . It is formed by setting an undriven

integrator with a random initial condition. Figure 5 shows

the random bias in block diagram form (Ref 4 :174) . From

this block diagram, it can be seen that the state equation

for a random bias is X(t) = 0. As the integrator is not

36
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Figure 5. Random Bias

driven by white Gaussian noise, the element for this

state is 0. The initial condition is supplied in the Gauss-

ian random vector X5(t0) with mean equal to Xs(to). Careful

testing may limit the range of values this constant may mi -

tially assume; this information is embodied in the Ps(to)

matrix for the system as the variance of the state. Exam-

‘, pies of errors that are modeled as random biases in the II

system model are accelerometer and gyroscope scale factor

errors.

Exponentially Time-Correlated Noise Model. The expo-

nentially time-correlated noise model is a useful represen-

tation of a random quantity whose variance kernel is a

decreasing exponential in the difference. This can be

—•- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ --- -- -.--- • • _ ~~~~~~~~~~~~~~



expressed as follows for the scalar case:

E[X(t)X(t+ .~t)] = a2e~~~~ tI (42)

where EL] is again the expectation operator

and

X(t) = random quantity being modeled

= the variance of x ( t )

c~. = l/T where T is the correlation time of the

random quantity

Figure 6 illustrates the exponentially time-correlated noise

in block diagram form (Ref 4:178).

w(t) 
______ 

X (t)

~Y T 1

Figure 6. Exponentially Time-Correlated Noise Model
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From Figure 6, it can be seen that the uncertainty X(t) is

the output of a first order lag driven by white Gaussian

noise. The state equation for the noise X(t) is

X(t) = —
~~~ X ( t )  + w(t) (43)

As it is desired to model a stationary process, the appro-

priate strength, 
~~~~~

‘ of the white Gaussian noise can be

found by setting the variance propagation equation equal to

zero and solving for the Q5 magnitude which achieves a

desired ~
2 value. The equation is solved below:

p
s= F5P5 + 

~~~~ 
+ GsQsG~ 

= 0 ( 4 4 )

or for this scalar case

o = —
~~~

- a2 — ~~
2 ,~- + (45)

(46)

Therefore , the uncertainty being modeled as exponentially

time-correlated requires an input noise strength numerically

equal to twice the statE. variance divided by the correlation

time. In the system models , certain accelerometer and gyro

error characteristics are modeled as exponentially time-

correlated .

An exponentially di~stance-correlated process can be

modeled following the above development and mak ing the sub-

stitution V/D for T , where D is the correlation distance of

- ~~~~ _- --
~
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the process and V the velocity in the appropriate direction .

Gravity defiections and anomalies are expressed as exponen-

• tially distance-correlated processes in the system models .

System Model State Variables

In this section, the state variables used in the Sperry

and Hamilton-Standard system models will be defined . As

stated in Chapter II, the Kalman filter formulation being

implemented in the RAC-INS system is the indirect feedback

filter. In this configuration , the Kalman filter estimates

the errors being committed by the system rather than the

quantities of direct interest such as position , velocity ,

• and altitude. Thus, the first nine states in each system

model are the error states associated with the three axes of

the east-north-up coordinate frame (three error states for

each axis, one each for position , velocity , and attitude

errors). A modeling assumption made for the two system

models is that, on an ensemble basis , all errors at time t0

will be zero mean ; thus the initial condition for the states

of both systems is a zero vector , i.e.,

Xs(t o) = [o] ( 4 7 )~

In addition , the P5(t0) matrix is assumed to be diagonal.

Sperry System Model. The 46 states embodied in the

Sperry system model, together with their initial variances

and appropriate noise strengths, are listed in Table I.

40
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This table is taken directly from Professor Maybeck ’s report

• (Ref 1) in which an explanation of how the Ps(to) and Q5

magnitudes were chosen can be found . The first nine states

represent the errors committed by the system in estimating

position , velocity , and attitude expressed relative to the

ENU coordinate frame for convenience. States 10 through 27

represent accelerometer errors committed with respect to the

X~-Y~-Z~ platform frame (From Chapter II, the platform

frame of the accelerometers and gyros is related to the

navigation frame through the C~C~ direction cosine matrix).

These errors are described by means of a day—to-day repeat-

ibility bias, scale factor error, input-axis misalignment

angles about two orthogonal directions , and two exponen-

tially time—correlated biases for each accelerometer.

States 28 through 30 describe the errors between the true

earth geoid ana the reference ellipsoid assumed in the on-

board navigation algorithm through exponentially distance-

correlated processes. States 31 through 42 describe the

laser gyro errors in term s of a gyro drift rate process,

gyro scale factor error , and input-axis misalignment angles

about two directions for each gyro , again with respect to

the ~~~~~~~~ platform frame. The reason this simplistic

model of gyro errors is implemented will be summarized when

the differences between the Sperry and Hamilton-Standard

• system models are discussed later in this chapter. States

43 and 44 model a bias error in the RAC estimates of

46
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position along the east and north axes of the reference

frame. The initial variance for these states is classified .

The last two states, 45 and 46, are altimeter errors, one a

time—correlated noise process , and the other a scale factor

error. The dynamics matrices relating these states will be

presented in the next section.

Hamilton-Standard System Model. Table 11 lists the 61

states comprising the Hamilton—Standard system model

together with their initial variances and appropriate noise

strengths. Again , this table is taken directly from Pro-

• fessor Maybeck ’s report (Ref 2). The first 42 states are

identical to those of the Sperry system model , with initial

conditions and noise strengths that differ from the Sperry

system due to the quality of the accelerometers and gyro-

scopes used . Table III summarizes the initial variance of

similar error sources for the two systems. This table indi-

cates that the quality of the accelerometers and gyroscopes

used in the Sperry INS is better than that of those used in

the Hamilton—Standard INS.

In addition to the errors analogous to those by the

laser gyros of the Sperry system, the conventional dry-

• tuned gyros of the Hamilton-Standard INS introduce four

additional sources of error . These sources of error are

• modeled in states 43 through 57 as two time—correlated gyro

drift rate processes, a two—axis gravity-sensitive drift

rate error , and a G2-sensitive drift rate error for each
‘ 
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Table III

Comparison of Initial Variance in Accelerometer and
Gyroscope Errors Between the Sperry and

Hamilton-Standard System Models

Error Source Initial Variance Initial Variance
Sperry Hamilton-Standard

Accelerometer Bias 2 2(Day-to-Day (250 ~ig) (200 pg)
Nonrepeatibility)

Accelerometer Scale 2 2
Factor Errors (500ppm ) (405.6ppm)

Accel. Input Axis 2 2
Misalignment (10 arc sec) (30 arc sec)

- 
— - - - 

Accelerometer Bias 2 2
(Correlation Time 60 m m )  (40 pg) (60 i’g)

Accel. Bias 2 2
(Correlation Time 15 m m )  (20 pg) (30 j~ig)

Gyro Drift Rate Bias (.09 deg/hr)2 (1.33 deg/hr)2

Gyro Scale Factor Errors (lOOppm) 2 (500ppm) 2

Gyro Input Axis 2 2
Misalignment (6 arc sec) (30 arc sec)

•414
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gyroscope. An explanation for this modeling versus that for

the Sperry gyroscopes is presented in the last section of

• this chapter . The last four states model the RAC and altim-

eter errors committed by the system and are identical to the

last four states in the Sperry model.

Dynamics of the Sperry Models

In Chapter III, the state equation of the system model

was defined as

~~s
F
s~~s

+ B
s~~s

+ G
s~~s

In this section , the F
~ 

and G5 matrices relating the state

variables and additive white Gaussian noise for each system

will be defined . The B5 matrix is not relevant to this

analysis, because there are no deterministic open-loop con-

trol inputs for this analysis. The measurement matrix

- - - associated with the system models will also be presented in

this section.

Sperry Dynamic ’s Matrices. The Fs matrix for the 46

state Sperry system model may be partitioned as shown on the

following page in Equation (48). The ~~~ partitions of

• Equation (48)  will be displayed in the following development.

• The F1_1 partition is the fundamental matrix relating

• the error states of the INS . Professor Maybeck used the

fundamental matrix presented in Inertial Navigation System

• ~- Error Models (Ref 8:26) as the F1_1 matrix for this system

k. 54 
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F3., ~~~~~~~ ~~~ F~~ i-~•,- 
, F~1 h,~~ F1.4 F4 .,0 F1-,, F.,~ .

(LI ~~F7-7

h-i4

-

model with one change : the error-states ~A and Si , repre-

senting the errors in longitude and latitude , expressed in

degrees or radians have been transformed to the error-states
• 

- $ SXE and 5XN expressed in feet. The F1_1 matrix is shown
4

explicitly in Figures 7 and 7a.

The remainder of the F. - matrices relate the “noise
1—3

states” to the error states. These matrices are presented
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as Equations (49 )  through ( 57 )  -

0 (3x3)

CEX CEY CEZ

= CNX CNY CNZ (49)

C C , CuX u~ uZ

• (3x3)

- 0 (3x3) -

CEXfX CEYfY CEZfZ

F13  
= CNXfX CNYfY CNZfZ (50)

Cuxfx c
~y

fy Cuzfz

0 (3x6 )

CEXfY ~
CExfz 

:C
E fX CEYfX CEZfX ~

CEzfy

F1_4 = CNxfY ~
CNxfz ~

CNyfx CNYfz CNZfX ~
CNzfy (51)

C f- C f -C f C f  C f- C fuXY uXZ u Y X  uYZ u Z X  u Z Y

O (3x6 )

F1_5 = F1 6  F1 2  (52 )

0 (3x3)

1 0 0

F1_7 0 1 0 (53)

o 0 1

0 (3x3)
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0 (6x3)

• CEX CEY CEZ

F1_8 CNX CNY CNZ 
• 

(54 )

C C CuX uY uZ

0 (6x3)

CEXWX CEYWY CEZWZ

F1 9  CNXWX CNYWY CNZWZ (55)

C xw~ CUY W Y C zwz 
-

• 
0 (3x6)

_C
EXWY CEXWZ CEYLIX 

_C
EYWZ ~

CEZWX CEZWY

F110 = _C
NXWY CNXWZ CNYWX 

_C
NY WZ 

_C
NZ~X 

CNZWY (56)

_C
~x

wy C w z C ywx 
_C
~y

wz 
_C
~~

wx C~z
wy

0 (3x6 )

F1_11 = F1 1 2  = Lo ( 9 x 2 ) ]  (57)

For the states modeling accelerometer and gyroscope

uncertainties, a transformation is made in their respective

partit ons from the platform frame to the ENU frame. This

transformation is accomplished through the C~ direction

cosine matr ix  where the C~~. element is the direction cosine

• between the .th axis of the ENU frame and the ~th axis of

the platfo-~ frame . The X, Y, and Z subscripts on specific

I

~~~~~~~~~~~~~~~~~~ 
-
~~~~~~~ ~~~~~~~~~~~~~~~~~~ _ _ _  
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• force, f, and angular velocity , w , denote vector components

of these quantities in the platform frame.

The remainder of the ~~~ 
matrices represent the “ noise

• state” dynamics. Uncertainties modeled as biases have null

dynamics partitions, while those that are modeled as expo-

nentially t ime or distance-correlated have the negative

• inverse of their correlation time along the diagonal of

their partition (For distance-correlated processes the

correlation time is expressed as T = D/V.). The F2_2

through F12 12 partitions are

F2 2  = F 3_ 3 = L~. (3x3)]  (58)

F4_4 = [0 (6x6) ]  (59)

• —1/ T 1 0 0

F5_5 = 0 —l/T 1 0 (60)

0 0 -l/T 1

• —1/T
2 

0 0

F6 6  = 0 —l/T
2 

0 (61)

0 0 -l/T 2

0 0

F7 7  = 0 —v/D1 0 (62)

0 0 —V/D 2
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• F8 8  = F9 9  = F10 10 = [o (3x3)] (63)

F11_11 = [0 (2x2)j ( 64 )

-v/D3 0

F12_12 = (65)

s 

0 0

where from Table I ,

= 60 mm

T2 = l 5 min

D1 = 10 nautical miles

D = 60 nautical miles

D3 = 250 nautical miles

The Gs matrix adds the white Gaussian noises associated

with the state vector into the linear differential system

equation. This matrix is 46 x 19 where 19 is the number of

white noise sources associated with the system. The matrix

is composed of ones and zeros , with a one in the ~~th

element indicating the ~th state is corrupted by white noise

• j of the vector. A zero row is used for a state which is

not directly corrupted by white noise. This matrix is not

shown explicitly.

The discrete-time measurements made- available to the

f i lter are the dif ference between position indications of

INS and the RAC. The INS position indications can be

61 
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expressed as

XE_ INS (t i ) = XE true + ISX
E
(ti) (66)

X
N_ IN S

(t
i
) = XN t  + 6X

N
(ti) (67)

• 

- 
where

X _INS (t i) = east or north position indication of the

INS at time t.
1

X --true~~i~ 
= the true east or north position at
time t~

The RAC position fixes can similarly be expressed as

XE_RAC (ti) = XE_true (t j ) + bE 
VE

(t
i

) (68)

xN_RAC (t
i) 

= 
~~_true

(ti) + bN 
— V

N
(t
i

) ( 69 )

X_ _
~~~~(t~ ) = east or north position measurement

indication of the RAC at time t~
b = east or north RAC bias (states 43 and 44 in the

system model)

V(t
~
) = corruptive white Gaussian noise whose strength

at time t. is a function of vehicle altitude
(The negative coefficient is adopted for

convenience to generate Z = HX + V instead of

Z =H X - V )  
-

The strength of the white noise corrupting the measurement

can be expressed as

R5 (t . )  = O• Altitude(t.) 2 (70)
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where 0 has a classified numerical value.

The appropriate H
~ 
matrix is formed by differencing corre-

sponding INS and RAC position estimates to form the meas-

urement vector. The resultant equation in matrix form is

1 0 1 0 0 01 V ( t - )
Z ( t . )  = 

I 0 ( 2 x 4 0 )  I x  ( t - )  + 
E i. (71)

1 1

0 13 0 1 0 0J VN (t i )

where the matrix premultiplying the system state vector is

the matrix.

Hamilton-Standard Dynamic ’s Matrices. The Fs matrix

for the 61-state Hamilton-Standard system model may be

partitioned as follows in Equation (72). The partitions

F11 through F110 and F2_2 through F10 10 correspond

exactly to the same partitions in the Sperry model.
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c1~ ~~~~ F,~ ~~, 1,• • ~ 1,~I. E- F1 F,., 1 , - . ~~~~~ F 1 1~ ~~~ I,,~ F.-,~

13

- (j z)

• ~ 4 1 4

Partitions F111 through F114 and F11_11 through F14_ 14
I introduce the additional error characteristics of the dry-

tuned gyros of the Hamilton-Standard system . These matrices

are as follows :

0 (6x3)

C
EX 

C
EY CEZ

F1_11 = CNX CNY CNZ 
(7 3)

k- . C x Cuy 
64
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F112 = F111 • 
( 7 4 )

0 (6x6 )

CExfx CExfX CEYfY CEYfx CEzfZ CEZfY

F113 
= CNXfX ~

CNxfy CNYfY CNYfx CNZfZ CNZfY
c~xfx _C

uXfY C~y
fy c~ y

f
x 
c
~ z

f
z 
C
~ z

fy

0 (6x 3)

_C
EX f xf y CEY f X f Y CEZ f Y f z

F114  = 
~CNX f xf y CNY f Xf Y C

Nz
fyfz 

(76)

c
~ x

f
x
fy C

~ y
f
x
fy C

uz
fyfz

—l/T1 0 0

F 11_11 = 0 — l/T 1 0 ( 77 )

0 0

—l/T2 0 0

F 12_ 12 = 0 —1/T2 0 ( 7 8 )

0 0 —l/T2

F13 13 = [o (6x6)] (7 9 )

F14 14 = [o (3x3)] (80)

where from Table II the correlation times T1 and T2 are

T1 = 60 min

T
2
= 15 mm
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The F1 15, F1 16, F15 15, and F16_16 partitions of Equation

(72) correspond to the F111, F112 , F11_11, and F12 12
matrices of Equations ( 5 7 ) ,  ( 6 4 ) ,  and (65)  respectively.

The G5 matrix for the Hamilton-Standard system is

formed in the same manner as that for the Sperry system.

Its dimension is 61 x 16. This matrix is not shown

explicitly.

The discrete—time measurements made available to the

fi l ter are composed of the same information as those of the

Sperry system. The measurement matrix H8 is

1 0 I I l 0 0 0
= 0 (2x56 ) (81)

0 1 1 0 1 0 0

The system equations for the Sperry and Hamilton-Standard

systems having been defined , the differences will now be

discussed .

System Model Differences. The major difference in the

two system models is the additional 15 gyro error sources

incorporated into the Hamilton-Standard system model. These

error sources representing the G—sensitive and G 2 -sensitive

drift coefficients of conventional gyros do not appear in

the Sperry system model because its laser gyros are vir—

tually gravity insensitive .

The white Gaussian noise associated with the attitude

error—states of the Sperry system is again due to the d i f—

ference in gyroscopes used for the two INS ’ . A typical gyro
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drift rate model is shown in Figure 8 (Ref 1:14). This

model indicates that gyro drift rate is composed of an expo-

nentially time—correlated noise c (with a correlation time

of T and an independent white Gaussian noise W2.

In conventional gyros, the c contribution to
drift rate predominates W2, and typically the strength

S of the white Gaussian noise W1 is set at some finite
value while the strength of W2 is set to zero. How-
ever , for laser gyros, the effect of W2 predominates;
this noise strength is depicted through the Q5 terms
of 7.61 x i0 h1 rad2/sec driving the attitude error
differential equations in Table I L Ref 1:13].

I W L
• 

W I4~~~ 

_ _ _ _ _

~Y T 1

Figure 8. Gyro Drift Model

The system models having been detailed , Chapter V will

define the sub-optimal filter models considered in this work.

67
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V. The Lockheed Kalman Filter Design and an Alternate Design

In this chapter , the sub-optimal Kalman filter design

as proposed by Lockheed will be presented . In addition , an

S alternate design based on the Lockheed filter will be devel-

oped . A comparison of the m erits and possible drawbacks of

each of these filters when driven by either INS and updated

by the radiometric area correlator will also be made. In

Chapter VII the performance of these two f i l ters  will be

evaluated .

Lockheed ’ s Kalman Filter

The basis for the Lockheed filter is a mathematical

model composed of six error states. This model can be

decomposed into two decoupled three-state partitions, each

embodying errors in position , velocity , and attitude angle

in one direction . In this decoupled form , and with the

• east-north-up coordinate frame instrumented, the state-

space equations are (Ref 1:1)

1 0 
- 

0 06X E 6X E WEl
= 0 0 —G + 1 0 ( 82)ôV ~. wE2

:1-0 0 
~N 1
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•
I
~CN~ 

•
0 1 

- - 

0 0 
WN1

= 0 0 G + 1 0 ( 8 3 )
N N WN2

0 
1 0 1

• E . - 
P. • • E - -

S 
where

is the error in the INS-indicated east position
E

is the error in the INS-indicated north position

is the error in the INS-indicated east velocity
E

is the error in the INS-indicated north velocityVN

is the attitude error , east component

is the attitude error , north component

R is the equatorial radius of the earth--2.09 x l0~ Ft

- - - 2G is the magnitude of gravity--32.2 Ft/Sec

WE 1, WN1 are white Gaussian noises modeling acceleration

associated errors

• WE2~ wN2 are white Gaussian noises modeling atti tude

angular rate associated errors

These equations form the linear stochastic d i f ferent ia l
~~~~~ I equation upon which the f i l ter  is based as described in

Chapter III , i . e . ,

~~F

_ F
F~~ F

+ G
F~~~F

+ B
F!LF
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where for each partition ,

= control input - a zero vector

E[W 1
(t
1

)W
1

(t
2)] = (84)

0 for t1~~~t2

E [W
1

(t
1

)W
2

( t
2

)] = 0

(Q for t1 = t 2
E[W 2

(t
1~~ 2

(t
2)] = (85)— — 

~~O for t1~~~~t 2

and the subscripts for each Q were chosen because they

assume those positions in the diagonal GFOFG~ matrix .

The discrete time measurement for each filter partition

is formed by subtracting INS-indicated position from the RAC-

indicated position . INS-indicated east position is the sum

of true position and the east position error state ,

XE INS (t
j
) xE_ TRU E (t i) + SX E (t i ) ( 86)

where

XE INS (t
i
) = INS-indicated east position

XE TRUE(ti) = true east position

Similarly, the RAC-indicated position is the sum of true

position and a corruptive white Gaussian noise whose magni-

tude is proportional to the square of the altitude. This

eq~ at ion is shown below where the negative sign has been

70
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adopted for convenience :

E RAC j  — E TRUE E ( t . )  (87)

where

XE R A C (t
i
) = RAC-indicated east position

S V
E

(t
i) 

= zero mean , white Gaussian noise corrupting
the RAC position measurement

and

RF 
= the strength of the measurement corrupting noise

VE = 0 . (al t i tude) 2

with 0 a classified numeric value . Therefore , subtracting

Equation (87) from Equation (86) yields the desired meas-

urement equation for the east-position partition as

Z(t
~
) = ISXE(ti) + V

E
( ti )  (88)

Because position is the only quantity measured by the

RAC , this measurement equation can be expressed as:

6XE(ti)

Z ( t~ ) = Li 0 0]  ÔVE (t i ) + VE
(t j) ( 89)

~
N

(t
i

)

Similarly , the measurement equation for the north-

position partition is

~xN (t i) - •

Z ( t . )  = Li 0 0] 
~
SVN (t i) + VN (ti) (90)

~~E
(t
i
)
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These equations correspond to the measurement equation for

the sub—optimal f i l ter  presented in Chapter III , i . e . ,

Z ( t m ) = HFXF (ti) + V
F

( t i )

• These filter models are extremely simple, six total

S 
states as opposed to the 46 and 61 state optimal filters of

the Sperry and Hamilton-Standard systems ’ truth models

respectively, thereby reducing the computational load and

storage requirements for the onboard computer . In addition ,

a simplification to the covariance propagation equation is

made in the Lockheed design. The continuous time equation

describing the covariance propagation is from Equation (28)

P = FP + PFT + GQGT

The equivalent discrete time equation is (Ref 4:163)

P(t. ) =

g t-
+ f~ ~

(t
~
,T)GQGT

~
T(t.,T)dT (91)

1- 1-1
I • where

- • 
T is a dummy variable representing time

• 
• superscript + is the time instant just after a meas-

urement update

superscript - is the time instant just before a meas-
urement update

- ~~
t
~~
,t
m 1

) is the state transition matrix , the matrix
I . • which satisfies the differential equa tion

k-
. 
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I~~~~(t~~~~~,t ~~~~~~~

1
) = F

~~~
(t

~~~
,t

~~~_ i )

over the time interval t~~~~~
1 

to t~ starting from the initial

condition

= I

where I is an identity matrix of the same dimension as

The simplification made by Lockheed is to approximate

the fu l l  matrix resulting from the integration term in the

discrete equation as a diagonal matrix. Thus for each

three-state partition the full 3x3 additive noise matrix is

approximated as a 3x3 diagonal matrix . This approximation

leads to the following discrete time covariance propagation

• equation for the Lockheed design (Ref 1:2) 
r —

q11 0 0

P(t. ) = 1
~

(t m ,t~~~i) P ( t
~~ i

+)
~~
T (t m ,ti i ) + 0 q22 0 ( 9 2 )

0 0 q 33

where

• 

q11 = (~ -L~t
2)2Q22 + (5.3666t,~t

3)2Q33

q22 = L~t
2Q22 + (16.lt~t

2)2Q33

q33 = ~t
2Q 33

= strength of white Gaussian noise W_1 as expressed

in Equation (8 4 )

Q 33 
= strength of white Gaussian noise W 2 as expressed

in Equation (85)
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Advantages

The major advantage of this design is simplicity. The

onboard computer has only to propagate and update two three—

state partitions, a considerable computational and storage

reduction from tracking even one six-state filter whose

states are coupled . In addition , the computer burden is

further lessened using a discrete noise formulation obtained

through straightforward mathematical “adds” and “multiplies” ;

a function the computer can accomplish far more efficiently

than numerical integration.

Disadvantages

One possible disadvantage of such a simple design is

accuracy , whether the tradeoff in accuracy between the six-

state f i l ter  model and a more sophisticated design is

warranted can only be evaluated when system specifications

• are finalized. Accuracy will also be lost in approximating

the ful l  3x3 additive noise matrix for each f i l ter  as diag—

I 
onal. This loss is illustrated in the following development.

• Using Equation ( 92 )  the initial covariance matrix ,

1 PF (t o ) .  is propagated to its f i rs t  measurement update time ,

— t1, as follows :

• P ( t1 ) = ~(tl,0)PF(tQ)~~
T(tl,0)

t
+ 10

1 I
~(tl, T)GFQFG~~

T(tl, T)dT (93)
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The matrix multiplication and integration terms may be
r

expressed in the simplified form below for each partition.

E11 E21 E31 N11 N21 N31
P ( t

1
) = E12 E22 E32 + N12 N22 N32 ( 9 4 )

E13 E~~ E33 N13 N23 N33

S where

~~~ 
are elements of the ~(.)PF (to)~~

T(.) matrix , with

E
m~ 

= 
~~~ 

from symmetry

and

are elements of the f c~( . )  GFQFG~~
T( )dT matrix with

Q.. = from symmetry

The Kalman gain matrix , K , is then calculated :

K(t1) 
= P

F
(t
l

)H [H
F
P
F

(t
l

) H
~~ 

+ ~~]l (95 )

Using Equations (90) and (100), in matrix form this

gain for either partition can be expressed as:

E11+N 11 0 
01

• 
K ( t

1
) = E12+N 12 

• 0 o l 1

I E11+N 11+0~ (altitude)
2

E13+N 13 0 (96)

This gain matrix is then used to update the covariance

matrix according to Equation ( 3 0 ) ,  i . e . ,

PF(tl ) = PF (t l ) — 
~cHFPF (t l )
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In lower triangular matrix form , this expanded matrix

equation is:

E1 1+N 11

P
F

(t
1~~~

) = E12+N 12 E22 +N 22

E13+N 13 E23 +N 23 E33+N 33

(E11+N 11)
2

— 
(E 12+N 12) (E 11+N 11) (E 12 +N 12 ) 

2

• (E 13+N 13 ) (E 11+N 11) (E 12 +N 12 ) (E 13+N 13 ) (E 13+N 13) 
2

1 ( 9 7 )
E11+N 11+0• (altitude) 

2

Although this equation is quite cumbersome, it serves

to point out that every element of the updated covariance

matrix , except the upper left, is dependent upon the of f-

diagonal noise elements. Thus, in ignoring these of f-

diagonal elements , a certain degree of accuracy will be

lost in determining the variance of the error-states.

-~ - Alternate Design

- ~- - Because the computational load and storage requirements

placed upon the onboard computer were the ultimate limiting

factors in any design for this application , the six error—

states as proposed by Lockheed were used in the following

filter formulation . The alternate design utilizes an

approximation to the full 3x3 additive noise matrix that is
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generated from the covariance propagation equation for each

of the three-state partitions, instead of Lockheed ’s diag-

onalized approximation . Since the best performance for the

two three—state filter models can be obtained using the

correct covariance propagation equation , an approximation

closely matching the full noise matrix rather than just the

diagonal elements should provide better filter estimation

precision than the Lockheed design. Although this formu-

lation should provide a better estimate of the system

navigation errors than the Lockheed design when properly

“tuned” (the tuning process is described in Chapter VII),

the enhanced estimation precision is bought at a “cost” of

additional storage space in the onboard computer , a critical

consideration. The additional storage space is required

because the three equations in the Lockheed design involving

“adds” and “multiplies” would be extended to six in the

- • alternate design . The additional three equations character-

ize the noise added to the off-diagonal elements of the

covariance matrix during propagation ; three equations are

sufficient because through symmetry , the upper three trian-

gular elements of each partition ’s covariance matrix are

- 
-
‘ I equivalent to the lower three triangular elements. The

following is the derivation used to obtain the six additive

noise equations.



The term for which an equivalent set of simple equations

is sought is

N11 N12 N13

N21 N22 N23 = f
t

1 tj,T FQF
G
~~
T (t j,T~~~

t (98)

N31 N32 N33

The state transition matrix, 
~~

(t
~~~f T ) f  for a time period

t~_1 to t~ , ~t, can be found through straightforward manip-

ulation of the filter FF matrix using Laplace transformation

methods since FF is time invariant (Ref 9:161).

1 -~-sin(w~ t) -RL l-co s(wi~t)]

= ~-( 1~t)  0 cos(w~t) —R~isin(üiL~t) (99)

0 ~~ sin (u~~t) co s(wL~t)

where the substitution w = has been made.

Substituting this equation together with the f i l ter

and 
~F 

matrices into Equation (98) and performing the inte-

gration , the following results are obtained :

N11 = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Q 33R
2[

~
4

~ - ~sin(~~ t)

+ ~_sin(w~t)cos(w~t] (100)

N 22 = Q
22[~

_ sin(w~ t ) c o s (w~ t ) +~-j

+ Q33R
2w2[~~ os( t)sin (~~ t)+~~

] 
(101)
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N 33 R2 W 2[~~~~~~~~~~~~~~~~~~~~~~ 2 ]

+ Q
33[~~s in (w ~ t ) c o s (w ~ t )+~.cj ( 102)

N21 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (103)

N 31 
= cos(w~ t) sin(w ~ t) +

+ Q 33R[~~sin~~~~t os( +~~ - ~sin(u)/~t~
J 

( 104)

N32 = 
2
sin (uu~t) — 

2 
-sin ( wtm t )  ( 105)

2 Rw

N12 = N 21 ( 106)

N13 = N31 ( 107)

N 23 = N 32 ( 108)

These equations can be further simplified by intro-

ducing the power series expansions of the trigonometric

terms. The relationships used are (Ref 10:456)

sin (w
~
t)cos(w

~
t) = s i n ( 2w At )

— ir 2 ( 2 w t m t )  ~ 
+ 

(2 u ~~t) + 1 ( 109)
3~ 51 J

s in (w~ t)  = w~ t - + + (110)
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2 4
cos(w~ t) = — (wi ~t) 

+ 
(w~ t) 

+ (i l l )

When these substitutions are made into Equations (100)

thru (105) the results, disregarding higher order terms,

are :

Q22~ t
3 

Q33R
2u1
4

1~t
5

N11 + 20 (112)

2 4  3Q33R w ~t
N 22 Q22 1mt + 3 (113)

~22 
~~~

+ Q~~~t (114)
3R 2

Q ~~~t
2 

Q R2~~~ t
4

2l 2 8

Q22 L,~t
3 Q33Rw

2
~ t

3

N 31 3R — 

6 
(116)

Q22~ t
2 Q

33Rw 2 L,~t
2

N32 2R — 
2 (117)

Because the covariance can be propagated and updated

without the need for an external measurement, Ref Chapter

111, -a  shorter time span than that between measurements is

used to keep the covariance estimate current.  A time period

of four seconds was used in the computer simulation until

just  prior to pitchover , and this time period will be used

to show the accuracy of the six equation approximation to

the additive noise integral solution . Table IV depicts the
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exact solution , power series approximation , and Lockheed

f approximation to Equation (105) over a period of four

seconds.

Table IV indicates that the power series approximation

is very accurate, which leads to the conclusion that imple-

S 
menting a filter that uses this approximation instead of

the exact Kalman filter equations will suffer little loss

of accuracy . The Lockheed approximations differ greatly

from the elements of the exact solution ; however, this

difference may be an attempt to negate the effects of

ignoring the off-diagonal noise elements. Chapter VII will

compare the performance of these filters.
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VI. Trajectory

This work analyzes the navigation errors committed by

a Kalman f i l ter  as the weapon system “f l ies” a typ ical tra-

jectory . The trajectory was provided by AFATL in the form

of strip charts. These strip charts represent a six-degree-

• of-freedom glide-to-impact time history of the variables of

interest as simulated on an analog computer. The glide-to-

impact simulation is indicative of the maximum range the

unpowered vehicle possesses. Although six degrees-of—

freedom were simulated , the fact that it was a no-wind

flight, with the vehicle maneuvering only in pitch , limited

the geometry to two dimensions, i.e., the vertical plane.

The strip charts are classified Secret; however , Figures 9

thru 12 characterize some of the dynamics of the vehicle.

The figures are not to scale and do not accurately reflect

relative time periods, distances , altitudes , or velocities.

After release at altitude , the system goes into an

extended glide . Through this glide period , a pronounced

phugoid motion is present which affects position , velocity ,

normal acceleration , glide-path angle, and pitch rate. The

ang le of attack is kept relatively constant by an autopilot

and thus does not reflect the phugoid .

p
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Figure 9. Vehicle Dynamics: Altitude vs. Time
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Figure 10. Vehicle Dynamics: Velocity vs. Time
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Figure 11. Vehicle Dynamics: Glide-Path Angle vs. Time

H f
Timek.. Figure 12. Vehicle Dynamics: Pitch Rate vs. Time
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At a geographical point dependent on vehicle altitude

and distance to the target, the system begins a rapid pitch-

over that ends just before impact with the ground. To

introduce the dynamics of this trajectory into the system

model and the sub-optimal Kalman filter, two options were

available :

1. Tabularize the data for table lookup

2. Approximate the data through mathematical functions

Although tabularized data would enable an exact repre-

sentation of the trajectory to be made, the computer program

used to perform the covariance analysis, GCAP , uses an inte—

gration routine that requires four data points for each

integration step; thus, the amount of computer core memory

needed to facilitate the table lookup scheme would be

prohibitive.

Functions Used to Approximate the Trajectory

In approximating the data mathematically , good accuracy

was obtained through the use of two “curve f it’t computer

routines (Ref 11; Ref 12). These routines use an orthogo-

nalization technique to minimize the root mean square (RNS )

error between the actual data points and the computer gen-

erated points at corresponding times. The RMS error mini-

mized may be mathematically represented as

/ * of data points

RMS Error = / 1 
~ R. 2 (118)

# of data points j1

86



where R1 = the difference between user supplied ordinate

t magnitude at time corresponding to i and computer

generated ordinate magnitude at time corre-

sponding to time i

The computer generates 27 third-order polynominals for each

variable. Each polynominal, covering a certain length of
I

the axis , is continuous to the second derivative with the

• polynominals representing the time axis adjacent to it. Two

sets of these “curve f it” polynominals , coupled with certain

kinematic relationships , are sufficient to describe the

trajectory . The first set, depicting altitude versus time,

has a 24.2 ft RMS error, while the second set, velocity

versus time, has a 1.65 ft/sec RMS error. The form one

polynorninal of each of these sets takes is shown below.

Altitude = H = A(t-t0)
3 

+ B(t-t0)
2 

+ C(t-t0) + D (119)

Velocity = VT = E(t-t0)
3+ F(t-t0)

2 
+ G(t-t0) + P (120)

• where

A ,B,C,D,E,F,G, and P = constant coefficients

t0 = the point on the time axis where the poly-

nominal first becomes valid

t = the time, within the polynominal’s valid
range, at which the function is to be
evaluated

With the altitude and velocity specified as functions

L.. of time , and motion restricted to the vertical plane, the

k 87
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kinematic relationships below provide all the necessary

information to specify the vehicles dynamics. Figure 13

further illustrates these relationships.

4)

•r4 VF-

4:

VD VT

— - 
Time

- Figure 13. Trajectory Vector Relationships

• Vertical Velocity = 
d(H) = VD = 3A(t-t0)

2 
+ 2B(t-t0)

+ C  (121)
2

• I Vertical Acceleration = 
d = VD = 6A(t-t0)I dt

+ 2B (122)

j Forward Velocity = = v’r2—vt 2 (123)

r Total Acceleration = 
d (VT ) VT = 3E(t—t0)

2

88 
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Forward Acceleration = 
d (VF) VF

- VT(VT)-VD (VD) (125)

Glide Path Angle = 0 = TPN ’ 
~~ (126)

Pitch Rate = 
d(®) 

= 6
— 1 3~~~_ VD(VF)

1~~VD VF
VF

In developing Equations (121) thru (127), one simpli-

fying assumption has been made: that the attitude of the

vehicle is such that the vehicle is always tangential to the

altitude vs. time curve. This assumption allows the total

velocity to be expressed as a vector whose direction is

parallel to the flight path at any instance of time. The

components of velocity and acceleration are Lhen determined

through straightforward vector calculus. Although simpli-

fying the vehicle ’s equations of motion, one disadvantage is

encountered by making this assumption: the effect of the

autopilot maintaining a constant positive angle-of-attack

has been ignored. The fact that the constant positive

angle-of-attack has been ignored does not greatly diminish

the validity of the mathematical model above . Because a

constant angle—of—attack of zero is implied in the

assumption that the vehicle is tangential to the glide-path ,

the vehicle will still be subjected to approximately the

89
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same pitch rates indicated on the strip—charts. Thus , the

actual dynamics experienced by the vehicle “ flying” the

mathematical trajectory will be very similar to those

experienced by the vehicle “ f lying” the strip-chart tra—

jectory , with the major difference being the orientation

of the vehicle in flight.

k:. 90
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VII. Filter Tuning and Performance

9

Because the sub-optimal filter designs of Chapter V

have many fewer states than either the Sperry or Hamilton-

Standard system models presented in Chapter IV , it is

unlikely that the same initial conditions and corruptive

white noise strengths that reflect true performance in the

system models will yield best performance for the filter

designs. In this chapter , the process through which the

initial conditions and white noise strengths for the sub-

optimal filter models were obtained will be described.

Filter performance using these values will then be eval-

+ uated . In the last section , an error budget will be

presented which indicates the contribution various error

sources make to overall system navigation error.

Filter Tuning Philosophy

As presented in Chapter III, the covariancè of the

states for the two sub-optimal filter model partitions and

the error vector ’s covariance form the output of the covar-

iance analysis computer program , GCAP. Filter tuning is the

process of aligning as closely as possible the corresponding

error statistics by properly setting the fil ter model’ s

initial covariance matrix , PF (to)I and the additive white

Gaussian noise strengths, Q
F

’ S and R~~’s. When “tuned,” the
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filter correctly estimates true system error. In tuning a

$ filter, many approaches can be taken. Since it is mathe-

matically impossible to match the variance of the sub-

optimal filter ’s states exactly with the appropriate var-

iance terms of the error vector , certain decisions must be

made. Should the tuning process seek to optimize the per-

formance f or one or more “key ” states at the expense of

accuracy in estimating the true variance of the other

states. Or, should a medium be struck , and an attempt made

to align the variance of all the fil ter ’s states with those

of the corresponding elements of the error vector, thereby

possibly reducing the performance capability on the “key”

states. Professor Maybeck chose to closely match the

variances of the position error—states, SXE and SXN, with

their corresponding true error vector variances and achieved

excellent results. Although he attained a close match in

the first two states of each filter , position and velocity

errors , the vartance estimates of the attitude error state,

the third state of each partition , were significantly lower

than the true variances of the error vector for this state.

The tuning philosophy adopted in this work is to

attempt to align the variances of all three states in each

filter model partition closely with the true variances of

the error-vector. This philosophy is adopted because the

movement of the platform to “point” the RAC vertically down

r . for a position measurement will be governed by the INS/

92
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filter generated attitude angles of the vehicle relative to

the east-north—up coordinate frame. Thus, for this work all

of the states in each filter model partition are considered

equally important.

Trajectory S~ecifications and Update Schedule Used for
Filter Tuning

Although the kinematics of the trajectory are completely

described in Chapter VI, the geographic starting location

and the heading angle of the “flight” remain to be specified .

The geographic starting location chosen was the same as that

used in Professor Maybeck ’s study, latitude 39°50’ north,

longitude 83040, west, to afford a means of comparison

between system performance along the relatively benign tra-

jectory of that investigation and system performance along

the more dynamic trajectory of this work. The heading angle

is 45°, approximately 8° less than the heading angle used

in Professor Maybeck ’s simulation . This angle was chosen

because it subjects the vehicle to the same vector components

of angular velocity and angular acceleration inputs along

the east and north axes of the navigation frame. The effects

of varying the heading angle from 45°, thus causing greater

• vector components of angular velocity and angular acceler—

ation along either the east or north axis of the navigation

frame will be investigated in Chapter VIII.

The measurement update schedule was verbally obtained

r from Mr. P. Richter, AFATL, and consisted of six “fixes.”
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These fixes were spaced in time such that the distance

between successive RAC updates was progressively smaller.

The last update i~ taken after vehicle pitchover is complete.

This fix schedule is illustrated in Figure 14.

I I
I I
I I

~~~~~~~ 

I I - I
I I I

LI 3 1 4 L 51

Figure 14. Spacing of RAC Update Fixes

_ 
- 
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Filter Tuning

Rather than tune each of the two filter designs of

Chapter VI, only the design reflecting the correct covar—

iance propagation will be tuned (i.e., the proper non—

diagonal integral solution to the additive noise matrix).

The initial covariance matrices and the white Gaussian

noises that provide the best performance for this filter in

the Sperry and Hamilton-Standard systems will then be used

in the Lockheed filter and the filter incorporating a power

series approximation to the correct covariance propagation

to evaluate their performance .

The actual tuning process can be approached in a number

of ways. One method is to set the initial covariance matrix

and the white Gaussian noise strengths of the filter model

equal to their corresponding values in the system model and

vary these numerical magnitudes one-by-one in a number of

computer simulations, observing the effect each change has

on filter performance. With this information , different

combinations of noise strengths and initial conditions can

be simulated until a combination is found that provides

“best performance.” This ‘but and try” approach can be very

time consuming , with no guarantee that the combination

chosen really does provide “best” performance. Another

method of tuning the sub-optimal filter is to find mathe-

matical relationships that give insight into how the initial

covariance elements and noise strengths affec t individual

-

~

--
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states, and set these elements to increase the filter ’s

$ accuracy . A combination of these methods was used to tune

the filter model of Chapter VI which reflected the true

covariance propagation. In setting the ini tial covariance

matrix and white noise strengths equal to their corre-

sponding system model elements, and then varying the mag-

nitudes of these elements slightly in succeeding computer

simulations, five filter characteristics were noted :

1. The variances of corresponding error states in the

two three-state partitions were essentially the same, i.e.,:

Error variance of SXE 
= error variance of SXN

Error variance of SVE 
= error variance of SVN

Error variance of = error variance of

2. The two three-state partitions had a noticeable

“transient” lasting through approximately the first two

updates, during which they consistently underestimated the

variance of errors they were committing .

3. After a measurement update, the variances of the

• errors in the estimates of positions CSXE and SXN and their

corresponding error-vector variances were very close.

4. The variances of the errors in estimates of atti-

tudes and were consistently underestimated .

5. The covariance of the error—vector formed a numer-

ical pattern , through the first two updates, that was essen-

tially the same in all computer simulations run, even when
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the filters were estimating very poorly.

These characteristics were displayed when the three-state

filters were estimating the errors for either the Hamilton—

Standard or Sperry system models.

Since the two three-state filter model partitions

yielded the same variance estimates when supplied identical

initial conditions and noise strengths, mathematical insight

was sought from only one set of filter equations, the east

position set, and the results applied to the other partition.

Using the development of Chapter VI, the initial covariance

matrix , a 3x3 diagonal matrix, is propagated to the first

update time, t1, as follows:

PF(tl ) = ~(tl, 0)PF (o)~
T(tl,0)

t
+ f~~

l 
~~

(t l, T ) G FQFG
~~~

T (t l, T ) d T  (128)

After performing the matrix multiplication and integration ,
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the lower triangular 3x3 PF (t1 ) matrix may be expressed as :

P11(t1 )

PF (t l ) = P12 (t 1 ) P 22 (t 1 )

P13(t1 ) P23 (t1 ) P33 (t1 )

E11(t 1)

= E12 (t 1) E 22 (t 1
)

E 13 (t 1) E 23 (t 1) E 33 (t 1)

N 11 (t 1)

+ N 12 (t 1) N 22 (t 1)

N 13 (t 1
) N 23 (t 1) N 33 (t 1) ( 129)

where

E 11(t 1) = P 11( 0 )  + [1 sin(w~ t)] 2 P22(0)

+ L - R ( l— c o s (u ~At ) )] 2 P 33 (0)  ( 130)

E 22 (t 1
) = [cos(~ E~1t)]

2 P22(0)

- 

- 

+ L - R w  sin(wL~t)]
2 P33 (O) (131)

E 33 (t 1
) = [~~~~ sin (w~ t)] 2 P 22 (0 )

+ L cos~w~t ] 2  P 33 (O)  ( 132)

E12(t1) = [~~
- sin (wL~t)cos(~~ t)]P22(0)

÷ [R
2
w sin(w~t) (l—cos (wL~t))]P33 (0) (133)
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E13 (t1
) = 

[..

~~~~~

. s~~
2

c~~ t~
] 
P22(0) L

+ {_R cos(wAt) (l_cos(wAt) )] P33 (0) (134)

E 23 (t1) = [~i s i n (w t i t ) c o s (wA t )] P 22 ( 0 )

+ [_R(A cos(wAt) sin(wAt)] P33 (0) (135)

and the ~~~ (t1) elements are equivalent to the corresponding

N~~~(At )  of Equations (103) through ( 108) with At = t1 
- 0.

P~~~(0)  = ~th row — ~th column element of the f i l ter

initial covariance matrix

P~~~(t i ) ~th row - ~th column element of the f i l ter
• covariance matrix at the first update time ,

before the measurement is incorporated .

• If the values for the covariance of the error vector at

time t1 (in the “cut and try” approach above, the covariance

matrix of the error vector at time t1 was essentially the

same in all simulations run) are substituted on the left

side of this equation for the corresponding filter covar-

iance elements, a set of six simultaneous linear equations

can be formed .

-e
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These equations in matrix notation are:

PE11(tl ) 1 A B C D P11(0)

PE22 (t l ) 0 E F G H P 22 (0)

PE33 (t l ) 0 I J K L P 33 (0 )
= (136)

PE12(t1 ) 0 N N P Q

PE13 (tl ) 0 R S T U

PE23 (t l ) 0 V W Y Z

where

~Eij 
(t1 ) = 1th row — ~th column element of the error

vector covariance matrix at time t1 
— before

the measurement is incorporated .

Expressions for dummy coefficients A-Z can be obtained

from Equation (129) .

This set of independent linear equations is over-

- 
- 

specified , i.e., six equations in f ive unknowns, so an exact

solution cannot be found ; however a computer routine is

available, LSQUAR (Ref 13), which yields an approximate

solution to such overspecified sets of equations. If

-

~ I Equation (136) is represented as

H A X + B  (137)

where

A is the 6x5 coefficient matrix

r X is the 5xl variable matrix

B is the 6xl desired variance matrix
100
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The software package LSQtJAR forms the pseudo-inverse of the

A matrix , A+, and then preinultiplies both sides of the

• • +
• AX = B equation with A . The resultant solution for the X

matrix is such that the Euclidean norm of the system matrix

is a minimum. That is

I AX - BI 1 E = 

[11 L1 
AjkXkl 

- B
~i 2J ~ 

(138)

where 
~E 

represents the Euclidean norm , and the i, k

and 1 subscripts denote elements of the indicated matrices

In using LSQUAR, relative weighting of the equations was

accomplished by multiplying through with appropriate con-

stants. This procedure precluded a solution which minimized

errors about the larger elements of the desired variance

elements while ignoring smaller elements.

LSQUAR was used to find the two sets of filter values,

P11(0), P22(0), P33 (0), Q22, and (one set each for the

Hamilton-Standard and Sperry systems) which most closely

aligned the filter covariance matrix with the error—vector

covariance matrix at time t1. Excellent results were

obtained in both cases. As a percentage of the individual

variances of the error-vector , the corresponding f i lter

• states variances fell in the range 99—101%.

To f ind the magnitude of the corruptive measurement

noise that yields best f ilter performance at the f i rst

update time, the Kalman filter equations are again used .
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From Chapter VI , the covariance matrix of the f i l ter ’ s

states at time t1 af ter including the measurement is,

written in lower triangular form :

P11(t1 )

P ( t 1~ ) = P12(t1 ) P22(t1 )

P13 (t 1 ) P23 (t 1 ) P 33 (t 1 )

—~ 2p
11..t l /

— 
P 12 (t 1 ) • P 11(t 1 ) P22 (t 1 ) 2

P 13 (t 1 ) .p ( t1 ) P 12 (t 1 ) •P 13 (t 1) P 33 (t 1 ) 2

1 (139)

P 11(t 1 ) + 0. (alt i tude) 2

where

P ( t 1
+ ) = the filter covariance matrix after the meas-

urement update is incorporated at time t1
P .~~(t 1 ) = the ~

th row x ~th column element of the filter

covariance matrix before the measurement update

is incorporated at time

0 = the measurement variable for which a best value

is sought.

Substituting the variance values of the error—vector

after update for the lower triangular elements of the P(t1~ )

matrix , there are six linear equations in one unknown, 0.
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Again using LSQUAR, a “best” value for 0 at this update

can be found.

These techniques can be used to tune the f i l ter  over

the remaining measurement time intervals if one change is

made. After the first measurement update the filter ’s

covariance matrix is known so the six propagation equations

until the second update contain only two unknowns, and

Q33. It was found that after the second update (the end of

the filter transient period noted above) one set of ~ values

- for the filters of each system model provided good perform-

ance. Tables V and VI summarize the initial covariance

matrices and the and values which “tune” the filters

for the Hamilton-Standard and Sperry system models. The

value of 0 used during measurement updates is classif ied

as it is within 1% of the “true ” 0 of the system models.

Filter Performance

A comparison between the RMS values of the state esti-

mate errors of the tuned sub-optimal filter reflecting the

correct covariance propagation and the true RMS errors of

the RAC guidance system when the Sperry INS is implemented

is presented in Figures 15 through 20. The variances of the

error-states for the filter partition estimating north

position errors are identical to those presented and are not

shown. The plots are unscaled for security classification

considerations , so a direct numerical comparison cannot be
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Table V

Variables Which Tune the Hamilton-Standard System Filters

Initial Covariance Matrix , 
~~~~

P11 = 2.27E+6 ft

= 4.051 ft/sec

P33 = 3.2371E—7 rad

P12 = P13 = P23 
= P21 = P31 = P32 = 0.0

Values

Time Interval Q 33

0 - t1 -.43491 .15884

t1 
— t 2 .lE— 4 .22E—7

t 2 - impact .lE-4 .16E-7

Table VI

Variables Which Tune the Sperry System Filters

Initial Covariance Matrix , 
~~~~

P11 = 2.22E+6 ft

P22 = 3.9 ft/sec
P33 

= 2 . 5 E — 7  rad
— P13 

— p
23 

— P21 — P31 — P3~ 
— 0.0

Values

Time Interval Q33

0 — t1 .3l489E—l .l2057E—9

t1 
— t2 .87651E—1 .98724E—l0

t2 
- impact .1E—6 .3E— 9
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Figure 15. Standard Propagation Filter, East RMS Position
Error Using Sperry INS
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~~• . Figure 16. True East RMS Position Error Using
Standard Propagation Filter and Sperry INS
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Figure 17. Standard Propagation Filter , East RMS Velocity
Error Using Sperry INS
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Figure 19. Standard Propagation Filter, East RNS Attitude
Error Using Sperry INS
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Figure 20. True East RMS Attitude Error Using
Standard Propagation Filter and Sperry INS
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made. The plots do indicate however that the sub-optimal

filter is accurately estimating system RMS navigation

errors, and that these errors are significantly lessened

after each RAC position update. The filters estimating

navigation errors for the Hamilton—Standard system are

similarly well-tuned . The plots are not shown however

because the benefits of many unscaled figures are doubtful.

Comparisons between the two systems will be made through

percentages dep icted in tabular form .

Filter Performance: Sperry INS Versus Hamilton-

Standard INS . The Sperry system significantly out-performed

the Hamilton-Standard system on all three information chan-

nels. This can be attributed to the higher quality accel-

erometers and gyroscopes of that INS as indicated in Table

III , Chapter IV. A percentage comparison between terminal

RMS errors for the two systems is made in Table VII. The

Sperry system is used as a baseline , and its errors arbi-

trarily labeled 100%.

Filter Performance: Benign Trajectory Versus Dynamic

Trajectory. The errors committed by the sub—optimal filter

in this work when the system is flown along the dynamic

trajectory using either INS are significantly greater than

similar errors committed along the relatively benign tra-

• jectory of Professor Maybeck’s studies. Table VIII compares

the terminal RMS errors when either INS is implemented into

the system for the two trajectories.
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Table VII

Terminal Navigation Error: Sperry System vs.
Hamilton-Standard System

System with Sperry INS Hamilton-Standard INS

RM5 Position Error 100% 116%

RMS Velocity Error 100% 185%

RMS Attitude Error 100% 357%

Table VIII

System Performance : Dynamic Trajectory vs.
Benign Trajectory

System with Sperry INS Hamilton-Standard INS

Trajectory Benign Dynamic Benign Dynamic

RMS Position Error 100% 226% 100% 241%

RMS Velocity Error 100% 105% 100% 96%

RMS Attitude Error 100% 94% 100% 95%

A logical conclusion that can be drawn from Table VIII is

-

~ - that if the navigation errors committed by the filters of

this work are greater than finai specification will allow ,

damping the dynamics of the vehicles trajectory with better

autopilots will reduce terminal navigation errors.

Lockheed Filter Performance. Using the initial covar-

iance matrices and white noise strengths of the standard

propagation filter for the RAC guidance system with either

INS implemented and the Lockheed filter performing the

— 
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estimation, the systems were flown over the dynamic tra-

jectory. Figures 21 through 26 illustrate the RMS values of

the errors produced by the Lockheed filter. The Lockheed

filter provides fairly accurate position error information ,

but its estimates of velocity and attitude RMS errors are

considerably higher than the true errors. Table IX compares

the Lockheed and standard propagation filter terminal RMS

error estimates.

Table IX

Terminal Navigation System Error : Standard Propagation
Filters vs. Lockheed Filters

INS Sperry Hamilton-Standard

Filter Standard Lockheed Standard Lockheed
~~~~ igation Propagation

RMS Position Error 100% 105% 100% 109%

RMS Velocity Error 100% 129% 100% 134%

RMS Attitude Error 100% 156% 100% 158%

Power Series Approximation of Standard Propagation

Filter. The RMS navigation errors committed by the system

when the power series approximation is substituted for the

standard propagation filter are essentially the same as

reflected in Figures 15 through 20. The difference in esti—

- S mates is less than one-half percent for any of the infor-

mation channels. Whether the additional memory required to

U implement the three additional off-diagonal variance

113
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Figure 21. Lockheed Filter, East RMS Position
Error Using Sperry INS 
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Figure 22. True East RMS Position Error Using
Lockheed Filter and Sperry INS
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Using Sperry INS 
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Figure 24. True East RMS Velocity Error Using
Lockheed Filter and Sperry INS
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Figure 26. True East RMS Attitude Error
Using Lockheed Filter and Sperry INS
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equations of the approximation as compared to the Lockheed

design should be allotted is dependent on the adequacy of

the Lockheed filter to meet system specifications. In the

remaining discussion, the power series approximation will

be considered to perform identically to the standard propa-

gation filter.

Error Budget

If overall system navigation error is considered to be

too large for weapon system effectiveness , it may be decided

to replace certain system components with more accurate ones. S

To aid in determining which components offer the most cost

effect ive means for reducing system RMS navigation error , an

error budget has been made . This error budget reflects the

increase in RMS navigation accuracy attained if the effects

of various error sources were eliminated . The budget was

obtained by setting the noise strengths and initial vari-

ances of various error sources to zero in the system model.

Table X is the error budget for the system employing the

Sperry INS, and Table XI reflects the increase in navigation

accuracy attained by zeroing these error sources for the

- I system using the Hamilton-Standard INS. In both cases, the

terminal navigation errors of the systems using the standard

propagation filters were used as a 100% baseline .

From these tables it can be seen that the most dramatic

reduction in RNS navigation error occurs when the RAC is

120
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providing perfect position f ixes.  In this case , position

errors are only approximately one-fourth as great as when

the RAC ’ s position fixes are corrupted by the bias and white

Gaussian measurement noise. Velocity and attitude errors

are also substantially reduced when the RAC is error-free.

Perfect gyroscopes also increase system accuracy sig-

ni f icant ly , .  especially for the Hamilton-Standard INS. The

G and G 2 errors introduced by the dry-tuned gyros of that

system seem to contribute heavily to RMS atti tude errors .

The only other significant reduction in P.MS navigation error

occurs when the Sperry system is initiated with perfect

knowledge of vehicle position , velocity , and attitude.

Filter Performance With Fixed

The results presented thus far  were obtained by

supplying the sub-optimal f i l ters  with the initial conditions

and time-varying white Gaussian noise strengths dep icted in

Tables V and VI . Again due to computer memory restraints,

it may not be practical to implement the three sets of

that tune the f i l ters over fixed time periods . A simulation

was made using the values that tuned the f i l ters  after

the initial transient period was complete and the results

are discussed in Appendix A.

I
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VIII .  Changes to the Trajectory and RAC

Update Schedule Optimization

Introduction

In this chapter , the performance of the tuned standard

propagation f i l ters  of Chapter VII will be evaluated for the

cases in which changes to the trajectory are necessitated by

mission objectives. Two alterations will be investiga ted :

f i rs t , changes in vehIcle heading toward the target from the

original 45 ° , and secondly , lowering the pitchover altitude

of the present trajectory to simulate an extension of the

vehicle f l ight  time to adjust for adverse headwinds.

In addition , the six RAC position fixes will be opti-

mized in time so that terminal RMS navigation errors are

minimized. The f ix  schedules will be optimized foi both the

Sperry and Hamilton-Standard system models , along the stand-

ard and lowered pitchover trajectories to include the pos-

sibility that a post—p itchov6r f ix  cannot be made . As a

f inal  consideration , the performance of the fil ters will be

evaluated allowing two fixes per stored reference map while

the vehicle is at relatively high altitude. Again , due to

security considerations, performance of the f i l ters will be

expressed in tabular form as a percentage of the tuned

standard propagation filter errors of Chapter VII. These

errors are referred to in the tables as baseline.

V  123
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Changes to the Trajectory

Heading Changes. The 45 ° vehicle heading angle used in

the simulations of Chapter VII was selected to subject the

vehicle to equal angular velocity and acceleration vector

components in the east and north axes of the ENU frame. It

was feared that the unequal force and rate vector components

in the ENU frame that would be experienced by the vehicle

f ly ing headings other than 45 ° along the dynamic trajectory

would make the accuracy of the sub-optimal f i l te rs  “he ading

dependent . ” This heading dependence would arise if the

difference between true navigation errors in the east and

north directions grew large as a function of heading , because

the f i l ter , as presently tuned , would not detect this di f fer-

ence .

To determine if the accuracy of the standard propa-

gation filters for the two system configurations was indeed

heading dependent , computer simulations were conducted in

which the four cardinal directions, north , east , south , and

west, were used as heading angles for the vehicle . Although

there was a slight deviation between corresponding true

position , velocity, and attitude variances in the east and

north directions for each heading simulated , the difference

- 
- was so small, especially in position errors, that the fil—

ters retained their estimation precision . The largest devi-

ation was 14% between the true 
~
5 0N and 6

~E 
attitude error

variances for the Hamilton-Standard system with a 180°

124
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heading angle. The results of these simulations indicate

t that the tuned fi l ters are good error estimators regardless

of vehicle heading angle .

Lowered Pitchover Altitude. The second change to the

trajectory is a lowering of the altitude at which vehicle

pitchover is initiated. This extends the glide period of

the vehicle before pitchover , resulting in a greater range

and f l ight  time for the weapon system in no-wind conditions.

Due to the security classification of the trajectory, the

distance the pitchover altitude is lowered cannot be

specified .

Because the actual dynamics of the extended glide

period from the present pitchover altitude to the lowered

one were not exactly known , an approximation was used to

implement the new pitchover altitude into the existing tra-

jectory. The approximation was a linear extension in alti-

tude versus time of the flight path from the present pitch-

over altitude to the lowered one. Along this linear exten-

sion, the vehicle total velocity , forward velocity, vertical

velocity , and glide path angle were kept constant at the

values they had last assumed . The dynamics of the pitchover

are incorporated at the termination of the linear flight

path extension. With this trajectory change, the time from

• completion of pitchover until vehicle impact is lessened

considerably . System performance utilizing this lowered
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t rajectory will be evaluated in this chapter , after the

conditions for update schedule optimality are set forth.

Update Schedule Optimization

Because navigation RMS errors are so dramatically

reduced when each RAC position fix is taken, an optimal RAC
S

position fix schedule is sought to reduce the errors com-

mitted by the tuned filters of Chapter VII. Using six fixes

as the maximum practical number set by storage requirements ,

it was found that by taking as many fixes as possible toward

the end of the trajectory , terminal navigation errors for

the system s are the lowest. This is due to the altitude

dependence of the white Gaussian noise strength corrupting

the RAC position measurement. It is impractical however to

take all six fixes at the end of the flight profile for

two reasons:

1. Since the navigation information provided by the

INS is inherently divergent unless updated by external aids,

relying totally on the INS to guide the vehicle for the

extended period from weapon release to near the end of the

flight profile invites the danger of totally missing the

area covered by the first stored reference map .

2. Even if a successful first fix were made it is

possible that the controller ’s capabilities would be insuf-

f ic ient,  in so short a time , to incorporate the f ix , correct

the flight path, and impact the target.

-~~~~~~~~~
-
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To insure a successful f irst fix , yet still incorpo-

rate the RAC ’s low altitude accuracy by taking as many fixes

toward the end of the trajectory as possible , the following

guidance, from Mr. P. Richter, AFATL , was used: if the 3a

value of the position errors reaches one fourth of the

• vehicle al titude, a fix must be taken . This criterion

suggests that the area encompassed by the stored reference

maps is dependent on the anticipated vehicle altitude at

update time, and that by using the 3iy value of position

errors, in approximately 99% of the cases the vehicle will

be somewhere above this area at update time, assuring a

successful fix.

Optimal Update Schedule Along the Standard Trajectory

Incorporating a Post-Pitchover Fix . Implementing the above

criterion , the Hamilton-Standard system required three RAC

fixes along the standard trajectory before pitchover , and

the more accurate Sperry system required two fixes.

Allowing for a post-pitchover position f ix , this left  two

low altitude fixes for the Hamilton-Standard system and

I - 

- 
three for the Sperry system to be taken just prior to vehi-

cle pitchover. A time interval approximating the RAC ’s

processing time was used between these low altitude fixes.

The improvement in accuracy for the two systems using this

optimized update schedule is displayed in Tables XII and

XIII.
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Table XII

Sperry System Performance

Update Schedule Baseline Optimized (With Post-
Pitchover Fix)

RNS Position Error 100% 74%

RMS Velocity Error 100% 109%

RMS Attitude Error 100% 100%

Table XIII

- - Hamilton-Standard System Performance

Update Schedule Baseline Optimized (With Post-
Pitchover Fix)

RMS Position Error 100% 75.4%

RMS Velocity Error 100% 104.0%

RMS Attitude Error 100% 100.3%

From these tables , it can be seen that terminal

position errors are reduced by approximately 25% for the two

systems while utilizing the optimum fix schedule.

Optimal Update Schedule Without a Post-Pitchover Fix :

Standard Trajectory. It is of design interest to know the

• degree of freedom that must be allowed the RAC ’s gimbaled

r 
- 

platform. Since the steepest vehicle glide path angle

+ 128
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occurs af ter pitchover , by eliminating a post-pitchover

position fix the freedom of movement designed into the

platform would not have to be as great. To provide terminal

navigation error information about the RAC/INS guidance

system ’s performance without a post-pitchover fix, a sirnu-

, lation was conducted in which the 3c = 1/4 altitude cri-

terion for an update was implemented , with the sixth

position fix taken just prior to pitchover. System perform-

ance is reflected in Tables XIV and XV.-r

- . Table XIV

Sperry System Performance

I Update Schedule Baseline Optimized (Without A
Post-Pitchover Fix)

RMS Position Errors 100% 124%

RMS Velocity Errors 100% 126%

- 
RMS Attitude Errors 100% 101%

Table XV

• Hamilton-Standard System Performance

‘

-

I

Update Schedule Baseline Optimized (Without A
- 

Post—Pitchover Fix)

RMS Position Errors 100% 157%

r RMS Velocity Errors 100% 137%
RNS Attitude Errors 100% 113%

- 129
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These tables indicate that position errors are severely

increased when either system is subjected to the relatively

violent pitchover without the benefit of a low-altitude

post-pitchover RAC fix. The Hamilton-Standard system

especially suffers a performance degradation , seemingly due

to the excitation of the G and G2 gyro error sources during

pitchover.

Optimal Update Schedule Without a Post-Pitchover Fix :

Lowered Pitchover Altitude. Implementing the lowered pitch-

over altittIde into the trajectory and using the 3~ = 1/4

altitude fix criterion, a position update fix schedule was

found for both systems with all six f ixes occurring before

vehicle pitchover. A comparison between the terminal

navigation errors of the system using the lowered pitchover

altitude with an optimum fix schedule and the baseline

system errors is made in Tables XVI and XVII .

Table XVI

Sperry System Performance

Trajectory Baseline Lowered Pitchover Altitude

Update Schedule Baseline Optimized (Without A
Post-Pitchover Fix)

RMS Position Errors 100% 87%

- 
• EMS Velocity Errors 100% 115%

EMS Attitude Errors 100% 102%
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Table XVII

Hamilton-Standard System Performance

Trajectory Baseline Lowered Pitchover Altitude

Update Schedule Baseline Optimized (Without A
Post-Pitchover Fix)

EMS Position Errors 100% 105%

EMS Velocity Errors 100% 130%

EMS Attitude Errors 100% 110%

The results reflected in these tables are significant.

If cost prohibits incorporating a gimbaled platform for the

RAC into the system with a freedom of movement suff icient to

allow a post-pitchover fix, lowering the planned pitchover

altitude can result in system performance that parallels the

baseline cases. If the pitchover altitude were lowered , the

reduced capabili ty of the system to extend its fli ght time

if adverse winds were encountered would have to be con—

- - l sidered.

System Performance Along the Lowered Pitchover Tra-

jectory Allowing More Than One Fix Per Reference ~~~~~.

Because the size of a reference map is proportional to the
- 

- vehicle ’s anticipated altitude at fix time, it may be pos-

sible to generate two position updates from the first few

maps. A simulation was conducted , using the lowered pitch-
r

over trajectory , in which eight fixes wore allotted to the

131

___________________________________________________________



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
- _________________

Sperry system and nine to the Hamilton-Standard system. Six

of these fixes correspond to the optimal update schedule

outlined above for the lowered pitchover altitude, and the

additional updates simulate a second fix taken on the

largest reference maps. One less fix was allocated to the

Sperry system because using the 3a = 1/4 altitude criterion ,

the third RAC update for this system occurs at an altitude

that was judged to be too low to ensure two successful fixes

from the same relatively small reference map . The less

accurate Hamilton-Standard system builds up EMS position

error faster than the Sperry system, thus requiring updates

earlier in time. The third fix was judged to occur when the

vehicle is at an altitude sufficiently high to make the

probability of two successful updates from the same refer-

ence map good.

Tables XVIII and XIX reflect the results of this simu-

lation.

Table XVIII

Sperry System Performance

Trajectory Standard Lowered Pitchover Altitude

Fix Schedule Baseline Optimized With Two Updates
on Each of the First Two
Reference Maps (No Post-
Pitchover Fix)

EMS Position Errors 100% 82%
I

EMS Velocity Errors 100% 98%

EMS Attitude Errors 100% 101%
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Table XIX

Hamilton-Standard System Performance

Trajectory Standard Lowered Pitchover Altitude

Fix Schedule Baseline Optimized With Two Updates
on Each of the First Three
Ref erence Maps (No Post-
Pitchover Fix)

EMS Position Errors 100% 97%

EMS Velocity Errors 100% 113%

EMS Attitude Errors 100% 103%

A comparison of these results with those reflected in

Tables XVI and XVII indicates that the additional high

altitude fixes do enhance system performance . EMS position

error in the Sperry system was decreased approximately 5%

with the two additional position updates, while the Hamilton-

Standard ’s EMS position error estimation capability was

enhanced by 8% incorporating three additional position up-

dates.

: ~

133

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ 
--  ~~~~~~~~~~



r -- --—- --- - ~~~~~~~~~~~~~------—— —- - •—, - - --•--—•---•-----~~-------— .- - --~,~~~~ . - -~~~~-—-- —- - -- -----—— —S- ~~~~~~~~~~ - - -- - - - 
—

IX . Results and Conclusions

Based on the material presented in this thesis , the

results and conclusions are summarized as follows :

1. The Sperry INS provided more accurate navigation

information than the Hamilton-Standard INS in every simu-

lation conducted . The better accuracy of the Sperry INS is

attributed to the higher precision accelerometers and gyro-

scopes of that INS as compared to those of the Hamilton-

Standard INS, and also to the fact that its laser gyroscopes

are not subject to G and G2 error excitation as are the dry—

tuned gyros of the Hamilton-Standard system.

2. System performance is severely degraded along a

realistic dynamic trajectory as compared to a benign tra-

jectory. Performance degradation is due to the relatively

high pitch rates and accelerations encountered by the

inertial navigation systems , especially during and after

pitchover . If terminal navigation error is larger than

final specifications will allow, two steps can be taken to

limit error due to the trajectory . First, better autopilots

S can be designed to damp the dynamics inherent in the glide

vehicle , and secondly , a more gradual pitchover maneuver

could be planned .

3. The standard propagation filter , whose additive

noise contributions can be accurately calculated using six
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equations , outperforms the Lockheed f i lter , which uses three

equations to approximate the noise dynamics. Performance

for the standard propagation filter is only slightly better

in the position error channel at impact than the Lockheed

filter ’s ; however , in the velocity and attitude error

channels it performs significantly better. If either of

these filters is to be implemented into the RAC/INS weapon

system, the tradeoff in storage space versus accuracy will

be a significant factor in the decision process.

4. The low altitude accuracy of the RAC position

fixes can be used to significantly decrease system navi-
• gation errors. High altitude position fixes should be

taken only when necessary , and if possible, two fixes taken

on each high altitude reference map to enhance fil ter

estimation precision .

5. Without the benefit of a post—pitchover position

f ix , system terminal navigation errors are significantly

4 

higher than when one is utilized. This performance degra-

dation can be totally offset, however, by lowering the

vehicle pitchover altitude sufficiently . This is due to the

shorter time span the vehicle is subjected to the relatively

high dynamic inputs of post-pitchover flight. This shorter

time span also limits the propagation of the velocity and

attitude error sources excited during pitchover which aids

in the reduction of position error.
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It is emphasized that the results of the covariance

analysis performed on the fil ters of this study are valid S
only to the extent that the mathematical models used do in

fact provide an adequate representation of system behavior.
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Appendix A

The tables below compare the terminal per formance of

the filters for each system model using a fixed for the

entire simulation. The noise strengths used for both the

standard propagation and Lockheed filters are as follows:

1. Sperry system - Q22 = .1E-6 , = .3E-9

2. Hamilton-Standard system - = .1E-4, Q33 = .l6E-7

Table XX

Standard Propagation Filter: Fixed 
~F 

vs. Variable

System with Sperry INS Hamilton-Standard INS

Variable Fixed Variable Fixed

EMS Position Errors 100% 99% 100% 101%

EMS Velocity Errors 100% 94% 100% 100%

EMS Attitude Errors 100% 111% 100% 99%
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Table XXI

Lockheed Filter : Fixed vs. Variable

System with Sperry INS Hamilton-Standard INS

Variable Fixed Variable Fixed

EMS Position Errors 100% 98% 100% 100%

EMS Velocity Errors 100% 94% 100% 99%

EMS Attitude Errors 100% 109% 100% 99%

These tables indicate that terminal navigation errors are

approximately the same using a fixed or variable The

loss in filter estimation precision lost by implementing a

fixed 
~F 

is encountered early in the simulation when the

difference between filter EMS position errors and the true

EMS position errors was as large as 43%.
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