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the analysis to scatterin g by two concentric finite cir-

cular cylinders .
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Abstract

This thesis deals with electromagnetic scattering

from two concentric finite length cylinders. The scat-

tering bodies are assumed to be perfect electric con-

ductors and the incident field is assumed to be a plane

wave whose magnetic field is transverse to the longi-

tudinal axis of the scatterers. Electromagnetic field

equations are derived in terms of vector potentials.

Integral equations are developed for the surface currents

induced on the cylinders. A numerical solution is form-

ulated in terms of the method of moments for the unknown

surface currents and the components of the scattered

electric field.  Results are presented for scatterers

of different dimensions . Comparisons are made between

scattering from a finite hollow cylinder and scattering

from two concentric finite cylinders.
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I .  Introduction

Survivability in a nuclear war environment is a facet

of weapon system design that must be considered if the

weapon system is to be effective in such an environment.

In addition to other effects, one must consider the effect

of the electromagnetic pulse (EMP) generated by a nuclear

detonation. EMP may induce large currents in a weapon

system which damage or destroy critical electronic compon-

ents, possibly rendering the system ineffective . Thus,

one needs to be able to predict these currents and design

the system to minimize their effects. There are three

approaches that could be used to obtain EMP data. One

could detonate a nuclear device and measure the induced

currents. This is obviously impractical for environmental

and political considerations. Secondly , one could build a

simulator which produces electronically a wave similar to

an EMP . The Air Force Weapons Laboratory has an EMP sim-

ulator which is used to obtain test data. Unfortunately ,

it is impractical to test all systems in this manner. The

final approach to predicting EMP effects is to formulate

the problem as an electromagnetic scattering problem .

— 1 The electromagnetic scattering approach is pleasing

in that one could determine the EMP effects on different

designs without actually building the different systems

and, theoretically , any system could be evaluated. However,

the number of structures for which the scattering problem

can be solved analytically is severely limited. In general,

1



analytic solutions are limited to small classes of canonical

structures. The advent of the high speed digital computer

has permitted the analysis of electromagnetic scattering

by more general structures through numerical approximation

methods. Although much work has been devoted to this approach ,

many more structures need to be simulated before an accurate

prediction can be made of the EMP currents induced on corn—

plex structures such as aircraft or missles.

This thesis represents an effort •to analyze- -the electro-

magnetic scattering from -two concentric finite-length cylinders .

Davis (Ref 4) investigated electromagnetic scattering by a

finite hollow cylinder. The problem considered here will

be restricted in a manner ~imi1ar to Davis’s by considering

only perfect electric conductors and transverse magnetic

plane wave incidence . An effort is made to present the dif-

ferences between scattering from a finite hollow cylinder

and the scattering from the same cylinder with an inner

• cylinder, or wire , whose radius is much smaller than the

radius of the outer cylinder.

The information in this thesis is grouped into chapters

based on the traditional subdivisions and the theoretical

and mathematical concepts that must be considered in solving

this type of problem . Chapter II contains the theoretical

development. Electric and magnetic field equations are

developed in terms of vector potentials instead of the elec—

tromagnetic field quantities themselves. This permits one

L to assume a lower degree of smoothness on electromagnetic

• 2 
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fields while maintaining a rigorous development. The field

equations are then manipulated to give integral equations

for the equivalent currents induced on a scattering surface

by an incident field. The electric field integral equation

is finally specialized to scattering by both the concentric

cylinders and the hollow cylinder.

Chapter III describes how one might solve the equations

developed in Chapter II on a digital computer. The method

of moments is described briefly and then applied to the

scattering current equations. This results in a system of

simultaneous linear algebraic equations whose solution rep-

resents sri approximation of the induced currents. Some man-

ipulations are shown which facilitate solving this system

of equations on a digital computer. Finally, digitized ex-

pressions for the total electric field are developed.

Chapter IV presents plots which illustrate the valid~ty

of the results and the differences between the scattering

from a hollow cylinder and the scattering from the concentric
• cylinders. Comparisons are made between Marring-ton’s solu-

tion for scattering from an infinite cylinder (Ref 7) and

scattering from finite cylindrical structures. Plots are

included for cylinders whose dimensions simulate structures

of interest to the Air Force .

Chapter V presents conclusions that can be drawn about

scattering from concentric cylinders relative to scattering

from hollow cylinders . Finally , recommendations are made

for a series of problems which would extend this work arid

~ 
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provide data that would be useful in the design of weapon

systems .

Three references were particularly useful in the devel-

opment of thi~ thesis. The dissertation by Davis (Ref U) and

Harrington’s book (Ref 7) on electromagnetic field theory were

used extensively in the -theoretical development. Harrington’s

book (Ref 6) on the method of moments was used for analysis

of how to digitize the theoretical equations for computer

implementation. Finally, the series of reports published

by the Air Force Weapons Laboratory as Electromagnetic Pulse

Interaction Notes were used to gain insight into the magni-

tude of -the EMP problem and the geome tries that have been

investigated previously.

b
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II. Theoretical Development

Integral expressions for the electric ~ and magnetic

H fields that exist in an electromagnetic scattering prob-

lem can be derived in terms of a magnetic vector potential

A and an electric vector potential ~ (Ref 7:77). In gen-

eral, fields can be expressed as

(1)

where ~ represents the total field , C’ represents the in-

cident field or the field that would be present if there

were no scatterer, and ~~ represents the field due to the

scatterer. The scattered fields in electromagnetic scattering

problems are due to equivalent electric and magnetic cur-

rents induced on the scattering body by the incident

field . When appropriate boundary conditions are imposed,

• determining the total electromagnetic fields reduces to

solving an integral equation for the unknown equi valent

currents on the scattering body . In this chapter, vector

potentials and Maxwell’s equations are used to develop

integral equations for the equivalent currents on a finite

hollow cylinder and the equivalent currents on a finite

cylinder and wire , the bodies being perfect electric con-

ductors and the wire being on the longitudinal axis of

the cylinder.

Vector Potential Equations

h~4 The bases of all electromagnetic field problems are

5
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t Maxwell’s equations. For simple matter, that is, matter

that is homogenous , linear, isotropic , and time invariant,

Maxwell’s equations can be written in differential form

(e~~
t time variation suppressed) as

Vx ~~ ~~~~ (2)

— i~

( U )

V N  rrrlrn (5)

where E and H are electric and magnetic field intensities,

J and M are electric and magnetic current densities, and~~
and n,~ are the electric and magnetic charge densities.

Taking the divergence of Eqs (2) and (3), substituting into

Eqs (4) and (5), and noting that the divergence of a curl

is zero , yields the continuity equations

V 7  -J’~_ { ( 6 )

V~~ 
:~~i~~~~ (7)

An expression for the electromagnetic fields in terms

of the magnetic vector potential ~ can be derived by assum-

‘~~ I ing there are no magnetic current sources, M = 0, and taking

the divergence of Eq (3). This yields V .~ tO . Pierce

(Ref 10:221) states that for any vector whose divergence

is identically zero everywhere , there exists a vector

whose curl equals the original vector. Therefore, let

6
I
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(8 )

where A is defined as a magnetic vector potential. Sub-

stituting for ~i in Eq (3) yields

Vx (~ + 
~~~~~~~ 

( 9 )

For any vector whose curl is identically zero everywhere ,

there exists a scalar whose gradient equals the vector

(Ref 10:221). Therefore, let

— V ( 10)

where V is defined as an electric scalar potential. Sub-

stituting for E in Eq (2) yields

(11)

Helmholtz (Ref 10:221) showed that a vector is completely

specified to within a constant when both its curl and di-

vergence are given. To complete the specifications of A,

let the divergence of ~ be

p. f i w  -j ~~-V  ( 12)

Substituting Eq (12) into Eq (11) and using the vector

identity

= v (v.~) — v ~fi ( 13)

results in

• ~ -

~~~~~~ 

( 14 )

-
- : — ~~~~~~~ -- T .~~~ 4
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• where k =
~~~A(. Substituting Eqs (8) and ( 14) into Eq (2 )

yields

~3~~1 ~~~~ ( 15)

If there are only magnetic current sources, J = 0, one

can write by the principle of duality (Ref 7:99)

: ( 16 )

and E ~ _ V x F  ( 17)

~ i~ Fr ÷ s~(v~) (18 )

where F is defined as an electric vector potential. If

both electric and magnetic current sources are present, one

can write by the principle of superposition

(19)

(20)

Thus, once A and F are known, the electromagnetic fields

E and H can be determined.

Scattering Equations

• Equations (19) and (20) represent the total electric

and magnetic fields in simple matter obtained from independent

vector potentials. If a scattering body is placed in the

medium , the solution for the fields becomes somewhat more

complicated since the vector potentials are composed of

incident and scattered components. One must calculate the

8
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scattered vector potentials prior to solving for the elec—

tromagnetic fields.

The vector potentials A and F due to finite indepen-

dent sources in simple matter, enclosed in a volume V , at

any point ~ in all space are (Ref 7:100)

• F) J3~ (~~~) c ~v.’ (21 )

,(,~) :SR~~
(
~

, r’) 
~~
‘, (22)

where the prime notation indicates “with respect to the source

coordinates”. Note that use has been made of the three dimen-

sional free space Green’s function

e. 
(23 )

4 it I F - F’ I

The scattered components of the vector potentials for a

scattering body can also be shown to be given by the forms

Eqs (21) and (22). This may be shown by considering the

scattering body in simple matter as depicted in Figure 1.
- 

- 

All independent sources J are in volume V which is bounded

by the surface of the scatterer S and the surface S1 which

approaches infini ty . The unit normal vector r~ at S points

into V.

9
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Si

Figure 1. Scattering Geometry

To determine the scattered field components, consider the

identity (Ref 11:300)

+ ~ (~ ) V ~~ + V4 1[V.1U~~)]} ~~

• ~~f_ v +x L~ x~~ ll ÷ ~f ~L~~~f l3} ~ (24)

where the observation point r is not on the closed regular

surface ~V , the boundary on V formed by S and S1. It is
T ~‘- - —

assumed that the field A meets the Sommerfeld radiation

conditions (Ref 2:20), is continuous with a continuous

first derivative on S, and has a continuous second derivative

in V in the sense of distributions (Ref 1:114). Hence , the

surface integral over S~ is zero and Eq (24) may be written



_ _ _ _  - -  - ~~~~~~~
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~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
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• 
5~~~~~ V K VX  ~(~

) + 4. V*~ [v.~(F)JJ h~:

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( 25 )

U sing Eq (1.4) and the expression (Re f 8~ 340)

V~~ 
..h’~~~ 4 ( F r ’) (2 6 )

where 1(r - r’) is the Dirac Delta Function, a general-

ized function or distribution as described by Wylie

(Ref 12:317), one can write

: J ~ 5 J ’IP ~~
‘ r fv ’~ ~(F’)J • j~ 

.
~~~)Jv~

_
~~‘~~~~ u ’. R~~F’)3 — V ’

~~ ~rf~~ x R ( ~ ) J] d.’ ( 2 7 )

where the reference system has been changed by interchanging

the prime and unprime notation.

One needs and Vs~~~) to determine ~(j)

and ~Ui). The identities (see Appendix)

~~~~~~~~~~~~~~~~~~~ 

~ L~’~ ~
(F’)Jj~’ ~~ k’l(P) ~~~~~

‘

S S

and 

— YLv.5~
I O ’xfl (

~
)ds’3 ( 28)

V 1V j~~’~~
X ~~~~ fl~ ’)J J~’~ ~ (2Q)

I 
- 

can be used to show that

= Vf ~~j~~~1v’7 ~~~~~~~~~~~~
~

p
~4 &~•A(; ’) J — f , ’. #(~‘)J(~’.~’)”~ ~ J u

g 
(
~~

)

11
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and Vxll (~
) :VxJ+~~~I..’ ~~~~~~~~~~~

~~ f T~i~ 
~~
‘

~~~~~ ~~~~~~ ~~~~~ ~A ’~Rci~’JJ ~’] (3 1)

Thus, the expression for the total electric field is

e...&; ) :A &t~~74~ i ‘ ( v ’ S f Y ã . . )

+ h ~~~{~~
i
~’ xLv ’v~~ )) ~~~~~~~~~~ [~~

(
~.)J

-“f P” ~ F’~IJ Js . 5~S~ Ev Jr fi(~)).v’Jv’f jg’

— 

~ [-y ’ .fl~
p
~J (~‘.v’) v’~ ~~~~~ (32 )

which may be rewritten as

J L~~L E~~
) I ” R’U) +vIP.R’ct)J +

+ vxJ~~ v’(v ’.,~o ’)J 1I.’ ~~~~~~~~~

H~. 
4 V X f ~~~~~~~ X R ( F ~) C 1 ~~’ (33)

where r(i ) is the magnetic vector potential due to the
independent source ~ arid 1G’) is the total magnetic

vector potential at S. The preceding equation may be

written in simpler form by using the unit dyadic I (Ref

9:569) 

12
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~~~~~

~~~~~ :)~ I+  vvj ’ fl’~ ) + V ~~~~P’x {k~

v’ v ’.]~ R F d ~’ ~~~~~~~ ~ c[v ’x fl(F.)] ~s ’ (3 4)

Using the same notation, one may write the magnetic field

equat ion as

+ ~x~~~’xJ V ’x 
~~ 

dl

~[~bI vvj -’ ~~~~~~~~~ ~~~ 
÷v’v’3~R~’ ~•5 ’ (35)

If the only independent source is a magnetic current

source , then by duality E(r) and i~(~) are

E (~
) ~V.x r ’ )  v~ ~ ~~~ 

~~~~~

~~~~~~ ~~~~~~~~~~~~~~~~~~ (3 6)



-~~~~~~

and

J~~~~~1kkI+ ,7 F~~ ~
v x

~~~’x L~~

÷~v3.~~)J~’ +1k~+~v’1’f~ ~‘4?”f(~’)1cJ5’ (37 )

When both independent magnetic and electric sources are

present , the electromagnetic field equations are

E(~~~ ) 
_L. 

~ 
4v~J. fl’~~~) — V x F~~

)

+L~~
s vv]~~

.
~’ x~~*~ v~ (~~~)

S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (38)

and

M~~~:

+ -~j i~!.vvJ ~~ ~ ‘ [Lk’! +v ’v ’J~~~ ~ ~ z

+ V,
~~~~~~~~~~~

J
~~~ ’Y”~ 

R (F ’)  [~! .v’V’ ] F~F’ ) } J~’ (39 )

‘U
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Rewriting Eqs (38) and (39) ,  one obtains

E(~
) = E~c.t~) + 

~~~
! +vv J •~ -~j  ‘~

‘ ~~~~~~ ‘~~~s’

+v~’4 ~~’ X E ~~’) ~~ (40)

and Ht~~ ~ H~(’) - E k~
f ÷ q ç r 7 .~~

_ J__
~~h’.~ E~F.) J4 ’

(41)

where ~~ (~~) and ~~i (~~ ) are the incident electromagnetic

fields or fields due to the independent sources.

Since the equivalent surface currents on a scatterer

are given by (Re f 7~ 106)

1$ 
~~
‘ x ( 42)

and P~’ ~~~~~~ £ t~~~~) (43)

• the electromagnetic fields in terms of these equivalent

currents are

Lw = rJ~i ~VV J ’~~~~ j j ~
(
~~

) cli ’
5

(44 )

and H(s) = Ir(fl ~-t i~f ~~~~~~ ~
‘(p
~’) dli ’

I,

- - 

+ ~~~~~~~ J’ (F’) J~~~
’ 

(45)
- •  

S

15

— --- - - —— - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•-
~~~~~ 

.
~~

-
~~~~~~

-
---



- - -
~~~

—•
~~~~~~~~~

--

If the scatterer is assumed to be a perfect electric con-

ductor, these equations simplify to

E~~
) E (P) . [A 1 ~ V V J ’ ~ ‘ &  ~~ T (P ’) JS’ (4 6)

and 
c~~) t V X f ~~~J~(Y’) di S ’ (47 )

since i~i~ is zero on a perfect electric conductor.

It should be noted that the development in this chapter

used vector potentials to reduce the restrictions on the

differentiability of the E and H fields ; the differen-

tiability of the integrals in Eqs (46) and (47) must still

be considered when the observation point is permitted to

be on the scattering surface. This point will be addressed

in the last section of this chapter.

Cylinder Plus Wire Equations

Figure 2 depicts the geometry of the scattering prob-

lem considered in this thesis. The cylinder and wire

(infinitesimally thin, finite , cylindrical surfaces at

/ a and / = b respectively ) are assumed to be perfect

electric conductors. The wire is assumed to have a neg-

ligible radius relative to the radius of the cylinder and

the wavelength of the incident field. The incident field

is a plane wave assumed to be a transverse magnetic field

with its propagation vector in the x-z plane at an angle e~
with respect to the z axis as shown in the inset of Figure

2. This ensures that there will be a component of the

16
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incident E field along the wire.

In general , the incident fields and currents for the

structures of interest can be expanded in Fourier series.

For plane waves, the incident E and H fields can be rep-

resented as (Ref 4:17)

— . . . . j W~ 
_
~

q
~ ~~~~~~~E’ ~ E I ~ E~ E~~ ~~ E J e ~ e (Lt~8)

and

— . . ,j ” # .~ke c.ei &.

(49 )

— 
• where the coefficients are a function of J only and the

variation with respect to z and ~ (coordinate variation
- in standard cylindrical coordinates) are shown explicitly.

- • The surface currents on the structures may similarly be

expande d as

N~~~ SD 
~ ~~~~~~~ (50 )

It will be assumed that there is no significant 0
variation in the surface current on the wire since its

radius is negligible relative to wavelength. Therefore ,

the wire surface current may be represented by

• __
w w

~~~~ 

~~~ 

( ti) (5 1)

18



• - -  ~~~ -----~~~~

Since the ~ component of the incident E f ield is the corn-

ponent which induces a current on the wire , one may assume

that the incident E f ie ld has only a ~ component which may

• be expande d as (Re f 4: 17)

,i J W# ~~ I~i ø~~ &,• Z su1 e~, C - i)  (hj~~~ ejC ~ ( 52 )

where E0 is the amplitude of the incident E field at the

origin of the coordinate system and the J~ are Bessel fune-

tions of the first kind . The current on the cylinder con-

tains both terms of the expansion given in Eq (50).

Davis (Ref U), in his analysis of scattering by a

finite hollow cy linder , showed that currents of harmonic n

are associated with only incident fields of the same har-

monic and that by symmetry only non-negative values of n

need be considered. Davis ’s results and the fact that

the objective of this thesis is to determine the effect

of the wire on scattering by finite cylinders permits one

to use only the zero harmonic term of the expansions for

the incident field and cylinder currents since the zero

harmonic behavior will be the dominant behavior, Therefore ,

j the equations considered in this thesis for the currents

on the wire and cylinder and the incident field are re-
• spectively

~ 3~
” ( i )  (5 1)

19
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and h~ co~~..

~ 511’J P~ 3; (b ju sip, (54)

Substituting Eqs (51), (53), and (54) into Eq (46) and

realizing that vector potentials only have components along

the direction of their sources, one obtains

• cas

~~=E 0 srn. ,. J~~ kJ a,.4 iø~. )e

÷(kt ~~~~~~~~~~ 
Ji’ (55)

where d~ 
is the derivative wi th respect to z and J~ rep-

resents the total zero harmonic z-directed surface current

on the structures. The effect of the 0 component of the

cylinder current is zero since the partial derivative of

~j
0 (z ’) with respect to 0 is zero.
~ 0

Noting that the tangential E fields must be zero at

the boundaries of perfect electric conductors , one can

write the equations for the currents on the cylinder and

wire as

~~~~~~~~~~~~~~~~~~~~~1

(k’.J~)J ~~( ,)j W ( . ) d .

SW

56
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and f ‘°~ 

~~~

~~~~~~~~~~~~ J~”~’~ Js’

~& ~~~~~~~~~~~~~~ 
~~~~~~~~~~~ (57 )

• where a and b refer to the radii of the cylinder and wire

respectively and S~~ and Sc refer to the surfaces of the wire

and cylinder respectively. The equation for the correspond-

ing current on a hollow cylinder is

~~ )
L1)~~ . Lb T~ (ka.  ~~~~~ .~) ~~

.-

#Jt~) f ~~ (~~. i- i s) 
~~~~~ ~~~~~~~ 

~~~~~ (5 8)

Kernel Evaluation

The development of the integral equations for the

equivalent surface currents on a finite cylinder and wire

• was restricted by not permitting the observation point to

be on the surfaces of the scatterers. The complete solution

for the fields requires that the observation point be per-

• 

• 

mit-ted to be on the surfaces. This presents an added

difficulty since the kernel of the integrals in Eqs (56),

( 5 7) ,  and (58) possess singularities for some observation

points . If the order of integration and differentiation is

interchanged in these equations, as will be done in Chapter

III, the kernels have nonintegrable singularities in the

21
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Cauchy sense for some observation points. In this section

a method is discussed for extracting these singularities,

• thus partitioning the kernel into a term which can be treated

analytically and a residue which can be integrated numerically .

The method of development in this thesis consisted of

using vector potentials to derive integral equations which

contained terms of the form

T(/,/; ~-;) ~~~ k~~~~
+

~~~~;) ~~~~f~j.’ .a~~) J~a) cLc ’ (5
~~~~)

Terms of the same form would have evolved if the develop-

ment had been based on ~ and ~ (Ref 4). The vector potential

method was used since its validity did not require the elec-

tromagnetic fields to be twice differentiable . However, this

method does not reduce the degree of smoothness required on

the kernel of Eq (59). Both methods require the same degree

of smoothness of the kernel and require the extraction of

the nonintegrable singularities if T(1/.1..~’) is to be

determined.

Davis (Ref 4:8) treated the nonintegrable singularity

problem through a limiting process by letting the observa-

tion point ~ approach a surface point ~~~
‘ . The surface was

divided in-to two regions, a small patch that contained F’,

and the rest of the surface. That portion which excluded

the small patch contained no singularities and required no

special handling as r approached F’. However, as F approached

F’ in the integral over the ;mall patch , it was necessary

H 

___________________________________• ~~-— ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - •~~~~~~~~~~~~~
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to take the Hadamard principal value (finite part) of the

integral (Ref 4:89). The use of the finite part of this

integral is justified since the part approaching infinity

cancels with the part of the integral over the curve bound-

ing the small patch which also approaches infinity . Hence

Eq (59) may be written as

(60)

where the double bar through the integral sign is Davis’s

notation for Hadamard principal value and the order of in-

tegration and differentiation has been interchanged. The

assumption that this interchange is valid is not justified

here ; however, it is ~ eu to illustrate a form that occurs

when a valid interchange is made in Chapter III. Equation

(60) contains a residue and a singularity integrable in the

Hadamard sense .

One may rewrite Eq (59 ) as

T~.’~/ ,~ -~’) ck~+~:)j r(~’)~j 
~j  ( 61)

where

I F -  ~~~ /~~~~~
-
~~~

) ‘  ÷ p t 
t /  

_ &ffc 0S (62)
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and the bulk current 1(Z’) is

i f a I  ~‘/z.
W.~)=  z~/

’I(~ )f~ (&/ L - ~~~~~~ ) 1~~(e’) 
k ’I  > (63)

and ~ is the angle between the vector to the observation

point and the vector to the source. The bar through the

integral sign implies Cauchy principal value. Consider

the integral

~~

(6 4)
~~ 9iT~~~

This integral gives a singular kernel about R = 0. A

technique for extracting the singularity (Ref 11) is to

make a transformation of the integration in ~ to an in-

tegration in y, where y = z-y97 sin ~,z , and then add

and subtract -the Jacobian of the transformation from the

kernel of the integral. Operating on Eq (64) in the manner

just described yields

~~~-~~~~~~S$ 1~? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ( 65)

J I —zi~j ”

The first integral in Eq (65) is nonsingular and can

be integrated numerically, and the second integral can be

integrated in closed form to obtain (Ref 5:150)
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T~~I~7 IL (2~7 
+

— i N I ~
- ZL4~~

’ ÷ j / j ~-~f -~~~~d’ .-,P ’)~~~)7 (66 )

• For the geometry considered in this thesis , one must

evaluate K1 where V~~
’ approaches zero. To facilitate

this evaluation on a digital computer , one rewrites K1 as

= 

~~~~~~ ~~ i~T —L I.

, .__ ~ Z____ 7
~ ( (67 )

Expanding the natural logarithms in Taylor series yields

= g-~a zi. -t,  £~a~a~) %. s.f r, ,) :E1 —r— (68)

Thus, one obtains

r

• 

• 

T(i~~’ 1 i-a ’ ) f  ~~~~~~~~~~ .. - c~~~~~~’~ ~~~~

..j
~

— —I — ‘Al ~~~~~~~~ ~~ 1f~
-::
~.)~ * ( 6 Q)
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C ,kR
or T (~i~ f ; ~~ 

— cos ~‘a
J
-n

+ _L~ ~~~~ ( f/  ‘_) 
‘

~~

~~I 1(~~~~
.iL l)* +(,+f l) ~:J Z~

i Z L .+I (7 0)

when V~7’ approaches zero .

Applying the results of the kernel evaluation , the

equations for scattering currents on the cylinder and wire are

— 
• &I~ Cos e._

— j c ~.)E. E0 3 (ha. .$:w .~_ ) C~ 
SIN &~.

so

~ r
(~~ ? Ic (?1) IJe - COS ~ /2~ ~~ +

_
~~ 

~~~ B 1~~~~~ ~~~~~~~~~~~

r r  _~~~~~~~ R(a . . b)
-I- I (i ’) J~ 

e - COS ~V2 dsC ÷,k’, ~ ~) /~ dz’ (7 1)
L~ 

9W t R (o
~~~~ b) JJ

and
• —~~~ 

~~~~~~~~ L I SltJ ~~ 4 
‘) ~ 31ff ~

‘
~r ~ . r~I — CoS~~,’~ J~

4
— 0

~ _
~~R (~.,L) •7)

+ i
~~~’ L J  ~ 

~~~°$ -#. R ( h , L) JJ J~’
si1 

~~~~ 
(72)
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where a and b are the radii of the cylinder and wire re-

spectively and IC(z1) and Iw(Z s) are the total currents

on the cylinder and wire respectively. The expression

for the zero harmonic current on a hollow cylinder is

obtained by setting f”(z ’) equal to zero, yielding

c.. ~~~~

- L E ,, 3 C h o.. 5iA~~~~~~)  e S~We ~

so 
~(k ~~~~~~) J I ’~~

.’ J[ J  ~
- s o  ~~ ~~~~~ ~

(73 )

In the case of scattering by the wire and cylinder

there are two equations and two unknowns, IC(z~ ) and

The case of scattering by the hollow cylinder has one

equation and one unknown I°(z ’). Since these equations

cannot be solved analytically, an alternate method must

be used to obtain an approximate answer. Chapter III

• discusses one method of obtaining approximate solutions

for equations of this type .
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III. Numerical Development

The solution of the scattering problem considered by

this thesis requires determining unknowns that appear in

the kernels of singular integral equations . One method for

solving linear equations of this type is the method of

moments . This process requires expanding the unknown

function in terms of a set of expansion or basis functions.

Sach term in the set is operated on in the same manner

as was the unknown function . A matrix equation involving

the coefficients of the expansion can be found by taking

the moment of the forcing function and of the operation

on each expansion term with respect to the members of a

set of weighting functions. This chapter includes a brief

description of method of moments and develops digitized

forms of’ Eqs (71) through (73) which can be solved on a

digital computer. The material presented in this chapter

is based on the work of Harrington (Ref 6) and Davis (Ref 4).

Method of Moments

Consider the linear operator equation

L~~~f (74 )

where L is a linear operator, u is an unknown function ,

and f is a known forcing function . If’ the solution to Eq (74)

is unique and exists for all f, one can write

(75)

: 28
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where L 1 is the inverse operatcr and it iE~ assumed that

the domain of L and u and the range of f are defined over

appropriate spaces.

To solve Eq (75) by using the method of moments ,

expand u in terms of a complete set of expansion functions

U
n 

( 7 6 )

where the a~ are the expansion coefficients. In computer

applications , the summation is truncated and Eq (7 6)  becomes

N
4.: (77 )

~~ g ,

where e is the truncation error. Equation (74) can be

written as

N
(7 8)

If one defines the interproduct of two functions h1 and

h2 as 
-
~~~

<k1 3 k~> ~S A ,~I x) dr ( 79)

and defines a suitable set of weighting functions

~~~~ m = 1,2,3,...,M ,Eq (79) can be expressed as

~~~~~~~ < c > <~~~~~ ( 80)
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If the scalars KWm~ Le> are set equal to zero for each

m , Eq (80) reduces to

‘V
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ( 81)

or in matrix notation

{ ~~~ ~ [
~

] (82 )

where

IP#IAI : La .,) ( 83)

and - <W ...~~ 1’) (8 4 )

If ~~ = ~ and is nonsingular , the solution of this

matrix equation is

- - 
- 

fa N J = [
~1 (85)

- 
-~~~~~ and the unknown u is approximated by

- - 

• 
= L~~~~

] [
~~~~J (86)

where ~~~~

• • 
-

(87)
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Therefore , the approximate solution may be written as

~.4. - 
[~~~~~~~

] [:~~~~~~~~~

7

’ ’  

LU (8 8 )

An appropriate set of expansion functions and weighting

functions must be chosen before Eq (88) can be applied to

Eqs (71) through (73). Davis (Ref 3:39) suggests that the

generalized spline

I~ (i’) 
5Siw~~ 4 —  ~~~~~

- ~~) 
~Z4 

(a- ~
_ )  (8 9 )

where

f I , I~~~
’ --

~~~~~ I < 4
P 

~~~~~~~~~~~~~~~~~~~~~~ I~ ’-z~ I ~~~~~~~~ 

(90 )

is an advantageous choice for the expansion function in

problems of this type and that

~~~~~~~~ ?,~ ( a -k , . , )  
~~~~~~~~~~~~~~~~~~~~~~~~ 

(9 1)

are appropriate weighting functions.

Digjtized Equations

Using the expansion function of Eq(89), the currents

on the wire and cylinder can be approximated by

~~ (i’) E IN ~~~~~~ k ~a - ~ 1) ~~~ (i ’- z )  (92)

-: 
31
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and

I: (~
•) -L1 �.~ ~ (~~~~

- ,~~
‘-~~~ j) ~~ c~~’-2,,) (93)

L
where i~ = N+ 1

Substituting Eqs (92) and (93) into the scattering

current equations derived in the previous section, one ob-

tains equations of the fc”m

~~~~ co~~ ~~~~~

—~~wt ( . 4 * s,~s e r ~. ) C .

~~ ~~-i
’)

~~~~ i: s~~ A (4-I~’-z~f) ?~~fr-~~)

+ ~~ a-i) L ~‘ b (~ i~~ i.I) ~ ~~~~ ~ (94)

where the Hadamard form has been used as a result of the

interchange of the integration in z’ and the operation

(Ic2 
+ d2) and

z

•1~
•

; i-i )~ 5 ~~ ~~~~~~~ ÷k , (4 ,~~)
- -1; (95)
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Equation (94) can be integrated by parts twice with respect

to z’ to obtain an equation of the form

L O S

~~~~~~~~~~ E ,, J ~~~ ~~~~~~ ~

• 
~~~~~~~(a,&; i-a,) (

~~~~~~~~~~~~~~) 
~~~ ~(4I~

’ ? l ~~a (a
’-~~~)

I
— P b

~ ~~~~~ ~
-
~ ‘)  (~~~~~ ~ 

A a-j~ -~~i) ~~ (i ’-~~)}1i’ (96)
H~~I

where the operation

w
Q :  (i~~+ . )~~ 1 ~~~ A ( I ~~~~

’
~~~~~ .~~J)~~~~~~4 

(
~ ‘-~~) (97)

may be taken analytically to give

N
Q:

~~~ 

k1:[c(~’~~~) ~ (98)

• I 
To complete the method of moments, one takes the inner

product of the pulse weighting functions and Eq (96) and

the similar equation that represents the evaluation of the

boundary condition at the wire . Operating on the forcing

functions yields

- I -

c (&) — J ~~~ ~ (4.-. i’M ~~
) C~ .1.

(~)o),w ’ I-I 52
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~
_
~~

_- _,.___ 
~~~~~~~~~~~~~~~~~~~~~~~~~~

and

flp ~~i 94 / 2  -
LOS ~~~~

I 
— ~~~ :i~ (i~ ~, t,-J 9~~) e

,,,1 4 — A/&

Similar operations on the right hand side of Eq (96)

results in a set of 2M linear equations for the 2N unknown

current coefficients . These equations have the form

~~.si~:Z. bI ~[ ? ~0~’) -~~°.
) — 2  cos (b a~)

+~~~ -z ~OS (~ A) ~~~~~~~~~~~

and

f hI1 ’[c,0ç~~
6 

~~~~~~~ _ zco 4A)~ .J6i h~J

÷~hI:Lc,.,,~~
) 
~~~~~~~~ 

_ zcOs (kA SJCMJ
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where ,..a +ala. ~

C~~ (t~~~); 
$ J~~(/ . f )~ (i ’ i~) J~.4.  (103)

. , e—*/I .  — s o

for the cylinder plus wire problem . These equations can

be written in matrix notation as

1 t~ 
-

• t ’~fl ,N~~~’~~
) :

) 
=

j ,,, (., e) : ~~~~
(104)

where

IIW.,N (a ,~~
’
~ ~~~ ~ ~~~~~‘) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (105)

The resultant solution for the current coefficients is

- —1

1 L ( a ,~)

IMI .O ( & .~ )
• (106)

- 
- 

- . •
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if the matrix is nonsingular and invertible . The solution

for the hollow cylinder problem is

- . - —1

— I (o. .-)
— -‘

- - 
ij 

(107 )

where l
~~
(a,a) and 

~
‘
m~~ 

are defined in the same manner as

the definitions in the cylinder plus wire problem .

Expressions for the total electric field can be written

in terms of these unknown currents. Consider the z compon-

ent of the electric field .

÷ 
E~~~

’
~~ 

E C’) ( 108)

where E (a) and E (b) are components of the field scattered

by the structures at radii a and b respectively . The field

scattered by the structure at radius a is given by

j ~~c ~~~ 
(Ii~ # c! ) § ~ J ds ’ (109)

S

Noting that this equation is of the same form as was

the equation that had to be solved in determining the

currents, one can write

36 
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# J~-r ;fc (f ~) 
~~‘~‘) Z~~ø~~~~~)G~~~’a4)] (110)

1~

where the n indexes the components due to the ~th expansion

function of the currents or the components due to the cur-

• rent on each of the N divisions of the structures in the z

dimension and fl is the impedance of the medium . The total

E (F) is given by a summation over n for both structures or

(~) :LJ M ~J x :~ + [j~~~~~)
] 
[i:] (111)

where the

~~ ~~~~~~ ~~ç•~~~~~) -Z~~~ (k4)  ~~~~~ 
(~~~~~)] ( 112)

and n =

• An expression for the component of the electric

field can be derived using Eq (4), the equation for th~

- 

divergence of E, yielding

i ~.L. ~~~4~) ~~~ ~~ -
~
.

- 

/ /
— -p (113)

-F - .
-

~~~~~~ 
~ 3?

- -  -P T1 - --- - -- 
• I



When the observation point is on the wire , Eq (113) can be

written as

~~~~~~~ ~‘(~~~) ~~t:J 
~~~~~~ 

(114- )

since E
~ 

is zero at the surface and E~ is always zero for

the geometry considered in this thesis. Using Eq (6),

the current continuity equation, one can write

~~~~~ 
_ _ _  -~3- ~~i~~~~~~~~~~~~~ 21 ~~~~- • 

(115)

about the radius j b. Integrating from ,p = b to # b~
yields

6

and E1(b) becomes

..- .L?:~ ~Lz ’ (. -) J
( 117)

Assuming that E~ is zero inside the wire , . -
~ 
b,

-~~~~~~~~ - •‘ 
- i

”-’ S, ,v ( k4 )

I’N4 -d ( 118)
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where central differences about z = n~ has been used to

obtain ~fI’(t )J  . Likewise , E~ for j= a is

= ‘ 4
~-~? ~~ 

jp~. ~~~~~~~~~~~~~~~~ £ l*á(~~~~I)

LA (119)

or

4 (~.‘) 4~~~~~~~~.. ~~~~~~~~~ J , N (44 )
(120)

For observation points not on either surface

~ ~~ ,E,,) — —
f —

~~~~~~ 

— 
— (121)

which may be writ-ten in difference form as

_~~~~~~~
f

~~~~~(~~~~~~) 6 ~~~~~~~ .)J %~-.* :2A
(122)

• •I~i.~~-’ ,

or

— 
____  

P _ _ _ _ _ _ _ _ _ _

(123)

The term

—

J ~~~ (124)

must be interpre ted in some manner with respect to .f

Since a difference form was used on , one

3•)
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—

interpretation is to use an average with respect to ~ to

give

- )L EE1_,~
.t — _~1 ] + ~ , f a _~ — 

Ei (.Pi)J 
(125)

In this chapter, equations that can be solved digitally

have been developed for the unknown scattering currents.

Additional equations were developed for the components of

the total electric field in terms of these scattering cur-

rents and -the incident field. Chapter IV describes some

of the specific structural dimensions that have been sim-

ulated on a digital computer and the results of these

simulations.
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IV. Results

The objective of this thesis was to determine the

effect of placing a second scatterer inside of a finite

circular cylinder. Two computer programs were written to

provide data for this analysis. One program computed the

zero harmonic z-directed currents and the electric field

components for a hollow cylinder. The second program com-

puted the same quantities for a cylinder of the same di-

mensions as the hollow cylinder; however, a wire was placed

on its longitudinal axis. The programs were run for structures

of various dimensions in an effort to provide data which

demonstrates the validity of the development and programming

as well as data which would be useful in analyzing practical

scattering problems. The output included plots of the in-

cident E field , the z-directed currents on the structures,

and the total electric field components for five different

z planes.

Validation Data

Although all results were analyzed for effects that

differed from what one would expect, two specific geometries

were simulated to check the validity of this work. The first

case simulated a cylinder whose radius, a, made the product

ka equal to the first zero of the zero order Bessel function

of the first kind . The second case simulated a long thin

cylinder.

F 
.

‘
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One can readily analyze the effect of the cylinder

by selecting ka to be equal to the first zero of J0(k1 )
and assuming normal incidence . As would be expected, there

was no scattering from the hollow cylinder since the forcing

function was zero at the surface. The cylinder current

was zero and the total field was equal to the incident

field. Adding the wire to the geometry modified the results.

In addition to the current induced on the wire , a small

current was induced on the cylinder by the field scattered

by the wire. The total scattered fields, composed of a

tangential component E
~ 

and radial component E1 , were

non-zero with the wire present.

Harrington (7 :233)  analyzed scattering by an infinite

cylinder, assuming normal TM incidence , and derived the

equation

- r _  ~ E. 
I

— 

/./1)
f~~g~ (126)

for the zero harmonic current density induced on the cylin-

der where H~
2)(ka) is the zero order Hankel function of the

second kind . Figure 3 illustrates the magnitude of the cur-

rent computed by the program for a hollow structure with a

radius of 0.01 wavelength and a length of five wavelengths

and the magnitude of the currents computed by using Eq(133).

The amplitude variations of the program computed current

are due to the end effects associated with a finite structure .

F:,
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If one takes the average of the amplitude variations,

there is good agreement with Harrington ’s current on an

infinite cylinder. Figure 4 shows Harrington ’s solution

for Ez of an infinite cylinder and the program solution for

in a plane mid-way between the ends of the cylinder.

As one can see , there is no noticeable difference in the

fields. Comparing these results to the results for shorter

cylinders , the convergence of the program solutions toward

the infinite cylinder solution was observed as the length

increased.

Practical Data

The sponsors of this thesis are interested in pre-

dicting the scattering effects from complex structures

such as an aircraft with its myriad of cables , compart-

ments , equipment , and apertures. in an effort to provi de

data that might give insight into scattering problems of

this type , three sets of dimensions were selected that

simulate physical structures being irradiated by a Ti~
wave of unit magnitude . The wavelength of the incident

field was selected to be in the middle of’ the VHF band at

30 meters.

The first structure simulated was a coaxial trans-

mission line whose outer radius was three-eighths (3/8)

inch and inner radius was one-eighth (1/8) inch. The

bulk current on the outer conductor was three orders of

magnitude greater than the bulk current on the inner

44 
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conductor. Comparing the coaxial transmission line to a

— . hollow cylinder (circular waveguide) with the same outer

— r.adius, one finds that the z-component of the electric

field inside— --.the coaxial line is three orders of magnitude

smaller than the correspondjng component in the hollow

cylinder; whereas the radial compon~eflt .o~ the electric

field inside the coaxial line is three orders of~magn~.tude

greater than the corresponding component in the hollow 
- - - 

- - •

cylinder. Although the magnitude of the total current on

the coaxial line was approximately equal to the magnitude

of the current of the hollow cylinder , the interior field

structures were significantly different .

The second structure simulated was a tunnel, radius

eight feet, with a conduit, radius two and one-half inches,

on its central axis. The length of the tunnel was selected

to be 75 meters. Figure 5 depicts the magnitude of E~ for

the hollow tunnel and tunnel plus conduit as a function of

• radius in a plane approximately 9 meters into the tunnel.

One àan see that there is no noticeable difference in the

two cases and that E
~ 

is approximately zero inside the

tunnels (radii less than 2.4 meters). Figure 6 depicts

the magnitude of the radius times the radial component of

— 
the electric field as a function of radius for the same z.

One-can see that the hollow tunnel has no appreciable field

inside the structure ; however, the tunnel with the conduit

along its central axis has a significant radial electric

field in its interior.

1 
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t The third physical structure simulated was a large

aircraft or missile with a radius of approximately six

meters and a length of seventy-five meters. Figure 7

depicts Ez for a z-plane approximately 19 meters from the

end of the structure. There is no noticeable difference

between the hollow structure and the structure which had

a 0.3 centimeter radius wire on its axis. Figure 8 depicts

the magnitude of radius times the radial component of the

electric field for the hollow structure and the structure

with the wire in the same z-plane . Again, there is a sig-

nificant radial component inside the structure with the wire ;

• whereas, the hollow structure radial component is approx-

mately zero.

Ten additional simulations were made in which the

parameters wavelength, physical size, and the angle of in—

cidence were varied. In general, the results were similar

to the results described in previous paragraphs. An ex-

ception occurred when the length of the concentric cylinder

structures was selected to be less than 1/2 wavelength long

and the radii of the outer cylinder and inner cylinder were

selected to be 0.1 and 0.0001 wave1~ ngths respectively . Fig-

ure 9 depicts E
~ 

in a z-plane approximately three-sixteenths

(3/16) of a wavelength from the middle of the structures.

One structure is 0.5 wavelength long and the other is 0.4

wavelength long. It can be seen that there is a marked

difference in the two curves. The magnitudes of the currents

49
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on the outer conductors for the two cases were approximately

equal ; however , the magnitude of the current on the inner

- conductor of the shorter structure was approximately five

times the magni tude of the current on the inner conductor

of the longer structure . These results suggest some type

- 
- 

of TM modal structure for the fields in the shorter structure

• and a TEI’.i modal structure for the fields in the longer

- structure.

F
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V. Conclusions and Recommendations

This thesis addressed electromagnetic scattering by

two concentric , finite length, circular, perfect electric

conductors. Total electromagnetic field equations were

derived in terms of vector potentials. This permits one

to lower the degree of differentiability require d on the

electromagnetic fields as opposed to what is required when

the total fields are derived in terms of the electromagnetic

field components. The total field equations were manipulated

to yield integral equations for the equivalent surface

currents induced on the cylinders by the incident fields.

The method of moments was used to formulate digitized

equations that could be solved on a digital computer for

the unknown currents. Digitized equations were derived

for the tangential and radial components of the scattered

electric field. Several comparisons were made between the

scattering from a finite hollow cylinder and the two

cylinder case.

A conclusion that must be drawn from this analysis is

that introducing the second conductor into the problem

significantly changed the scattering problem. While the

magnitudes of the zero harmonic currents on the hollow

conductor and the outer conductor of the concentric case

were approximately equal, the effect of a small radius

inner conductor cannot be ignored. The modal structure

• 54
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of the fields between the concentric conductors is sig-

nificantly different from the modal structure of a hollow

conductor of similar dimensions. If one desires to analyze

the fields between two concentric conductors , the formula-

tion must include the scattering from the inner cylinder

and the cross-coupling between the two structures. Further-

more , if one desires to design a cylindrical structure that

will not permit significant propagation of electromagnetic

waves interior to the structure , consideration of waveguide

modes alone is not sufficient. Significant TEM modes can

exist when an inner cylinder is part of the scattering

problem .

The Air Force Weapons Laboratory’s objective to predict

scattering from structures much more complicated than the

geometry considered in this thesis leads one to suggest

a series of research projects related to this work. A

suggestion for further study is to simulate end caps on

the cylinders and various shaped apertures in the side of

the outer cylinder. One could further extend the analysis

by placing a cavity or enclosure behind the aperture with
• the inner cylinder passing through the cavity. This analysis

could be further extended to include multiple apertures,

cavities, and inner conductors. Finally, non-symmetrical

sca-tterers should be analyzed. This line of research would

lead to a much more accurate prediction of the scattering

effects as-3ociated with complex structures.
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Appendix

Two identies were used in Chapter II which enables

one to write the curl and the gradient of the divergence

of the magnetic vector potential A(r) in a convenient form.

This appendix demonstrates the validity of these identities.

The restriction placed on the identities was that the ob-

servation point was not on the surface of the scatterer,

Consider Eq (28)

c’x f , ’~ x (~’ x& ) As ’~~ —~~~~~‘ x ~ R ~
5’

— V(V . ~ ~~~~~~~~~~~~~ a”) (28)

Interchanging the order of integration and differentiation

the left side of Eq (28) in accordance with Leibnitz’s

rule (Ref 12:313) yields

~ ~~~~~~~~ (127)

which may be rewritten as

~f[(~’x~) .v Jv’~ _ ( . ~v)~~’.~) — ( ‘ tU (v -v ’~ )

( 128)

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -- - - - - - - ------ -

~~



-~~~~ • v~~~ _ r ~~. 
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__

t Note that

(129)

and

(130)

since (~ i ’ x I) and (ri’ . I) are functions of the prime co-

ordinates only. Therefore, Eq (28) simpl if ies to

~~~~~~~~~~~~~ +~~[(1~’~ñ ) . v J v’~
~~~~~~~~~~~~~~~~~~~~ 

~~~~~~ ~~~~~~~~~~~ (131)

S

where Eq (26) implies for r p~ r
’ and V V ~~~.

Consider the expression

(132)

which may be written as

~~~~~~~ +~~v .(~~x R ) j J s ’ (133)
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after interchanging the integration and divergence operators

or 

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ( 134)

since T•(i~’ x ~~~~) 
is zero by Eq (130). Interchanging the

order of integration and differentiation in Eq (133) per-

mits one to write the expression as

# [(~‘d) .vJ V~ } A5 (135)

Using Eq (129) one can write Eq (134) as

(136)

which completes the proof.

The second identity used was

v [v .~~~ix v’
~~v

1.n)~~s’J 0  ( 2 9 )

which may be rewritten as (Ref 7:450)

v f r .  Jv ’x~ v”(v’.f i )c l ir’J ( 1)7)
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Expanding the left side of Eq (133) yields

V{V.~~v’~~s~~’(V
’-R) 4~~ v ’ x v ’~~v

’. A ) ]J ,i j :O  (138)

or

• ~t~~
v ’~ 

V ’
~P ’-~~) (139)

-: since the curl of a gradient is equal to zero .

- 
Interchanging the divergence and integration operators

on the left side of Eq (140) and expanding yields

v~~v’(v ’- ñ )  (c’x~ ’~) çi~~ .[~xv ’(v’.~)J} cL1~’ ~ O (140 )

which is indeed equal to zero since the curl of a gradient

is equal to zero.

~~: 
~
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